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Abstract

We review two previous approaches to studying pseudoscalar meson-meson
scattering amplitudes to beyond 1 GeV using non-linear and linear chiral La-
grangians. In these approaches we use two different unitarisation techniques
- a generalised Breit Wigner prescription and K-matrix unitarization respec-
tively. We also report some preliminary findings on K-matrix unitarisation of
the I=J=0 ππ scattering in a non-linear chiral Lagrangian approach and make
some remarks about the light scalar mesons.

1 Introduction

Pseudoscalar meson-meson scattering up to the 1-2GeV energy range is of

interest for several related reasons. On the one hand this region is beyond that

where chiral perturbation theory has traditionally been applied and below that



where we can use perturbative QCD, so it is a challenge to develop a framework

to calculate these amplitudes from first principles. At the same time there

are many resonances in this region, some of which are controversial from the

point of view of establishing their properties experimentally and their quark

substructure. In particular, the scalar mesons are a long-standing puzzle in

meson spectroscopy because, for example, there are too many states to fit into

a single SU(3) nonet and the masses and decay patterns of some of the scalar

resonances are not what would would expect for quark-antiquark scalar states.

This talk is based on approaches developed by the Syracuse group. Many other

interesting approaches are given in the proceedings of this conference and also

cited in the references given in the bibliography.

2 Non-linear chiral Lagrangian approach to meson-meson scatter-

ing

We begin 1), 2) with the conventional chiral Lagrangian, including only pseu-

doscalars:

L1 = −F 2
π

8
Tr
(

∂µU∂µU †)+ Tr
[

B
(

U + U †)] , (1)

in which U = e2i
φ

Fπ , with φ the 3 × 3 matrix of pseudoscalar fields and Fπ =

132 MeV the pion decay constant. B is a diagonal matrix (B1, B1, B3) with

B1 = m2
πF 2

π/8 = B2 and B3 = F 2
π (m2

K − m2
π/2)/4.

We add a nonet of scalar mesons, which transform like external fields un-

der chiral transformations. It turns out 3) that the trilinear scalar-pseudoscalar-

pseudoscalar interaction that follows from the general chiral invariant extension

of L1 to include a scalar meson nonet is given by

LNφφ = AεabcεdefNd
a∂µφe

b∂µφf
c + BTr (N) Tr (∂µφ∂µφ)

+ CTr (N∂µφ) Tr (∂µφ) + DTr (N) Tr (∂µφ) Tr (∂µφ) (2)

The first term of (2) may be eliminated in favor of the more standard form

Tr (N∂µφ∂µφ), but is interesting because it is the OZI rule conserving term for

a dual diquark-antidiquark type nonet mentioned below.

The scalar particles with non-trivial quantum numbers are given by:

N =





N1
1 a+

0 κ+

a−
0 N2

2 κ0

κ− κ̄0 N3
3



 (3)



with a0
0 = (N1

1 − N2
2 )/

√
2. There are two iso-singlet states: the combination

(N1
1 + N2

2 + N3
3 )/

√
3 is an SU(3) singlet while (N1

1 + N2
2 − 2N3

3 )/
√

6 belongs

to an SU(3) octet. These will in general mix with each other when SU(3) is

broken. We can write the general mass term 3)

Lmass = −aTr(NN) − bTr(NNM) − cTr(N)Tr(N) − dTr(N)Tr(NM), (4)

where a, b, c and d are real constants. M is the “spurion matrix” M =

diag(1, 1, x) , x being the ratio of strange to non-strange quark masses in the

usual interpretation.

We take a convention where the physical particles, σ and f0, which diag-

onalize the mass matrix obtained from (4) are related to the basis states N 3
3

and (N1
1 + N2

2 )/
√

2 by

(

σ
f0

)

=

(

cosθs −sinθs

sinθs cosθs

)

(

N3
3

N1

1
+N2

2√
2

)

, (5)

For a given set of inputs for the masses of the four scalar mesons σ, f0(980),

a0(980) and κ the constants a, b, c and d are fixed and there are two possible

solutions for the mixing angle θs.

We note that there are different possibilities, in addition to quark-antiquark

configurations, for the underlying quark substructure of N which all give rise

to the same SU(3) transformation properties. For example, forming diquark

objects

Ta = εabcq̄
bq̄c, T̄ a = εabcqbqc, (6)

where the antisymmeterisation of the quark fields is implicit, we can form a

pure tetraquark scalar nonet as follows:

N b
a ∼ TaT̄ b ∼





s̄d̄ds s̄d̄us s̄d̄ud
s̄ūds s̄ūus s̄ūud
ūd̄ds ūd̄us ūd̄ud



 (7)

or construct linear combinations of qq̄ and qqq̄q̄ nonets. We studied s-wave

pseudoscalar meson scattering in a framework beginning with Eqs.(1) and (2).

If we begin with the tree-level scattering amplitudes, which due to chiral sym-

metry give good agreement with experiment close to the scattering threshold,

we find that they soon deviate from the experimental data. They also violate

unitarity. The approach that we took was to add an imaginary piece by hand



to the tree-level propogator of the s-channel resonance. For π K scattering we

called the lightest strange scalar resonance κ and made the substitution:

m2
κ − s −→ m2

κ − s − imκG′
κ (8)

in the denominator of the s-channel s-wave amplitude. In order to fit to ex-

periment the quantity G′
κ was left as a free parameter, not necessarily equal to

the perturbative width, Gκ say. Our fit 2), shown in Fig. 1 gave
Gκ

G′
κ

= 0.13

showing a substantial deviation from a Breit-Wigner resonance for which this

ratio would be exactly equal to 1. Good agreement with experiment was also

found 1) with this generalised Breit-Wigner prescription for the case of ππ scat-

tering. The other fitting parameters are the scalar-pseudoscalar-pseudoscalar

coupling constants, which can all be written in terms of the four coefficients in

the interaction terms in Eq. (2), the scalar meson masses and mixing angle.

We note also that, in addition to neatly explaining the mass ordering

and general pattern of decays of the scalar states below 1 GeV, a multiquark

interpretation for these states is also suggested by the value of the scalar meson

octet-singlet mixing angle θs defined in Eq. (5), which was a parameter fixed

by our fits. Our best fit was about −20o which, in our mixing convention,

would be close to ideal mixing for a “dual” diquark-antidiquark nonet.

3 Pseudoscalar meson-meson scattering in Linear Sigma Models

In the three flavor linear sigma model the pseudoscalar and scalar mesons

appear together since the model is constructed from the 3 × 3 matrix field

M = S + iφ, (9)

where S = S† represents a scalar nonet and φ = φ† a pseudoscalar nonet.

Under a chiral transformation qL → ULqL, qR → URqR of the fundamental left

and right handed light quark fields, M is defined to transform as

M −→ ULMU †
R. (10)

We considered a general non-renormalizable Lagrangian1 of the form

L = −1

2
Tr (∂µφ∂µφ) − 1

2
Tr (∂µS∂µS) − V0 − VSB , (11)

1See 4) and references therein for more detail



where V0 is an arbitrary function of the independent SU(3)L×SU(3)R×U(1)V

invariants Tr
(

MM †), Tr
(

MM †MM †), Tr
(

(MM †)3
)

6
(

detM + detM †). Of

these, only I4 is not invariant under U(1)A. The symmetry breaker VSB has

the minimal form

VSB = −2
(

A1S
1
1 + A2S

2
2 + A3S

3
3

)

, (12)

where the Aa are real numbers which turn out to be proportional to the three

light (“current” type) quark masses. In this model there are many constraints

among the parameters. For example, many of the trilinear scalar-pseudoscalar-

pseudoscalar coupling constants are predicted in terms of the pseudoscalar and

scalar meson masses. Another difference is that [compare with Eq. (2)] this

trilinear interaction does not involve derivatives. Both models give the “current

algebra” results in the limit where the scalar mesons are integrated out.

If we calculate the tree level s-wave amplitudes they deviate from ex-

periment and also violate unitarity as we go beyond the threshold region. We

used 4) the well-known K-matrix procedure to unitarise the linear sigma model

amplitudes and then checked if the resulting unitary amplitudes can give a

good fit to data. In the standard parameterization 6) of a given partial wave

S-matrix:

S =
1 + iK

1 − iK
≡ 1 + 2iT, (13)

we identify

K = Ttree. (14)

Ttree is the given partial wave T-matrix computed at tree level in the Linear

Sigma Model and is purely real. This scheme gives exact unitarity for T but

violates the crossing symmetry which Ttree itself obeys. In Fig. 2 we show

our best fit to the I=J=0 ππ scattering data. The parameters in this fit are

the “bare” masses of the two I=0 scalar mesons in M and their mixing angle.

Using these parameters we can solve for the poles in the unitarised amplitude

in the complex s plane. Labelling these poles zσ and zσ′ we can identify the

physical masses and widths as usual from the Real and Imaginary parts, for

example zσ = m2
σ − imσΓσ .

4 Summary and comparison between models

We have found good agreement with scattering data in the approaches based

on the non-linear chiral Lagrangians outlined in Sections 2 and 3. We are
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Figure 1: Best fit to the experimental data 5) for the Real part of the I= 1

2
,

J=0, π-K scattering amplitude in our non-linear chiral Lagrangian model 2)

with generalised Breit-Wigner prescription.
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Figure 2: Best fit to the experimental data 7) for the Real part of the I=J=0 ππ

scattering amplitude in a linear sigma model with K-matrix unitarisation 4).



Table 1: Results for physical I=0 scalar meson parameters from fits to ππ
scattering. Comparison between linear and non-linear chiral Lagrangian models

using K-matrix and Generalised Breit-Wigner approaches to unitarisation.

Scalar Non-linear chiral SU(3) Linear Non-linear chiral

parameters approach Sigma Model 4) approach 1)

(MeV) K-matrix K-matrix Generalised B-W
(preliminary) without/with ρ meson

mσ 444 457 378/559
Γσ 604 632 836/370
mf 986 993 987
Γf 52 51 65

currently studying scattering using the non-linear chiral Lagrangian approach

outlined of Section 2, but employing the K-matrix unitarisation as described

in Section 3. This may make it easier to compare the linear and non-linear

chiral Lagrangian models more directly and to understand the effects of the

unitarisation prescriptions in themselves. This was partly motivated by our

work on extending the non-linear chiral Lagrangian approach to include vec-

tor mesons 8). This enabled us to study the interesting rare radiative decay

processes φ → ππγ and φ → πηγ. We found that the shape of the partial

branching fraction depends quite sensitively on whether we use derivative or

non-derivative scalar-pseudoscalar-pseudoscalar coupling as in Section 2 or 3

respectively.

A summary of our results is shown in Table 1 for the case of ππ scattering.

In the third and fourth columns we show the results of the analyses described

in sections 3 and 2 respectively. In the fourth column we give the results with

and without the inclusion of the ρ vector meson. In column 2 we show the

results of our current analysis, which are preliminary. However we can see

some trends, namely that the f0(980) parameters are quite stable, whereas

the σ parameters seem to depend more on the model and, even more, on

the unitarisation procedure. These results are preliminary because we have

only done a fit of ππ scattering data over a limited energy range. Also we

have not included the inelastic channel and so the important KK̄ threshold

region. These and a similar study of related scattering channels are interesting

directions for future work.



5 Acknowledgements

DB would like to thank the conference organisers for a friendly and stimulating

meeting. The work in much of this presentation is part of an ongoing collabo-

ration with Abdou Abdel-Rehim, Amir Fariborz, Masayasu Harada and Joseph

Schechter. DB is supported by the Royal Society and JG was supported by a

Summer Research Studentship from Trinity College, Cambridge.

References

1. a) M. Harada, F. Sannino and J. Schechter, Phys. Rev. D. 52 1991 (1996),

b) M. Harada, F. Sannino and J. Schechter, Phys. Rev. Lett. 78, 1603

(1997)

2. D. Black, A.H. Fariborz, F. Sannino and J. Schechter, Phys. Rev. D 58

054012 (1998)

3. D. Black, A.H. Fariborz, F. Sannino and J. Schechter, Phys. Rev. D 59,

074026 (1999)

4. D. Black et al, Phys. Rev. D 64 014031 (2001).

5. D. Aston et al, Nucl. Phys. B296, 493 (1988).

6. S.U. Chung et al, Ann PHys.4 404 (1995).

7. E.A. Alekseeva et al, Sov. Phys. JETP 55, 591 (1982), G. Grayer et al,

Nucle Physc. B75, 189 (1974).

8. D. Black, M. Harada and J. Schechter, Phys. Rev. Lett. 88 181603 (2002),

D. Black, M. Harada and J. Schechter, Phys. Rev. D 73 054017 (2006).


