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Abstract

An algorithm for identifying rings in Ring Imaging Cherenkov (RICH) detectors is
described. The algorithm is necessarily Bayesian and makes use of a Metropolis-
Hastings Markov chain Monte Carlo sampler to locate the rings. In particular, the
sampler employs a novel proposal function whose form is responsible for significant
speed improvements over similar methods. The method is optimised for finding
multiple overlapping rings in detectors which can be modelled well by the LHbC
RICH toy model described herein.

Key words: Ring Finding, RICH, Pattern Recognition, Cherenkov Ring, Rings,
Monte Carlo Methods, Inference, Fitting
PACS: 02.50.Ga, 02.50.Tt, 02.60.Ed, 02.70.Uu, 29.40.Ka

1 Introduction

This article describes an algorithm for identifying rings among photons such as
may be observed by Ring Imaging Cherenkov (RICH) detectors in high energy
physics experiments. The performance of the algorithm is demonstrated in
the context of the LHbC RICH simulation described in Section 10. (Not the
LHCb experiment [1,2]) There are many examples of applications for ring
finding pattern recognition both within high energy particle physics [3,4,5,6]
and without [7,8].

The first half of the article is entirely devoted to defining what all ring finders
actually are. The second half of the article shows how the idealised ring finder
of the first half can be realised by a real algorithm, the “ring-finder”, to
within a good approximation.

We begin with some very simple but very important comments about pattern
recognition in general, and then link these to the specific case of identifying
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rings in collections of dots.

The general comments about pattern recognition will make it clear that mean-

ingful ring identification can only take place in the context of a well defined
model for the process believed to have generated the data containing the ring
images.

We therefore go on to describe a model of the way that charged particles
passing through a radiator lead to rings of Cherenkov photons being detected
on imaging planes. In describing this model, we are forced to make explicit our
definitions of rings (both “reconstructed” and “real”) and of hits. We are also
forced to write down the constituents of the probability distributions which
relate them both. In terms of these distributions we are then able to write
down the goal of an “ideal” ring finder in an unambiguous way. A devout
Bayesian could justly say that there is little or nothing innovative in this first
half of the article – it being composed largely of definitions and truisms.

The second half of the article sets out to achieve the goals of the first half,
i.e. the creation an actual ring finding algorithm matching the idealised one
as closely as possible.

The method chosen is a Metropolis-Hastings Monte Carlo (MHMC) sampling
of a particular posterior distribution defined in the first half of the article.
MHMC samplings in ring finders are not new [3] but their performance is
strongly dependent on the choice of the so-called proposal distribution(s) they
make use of (defined later). Indeed, the only freedom that one has in imple-
menting the MHMC sampler, is in the definition of the proposal distribution(s)
to be used – and so almost all of the second half of the article is devoted to
describing the one used here.

Finally in Section 7 there are some examples of reconstructed rings.

A short note concerning common misconceptions about MHMC proposal dis-

tributions:

Among people who have not used MHMC samplers frequently, there is a com-
mon perception that proposal distributions appear to introduce a level of
arbitrariness into the sampler or its results, and there are often questions or
confusion about the manner in which they affect the results of the sampler.
The short answer is that in the limit of large times (i.e. a large number of sam-
ples) the choice of proposal distributions has no effect at all on the results of

the sampler! 1 However, differences are seen after short times (small numbers

1 In fact parts of the internal mechanism of the MHMC sampling process described
in Section 5 exists solely for the purpose of removing any dependence of the results
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(a) (b) (c)

Fig. 1. What rings should we see in (a)? Are there two large concentric rings as
indicated in (b)? Perhaps there are three small rings of equal radii as indicated in
(c).

of samples). A clever choice of proposal function allows you to get good results
in a short time (seconds) whereas a bad choice might require hours, weeks or
even years of CPU time before convergence of the fit for a single event. The
motivation for choosing good MHMC proposal functions is thus a desire for
efficiency in the sampler – not a desire to introduce some fancy abritrariness
or personal prejudices into it.

2 Pattern Recognition and Ring Identification

The single most important thing to recognise when pattern matching is that:

It is impossible to recognise a pattern of any kind until you have
an idea of what it is you are looking for.

To give a simple example from the context of ring finding: What rings should
a ring finding pattern matcher identify in part (a) of figure 1?

The answer must depend on what rings we expect to see!

Equivalently, the answer must depend on the process which is believed to have
lead to the dots being generated in the first place. If we were to know without

doubt that the process which generated the rings which generated the dots
in (a) were only capable of generating large concentric rings, then only (b) is
compatible with (a). If we were know without doubt that the process were only
capable of making small rings, then (c) is the only valid interpretation. If we
know the process could do either, then both (b) and (c) might be valid, though
one might be more likely than the other depending on the relative probability
of each being generated. Finally, if we were to know that the process only

of the sampler on the choice of proposal distribution.
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generated tiny rings , then there is yet another way of interpreting (a), namely
that it represents 12 tiny rings of radius too small to see.

So any ring finding pattern matcher must incorporate knowledge of the process

it assumes lead to the production of the dots in the first place.

Inevitably it is impossible to know every detail of the process leading to the
generation of the dots, so in practice a ring finding pattern matcher must
at the very minimum have a working model of the process that leads to the
generation of the dots.

3 Rings of Cherenkov Photons in RICH Detectors.

When a charged particle traverses a medium at a speed greater than the speed
of light in that medium, it emits Cherenkov photons at a constant angle to its
line of flight (but at uniformly random azimuthal angles). With an appropriate
optical set-up, it may be arranged that all the photons from a given particle
end up striking a screen at points around the circumference of a ring. The
radius of this ring measures the angle at which the photons were radiated
with respect to the particle’s momentum. The position of the ring measures
the direction in which the particle was travelling through the medium. Because
the azimuthal angle of the Cherenkov photons is chosen uniformly, Cherenkov
photons are found uniformly distributed around these rings. 2

For the purpose of illustrating the ring-finding technique proposed herein, we
introduce in Section 10 a toy model for the production of hits in an imaginary
detector: Lester’s Highly basic Computational (LHbC) RICH simulation.

4 Modelling for the process of Hit Generation

Definitions: Rings, Collections of Rings, Hits and Hit Collections

In the 2-D co-ordinates of a detection plane, a Cherenkov ring R has a centre
c = (x, y) and a radius ρ. Denote a collection of rings by R.

When a photon is detected by a RICH detector, or when a photodetector
fires for some other reason, the resulting data-object will be referred to as a
hit. For our purposes, the only thing we need to know about each hit is its

2 Subject to acceptance and optical considerations!
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position h. The starting point for the reconstruction of each event is the set
H = {hi | i = 1, ..., nh} – the collection of the positions of all of the hits seen
in the event.

Definitions: Low-level and high-level event descriptions

An event defined as the set of its hit positions H is a low-level event de-
scription. An event defined as a collection of rings R is a high-level event
description.

What the ring-finder is and is not supposed to do

The purpose of the ring-finder is to make statements about likely high-
level (ring based) descriptions R for an event, given the low-level (hit based)
description H for that event.

The purpose of the ring-finder is not to determine the actual collection of
Cherenkov rings that were the cause of the observed collection of it hits H,
which will never be known.

Rather it is intended that the ring-finder should sample from the space
of high-level (ring based) event descriptions R according to how likely they
would appear to have been given the observed collection of hits H. In other
words the ring-finder should supply us with high-level descriptions which
“could have” caused the observed data.

Assumptions about the hit-production process

In constructing a model of the hit production process we assume the following
of the real production process:

We assume that there is an unchanging underlying physical Mechanism M
which generates events containing an unknown set of rings Rtrue independently
of events produced before or later. We assume that there is an unchaning
random process P , following on from M , according to which a collection of
observed hits Hobs is generated from Rtrue. The random process P is assumed
to be known to a reasonable precision (it is a matter only of known physics and
detector response) in contrast to M which will depend on the type of events
the detector encounters. Nevertheless, some gross features of M are calculable
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(for example detector acceptance may favour central over peripheral rings)
and where they are calculable they may be incorporated.

We assume that M and P can be broken down into parts relating to:

• A uniform distribution of Cherenkov photons about the circumference of
the ring,

• A poisson distribution for the number of photons likely to be radiated onto
a given ring of radius ρ,

• Detector resolution,
• Backgroud hits coming from random processes unconnected with rings – for

example electronic noise.

Formally, all the above information may be encapsulated in two real-valued
functions: the hit-production-model likelihood:

pP (Hobs|Rtrue) (1)

and a probability density function

pM(Rtrue) (2)

representing the a priori probability of any particular configuration of rings,
insofar as this can be derived from knowledge of M . The superscript tags obs
and true on Hobs and Rtrue will subsequently be omitted.

The quantity we will ultimately be interested in is p(R|H) which we may
obtain from (1) and (2) via Bayes’s Theorem:

p(R|H) = N(H)pP (H|R)pM(R), (3)

where N(H) is a normalizing constant which we may ignore (set equal to 1)
as we will only be interested in the relative variation of the left hand side of
(3) with respect to R for fixed H. No further mention will be made of N(H).

Note that the dimension of R is three times the number of rings it contains as
each ring is defined by a 2-dimensional centre and a 1-dimensional radius. A
typical event contains order 10 rings, and so p(R|H) is typically a function of
order 30 dimensions. It will not therefore be possible to plot p(R|H). However,
we can do the next best thing: we can use Monte Carlo methods to sample
from it.

The set of high-level descriptions R which we will draw from p(R|H) will
represent the most reasonable guesses we can make for Rtrue given H.
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Note that we do not make any attempt to “maximise” p(R|H). We are not
interested in where this function is a maximum, 3 though in some sense the
sampling is likely to be localised near the maximum.

Note that the algorithm described herein is “trackless” acting only on the hits
generated by LHbC RICH simulation of Section 10. Trackless ring-finding al-
gorithms have been proposed in the past, however. Reference [3] only came to
the attention of the authors two years after the algorithm defined herein was
implemented. The algorithm of [3], though independently concieved, has much
in common with the one described here, and has much to commend it. Both
methods use a Bayesian approach, implement a similar detector model 4 and
explore the space of possible ring-configurations with a Markov chain Monte
Carlo. The details of each of the algorithms’ Metropolis-Hastings proposal
functions differ very significantly, however, and it is this difference which the
authors believes accounts for the significant improvements in efficiency (speed)
and performance of the fitter described herein in situations of high ring mul-
tiplicity.

Summary of the ring-finding method

The description of the ring-finding method in the preceding sections may be
summarised in two steps as follows:

• Define the types of rings you want to find by calculating the specific forms
of the distributions in Equations (1) and (2) which are relevant to the pro-
duction model (in this case LHbC RICH simulation of Section 10.)

• Sample from the resulting posterior distribution p(R|H) (Equation (3)).

Of the two steps above, the first one is by far the simplest. It leaves almost
no scope for flexibility or creativity. Either the calculated distributions are or
are not a fair representation of the mechanism of ring production, detector
response and hit generation for the problem in question. Newer models of the
process or the detector can be switched in at short notice for comparison with
older models, with no significant impact on other parts of the ring-finder.

3 Note: It may seem strange that we are not interested in the maximum of p(R|H)
given the large amount of the literature devoted to maximum-likelihood analyses.
But bear in mind that (1) the position of the peak is not invariant under reparametri-
sations of the space, and (2) this is a high-dimensional problem. In high-dimensional
problems the vicinity of the maximum is often either only a tiny part of the “typical
set” (the region containing most of the probability mass or else is not even part of
the typical set at all! See [10] for detailed discussion.
4 Though [3] describes a detector with analouge hit information rather than digital
as in this paper.
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The particular forms where were used here are described in Section 10.

It is the second of the steps above that is the hardest and is the part which
will take up most of the rest of the discussion.

It will become clear later that while it would be possible to implement a
“general” second step, 5 it is almost certain that such a method would be
hopelessly inefficient and completely unusable. We will therefore always discuss
the second step in the context of the particular sort of ring finding that is
required by the LHbC RICH simulation of Section 10.

Why is a general method of plotting p(R|H) hopelessly inefficient?

It has already been mentioned that p(R|H) as a function of R is a function
of around 30-dimensions, and we know that we are interested in discovering
where in this space the bulk of the probability lies. The large dimensionality
of the space precludes simply plotting the density itself, and suggests that a
sampling or explorative method is instead required.

If the space had only one probability maximum 6 then established techniques
(such as steepest descent etc) could be employed to find out where the “centre”
of the distribution was, and then the simplex or other multi-point methods
could probably be used to explore the bulk region. Unfortunately, the space
is actually packed full of local maxima separated by regions of improbability,
and so these methods would very quickly get irretrievably stuck in poor local
maxima.

Take the example shown in Figure 1. There is no way to slowly transform
the two fitted rings of (b) into any two of the three rings in (c) which does
not involve passing through a huge region inbetween in which the rings would
represent a terrible fit to the observed hits.

The only real solution appears to be to sample the space using a custom
Markov Chain Monte Carlo (MCMC) sampling method – one that has built
into it an understanding of the type of space it is trying to explore, and an
ability to make sensible guesses as to the locations of distant isolated local
maxima.

This is all necessary to improve the efficiency of the ring-finder to the point
at which it can become useful. Wherever possible, the choice and design of the
custom Markov sampler should not affect the answers that are reached, only

5 i.e. a second step that is not specifically tailored to the problem in question
6

i.e. if the space had no local maxima other than the global maximum
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the time it takes to reach them. 7

The approach adopted herein was to use a Metropolis-Hastings sampler with a
proposal distribution tailored specifically to the sorts of hits seen in the LHbC
RICH simulation of Section 10.

5 Metropolis-Hastings Samplers and Proposal Distributions

A full review of Sampling Theory and Markov Chain Sampling techniques is
beyond the scope of this article. What follows only describes the bare mini-
mum needed to implement the sampler used by the ring-finder. No attempt
is made to explain why the described procedure does indeed perform a statis-
tically correct sampling – though references to items relevant in the literature
are given.

In general, a Metropolis-Hastings sampler [10,11,12] samples a sequence of
points {xi} from some space X on which a target probability distribution
p(x) has been defined. Suppose n points x1, ..., xn have already been sampled.
The next point xn+1 is sampled as follows. A proposed location wn+1 for the
next point is drawn from a “proposal distribution” Q(w|x) with, in this case,
x = xn. The only two requirements of the proposal distribution are (1) that it
be easy to draw uncorrelated samples from Q, and (2) that it be possible to
calculate Q(w|x) up to an abritrary constant factor. A dimensionless random
number ρ is then drawn uniformly from the interval [0, 1]. If ρ is found to

be less than ρmax = p(wn+1)Q(xn|wn+1)
p(xn)Q(wn+1|xn)

, then the proposal wn+1 is accepted, and
xn+1 is set equal to wn+1. Otherwise, xn+1 is set equal to xn.

In this particular paper, the p(x) mentioned above will be the p(R|H) first
seen in Equation (3), and so X will be the space of high-level event descritons
{R} (the space of ring hypotheses).

Note that a Metropolis-Hastings sampler does not in general produce un-
correlated samples (in fact there is a very high chance that two more more
neighbouring samples may actually be identical!) however as the number of
samples tends to infinity, the resultant set of samples may be treated as if
they were the result of an uncorrelated sampling process.

The art of creating the Metropolis-Hastings sampler that is most suited to a

7 By way of an example: the simplest possible Markov Chain sampler would proba-
bly be one using the Metropolis Method with a flat proposal function. This method
would indeed sample the space exactly as required, but in 30 dimensions you would
probably have to wait an unfeasable 10030 iterations before the distribution con-
verged on the right answer (assuming 1% scan granularity).

9



given target distribution is equivalent to finding the best proposal distribution
Q(w|x) for the problem. 8 There is considerable scope for creativity in the
construction of good proposal distributions for particular problems. Despite
much development, the proposal distribution described herein (outlined in
Section 6 with details in Section 10) is unlikely to be optimal for the LHbC
RICH simulation of Section 10. Further development of the ring-finder’s
proposal distribution is the single most important objective in any attempt to
improve ring finding performance – judged according to how long you must
wait before the samples are representative of the whole distribution.

6 An MHMC proposal distribution suitable for ring-finding in
LHbC RICH simulation of Section 10

The proposal distribution used in the ring-finder is best described algorith-
mically. At the top level, it can:

(1) propose the addition of a new ring-hypothesis to the current set of ring-
hypotheses,

(2) propose the removal of a ring-hypothesis from the current set of ring-
hypotheses, or

(3) propose a small alteration to one or more of the existing ring-hypotheses.

By tuning the relative probabilities with which the above options are chosen,
one can try to maximise the efficiency of the sampler. 9 A crude attempt at
optimisation was done by hand but there will be scope for improvement. At
the time of writing, the values in use were as follows. Propose an alteration
with probability 0.2. If not making such a proposal, propose a circle addition
with probability 0.6. Otherwise propose a circle removal.

8 Note that if Q(w|x) were chosen to be p(w) then ρmax would always be exactly
1, every proposed point w would thus be accepted, and all samples would be com-
pletely independent samples from Q and thus would also be completely independent
samples from the target distribution p. This is in some sense the “optimal” Q. But
one of the requirements of Q was that we should be able to sample from it, and if
we were able to sample from p(w) directly we would have no need of the Metropolis-
Hastings method to sample from p(x). So in practice the optimal Q is (a) one from
which it is possible to draw samples, but (b) is nonetheless “as close as possible” to
the target distribution p.
9 In the context of this document, the efficiency of the sampler is always defined
as the reciprocal of the inefficiency of the sampler, which itself is defined as the
proportion of proposals which are wasted. Wasted proposals are ones which are
rejected by the Metropolis algorithm, thus causing the current point to be re-visited
as the next point of the sampling.
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(a) (b)

Fig. 2. Part (a) shows a common example of a mis-fitting. In this example, the fit
should really have been as shown in part (b).

Alterations to ring hypotheses

The “alteration” option allows the positions and radii of previously proposed
rings to be “fine tuned” to better reflect their likely locations in the light of
neighbouring rings etc.

Most of the time, fine tuning is most efficient if it involves perturbing the
position and size of only one ring. More often than not, a perturbation to
any one ring results in a ring which fits worse than the original, and so as the
number of simultaneously perturbed rings grows, the chance that the proposal
will be accepted by the Metropolis algorithm diminishes exponentially.

Nevertheless, there is a common situtation depicted in Figure 2, in which it is
beneficial to try to perturb two rings at once in order to pull a bad fit out of
a false minimum. In cases like this, it is unrealistic to expect the ring-finder
to switch from 2(a) to 2(b) by successive perturbations of any one ring, or by
removal and subsequent reinstatement of both rings, as the potential barrier
to this (the poor quality of the intermediate fits) would lead to exceptionally
long equilibrium times.

To take this and similar situations into account, the number of ring hypotheses
which are the subject of modification in a given “alteration” is itself chosen
at random from a distribution which favours single rings over pairs and pairs
over triplets etc. The precise choice of this distribution is again something
which may be tweaked to increase the efficiency of the sampler. At the time of
writing, the number n of ring hypothesis to be altered in a given “alteration”
(out of a total number of ring hypotheses N) was selected with a probability
proportional to 1/n. It is likely that a better choice leading to a more efficient
sampler could be found.

Once the number n and identity of ring hypotheses to be perturbed has been
chosen, the perturbation of each ring hypothesis is performed by independent
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Fig. 3. All three of the above rings fit the four points on the left hand side reasonably
well. If the “current” ring hypothesis were to be the largest or the smallest ring
above, one would like to be able to shrink or grow the ring about the well fitted
points until the remaining hit on the right hand side were to also be fitted. No such
“correlated smearining” is imlemented in the current code, so the same effect has
to be reached by a 3-dimensional random walk, at the cost of efficiency .

symmetrical Gaussian smearings of each of the three ring coordinates (centre-
x, centre-y and radius). In each case the width of the smearing is equal to 10%
of the average radius of a typical ring. There is again scope for optimising this
mechanism in order to make the sampler more efficient. In particular, when
more than one ring is simultaneously modified, it would make sense to allow
smearings to correlate between the rings. This might help to more efficiently
remove mis-fits like that shown in Figure 2. Also it might be an idea to consider
correlated smearings within the three parameters of a single ring so that (for
example) one could leave the best-fitted parts of the ring as unaltered as
possible (see Figure 3) while allowing the less well constained parts of the ring
to move as much as possible.

Addition of new and removal of old ring hypotheses

Given that the decision to insert-or-remove a ring has been made, the deletion
is proposed with probabiity 0.4 and insertion with probability 0.6.

Removal of old ring hypotheses

Once scheduled, removal of a ring hypothesis is as simple as it sounds. The
only thing worth mentioning is that the removed hypothesis is not thrown
into a black hole and lost forever. Instead it gets pushed onto a stack of
“ring hypotheses which have been useful in the past”. The use of this stack is
discussed later.

Addition of new ring hypotheses

If the three coordinates (centre-x, centre-y and radius) of a ring hypothesis
are drawn at random from their whole-experiment average distributions, it is

12



highly unlikely that the resulting ring will correspond to a ring in the data.
There may only be 20 to 50 real rings in an event, but there are of the order of
100∗100∗20 distinguishable ring hypothesis you could make. A ring hypothesis
drawn at random thus has roughly only a one in ten thousand chance of being
close-to-useful. To improve the efficiency of the sampler, proposals for new
rings must have a better means of making suggestions.

The approach taken in the ring-finder is to try to seed ring suggestions
from groups of three hits. Again, it is not good enough to choose just any
three hits at random, as a typical event can have upwards of 300 hits (say 15
hits per ring) so the chance of three hits drawn at random coming from the
same ring is of the order of (15/300)2 = 1/400 which is still too small to be
useful. Instead the three points are chosen in a correlated manner termed the
“three hit selection method”:

The three hit selection method

First one of the hits in the event is chosen at random. Then all other hits in
turn are compared with the first hit. For each hit, the likelihood that it (given
no other information) is in the same circle as the first hit is calculated. This
may be done purely on the basis of the knowledge of the whole-experiment
ring radius distribution (Figure 5) and a little numerical integration. 10 Once
all such likelihoods have been calculated, one of these hits is chosen (with a
probability proportional to its likelihood) to join the first. By this stage we
have selected two hits which have a reasonable probability of being in the
same ring. We now need to choose a third. A similar procedure is followed
as before. All other hits are compared with the first two, and the likelihood
that (given no other information) they are in the same ring as the first two
is calculated, and one of the hits is then chosen to join the first two with a
probility proportional to its likelihood of being in the same ring. Again this
depends only on knowledge of the whole-experiment ring radius distribution.
Having selected three points likely to be in the same ring, the ring passing
through all three hits becomes the proposal which is offered to the Metropolis
method for approval or rejection.

10 It might be objected that the whole-experiment ring radius distribution is not
known (except from Monte Carlo event generation) before the experiment turns on,
and can only be measured in a RICH detector, and so training a RICH new-ring
proposal distribution on the basis of Monte Carlo predictions will introduce some
sort of bias into the ring-finder. Fortunately this is not a worry, as once again the
purpose of the modified proposal distributions is not to change the answer, only to
reach the answer more efficiently. If the Monte Carlo data were not to match the
experimental data very well, that would only make this proposal distribution a little
bit more inefficient than intended ... it would not invalidate the result otherwise.
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Fig. 4. Example of 100 new rings proposed by the “three hit selection method” for
consideration by the MHMC for possibile inclusion in the final fit. The hits used to
seed the proposal rings are visible as small back circles both superimposed on the
proposals (left) and on their own (right).

Figure 4 shows 100 circles proposed by the three hit selection method for
an example event. As desired they are concentrated mostly in areas where
rings appear to be – not much time is being wasted proposing wildly unreal-
istic circles. Note that not all of the proposed circles will be accepted by the
MHMC algorithm. Proposal and acceptance are quite different things within
the MHMC sampler.

Of course, badly distorted rings and rings with fewer than three hits on them
will never be seeded this way, so the above prescription is applied only 90%
of the time. The remaining 10% of the time the proposal function falls back
on a naughty trick – it suggests a “reverse ring addition”. A “reverse ring
addition” is the popping off and subsequent re-use of the top-most ring in
the stack of “ring hypotheses which have been useful in the past” 11 as the
new-ring proposal. In the event that the stack is empty, the proposal method
falls back to the most basic of the new ring proposal mechanisms described at
the beginning of this section, even though it is very unlikely to lead to much
success. A “reverse ring addition” is not strictly a valid action in the context of
the Metropolis method as it breaks the principle of detailed balance. However
in practical terms it has proved to be a beneficial thing to have inside the
sampler, and it does not seem to break the principle of detailed balance enough
to cause any obvious problems. The “reverse ring addition” mechanism allows
the ring-finder to be a little more aggressive about throwing ring hypotheses
away than it would otherwise be able to be – if it gets second thoughts about
a disposal, it effectively has a chance to change its mind and recover a ring
hypothesis that it had thrown away earlier.

11 See “Removal of old ring hypotheses” at the start of this section
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Fig. 5. The ring radius distribution (horizontal axis in radians) used in the LHbC
RICH simulation of Section 10. The functional form is shown in Equation 4.

7 Results

Figure 6 shows the fits obtained after three seconds of sampling (each) for eight
events on a 3 GHz Pentium 4 computer. No special selection was applied to
these events. They are just the first eight events generated according to the toy
model of Section 10. Note that in the time alotted the ring-finder missed
a ring in event 6, and fitted a ring in event 7 poorly (the ring third from the
bottom). All other rings are fitted well. The lowest ring multiplicity observed
in the eight events was 3 rings in event 1. Event 5 had the most rings: 15.

More work needs to be done to optimise the termination criterion for the sam-
pling process. Just stopping each event after three seconds or a fixed number
of samples is very crude. A more sensible stopping criterion might choose to
run complicated events (events with a large number of hits) for longer than
simple ones. Even though better stopping criteria may be found in the future,
it is clear from the very simple one implemented here that the ring-finder

is indeed able to find rings.

8 Conclusions

This article has described an algorithm optimised for identifying rings among
photons in RICH detectors which are similar to the LHbC RICH toy model
of Section 10.

The algorithm acts only on hits, and does not have to be seeded with the
locations of, for example, the centres of the rings.
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(a) event 1 (b) event 2

(c) event 3 (d) event 4

(e) event 5 (f) event 6

(g) event 7 (h) event 8

Fig. 6. Fit performance allowing three seconds per event on a 3 GHz Pentium 4
computer. In each event, the result of the fit (i.e. the sample taken 3 seconds after
sampling began) is shown on the left, while the “true” distribution of rings which
generated the hits is shown on the right. All results are shown in a hyperbolic
projection which compresses the whole of 2-space onto a disc. This projection is the
cause of the elliptic distortion at the periphery of the disc.
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The algorithm has demonstrated good performace on events produced by the
toy model described in the text, at a cost of 3-seconds per event on a 3 GHz
Pentium 4.

There is ample scope to optimise the ring-finder further, by finding better
proposal functions and more realistic detector models.
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10 Appendix: Details of Lester’s Highly basic Computational (LHbC)
RICH simulation

This section lists the constituents of the toy model assumed for hit-production
in order to calculate explicit forms for pP (H|R) and pM(R) introduced in
Section 4. The same model was used to generate the events shown in Figure 6
which were subsequently fitted by the ring-finder. It is hoped that the
particular distributions and numbers chosen to define Lester’s Highly basic
Computational (LHbC) RICH simulation will make the events it generates
similar to those which might be seen in a future RICH detector of some kind.

The number of rings in an event was taken to be Poisson distributed with
mean 10. The radius of each ring was assumed to be distributed according to
a probability distribution proportional to the parameterization:

e625(x−0.0305)

(1 + e5(x−0.0305))(1 + e2941(x−0.0305))
(4)

(for x measured in radians) which is shown in Figure 5. The x and y co-
ordinates of the centre of each ring were taken to be independent and Gaus-
sian distributed with mean 0 and standard deviation 0.09 radians. (All dis-
tance values are measured in radians as we work in angular co-ordinates.) The
mean number of hits per unit length ρ on the circumference of each ring was
30/radian. The actual number of hits on a ring with radius rR was Poisson dis-
tributed with mean 2πrRρ. The hits themseleves were taken to be distributed
uniformly in azimuthal angle φ, and with radii rh (distance from centre of
ring) distributed independently for each hit according to
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p(rh|rR, ǫ, α)∝
1

2πrh
2
(
rh

rR

)α−2 exp(−
log2(rh/rR)

2ǫ2
) (5)

in which the dimensionless parameter α controlling the distribution skew took
the value 2, and in which the dimensionless parameter ǫ controlling the thik-
ness of the ring took the value 0.05.

The number of background hits (hits not coming from Cherenkov photons) in
an event was taken to be Poisson distributed with mean 10. The x and y co-
ordinates of each background hit were taken to be independently distributed
acoording to the same Gaussian distributions used for the x and y co-ordinates
of ring centres.
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