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Abstract Design work involves uncertainty that arises 

from, and influences, the progressive development of 

solutions. This paper analyses the influences of evolving 

uncertainty levels on the design process. We focus on 

uncertainties associated with choosing the values of 

design parameters, and do not consider in detail the 

issues that arise when parameters must first be identified. 

Aspects of uncertainty and its evolution are discussed, 

and a new task-based model is introduced to describe 

process behaviour in terms of changing uncertainty 

levels. The model is applied to study two process 

configuration problems based on aircraft wing design: 

one using an analytical solution and one using Monte-

Carlo simulation. The applications show that modelling 

uncertainty levels during design can help assess 

management policies, such as how many concepts should 

be considered during design and to what level of 

accuracy. 

 

Keywords Uncertainty levels · Design process model · 

Discrete-event simulation 

 

 

1 Introduction 
 

The design process can be viewed as a system of 

interrelated activities that are performed to increase 

knowledge—or to reduce uncertainty—about the design 

solution. This paper explores how design processes are 

influenced by changing levels of uncertainty in the 

emerging design. We focus on situations where the 

solution principles are well-established and the 

architectures of the product and its design process vary 

only incrementally from previous projects. In these cases 

the key design parameters and models are usually known 

from the outset, and the processes by which their values 

are determined can often be described. Prior to a more 

detailed analysis in forthcoming sections, we use the 

term ‘uncertainty’ in a high-level sense to encompass 

many different issues, including: lack of definition, lack 

of knowledge and lack of trust in knowledge. 

We draw on an example of aircraft wing design to 

argue that design processes can be enhanced by better 

understanding the evolution of uncertainty levels 

associated with the emerging design. A task-based 

simulation model is introduced based on the assumptions 

that (1) reducing uncertainty about the design is an 

objective of the design process; and (2) levels of 

uncertainty influence how the process unfolds. We 

discuss how tasks in the design process can be influenced 

by the uncertainty levels associated with their inputs, and 

explain how these levels and influences can be 

incorporated in a design process simulation. Two 

illustrative applications show how the modelling 

approach can help understand the impact of uncertainty 

levels on a design process, and show how the 

uncertainty-oriented simulation can be used to assess 

potential process improvements. 

 

 

2 Case study: aircraft wing design 
 

The arguments throughout this paper are illustrated using 

a case study: the design of an aircraft wing. Wing design 

provides a good example of a complex engineering 

process, in which multi-disciplinary teams resolve design 

problems where the main parameters (but not their 

values) are well-defined from the beginning. We draw on 

interviews with stress engineers and designers working 

on structural analysis in a major aircraft manufacturer 

[1]. However, most features of wing design described 

here are common across the industry as discussed by 

other authors (e.g., [2]). 

 

2.1 Overview of the design problem 

 

Wing design requires many parameters to be determined, 

ranging from high-level configuration to low-level 

parameters such as the thickness of the skin. Choices 

made while designing other aircraft sub-systems, such as 

the fuselage, landing gear and engines, impact on the 

wing design and vice versa. Interface management is thus 
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an important challenge during design. Changes in 

interface parameters, or in requirements, can occur at any 

time and necessitate rework. 

One of the main challenges faced by the engineers 

interviewed during the study is to design a structure that 

can resist loads without buckling. In overview, two main 

types of load must be considered. Surface forces or 

external loads act upon the skin, and body forces or 

internal loads act over the volume of the structure. Loads 

derive from sources including the wing weight and the 

pressure distribution over the surface. They result in 

direct loads, bending, shear and torsion in all parts of the 

structure. Designers must consider not only of the static 

structure of parts and their interfaces, but also the 

dynamic behaviour of the wing. For instance, stresses on 

the leading edge must be considered under the combined 

effect of pressure loads and movement loads. 

Most design decisions must consider multiple 

operating scenarios, such as steady flight, manoeuvre and 

gust conditions. Many other requirements and constraints 

must also be considered. These include weight and 

certification requirements, as well as design constraints 

such as material properties and production tolerances. 

 

2.2 Design decomposition 

 

Some of the main components of a wing are depicted in 

Fig. 1. Their structural functions include: 

– Skin Resists the distributed aerodynamic pressure 

loads and distributes concentrated loads, such as 

those arising from the undercarriage, into the 

structure. The skin also redistributes stress around 

discontinuities such as the undercarriage wells. 

– Ribs Determine the cross-section of the aerofoil. 

The design of each rib is governed by its span-wise 

position in the wing and by the loads it must support. 

Ribs close to the wing root absorb and transmit large 

concentrated loads, including those from the 

undercarriage and fuselage. 

– Stringers Divide the skin into small panels, 

increasing the buckling and failure stresses without 

requiring the skin thickness and therefore weight to 

be increased. 

– Spars Comprised from spar webs and flanges, spars 

provide much of the wing’s structural integrity. 

 

 

 
 
Fig. 1. Some examples of parts in an aircraft wing 

2.3 Design descriptions: data and models 

 

During design, information about the wing, its parts and 

performance is created and iteratively refined. This 

information is not accessed and modified directly, but is 

expressed through mediating descriptions suitable for 

different design and analysis activities. For instance, a 

part might be described concurrently in the form of CAD 

models, CFD models and FE models. These descriptions 

of the design are supplemented by the knowledge of 

process participants, much of which is not documented or 

made explicit. The different types of design information 

used during the process describe the design in an 

overlapping way and must be considered simultaneously. 

This relationship between the design, its descriptions and 

the design process is a source of significant complexity 

in many design processes [3]. 

 

2.4 Design process 

 

The wing design process, as might occur in practice, 

begins with definition of main parameters such as length, 

sweep and chord. Aerodynamics specialists use these 

basic parameters to define wing surface geometry. 

Designers then define the physical parts, and the engine 

size must be determined. The wing and overall system 

design is analysed with respect to different manoeuvres, 

mission profiles, etc. If requirements are not met, 

changes to the design definition are made and analysis 

tasks revisited. Examples of specific tasks performed 

during the design process are: 

– Modelling, updating and meshing models of the 

parts. 

– Assembling FE models of the wing from part 

models. 

– Calculating and analysing load distributions. 

– Calculating the aerodynamic pressure distribution 

over the wing surface. 

The wing parts are incrementally refined through an 

iterative process of definition, analysis and evaluation. 

Engineers in different teams and from different 

disciplines consider multiple descriptions and 

requirements. Many passes of the process may be 

required. On each cycle, the designers create information 

that may inform subsequent decisions they make. 

Figure 2 draws on the case study and literature on 

wing design to summarise part of a generic process as it 

might be carried out in practice. The figure suggests a 

fixed sequence of activities that are repeated the same 

way on each iteration. This is a sanitised view that arises 

from the level of abstraction and structure chosen for the 

diagram. In reality, designers react to emerging issues 

when determining the focus for their attention on each 

cycle. Not all tasks need be performed each time; for 

instance, engines would not be re-sized on every 

iteration. The duration of some tasks is determined by 

how much effort designers choose to expend at that point 

in the design process. This can be influenced by the 

levels of uncertainty associated with the task’s input 

information. For instance, there would be little benefit in 

carefully refining wing geometry prior to stress analysis 

if the requirements for the geometry were expected to 

change. 
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Fig. 2. Some activities, information flows and design descriptions in a generic wing design process 



Modelling the evolution of uncertainty levels during design   Wynn et al. (2011) 

 

Page 4 of 15 The final publication is available at www.springerlink.com. DOI 10.1007/s12008-011-0131-y 

Many tasks in the design process may also be 

undertaken using one of multiple methods. For example, 

early in the design process simple correlations may be 

used to estimate design performance. Later, when a more 

precise design definition is available, more sophisticated 

tools can be applied to perform the same task with better 

results. The methods used in a particular iteration of a 

task can also depend on the design context at that time. 

For instance, they can even be created on-the-fly to 

reflect the needs of a particular analysis and the 

information available when analysis is undertaken [4]. 

In a complex design process it can be difficult to 

identify and coordinate all information flows, especially 

those involving other sub-systems. Process participants 

often begin activities based upon assumptions, which 

may subsequently require corrective iterations when 

updated information becomes available. This illustrates 

yet another situation in which designers provide and 

receive information known to be uncertain, and that can 

cause additional complexity in the design process.  

In summary, the cost and duration of the wing design 

process is determined by the methods that are used, the 

sequence in which tasks are attempted, the degree of 

concurrency and the strategies for managing unplanned 

flows, changes and iterations. The effort dedicated to 

tasks at each point in the process is influenced by the 

perceived levels of uncertainty, and consequently the 

dynamic organisation of the process is affected by 

uncertainty levels. The remainder of this paper draws on 

the wing design example to show that insights to support 

process management can be gained by modelling how 

processes unfold according to uncertainty within them. 

 

 

3 Uncertainty in engineering design 
 

There is no clear consensus or single definition of 

uncertainty in the engineering literature [5]. However, 

many definitions of uncertainty in engineering apply to 

“predictions of future events, to physical measurements 

already made, or to the unknown” [6]. In this paper, we 

use the term ‘uncertainty’ to refer to everything that 

contributes to a lack of definition, lack of knowledge or 

lack of trust in knowledge. This may differ from 

colloquial usage of the term but is consistent with much 

of the literature (e.g., [7,8]). Some of the main concepts 

found in this literature are outlined below. 

 

3.1 Epistemic and aleatory uncertainties 

 

One of the main distinctions regarding types of 

uncertainty in engineering design is made between 

epistemic and aleatory uncertainties (e.g., [9,10]): 

Epistemic uncertainty. Sometimes called subjective 

uncertainty, epistemic uncertainty is derived from 

ignorance or incomplete information. Some epistemic 

uncertainty is reducible, for instance by trade studies, 

measurements or consultation with experts. 

Epistemic uncertainty can be viewed as arising from 

lack of knowledge or lack of definition. According to 

Hastings and McManus, lack of knowledge refers to 

“facts that are not known, or are known only imprecisely, 

that are needed to complete the system architecture in a 

rational way” [11]. Lack of definition reflects “things 

about the system in question that have not been decided 

or specified yet” [11]. Since they are epistemic in nature, 

both lack of knowledge and lack of definition may be 

reducible. 

Similar to lack of definition, in many situations it may 

be difficult or impossible to reason about uncertainty 

because the events or parameters with which it is 

associated are not yet known or do not yet exist [5]. For 

instance, this may occur in design if the choice of 

product architecture ‘creates’ the need for certain module 

interface parameters. 

Aleatory uncertainty. Sometimes termed objective or 

stochastic uncertainty, aleatory uncertainty describes the 

inherent variation associated with a physical system or 

environment—such as dimensional variation in 

manufactured components. Aleatory uncertainty cannot 

be reduced using the methods described above, although 

gaining knowledge about variability may allow its 

influence to be mitigated through design of systems to be 

adaptable, robust, flexible, etc. [12]. 

 

3.2 Uncertainty in information and description 

 

McManus and Hastings [11] discuss how uncertainty 

may concern information (e.g., incompleteness, 

inconsistency or limited measurement quality) and may 

also be associated with how the information is described 

or modelled (e.g., due to ambiguity of description, 

information omitted when modelling or lack of clarity in 

the model’s scope). This classification is similar to 

Eversheim et al.’s [13] categorisation of uncertainty: 

content-uncertainty (incompleteness, imprecision and 

vagueness) and context-uncertainty (unreliability, 

invalidity and instability). 

Uncertainty concerning information may be aleatory 

or epistemic in nature. Uncertainty associated with 

description is primarily a type of epistemic uncertainty 

that arises from assumptions or lack of knowledge while 

modelling [14]. 

 

3.3 Uncertainty in abstraction and interpretation 

 

The quality of any description is subject to the view an 

observer has of the target system and any related 

phenomena about which judgments are to be made. This 

arises since the systems or phenomena cannot be 

considered directly by the observer [15], but are 

processed through conceptual apparatus that provides 

ways of thinking about and terminology for describing 

aspects of the system. 

Considering this issue, Pons and Raine [8] discuss 

abstraction uncertainty in engineering. Abstraction 

uncertainty arises from how descriptions are interpreted 

and used by engineers. It thus depends on the subjective 

perceptions of process participants and can be reduced 

during the design process as more details become known. 

The concept of uncertainty in abstraction also has 

implications regarding how uncertainty can be described 

and analysed. There is no general approach to 

representing and reasoning about the uncertainty 

associated with a design but rather several different 
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methods [15]. For example, probability theory provides 

concepts such as variance to describe uncertainty levels 

whereas fuzzy set theory provides membership functions. 

Smithson [7] provides a taxonomy of formalisms for 

handling uncertainty in design according to the sources 

of ignorance. 

However, no single method is able to model all types 

of uncertainty equally well [7]. The most appropriate 

approach should be determined by the modelling context. 

This includes the causes of uncertainty; how uncertainty 

is understood; the available information; and the purpose 

for modelling. 

 

3.4 Uncertainty associated with complexity 

 

Uncertainty is also associated with the complex system 

of interrelated models found in design [3]. Uncertainty 

levels associated with different descriptions of the 

emerging design evolve in an interdependent way, 

because the descriptions are related to one another 

through the structure of the design process system within 

which they are embedded. 

Building on the analysis of complexity in design 

developed by Earl et al. [3], we consider the structure of 

information use in design to comprise: (1) the 

decomposition of the design into the abstract structure of 

information that defines it; (2) the representation of this 

abstract information as multiple, overlapping 

descriptions that exist as objects or data in the real world; 

and (3) the behaviour and organisation of activities that 

create and manipulate descriptions during design. In 

following sub-sections we argue that interdependencies 

between uncertainty levels depend upon this system 

structure, and that it also creates sources of uncertainty 

that impact upon design descriptions and their 

interpretation (Fig. 3). 

 

 
 
Fig. 3 A framework of factors that cause dependencies between 

uncertainty levels associated with design descriptions and that 

cause additional uncertainties in the context of the design 

process. 

 

3.4.1 Interdependencies between uncertainty levels 

arising from the design decomposition and 

parameterisation 

 

During design, a system is decomposed into sub-systems, 

components and the parameters that define them. In this 

context, we consider a design parameter not to be limited 

to numeric values such as ‘radius’, but to refer to any 

aspect of the system definition, including aspects such as 

geometry and material selection. We also consider 

performance parameters, e.g., ‘weight’ or ‘drag’, whose 

values cannot be defined by the designer, but can only be 

estimated or measured once design parameters have been 

specified. 

Three forms of interdependency between the 

uncertainty levels associated with parameters arise from 

the structure of the design decomposition: 

Interdependencies between uncertainty levels in 

parameters associated with interconnected sub-

systems or components. The levels of uncertainty 

associated with parameters defining connected sub-

systems or components are related to one another. For 

instance, there is an interface in the wing between the 

skin and ribs. The thickness of the skin impacts 

significantly on the design of the ribs. Consequently, rib 

geometry cannot be determined precisely unless the skin 

thickness is also precise, and vice versa. 

Interdependencies between uncertainty levels in 

parameters associated with different levels of the 

system. The decomposition of a system into sub-systems 

and components results in parameters defining similar 

aspects at different levels of this hierarchy. These 

parameters are interdependent as they define the same 

aspect of the design, but are associated with different 

levels of its decomposition; thus the levels of uncertainty 

associated with them are also related. 

For instance, one performance parameter in aircraft 

wing design is the weight of the assembled wing, which 

can be computed from the definitions of skin, ribs and 

other components. Uncertainty levels in any calculation 

of the wing’s weight are thus directly related to 

uncertainty levels in the parameters defining its 

constituent components. 

Interdependencies between uncertainty levels in 

parameters associated with multiple components and 

sub-systems. Because the decomposition of a design into 

parts and subsystems is determined by the way the 

product is designed and manufactured, many important 

parameters are not localised within a single component or 

sub-system. The uncertainty levels in parameters may 

thus be interdependent if those parameters are associated 

with any of the same parts. 

For instance, during wing design the maximum 

bending load on the structure (a high-level performance 

parameter) is influenced by the geometry of all the 

constituent components (defined by lower-level design 

parameters). This implies that the uncertainty associated 

with any calculation of wing bending load is related in a 

potentially complex way to that associated with the 

component definitions. 
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3.4.2 Interdependencies and additional uncertainties 

arising from multiple descriptions of parameters 

 

Information is not modified directly while designing—

the process operates upon multiple descriptions or 

models, each of which represents one or more 

parameters. If the scopes of several descriptions overlap, 

the uncertainty levels associated with them will thus be 

interdependent. 

Uncertainty also arises from how parameters are 

represented during the process. In particular, use of 

multiple representations and multiple forms of 

representation introduces variation in how the design is 

perceived: 

Uncertainty arising from inconsistent descriptions. 

Descriptions used during design often embody different 

values of the same information. This can introduce 

uncertainty if designers must make decisions based on 

inconsistent representations, or if different designers 

knowingly or unknowingly work with inconsistent 

representations. In practice, inconsistency is often 

inevitable and can be managed if its possibility is 

recognised. For instance, models that are considered old 

in terms of the ‘iterative speed’ of the process are often 

not trusted, and can be checked prior to use. On the other 

hand, unrecognised inconsistency can lead to mistakes 

that are integrated into the design and may require 

expensive rework to correct later. 

Inconsistency may arise from the different types and 

formats of representation used during design as described 

below, or from the complexity of the design process and 

need to make assumptions, as discussed in Sect. 3.4.3. 

Potential for inconsistency arising from 

incomparable descriptions. Any aspect of the design 

may be simultaneously represented in several different 

formats suitable for different tasks. For instance, consider 

the concurrent representation of geometry in data formats 

used by different tools. If the formats are not possible to 

compare using the available tools, inconsistency may 

exist but may not be recognised—or the recognised 

potential for inconsistency may lead to lack of trust in the 

data.  

Potential for inconsistency arising from 

incompatible descriptions. Different tasks consider 

descriptions that represent the design definition in 

different levels and forms of abstraction—such as 2D 

geometry versus 3D geometry. Such models can be 

‘incompatible’ in that they omit significant and different 

aspects of the design definition that is represented, again 

leading to potential for inconsistency. Similar issues 

occur when representations of the design are viewed or 

interpreted in different ways, or when different aspects 

are considered important by different stakeholders. 

 

3.4.3 Interdependencies and additional uncertainties 

arising from the process of developing design 

descriptions 

 

Since descriptions are processed by activities in the 

design process, the uncertainty levels associated with 

descriptions created by a task are related to those 

associated with descriptions used as input to that task. 

For instance, analysis based on design descriptions that 

are believed to be out-of-date will lead to results that are 

also not trusted. Descriptions are also interrelated 

indirectly through the process network, since analysis 

results influence design decisions that are subsequently 

integrated into the workflow. For instance, levels of 

uncertainty in many downstream descriptions may 

increase if the information on which an analysis was 

based is subsequently changed. 

In addition to these interdependencies, the properties 

of each task and the organisation of the process introduce 

further sources of uncertainty: 

Uncertainty arising from models and 

simplifications. Many design and analysis tasks use a 

physics model to derive descriptions of performance 

parameters from descriptions of design parameters. 

Assumptions in these models introduce uncertainty in 

analysis results additional to that which is propagated 

from the input. For instance, CFD models may use 

simple approximations in place of sophisticated 

turbulence models. Geometry is also often simplified and 

defeatured in different ways when preprocessing for 

different analysis tools, objectives and boundary 

conditions. Ordaz-Hernandez et al. [16] discuss how 

model simplifications should be considered according to 

the modelling context; trade-offs may be required 

between accuracy and speed of the user interactions 

required to perform the task. 

Potential for inconsistency arising from the 

complex organisation of activities. Design processes 

are organised into concurrent streams of work that are 

complex and difficult to understand in their own right, 

and this complexity is exacerbated by the iterations that 

occur within and across workflows. Due in part to this 

complexity, participants often have limited overview of 

information flows and dependencies in the process. As a 

result descriptions and models used during design may 

become desynchronised and inconsistent. 

Potential for inconsistency arising from introduced 

assumptions. The dependencies between design 

parameters constrain the order in which they can be 

determined, such that a given parameter cannot be 

finalised until all the values on which it depends have 

also been determined. In practice, there are often many 

cyclic dependencies between parameters, so that it is not 

possible to identify a sequence of determination. 

Assumptions must then be made about the values of 

parameters and design must proceed knowing that later 

rework may be required. Similarly, the need to divide 

work among many participants leads to artificially 

concurrent work streams with limited information flows 

between them, necessitating additional assumptions and 

potential for inconsistency that may or may not be 

recognised. 

 

3.5 Uncertainty associated with lack of trust in 

knowledge 

 

The previous subsection explains how designers must 

cope with an overabundance of information, including 

conflicting or difficult-to-compare representations of the 

same systems or phenomena. As a result, stakeholders 

may be uncertain about an issue because they don’t trust 

the available information. For instance, an engineer may 
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not trust certain information if they don’t know who 

generated it; if that person is inexperienced; if they don’t 

know when the information was generated; or if the 

information is considered old enough that it could need 

updating. 

 

 

4 Modelling the evolution of uncertainty 

during design 
 

Task-based models offer a way to analyse the evolution 

of uncertainty levels during design, because they capture 

the progression of distinct activities over time, along with 

the creation and modification of inputs and outputs.  

Most task-based design process models in the 

literature are based on graphical activity networks (e.g., 

[17]) or Dependency Structure Matrices (e.g., [18]). 

These models assume that once the input information for 

a task is known, the output information can be calculated 

or deduced and the next task may be identified and 

attempted in turn. Some task-based models allow 

simulation of a process; in these approaches, the duration 

of each task is generally modelled either as a precise 

value or as a probability density function. Such models 

can be used to investigate the impact of uncertainty on 

project performance—for instance, by exploring the 

situations in which delays encountered while completing 

certain tasks will propagate to the end of the process. 

However, they do not represent the evolving uncertainty 

associated with the design itself. 

Other task-based models do relate aspects of product-

related uncertainty to process behaviour. For instance, 

Krishnan et al. [19] model situations in which tasks 

release preliminary outputs to their successors before 

work is finalised. They consider preliminary releases to 

be intervals within which the final value must lie. 

Simulation models that consider product-related 

uncertainty include Signposting [20] and the adaptive 

product development process (APDP) [21]. These 

approaches qualify the information that tasks require and 

produce by describing different aspects of its maturity. In 

Signposting, a single item of maturity metadata described 

as ‘confidence’ is associated with each design parameter, 

used to represent designers’ belief in the quality of 

information. In the APDP model, the meta-data relates to 

the risk that the design will not meet technical 

performance measures (TPMs). Both models assume that 

tasks are attempted when sufficient maturity is reached in 

all inputs. Completing a task causes maturity in its 

outputs to increase, or to reduce if the task reveals a need 

for rework. 

These models focus primarily on the effect of maturity 

levels on task sequencing and on the appropriate choice 

of methods to perform each task. However, in design-by-

analysis processes such as wing design, the sequence of 

tasks is largely fixed by data flow constraints between 

design tools. We therefore seek to model how the 

iterative dynamics of the process vary given a fixed 

structure of activities, and how this is governed by 

evolving uncertainty levels. Furthermore, existing 

approaches do not support modelling the different forms 

of uncertainty discussed in Sect. 3. 

4.1 A task-based model considering uncertainty levels 

 

An enhanced task-based modelling approach was 

developed to study the impact of evolving uncertainty 

levels on the design process. The approach is based on a 

graphical Input–Process–Output notation in which each 

task produces deliverables that are consumed by 

successors. The properties o each task are specified as 

functions of the uncertainty levels associated with input 

descriptions. Task properties treated in this way are (1) 

duration; (2) propensity to generate iteration; and (3) 

uncertainty levels associated with the output descriptions 

generated by the task. Individual task definitions, such as 

that shown in Fig. 4, enable a process network, such as 

that shown in Fig. 2, to be simulated taking into account 

uncertainty levels and their evolution. The remainder of 

this section details the new model by considering the 

following questions: 

 

– Which aspects of uncertainty should be considered? 

– How should uncertainty levels be represented? 

– How should the tasks’ properties be modelled? 

 

 
 

Fig. 4.  Example task definition 

 

 

4.2 Which aspects of uncertainty should be 

considered? 

 

Drawing on the literature and analysis in earlier sections, 

five aspects of uncertainty were identified for inclusion 

in the model (Table 1). Each of these aspects was chosen 

because it is influential upon iterative behaviour—a key 

issue that is considered in almost all design process 

models [23]. The five aspects and examples of how they 

influence the design process are discussed below. 

Imprecision. Early in the design process, a wide 

space of possible solutions is kept in mind by the 

designer. For instance, in wing design it is not possible to 

precisely specify geometry until load cases are precisely 

defined. In the case study, engineers communicated 

imprecise loads by specifying interval values (about 

±15% at the beginning of embodiment design). 

Imprecision arises when design decisions remain 

open, and many authors therefore argue that managing 

imprecision is important during design. For instance, 

Eckert et al. [32] describe how design margins may be 

maintained during complex collaborative design to allow 

headroom for absorbing changes that may arise later. 

Similarly, Sébastian and Ledoux [25] discuss the use of 

imprecise domains to represent emerging solutions in 

solvers for constraint satisfaction problems in 

preliminary design (eg., [26]). Antonsson and Otto [27] 

introduce the Method of Imprecision, showing how fuzzy 

sets can be used to reason about imprecision during 

design.
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Table 1.  Levels of up to five aspects of uncertainty may be associated with each description in the model 
 

Name Description and example of use in the model 

Imprecision Description: The ‘range’ within which information could lie [24]. As design decisions are made  imprecision 

tends to  progressively reduce until a final, precise value is determined [27] 

Example: Greater precision justifies application of more sophisticated design tools and methods, which  may 

require progressively greater effort [28] 

Inconsistency Description: Different descriptions provide inconsistent views of the same design parameters 

Example: Potential for inconsistency is introduced by tasks that make assumptions to resolve cyclic 

 dependencies or to perform work concurrently [29]. Rework must be undertaken to reconcile  inconsistency 

when revealed by integration or evaluation tasks 

Inaccuracy Description: Expected discrepancy between the predicted values of performance parameters and their  actual 

values, which could be estimated from evidence gained through tests [24] 

Example: As more sophisticated analysis methods are brought to bear during the design process they lend 

 progressively greater accuracy to the estimated design performance [30] 

Indecision Description: A range of alternative options may be represented or held in mind. Qualitatively different to 

 imprecision as the extent of each option may be small while the range of the entire selection may be  large 

Example: Set-based design advocates considering multiple options during design, with progressive 

 convergence towards a single option [34]. The duration of many tasks may depend on the number of,  and 

extent of differentiation between the options 

Instability Description: More unstable descriptions are more likely to change 

Example: Instability may be increased by events that increase the likelihood that rework will be required;  for 

instance, the receipt of a change request could increase expected instability in many design  descriptions, 

which may require knock-on change [32] 

 

Inconsistency. As discussed in Sect. 3.4.3, 

inconsistency between the different descriptions used 

during design may arise from several sources including 

assumptions made in the design process, simplifications 

in modelling and lack of overview. The potential for 

creating inconsistency should be considered in cases 

where multiple descriptions of the same information are 

created; where simplifications or transformations of 

models are made; or where work is divided into 

concurrent streams. Inconsistency may be revealed by 

integration or testing tasks, requiring iteration to correct. 

(Expected) Inaccuracy. Design involves tools and 

methods that lend increasing levels of fidelity to the 

information they create [28]. For instance, the fidelity of 

preliminary aeroengine gas path design can be 

quantifiably related to the tools used at each step in the 

design process [30]. Designers can thus assess the 

accuracy of their performance estimates with respect to 

the values that might later be determined through 

experiment or more accurate analysis methods. The 

inaccuracy believed to be associated with particular 

descriptions reflects designers’ confidence in their 

estimates and thus the effort they will dedicate to refining 

the design at any point in time. 

In our model, expected inaccuracy aggregates many 

sources and types of uncertainty discussed in Sect. 3, 

such as simplification in calculations and uncertainty 

associated with absence of data. The concept of expected 

inaccuracy used here should be distinguished from actual 

inaccuracy and from insufficiency—both of which we 

view as process information rather than aspects of 

uncertainty. Actual inaccuracy refers to the difference 

between a given estimate and an actual value, whereas 

insufficiency refers to the inability of the design to 

deliver required performance [7]. Expected inaccuracy 

may be revealed as insufficiency and/or actual 

inaccuracy through test or analysis. 

Indecision. When a satisfactory solution cannot be 

identified by sequential execution of tasks, an iterative 

process must be used to converge upon a solution [28]. 

This typically involves both divergence and convergence 

of the solution space [17]. When the solution space 

diverges, designers hold in mind multiple alternatives 

which are subsequently evaluated prior to selecting the 

most promising to take forward. Indecision between 

alternatives is used in our model to represent this. In 

general, the greater the indecision associated with a 

description, the more time a task that requires 

consideration of all the options is likely to take. 

Instability. The instability associated with design 

descriptions can influence how designers approach their 

tasks. For instance, if every designer spends little effort 

on their tasks because they believe the input information 

is likely to change, many fast iterations will be required 

to complete the design. In contrast, if assumptions are not 

expected to change, the process may be organised into a 

smaller number of more time-consuming iterations. This 

may incur lower co-ordination overhead, although it may 

also result in additional rework if change is required. The 

process may also be less agile, as infrequent information 

transfer suggests there are fewer opportunities to 

recognise and respond to problems and opportunities that 

arise during design. Events such as the decision to freeze 

aspects of the design or the receipt of a change request 

may impact upon levels of perceived instability and thus 

influence the dynamic structure of the design process. 

In summary, each design description incorporated in 

the model may be qualified with the levels of one or 

more of these five aspects of uncertainty. The levels that 

should be modelled for a given description will depend 

upon the context in which it is used—in general, only 

information that is progressively developed and involved 

in design iteration need be considered. Apart from design 

descriptions, uncertainty levels may also be associated 

with other information or knowledge that influences the 

design process. For instance, it may be appropriate to 

model the uncertainty associated with aspects of design 

space understanding, because understanding impacts on 

the quality of decisions and can thus affect the rate of 

design convergence. 
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 Table 2. Extreme values for each uncertainty level 

Uncertainty level Minimum value Maximum value 

Imprecision 0 Defines a point value or single concept 1 Encompasses all conceivable content 

Inconsistency 0 Known to be completely in accord with 

other descriptions 

1 Known to be completely inconsistent 

Inaccuracy 0 As accurate as possible 1 No confidence in accuracy 

Indecision 1 A single option is represented ∞ All options are represented 

Instability 0 Never expected to change 1 Expected to change immediately 

 

4.3 How should uncertainty levels be represented? 

 

As discussed in Sect. 3.3, uncertainty can be represented 

using various approaches including probability theory, 

fuzzy set theory, evidence theory and possibility theory. 

Due to its level of abstraction, the task-based model 

proposed here does not represent the content of design 

descriptions—but only the context in which they are 

used, i.e., the tasks that require and produce them. Thus, 

the aforementioned approaches to represent and reason 

about uncertain information are not easy to apply. We 

therefore model uncertainty ‘levels’ without any 

reference to the ‘content’ of information (the ‘content’ of 

a numeric parameter, for instance, is its actual value). 

Each level of uncertainty associated with a design 

description or other information in a model is described 

as a real number. Interpretations for the extreme values 

are given in Table 2. 

 

4.4 How should the tasks’ properties be modelled? 

 

For each task, its duration, the probability of each 

outcome occurring, and the effect of each outcome on 

uncertainty levels must be considered to determine how 

they vary with respect to uncertainty levels in the task’s 

input(s). The suggested approach is to formulate a 

qualitative explanation for the task’s operation, then 

translate this into algebraic expressions. 

To illustrate, imagine that the task in Fig. 4 represents 

a stage-gate at which a number of design concepts are 

evaluated. Within this hypothetical task, some of the 

candidates may be immediately eliminated. One of two 

outcomes then occurs: the remaining concepts may be 

passed forward to the next step; or are passed back for 

revision. This could be modelled as explained below and 

detailed in Table 3: 

 

– Duration varies in proportion with indecision, 

because more time is required to consider more 

concepts. 

– Rework probability depends on indecision in 

concepts and inaccuracy in performance. If more 

concepts are evaluated, there is a higher probability 

that at least one will meet the evaluation criteria. On 

the other hand, the more inaccurate the performance 

estimate, the less information is available to justify 

further refinement of the concepts. Hence, the 

rework probability reduces as indecision and 

inaccuracy increase. 

– Output uncertainty levels are mapped from input 

levels depending on which outcome is selected. In 

this case, the output mappings are assumed to be 

independent of outcome. High accuracy of input 

allows more concepts to be eliminated on a given 

iteration. Therefore, indecision in the output concept 

depends on indecision in the input concept and on 

inaccuracy of the input performance. Other 

uncertainty levels remain unchanged. 

 

To develop functions that express the qualitative 

explanations, it is useful to consider a specific context in 

which the task might be executed and pose the following 

questions: What would the uncertainty levels be in that 

context? What should the resulting task properties be? 

How would they then vary with changes in each input 

level? Which level(s) have greater effect? Are the effects 

linear? What are the extreme values for each property? 

A spreadsheet can be used to verify that each function 

gives the desired result under different combinations of 

the input levels. For task definitions involving interacting 

effects, as in this case, several iterations may be required 

to refine the definition. Many tasks might not be 

significantly affected by uncertainty levels, in which case 

their properties may be modelled as point values or 

probability distributions. Only those tasks involving 

process-related decisions, such as whether to revise 

concepts or which methods to apply, are likely to require 

complex mappings such as those in Table 3. 

 
Table 3. Property definitions for the task of Figure 4 
 

Property Definition 

Duration 
inIndecision×3  

Rework probability 11 8.0
+−

× inInaccuracy

inIndecision  

 

Output levels: Concept (mappings for all outcomes) 

Imprecisionout = Imprecisionin 

Inconsistencyout = Inconsistencyin 

Inaccuracyout =  Inaccuracyin 

Indecisionout =  max (1, Indecisionin * Inaccuracyin) 

Instabilityout =  Instabilityin 

 

 

5 Illustrative applications 
 

To illustrate some of the possibilities for analysis based 

on this approach, two models were developed to explore 

the impact of uncertainty levels during design. 

 

5.1 Analytic model 

 

The first application builds on a high-level generic 

process model (Fig. 5) to consider two questions 

pertinent to many design-by-analysis processes: 

How much effort should be spent on concept 

analysis? Much of the performance of a design is 

‘locked in’ when high-level parameters are frozen during 

concept  design  [30].  More  time  spent  on  analysis  of  
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Fig. 5.  Generic design process used in the analytic model 

 

 

concepts creates more accurate information with which 

designers can judge the emerging design. This could 

allow refinement of the high-level parameters and reduce 

the likelihood of expensive iterations during detail 

design. On the other hand, more concept analysis 

increases overall effort. 

How many feasible concepts should be considered 

during early design? In many design-by-analysis 

processes, alternative concepts are eliminated very early. 

This can limit consideration of innovative designs that 

potentially offer better performance [22]. Some authors 

propose using intermediate-fidelity tools that allow more 

concepts to be taken forward further into the process 

[33], enabling application of set-based design principles 

[34]. By allowing a wider space of distinct alternatives to 

be considered, this could increase the likelihood of 

finding a good concept and reduce the probability of 

iterations later. Considering and analysing alternatives 

could also help develop design space understanding, 

which we define as the knowledge that enables designers 

to make good design decisions without requiring 

extensive analysis first. This can help to more quickly 

converge on a solution if iterations do occur [30]. 

However, taking multiple alternatives forward also incurs 

additional effort. 

An influence network was formulated to show these 

factors and interactions (Fig. 6). By considering the 

qualitative description above and the information flows 

in Fig. 5, equations were written to define each 

relationship (Table 4). The equations were combined to 

eliminate model-internal parameters and show the impact 

of concept analysis effort and the number of concepts 

considered on expected process duration. The result was 

evaluated using a spreadsheet for different values of the 

process-specific constants, and the equations were 

iteratively adjusted until all parameters varied in accord 

with expectations. 

The results from two configurations are shown in Fig. 

7. This illustrates that low overall duration k may 

obtained through low concept analysis effort a applied to 

a moderate-to-high number of concepts b, or high effort 

applied to a single concept. Comparison of the two 

configurations implies that taking several feasible 

concepts forward is a more attractive proposition in 

processes  where  the duration  of a detail  design cycle is  
 

 

Fig. 6 Parameters and relationships studied in the analytic 

model. Dashed arrows show negative relationships where a 

decrease in the upstream parameter creates an increase in the 

downstream parameter 

 

high relative to the effort spent analysing each concept. 

This is because the effort for analysing additional 

concepts is overwhelmed by the benefits of reducing 

iteration probability and cycle time. More trials using 

different combinations of the process-specific constants 

showed that the shape of the response surface remains 

similar, although the peaks and troughs are emphasised 

differently. 

This analysis is deliberately simple, intended to 

illustrate model development in a reproducible way. The 

model could be further developed to give more realistic 

results. Nevertheless, even this simplified situation 

shows how modelling uncertainty levels can help 

develop qualitative insights into design process decisions 

and their effects. 

 

 

 
Fig. 7 Two configurations of the analytic model, showing N = 

3, T = 1 (top row) and N = 3, T = 2 (bottom row). Each right-

hand plot shows lines of constant height on the left-hand plot in 

the same row 

 

5.2 Simulation model 

 

The equations in Table 4 were straightforward to 

formulate and solve because the situation contains no 

cyclic dependencies between variables, no complex  
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Table 4. Definitions for the relationships shown in Fig. 4 
 

Definition Rationale 

hdk +=  Overall duration k is sum of concept phase duration d and detail phase duration h 

bad ×=  Concept phase duration d is proportional to effort per concept a and no. of concepts b 

∑ =

−−
=

g

n

nbTh
1

)1(
 

Baseline duration T reduces by learning factor that is inv. prop. to b, on each of g cycles 

∑ =
−=

N

n

nfceilg
1

))0,2.0(max(  
Detail design will be complete in g cycles with 80% confidence, max. N cycles allowed 

1)1( −
×−= bcf  

Probability f of detail design rework is proportional to concept analysis accuracy (1-c) 

and inv. proportional to no. of concepts considered b 
5.0ac =  

Increases in effort a give diminishing returns to accuracy 

 

The independent variables are a and b. The dependent variable is k. Process-specific constants are T and N (also 0.2 and 0.5). All 

other parameters are internal to the model 

 

 

 

flows between tasks, no resource dependencies, and 

because uncertainty levels do not change over time. 

The wing design process model shown in Fig. 2 was 

revisited to show how discrete-event simulation can more 

closely incorporate the features and complexity of a real-

life process. Most of this diagram maps to the right-hand 

column of Fig. 5. To configure the more complex model 

for simulation, the first step was to identify the main 

factors that drive iterations. To do this we drew on the 

work of Jarrett et al. [31], who explain how each method 

used in a design-by- analysis process is suitable for a 

given point in the design process, because it requires 

certain confidence in input data and confers a particular 

level of accuracy on the solution. 

For a particular set of analyses, the candidate design 

undergoes iterations to consider how changes impact a 

particular set of objectives. During iterations, 

performance levels can remain ‘stagnant’ but 

understanding about the design space is progressively 

generated. Eventually, the improved understanding 

allows designers to make a change that creates a ‘surge’ 

in design performance [31]. For the next iterations, 

additional objectives may be considered and more 

accurate methods may be used. 

To model this situation, the wing design process was 

considered to comprise an execution process nested 

within a management layer, and to execute in cycles. The 

management layer defines the work that will be 

performed on a given cycle. These instructions are 

passed to the execution process, which determines how 

long the work will take. The execution process will 

repeat until enough design space understanding is 

generated to meet the specified objectives. Control is 

then passed back to the management layer, which sets up 

the next cycle. This model is shown in Fig. 8. Our 

modelling software allows the central box to be expanded 

to show the detail of Fig. 2. 

 

5.2.1 Modelling the management of iterations 

 

The uncertainty levels considered in the management 

layer are (required) inaccuracy of design analysis and 

indecision in design objectives. In overview, the model 

begins with indecision of design objectives=1, denoting 

that a single objective is considered. Within the topmost 

task of Fig. 8, design analysis inaccuracy is set to depend 

directly on this value. The model thus assumes that as 

more objectives are considered, higher-fidelity methods 

will be brought to bear. A cycle of the execution process 

then occurs, influenced by the inaccuracy and indecision 

levels that were set. When the execution process is 

complete, the task at the bottom of Fig. 8 requires that 

high-level iterations continue unless all objectives have 

been considered and low inaccuracy has been reached. If 

iterations are to continue, the indecision in design 

objectives is increased and the cycle begins again. The 

amount at which indecision in objectives is increased 

represents the planned progress rate, similar to schedule 

pressure. A higher value implies that designers would be 

asked to complete more work on each cycle. Planned 

progress rate is constant during a given simulation run, 

and is the main independent variable in this example 

model. 

 

 
 

Fig. 8 Management layer of the wing design process model. 

The dashed arrow shows a feed-forward into the next iteration 
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5.2.2 Modelling the execution of iterations 

 

The behaviour of the execution process is governed by 

the inaccuracy of design space understanding as well as 

the two uncertainty levels discussed above. The first task 

in Fig. 2 receives these uncertainty levels directly from 

the management layer. These affect its outputs which are 

passed to its successors, and so on. 

Each task in Fig. 2 was considered to determine how 

its properties would change according to its input 

uncertainty levels. Higher levels of input indecision 

generally require more time for design tasks because all 

the issues must be considered by a designer. Lower levels 

of input inaccuracy require more time for analysis tasks, 

because computationally-expensive methods must be 

used. 

In reality, tasks that determine high-level parameters 

are completed early in the process. We thus configured 

these tasks to be executed only when inaccuracy of 

design analysis is higher than a specified value. Certain 

descriptions and their uncertainty levels are therefore 

progressively ‘frozen’ once certain levels of inaccuracy 

are reached. Those levels are then passed forward to all 

future iterations. Similarly, some analysis tasks are only 

attempted when the inaccuracy is low. 

At the end of an execution process cycle, inaccuracy 

in design space understanding is reduced. A formula was 

defined assuming that design space understanding 

relevant to meet the current objectives is a sum of 

‘general design space understanding’ and ‘problem-

specific design space understanding’. The former 

increases slowly, according to the number of execution 

iterations undertaken in total until that point. The latter 

increases more rapidly, according to the number of 

iterations undertaken so far within the current cycle. 

Inclusion of the ‘general design space understanding’ 

ensures that all cycles derive some benefit from the 

knowledge gained in prior explorations. This is similar to 

the learning factor incorporated in the analytic model 

discussed previously. 

If the design space understanding reaches the required 

accuracy of design analysis, the execution process has 

met its objective and passes control back to the 

management layer. Otherwise, the execution process will 

be repeated. 

 

5.2.3 Simulation 

 

A discrete-event Monte-Carlo simulation algorithm 

based on the Applied Signposting approach [17] was 

used to evaluate the model. In overview: 

  

– All tasks for which every input exists, at least one 

input is marked as ‘recently updated’, and for which 

no ‘upstream’ work is pending, are identified to 

start. 

– The duration of each task thus identified is 

determined according to the uncertainty levels in its 

inputs. The task’s inputs are each marked as ‘already 

considered’. 

– The simulation clock is advanced to the next time at 

which one or more tasks are marked for completion. 

If no such tasks are found, the algorithm terminates. 

– Each completing task is considered. If that task has 

multiple outputs, a single output is chosen according 

to the task definition and uncertainty levels in inputs.  

All deliverables for the selected output are marked 

as ‘recently updated’, and their uncertainty levels are 

updated as specified in the task definition. 

– The first step is revisited. 

 

Simulation creates a profile of possible processes, each 

indicating which tasks were in execution in which times 

and how the uncertainty levels evolve. Alternative model 

configurations may be generated and analysed to explore 

many different issues relating to the process and its 

management. 

 

5.2.4 Illustrative analysis 

 

In our example model, the planned progress rate 

determines how quickly analysis of the different design 

objectives should be factored into the process. If planned 

progress rate is very high, many objectives are 

considered from the outset of design. The model then 

implies that design space understanding may initially be 

insufficient to make decisions that meet those objectives. 

Effort-intensive iterations considering the multiple 

objectives will then be required to build up the 

understanding. On the other hand, if the various 

objectives are incorporated too slowly, effort may be 

wasted if each iteration of the execution process is not 

used to full capacity. 

Two simulated processes that result from different 

planned progress rates are shown in Fig. 9. Because each 

task in the model represents an activity that can be 

undertaken using one of multiple methods and applied to 

a number of objectives, these Gantt charts represent 

‘rolled up’ versions of the plans that might be used in 

practice. Hence, a great many iterations appear for each 

line in the Gantt charts. Tasks to the left of Fig. 2 appear 

in the upper rows of the Gantt charts. For a particular 

row, a dense area of bars indicates that the task was a 

focus of iterations at that point in time. 

Comparing the two Gantt charts illustrates that, when 

the planned progress rate is increased, rapid progress is 

indeed made early on—yet significant delays are caused 

later. The optimal planned progress rate was located by 

varying its value, simulating the process, and considering 

the impact on overall duration (Fig. 10). 

In summary, this example illustrates how potential 

tradeoffs and improvements in a process can be identified 

by considering the role of uncertainty levels and 

preparing a model for simulation. In the example, the 

degree of importance of the trade-off and the location of 

the optimal point emerges from the configurations of 

tasks within the execution process, and the way that 

uncertainty levels consequently evolve within the 

simulation. The example model thus combines a high-

level, top-down explanation of the process’ behaviour 

with a low-level, bottom-up representation of how 

individual tasks respond to changing uncertainty levels. 

Interaction between these levels of representation drives 

complexity in the model and required use of simulation 

to create and explore it. 
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Fig. 9 Impact of planned progress rate on the unfolding process. The top chart shows the process resulting from the ‘best’ planned 

progress rate, equivalent to the low point of Fig. 10. The bottom plot shows the process resulting from a higher-than-optimal planned 

progress rate. Both use the same scale 

 

 

 

6 Discussion and outlook 
 

Uncertainty levels provide a way to capture some of the 

key aspects of design data that affect the design process 

as it unfolds. Through uncertainty levels, each task’s 

outcome is dependent upon its predecessors and affects 

its successors. 

The uncertainty levels thus cause interactions between 

tasks in addition to those that occur through the ‘binary’ 

requirement for information to be released from 

predecessors. The applications discussed in Sect. 5 have 

shown how these additional interactions can help explain 

and model aspects of iterative behaviour. 

The applications also show how modelling uncertainty 

levels can help assess the impact of different policies for 

managing the design process. This approach is well-

suited to analyse potential process improvements that 

impinge not only on the task duration and outcome, but 

also on the emerging design. The models we describe 

were developed to illustrate the modelling process and 

are not intended to provide accurate results. As with any 

model, the quality of insights gained depend on the input 

data and assumptions; for practical application, these 

should be calibrated against historical data and/or expert 

opinion. 

There remain many opportunities for further work to 

extend and apply the approach, including: 

 

6.1 Support for knowledge elicitation 

 

The model presented above requires tasks to be 

considered individually and in depth to determine their 

properties. A more rigorous and repeatable procedure for 

eliciting task properties would help to apply the approach 

in practice. 

One way to approach this might be to consider generic 

types of task and how each is influenced by uncertainty 

levels. A taxonomy of generic task types and their 

characteristic behaviours could provide a starting point to 

support modelling. Categorising a specific task using the 

taxonomy could provide a template for defining its 

behaviour. 

 

 
 

Fig. 10 Results from simulation showing the planned progress 

rate versus overall duration 

 

 

Experiments could also be undertaken based on 

simple, repeatable design problems to assess the 

relationship between perceived uncertainty levels in task 

input information, the task’s duration and outcome, and 

the uncertainty levels in outputs. This could lead to a 

deeper understanding regarding how uncertainty levels 

affect design tasks, and how this in turn influences the 

dynamic structure of the process. 

 

6.2 Monitoring project progress 

 

Another opportunity for further research is to explore 

how levels of uncertainty could help to monitor project 

progress. 

One possibility is that simulation could be used to 

evaluate the sensitivity of the process to each uncertainty 

level. Given a particular point in the process workflow 

and the estimated levels of uncertainty at that time, levels 

might be varied and simulation used to assess the impact 

on total duration and risk. The sensitivity of process 
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duration to change in a particular uncertainty level could 

correspond to the criticality of that level at that point in 

time. 

This type of analysis could also offer opportunities to 

improve project performance, through methods 

analogous to critical path management. If critical 

uncertainties could be reduced, i.e., by performing 

additional design or analysis tasks, this might improve 

the performance of the project. Conversely, expending 

effort to reduce the levels of less critical uncertainties 

might be best avoided. 

 

6.3 Investigating iterative dynamics 

 

Iteration is a key aspect of the design process that makes 

it difficult to understand and manage [23]. Understanding 

the relationship between observed progress, iterations 

and project delivery is thus important to effective design 

management. 

We suggest this understanding could be improved by 

using observations of how uncertainty levels evolve over 

time to reveal the behaviour of iterations—for instance, 

to assess whether a project is undergoing controlled 

refinement iteration or uncontrolled rework. To illustrate, 

periodic change in perceived levels of uncertainty might 

suggest controlled refinement iterations in which a 

design is repeatedly modified, analysed and improved. In 

contrast, irregular changes in uncertainty levels might 

indicate rework undertaken to correct design errors.  

Such analysis could provide another indication of 

where effort and resources should be focused to expedite 

delivery. Knowing that a project is undergoing iteration 

to explore the design space, it might be appropriate to 

dedicate resource to analysing the design solutions in 

order to more quickly identify a feasible concept. 

However, if the dominant form of iteration was rework to 

correct errors, effort might instead be focused on the 

sources of low quality that initiate problems. 

 

7 Conclusions 
 

It is often very challenging to foresee the causes of 

delays and iterations in design. This paper has argued 

that iterative design processes unfold in a direction 

influenced by the evolution of uncertainty levels within 

them. Modelling the relationship between uncertainty 

levels and design process outcomes can help understand 

the causes of delays, and assist in identifying and 

evaluating policies for managing the design process. 

The paper makes two main contributions. First, a 

conceptual framework highlights the different types of 

interdependencies between evolving levels of uncertainty 

in the design. Uncertainty levels evolve in a way 

influenced by relationships between the aspects of the 

design which descriptions represent, the use of multiple, 

overlapping descriptions during the design process, and 

the process of defining and refining the design.  

The second contribution is to show how design 

processes can be simulated using task network models 

that take into account evolving uncertainty levels. We 

propose that task behaviour can be modelled in terms of 

the uncertainty levels associated with input descriptions 

as well other information and knowledge used to perform 

the task. The model captures the bidirectional 

relationship between tasks and the uncertainty levels 

associated with the emerging design—how the evolution 

of uncertainty levels depends on the design process 

organisation, and conversely how the process unfolds 

dynamically depending upon the uncertainty levels when 

decisions are made. 

Our approach could provide a mechanism to explore 

the impact of product-related uncertainty on design 

process performance, and ultimately to better understand 

how such risks could be managed. However, the research 

reported here is in a relatively early stage, so there is still 

much work remaining to refine the modelling approach 

and explore potential applications. 
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