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Highlights 

• An integrated impedance measuring system with disposable electrodes. 

• Reusable CMOS chip for data retrieval from remote control the thin-film 

electrodes. 

• We performed suspended DNA concentration tests. 

• The system shows doubled sensitivity over previous work. 

• Providing a new platform for integrated sensor with disposable interfaces. 
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Abstract 

We propose a novel integrated impedance measurement system with disposable thin-film 

electrodes. Most modern CMOS-based biosensors use on-chip electrodes to interface 

between the electronics and biosamples, which forces disposal of the CMOS chip after a 

few measurements, since most biological reactions are non-reversible. The sensor 

performance is also limited by the design of on-chip electrodes due to the physical 

dimensions and the CMOS design rules restrictions. In this work, we extract the 

electrodes from the silicon chip for relocation onto a low-cost, disposable substrate. This 

enables reusability of the high-performance CMOS chip, at the same time providing a 

low-cost route for manufacture of the active thin-film electrodes using large-area 

processing. The use of disposable thin-film chip also enables customized designed 

electrodes for different applications, such as extra high sensitivity concentration sensors. 

In this work, DNA concentration measurements are performed, and it shows a doubling 

of sensitivity over the previously reported system. 
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1. Introduction 

Recent development of biosensing systems are being pushed towards high sensitivity, 

portability and low cost. For example, emerging technologies are enabling fluorescence-

based detection to achieve high sensitivity and selectivity [1,2], and advanced 

luminescence assay can be specifically designed to fit different applications [3]. However, 

such performance requirements may not be necessary for most point-of-care (PoC) [4] 

and fast diagnostic applications where low cost and ease of operation are key design 

considerations. Indeed biosensors with compact and miniaturised design and moderate 

detection performance are potentially favourable candidates.   

Electrochemical sensors, which detect and measure electrical signals instead of the 

fluorescence output in optical sensors, provides a label-free and rapid solution for 

biological detection [4,5]. They are now widely applied in detection of biomolecules 

from the macro to micro scale, such as cells [6], proteins [7] and  DNA [8,9]. By taking 

advantage of CMOS technology, the performance of modern electrochemical sensors is 

significantly enhanced. High-performance systems can be integrated into a monolithic 

silicon chip, which is fast, low-cost and accurate. A variety of electrochemical methods 

based on CMOS chips have been developed. These include capacitance-based sensors 

[10], ion-sensitive field-effect transistor-based sensors [11,12] and impedance-based 

sensors [13,14]. Impedance measurement, which shows great promise for studying both 

the electrode-electrolyte interface and bulk solution, has been gaining popularity for 

biological sensing in recent years [15]. However, the development of CMOS-based 

solution for this application is limited by the on-chip electrodes. Most CMOS biosensors 
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employ the top metal to create an electrode array reminiscent of the design principles 

used in CMOS image sensor arrays.  

Unfortunately, top metal in a traditional CMOS process (e.g. copper) is not bio-

compatible, thus requiring post-CMOS fabrication process for deposition of additional 

bio-compatible metal layers on top of the silicon chip. Manickam et al. [14] reported the 

use of an electroless nickel immersion Au (ENIG) process, which deposits an adhesive 

nickel layer followed by a gold layer. Apart from the post-CMOS fabrication process, the 

on-chip electrode surfaces can be difficult to clean, and the residue of previous sample 

can affect the accuracy of subsequent measurement. This forces the disposal of the 

CMOS chip after a few measurements, which is not practical due to cost and 

environmental considerations. In addition, large-size electrodes are desirable in some 

applications such as cell level analysis [16,17]. Due to the integration of the on-chip 

electrodes, the cost of the CMOS chip can be significantly increased by increasing the 

silicon die area.  

In this paper, we developed a heterogeneous impedance measurement system with a 

reusable CMOS chip for signal processing, and an active thin-film electrode disposable 

system as an electronics-biological interface. The disposable chip enables large-area 

fabrication technologies, which provide great freedom for the selection of electrode 

materials and electrode configurations. In addition, the design of the electrodes is 

separated from the CMOS chip, which can be customized for different applications. With 

the use of disposable electrodes, it can be used as a powerful platform for multifunctional 

impedance-based measurements. In this paper, the system performance was examined 

using suspended DNA samples in different concentrations. 
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2. Material and methods 

2.1 The impedance sensing system 

Figure 1 shows a schematic of the integrated impedance measurement system. The 

system consists of two parts, including a disposable glass chip and a reusable part. Eight 

Cr/Au (20 nm/ 80 nm) double layer metal electrodes were fabricated by a thermal 

evaporator with a shadow mask on a glass substrate. Both the width of each electrode and 

the separation between the electrodes are 500 µm. After the metal deposition, the 

electrodes were then attached to connection pins by silver paste. A 5 mm diameter metal 

cap was used to cover the centre part of the electrodes. The rest of the glass chip was 

covered by liquid PDMS to passivate and hold the connection pins. After the PDMS 

solidified, the cap was removed to leave a 5 mm diameter well on top of the electrodes. 

This well was used to contain the sample solution during the measurement. The 

fabrication of the electrode chip is low-cost and highly reproducible. The glass chip is the 

interface between sensor and the sample, which can be disposed after each measurement.  

The impedance measurement chip was designed in a Cadence analogue IC design suite, 

and the prototype was fabricated using AMS 0.18um CMOS process. The design was an 

extended work to our previous impedance-based CMOS chip, but here sensing electrodes 

are extracted from the silicon chip on to a disposable glass substrate.  

A complete measurement system is shown in Fig. 1. The CMOS chip is mounted on a 

PCB and connected to a disposable sensor via Dupont wires. The excitation signals 

applied to the electrodes on a disposable sensor and lock-in amplifier in CMOS chip are 

provided by dual-channel function generator. The voltage signal from the CMOS IC is 
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further filtered and readout from oscilloscope. A detailed CMOS design plan can be 

found in Appendix A.  

Although commercial ICs for electrochemical impedance measurement are available in 

the market, they are only suited to sensors with general purpose specifications. Custom-

designed ICs provide the needed freedom to circuit designers for more specific 

requirements given by a certain sensor type.  

2.2 System validation 

A simple impedance circuit with three discrete elements was built to validate the 

performance of the impedance chip. As shown in Fig. 2(a) subplot, a 10 kΩ resistor (R2) 

in parallel with a 1 nF capacitor (C1) is connected to a 1 kΩ resistor (R1).The tolerances 

of metal film resistors and ceramic capacitor are 10% and 20% respectively. The 

elements were mounted by the standard soldering technique. Ideal values were used for 

post-layout simulation by the Cadence Virtuoso software. Measurements with the three-

element circuit and CMOS chip were carried out from 100 Hz to 10 MHz. 

2.3 Preparation of DNA samples with different concentrations 

Herring sperm DNA was ordered from SIGMA-ALDRICH (D7290). The single-stranded 

DNA fragments ranged in size from 587 to 831 base pairs. This DNA was provided as a 

ready-to-use concentrated solution (9-12 mg/ml DNA). According to the supplier’s 

instructions, we boiled the solution for 10 minutes and then cooled it on ice for another 

10 minutes to reduce the likelihood of re-annealing the fragments. We first diluted 20 µl 

of the concentrated DNA sample with 180 µl of DI water to prepare the stock solution. 
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The concentration of the stock solution was determined to be 1.2 mg/ ml (1200 µg/ ml) 

using a NanodropTM 2000. We diluted the stock solution with DI water to give different 

concentrations:  

• 100 µl of stock solution and 100 µl of DI water for a concentration of 600 µg/ ml;  

• 100 µl of 600 µg/ ml solution and 100 µl of DI water for a concentration of 300 

µg/ ml;  

• 100 µl of 300 µg/ ml solution and 100 µl of DI water for a concentration of 150 

µg/ ml;  

• 100 µl of 150 µg/ ml solution and 100 µl of DI water for a concentration of 75 µg/ 

ml;  

• 100 µl of 75 µg/ ml solution and 100 µl of DI water for a concentration of 37.5 

µg/ ml.  

The concentrations of all diluted samples were validated using commercial 

spectrophotometers Nanodrop. All of the sample preparation steps were performed at 

room temperature, and 60 µl of sample was used for each measurement. 

2.4 Equivalent circuit fitting for impedance measurement 

All the impedance measurement data were fitted by the commercial software ZView®, 

supplied by Scribner Associated Inc. The standard Randles circuit model (shown in Fig.  

4(a) subplot) was used for DNA sample fitting.  

3. Results and discussion 

3.1 System validation test 
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Figure 2 shows the Bode plots of three-element circuit, post-layout simulation and 

measured results of the validation tests. The data indicated in red is the ideal frequency 

response of the three-element model shown in subplot in Fig. 2(a), and the corresponding 

component values are labelled as well. At lower frequencies, the capacitor (C1) was 

treated as open circuit, and the total impedance was equal to the sum of R1 and R2. As the 

frequency increases, the circuit current starts to leak from the capacitor. The impedance 

of the capacitor decreases, and as a result, the impedance of the three-element model 

decreases. At higher frequencies, the capacitor (C1) shorts the resistor (R2), and the total 

impedance decreases to the lowest point, and equals to the value of R1. The negative 

phase between 50 kHz to 500 kHz indicates a signal delay due to the capacitance. Note 

that there is no positive phase data in the ideal response as there is no inductive element 

in the circuit.  

The green data line depicts post layout simulation results of the CMOS chip with the 

three-element circuit as elements-under-test. The key components of the impedance chip 

were amplifiers, which helped amplify the sensing current signal and converting it into a 

voltage. Assuming an AC stimulus, a voltage Vin was applied to the elements-under-test. 

The resulting current Isense was sensed and converted into a voltage output Vout through 

several stages with a total gain K. The impedance magnitude (|Z|) of the elements-under-

test can be stated as 

|𝑍𝑍| = 𝑉𝑉𝑖𝑖𝑖𝑖
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑉𝑉𝑖𝑖𝑖𝑖
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝐾𝐾

= 𝑉𝑉𝑖𝑖𝑖𝑖∙𝐾𝐾0
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

            (1) 

where K0 represents the constant system gain over the low frequency band. The simulated 

results follow the ideal data closely in this region. As the frequency increases, the total 
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gain starts to roll-off, and the system cut-off frequency is about 1 MHz. The actual 

system gain is smaller than the value of K0 used in Equation (1), therefore, the calculated 

impedance (|Z|) is greater. From the comparison of the ideal response and simulation, we 

are able to determine that most reliable frequency region for system operation is below 1 

MHz. 

Two discrete resistors and a capacitor were used in measurements. The three-element 

circuit was connected to the PCB directly and the measured results indicated in blue are 

shown in Fig. 2. The measured impedance closely follows simulation results over all 

frequencies, validating the use of the measurement technique to evaluate the impedance 

of the sample-under-test.  

The measured result of the three-element circuit has also been fitted by the three-element 

model, and the results are shown in Fig. 3. The fitted element values are also shown in 

the subplot in Fig. 3(a). For R2 and C2, the fitted values are similar to the element values 

with a discrepancy less than 5%. Note that, the fitted value of R1 is 700 Ω greater than the 

nominated value. This is due to the interconnections between the circuit elements and the 

PCB and related contact resistance issue. This is one of the major drawbacks of remote 

electrode measurements, as the undesired parasitic impedance contributes to the overall 

system error. In this work, silver paste and Dupont wires were used for the 

interconnection between glass chip and PCB, which is not ideal and provides large 

undesirable parasitic. This can be improved by other connection techniques in future 

work, such as anisotropic conductive film bonder. According to the previous research, a 

typical DNA solution impedance is around hundreds kilo-ohm level. In our system, the 

parasitic impedance is around 700 Ω, and it only contributes to less than 1% discrepancy. 
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3.2 DNA concentration test 

The DNA sample concentration tests were performed with the CMOS chip and external 

thin-film electrodes, as described in Section 2. Five groups of herring sperm DNA 

samples with different concentrations were characterized. The measurements were 

carried out at frequencies from 100 Hz to 1 MHz. Figure 4 shows the results in both 

Cole-Cole and Bode plots. The former yields the general impedance behaviour of the 

samples. At low DNA concentrations (37.5 µg/ ml, 75 µg/ ml and 150 µg/ ml), each 

dataset forms a semicircle with a tail, which is a classic pattern for bio-solutions [19]. 

The semicircle is formed by the double layer capacitance between the electrode-

electrolyte interfaces. The DNA solutions were prepared using DI water and hence the 

main charge carriers within the solution are the DNA with each base pair contained two 

negative charges. Higher concentration DNA meant more base pairs per volume and 

hence, more charges per unit volume. Therefore, the concentrated DNA solutions were 

much conductive and as the solution concentrates, the radius of the semicircle starts to 

shrink. This indicates that highly conductive solutions are more resistive than capacitive. 

As the Cole-Cole plot shown, a purely resistive sample manifests as a straight line 

parallel to the imaginary axis, which implies that the complex impedance only contains 

the real part. This is particularly true for the most concentrated sample (600 µg/ml), 

which comes up a straight line and is almost parallel to the imaginary axis. 

The Bode plot shows the magnitude and the phase of the impedance for different samples. 

The impedance values are well spread over the frequency range from 100 Hz to 1 MHz, 

which indicates the clear differences in electrical properties of the samples. Each set of 

impedance data was fitted to a same equivalent circuit, and the results are shown in grey 
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lines. The Randles circuit model was selected in this work, which is the classic model for 

depicting the electrode-electrolyte interface and the bulk solution. Figure 4 clearly shows 

the good agreement between the fitted results and five group samples. The fitting 

parameters can be found in the Appendix B. The only mismatches are at the high 

frequency end for higher concentration samples. The measured data shows a positive 

phase error, which is not practical in solution-based impedance measurements. This is 

stress from the parasites, such as stray capacitance and contact resistance.   

From the Bode plot shown in Fig. 4, the magnitude of impedance for each DNA sample 

is relatively constant at mid-band frequencies (1 kHz to 100 kHz). Higher sample 

concentration results lower sample impedance.  

Figure 5 depicts comparison results of this work and previous work for DNA 

concentration measurement. The detection sensitivities can be therefore determined by 

the slopes of two data lines. From the least linear square fitting results, this work shows 

almost doubled sensitivity over the previous work, where the slope of this work is 0.85 

and the previous one is 0.44. The specific thin-film electrodes design in this work 

contributes to this sensitivity enhancement. 

In a DC electrolyte sensing system, cell constant κ (cm-1) is defined as 

𝜅𝜅 =  𝑅𝑅
𝜌𝜌
           (2) 

where R represents the measured resistance and ρ is the specific resistivity. This factor 

also can be used to determine the performance of an impedance-based sensing system. 

For most bio-measurement, the solution concentration (c) is a function of the solution 
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conductivity (reciprocal of the solution resistivity). From Equation (1), we can conclude 

that the sensing output voltage (Vout) is inversely proportional to the measured impedance. 

We can then rewrite Equation (2) as 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑐𝑐
∝  1

𝜅𝜅
           (3)  

where c represents the solution concentration. Equation (3) indicates that smaller cell 

constant will result better detection sensitivity, therefore, to design a small cell constant 

system is a key route to enhance the sensor’s performance. Olthuis’s work [20] suggests 

that the cell constant can be reduced effectively by increasing the electrodes modulus k. 

In a two electrodes system, k is defined as 

𝑘𝑘 =  𝑊𝑊
𝑊𝑊+𝑆𝑆

          (4) 

where W is the electrode width and S is the separation between the electrodes pair. Thus, 

a better W over S ratio can give better detection sensitivity. The W over S ratio is 1:2 in 

previous work (shown as green in Fig. 5), and the ratio is 1:1 in this work (shown as blue). 

In previous work, on-chip electrodes are used, and the electrodes dimensions are limited 

by both chip area and CMOS design rules. However, by using thin-film based electrodes, 

the electrodes design is more flexible and hence the sensing performance can be further 

enhanced. Further analysis regarding W over S ratio can be found in Appendix C. 

It is worth to mention that bare gold electrodes are used in this work for characterisation 

of suspended DNA samples. This is different from reported affinity-based sensors in 

which electrodes are functionalised with probes to capture target analytes. Immobilised 

probes are typically used to examine the presence of known analytes. However, both 
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limit of detection and accuracy are restricted by unspecific binding and binding failure. In 

our work, the electrical properties of the bulk solution are measured from 100 Hz to 1 

MHz. This method can be used as an effective DNA concentration sensor. It also 

provides the capabilities to distinguish the length of DNA fragments, and can be applied 

to validate PCR products. Indeed, sensors without immobilisation lack selectivity 

compared to the conventional affinity-based approaches. However, this can be solved by 

introducing micro-fluidic sample sorting and/or sieving technique on top of electrodes in 

the future work. Moreover, this heterogeneously measuring system is fully compatible 

with bio-functionalization on the electrodes, which can be used for different specific 

applications. 

4. Conclusions 

A heterogeneously integrated impedance measuring system is presented with disposable 

thin-film electrodes. The system keeps the CMOS processor reusable in order to reduce 

the measurement cost. This setup also provides additional freedom on the electrode 

design. For DNA concentration measurement, this system enables a doubled sensitivity 

measurement over the previous work. 
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Figures 

 

Fig. 1. Schematic of heterogeneously integrated impedance measurement system. The 
disposable part is thin-film metal electrodes on the glass substrate and reusable part 
includes a function generator for stimulus, a CMOS chip for signal amplification and 
processing and an oscilloscope.  
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Fig. 2. Bode plot of simulation and measured results of the validation test for the 
frequency. (a) Magnitude of impedance as a function of frequency. Inset shows a three-
element circuit model and component values used for simulation. (b) As in (a) but phase 
as a function of frequency.  
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Fig. 3. (a) Cole-Cole plot of the measured and fitted results using a three-element circuit 
model; circuit model is indicated as inset. (b) (c) Bode plot of the measured and fitted 
results of the three-element circuit model shown in (a).  

 

Fig. 4. (a) Cole-Cole plot of the measured and fitted results of different DNA 
concentrations. Inset shows a Randels circuit model used for data fitting. (b)(c) Bode plot 
of the measured and fitted values from (a). 
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Fig. 5. DNA concentration versus normalized output with standard deviation indicated as 
error-bar. The slopes indicate sensitivity; this work shows an enhanced sensitivity for 
DNA concentration compared to previous work [9].  
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