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Abstract
Perturbations in autophagy and apoptosis are associated with cancer development. XIAP and cIAP1 are two members of the
inhibitors of apoptosis protein family whose expression is elevated in different cancers. Here we report that XIAP and cIAP1
induce autophagy by upregulating the transcription of Beclin 1, an essential autophagy gene. The E3 ubiquitin ligase activity of
both proteins activates NFκB signalling, leading to the direct binding of p65 to the promoter of Beclin 1 and to its transcriptional
activation. This mechanism may be relevant in cancer cells, since we found increased levels of autophagy in different B-cell
lymphoma-derived cell lines where XIAP is overexpressed and pharmacological inhibition of XIAP in these cell lines reduced
autophagosome biogenesis. Thus, the chemotherapy resistance associated with XIAP and cIAP1 overexpression observed in
several human cancers may be, at least in part, due to the Beclin 1-dependent autophagy activation by IAPs described in this
study. In this context, the disruption of this increased autophagy might represent a valuable pharmacological tool to be
included in combined anti-neoplastic therapies.

Introduction
The maintenance of cancer cell survival has been associated not
only with the inhibition of apoptosis, but alsowith the activation
of macroautophagy (1). Macroautophagy, herein referred to as
autophagy, is responsible for the removal of aberrant cytosolic
contents by double-membraned vesicles, called autophago-
somes, which deliver the sequestered material to lysosomes for
degradation. In this way, the cells remain protected from the ac-
cumulation of intracellular components that may compromise
cell viability (2). In the cancer context, autophagy may play
opposing roles, depending on various factors such as the stage
of tumour development and the set of gene mutations (that
may include autophagy regulators) associated with the cancer
type (3). In early stages of tumourigenesis, autophagy can play

an antitumour role, and loss of positive regulators of autophagy,
such as Beclin 1, Bax interacting factor-1, ultraviolet radiation
resistance-associated gene, death-related kinase 1, phosphatase
and tensin homolog, liver kinase B1 and Atg4c trigger tumour
development (4). Indeed, even monoallelic deletion of Beclin 1,
a key autophagy effector that is the orthologue of yeast Atg6, is
sufficient to predispose to tumourigenesis (5,6). Furthermore,
some negative regulators of autophagy, such as class I phospha-
tidylinositol 3-kinase, Akt1 and antiapoptotic members of the
Bcl-2 family are oncoproteins (4). On the other hand, autophagy
protects poorly vascularized tumours from cell death caused by
stress conditions, such as starvation and hypoxia (7). Therefore,
unlike apoptosis, which exerts a unilateral inhibitory effect on
cancer development, the role of autophagy in cancer appears to
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Figure 1. XIAP induces autophagy. (A) HeLa cells transfected with empty vector (C-) or XIAP expression constructs for 48 h (top panel), or with a control (C-) or XIAP siRNA

for 72 h (bottom panel), were treatedwith DMSO or 400 n bafilomycin A1 (Baf A1) during the last 4 h. Thewestern blots in both panels are representative of the efficiency

of XIAP overexpression (OE) and knockdown (KD) and of the levels of LC3-II in these conditions. (B) HeLa cells stably expressing mRFP-GFP-LC3 transfected with empty

vector (C-) or XIAPexpression constructs for 48 h (left panel) orwith a control (C-) or XIAP siRNA for 72 h (right panel) werefixed and subjected to automatic counting of LC3

vesicles. The histograms in both panels show the percentage relative to C- of the number/cell of autophagosomes (mRFP+/GFP+) (AP), autolysosomes (mRFP+/GFP−) (AL)
and both of them (total) (see also SupplementaryMaterial, Fig. S2). (C) HeLa cells previously transfectedwith empty vector (C-) or XIAP expression constructs for 48 hwere

treatedwithout orwith (for cells transfectedwith XIAP construct) 20 μMembelin (Emb) during the last 16 h. DMSOor 400 n bafilomycinA1 (Baf A1)were added during the

last 4 h. The western blots in both panels are representative of the efficiency of XIAP overexpression (OE) and of the levels of LC3-II in these conditions. (D) HeLa cells
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be dependent on several factors, including the stage of the tu-
mour, themutations or the loss of genes associated with thema-
lignancy and on the cell or tissue context. Furthermore, it is
possible that the expression of certain proteins associated with
cancer riskmayaffect both autophagy and apoptosis and the pro-
ducts of this interplay may be relevant to the disease.

Inhibitors of apoptosis proteins (IAPs) are important deregu-
lators of apoptosis. They prevent cell death mainly by inactivat-
ing caspases and they also contribute to cell proliferation by
modulating the activity of the Nuclear Factor κ B (NFκB) (8).
X-linked inhibitor of apoptosis (XIAP) and cellular inhibitor of
apoptosis 1 (cIAP1), two of the most important IAPs, are charac-
terized by the presence of a RING finger that provides E3 ubiquitin
ligase activity (9), by which they control ubiquitin signalling
events, leading to the activation of NFκB, which, in turn, induces
the expression of genes important for cell survival and prolifer-
ation (10).

IAPs, including XIAP and cIAP1, are overexpressed in several
human cancers due to genetic alterations, abnormal activity
of transcription factors controlling IAP expression and/or the
absence of endogenous IAP antagonists, which contribute to
the insensitivity of tumour cells towards various pharmacologic-
al treatments and unfavourable prognosis (11). For instance, high
expression levels of IAPs have been associated with poor clinical
outcomes of various cancers, including cervical cancers, neuro-
blastoma, breast cancers, melanoma, clear-cell renal carcinoma
and colorectal cancer (12–18).Moreover, in haematologicalmalig-
nancies, high XIAP and cIAP1 levels correlatewith poor prognosis
of acute myelogenous leukaemia, chronic lymphocytic leukae-
mia and Hodgkin lymphoma (19). XIAP and cIAP1 are highly
expressed in almost all of a series of 60 human cancer cell lines
studied (20).

Here we describe that high levels of XIAP and cIAP1 expres-
sion induce the formation of autophagosomes by up-regulating
Beclin 1 expression via the activation of the NFκB pathway. This
process appears to be physiologically related to cancer state,
since we found elevated levels of autophagy in various human
B-cell lymphoma-derived cell lines where XIAP is overexpressed,
compared with wild-type B cells. Since autophagy promotes
cancer cell survival at late stages of the disease, the Beclin
1-dependent autophagy activation may contribute to the
chemotherapy resistance associatedwith XIAP and cIAP1 overex-
pression found in several types of human cancer. Moreover, we
showed that pharmacological inhibition of XIAP in these cell
lines reduced autophagic activity and decreased their viability.
Thus, disruption of this increased autophagy may be relevant
for antitumour therapy.

Results
XIAP overexpression induces autophagy through
its E3 ubiquitin ligase activity

Since XIAP amplifications are associated with cancers, we first
examined the effect of the overexpression of this protein on

the levels of the microtubule associated protein 1 light chain
3 (LC3-II), a well-establishedmarker of autophagy (21). The levels
of LC3-II are indicative of the number of autophagosomes. In the
presence of potent inhibitors of lysosomal degradation, such as
bafilomycin A1 (Baf A1), LC3-II is not degraded and thus its
changes resulting from other perturbations can be attributed to
alterations in LC3-II synthesis (22,23). We found that the overex-
pression of XIAP in HeLa cells caused a substantial increase in
LC3-II levels in both the absence and presence of Baf A1
(Fig. 1A, top), which suggests that XIAP promotes the formation
of autophagosomes. In contrast, XIAP knockdown caused a slight
decrease in LC3-II levels (Fig. 1A, bottom). To rule out the possibil-
ity of an off-target effect of the Smartpool siRNAs, we confirmed
that LC3-II levels decreased with two different deconvoluted
siRNAs targeted against XIAP (Supplementary Material,
Fig. S1A). Since the Smartpool showed the greatest silencing effi-
ciency, we used it in all the subsequent knockdown experiments.
The decrease of LC3-II levels caused by XIAP knockdownwas also
observed in human neuroblastoma SK-N-SH cells (Supplemen-
tary Material, Fig. S1B) and in MCF10A cells, where we also con-
firmed that we could rescue the negative effects of XIAP
knockdown by overexpressing XIAP in knockdown cells (Supple-
mentary Material, Fig. S1C).

We further confirmed the effect of XIAP on autophagosome
formation using another autophagy assay, based on the sensitiv-
ity of GFP relative to RFP to the acidic lysosomal environment.
Hence, cells stably expressing a monomeric RFP (mRFP)-GFP-
LC3 tandem reporter trace autophagosome maturation by
discriminating autophagosomes that show both red and green
fluorescence, compared with autolysosomes that display only
red signals (24). Consistent with our previous results (Fig. 1A),
XIAP overexpression increased (≈ 62% more) both autophago-
somes and autolysosomes (Fig. 1B, top) (see also Supplementary
Material, Fig. S2), whereas XIAP knockdown caused the opposite
effect to a lesser extent (≈ 25% less) (Fig. 1B, bottom).

In order to further confirm the significance of the high levels
of XIAP on autophagy activation, we used embelin, a specific in-
hibitor of XIAP that prevents its proliferative and antiapoptotic
activities (25). Embelin concentrations ranging from 10 to 50 µ
are required for effective inhibition of NFκB signalling pathway
(26) in various cancer cell lines. This inhibitor, at a concentration
range of 10–20 µ, mildly impaired autophagy in HeLa cells (Sup-
plementary Material, Fig. S3A) and in mouse embryonic fibro-
blasts (Supplementary Material, Fig. S3B). However, the increase
in the level of LC3-II caused by XIAP overexpression was com-
pletely abolished by 20 µ embelin (Fig. 1C), supporting the im-
portance of amplified XIAP activity for autophagy activation.
Embelin concentrations of 200 n and below [which would not
be predicted to impact on NFκB signalling] (26) did not affect
LC3-II levels in HeLa (Supplementary Material, Fig. S3C) and
mouse embryonic fibroblasts (MEFs) (Supplementary Material,
Fig. S3D). In MCF10A cells, the inhibitory effect of embelin on au-
tophagy is concentration-dependent. While it actually increased
LC3-II levels at 10 µ (Supplementary Material, Fig. S3E), this was
associated with decreased MCF10A cell viability (Supplementary

previously transfectedwith empty vector (C-), wild-type XIAPor XIAPH467A expression constructs for 48 hwere treatedwithDMSOor 400 n bafilomycinA1 (BafA1) during

the last 4 h. (E) HeLa cells previously transfected with empty vector (C-), wild-type XIAP or XIAPH467A expression constructs for 48 h were subjected to western blotting. (F)
HeLa cells were co-transfected with the GFP-HttQ74 expression construct plus empty vector (C-), wild-type XIAP or XIAPH467A expression constructs for 48 h (left panel) or

with a control (C-) or XIAP siRNA, where 24 h later the cells were transfectedwith the GFP-HttQ74 expression construct for 48 h (right panel). In both panels, the cells were

then fixed and the percentage of transfected cells with aggregates was calculated as shown in the histograms. At least 150 cells were counted per sample (see also

Supplementary Material, Fig. S4). Densitometric measurements of LC3-II or p62 bands were normalized to the corresponding actin bands in the corresponding

histograms. The values shown in all the histograms represent the mean ± standard deviation from at least three independent experiments performed in triplicate

samples/condition. The P-values were determined using Student’s t-test. See also Supplementary Material, Figure S1.
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Figure 2. XIAP up-regulates the levels of Beclin 1. (A) HeLa cells stably expressing GFP-DFCP1 were transfected with empty vector (C-) or wild-type XIAP expression

constructs for 48 h and were then fixed. The GFP-DFCP1 vesicles were counted using a confocal microscope. Representative images of cells displaying GFP-DFCP1

vesicles are shown. The percentage of GFP-DFCP1 vesicles per cell relative to C- cells is shown in the histograms on the left. Bar, 10 µm. (B) (top panel) HeLa cells were

transfected with empty vector (C-), wild-type XIAP or XIAPH467A expression constructs for 48 h; (bottom panel) HeLa cells were transfected with a control (C-) or XIAP

siRNA for 72 h. Densitometric measurements of Beclin 1 bands were normalized to the corresponding actin bands and are shown in the histograms on the right.
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Material, Fig. S3F). However, at 5 µ where cell viability is not af-
fected (Supplementary Material, Fig. S3F), it decreased the levels
of LC3-II (Supplementary Material, Fig. S3G), consistent with our
knockdown data inMCF10A cells and other lines (Fig. 1A, Supple-
mentaryMaterial, Fig. S1A–C), suggesting that the effects of 10 µ
embelin in these cells was off-target.The activities of XIAP and
cIAP1 family members rely on the presence of a RING finger do-
main that provides E3 ubiquitin ligase activity (9), by which
they canmodulate the expression of genes important for cell sur-
vival and proliferation through the NFκB pathway (10). In order to
discern whether the induction of autophagy by XIAP overexpres-
sion is dependent on its E3 ubiquitin ligase activity,we transfected
the cells with a XIAPH467A mutant defective in this activity (9),
which increased LC3-II levels far less than the wild-type XIAP
(Fig. 1D). We assessed then the impact of the overexpression of
this mutant on the levels of p62 (SQSTM1/sequestosome 1), an en-
dogenous autophagy substrate (27). The overexpression of wild-
type XIAP, but not of XIAPH467A, decreased the levels of p62
(Fig. 1E).Mutant huntingtin (Htt) Q74 is anotherwell-established au-
tophagy substrate. The proportion of cells with Q74 aggregates is a
direct function of levels of the protein and inversely correlates
with autophagic activity (28). Consistent with our previous data,
the percentage of cells with mutant htt aggregates decreased with
overexpression of wild-type XIAP and not of XIAPH467A (Fig. 1F, left
graph) (see also Supplementary Material, Fig. S4A), whereas XIAP
knockdown led to an accumulation of cells with htt aggregates
(Fig. S 1F, right graph) (see also Supplementary Material, Fig. S4B).

XIAP overexpression upregulates Beclin 1 levels through
the activation of NFκB signalling

Autophagosome precursors, called omegasomes, contain phos-
phatidylinositol-3-phosphate (PI(3)P) and can be identified as
structures which bind the PI(3)P-binding protein DFCP1 (double
FYVEdomain-containing protein 1) (29). Consistentwith its effect
on autophagy, XIAP overexpression increased the number of
GFP-DFCP1 positive dots, whereas XIAP knockdown caused the
opposite effect (Fig. 2A).

The translocation of DFCP1 to early autophagic vesicles is de-
pendent on Beclin 1 (29). The E3 ubiquitin ligase properties of
XIAP activate NFκB (8), and NFκB has been reported to stimulate
Beclin 1 transcription (30). Thus, we investigated whether XIAP
stimulates autophagy via the NFκB-mediated up-regulation of
Beclin 1 expression. Beclin 1 enhances the conjugation of Atg12
to Atg5, two autophagy-related proteins involved in the early
stages of autophagosome biosynthesis (31), and the levels of
this conjugatewere increased after XIAP overexpression (Supple-
mentaryMaterial, Fig. S5A), which also up-regulated Beclin 1 pro-
tein (Fig. 2B, top) andmRNA (Fig. 2C, left) levels. XIAP knockdown
reduced Beclin 1 protein (Fig. 2B, bottom) and mRNA (Fig. 2C,
right) levels. XIAPH467A failed to increase Beclin 1 levels (Fig. 2B,
top and 2C, left). This suggests that the induction of Beclin 1
expression by XIAP is mediated by its E3 ubiquitin ligase activity.
Consistent with these results, the overexpression of wild-
type but not XIAPH467A enhanced the transcriptional activation
of a Beclin 1 promoter reporter (Fig. 2D, left), whereas XIAP

knockdown slightly decreased it (Fig. 2D, right). All together,
these data show that XIAP upregulates Beclin 1 transcription
through its E3 ubiquitin ligase activity. p53 levelswere not altered
by overexpression of XIAP and XIAPH467A in HeLa cells (Supple-
mentary Material, Fig. S5B), or by XIAP overexpression in
MCF10A cells (Supplementary Material, Fig. S5C).

Although the detailed mechanism by which XIAP mediates
NFκB activation is not completely understood, it is now well-
established that XIAPs can form dimers through interactions be-
tween their RING and BIR1 domains, which lead to the binding of
the transforming growth factor-beta (TGFβ) activated kinase
1 (TAK1) adaptor protein, TAB1 (as schematically detailed in
Fig. 3A). TAK1 is then recruited to this complex and facilitates
its dimerization and consequent activation, which triggers the
NFκB signalling pathway (32). In both steady state and stimulated
conditions with TGFβ that activates NFκB through TAK1 (33), nei-
ther the overexpression of XIAP nor its knockdown affected the
transcriptional activation of the NFκB promoter (Fig. 3B, top).
The effect of TGFβ on the transcriptional activation of the NFκB
promoter is shown in the bottom graph, where the values are
not normalized to the control (C-) samples (Fig. 3B, bottom).
The protein levels of p65, a transcriptional activator in the NFκB
complex, did not change after the overexpression or knockdown
of XIAP (Fig. 3C). However, the expression of an NFκB-dependent
promoter reporter was increased after XIAP overexpression
(Fig. 3D, left) and slightly, but significantly reduced upon XIAP
knockdown (Fig. 3D, right). Moreover, the overexpression and
knockdown of XIAP, respectively, enhanced and reversed the
transactivation of this NFκB-dependent promoter reporter by
overexpression of p65 (Fig. 3D). This transcription factor has
been reported to up-regulate Beclin 1 transcription (30). We
thus investigated if p65 was involved in the XIAP-mediated tran-
scriptional activation of Beclin 1 that we had observed (Fig. 2D).
Indeed, overexpression of XIAP enhanced the amplification of
Beclin 1 transcriptional activation by p65 (Fig. 3E, left), while
XIAP knockdown reversed the effect (Fig. 3E, right).

The transcriptional activity of p65 is triggered once the inhibi-
tor of NFκB proteins (IκB) is phosphorylated, which leads to its
dissociation from the NFκB complex. This phosphorylation
enables ubiquitination of IκB which enables its degradation by
the proteasome (34) (Fig. 3A).We found that the levels of the phos-
phorylated formof IκBdecreased afteroverexpression ofwild-type
XIAP, but not XIAPH467A (Fig. 4A). This decreasewas reversed in the
presence of the proteasome inhibitor MG132 (Supplementary Ma-
terial, Fig. S6A), suggesting that XIAP overexpression induces the
proteasomal degradation of IκB, mainly through its E3 ubiquitin
ligase activity. IκB prevents the translocation of the NFκB dimer
p50/p65 from the cytosol to the nucleus where it binds relevant
promoters (34). Consistent with this model, overexpression of
wild-type XIAP increased the amount of p65 binding to the en-
dogenous Beclin 1 promoter (assessed by chromatin immunopre-
cipitation), whereas the overexpression of XIAPH467A failed to
reproduce this effect (Fig. 4B). Indeed, p65 knockdown (we verified
the p65 knockdown by immunocytochemistry as shown in Sup-
plementary Material, Fig. S6B), attenuated the positive effect of
XIAP overexpression on both Beclin 1 and LC3-II levels (Fig. 4C),

(C) (left panel) mRNA fromHeLa cells previously transfected with empty vector (C-), wild-type XIAP or XIAPH467A expression constructs for 48 h was analysed by qRT-PCR

for Beclin 1-actin mRNA; (right panel) RNA from HeLa cells previously transfected with a control (C-) or XIAP siRNA for 72 h was analysed by qRT-PCR for Beclin 1-actin

mRNA. In both panels, the levels of Beclin 1 mRNAwere normalized to actin mRNA levels. (D) (left panel) HeLa cells were co-transfected with CHET4-luciferase reporter

containing the Beclin 1 promoter plus empty vector (C-), wild-type XIAPor XIAPH467A expression constructs for 48 h; (right panel) HeLa cells were transfectedwith a control

(C-) or XIAP siRNA. Twenty-four hours later, cells were transfected with CHET4-luciferase reporter containing the Beclin 1 promoter for 48 h. In both panels, values of the

relative luciferase activity are reported in the histograms. See also Supplementary Material, Figure S2.
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Figure 3. XIAP induces Beclin 1 transcription via p65/NFκB activation. (A) Schematic diagram of XIAP-mediated NFκB activation. BIR1 and RING domains of two XIAPs

interact leading to dimerization that recruits TAB1. TAK1 is consequently activated by interaction with this complex in the form of dimers, which triggers NFκB

signalling. This occurs after the phosphorylation of IκB and its resultant ubiquitination and proteasomal degradation. In this way, the p50/p65 heterodimer is

translocated to the nucleus, where gene transcription occurs. (B) For overexpression (OE) bars, HeLa cells were co-transfected with a luciferase reporter containing the

NFκB promoter plus empty vector (C-) or XIAP expression constructs for 48 h. For knockdown (KD) bars, HeLa cells were transfected with a control (C-) or XIAP siRNA.
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confirming the importance of p65 in the XIAP-mediated activation
of Beclin 1-dependent autophagy.

XIAP amplification in some large B-cell lymphoma cell
lines is associated with increased autophagy

To discern whether the XIAP effect on autophagy is relevant in a
cancer context, we assessed LC3-II levels in diffuse large B-cell
lymphoma cell lines, where XIAP was reported to be overex-
pressed and associated with poor clinical outcomes (35). We
found that XIAP levels were significantly higher in two of these
cell lines (SUDHL5 and SUDHL8), compared with wild-type B
cells, while theXIAP levels of the third line (SUDHL10), were hard-
ly elevated (Fig. 5A). The levels of XIAP in these cell lines corre-
lated with autophagosome formation as assessed by LC3-II
levels in the presence of Baf A1 (Fig. 5B). As predicted, embelin de-
creased LC3-II levels in all of these patient cell lines (Fig. 5C–E).
Furthermore, embelin appeared to increase apoptosis in these
cell lines in a manner that appeared to correlate with both XIAP
levels and autophagic activity (Fig. 5F and Supplementary
Material, Fig. S7). This result is compatible with a role for XIAP-
autophagy in the viability of these lymphoma cell lines.

cIAP1 overexpression induces Beclin 1-dependent
autophagy through the activation of NFκB signalling

cIAP1 is another important member of the IAP family. This pro-
tein also harbours a RING finger domain by which it regulates
the ubiquitin-dependent activation of NFκB signalling pathway
(36). We investigated the effect of this protein on autophagy by
overexpressing wild-type cIAP1 or the cIAP1H588Amutant, defect-
ive in its E3 ubiquitin ligase activity. Figure 6A shows that the
levels of LC3-II increased in HeLa cells after overexpression of
wild-type cIAP1, but not of cIAP1H588A. This result was also ob-
served in HCT-116 cells (Supplementary Material, Fig. S8A) and
in MEFs (Supplementary Material, Fig. S8B). Moreover, the num-
ber of autophagosomes and autolysosomes in cells stably expres-
sing GFP-mRFP-LC3 increased upon the overexpression of cIAP1,
but not of cIAP1H588A, which indicates that this protein induces
autophagy through its E3 ubiquitin ligase activity (Fig. 6B; see
also Supplementary Material, Fig. S9A). cIAP1 overexpression
also decreased p62 levels in both HeLa (Supplementary Material,
Fig. S6C) andHCT-116 (SupplementaryMaterial, Fig. S8C) cells, an
effect not observed upon cIAP1H588A overexpression. Further-
more, the percentage of cells with mutant htt aggregates de-
creased after overexpression of wild-type cIAP1 but not of
cIAP1H588A (Fig. 6D, see also Supplementary Material, Fig. S9B).
As we observed with XIAP, collectively these data support the
relevance of the E3 ubiquitin ligase activity of cIAP1 in autophagy
activation.

Given that cIAP1 was also reported to regulate the NFκB sig-
nalling pathway through its E3 ubiquitin ligase activity (36), we
further investigated and confirmed that the expression levels of
Beclin 1 increased when wild-type cIAP1 but not cIAP1H588A was
overexpressed (Fig. 7A). The mRNA levels of Beclin 1 also in-
creased upon the overexpression of wild-type cIAP1 only
(Fig. 7B), which confirms that the E3 ubiquitin ligase activity of
cIAP1 is important for the up-regulation of Beclin 1 transcription.
The overexpression of cIAP1 resulted in a decrease of the phos-
phorylated form of IκB (Fig. 7C), which is the form of IκB that is
usually degraded by the proteasome (34). The proteasome inhibi-
tor, MG132, reversed the decrease of phospho-IκB levels caused
by the overexpression of thewild-type cIAP1 (SupplementaryMa-
terial, Fig. S6). Conversely, cIAP1H588A overexpression failed to de-
crease phospho-IκB. Finally, chromatin immunoprecipitation
(ChIP) analysis also confirmed that wild-type cIAP1 increased
p65 binding to the Beclin 1 promoter, an effect not seen with cIA-
P1H588A (Fig. 7D).

Discussion
XIAPand cIAP1 are amplified in various cancers and herewehave
shown that overexpression of these proteins induces autophagy.
One of the most important contributions of IAPs to cell survival
and tumourigenesis resides in their ability to activate the NFκB
signalling pathway (36), which also drives the effects of these
IAPs on autophagy via their E3 ubiquitin ligase activities. Consist-
ent with these data, NFκB activation by XIAP and cIAP1 requires a
ubiquitin-dependent signalling pathwayand the RING domain of
both proteins that harbours their E3 ubiquitin ligase activity (36).
NFκB, in turn, activates autophagy by up-regulating the tran-
scription of Beclin 1, a key autophagy gene (37). Hence, our data
link NFκB signalling and Beclin 1-dependent autophagy under
the control of the E3 ubiquitin ligase activity of XIAP and cIAP1.
Since Beclin 1 is an important autophagy gene, analysing the ef-
fect of XIAP perturbations on autophagy in cells with Beclin 1
knockdown was not possible. Therefore, we cannot discard the
possibility of additional mechanisms independent of Beclin-1
for autophagy activation by XIAP. The effects of XIAP knockdown
on autophagy are modest, compared with the overexpression ef-
fects, suggesting that the major relevance of this gene in autop-
hagy is when it is amplified in cancers. Indeed, we demonstrated
this in lymphoma cell lines.

In contrast to what we have described, a previous study re-
ported that XIAP inhibited autophagy by upregulating p53 levels
via the inhibition of its degradation by Mdm2 (38). The results of
this report were based on the knockdown of XIAP and on the use
of embelin. However, they used very low concentrations of embe-
lin (50–200 n), far below its effective concentration [10–40 µ for
apoptosis activation (25) and 10–50 µ are required for effective

Twenty-four hours later, cells were transfectedwith a luciferase reporter containing theNFκB promoter for 48 h. In all cases, cellswere treated or notwith 2 µg/ml TGFβ for

2 h. Themean values of the relative luciferase activity are reported in the histograms. (C) HeLa cells were transfectedwith empty vector (C-) or XIAP expression constructs

for 48 h (left panel) or with a control (C-) or XIAP siRNA for 72 h (right panel). Thewestern blots in both panels are representative of at least three independent experiments

performed in triplicate. (D) (left panel) HeLa cells were co-transfected for 48 h with a luciferase reporter that contains a promoter with p65 binding site plus empty vector

(C-) or XIAP expression constructs. In both cases (C- and XIAP), an empty vector or a p65 expression constructs was included in the co-transfection; (right panel) HeLa cells

were transfected for 48 hwith a control (C-) or XIAP siRNA. Twenty-four hours later, cells were co-transfected with a luciferase reporter that contains a promoter with p65

binding site plus empty vector (C-) or p65 expression constructs. In both panels, values of the relative luciferase activity are reported in the histograms. (E) (left panel) HeLa

cells were co-transfected for 48 h with CHET4-luciferase reporter containing the Beclin 1 promoter plus empty vector (C-) or XIAP expression constructs. In both cases (C-

and XIAP), an empty vector or a p65 expression constructs was included in the co-transfection; (right panel) HeLa cells were transfected for 48 hwith a control (C-) or XIAP

siRNA. Twenty-four hours later, cells were co-transfected with CHET4-luciferase reporter containing the Beclin 1 promoter plus empty vector (C-) or p65 expression

constructs. In both panels, values of the relative luciferase activity are reported in the histograms. The values shown in all the histograms represent the

mean ± standard deviation from at least three independent experiments performed in triplicate samples/condition. The P-values were determined using Student’s t-

test. See also Supplementary Material, Figure S3.
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inhibition of NFκB signalling pathway (26)]. They used MEFs and
MCF10A cells for their studies and obtained different results to
ourselves, where we also used these cells. However, their study
focussed on the effects of XIAP knockdown, while we have

stressed the consequences of amplification in the cancer context,
where we showed that autophagy is inhibited by embelin in can-
cer cells lines with XIAP amplification. We did not observe any
effect of XIAP overexpression on p53 levels, suggesting that the

Figure 4. p65 is involved in the activation of autophagy by XIAP. (A) HeLa cells previously transfected with empty vector (C-), wild-type XIAP or XIAPH467A expression

constructs for 48 h were subjected to western blotting to detect P-IκB and IκB levels. The blots are from the same set of experiments. Densitometric measurements of

phospho-IκB (P-IκB) bands were normalized to the corresponding bands of actin and are shown in the histogram on the right. (B) HeLa cells previously transfected

with empty vector (C-), wild-type XIAP or XIAPH467A expression constructs for 48 h were subjected to a ChiP assay. The amount of in vivo binding of endogenous p65 to

Beclin 1 and actin (as a negative control) promoters was quantified by real-time PCR. Data are representative of three independent experiments. (C) HeLa cells were

transfected for 48 h with a control (C-) or p65 siRNA. Twenty-four hours later, cells were co-transfected for 48 h with an empty vector (C-) or XIAP expression

constructs. Cells were treated with DMSO or 400 n bafilomycin A1 during the last 4 h. Densitometric measurements of LC3-II bands were normalized to the

corresponding actin bands and are shown in the histograms on the right. The values shown in all the histograms represent the mean ± standard deviation from at

least three independent experiments performed in triplicate samples/condition. The P-values were determined using Student’s t-test. See also Supplementary

Material, Figure S4.
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Figure 5. High levels of XIAP in B-cell lymphoma activate autophagy. (A) B cells (WT) and three diffuse large B-cell lymphoma cell lines, SUDHL5, SUDHL8 and SUDHL10

were subjected to immunoblotting with XIAP and actin antibodies. (B) The same cell lines were treated with 400 n bafilomycin A1 and were subsequently subjected to

immunoblotting with LC3 and tubulin antibodies. The diffuse large B-cell lymphoma cell lines, SUDHL5 (C), SUDHL8 (D) and SUDHL10 (E), were treated without or with

10 μM embelin (Emb) for 16 h, and treated without or with 400 n bafilomycin A1 (Baf A1) for the last 4 h of the experiment, and were subsequently subjected to

immunoblotting with LC3 and tubulin antibodies. (F) Propidium iodide and FITC-conjugated Annexin A5 staining detected by flow cytometry of B cells (WT) SUDHL5,

SUDHL8 and SUDHL10 (5, 8 and 10) treated without or with 10 μM embelin (Emb) for 16 h. The percentage of cells positive for both PI and Annexin A5 are shown.

Densitometric measurements of LC3-II bands were normalized to the corresponding actin or tubulin bands and are shown in the corresponding histograms. The

values shown in all the histograms represent the mean ± standard deviation from at least three independent experiments performed in triplicate samples/condition.

The P-values were determined using one sample t-tests, where controls are set to 100%. See also Supplementary Material, Figure S7.
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Figure 6. cIAP1 overexpression induces autophagy. (A) HeLa cells previously transfected with empty vector (C-), wild-type cIAP1 or cIAP1H588A expression constructs for

48 h were treated with DMSO or 400 n bafilomycin A1 (Baf A1) during the last 4 h. Blots were probed with the indicated antibodies and the HA indicates the cIAP1

constructs. Densitometric measurements of LC3-II bands were normalized to the corresponding actin bands and are shown in the histogram on the right. (B) HeLa

cells stably expressing mRFP-GFP-LC3 transfected with empty vector (C-), wild-type cIAP1 or cIAP1H588A expression constructs for 48 h were fixed and subjected to

automatic counting of LC3 vesicles. The histogram shows the percentage relative to C- of the number/cell of autophagosomes (mRFP+/GFP+) (AP), autolysosomes

(mRFP+/GFP-) (AL) and both of them (total). (C) HeLa cells previously transfected with empty vector (C-), wild-type cIAP1 or cIAP1H588A expression constructs for 48 h
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mechanism proposed for the knockdown effects were not con-
tributing to the overexpression context.We also observed similar
phenomenawith cIAP1 overexpression as we did with XIAP, with
consistent mechanistic overlaps.

The higher expression levels of XIAP and cIAP1 in some can-
cer cells may contribute to tumour maintenance not only via the
inhibition of apoptosis, but also through the activation of autop-
hagy. Likewise, in relevant human cancers, the inhibition of
autophagy may be a useful tool to eliminate the chemotherapy
resistance due to apoptosis inhibition by XIAP and cIAP1 overex-
pression. Consistent with this concept, the inactivation of IAPs,
especially when combined with other treatments, may result in
preferential death of tumour cells, compared with normal cells
(36,39,40).

The roles of autophagy in cancer appear to be context-
dependent (41). Beclin 1 is functionally a haploinsufficient
tumour suppressor gene in mice and is monoallelically deleted
in some sporadic breast, ovarian and prostate cancers (5,6),
although its role as a haploinsufficient tumour suppressor in
cancer patients has been questioned as these deletions appear
to also invariably include loss of BRCA1 (42). Furthermore, there
appear to be complexities as to whether p53 activity impacts or
not on the therapeutic effects of autophagy inhibition in
pancreatic cancer models (3,43). Therefore, we appreciate
that the definitive causal contributions of the XIAP/cIAP1-Beclin
1-autophagy pathway to cancer still will require further studies.

All together, these observations further highlight the critical
role played by the high levels of XIAP in cancerous cells. Our find-
ings suggest that overexpression of IAPs in cancers has biological
relevance in controlling not only apoptosis (36), but also the
autophagic response, which may both impact on therapy.

Materials and Methods
Cell culture

HeLa cells, MEFs and SKNSH were cultured at 37°C, 5% CO2 in 10%
FBS, 2 m -glutamine and 100 U/ml penicillin/streptomycin sup-
plemented Dulbecco’s modified Eagle’s medium (DMEM) D6546
(Invitrogen). HeLa cells stably expressing mRFP-GFP-LC3 were
maintained in similar media supplemented with 600 mg/ml of
G418. MCF10A were from Horizon Discovery and were grown at
37°C, 5% CO2 in DMEM including 2.5 m -glutamine and 15 m

HEPES, supplemented with 5% horse serum, 10 µg/ml insulin,
20 ng/ml hEGF, 0.5 µg/ml hydrocortisone and 0.1 µg/ml cholera
toxin.Wild-type B-cells and human diffuse large B-cell lymphoma
cell lines (DLBCL) SUDHL5, SUDHL8 and SUDHL10 [obtained from
Deutsche Sammlung von Mikroorganismen und Zellkulturen,
Braunschweig, Germany (DSMZ)] were cultured at 37°C, 5% CO2 in
10% FBS, 2 m -glutamine and 100 U/ml penicillin/streptomycin
supplemented RPMI 1640 (Invitrogen) (see Supplementary
Material online).

DNA constructs

pcDNA3.1-XIAP-Myc was provided by G.S. Salvesen (Addgene
plasmid 11833), pEBB-XIAPH588A was provided by J.D. Ashwell

(Addgene plasmid 11559) (9), pEBB-HA-cIAP1 and pEBB-HA-cIA-
P1H588A were provided by C.S. Duckett (Addgene plasmids 38232
and 38233, respectively) (44). pcDNA3.1 and pEBB empty vectors
were used as controls. The first exon of the huntingtin protein
with 74 polyglutamines, tagged with EGFP, EGFP-HttQ74 has
been extensively characterized (28). The CHET4-luciferase report-
er containing the Beclin 1 promoter (see SupplementaryMaterial,
Fig. S9A) was provided by C. Schneider (30). The luciferase report-
er containing a promoter with p65 binding site (see Supplemen-
tary Material, Fig. S9B) was provided by I. Quinto (45).

Reagents

All the chemicals used in this study were dissolved in dimethyl
sulfoxide (DMSO). Bafilomycin A1 was from Millipore; MG132;
staurosporine and embelin were from Sigma. Primary antibodies
usedwere: rabbit anti-XIAP, rabbit anti-Beclin 1, rabbit anti-Atg12
and anti-P-IκB Ser32/Ser36 (all diluted at 1:1000, Cell signaling),
rabbit anti-actin and mouse anti-tubulin (both diluted at 1:4000,
Sigma), rabbit anti-LC3 (diluted at 1:1000, Novus Biological),
mouse anti-p62 (diluted at 1:1000, BD Bioscience), mouse anti-
p53 and rabbit anti-NFκB p65 (diluted at 1:1000, Santa Cruz
Biotechnology), mouse anti-HA (diluted at 1:2000, Covance).
Anti-mouse and anti-rabbit HRP-conjugated secondary anti-
bodies were from GE Healthcare. Propidium iodide, Alexa-
Fluor-594- and Alexa-Fluor-488-conjugated antibodies were
from Molecular Probes (Invitrogen).

Western blot analysis

Cells werewashed and harvested in ice-cold PBS and pellets were
lysed on ice in RIPA buffer (150 m NaCl, 1% Nonidet P-40, 0.5%
sodium deoxycholate, 0.1% SDS, 50 m Tris, pH 8.0) containing
a protease/phosphatase inhibitors mix (Roche). After 1 h of incu-
bation on ice with frequent agitations, cell lysates were centri-
fuged at 12 000 g, 10 min, the supernatants were collected and
the concentration of proteins was determined using the DC Pro-
tein Assay, according to themanufacturer’s instructions (Bio-Rad
Laboratories). Proteins (25 μg) from the various lysateswere sepa-
rated on 10–16.5% polyacrylamide slab gels (depending on the
size of the protein to be analysed) and transferred to polyvinyli-
denefluoridemembranes. Themembraneswere blockedwith 5%
skimmedmilk in PBS for 1 h at room temperature and reacted for
16 h at 4°C with the appropriate primary antibody. Primary and
HRP-conjugated antibodies were applied in 3% BSA in PBS, con-
taining 0.02% sodium azide. Incubations with secondary anti-
bodies were for 1 h at room temperature. Membranes were
rinsed between incubations three times with PBS plus 0.05%
tween-20. After the last wash, membranes were imaged using
ECL (GE Healthcare). Protein bands were quantified by densito-
metric analysis using ImageJ software.

Fluorescence microscopy

Quantification of aggregate formation and LC3 dots was assessed
as previously described (46). Two hundred EGFP-HDQ74-
transfected cells were selected and the number of cells with

were subjected towestern blotting. Densitometric measurements of p62 bands were normalized to the corresponding actin bands and are shown in the histogram on the

right. (D) HeLa cells were co-transfected with the GFP-HttQ74 expression construct plus empty vector (C-), wild-type cIAP1 or cIAP1H588A expression constructs for 48 h.

The cellswere thenfixed and the percentage of transfected cellswith aggregateswas calculated as shown in the histogram.At least 150 cellswere counted per sample. The

values shown in all the histograms represent the mean ± standard deviation from at least three independent experiments performed in triplicate samples/condition.

The P-values were determined using Student’s t-test. See also Supplementary Material, Figure S8.
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Figure 7. cIAP1 induces Beclin 1 transcription via p65/NFκB activation. (A) HeLa cells were transfected with empty vector (C-), wild-type cIAP1 or cIAP1H588A expression

constructs for 48 h. Densitometric measurements of Beclin 1 bands were normalized to the corresponding actin bands and are shown in the histograms on the right.

(B) mRNA from HeLa cells previously transfected with empty vector (C-), wild-type cIAP1 or cIAP1H588A expression constructs for 48 h was analysed by qRT-PCR for

Beclin 1-actin mRNA. The levels of Beclin 1 mRNA were normalized to Actin mRNA levels. (C) HeLa cells previously transfected with empty vector (C-), wild-type

cIAP1 or cIAP1H588A expression constructs for 48 h were subjected to western blotting to detect P-IκB and IκB levels. The blots shown are from the same set of

experiments. Densitometric measurements of phospho-IκB (P-IκB) bands were normalized to the corresponding bands of actin and are shown in the histogram below.

(D) HeLa cells previously transfected with empty vector (C-), wild-type cIAP1 or cIAP1H588A expression constructs for 48 h were subjected to a ChiP assay. The amount of

in vivo binding of endogenous p65 to Beclin 1 and actin (as a negative control) promoters was quantified by real-time PCR. Data are representative of three independent

experiments. The values shown in all the histograms represent the mean ± standard deviation from at least three independent experiments performed in triplicate

samples/condition. The P-values were determined using Student’s t-test.
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aggregates was counted using a fluorescence microscope. The
identity of the slides was unavailable to the observer until all
slides had been studied.

For immunofluorescence staining, cells were cultured on cov-
erslips, fixed with 3.7% paraformaldehyde in PBS for 10 min, per-
meabilized with 0.05% saponin in PBS for 10 min, blocked with
0.1% BSA in PBS for 10 min and incubated with primary anti-
bodies overnight at 4°C. Cells were then washed three times
with PBS and incubated with secondary Alexa-Fluor-conjugated
antibodies. Both primary and secondary antibodies were pre-
pared in 0.1% BSA in PBS. Samples were mounted using antifade
reagent with DAPI (ProLong Gold; Invitrogen) and observed using
a Zeiss Axiovert 200M microscope with an LSM 710 confocal att-
tachment, using a 63×1.4 numerical aperture Plan Apochromat
oil-immersion lens. Automatic counting of LC3 vesicles from
HeLa cells stably expressing GFP-mRFP-LC3 was performed
using the Cellomics ArrayScan VTI HCS Reader (×40 objective)
and the Spot Detector V3 Cellomics BioApplication (Thermo Fish-
er Scientific). Number of vesicles per cell was counted in 1000
cells per coverslip and the mean number of vesicles per cell
was calculated by the ArrayScan software.

Luciferase reporter assays

HeLa cells were seeded in six multiwells and transfected with
0.5 µg of the indicated luciferase reporter vectors plus 0.05 µg of
the Renilla luciferase and cultured in a full medium for 24 h.
Cells were then lysed in reporter lysis buffer (Promega). Firefly
and Renilla luciferase activities weremeasured in a luminometer
using the Dual-Glo luciferase assay kit (Promega). The relative lu-
ciferase activity (RLU) is defined as thefirefly-to-Renilla luciferase
activity ratio and normalized for the protein concentration of
each sample.

Transfections

For knockdown experiments, cells were transfected 72–96 h
before analysis with a 50 n final concentration of the indicated
SMARTpool or deconvoluted siRNAs (Dharmacon) using lipofecta-
mine 2000 (Invitrogen), according to the manufacturer’s instruc-
tions. For overexpression experiments, cells were transfected
with 1–2.5 µg of the respective constructs using TransIT®-2020
Transfection Reagent (Mirus Bio LLC) according to the manufac-
turer’s instructions.

Quantitative real-time PCR

Total RNAwas extracted from cells using Trizol (Invitrogen) and
treated with Deoxyribunuclease I, Amplification Grade (Invitro-
gen). SuperScript III First-Strand Synthesis System (Invitrogen)
and random hexadeoxynucleotide primers were used to synthe-
size cDNA. For the cDNA real-time PCR, the SYBRGreen PCRmas-
ter mix (AB applied Biosystem) was employed according to the
manufacturer’s instructions. The following sets of primers were
used for the amplification of Beclin 1 cDNA: forward 5′-GCTCCAT
TACTTACCACAGC-3′ and reverse 5′-CAGTGACGTTGAGCTGAG
TG-3′. The real-time PCR analyses were performed using
7900HT fast real-time PCR system (Applied Biosciences).

Chromatin immunoprecipitation

108 HeLa cells/condition were cross-linked using 1% formalde-
hyde in growth medium for 10 min and then cells were treated
with 0.215 M Glycine for 5 min to stop the cross-linking and
washed twice with PBS. Cells were lysed in buffer A (10 m Tris

pH 8.0, 10 m NaCl, 0.2% NP40) supplemented with 10 m

NaBu and protease/phosphatase inhibitors mix (Roche) for
10 min on ice. The nuclei were recovered and resuspended in buf-
fer B (50 m Tris pH 8.1, 10 m EDTA, 1% SDS) supplemented
with 10 m NaBu and protease/phosphatase inhibitors mix
(Roche) and incubated for 10 min on ice. Cells were then diluted
×2 in buffer C (20 m Tris pH 8.1, 2 m EDTA, 150 m NaCl, 1%
Triton X100, 0.01% SDS) supplemented with 10 m NaBu and
protease/phosphatase inhibitors mix (Roche) before sonication
for 10 min at 4°C. Chromatinwas then cleared and equal amounts
were incubated overnight at 4°C on a rotating wheel with anti-p65
antibody sc-372X (Santa Cruz Biotechnology), anti-Histone H3
(Abcam) andanti-mouse IgGproduced in rabbit (Sigma). Immuno-
complexes were isolated using protein A-sepharose (GE-Health-
care), washed twice with buffer D (20 m Tris pH 8.1, 2 m

EDTA, 50 mNaCl, 1%TritonX100, 0.1% SDS) and oncewith buffer
E (10 m Tris pH 8.1, 1 m EDTA, 0.25 M LiCl, 1% NP-40, 0.1%
sodium deoxycholate monohydrate) and finally once with TE
buffer. Samples were then eluted using buffer F (100 m NaHCO3,
1% SDS). The cross-linking was reversed by treating the sampled
with RNase A and NaCl at a final concentration of 0.3 M overnight
at 67° C and subsequent treatment with proteinase K (Fisher
Scientific) for 2 h at 45°C.

Samples were then cleaned using Qiaquick PCR Purification
Kit (Qiagen) and subjected to a real-time PCR analysis. The pri-
mers used for the amplification of p65 binding site in Beclin 1
promoter are: 5′-CCCGTATCATACCATTCCTAG-3′ and 5′-GAAACT
CGTGTCCAGTTTCAG-3′ and for actin are: 5′-ATCTGGCACCAC
ACCTTCT-3′ and 5′-TGGGGTGTTGAAGGTCTCA-3′.

Cytometric analysis

After treatment, cells were stained with propidium iodide and
FITC-conjugatedAnnexinA5 (Abcam). Subsequently, the emitted
red (620 ± 20 nm band-pass filter) and green (488 ± 20 nm band-
pass filter) fluorescence was analysed by flow cytometry. In
each experiment, 10 000 cells per samplewere collected and ana-
lysed using a Becton–Dickinson FACSCalibur 4-colour analyser.

Statistical analysis

Densitometric analysis on the immunoblots was performed
using Image J software. In all themain or supplementary Figures,
error bars represent standard deviations. In all the experiments,
P-valueswere determined by two-tailed Student’s t-test or paired
t-test for normalized control values, in a triplicate experiment
representative of at least three independent experiments.
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