
Towards a worldwide storage infrastructure

Julien Quintard
firstname.lastname@cl.cam.ac.uk

September 2010

University of Cambridge
Computer Laboratory

Jesus College

This dissertation is submitted for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the

outcome of work done in collaboration except where specifically indicated in the

text.

This dissertation does not exceed the regulation length of sixty thousand words,

including tables and footnotes.

Towards a worldwide storage infrastructure

Julien Quintard

Abstract

Peer-to-peer systems have recently gained a lot of attention in the academic com-

munity especially through the design of KBR (Key-Based Routing) algorithms and

DHT (Distributed Hash Table)s. On top of these constructs were built promising

applications such as video streaming applications but also storage infrastructures

benefiting from the availability and resilience of such scalable network protocols.

Unfortunately, rare are the storage systems designed to be scalable and fault-tolerant

to Byzantine behaviour, conditions required for such systems to be deployed in an

environment such as the Internet. Furthermore, although some means of access

control are often provided, such file systems fail to offer the end-users the flexibility

required in order to easily manage the permissions granted to potentially hundreds

or thousands of end-users. In addition, as for centralised file systems which rely

on a special user, referred to as root on Unices, distributed file systems equally

require some tasks to operate at the system level. The decentralised nature of these

systems renders impossible the use of a single authoritative entity for performing

such tasks since implicitly granting her superprivileges, unacceptable configuration

for such decentralised systems.

This thesis addresses both issues by providing the file system objects a completely

decentralised access control and administration scheme enabling users to express ac-

cess control rules in a flexible way but also to request administrative tasks without

the need for a superuser. A prototype has been developed and evaluated, prov-

ing feasible the deployment of such a decentralised file system in large-scale and

untrustworthy environments.

Acknowledgments

I would like to thank Jean Bacon for her incredible patience, understanding and

kindness. I am also indebted to Alastair Beresford for his advice and encourage-

ment throughout the years. I would also like to thank the Opera group, especially

Pedro Brandão, David Eyers, David Evans, Luis Vargas, Samuel Kounev, Jatinder

Singh, Eiko Yoneki, Sriram Srinivasan, David Ingram, Salman Taherian, Scarlet

Schwiderski and Ken Moody.

During my PhD, I have been fortunate enough to cross Myoung Jin Nam’s path who

I would like to thank sincerely for everything.

Finally, I would like to thank my parents and my friends for bearing with me all

these years and making me a better person.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Outline . 5

2 Background 6

2.1 Overlay Networks . 8

2.1.1 Unstructured Overlay Networks 8

2.1.2 Hybrid Overlay Networks . 10

2.1.3 Structured Overlay Networks 11

2.1.3.1 Chord . 14

2.1.3.2 Kelips . 16

2.1.4 Social Overlay Networks . 18

2.2 Distributed Hash Tables . 20

2.3 Peer-to-Peer File Systems . 25

2.3.1 Pangaea . 26

2.3.2 OceanStore . 28

2.3.3 FARSITE . 29

2.3.4 CFS . 31

2.3.5 Ivy . 33

2.3.6 Plutus . 35

2.3.7 Pastis . 37

3 Environment 39

3.1 Properties . 39

3.2 Model . 43

3.2.1 File System . 43

3.2.2 Peer-to-Peer . 44

3.3 Mission . 45

3.4 Assumptions . 46

4 Design 53

4.1 Access Control . 53

4.1.1 Objectives . 54

4.1.2 Model . 56

4.1.2.1 Policy . 56

4.1.2.2 Pattern . 57

4.1.2.3 Class . 57

4.1.3 Constraints . 59

4.1.4 Concept . 60

4.1.5 Scheme . 62

4.1.5.1 Physical Blocks . 62

4.1.5.2 Logical Blocks . 67

4.1.6 Algorithms . 75

4.1.7 Analysis . 80

4.2 Administration . 83

4.2.1 Semantics . 84

4.2.2 Model . 88

4.2.2.1 System-wide . 88

4.2.2.2 User-wide . 89

4.2.3 Objectives . 91

4.2.4 Scheme . 91

4.2.4.1 Community . 92

4.2.4.2 Ownership . 106

4.2.5 Algorithms . 108

4.2.6 Analysis . 116

5 Implementation 120

5.1 Representation . 120

5.2 Architecture . 124

5.2.1 Elle . 126

5.2.2 Lune . 132

5.2.3 PIG . 132

5.2.4 Agent . 133

5.2.5 Etoile . 135

5.2.6 Hole . 140

6 Evaluation 145

6.1 Methodology . 146

6.1.1 Environments . 146

6.1.2 Benchmarks . 146

6.1.3 Metrics . 152

6.2 Results . 152

6.2.1 Overlay Network . 152

6.2.2 Distributed Hash Table . 153

6.2.3 File System . 158

6.2.3.1 Implementation . 158

6.2.3.2 Design . 163

7 Conclusion 169

Chapter 1

Introduction

This chapter introduces the thesis by detailing the motivation driving this research

before presenting the contributions this work brings to the research community.

1.1 Motivation

Over the last decade, computers have become the universal tool for work, commu-

nication and entertainment. Despite the incredible technology progress, computers

still fail to provide the end-user a way to deal with data in an easy, reliable and

secure way. Although people use computers daily for both personal and profes-

sional tasks, users cannot rely on them when it comes to reliably storing documents,

transparently sharing files with other users or synchronising data between multiple

devices.

The following further details these three functionalities—storage, sharing and

synchronisation—and explains why existing products and services fail to provide

end-users the features and properties they expect.

Storage

Computer networks are growing rapidly in importance as a medium for the storage

and exchange of information. After years of encouraging people to amass a hoard

of digital media as well as to store personal data on their local hard disk, users now

expect computers to become as reliable as any other home devices such as televisions,

Compact Disc players and so forth.

Although computers will probably never be as reliable as televisions, most people

feel like their local hard disk is a safe place for storing their sensitive files. The very

few end-users concerned about losing their files tend to rely on manual backups.

1

CHAPTER 1. INTRODUCTION 2

Unfortunately, even for those users, files cannot be considered safe on external back-

ups. Indeed, many plausible scenarios might lead to the complete loss of data

including fire and theft amongst many others.

The Internet made it possible to store files on company-run storage clusters such as

Amazon’s [DHJ+07] and many others [Ope, Omn, Box, Dro]. Unfortunately, people

willing to use such services must completely trust the company for reliably storing

their files while not disclosing or using their personal information for any purpose.

For the obvious above reasons, such systems may not be suitable for everyone.

Peer-to-peer file sharing applications have gained great popularity over the last

decade as a way for users to share their files with the rest of the world in a com-

pletely decentralised manner. Although peer-to-peer applications are interesting for

increasing privacy and anonymity in the sense that nobody has complete control

over the system, such applications do not provide any guarantees in terms of persis-

tence, availability and security. Therefore, such peer-to-peer applications cannot be

used for reliably storing users’ files.

Sharing

Peer-to-peer file sharing applications completely changed the users’ day-to-day In-

ternet experience. Indeed, people are now used to launching such an application

whenever they want to listen to an unknown band’s music, download the last episode

of their favourite TV series, watch or re-watch a famous movie and so forth.

Unfortunately, the well-known eDonkey [HKLF+06], Gnutella [PSAS01], Bittorrent

[Coh03] etc. still lack some fundamental functionalities. Indeed, although these ap-

plications are generally very efficient at downloading popular content, no availability

guarantees are provided for rare files, making it problematic for users to locate them.

Additionally, these applications usually rely on a flat name space, making it com-

plicated for users to look for a rare file whose name resembles another popular but

completely different file.

Finally, such applications basically aim at providing users a way to share their files

with the rest of the world. However, one could be interested in controlling who has

access to the shared files. Unfortunately, none of the well-known peer-to-peer file

sharing applications provides any access control mechanism.

Although some company-run storage systems [Omn, Dro, XDr, Box] provide such

sharing capabilities, they cannot succeed in offering as much diverse content as peer-

to-peer communities, not mentioning the cost in storage and bandwidth for such a

company to provide this service.

CHAPTER 1. INTRODUCTION 3

Finally, popular social websites such as Youtube, Flickr etc. also provide sharing

capabilities but those services target a single medium such as video, sound or image,

forcing the user to deal with multiple accounts and interfaces.

Synchronisation

With the advent of ubiquitous and mobile computing, people start getting their

hands on multiple devices, all with amazing computing capabilities. With so many

devices each with its own storage, users are forced to manually synchronise their

data so that they can access a file from different devices and locations.

Company-run products such as Apple’s MobileMe [App], Windows Live SkyDrive

[Win] etc. make it easier for end-users to synchronise their devices through the use

of an online storage space.

Unfortunately, the online storage capacity is generally limited in many ways: number

of files, file size, storage capacity and so forth. Besides, people might be concerned

about privacy when relying on a private company for storing their personal and/or

professional files. Finally, such applications often target the products of the same

company only, making it difficult, if not impossible, for users to change or even use

them on other systems.

? ?

?

Interestingly, the three scenarios above have three points in common. Firstly, the

devices involved are connected to the Internet being mobile phones, netbooks, office

computers etc. Secondly, all these devices embed an unreliable storage capacity that

can be used for storing, sharing and synchronising data. Thirdly, all these tasks—

storing, sharing and synchronising—are related to the common abstraction known

as the file.

A unique system for storing, sharing and synchronising files, independently of their

medium type, in a reliable, secure and transparent way would therefore make it easy

for users to manage their data.

1.2 Contributions

The thesis of this dissertation is that a file system abstraction on top of a peer-to-

peer network is a viable platform and the most cost-effective one for ensuring the

CHAPTER 1. INTRODUCTION 4

fundamental properties end-users expect when it comes to storing, sharing and syn-

chronising their data. As detailed in Section 3.1, these properties include availability,

integrity, durability, privacy and efficiency among others.

The first contribution of this work is the definition of the properties that are required

for the system to provide the end-users the expected guarantees.

Several peer-to-peer file systems such as Ivy [MMGC02], CFS [DKK+01], Pastis

[mBPS05] etc. were developed over the last decade. However, very few of them

provided common file system features, such as an access control mechanism for in-

stance, while administration in such systems was completely ignored by the research

community. The second contribution of this dissertation is the design of an access

control and administration scheme for decentralised untrustworthy environments

making them suitable building blocks for peer-to-peer file systems.

The third and final contribution is the implementation of a complete working peer-

to-peer file system prototype along with an extensive evaluation proving feasible the

deployment of such a system to a large community of users.

Figure 1.1 illustrates a peer-to-peer network connecting nodes physically distributed

throughout the world. The work presented in this document aims at building a

storage infrastructure on top of such a network in order to ensure fundamental

properties such as reliability, availability, privacy, anonymity and so forth.

node

link

Figure 1.1: A worldwide storage infrastructure

CHAPTER 1. INTRODUCTION 5

1.3 Outline

The remainder of this dissertation is structured as follows.

Chapter 2 discusses the relevant background from overlay networks to distributed

hash tables. Special attention is given to the presentation of the extensive body of

work on peer-to-peer file systems.

Chapter 3 discusses the objectives of this work by precisely defining the required

properties and deducing that the peer-to-peer file system model is suitable for achiev-

ing them all.

Chapter 4 discusses the semantic differences between centralised file systems and

decentralised file systems and the impact on the user experience. Then, the chapter

presents the design of the two building blocks peer-to-peer file systems require,

namely, an access control and administration scheme.

The prototype implementation is discussed in Chapter 5, detailing how the system

has been broken into small independent units and how they relate to each other.

Chapter 6 evaluates the performance of the prototype and validates the overall de-

sign. The chapter also suggests some possible improvements in specific areas.

Finally, Chapter 7 concludes and discusses directions for future investigation.

Chapter 2

Background

This chapter introduces peer-to-peer systems from overlay networks to routing al-

gorithms capable of locating a node given its identifier in a decentralised manner

to distributed hash tables which provide a storage abstraction to peer-to-peer file

systems which enable the user to interact with the system following a standard file

system interface.

? ?

?

Peer-to-peer systems differ from common distributed systems in the sense that nodes

composing the network can self-organise with very little information on the whole

network. Such networks are designed with fault tolerance in mind because the num-

ber of nodes populating such networks is generally so high that nodes disconnecting,

crashing or acting maliciously are more probable than in other, more controlled,

distributed systems.

Such systems are often used to aggregate the resources of many heterogeneous com-

puters across the world. Although those resources can be very diverse, this document

focuses on the storage capacity such nodes provide.

The lack of centralised servers makes such networks suitable to accommodate a very

large number of nodes. However, these peer-to-peer networks also exhibit specific

characteristics that need to be taken into account.

6

CHAPTER 2. BACKGROUND 7

Scalability

The decentralised nature of peer-to-peer networks implies that the more nodes join

the network, the more aggregated resources the system acquires, hence, the better

the system.

However, the network must cope with this potentially large number of nodes by

relying on scalable protocols ensuring that the system keeps providing client nodes

the expected service as nodes dynamically join and leave the network.

Latency

Unlike centralised topologies that require low-latency servers with a high bandwidth

to supply all the clients, peer-to-peer networks rely mostly on personal computers.

Such computers are generally connected to the network through a high-latency and

low-bandwidth Internet connection.

Systems built upon such networks, e.g. Internet, therefore cannot afford using the

same protocols and algorithms as for centralised or partially-distributed systems.

Churn

The decentralised nature of peer-to-peer networks implies that every node con-

tributes to the system by taking part in the basic tasks such as routing messages

between nodes, managing the network state etc.

Therefore, every node is considered an important component of the system. When-

ever a node fails, other nodes must be informed and past operations involving this

failing node may have to be re-performed. In addition, most peer-to-peer systems

are open such that new nodes constantly join the network, in which case, the other

nodes must be informed of their arrival.

Unfortunately, studies showed that the churn rate of the studied peer-to-peer net-

works was high [LSG+04, RGRK04]. Peer-to-peer systems must integrate this char-

acteristic in the design of their algorithms such that, for instance, nodes are not

assumed to be connected to the network at all times.

Untrustworthiness

Clients composing a peer-to-peer network run on computers under the full control

of their respective user. The system therefore has no authority to force nodes to

follow the system’s protocols. The network is thus assumed to be untrustworthy

CHAPTER 2. BACKGROUND 8

since many of the nodes populating the system may be faulty. For example, a virus

may have infected the whole client’s operating system or the user may have installed

a modified version to take advantage of the system without contributing resources,

nodes referred to as free riders.

Peer-to-peer systems must be designed with this property in mind making sure that

nothing relies on a single node, such a node being faulty could endanger the system

in its entirety.

2.1 Overlay Networks

The computers connected together and collaborating in the same peer-to-peer system

form an overlay network [KS10] on top of a physical network e.g. the Internet.

The topology of the overlay network, its degree of decentralisation as well as the

communication protocol, vary from one peer-to-peer system to another. These char-

acteristics are fundamental as they impact the scalability and performance of the

network but also its capacity to self-organise and tolerate faults.

Overlay networks can be classified in four categories according to the way nodes are

connected to one another. Depending on the overlay network’s topology, it may be

easier to join/leave the network but more difficult to locate a precise object in the

network.

The following discusses the different models of overlay networks along with the way

objects are located in such networks.

2.1.1 Unstructured Overlay Networks

The very first deployed peer-to-peer applications enabled users to contribute files

to the system that any other user could download. These peer-to-peer file sharing

applications allow users to search for files matching the keywords the user specified.

The objective of such a system is to locate all the files whose name matches with

those keywords. Then, the user, through the application, can download the files of

interest to her.

The overlay networks on which such applications were built had the property of

lacking organisation in the way nodes were connected to each other. Besides, nodes

connected to the network were all considered equal i.e. no node had more privileges

than others. Such unstructured overlay networks [CFK03] are therefore sometimes

referred to as being flat, forming a completely random graph. In such an environ-

ment, a node wishing to join the network basically has to connect to an already

connected node.

CHAPTER 2. BACKGROUND 9

Since such networks have no overall structure, unstructured overlay networks are

very easy to manage. Indeed, whenever a node leaves the network, only its neigh-

bours must detect its departure and update their internal state. However, the other

nodes of the network do not need to be notified of the change in the network’s

topology, hence lowering the communication costs of maintenance.

Figure 2.1 depicts such a unstructured overlay network in which nodes are connected

without following any pre-defined structure.

node

link

Figure 2.1: A flat unstructured overlay network

Locating an object—e.g. a file—in such a network without any centralised entity

maintaining a global state of the network requires every node to contribute. Indeed,

one of the first routing algorithms designed for unstructured overlay networks con-

sisted of flooding the network. The node issuing the search request starts by sending

a message to all its neighbour nodes, asking them to locate files matching a list of

keywords. Whenever a node receives such a request, it starts by checking if it does

have such files among the files it contributed to the peer-to-peer system, and replies

to the requesting node accordingly. Then, the message is forwarded to all the other

neighbours until the message expires i.e. the TTL (Time To Live) reaches zero.

Unfortunately, such an algorithm implies a high network overhead since messages

CHAPTER 2. BACKGROUND 10

are sent to a large fraction of nodes which do not have the sought resource and are

therefore not interested in the process. Such a routing algorithm and its variants

[DHA03, YM02, YVGM04] are extremely simple to deploy and do not constrain the

overlay network topology. However, the implied overhead makes these algorithms

only suitable for small networks, though many projects are known to have used and

still use them, most notably Gnutella [PSAS01] and Freenet [CSWH01] among many

others [DFM01, DMS04].

2.1.2 Hybrid Overlay Networks

Although flat unstructured overlay networks are very good for handling churn, they

do not perform well when it comes to locating a particular object or node. Hybrid

overlay networks [SBA03, CRB+03], also known as multi-level unstructured overlay

networks, address this problem by adding a level of highly-available supernodes,

a.k.a. superpeers, forming a small inner overlay network. These supernodes are

responsible for referencing the nodes connected to the network along with the objects

they contribute to the system.

node

link

supernode

superlink

Figure 2.2: A two-level hybrid overlay network

CHAPTER 2. BACKGROUND 11

The main drawback of such a topology is the high load implied as well as the

large state that must be kept by the supernodes. Figure 2.2 illustrates such a

centralisation within the inner overlay of supernodes. If one of these supernodes

fails, the impact on the overall network’s performance may be disastrous as the load

the faulty supernode was handling must be balanced on the others.

The routing algorithm in such overlay networks is however trivial. Indeed, whenever

a user performs a search, the client node requests the supernode it is connected

to, supplying some keywords. The supernode performs the matching process by

comparing the keywords with the names of all the files in its records, and possibly

contacts other supernodes if required.

Although such routing algorithms [GEvS07] involve only a few nodes, they require

supernodes to be extremely reliable, powerful and well-connected in order to handle

all the client nodes’ requests.

2.1.3 Structured Overlay Networks

Structured overlay networks were developed to overcome the limitations of unstruc-

tured and hybrid overlay networks. Such networks are completely decentralised and

organised such that nodes communicate with well-identified nodes according to the

protocol in contrast with unstructured overlay networks in which nodes connect to

other nodes in a unplanned way, hence forming a random graph.

Figure 2.3 illustrates a structured overlay network in which every node is assigned

an identifier following a ring-based identifier space [PRR97]: nodes are identified by

a number such that every node follows the node with the preceeding number—i.e.

highest number which is smaller than the current node’s—with the exception of the

node with the smallest identifier which follows the node with the highest one, hence

creating a loop within the identifier space.

Although unstructured and hybrid overlay networks were primarily used for keyword-

based lookups, other search criteria such as object identifiers, regular expressions and

so on could have been used. In contrast, structured overlay networks organise nodes

by assigning them an identifier while routing algorithms make use of this organ-

isation to perform fast lookups. Therefore, structured overlay networks were not

designed to perform attribute-based lookups as quickly as identifier-based lookups,

though some decentralised data structures [RH04] were designed for specific types

of queries. Besides, dissemination techniques used in unstructured overlay networks

can also [CCR05] be used in structured overlay networks. Routing algorithms based

on identifiers are sometimes referred to as KBR (Key-Based Routing) algorithms

and provide an interface composed of a single routine, Lookup(ι), which returns the

IP (Internet Protocol) address of the node in charge of the identifier ι.

CHAPTER 2. BACKGROUND 12

Although attribute-based routing algorithms used in unstructured and hybrid over-

lay networks enable rich searches within the set of objects, such algorithms do not

scale well since they do not distribute the resource requirements evenly across the

nodes. KBR algorithms, however, aim at locating the node responsible for an iden-

tifier. Such algorithms were designed to scale so that locating an identifier involves

a small number of nodes while each node maintains only a few links to other nodes.

node

link

Figure 2.3: A ring-based structured overlay network

Every node in a structured overlay network is assigned an identifier from a large

identifier space. Identifiers are generated in a random fashion in order to provide

network resource balancing and fault tolerance. Besides, nodes with close or even

adjacent identifiers are, with high probablity, in different geographic locations, under

distinct users’ control and with different computing and network resources.

Objects, e.g. data blocks, files etc., are assigned identifiers from the same identifier

space. Every object in the network is dynamically associated with a node, called

the object’s home, or sometimes root. This node is responsible for storing the object

and answering requests related to this object.

Every node maintains a routing table containing the identifier and IP address of

CHAPTER 2. BACKGROUND 13

some other nodes, depending on the topology. In most systems, nodes also maintain

a set of neighbours containing the IP address of a few closest nodes. These two

data structures are updated whenever a node is detected to have joined or left the

network but also periodically in order to maintain the network in a consistent state.

KBR algorithms are distinctive from other routing algorithms in the way that they

determine the size of the routing tables as well as the length of the search paths,

as detailed next. These metrics are important as they characterise the robustness

and performance of the routing algorithm, hence of the whole network. Indeed, the

more entries in a routing table, the more communication is required to maintain it

in a consistent state. Likewise, the shorter the search path, the more efficient the

lookup process.

Several structured overlay networks and routing algorithms were designed over the

last decade, from Chord [SMK+01] that is based on an oriented ring, to CAN

(Content-Addressable Network) [RFSH01] with its multi-dimensional Cartesian co-

ordinate space, to Pastry [RD01a] which is based on the Plaxton [PRR97] structure,

to Tapestry [ZKJ01], Kademlia [MM02], Kelips [GBL+03], Viceroy [MNR02] and

many more [ZKW05, MBRI03], all with different trade-offs between routing com-

plexity, maintenance overhead and memory footprint.

Although key-based routing algorithms are far more efficient than other previously

described routing algorithms, the fact that they are based on collaboration implies

several issues which are discussed next.

Structured overlay networks have long been considered to tolerate churn. However,

subsequent studies [LSG+04] showed that well-known DHT s suffered from churn.

Research [RGRK04] therefore explored the critieria impacting churn tolerance such

as periodic versus reactive recovery, the choice of nearby versus distant neighbours

etc.

Peer-to-peer networks have also been shown to implicitly suffer from attacks known

as Sybil [Dou02] and Eclipse [SNDW06]. The Sybil attack consists of an attacker

that generates enough virtual nodes to take over a large portion of the overlay

network’s identifier space. Therefore, a malicious node could, for instance, control all

the replicas of an object. On the other hand, the Eclipse attack consists of malicious

nodes corrupting honest nodes’ routing table in order to increase the number of

requests passing through such Byzantine nodes. Although these issues are very

difficult to deal with, some routing algorithms were improved [CDG+02, DLLKA05,

HKD07] to cope with such attacks.

Routing algorithms in peer-to-peer systems rely on the collaboration of the nodes

populating the network. Since peer-to-peer networks are, by nature, untrustworthy,

a single node being unwilling to cooperate e.g. to contribute to the routing process,

to store the object it has been given the responsibility for etc. suffices to harm

CHAPTER 2. BACKGROUND 14

the system and its users. KBR algorithms tend to rely on iterative routing instead

of recursive routing to minimise the impact and more easily detect such malicious

nodes, though such a design makes the lookup process less efficient.

Former peer-to-peer file sharing applications’ problems with free riders came from

the lack of incentive for the users to contribute their files and/or bandwitdh. In the

last decade, research started exploring a completely different but more promising way

to cope with such behaviours by enforcing collaboration in peer-to-peer networks.

Systems bringing incentive to peer-to-peer systems fall in two categories. The first

class is composed of systems relying on resource bidding. These systems [CN03,

CGM02, MT03b, BLV05] guarantee that, for instance, whenever a node wants to

store a block of data on another node, it must offer this node some local storage

space in return. The second class is composed of reputation systems. Those systems

[WV03, SS02, ZH07, DMS03, MT03a] dynamically keep track of nodes’ behaviour in

a completely decentralised way. Then, reputation is propagated through the system

and correlation is made to detect Byzantine behaviours. Although both categories

suffer some limitations, they represent the most promising solutions for enforcing

collaboration in peer-to-peer networks.

The remainder of this section focuses on detailing two very different structured

overlay networks along with their key-based routing algorithm, giving the reader a

good understanding of the trade-offs involved in the design of such systems: Chord

achieves high scalability while Kelips focuses on ensuring constant time lookups.

2.1.3.1 Chord

Chord is a KBR algorithm relying on a structured overlay network in which nodes

are assigned random identifiers through the use of a hash function, for instance by

applying SHA (Secure Hash Algorithm) on the node’s IP address.

Identifiers are ordered in an identifier circle modulo 2m. Key k is assigned to the

node whose identifier is equal to or follows k in the identifier space. This node

is called the successor of key k, denoted successor(k). Note that the successor

basically corresponds to the home or root node in other protocols i.e. the node

responsible for the identifier.

The idea of Chord is to provide efficient routing i.e. to locate the successor of a

given key, by relying on a very small amount of local information.

First, each node need only be aware of its successor node on the circle, ensuring that

by passing the query around the circle, the key’s successor will eventually be reached.

Although Chord nodes do maintain a link with their successor and therefore ensure

that all lookups can be resolved correctly, this routing scheme is very inefficient i.e.

O
(
η
)
.

CHAPTER 2. BACKGROUND 15

3

2

10

18

21

22

24

26

28

29

31

9

11

13

14

16

interval successor

28

[27, 28[28

[28, 30[

[30, 2[31

[10, 26[

[2, 10[2

11

interval successor

24

[22, 23[22

[23, 25[

[25, 29[26

[5, 21[

[29, 5[29

9

interval successor

9

[4, 5[9

[5, 7[

[7, 11[9

[19, 3[

[11, 19[11

21

interval successor

11

[10, 11[11

[11, 13[

[13, 17[13

[25, 9[

[17, 25[18

26

node

link

18 node identifier

node’s routing table

routing hop

Figure 2.4: A Chord network of degree 5 with 17 nodes

To accelerate the process, Chord maintains additional, but few compared to the

network size, routing links. Each node maintains a routing table, known as the

finger table, composed of m entries. Recall that the maximum number of nodes in

the network has been set to 2m. Therefore, by keeping only m links, the finger table

grows logarithmically with the size of the network. In the routing table of node n,

the ith entry contains the identifier of the first node, s, that succeeds n by at least

2i−1 on the identifier circle:

s = successor(n+ 2i−1) mod m, 1 < i < m

The system calls s the ith finger of node n. A finger entry in Chord contains both

CHAPTER 2. BACKGROUND 16

the identifier and IP address of the node. Note that the first entry—i.e. index

zero—of the finger table points to what has been earlier called the node’s successor.

This scheme has two important characteristics. First, each node stores information

about only a small number of nodes, and knows more about close nodes than nodes

on the other side of the circle. Second, often, a node’s finger table does not contain

enough information to perform the resolution by itself. Therefore, a node wishing

to locate a node it does not know about would have no choice but to take a node

in its finger table, whose identifier is closer to the key k than its own, and ask it

to carry on the lookup process. By repeating this operation, every node without

the necessary information forwards the request so that every step brings the request

closer to the target node and eventually reaches it.

Figure 2.4 shows the organisation of a Chord ring along with the finger table of some

nodes. In this illustrated network, node 3 issues a lookup on key 27 which is held

by node 28. Since node 3 does not have the location of node 28 in its finger table,

it forwards the request to the node 21, located in the farthest interval [19, 3[. Once

node 21 receives the request, it inspects its finger table and notices that it cannot

resolve the mapping either, hence forwards the message to the node 26 located in

interval [25, 29[. One can easily notice that the interval is shrinking by half every

time the request is forwarded. At this point, node 26 knows that node 28, located in

interval [27, 28[, is responsible for the key 27 and therefore returns to the requesting

node 3 the IP address of node 28, node 26’s successor.

Chord provides a protocol for resolving an identifier into an IP address in a com-

pletely decentralised manner. Assuming the network is composed of η nodes, Chord

resolves lookups in O
(
log(η)

)
messages while nodes are required to maintain links

to O
(
log(η)

)
other nodes.

2.1.3.2 Kelips

As previously explained, malicious nodes involved in the routing process can interfere

and harm the system by refusing to comply with the protocol. Since the longer

the routing path, the higher the probability of a malicious node interfering, Kelips

was designed to achieve O
(
1
)

routing complexity at the cost of increased storage

overhead. Considering a network of η nodes, Kelips uses O
(√

η
)

space per node.

This soft state suffices to resolve lookups with O
(
1
)

time and message complexity

at the cost of more background communication.

Kelips consists of κ virtual groups identified from 0 to κ − 1. Each node lies in a

group determined by using a consistent hashing function such as SHA-1, applied

on the node’s IP address for instance. The distribution property of hash functions

ensures that, with high probability, the number of nodes in each group will be close

CHAPTER 2. BACKGROUND 17

to η
κ
.

Nodes’ soft state consists of two data structures. The first one, known as Contacts,

contains the address of a small number of nodes lying in each of the other κ − 1

groups. The second data structure, known as Neighbours, contains the address of

all the other nodes in the same group, hence the location of the home nodes of any

key falling in this group.

0
1

2 3
9

11 16

14

13

18

22

21

24

26

28 29

31

group 2group 1group 0

group 3 group 4 group 5

11

0

1

3

24

26

29

group2(14)

group3(22)

group4(29)

group5(31)

group1(9)

contactsneighbours

neighbours contacts

group2(16)

group3(18)

group4(24)

group5(31)

group0(3)

neighbours contacts

group0(1)

group1(11)

group2(14)

group3(21)

group4(28)

neighbours contacts

group0(3)

group1(11)

group2(16)

group3(21)

group5(31)

group

node’s routing table

routing hop

22 node identifier

node

Figure 2.5: A Kelips network for 36 nodes

The routing algorithm consists of the following steps. The node wishing to locate

the root node of a given key starts by extracting the group identifier corresponding

to that key, for instance by using the m most significant bits of the key. The node

looks into its Contacts table, and, if not located in its own group, picks a node

belonging to the destination group. It then sends a message to this node. When the

CHAPTER 2. BACKGROUND 18

node receives the message, it simply looks in its Neighbours data structure to locate

the root node of the given key.

Figure 2.5 illustrates a Kelips network designed for η = 36 nodes. The network is

composed of κ =
√

36 = 6 groups while every group can contain up to 6 nodes. The

Contacts and Neighbours data structures are detailed for some nodes. Finally, an

example of a routing process is depicted. Node 31 wants to find the node responsible

for the key 25. Kelips follows the same rule as Chord, the node whose identifier is

equal to or follows the key is considered its root. Node 31 starts by extracting the

group number corresponding to the key 25: group 4. It then picks in its Contacts

a node lying in the group 4, node 28, and sends it a message request. When node

28 receives the request, its looks in its Neighbours data structure and notices that

node 26 is the root node of key 25. Therefore, node 28 directly returns node 31 the

address of root node 25.

Kelips ensures a O
(
1
)

routing complexity because a single hop is required to locate

the home node: either directly within the node’s group or by contacting a node

from the group in which lies the target node. Aside from the obvious performance

benefits, this scheme allows the system to more easily detect malicious nodes since

fewer intermediate nodes are asked to contribute to the routing process. However,

Kelips does not scale well as the more nodes in the network, the more often the

state changes, hence more communication is required to keep the state consistent.

2.1.4 Social Overlay Networks

A social network is a social structure made of individuals connected through relation-

ships such as friendship, kindship, belief, knowledge, collaboration or just interest.

Such networks provide very interesting properties. Firstly, since routing in such

networks consists in traversing nodes with some degree of trust, the routing process

is less likely to be disturbed by malicious nodes than in other overlay networks.

Secondly, many social networks exhibit the small-world phenomenon in which a

generally short chain of acquaintances exists connecting one arbitrary node to any

other node. Thus, the distance between two randomly chosen nodes grows pro-

portionally to the logarithm of the number of nodes η in the network. Thirdly, in

many applications, a node’s acquaintances share the same interests such that most

objects requested by that node will already be held by its neighbours, hence, greatly

improving data retrieval.

Recently, research was conducted regarding the application of social behaviours to

overlay networks in order to improve the performance and reliability of routing algo-

rithms. Indeed, some existing networks, such as peer-to-peer file sharing communi-

ties, have been shown [IRF04] to exhibit small-world patterns, while non-small-world

CHAPTER 2. BACKGROUND 19

networks have been improved [SMZ03] through the addition of social links.

As shown on Figure 2.6, nodes are connected to their friends, forming multiple

loosely connected groups. In addition, every node could maintain a few links on a

structured overlay in order to guarantee monotonic lookup progression. Indeed, if

a node does not have any friend connection located closer to the target identifier,

structured links can be used to move forward, hence guaranteeing liveness.

link

node

Figure 2.6: A small-world-based social overlay network

Some applications have been making use of social connections such as Turtle [PCT04],

a peer-to-peer file sharing application relying on the friend relationship. Turtle’s

routing protocol is similar to those of unstructured overlay networks, consisting of

forwarding the request to the neighbour nodes, hence flooding the network. Other

projects tried to enhance existing systems, such as SPROUT [MGGM04] which

augments the Chord structured overlay network with social links in order to take

advantage of the small-world network properties when possible and to rely on the

structured nature of the underlying network otherwise. Finally, some social overlay

networks were designed from the ground up to take advantage of the small-world

CHAPTER 2. BACKGROUND 20

phenomenon. For instance, the SWOP (Small World Overlay Protocol) [And04]

achieves improved object lookup performance over the existing routing protocols

but also provides efficient replication especially regarding popular content.

2.2 Distributed Hash Tables

A DHT (Distributed Hash Table) provides a hash table abstraction on top of a

peer-to-peer overlay network. Such a service aggregates the network peers’ storage

resources providing a distributed data structure. A DHT provides a way to store

a block of data β given an address—a.k.a. storage key—α, usually through an

interface [DZD+03] as simple as Put(α, β) and Get(α).

In order for the service to be efficient but also scalable, DHT s make use of key-based

routing algorithms. For instance, the distributed hash table PAST [RD01b] is built

upon the Pastry KBR while DHash is based on the Chord overlay network.

As discussed through the remainder of this section, redundancy is an absolute re-

quirement for ensuring availability, durability and integrity. Distributed hash tables

therefore abstract the process of replicating data and maintaining replication con-

sistency [KWR06] as nodes fail and join the system.

Indeed, considering a DHT in which every block is stored by a single node, avail-

ability could not be ensured since the failure of this node would make all the blocks

it was responsible for storing inaccessible. Besides, assuming that the node crashes

permanently, the block would be lost forever. Redundancy is therefore an absolute

requirement for ensuring both availability and durability.

Furthermore, in a system lacking redundancy, nothing would prevent the home node

from altering the data content and/or returning fake content to a client’s request.

Although systems such as SUNDR [LKMS04] ensure integrity without relying on

trusted storage servers, clients cannot retrieve the block’s latest valid content if the

block’s only storage node does not want to cooperate and keeps acting maliciously.

In order to provide the clients the assurance of valid data retrieval, the system must

rely on redundancy so that a block is always stored by a set of nodes.

There are basically two ways of achieving redundancy, either through replication or

network coding schemes. Replication [SS05, JGH+98] consists of storing multiple

identical instances of an object on different nodes, hence increasing availability and

durability. Network coding schemes [OSV09] however rely on error-redundant codes

such as Reed-Solomon, an erasure code [DGWR07] widely used in DVD (Digital

Versatile Disc). Instead of plain object replication, erasure code schemes divide the

object into m fragments and recode them into n segments, where n > m. The n

segments are then stored in the DHT. The rate of encoding r = m
n

increases the

CHAPTER 2. BACKGROUND 21

storage cost by a factor of 1
r
. The key property of erasure codes is that the original

object can be reconstructed from any m segments. For example, using a ratio

r = 1
4
, a block is divided into m = 16 fragments and encoded into n = 64 segments,

increasing the storage cost by a factor of four. Then, a client able to retrieve sixteen

segments out of the sixty four present in the system would be able to reconstruct

the original object. Noteworthy is that replication represents a subset of erasure

codes where the number of segments n is one i.e. a single segment is enough to

reconstitute the original object.

Network coding schemes are very interesting because they require less storage space

in order to achieve the same degree of availability and durability as through standard

replication. As an example, assuming that ten percent of the ten million machines

populating a network are down, replication ensures 99% availability by storing two

replicas of each block. However, erasure codes can achieve over 99.9999998% yet

consume the same amount of storage and bandwidth than their replication counter-

part.

Unfortunately, network coding schemes all suffer from the same problem. As nodes

fail, the system loses the segments belonging to the network-coded objects the nodes

were storing. In order to avoid losing them all, the system must, for every object

involved, periodically refresh the missing segments. This refreshing process consists

of reconstructing the object, re-computing all the segments and then re-storing the

missing segments on other storage nodes. Unfortunately, this process is extremely

costly, especially for large objects, though network coding schemes were designed to

rarely require refreshing segments.

Figure 2.7 illustrates DHash, a Chord -based distributed hash table in which blocks

are replicated on the nodes following the home node, known as the neighbours.

Since nodes with close identifiers are, with high probability, located in very different

geographic places, storing replicas on such nodes ensures a low rate of correlated

failures. Note that, whenever the home node fails, the Chord protocol takes over

and assigns a new home node to the orphan objects. In addition, the DHT makes

sure the replication ratio is maintained at all times by generating additional replicas

if required.

Although network coding has been studied [WK02] for decades and applied in nu-

merous research systems as well as commercial products [Wua], replication [SS05]

remains the most widely used technique to provide redundancy in peer-to-peer net-

works.

Given that redundancy is required for ensuring availability and durability, the sys-

tem must guarantee consistency among the replicas. Unfortunately, like every In-

ternet-based distributed system, DHT s are built on top of an asynchronous physical

network, making it impossible [FLP85] to distinguish slow from faulty nodes. This

CHAPTER 2. BACKGROUND 22

property impacts the consistency algorithms which must often take further steps

should the nodes not be responding or acting maliciously.

DHT s rely on consensus algorithms in order to cope with Byzantine behaviours in

asynchronous networks. As summarised by Chockler et al. [CGKV08], such algo-

rithms vary in several dimensions from the consistency guarantees, to the number

of failures tolerated, to the performance achieved. Consensus algorithms can be

classified in two categories: agreement and quorum protocols.

neighbour node

home node

node

routing link

neighbour link

Figure 2.7: The replication-based DHash distributed hash table

Byzantine agreement protocols such as the BFT (Byzantine Fault Tolerant) [CL99]

protocol and Paxos [Lam98, Lam01] achieve consensus through voting and can tol-

erate up to γ Byzantine nodes by relying on ϕ ≥ 3γ + 1 servers. Such algorithms

work as follows. A client willing to perform an operation starts by sending a re-

quest to a server i.e. the leader. The server having received the client’s request

then forwards it to the other servers. Every server receiving such a vote request

responds to every other server, hence leading to a consensus. Finally, the leader

CHAPTER 2. BACKGROUND 23

server transmits the servers’ decision back to the client. This multi-phase protocol

is illustrated by Figure 2.8. Although such algorithms are extremely powerful for

dealing with Byzantine behaviours, they unfortunately suffer from the several rounds

of communication which generate a number of messages quadratically proportional

to the number of servers involved. Agreement algorithms are thus often considered

as being too expensive [DW01, Bus07] for many applications. Noteworthy is that

many improvements and optimisations have been developed over the years. For in-

stance, Borran et al. [BS10] proposed a leader-free Byzantine consensus algorithm

while others [CSP07, LMZ09] presented optimisations of the Paxos algorithm re-

garding specific configurations: multiple coordinators, reduced number of rounds in

the absence of failures etc.

server

leader

server

server

server

client

request propose accept reply

Figure 2.8: The Paxos agreement protocol

On the other hand, quorum-based algorithms [AJ92, MR97, GKLQ07, MAD02]

consist of retrieving a subset of the replicas to make sure to identify the latest

valid version of the object. Quorums rely on the property of intersection in order to

minimise the number of storage nodes to contact but also to prevent conflicts. As for

agreement protocols, quorum-based algorithms have been the subject of numerous

research projects which have led to further improvements, especially in the field

power management and mobile networks [BF08, GDZ+05, KLW11].

Although many quorum-based algorithms have been presented throughout the his-

tory of distributed computing, Gifford et al.’s [Gif79] quorum-based protocol is de-

tailed next because of its simplicity.

CHAPTER 2. BACKGROUND 24

Considering a distributed system in which blocks are replicated on ϕ storage nodes,

a client willing to perform an operation must acquire a quorum complying with

the following rules, where ζr and ζw represent read and write quorums’ cardinality,

respectively:

1. ζr + ζw > ϕ

2. ζw >
ϕ
2

The first rule prevents read-write conflicts while the second rule prevents write-write

conflicts, both contributing to maintain serialisability.

(iii)(ii)(i)

read quorum

write quorum

Figure 2.9: Three Gifford quorum configurations

Figure 2.9 depicts a set of twelve storage nodes in three different quorum config-

urations. In the first configuration, read and write quorums are composed of six

and seven nodes, respectively, such that the quorums intersect on a single replica.

Therefore, assuming that a client updates an object by contacting seven replicas

out of the twelve present in the system, a subsequent read through a quorum of six

replicas will inevitably provide the client the recently updated version. The second

configuration does not comply with the Gifford quorum rules since ζw > ϕ
2

is not

respected. Therefore, up to four clients could modify the object concurrently, lead-

ing the system to an inconsistent state. Finally, the last configuration is generally

referred to as ROWA (Read One, Write All). Indeed, in such a configuration, read-

ing an object requires the client to contact a single node while all the nodes must

respond positively whenever an object is updated.

It is however extremely important to note that most of the configurations depicted

in Figure 2.9 would not be suitable for Byzantine environments. Indeed, in case of

arbitrary failures, such as in peer-to-peer networks, ϕ ≥ 3γ + 1 storage nodes are

CHAPTER 2. BACKGROUND 25

required to tolerate up to γ Byzantine nodes while read and write quorums must

contain, at least, 2γ + 1 replicas.

To conclude, agreement protocols provide more expressivity than quorum protocols.

Indeed, while agreement protocols can achieve consensus on virtually any kind of

operation, quorum protocols are limited to reads and writes. However, quorum

algorithms have proved to be well suited for peer-to-peer file systems which are

built on top of distributed hash tables, such constructs providing functionalities as

basic as Put(α, β) and Get(α). Besides, both agreement and quorum protocols are

equally constrainable from the client’s perspective since at most 2γ + 1 instances

of the block must be retrieved in order to cope with Byzantine behaviours. On

the other hand, agreement protocols’ several voting phases imply a high number of

message exchanges. Thus, agreement protocols are often considered as being very

expensive [BBB+04, DW01, Bus07], especially in the context of peer-to-peer file

systems though many projects have been making use of those [KBC+00, ABC+02].

2.3 Peer-to-Peer File Systems

The very first distributed systems targeted local-area networks, the most famous

and still widely used being NFS (Network File System) [Osa88]. Such local-area

distributed file systems are characterised by a low network latency as well as trust-

worthy clients and servers, both evolving within a single administrative domain.

Unlike local-area network file systems, AFS (Andrew File System) [HKM+88a] ad-

dresses larger networks characterised by higher latencies and a larger number of

computers. Such file systems rely on loose caching policies [SS96] in order to reduce

the communication between the clients and the servers. Moreover, systems such as

Coda [SKK+90] and Ficus [JGH+98] enable offline access through the use of opti-

mistic replication [SS05], applying modifications once the computer re-connects to

the network.

Many other file systems were designed for small- and medium-sized networks, all

with different objectives and constraints including Kosha [BJZH04] which equips

NFS with redundancy over a scalable network, xFS [WA93, ADN+95], a wide-area

file system relying on massive caching techniques, Plan9 [PPD+95], a distributed

computing environment following the UNIX philosophy and LBFS (Low Bandwidth

File System) [MCM01] which reduces communications by relying on indexes and

applying Rabin fingerprints to the chunks of data.

Unfortunately, these distributed file systems rely on trusted and often centralised

servers making them impractical in more open environments. SFS (Self-Certifying

File System) [MKKW99, KSMK03, Maz01, FKM02] addresses this issue by relying

CHAPTER 2. BACKGROUND 26

on multiple self-certifying domains rather than a single global open network. Since

the domains are independent, the domain management is assured by the local au-

thority with its own rules and policies. The self-certifying property of SFS makes

it impossible for an attacker to pretend to be or belong to another domain. SFS

therefore achieves scalability through openness although the domains’ independence

implies that the failure of a single domain renders all the users, groups, files and

directories of this domain unavailable.

Peer-to-peer networks have been shown [BDET00] to exhibit very interesting prop-

erties for building highly available and reliable file systems. The remainder of this

section discusses in detail some of those peer-to-peer file systems especially regarding

their capacity to scale, cope with Byzantine behaviours but also provide common

file system features such as access control.

2.3.1 Pangaea

Pangaea [SKKM02] is a wide-area read/write file system which relies on an ad hoc

decentralised storage infrastructure of trusted servers. Pangaea aims at providing

clients efficient data access through the use of pervasive replication.

In order to optimise the data placement, the nodes of the system are split into disjoint

regions. A region is composed of nodes grouped according to their network latency.

Every node maintains a global state of the whole system including the list of the

nodes of the region, their network latency and free disk capacity, the location of the

root directory’s replicas, the list of the regions etc. This information is propagated

throughout the network periodically by means of an epidemic protocol.

Pangaea maintains, for every file, a distributed and highly connected graph of the

nodes storing replicas known as gold replicas. Such replicas are statically defined at

file creation and are used to maintain a minimum replication ratio at all times. In

addition, bronze replicas are also connected to the graph in a loose manner. Indeed,

bronze replicas are created in a dynamic way i.e. every time a node accesses the file.

This replication graph, composed of both gold replicas and bronze replicas, is used

to propagate updates throughout the network in an efficient way.

Figure 2.10 illustrates two directories along with both their gold and bronze replicas.

Every directory replica instance contains the locations of the entries, being files or

sub-directories. These locations are represented on the figure by the references. In

addition, although not depicted by the figure, every replica maintains a backpointer

to the parent directory which is used to update the parent directory should the gold

replicas of a sub-entry be moved to another node.

The data structure described above has the advantage of distinguishing the repli-

cation of the directory from the replication of the objects, files and directories it

CHAPTER 2. BACKGROUND 27

contains. Therefore, adding or removing bronze replicas only requires updating the

graph related to this object while leaving both the parent directory and the potential

sub-objects out of the process. Indeed, the only operation requiring updating of the

parent directory is the modification of a gold replica’s location.

The modifications applied to a replica are propagated throughout the graph following

the edges connecting the replication nodes. Note that an operation description—e.g.

create file ‘bar’ in directory ‘/foo/’—rather than the new object’s state

is propagated to the replication nodes. Pangaea makes use of the last-write-wins

consistency model by relying on global timestamps through the use of a NTP (Net-

work Time Protocol) server. However, directory conflicts are resolved automatically

if possible or left to the user otherwise.

/

/foo/

object

gold replica

bronze replica

replication edge

reference

Figure 2.10: Pangaea file system representation

Although Pangaea provides a powerful storage infrastructure through localised repli-

cation, the assumption of a trustworthy network makes it impractical for most en-

vironments. Indeed, since both authentication and access control is handled by the

trusted servers, a single Byzantine node could easily harm the whole system.

CHAPTER 2. BACKGROUND 28

2.3.2 OceanStore

OceanStore [KBC+00] is a generic distributed storage infrastructure relying on the

Tapestry [ZKJ01] DOLR (Decentralised Object Location and Routing). OceanStore

aims at providing a wide range of consistency models in order for applications to bal-

ance the trade-offs between performance and consistency. OceanStore’s architecture

is partitioned into two levels or tiers.

The first level, known as the primary tier, is composed of highly available nodes

divided into multiple groups. Each group is responsible for a subset of the objects of

the system. The nodes belonging to a group store the primary replicas of the objects

the group is in charge of. The BFT [CL99] agreement algorithm is used by the group

members for authorising, validating and applying operations on the replicas despite

the potential presence of Byzantine nodes. Note however that such an algorithm is

expensive as it requires three communication rounds between the servers to perform

a single operation, generating O
(
ψ2
)

messages, assuming every group is composed of

ψ servers. Therefore, the nodes composing the primary tier must be very powerful,

well connected and highly available to handle the high network load.

The secondary tier is composed of more transient nodes with high latency and low

bandwidth such as personal computers for instance. This level constitutes the mass

storage capacity of the system in which secondary replicas are created in order to

improve local accesses.

As Figure 2.11 illustrates, whenever a client node modifies an object, being a file

or a directory, a request is sent to the primary replication nodes as well as some

randomly chosen secondary replication nodes. While primary servers serialise and

verify the operation validity by running the BFT algorithm, the request is propa-

gated to the other secondary replication nodes in an epidemic way. Finally, once

approved, a confirmation is propagated throughout the network, sealing all the sec-

ondary replicas.

A certificate is attached to every object’s version, asserting the approval of the

primary tier. Since primary servers may be malicious, the certificate cannot be

generated by a single server. Therefore, OceanStore relies on threshold signature

schemes [AMN01] so that a certificate is considered valid if composed of bψ−1
3
c + 1

legitimate partial signatures.

OceanStore makes use of optimistic concurrency control for optimising operations’

response times. In order to detect conflicts, the system implements a semantic

detection mechanism based on predicates. Therefore, depending on the type of

object, whenever a conflict is detected, a pre-defined list of operations is applied to

the object such as inserting, replacing or truncating the data. Note however that,

although this mechanism is generic enough to automatically resolve conflicts, the

CHAPTER 2. BACKGROUND 29

system often lacks semantic information since objects are usually encrypted.

primary tier

secondary tier

(1)

(1)

(1)

(2)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

node

message

Figure 2.11: OceanStore’s organisation

Security is provided through the use of ACL (Access Control List)s. An ACL con-

tains the public keys of the users allowed to access and modify the object. Whenever

an object is modified, it is signed by the user and submitted to the primary repli-

cation servers. Then, every client and server retrieving the object can check the

object’s validity by verifying the digital signature.

Although OceanStore provides a powerful and flexible storage infrastructure, its

hybrid architecture makes it more difficult to scale to large networks than other,

completely decentralised, peer-to-peer file systems.

2.3.3 FARSITE

FARSITE (Federated, Available, and Reliable Storage for an Incompletely Trusted

Environment) [ABC+02, DAB+02] is a file system based on an ad hoc partially

decentralised storage infrastructure. FARSITE aims at emulating the behaviour

CHAPTER 2. BACKGROUND 30

of a centralised file system such as NTFS (NT File System) in a medium-scale

environment and without introducing new semantics such as file versions, conflict

resolutions etc.

FARSITE has been designed to be deployed on the commodity hardware of medium-

sized networks such as universities or companies. Such an environment is charac-

terised by a high bandwidth network and transient nodes. Every node in FARSITE

can play up to three roles: clients issue requests on behalf of end-users, servers

store object replicas and managers, as members of a management group, take part

in administrating the system’s metadata. Every management group is in charge of

a subset of the file system’s namespace. The members of a management group act

collectively through the use of the BFT agreement protocol.

(1)

(2)

(3)

(3)

(3)

client

replication server

management group

node

message

Figure 2.12: The FARSITE architecture

Every member of the management group maintains a copy of the metadata related to

the namespace’s subset it is in charge of. Access and modification requests are sent

to the management group which runs a vote to serialise the operation. The man-

agement group keeps the locations of the replicas of every file lying in its namespace

CHAPTER 2. BACKGROUND 31

as well as the hash of the file’s content. A client willing to access a file starts by

contacting the management group in order to locate the file’s replicas. The client

retrieves an instance of the file from one of these locations and checks the file’s

integrity by re-computing the hash of the content. The client then caches the file

locally for subsequent accesses and/or modifications. Whenever modified, a hash of

the new file’s content is computed and sent to the management group which verifies

that the user has the proper credentials for that operation. If the request is accepted,

the servers storing the file’s replicas are told to retrieve the new file directly from

the client. Figure 2.12 illustrates the described update protocol.

FARSITE ensures strong consistency guarantees by relying on leases. Whenever

a client reads a file, it is granted a lease by the management group, guaranteeing

the freshness of the client’s local copy. FARSITE provides two types of lease: read

leases ensure that the file will not be modified until the lease expires or is revoked

while write leases guarantee an exclusive access to the file. Note that considering

a client requesting a file, the system would immediately revoke the leases so that

the eventual modifications are pushed back to the replication nodes, bringing the

system back to a consistent state. Then, the requesting client could carry on its

operation and retrieve the file in its latest form.

FARSITE provides security through the use of convergent encryption. Every file

is assigned an ACL containing the public key of the users authorised to modify

the object. Whenever a client requests an operation to the management group,

a secure communication channel is established in order to authenticate the user.

The system guarantees that unauthorised users cannot access a file through the

following protocol. For every new file, the client generates a random symmetric

key and encrypts the file’s content with it. Then, the symmetric key is encrypted

with the public key of every user having been granted permission to read the file.

These encrypted symmetric keys are finally sent to the management group so that

whenever a client requests a read operation, the management group returns the

client its encrypted symmetric key. Then, the client can decrypt the symmetric key

using the user’s private key.

2.3.4 CFS

CFS (Chord File System) [DKK+01] is a completely decentralised file system relying

on the DHash distributed hash table as a block storage abstraction. CFS aims at

ensuring data integrity while balancing the storage load across the system’s nodes.

The particularity of this system lies in the fact that a single user can update it, such

that CFS is often considered a read-only file system.

The entire CFS architecture relies on a block unit known as the CHB (Content

CHAPTER 2. BACKGROUND 32

Hash Block). The special property of CHBs is that such blocks are self-certified,

making the integrity verification process straightforward. Indeed, a CHB ’s address

is computed by applying a one-way function, such as the SHA-1 hash function for

instance, to the block’s content. That way, whenever a client retrieves such a block,

its integrity can be verified by re-computing the block’s hash and checking if the

fingerprint corresponds to the requested address.

Unlike other file system objects however, the root directory is stored in a PKB

(Public Key Block). PKBs are associated with a cryptographic key pair such that

the block’s address is computed by applying a one-way function to the public key.

In addition, a digital signature of the block’s content is embedded in the block

for authenticity and integrity purposes. Noteworthy is that, unlike CHBs which

are immutable, PKBs can be modified since their public key does not change over

time. PKBs also embed a version number, which is increased whenever the object

is updated, to differentiate the multiple instances of an object.

α
root

Inode

users

music

home

README

Inode

README

jmq

...

Inode

Welcome to
CFS!

PKB

CHB

CHB

CHB

CHB

CHB

Inode

CHB

Data

Data

Data

mutable block

immutable block

relation

Figure 2.13: The CFS hierarchical organisation

Since the root directory block is mutable, the administrator can update the file sys-

tem by re-signing the PKB with the private key he possesses. However, modifying

the file /home/README, for instance, would imply, creating a new CHB for the file.

Since the directory containing the file is a CHB as well, modifying a file also changes

the directory content. Indeed, the file has a new content hence a new address and

the directory content contains tuples of the form (name, address). Since the address

CHAPTER 2. BACKGROUND 33

for the file /home/README has changed, the directory must be updated accordingly.

Finally, since the directory /home/ just changed i.e. has a new address, the parent

directory must be updated as well, and so on up to the root directory block. There-

fore, modifying a single byte in a file implies updating the file system hierarchy up

to the root block, which is in turn, re-signed by the administrator. Such a modifica-

tion process is extremely expensive and inconceivable in a production environment.

Figure 2.13 illustrates the CFS hierarchical organisation based on the UFS (UNIX

File System) in which metadata are stored in objects known as inodes.

The CFS ’s approach regarding file representation differs from many systems such

as PAST [RD01b]. In PAST, every file constitutes a DHT block while CFS split

files into chunks of regular size. Splitting files into chunks has the advantage of

better balancing the storage load across nodes. However, since files are composed of

multiple data blocks, the DHT routing process is requested more often, potentially

leading to performance loss and increased security threats.

2.3.5 Ivy

Ivy [MMGC02] is a multi-reader/multi-writer file system relying, like CFS, on the

DHash distributed hash table. Ivy ’s architecture is based on per-participant logs

describing the modifications the given participant has performed on the file system.

Ivy implements a log in the form of a chain of records. Every record is stored

in a CHB while the head of the chain is referenced in a PKB, modifiable by the

participant.

A view of the file system is composed of a set of such logs, as illustrated in Figure

2.14. The address of the log head blocks of the participants involved in the view are

referenced in a view block. The view is stored in a CHB. The address of the view

block identifies the file system and is therefore distributed to the users, enabling

them to access and potentially modify it. Noteworthy is that since the view block

is immutable, adding or removing a user to the view implies creating a new view.

The records are sequentially numbered while the highest attributed number n is

kept in the log head. Every record is also identified by a vector timestamp [ni]

corresponding to the highest sequence number n of the various i logs composing the

view at the time of the record creation.

A user willing to modify the file system starts by reading the head block of every log

composing the view in order to determine the vector timestamp to use for the new

record. Then, the user adds a record to her log describing the operation performed

such as the file path, offset, length and data for a write operation for instance.

Consulting the file system however requires the user to explore all the view ’s logs

from head to tail, looking for records related to the object and area of interest.

CHAPTER 2. BACKGROUND 34

During this process, the client sorts the records according to their vector timestamps.

For example, reading a file would require the client to locate all the write records

related to the given file and intersecting with the area to read.

CHB

PKB CHB CHB

View
Head Record Record Record

α

mutable block

immutable block

relation

Figure 2.14: The Ivy log-based representation

Although this process of serialisation is extremely expensive, as the performance

depends on the number of writers involved, representing a file system by means of

per-participant logs has two advantages. Firstly, assuming that a malicious user

is detected, a participant can easily use another view which does not include the

malicious user. Indeed, any subsequent operation would simply make use of the new

set of logs. Secondly, in case of a partitioned network, every participant can continue

accessing the file system, assuming that every partition contains at least one copy

of the logs. Although modifying the file system in such a partitioned environment

can potentially lead to more conflicts, Ivy already provides the necessary tools for

dealing with such situations.

Ivy makes use of optimistic concurrency control since operations are independently

transcribed into records and serialised whenever a client needs to reconstitute the

object. Note however that relying on independent per-participant logs does not pre-

vent conflicts. Indeed, a scenario involving two participants modifying the same area

of the same file based on the same file system state—i.e. vector timestamps—would

obviously lead to a conflict. Ivy resolves such conflicts by ordering modifications

CHAPTER 2. BACKGROUND 35

according to the user’s public key, hence guaranteeing the same consistent view for

all the participants.

Regarding security, Ivy does not provide access control mechanisms. Indeed, a user

willing to restrict access to one of her files would have no choice but to manually

encrypt it and distribute the encryption key to the authorised users making Ivy

impractical for deployed environments.

2.3.6 Plutus

Plutus [KRS+03] is a decentralised file system built upon an ad hoc overlay network.

Plutus aims at detecting and preventing unauthorised accesses, differentiating be-

tween read and write permissions and enabling the change of access rights.

Plutus access control is based on two ideas. Firstly, the key distribution process is

delegated to the client, leading to better server scalability while allowing the user to

set arbitrary policies. Secondly, in order to reduce the number of keys users must

keep, files are grouped into filegroups.

The aggregation mechanism of filegroups prevents the number of keys the user has

to manage to grow proportional to the number of files. An RSA (Rivest Shamir

Adleman) key pair is associated with each filegroup. Files are grouped in filegroups

according to their sharing attributes so that two files shared by the same users will

have the same encryption key. Since users tend to use the same access control rules

for their files, the number of filegroups a user’s files belong to can be expected to be

very low.

On the downside, using the same key for encrypting multiple files has the disadvan-

tage that the same key encrypts more data, potentially increasing the vulnerability

to known plaintext and ciphertext attacks. Plutus therefore uses unique encryp-

tion keys for different files and stores those keys in a file-lockbox whose key is then

distributed to the users of the same filegroup.

Figure 2.15 illustrates the different keys involved in Plutus. Every file is split into

data blocks, each of those blocks being encrypted with a unique symmetric file-

block key. The lockbox contains all the file-block keys of the file and is encrypted

with a symmetric file-lockbox key which is distributed to both readers and writers

alike. Note that file-lockbox keys are the same for all the files belonging to the same

filegroup. A hash of the file contents is computed for integrity purposes and signed

with a file-sign private RSA key. The signature can subsequently be verified with

a file-verify key i.e. the associated RSA public key. The file-sign key is handed

to writers while the file-verify key is handed to readers so that the system can

differentiate read from write access control. Thus, whenever a user modifies a file,

she re-computes the hash and re-signs it. Readers however check the file’s integrity

CHAPTER 2. BACKGROUND 36

by verifying the signature with the file-verify key and then make sure the hashes are

valid according to the file’s contents.

hash

file−sign
signature

Data

Data

file−block

Data

file−block

file−block

file−block

hash

hash

Inode

Lock Box

file−block

file−lockbox

file−block

hash

hash

hash

Inode

hash

Lock Box

file−lockbox

file−sign
signature file−block

file−block

Data

Data

file−block

file−block

Reader/Writer

file−verify

Reader

file−verify

Writer

file−lockbox

file−lockbox

file−lockbox

file−sign

file−sign

File Group

block

relation

Figure 2.15: The Plutus ’ keys, locks and groups

Regarding access control management, Plutus makes use of lazy revocation. Indeed,

re-encrypting the file’s contents whenever a user is revoked would incur a large

performance overhead. Instead, the re-encryption is delayed until the file is modified.

Plutus relies on key rotation [FKK06] to address the issues of lazy revocation in the

context of file groups.

Although Plutus aggregation of files according to their access control rules is ex-

CHAPTER 2. BACKGROUND 37

tremely interesting, the overlay network has never been described. Besides, Plutus’

access control scheme may lack flexibility when it comes to managing hundreds,

thousands or millions of users since the system does not provide any mechanism for

aggregating users into groups, for instance, which would greatly ease access control

management, especially in large-scale peer-to-peer file systems.

2.3.7 Pastis

Pastis [mBPS05, Bus07] is a large-scale read/write peer-to-peer file system. Pastis

relies on the PAST [RD01b] distributed hash table built upon the Pastry [RD01a]

overlay network.

α
root

Inode

Data

users

music

home

README

Inode

Data

README

jmq

...

Inode

Data

Welcome to
Pastis!

PKB

CHB

PKB

CHB

CHB

PKB

Inode

PKB

mutable block

immutable block

relation

Figure 2.16: The Pastis organisation

Pastis follows CFS ’s architecture but introduces mutable-block-based metadata in

order to overcome CFS ’s major issues. Indeed, CFS is said to be a read-only file

system because it can only be modified by the administrator. Besides, since its

architecture is based on immutable blocks, whenever an object is modified, the

hierarchy must be updated up to the root block, which is then re-signed by the

administrator. Pastis introduces PKBs along the way so that modifying an object

only implies creating new immutable data blocks as well as updating the mutable

metadata block. Since the number of blocks modified is independent of the hierarchy

depth, Pastis’s design is far more efficient than CFS ’s. In addition, since PKBs can

CHAPTER 2. BACKGROUND 38

only be updated by a user possessing the private key required to re-sign the content,

a Pastis file system can be modified by multiple users i.e. every object can be

updated by its owner.

Figure 2.16 illustrates the Pastis’ UFS -like hierarchical organisation composed of

both metadata PKBs, known as inodes, and data CHBs. The figure depicts the use

of PKBs which stops the update propagations.

Since creating a file system object in Pastis implies creating a PKB, the user may

end up keeping a lot of cryptographic key pairs. In order to avoid storing all those

sensitive keys, PKBs embed both the public key of the block owner and a signature

of that key done with the block’s generated private key. Therefore, the user does not

need to keep any keys except her own key pair. Then, every operation performed

on an object is signed with the user’s private key instead of the block’s private key.

Pastis also provides a write-only certificate-based access control mechanism. Any

user willing to grant the permission to modify one of her objects can generate a

certificate and distribute it to the authorised users. Then, whenever such a user

performs a modification on the given object, she attaches the certificate to the

inode’s PKB, proving that this operation is legitimate. Thus, a client retrieving

the inode can verify that both the block and the certificate are valid. A certificate

embeds the inode block’s public key, the authorised user public key as well as an

expiration date, the whole being signed by the object owner.

Pastis therefore provides both the access control and consistency models required

to build a usable file system in a peer-to-peer environment. However, the access

control scheme still suffers from the number of certificates the user must keep.

? ?

?

This section intended to detail the internals of the major peer-to-peer file systems

developed over the last decades and to give an overview of the trade-offs involved

in the design of such systems. Research was also conducted in order to improve

peer-to-peer file systems in alternative ways: Chefs [Fu05] is an access-controlled

content distribution network built upon SFSRO (SFS Read-Only) [FKM02], Total

Recall [BTC+04] is a system predicting hosts availability in order to optimise replica

placement, TFS (Transparent File System) [CCB07] is a transparent layer which

makes use of the unused local storage until the local operating system claims it and

overwrites the cached peer-to-peer data and Glacier [HMD05] is a storage system

relying on erasure codes in order to increase availability and durability.

Chapter 3

Environment

This chapter starts by defining the properties end-users expect a modern storage

system to provide before carefully defining a model capable of guaranteeing them

all. Finally, the objectives and assumptions of this work are defined according to

the background discussed in Chapter 2.

3.1 Properties

This section discusses the properties end-users expect from a modern storage system.

Although the properties below have been defined with the objective of designing an

ideal storage system, some may seem more desirable than mandatory: anonymity,

mobility, transparency, capacity or even cost for instance.

Durability

Durability ensures that once the system has agreed on storing some data blocks,

those blocks will never be lost.

A system lacking this property would be incapable of guaranteeing the user to even-

tually retrieve her files. Commodity hardware such as hard disks but also external

backups fail to ensure this property.

It is actually impossible to ensure durability by relying on a single instance of the

data because the hardware storing this instance could be destroyed, stolen etc.

Therefore, reliable systems tend to rely on redundancy such as replication to guar-

antee durability.

Noteworthy is that peer-to-peer file sharing applications such as Bittorrent [Coh03]

actually lack this property. Indeed, such systems make use of pervasive replication

since every client retrieving a file implicitly creates a new replica which can be used

39

CHAPTER 3. ENVIRONMENT 40

to serve other client requests. Therefore, while popular content achieves a high

replication ratio, rarely accessed files eventually get lost. This lack unfortunately

makes the system difficult to use for users seeking unpopular content.

Integrity

A system providing integrity ensures that a client retrieving a block of data will

end up with the exact content that has been previously inserted. Therefore, this

property also guarantees that the data has not been altered in any way.

The property is usually provided through the use of integrity codes such as crypto-

graphic hash functions, authentication codes or digital signatures.

Although most distributed systems perform the integrity verification process on

the server handling the client’s request, the client itself should be able to verify the

block’s integrity if given enough information such as the identity of the user emitting

the authentication code for instance.

Availability

The availability property ensures that a data block stored by the system remains

accessible at all times. This property coupled with the durability property makes

the system reliable.

As for durability, replication is a way of achieving availability by maintaining a

replication ratio such that even if some replication nodes fail, enough replicas remain

in the system for the clients to access the data.

Note that applications relying on pervasive replication, such as Bittorrent [Coh03],

can ensure neither the durability nor the availability property because the replication

ratio depends on the content’s popularity.

Privacy

The privacy property ensures the user the possibility to keep her files completely

private, both from other users and more powerful entities such as the potential

organisation distributing the software, the user’s ISP (Internet Service Provider) or

even governments etc.

Privacy is usually provided by means of cryptography: every stored data block is

first encrypted on the client side so that the servers never have access to the data

in its plain form.

CHAPTER 3. ENVIRONMENT 41

Sharing

As described in Section 1.1 sharing has become increasingly important to Internet

users.

A viable system would therefore provide users means to share data with other specific

users in an easy way.

In order to prevent both the organisation running the system and unauthorised users

from accessing the data, systems usually distribute the cryptographic key used for

encrypting the data to the users granted access.

Anonymity

People are usually concerned about companies or govenment entities analysing users’

doings on the Internet. Indeed, people expect the same rights they are granted when

it comes to their home privacy for instance.

Anonymity should therefore be guaranteed by the system such that nobody, not even

the government or the user’s ISP can know what data the user is storing, sharing

or accessing.

Although anonymity has been studied through various projects [CSWH01, DFM01],

the mechanisms used for providing such a guarantee are often very expensive and

therefore impact the user experience.

Versioning

Computers have become the ultimate tool for treating information. As such, every

document evolves in its digital form from one version to the next.

However, users may wish to undo a modification or rollback to a past version. Such a

feature is considered fundamental in revision control systems such as CVS (Concur-

rent Control System), Subversion and Git. Besides some storage systems [SFH+99]

have started integrating such a functionality at the file system level.

Therefore, any modern storage system should provide a way for users to track the

modifications applied onto documents but also to naviguate through the versions

and potentially restore a specific one.

Mobility

With the increasing diversity in mobile devices, people are trading their old sin-

gle desktop computer for a variety of small nomad devices from mobile phones to

netbooks to tablets and so forth.

CHAPTER 3. ENVIRONMENT 42

A viable platform for storing, sharing and synchronising files should be accessible

from all these mobile devices by coping with the characteristics of such resource-

limited computers.

Organisation

Since the advent of personal computers, people have been used to manipulate in-

formation through the abstraction known as the file. In addition, the hierarchical

organisation consisting of a directory containing files and sub-directories has made

its way to the general public as the traditional way for organising information.

However, recent research along with some commercial products tried to introduce

another way for retrieving and searching documents through tags. Although this

scheme has not yet supplanted the hiearchical organisation on personal computers,

it appears to be a serious alternative.

No matter which scheme a storage system uses, the user requires a way for organising

and managing her files.

Transparency

The files stored by the system should be accessible in a transparent manner such

that the end-user does not have to differentiate accessing a locally stored file from

accessing a file stored through a remote system.

More precisely, the system should enable existing applications to manipulate the

files stored through the given storage system as they did when stored on a local

hard disk for instance.

Efficiency

The user experience is crucial, especially when it comes to accessing files that were

supposedly stored locally and therefore quickly retrievable.

The system should therefore focus on giving the end-user the impression that ac-

cessing files residing on other computers through the Internet is actually “as fast as”

accessing them locally.

The user could well be aware of the fact that the network protocols impact the

performance of the system especially regarding the network latency since nodes may

be geographically far from each other. However, the networking aspect of the system

should not make the user’s common operations a hassle, such as watching a movie,

working on an office document, listening to music etc.

CHAPTER 3. ENVIRONMENT 43

Various techniques could be used for achieving efficiency from optimised network

protocols [Coh03] to caching algorithms for instance.

Capacity

The user should not be limited regarding the number of files or the size of the files

that she can store and should have access to a storage capacity of the same order of

magnitude as the capacity offered by her local hard disk.

Indeed, given the evolution of the hard disk prices, user may lack incentive to move

on to a reliable, secure and available storage infrastructure if one can get twice

as much storage capacity by buying cheap external drives from a nearby hardware

store.

Cost

Along with the capacity property, the cost of such a system should be low for the

client wishing to use it.

Besides, the costs for the organisation developing and maintaining the infrastructure

should also be as low as possible because such costs would have to be passed on to

the consumer, one way or the other.

3.2 Model

This thesis claims that a file system abstraction on top of a peer-to-peer network is

the most suitable model for achieving the fundamental properties defined above.

3.2.1 File System

End-users have been accustomed to hierarchical organisations since the introduction

of the file system paradigm. Providing the user a similar way to organise files is

crucial. Although most storage services and products [Box, Dro, Win] provide such

a hierarchical organisation, some still put the user in front of a flat name space.

Peer-to-peer file sharing applications [Coh03, CSWH01, DFM01] for instance fail to

offer users a hierarchical organisation making it difficult for people to organise the

files they contribute to the system but also to browse other users’ contributions.

Although the organisation property is fundamental, transparency is also extremely

important. Much storage software [Box, Dro] forces the user to use a specific appli-

cation. It may, at first, seem natural from the system designer’s perspective because

CHAPTER 3. ENVIRONMENT 44

defining a specific interface gives the application the liberty to interact directly with

the end-user but also to offer features specially designed for this system. However,

such systems also suffer from it since breaking the compatibility with all the appli-

cations relying on the file system interface automatically isolates the software from

the rest of the world. Indeed, applications would not be able to use files stored

through a system incompatible with the standard file system interface meaning that

users would not be able to play their music files or watch their movies, they would

have to first retrieve the file from the network, store it on the local disk before the

application could proceed and open it.

Thus, in order to respect the organisation and transparency properties, and accord-

ing to end-users habits, such a storage infrastructure should be accessible through

a standard file system interface.

3.2.2 Peer-to-Peer

As studies [DB99, BDET00, BDET00, HAY+05] suggest, file systems can benefit

from the peer-to-peer architecture in a number of ways.

Peer-to-peer systems offer a way to aggregate and make use of the resources on com-

puters across the network hence building a virtually infinite and highly adaptable

system. Research showed [Vog99, DB99] that the usage of computers’ storage oscil-

lates between 53% and 87% meaning that a large portion of the local storage space

is, most of the time, unused. This storage characteristic indicates that peer-to-peer

networks can ensure the durability, availability, versioning and capacity properties

by making use of a user’s unused space for replicating the other users’ data. Fur-

thermore, by relying on the clients for contributing the system in bandwidth and

storage capacity, the costs for running such a system are kept extremely low, both

for the organisation running the software and the end-user.

As shown in Chapter 2, peer-to-peer overlay networks, more specifically structured

overlay networks, have been designed to be highly scalable. However, although this

characteristic implies that the load put on the nodes depends on the size of the

network, it does not guarantee that mobile devices, for instance, will have enough

resources to support such a load. Indeed, a user might want to contribute the peer-to-

peer network from her home desktop computer only, while accessing it from multiple

other devices, not mentioning that such resources-limited devices may not have

the capacity to maintain the local network state. Fortunately, structured overlay

networks have been designed to be highly tunable through several parameters. For

instance, the Chord [SMK+01] overlay network’s base parameter can be chosen in

order to achieve the desired trade-off between lookup performance and the size of

the local state every node must maintain.

CHAPTER 3. ENVIRONMENT 45

The large-scale nature of peer-to-peer networks also contributes to improving the

overall system performance. Indeed, since data can be distributed throughout the

network but also retrieved from multiple nodes at the same time, the bandwidth

load is naturally balanced between the computers contributing to the system. The

Bittorrent [Coh03] peer-to-peer file sharing application gained in popularity due to

its efficient network protocol which makes use of this characteristic.

The peer-to-peer model therefore appears as a natural network paradigm for ensuring

most of the system’s properties such as durability, availability, versioning, mobility,

efficiency, capacity and cost.

3.3 Mission

Peer-to-peer networks have been shown to exhibit many interesting characteristics

but also introduce many challenges. This thesis does not discuss the challenges

related to overlay networks or even distributed hash tables because a substantial

amount of work has already been achieved in these fields, as attested by Chap-

ter 2. Topics ignored by this work therefore include, but are not limited to, re-

dundancy algorithms [HAF10], consistency models, agreement protocols, fault tol-

erance, atomicity, garbage collection [BCK+09], overlay network’s identifiers as-

signment [FJG06], mutual exclusion algorithms [MCG05] and routing algorithms

[HCW10, dALF10, HB11].

Unlike centralised facilities which are very expensive to build and maintain, peer-

to-peer systems do not require any special administrative or financial arrangements.

Such systems therefore became very popular for exchanging information freely, out-

side any control. Research in anonymity arose as an additional step to freedom on

the Internet, led by well-known projects such as FreeNet [CSWH01] and FreeHaven

[DFM01]. Although anonymity may be considered by many as a fundamental re-

quirement in today’s digital world, this research topic will not be discussed in this

thesis and is left as future work [CLL07, ZSJ06, Mha11].

Likewise, the versioning [CRS05, JXY07] feature is not studied in this thesis. As

such, the underlying distributed hash table is assumed to store the latest version of

every block.

Since overlay networks and distributed hash tables have been the focus of the re-

search community for more than a decade, this work concentrates on providing file

system functionalities in a decentralised, hence untrustworthy environment.

The file system component, built on top of a block storage layer, provides the fol-

lowing fundamental functionalities. First, file systems introduce the file abstraction:

a block of arbitrary information. Then, files are associated with a human-readable

CHAPTER 3. ENVIRONMENT 46

identifier, known as path in hierarchical systems, forming a tree-like organisation

scheme. Third, the notion of user distinguishes the multiple entities interacting

with the file system. Finally, the access control scheme enables users to control their

files, directories etc. enabling files to be shared with or protected from other entities.

File systems integrate another inherent but non-obvious functionality. Although

most file systems’ operations relate to objects such as directories, files and links, a

few operate on the whole system configuration. Centralised file systems tend to rely

on a specific user, known as root on UNIX -like systems and Administrator on Win-

dows, to perform such special operations. This user, being granted super-privileges,

can perform system-wide actions such as creating users and groups, accessing or

removing any file but also modifying the file system metadata such as its name, its

capacity along with some specific parameters. Decentralised file systems however,

cannot rely on such a special user because such systems were specifically designed

to prevent a single entity from controlling the whole system. Therefore, the admin-

istrator entity must be re-considered to fit such a decentralised environment.

This thesis focuses on designing a flexible access control scheme for decentralised

untrustworthy storage environments, providing peer-to-peer file systems’ users a

way to control their files individually. In addition, an administration scheme is

discussed which both prevents a single user from completely controlling the system

and enables users to request an administrative operation such that, if it is beneficial

to the system, it will be carried out.

Although the community showed great interest in such distributed systems,

rare [HAY+05] are the decentralised file systems to have been deployed. The final ob-

jective of this thesis is to develop a viable prototype proving feasible the deployment

of such a system to a large number of users in a production environment.

3.4 Assumptions

The file system described in this document relies upon a distributed hash table,

which in turn, is built on a peer-to-peer overlay network. Although the challenges

related to overlay networks and distributed hash tables are not discussed throughout

this thesis, several assumptions are made regarding the interface of the underlying

storage layer but also the properties and guarantees of the network architecture.

First, the peer-to-peer network is assumed to be untrustworthy. Indeed, since such

networks are mostly populated by personal computers, no assumption can be made

regarding the trustfulness of the contributing nodes. Furthermore, the decentralised

nature of such networks coupled with the untrustworthy assumption implies that

nodes must operate in a completely symmetric way. Indeed, since peer-to-peer nodes

CHAPTER 3. ENVIRONMENT 47

are considered equally unprivileged, everything performed by one node could also

be performed by another one. In addition to those fundamental characteristics—

decentralisation, untrustworthiness and symmetry— the high dynamicity of such

networks requires protocols to be scalable. Finally, the inherent network’s churn

implies that no assumption should be made regarding nodes’ connectivity.

Second, in order to ensure the durability and availability properties, redundancy has

been shown to be an absolute requirement. Projects such as OceanStore [KBC+00]

and FARSITE [ABC+02] have been using agreement algorithms such as the BFT

[CL99] protocol and Paxos [Lam98] in order to ensure consistency among the repli-

cas. Unfortunately, such algorithms are known to be expensive [DW01, Bus07] as

detailed in Section 2.2. Other projects such as CFS [DKK+01], Ivy [MMGC02] and

Pastis [mBPS05] chose to rely on quorums. Indeed, since peer-to-peer file systems

only require to store and retrieve data, such algorithms achieve better performance

than their agreement counterparts. According to the efficiency property, the under-

lying distributed hash table will therefore be assumed to be making use of quorums

for maintaining the replicas in a consistent state.

As detailed in Section 2.2, quorum-based Byzantine systems replicate every object

on ϕ ≥ 3γ + 1 storage nodes in order to tolerate up to γ malicious nodes while read

and write quorums must contain contain, at least, 2γ + 1 replicas. Note however

that every client must be able to distinguish the illegitimate replicas provided by

Byzantine nodes. Therefore, and since the untrustworthy property implies that

storage nodes cannot be trusted, every data item must be self-certified that is,

every data block must include the necessary information in order to ensure that (i)

the block corresponds to its supposed address (ii) the block’s integrity has been

maintained and (iii) the block’s authenticity is guaranteed. The self-certification

property along with the replication and symmetry ensures that any client can select

the valid instance from a set of replicas.

Third, the distributed hash table should provide an interface composed of, at least,

the four fundamental routines below.

� Put(α, β)

� Get(α) −→ β

� Gather(α) −→ β

� Erase(α)

The following details some of the essential distributed hash table’s protocols. Since

these protocols reflect the particularities—untrustworthiness, symmetry and self-

certification—of the given environment, understanding those protocols will help the

reader comprehend the design decisions made in Chapter 4.

CHAPTER 3. ENVIRONMENT 48

Put

The Put(α, β) routine takes a unique address α along with the data block β to be

stored. In order to ensure durability and availability, the block is replicated on a

set of nodes Ω such that |Ω| = ϕ. The process of storing a block in the distributed

hash table goes as follows.

The client starts by sealing the block in order to ensure self-certification. Indeed,

since the block is going to be stored on untrustworthy nodes, future clients retrieving

the block must be able to detect blocks that have been illegally altered by malicious

nodes. Integrity can be ensured through the use use of a cryptographic signature, a

MAC (Message Authentication Code) [OM94] or equivalent.

The client then computes the block’s address and invokes the Put() routine which

locates the nodes Ω responsible for the given address α. The block β is sent to a

write quorum of storage nodes after which the client waits for their responses. Once

2γ+1 acknowledgements have been received, the block is considered as being stored

by the system.

From the storage node perspective, the process consists in verifying the received

block’s validity before storing it. The self-certification process is composed of several

steps. Firstly, the node verifies that the address α corresponds to the block β. Note

that this implies that the block’s address computation must be a function of the

block itself. Secondly, the block’s integrity and authenticity is checked, by verifying

the embedded cryptographic signature for instance.

Note that the Ω storage nodes periodically synchronise with each other in order to

maintain replica consistency. Besides, write operations performed on quorums are

actually composed of two phases. The first phase consists in locking the quorum

nodes in order to ensure mutual exclusion. In the second phase, the client sends the

block’s content to the quorum nodes. However, for the sake of simplicity and clarity,

the first phase is ignored and will therefore not be discussed throughout this thesis.

Get

The Get(α) routine is used to retrieve the block identified by α. More specifically,

this routine returns to the client the first valid block instance located throughout the

network. Therefore, depending on the implementation and the context, the block

may be retrieved from one of the Ω nodes, from a node contributing to the routine

process and having the block in cache, or even from the client’s cache.

Once the client has received the block, it proceeds to the exact same verification

process as the servers: (i) the received block β corresponds to the requested address

α and (ii) the block’s integrity and authenticity is maintained. The reader should

CHAPTER 3. ENVIRONMENT 49

notice the symmetry of the nodes’ behaviour. Indeed, the verifications performed

by a node acting as a server will eventually be performed by a client. Therefore, the

information necessary to enact a block’s validity must be available to every node,

being a client or a server, hence the self-certification.

Gather

The Get(α) routine’s particularity lies in the fact that the first valid instance found is

returned. Therefore, this routine is particularly interesting for retrieving immutable

blocks. Indeed, since such blocks do not evolve over time, the client cannot end

up with an incorrect version as a single version of this block will exist for ever.

Therefore, retrieving an immutable block which passes the validity tests is sufficient

to affirm that this block is the one the client is seeking.

However, such a routine would not be satisfactory should an application make use

of mutable blocks. By using the Get(α) method, a client could end up with a block

which is valid but happens to represent an older version of the requested block.

Indeed, since data dissemination in computer networks is by definition asynchronous,

hence unreliable and non-atomic, multiple nodes may, at the same time, store or

cache different versions of the same block.

The Gather(α) routine addresses this issue by directly requesting the block from Ω

through the formation of a read quorum composed of 2γ + 1 storage nodes. Once

2γ + 1 instances of the block have been received, the client starts by discarding any

invalid block i.e. violating the integrity and/or authenticity for instance. Since the

algorithm has been designed to tolerate up to γ Byzantine nodes, the number of such

invalid blocks should not exceed γ. Finally, among the remaining instances, the client

picks the one with the highest version number. Indeed, mutable blocks are expected

to embed a version number in order to differentiate the multiple variations of a given

block α. Besides, note that a storage node being requested to overwrite a mutable

block would verify that the version number of the new block is strictly higher than

the currently stored one. This additional verification step ensures mutable blocks

evolve in a monotonic way.

Figure 3.1 illustrates the protocol in a network tolerating up to γ = 2 Byzantine

nodes. The system initial state is consistent since the Ω nodes store the exact same

version of the block i.e. version 3, except for the Byzantine nodes whose behaviour

cannot be predicted. Then, a client modifies the block by updating a write quorum

containing both malicious nodes. Finally, another client requests a read quorum

which contains the Byzantine nodes and the two nodes that were not included in

the previous write quorum. However, since the algorithm ensures read and write

quorums intersection, the client can discard the invalid blocks and pick the latest

CHAPTER 3. ENVIRONMENT 50

version among the three remaining instances which happens to be version 4, as

expected.

3

33

3

4

33

4

4

33

43 4 4

x

x x x x xx

x

(i) (iii)(ii)

write

read

non−Byzantine node

quorum

Byzantine node

Figure 3.1: A three-step representation of a symmetric quorum-based system

The following example, illustrated by Figure 3.2, shows that symmetry is absolutely

crucial to decentralised untrustworthy environments. Let us consider a distributed

hash table which, for some optimisation purposes, authorises clients to store data

between 2 a.m. and 4 a.m. only. A client would start by sending its block to a write

quorum of Ω. The storage nodes would verify that (i) the block is valid and (ii) the

request has been made between 2 a.m. and 4 a.m., in other words, the current time

lies in this interval. Then, let us consider the Byzantine node ω ∈ Ω which stores one

of the block’s replicas. This node decides, although it is 5 p.m., to modify the block.

However, instead of following the protocol, it just replaces the local replica with its

new version and does not bother contacting the other Ω nodes. Considering that

the block is valid and has the highest version number, a client wishing to retrieve

the block could form a read quorum including ω. Therefore, the client would end

up with, say, up to γ − 1 invalid instances of the block, γ + 1 valid instances of the

block and one valid, though illegally forged, instance of the block embedding the

highest version number. The client, following the protocol, would therefore discard

the invalid instances and keep the latest version, version 5 in the example, which

happens to be an illegal instance.

CHAPTER 3. ENVIRONMENT 51

4

33

4

4

33

4

4

33

44 4 4

x

x

x x x x 55

(i) (iii)(ii)

read

Byzantine node

non−Byzantine node

quorum

Figure 3.2: A three-step representation of an asymmetric quorum-based system

This example illustrates the system’s lack of symmetry. Indeed, the validation pro-

cess is not symmetric because it cannot be performed by clients since they do not

have access to the time the block has been stored. Therefore, the clients have no

choice but to trust the servers regarding this predicament. Since the environment is

assumed to be untrustworthy, the assumption is violated and the system is flawed.

Noteworthy is that the Get(α) and Gather(α) methods are distinguished in this

document for the sake of clarity. However, most implementations, including the

one discussed in Chapter 5, merge both functionalities into a single routine which,

depending on the address α, operates in one or the other mode.

Erase

The Erase(α) routine takes the address of a block that must be removed from the

distributed hash table. The client wishing to perform such a removal starts by

sending a request to the Ω nodes storing a replica of the block. Storage nodes

receiving such a request then challenge the user in order to verify the legitimacy of

the operation. Once the client has been authentified as the creator, every replica

is destroyed. Note however that the authentication process depends on the type of

block, as described in Chapter 4.

CHAPTER 3. ENVIRONMENT 52

? ?

?

To summarise, this thesis makes several assumptions among which are the dis-

tributed hash table’s properties: decentralisation, untrustworthiness, symmetry, self-

certification, scalability, replication through quorum protocols and non-connectivity.

Considering such a distributed hash table, this thesis aims at designing a decen-

tralised peer-to-peer file system by focusing on providing a flexible access control

scheme along with a mechanism for users to request administration tasks in a sys-

tem devoid of any authoritative entity.

Chapter 4

Design

This chapter details the design of the fundamental components of a peer-to-peer file

system.

The first section focuses on describing the access control scheme which introduces

both the notion of user and the abstract representation of file system objects such

as files, directories etc. This section starts by defining the objectives of the access

control scheme given the environment described in Chapter 3. The model of the

access control scheme is then discussed though this model will be refined later one.

Finally, the concept behind the access control mechanism is introduced before dis-

cussing in details the internal representation of the blocks composing the file system

hierarchy.

The second section discusses the file system organisation and the necessity for en-

abling users to perform administrative operations. First, the semantics of centralised

file systems are discussed in the context of peer-to-peer file systems. A model is then

proposed for both administering the file system and transferring object ownership.

The design of the proposed model is then detailed through the introduction of a new

physical block.

By the end of this chapter, the fundamental components will have been designed,

leading the way to the implementation of a viable peer-to-peer file system prototype.

4.1 Access Control

Although many decentralised peer-to-peer file systems have emerged in the last

decade, none of them succeeded in providing users with a flexible access control

system.

The well-known file sharing applications such as Bittorrent [Coh03], Freenet [CSWH01],

FreeHaven [DFM01] etc. actually provide a content distribution infrastructure more

53

CHAPTER 4. DESIGN 54

than a way of sharing files since users cannot decide which users are allowed to re-

trieve the documents they contribute to the system. Although users may not be

interested in controlling access to movies, they might be for more personal informa-

tion such as family photos, work documents and so forth.

While some distributed file system projects [DKK+01, MMGC02] lack an access

control mechanism, others such as OceanStore [KBC+00] and FARSITE [ABC+02]

do provide privacy control functionalities. Unfortunately, such systems suffer from

fundamental flaws regarding our target environment such as the non-scalability of

the network architecture or the use of expensive algorithms, as explained in Chapter

2.

More recently, several research projects, including Chefs [Fu05], Plutus [KRS+03]

and Pastis [mBPS05], focused on access control in untrustworthy environments.

Chefs ’ single-writer/multi-reader design might well suit content distribution applica-

tions such as Bittorrent [Coh03] but unfortunately lacks flexibility when it comes to

large-scale file systems. On the contrary, Plutus provides a multi-writer/multi-reader

scheme but, like Chefs, requires the users to be connected whenever an object’s owner

wishes to grant them access. This connectivity requirement is unpractical for large-

scale networks where the churn rate has been measured to be very high [LSG+04].

Plutus also puts some trust constraints on the storage nodes handling write op-

erations, hence, violating the untrustworthiness predicate. Finally, Pastis’ access

control scheme, very much like Plutus’, constrains the users in keeping a constantly

growing number of certificates and cryptographic keys.

Noteworthy is that the most recent work achieved through Chefs, Plutus and Pastis

indicate that issues remain to be addressed. The remainder of this section therefore

presents the design of a flexible access control scheme for the given environment

which does not require users to keep any access information but their identity i.e. a

single cryptographic key pair.

4.1.1 Objectives

The following statements define the scope within which the access control scheme has

been designed along with the characteristics such a mechanism should incorporate.

Although one might disagree with these definitions, this set of rules has been defined

in order to provide the access control mechanism functionalities common to most

file systems while taking the environment’s particularities into consideration.

∇1 First, the environment characteristics and fundamental properties defined in

Chapter 3 must be respected throughout the design process. These include

decentralisation, scalability, untrustworthiness, symmetry and self-certification

CHAPTER 4. DESIGN 55

but also non-connectivity due to churn, efficiency through quorum protocols

and so on;

∇2 A user must be able to modify its object’s permissions. Furthermore, the

effects of those modifications should be made effective immediately. Although

atomicity is obviously unachievable given the asynchrony of the underlying

physical network, this rule suggests that any operation that does not comply

with the object’s last set of access control rules should be rejected;

∇3 Any user should be able to consult an object’s current permissions. Note

that this rule conflicts with most common file systems which prevent users

from collecting information on inaccessible objects. However, in the given

context, the lack of a centralised entity makes it difficult to prevent a user

from retrieving the block corresponding to the file’s metadata—assuming she

knows the block’s address—hence accessing its access control information;

∇4 Section 4.1 showed that the most recent research regarding access control

in decentralised environments suffered from the amount of access information

users have to keep locally. Indeed, both Plutus [KRS+03] and Pastis [mBPS05]

require clients to store a linearly increasing number of keys and certificates.

The storage space required on clients for managing objects’ access control

should therefore be ideally reduced to a single item;

∇5 The large-scale environment’s characteristic implies an extremely large and dy-

namic number of users and files. While common centralised file systems such

as ext2 (Second Extended File System) were designed with space consump-

tion and simplicity in mind, decentralised file systems must provide flexible

capabilities for users to manage the possibly thousands of users having been

granted access to an object. The access control scheme should therefore en-

able users to create hierarchical groups which, as the name suggests, can be

composed of both users and/or sub-groups. This paradigm would enable users

to organise their friends, acquaintances, family etc. hence easing the access

control management;

∇6 According to the environment specifics and with regard to ∇5, the access

control scheme should be as efficient as possible. Especially, the complexity of

the process consisting in verifying that a user’s operation is legitimate should

be logarithmic, if not constant time; and

∇7 Since data retrieval cannot be controlled, anyone is allowed to request a data

block from the underlying distributed hash table. Therefore, accountability

regarding users accessing data seems unachievable. However, users should not

be capable of repudiation regarding object modification.

CHAPTER 4. DESIGN 56

Note that every access control scheme candidate will be considered unsuitable if

violating at least one of these objectives. Besides, whenever such an objective is

mentioned through its ∇n symbolic name, the reader will be able to refer himself to

the definitions summary located at the bottom of the page.

4.1.2 Model

The following discusses the particularites of access control schemes in the given

environment.

4.1.2.1 Policy

An access control system is one which enables an authority to control the access

to resources. In the context of file systems, access control systems enable a user to

grant a set of other users access permissions onto an object, being a file, directory,

link etc.

Access control systems are often categorised as either discretionary or non-discretionary,

the most widely recognised models being MAC (Mandatory Access Control) [Cla83],

DAC (Discretionary Access Control) [Kar86] and RBAC (Role-Based Access Con-

trol) [JB94, Vas08].

MAC is an access control policy determined by the system, through an authoritative

entity. Historically, MAC has been designed and used by military organisations

processing highly sensitive data. In such systems, subjects and objects are assigned

a label so that a user can access a document only if her clearance level is equal or

higher than the document’s sensitivity level.

DAC is an access policy determined by the object’s owner. Therefore, the user de-

cides who has access to the object and what operations they are allowed to perform.

Note that unlike MAC, DAC models do not require any authoritative entity.

Finally, RBAC is an alternative approach consisting in the definition of various

roles matching the multiple organisation’s personnel functions. The permissions to

perform certain operations are then assigned to roles. Finally, every member of the

personnel is assigned a particular set of roles such that, through those assignments,

the user acquires the permissions associated with the roles. The RBAC model

simplifies the whole access control management since controlling the access policies

consists in assigning roles to individuals.

As discussed in Chapter 3, a consequence of the peer-to-peer environment is that

no entity has complete control over the whole system. For this reason, both MAC

and RBAC models, which require system-wide definitions, cannot be used in this

context. Therefore, in order not to violate ∇1, the DAC model must be used.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 57

4.1.2.2 Pattern

Systems such as operating systems, file systems, websites etc. are said to make

use of active access control because permission is granted at the time an operation

is requested or performed. Most systems follow this pattern because all requests

are made to a manager which decides whether or not to grant access. Since access

control information is centralised, the manager can easily take such a decision.

On the other hand, distributed systems tend to dynamically build managers by re-

lying on Byzantine agreement protocols. Unfortunately, and as discussed in Chapter

3, since they reduce concurrency [DW01, Bus07], such algorithms are impractical

for many applications, especially large-scale distributed file systems.

As a consequence, the given environment cannot make use of managers. Access

control is therefore said to be passive. The idea behind passive access control is to

store access control information along with the object so that any client retrieving

an object can verify that the last modification has been performed by a legitimate

writer i.e. the writer had the permission at the time, τ , the operation was carried

out. If, as described through Section 3.4, the block happens to be illegitimate, it is

discarded until a valid instance is found.

Thus, users writing an object must attach an atemporal proof such that, at any later

time, anyone can verify that the object has been properly constructed according to

the permissions in place at τ . By doing so, the system’s symmetry is maintained

and ∇1 is respected. Furthermore, and in order to prevent violating ∇7, the proof

should enable users to identify the writer.

Regarding read operations, since the storage nodes cannot be trusted, the objects’

content should always be encrypted. The access control scheme should therefore

enable objects’ owners to distribute the key to authorised readers while respecting

∇2 and ∇4.

4.1.2.3 Class

Access control schemes basically fall into one or both of the two following classes:

token-based and record-based. This section takes both of the access control classes

and shows that no scheme can achieve the required properties in the given environ-

ment.

An implication of ∇5 is that permissions must be flexibly manageable through hi-

erachical groups, giving the user a tool for organising users very much as a tree-like

file system view enables users to organise their files.

As mentioned in the previous section, a passive access control model implies that

users must attach to the object a proof showing evidence of the legitimacy of the

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 58

operation. In more practical terms and with consideration of group hierarchies,

every proof involving one or more of those groups will be composed of sub-proofs,

each providing evidence of group membership at τ , the whole forming a chain of

proofs.

Token-Based

In token-based access control schemes, objects’ owners distribute unforgeable tokens

to clients, granting them the permission to perform operations, while nothing is kept

on the manager’s side except what is strictly necessary to verify tokens’ validity.

Certification and Capabilities, for instance, fall into this category.

In active access control models, clients pass their token to the manager. If the chain

of tokens is valid, the requested operation is accepted. In a passive scheme, the user

attaches a chain of tokens to the object to be modified so that nodes retrieving the

object can verify that the writer provided a proof of her legitimate action.

Note that since everybody must be able to verify the tokens’ validity, such tokens

must be protected from public disclosure, for example by securely identifying its

holder. Certification schemes, for instance, include the user’s identity in a digital

signature for ensuring this property. Additionally, such a user identification complies

with ∇7.

A problem arises when it comes to verifying a proof. Indeed, to verify that a user

had the permission—the tokens had neither expired nor been invalidated—at τ ,

the object must carry time-related information such as the time the object was

updated. Unfortunately, even assuming that the system benefits from a globally

synchronised clock, neither the storage servers nor the users can be trusted to provide

a correct time. Indeed, malicious clients and servers could go back in time and claim

a date that makes past tokens still valid. The solution would be to either rely on

a centralised and trusted time server for digitally timestamping every update or to

make use of consensus algorithms, both violating ∇1 and ∇6.

Record-Based

In record-based access control models, a subject’s access depends on whether her

identity is located in the records associated with the object. In active models, the

manager keeps the records and performs the verification for every received request

while, in passive models, an attached proof must provide evidence that, at τ , the

user’s identity could be located in the records of the groups she claimed to have

been a member of. ACL (Access Control List)s, for instance, fall into this class of

access control.

Unlike token-based access control models, access information is recorded in blocks,

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 59

along with the other object’s metadata. ∇5 and ∇3 imply that independent entities

such as groups also record their access information in blocks.

Besides, objects and groups, in order to be accessible through the same address α at

all times, must rely on mutable blocks because the address of such blocks remains

the same while their content evolves.

Proving that a subject had the permission to perform the operation at τ comes

down to proving there existed a link between the object and the subject, perhaps

indirectly through several groups’ memberships. Therefore, a client updating an

object must attach a snapshot of the chain of groups, hence proving the existence,

at τ , of a path from the object to the subject.

Unfortunately, since groups evolve over time, a group’s block exists in different

versions. Therefore, nothing could prevent a malicious user from using a past group’s

snapshot, at a time when she was a valid member.

Thus, as nodes could not be trusted to provide a valid timestamp in token-based

models, servers and clients, once again, cannot be trusted to include, in the chain of

proofs, the proper latest version of the groups’ snapshot at τ . A malicious user could

therefore go back in time by providing past versions of groups’ snapshots, granting

herself the permission to perform the operation.

4.1.3 Constraints

The previous section showed that any passive access control scheme violates the

fundamental symmetry property.

However, one should notice that, by loosening constraints, it becomes possible to

design such a scheme. For instance, Plutus [KRS+03] makes use of a token-based

access control scheme where an object’s owner distributes a key to the writers and the

complement key to the readers. Since accountability is not a requirement, users are

free to re-distribute the keys to whoever they wish. Therefore, Plutus requires users’

connectivity for passing keys. Besides, since keys are freely distributed, nobody can

consult the currently granted permissions.

The requirements of this work are therefore extremely strong compared to Plutus’

and as a result, it has been shown impossible to achieve them all.

There is therefore no choice but to loosen the constraints in order to provide access

control to peer-to-peer applications. Although ∇3 and ∇7 might seem questionable

in terms of usefulness, especially in large-scale networks, connectivity is the envi-

ronment property that the author believes is usually misinterpreted for the reasons

exposed below.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 60

� Research regarding churn rates in peer-to-peer networks has been performed

on peer-to-peer file sharing applications such as Bittorrent [Coh03] because

these are the only deployed large-scale applications that can be used to gather

such information.

However, the application itself has an impact on the node churn since, for

example, users tend to stop sharing a file that has been downloaded to avoid

wasting their upload bandwidth.

Therefore, the author claims that different well-integrated systems such as file

systems, instead of file sharing applications, would decrease the churn rate

especially if users have incentives in contributing to the system’s connectivity;

� Connectivity, very much like bandwidth, should increase as it has been the

case since the advent of computer networks. On the other hand, new devices

such as mobile phones, netbooks along with new user behaviours must be taken

into consideration.

One should note that although the number of such mobile devices is increasing

extremely rapidly, most users possess multiple computers including a desktop

computer at home and/or at work, a laptop, a mobile phone etc. Therefore,

although the increasing mobility of computing devices implies nodes frequently

joining and leaving the network, the user behind these devices is likely to be

connected at all times through one or more of those devices; and

� Finally, although the probability of a specific user being connected might not

be as high as expected because of the high churn rate measured in peer-to-

peer networks, the probability of having at least one member in a set of users

connected to the network should be higher, depending on the set cardinality.

Therefore, loosening the non-connectivity requirement will enable users, as in Plutus,

to retrieve information from other users.

4.1.4 Concept

The following provides insights into the passive ACL (Access Control List)-based—

i.e. DAC and record-based—access control scheme described throughout this sec-

tion. Note that the record class has been chosen in order to prevent users from having

to store access information such as certificates or keys as both Plutus [KRS+03] and

Pastis [mBPS05] suffer from this characteristic.

The idea behind the presented access control scheme is to distinguish users according

to their access relation to the target object. First, the users who have been granted

access to the object directly by the owner are referred to as the lords. These users

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 61

play a particularly important role in the access control scheme because their access

permissions can only be modified by the object owner. On the other hand, users

who have been granted access to the object indirectly through one or more group

memberships are referred to as the vassals. The object owner has no direct control

over these users since the access management has been delegated to the respective

group managers. Therefore, vassals could join or leave groups that have been granted

permissions on the object without the object owner even knowing.

The access control scheme’s fundamental concept is to let lords access the object

without additional constraints, assuming that they have been granted the appro-

priate permissions. However, the vassals are never given the key for decrypting the

data, neither can they update the object directly. Rather, the idea is to rely on lords

to vouch for the vassals by verifying that the requesting vassal has the permission

to perform the operation. Assuming that the vassal does have the proper rights, the

lord generates a certificate stating that, at τ , the vassal had been indirectly granted

the permission to update the object. Likewise, a vassal wishing to read an object

would need to contact a lord which would verify the vassal’s permission before pass-

ing her the key for decrypting the data. Quite obviously, the object’s owner as well

as the group managers could also act as lords, hence vouch for vassals.

Noteworthy is that, although the users’ connectivity is assumed to be higher than

previously stated, only users accessing objects indirectly will need to contact other

more privileged users. The lords’ connectivity is therefore absolutely crucial to the

system. Thus, object owners should make sure to grant access to several lords in

order to ensure that the number of connected lords is sufficient to enable legitimate

vassals to operate on the object. Should the number of such lords be insufficient,

the application could warn the user for instance.

Finally, the access control scheme introduced hereby requires users to exchange

information with one another. Therefore, as the overlay network enables nodes

to route a message to the home node responsible for a given identifier, users now

require the overlay network to provide a routine for locating a particular user. The

rest of this document thus assumes that the underlying overlay network provides

a Locate() method, which, given a set Ξ of user identities, returns the identity of

a currently connected user. An easy way to provide such a functionality would be

for the application to automatically set the user’s, potentially multiple, IP (Internet

Protocol) address in its associated User logical block, described next, such that given

an identifier, one can easily contact the user by sending a message to her node.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 62

4.1.5 Scheme

The access control scheme detailed in this section enables users to protect their ob-

jects against unauthorised read and write operations by granting permission directly

to specific users and/or indirectly by delegating access control to third parties i.e.

groups.

The following introduces the data block representations necessary to the access con-

trol mechanism, from physical blocks to logical blocks such as file system objects,

users, groups and so forth. Every block representation is illustrated by a figure along

with the three procedures below:

� The Setup(β) −→ α method is invoked whenever a block is built and returns

the address of the freshly initialised block;

� The Seal(α, β) routine is called whenever the block has been modified and

requires to be sealed, before being stored in the underlying distributed hash

table for instance; and

� Finally, the Validate(α, β) procedure verifies that the given block is valid.

This method is never explicitly invoked but rather used internally by the

Get(α) −→ β and Gather(α) −→ β routines.

4.1.5.1 Physical Blocks

As in CFS [DKK+01], Pastis [mBPS05], SFS [MKKW99], OceanStore [KBC+00]

and many other projects, the physical blocks are distinguished according to their

immutability.

Content Hash Block

CHB (Content Hash Block)s are immutable blocks whose address is computed by

applying a one-way function on the data. Thus, assuming the block is modified,

a new content is implicitly created, hence generating a new address. Figure 4.1

illustrates such a CHB.

CHBs are extremely interesting in terms of performance, as mentioned in Section

3.4. Indeed, a client wishing to access a CHB that is present in cache would not need

to initiate network communication as it would be formally ensured of the block’s

validity.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 63

CHB

[...]

α

Figure 4.1: The representation of a CHB

Algorithms 1, 2 and 3 detail the set-up, seal and validation processes of CHBs,

respectively. Note that the function h() denotes a one-way function such as SHA

(Secure Hash Algorithm) for instance.

1. α← h(β)

2. return α

Algorithm 1: Setup
CHB

(β) −→ α

nothing to do as implicitly sealed

Algorithm 2: Seal
CHB

(α, β)

1. if α 6= h(β) then

2. error “the address does not match the block”

3. end if

Algorithm 3: Validate
CHB

(α, β)

Public Key Block

Unlike CHBs, PKB (Public Key Block)s are associated with a cryptographic key pair

such that the address of such blocks is computed by applying a one-way function on

the PKB ’s public key. Since this key does not change over time, PKBs are used as

mutable blocks. In order to distinguish a block’s multiple versions, a version number

is embedded. Besides, a cryptographic signature ensures integrity and authenticity,

hence preventing anyone but the PKB ’s owner from updating the block.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 64

Figure 4.2 details the PKB internals. The reader can notice that the block’s pub-

lic key is embedded, along with a version number and a signature which ensures

integrity and authenticity while respecting ∇7. As shown through Algorithms 4, 5

and 6, everything necessary to the block’s verification process is included within the

block, hence ensuring symmetry.

#1

PKB

signature

version

data

[...]

α

K
block

Figure 4.2: The representation of a PKB

The reader should carefully consider the notation used throughout this document.

While the K and k symbols represent the public and private keys, respectively, δκ̃

is equivalent to δx mod n for κ = (x, n) such that:

(
δK̃
)k̃

=
(
δk̃
)K̃

= δ (4.1)

Therefore, δK̃ designates an encryption or signature verification while δk̃ expresses

a signature or decryption. In addition, the reader should notice the presence of

grouped attributes designated by]x with x a unique number on a given figure. This

grouping functionality is used to simplify the algorithms presented throughout this

document. For example, while every field is represented on Figure 4.2, Algorithm 6

uses the β.]1 notation which is equivalent to β.[...]|β.version|β.signature with | the

concatenation operator.

1. (Kblock, kblock)← generate cryptographic key pair

2. β.Kblock ← Kblock

3. β.data.version← 0

4. α← h(β.Kblock)

5. return α

Algorithm 4: Setup
PKB

(β) −→ α

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 65

Require: (Kblock, kblock), the block’s randomly generated key pair

1. β.data.signature← h(β.]1)k̃block

Algorithm 5: Seal
PKB

(α, β)

1. if α 6= h(β.Kblock) then

2. error “the address does not match the block”

3. end if

4. if β.data.signature
˜β.Kblock 6= h(β.]1) then

5. error “the data signature is invalid”

6. end if

Algorithm 6: Validate
PKB

(α, β)

As detailed in Algorithm 6, the first step of the validation process verifies that the

internal public key β.Kblock is related to the block by applying the one-way function

on the public key and comparing the result with the address. Once the public key

is known to be valid, the signature can be verified in the second step ensuring the

block’s integrity and authenticity. From this point on, the block is known to be valid

and can therefore safely be used.

Owner Key Block

As described previously, PKBs enable users to make use of mutable blocks. However,

by relying on such blocks, users will end up keeping as many key pairs as they have

created blocks. Unfortunately, ∇4 stipulates that the access control scheme should

not require users to store an increasing amount of access information.

OKB

owner

#1

data

signature

#2

version

signature

[...]

α

K
block

K
owner

Figure 4.3: The representation of an OKB

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 66

For this reason, the OKB (Owner Key Block) has been introduced, following the

original idea from Pastis [mBPS05]. Indeed, assuming that every user possesses a

single identity key pair, OKBs enable users to create blocks without having to keep

any access information.

There are two differences between OKBs and PKBs. Firstly, the owner’s public key

is recorded in the block and signed with the block’s private key. Secondly, the data

are no longer signed with the block’s private key but with the owner’s private key.

Thus, since operations are now performed with the owner’s key pair, the block’s key

pair is no longer necessary and can therefore be discarded.

Figure 4.3 depicts the OKB internal organisation which shows the inclusion of the

block’s public key, followed by the owner’s public key which is then signed with the

block’s private key. In addition, Algorithms 7, 8 and 9 illustrate OKBs’ set-up, seal

and validation processes, respectively.

Require: (Kuser, kuser), the user’s personal key pair

1. (Kblock, kblock)← generate cryptographic key pair

2. β.Kblock ← Kblock

3. β.owner.Kowner ← Kuser

4. β.owner.signature← h(β.]1)k̃block

5. β.data.version← 0

6. α← h(β.Kblock)

7. return α

Algorithm 7: Setup
OKB

(β) −→ α

Require: (Kuser, kuser), the user’s personal key pair

1. β.data.signature← h(β.]2)
˜kuser

Algorithm 8: Seal
OKB

(α, β)

1. if α 6= h(β.Kblock) then

2. error “the address does not match the block”

3. end if

4. if β.owner.signature
˜β.Kblock 6= h(β.]1) then

5. error “the owner signature is invalid”

6. end if

7. if β.data.signature
˜β.owner.Kowner 6= h(β.]2) then

8. error “the data signature is invalid”

9. end if

Algorithm 9: Validate
OKB

(α, β)

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 67

One may have noticed that the data signature is applied on β.Kblock—i.e. β.]2

includes β.Kblock—though this was not the case for PKBs. The inclusion of β.Kblock

in the data signature is necessary to prevent Injection Attacks. Indeed, considering

two blocks β1 and β2 created by the same owner, a malicious user could copy the

data section from β1 and inject it into β2. This operation would be viewed as a

perfectly valid update1 performed by the owner. Therefore, in order to prevent this

kind of attack, the block’s public key β.Kblock is included in the data signature,

ensuring that the data section is linked to this block, hence cannot be injected in

another OKB.

4.1.5.2 Logical Blocks

The following presents the logical blocks which introduce concepts such as users,

groups etc. built on top of the physical blocks detailed above.

User

Because OKBs require the notion of user but also because access permissions will

eventually be associated with users, this section introduces the User block. A User

block represents a user entity in the storage system and contains information such

as the user name, her email address etc.

Interestingly, although based on a PKB, the User block does not require a crypto-

graphic key pair to be generated. Indeed, as mentioned earlier, every user is assumed

to possess a unique key pair. Therefore, instead of generating a random key pair for

the block to become mutable, the user’s personal key pair is used.

name

email

PKB

#1

User
α

signature

version

[...]

K
user

Figure 4.4: The representation of a PKB -based User block

1... assuming β1.data.version > β2.data.version

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 68

This characteristic is particularly interesting because, as described before, the ad-

dress of a PKB is computed by applying a one-way function on the block’s public

key, which happens to be, in this very specific case, the user’s public key. Thus, any-

one given the user’s public key can compute the address of the User logical block,

which can then be retrieved in order to get additional information on the user.

Figure 4.4 depicts the User logical block internals while Algorithms 10, 11 and 12

detail the set-up, seal and validation processes, respectively, though almost identical

to OKB ’s.

Require: (Kuser, kuser), the user’s personal key pair

1. β.Kuser ← Kuser

2. β.version← 0

3. α← h(β.Kuser)

4. return α

Algorithm 10: Setup User
PKB

(β) −→ α

Require: (Kuser, kuser), the user’s personal key pair

1. β.signature← h(β.]1)
˜kuser
Algorithm 11: Seal User

PKB
(α, β)

1. if α 6= h(β.Kuser) then

2. error “the address does not match the block”

3. end if

4. if β.signature
˜β.Kuser 6= h(β.]1) then

5. error “the signature is invalid”

6. end if

Algorithm 12: Validate User
PKB

(α, β)

Group

A group represents a collection of users and/or sub-groups, administered by a single

user, the group’s owner, often referred to as the group manager.

In order to fulfill the ∇6 requirement, the system isolates the group metadata from

the members’ listing. While the group metadata are recorded in a mutable Group

logical block, the actual ACL (Access Control List) of members is recorded in an

immutable Members block. This separation has been introduced to minimise the size

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 69

of the Group block. Indeed, as detailed through Section 3.4, retrieving a mutable

block such as a PKB or an OKB requires a quorum of storage nodes to be contacted.

Since 2γ + 1 instances of such a mutable block will be transferred back to the

requesting client, reducing the size of mutable blocks would drastically increase the

system’s overall performance. On the other hand, since immutable blocks such

as CHBs can benefit from caching techniques and, in the worst case scenario, are

transferred only once to the client, these blocks can embed far more information

without damaging the system’s performance.

The Group logical block is therefore based on an OKB physical block, being mod-

ifiable by the group manager, its creator, only. On the other hand, the Members

logical block is based on a CHB. Thus, whenever the list of members is modified, a

separate Members block is created requiring the Group block to be updated in order

to reference the new Members block.

OKB
Group

owner

signature

data

description

α
members

α

version

signature

#1

#2

α
group

Members
CHB

permissions

permissions

K
user

K

permissions

user

[...]

owner

K

K

name

block

Figure 4.5: The representation of an OKB -based Group block

Figure 4.5 details the Group and Members logical blocks and their relation. The

reader will notice that the Members block contains a list of either user or group

entries. While users are identified by their personal public key, groups are referenced

by the address of the associated Group logical block.

Noteworthy is that permissions are associated to members such that, to be allowed

to read an object for instance, a user must identify herself through a chain of group

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 70

memberships in which, every group in the chain must have been granted the read

permission, including her own user membership. This enables fine-grained group

memberships management since a group owner can easily include a sub-group with-

out granting too much permission.

The set-up, seal and validation processes are not detailed for the Group and Members

logical blocks since identical to the OKB ’s and CHB ’s.

Object

An Object is a protective layer built above actual data blocks which enables users

to control access both in reading and writing. Therefore, as its name indicates, it

can be used, in the context of file systems, to represent file system objects such as

files, directories etc.

An object is linked with a set of permissions granted to specific users and/or groups.

In order to optimise the most common case in which an object is only accessible to

its owner, the owner’s permissions are directly recorded in the Object block while

prospective users and groups are listed in a separate and optional block, the Access

logical block. Note that, as for the Group block, this specific arrangement reduces

the size of the Object block and therefore optimises the communication costs. Figure

4.6 illustrates this optimisation, especially in the β.meta section where the owner’s

permissions and the address of the Access block are recorded.

As mentioned in Section 4.1.4, access beneficiaries are classified as either lords or

vassals. Since the fundamental idea behind the access control scheme is not to

constrain lords, these more privileged users are given the key for decrypting the

data, assuming they have been granted read permission. Such a key comes in the

form of a token which consists in the key being encrypted with the lord’s public

key. On the other hand, vassals are not given the key and it is their responsibility

to contact a lord whenever they wish to read the data. Once the legitimacy of

the operation has been verified by a lord, the key is handed to the vassal so it can

decrypt the data.

Regarding write operations, the user updating the Object must attach a proof show-

ing evidence of the action’s legitimacy. Since lords have been directly granted the

permission by the object’s owner, providing such a proof comes down to specifying

the location, in the Access block, of their user entry. Therefore, anyone retrieving

the block can verify that the signature has been issued by the private key associated

with the public key recorded in the given user entry but also that the permissions

associated with this user include the right to update the object. The process is

however a bit more complicated when it comes to vassals. Indeed, these users must

request a lord to validate their action. The lord then issues a vouching certificate

which can be attached to the Object block, hence proving the rightfulness of the

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 71

modification. Figure 4.6 illustrates these particularities: β.author.lord contains the

index of the user entry in the Access block while β.author.voucher represents the

certificate issued by a lord vouching for the user, certificate which includes the public

key of the vassal having updated the object. Note that, should the owner update the

block, no proof would be provided i.e. β.author =⊥. Likewise, the proof provided

by a lord does not include a voucher, hence β.author.voucher =⊥.

According to ∇2, a user losing the read permission should no longer be able to read

the data. Therefore, the data blocks should be re-encrypted with a new key which

would be distributed to the readers. However, since this process is very expensive,

most distributed systems delay the re-encryption until the data is modified, a process

referred to as Lazy Revocation [Fu99]. Unfortunately, in the presented system, a

group manager having been granted the read permission on the object could decide

to evict a user. As such, users could lose the read permission at any time without

the object’s owner being aware of such events. Since there is no way for the owner

to know when the data must be re-encrypted, a new key is generated every time the

object is updated. Note however that this does not mean that all the data blocks are

re-encrypted. Indeed, only the modified and new data blocks are encrypted with the

new key. In addition, a Contents block contains the list of all the data blocks along

with the key used for encrypting every one of those blocks. Finally, the Contents

block is encrypted with the key having been generated for the last writing, the one

which is distributed to authorised lords.

Since the owner’s connectivity cannot be guaranteed whenever the object is modified,

the new key must be generated by the writer. The writer thus generates the tokens

based on the new key and distributes them to the read lords. Note that a malicious

writer could perform an attack by distributing different—valid or invalid—keys to

different lords such that a user retrieving the key would not be able to know which

one of the data or the key is incorrect. In order to reduce the risks of such an attack,

the writer also attaches a fingerprint of the key. Therefore, readers retrieving a key

mismatching the fingerprint would know that the writer is malevolent and complaints

regarding this user could then be made to the object’s owner. This specificity is

illustrated in Figure 4.6, especially in the β.data section.

The fact that the writer, often referred to as the author, updates the lords’ tokens

implies that she must be allowed to modify the Access block. However, this block also

embeds the lords’ identities and permissions, information that only the owner should

be authorised to modify. In order to guarantee that the author can re-generate the

lords’ tokens, the address of the Access block is left under the control of the writer,

hence is included in the signature β.data.signature. However, in order to prevent

the writer from modifying permissions, the sensitive data are also included in the

signature issued by the owner i.e. β.meta.signature. Therefore, a malicious user

trying to illegally modify metadata would inevitably render the block invalid by

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 72

violating the owner’s meta signature.

OKB

owner

signature

#1

Object
α

author

voucher

signature

fingerprint

version

signature

meta

owner

permissions

α
access

version

signature

data

#2

#4

#3

lord

vassal
K

token

key

block
α

CHB

α
block

key

[...]

CHB
Access

α

permissions

token

K
user

permissions

token

#5

group

[...]

K

K

block

owner

Contents

contents
α

Figure 4.6: The representation of an OKB -based Object block

Algorithms 13 and 16 detail the set-up and validation processes, respectively. Algo-

rithm 14 describes the sealing steps for the Object ’s data section, while Algorithm

15 describes those for the meta section.

CHAPTER 4. DESIGN 73

Require: (Kuser, kuser), the user’s personal key pair

1. (Kblock, kblock)← generate cryptographic key pair

2. β.Kblock ← Kblock

3. β.owner.Kowner ← Kuser

4. β.owner.signature← h(β.]1)k̃block

5. β.data.version← 0

6. β.meta.owner.permissions←
{
read, write

}
7. β.meta.version← 0

8. α← h(β.Kblock)

9. return α

Algorithm 13: SetupObject
OKB

(β) −→ α

Require: (Kuser, kuser), the user’s personal key pair

1. β.data.signature← h(β.]2)
˜kuser

Algorithm 14: SealObject[data]
OKB

(α, β)

Require: (Kuser, kuser), the user’s personal key pair

1. if β.meta.αaccess =⊥ then

2. ~← h(β.]3)

3. else

4. χ← Get(β.meta.αaccess)

5. ~← h(β.]3|χ.]5) – the | operator designates concatenation

6. end if

7. β.meta.signature← ~ ˜kuser
Algorithm 15: SealObject[meta]

OKB

(α, β)

CHAPTER 4. DESIGN 74

1. if α 6= h(β.Kblock) then

2. error “the address does not match the block”

3. end if

4. if β.owner.signature
˜β.Kblock 6= h(β.]1) then

5. error “the owner signature is invalid”

6. end if

7. if β.meta.αaccess =⊥ then

8. ~← h(β.]3)

9. else

10. χ← Get(β.meta.αaccess)

11. ~← h(β.]3|χ.]5)

12. end if

13. if β.meta.signature
˜β.owner.Kowner 6= ~ then

14. error “the meta signature is invalid”

15. end if

16. if β.author =⊥ then

17. if write /∈ β.meta.owner.permissions then

18. error “the owner does not have the permission”

19. end if

20. if β.data.signature
˜β.owner.Kowner 6= h(β.]2) then

21. error “the data signature is invalid”

22. end if

23. else

24. χ← Get(β.meta.αaccess)

25. if write /∈ χ[β.author.lord].permissions then

26. error “the lord does not have the permission”

27. end if

28. Klord ← χ[β.author.lord].Kuser

29. if β.author.voucher =⊥ then

30. Kauthor ← Klord

31. else

32. if β.author.voucher.signatureK̃lord 6= h(β.]4) then

33. error “the voucher signature is invalid”

34. end if

35. Kauthor ← β.author.voucher.Kvassal

36. end if

37. if β.data.signatureK̃author 6= h(β.]2) then

38. error “the data signature is invalid”

39. end if

40. end if

Algorithm 16: ValidateObject
OKB

(α, β)

CHAPTER 4. DESIGN 75

The validation process detailed through Algorithm 16 starts, as for OKBs, by verify-

ing that the block corresponds to its associated address. Then, the signature in the

owner section is verified proving the owner’s public key valid. Thus, the meta sig-

nature can be verified guaranteeing that the identities and permissions of the lords

have not been altered. Then, depending on the nature of the author—being the

owner, a lord or a vassal—, the data signature is verified, leading to the assurance

that the tokens are valid along with the encrypted Contents block.

Let us consider the following scenario: the owner decides to modify the access control

records by removing the write permission from a lord. Unfortunately, this lord

happens to be the user having performed the latest modification on the object.

As such, the author field references his record in the Access block while the data

section signature has been computed with his private key and his therefore verified

with his public key. Assume that another client later retrieves the object and starts

verifying its validity. The verification process would detect that the author does not

have write permission and would inevitably conclude that the object was forged,

probably by a malicious user. Although the object is now considered invalid by

everyone, it was, at the time, legally constructed. In order to overcome this security

issue, should the owner remove the write permission from the user who signed the

object’s data section, the owner would generate a voucher stating that the user’s

action was legitimate at the time, no matter what his current permissions in the

Access block are.

Finally, it is important to note that lords’ behaviour cannot be guaranteed. Indeed,

a malicious lord could, for instance, distribute invalid keys or could even refuse to

vouch for a valid vassal. In such a context, a vassal would have no choice but to

contact another lord until an honest one is found.

4.1.6 Algorithms

This section provides the reader with a detailed understanding of the algorithms

related to three fundamental operations applied to a file system object built upon

the blocks described above.

� Govern(α, ψ)

� Read(α, λ) −→ δ

� Write(α, λ, δ)

CHAPTER 4. DESIGN 76

Govern

The Govern(α, ψ) routine enables the object’s owner to apply a set of modifications

ψ on the meta-data, including the access permissions.

This routine starts by retrieving the Object block. Then, the meta-data modifica-

tions are applied depending on the presence of the Access block which may need to

be fetched.

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. if Kuser 6= β.owner.Kowner then

3. error “the owner is the only user authorised to govern the object”

4. end if

5. β.meta.version← β.meta.version+ 1

6. apply the set of modifications ψ

7. for all (ε, ζ) such that ζ is a new immutable block do

8. Seal
CHB

(ε, ζ)

9. Put(ε, ζ)

10. end for

11. SealObject[meta]
OKB

(α, β)

12. Put(α, β)

Algorithm 17: Govern(α, ψ)

Read

The Read(α, λ) routine takes the address of an Object block α along with the location

λ of the data to read from this object. The routine returns the data δ.

The algorithm starts by retrieving the Object block by calling the Gather() method.

Then, the key κ used for encrypting the data must be retrieved. This process depends

on the nature of the user. Indeed, if the user happens to be the object’s owner for

instance, the key can be extracted by decrypting the token β.meta.owner.token.

A lord, on the other hand, would have to locate its entry in the Access block and

proceed to the decryption of the token. Finally, a vassal would need to request a

lord to validate the rightfulness of this action before providing the vassal the key.

Once the key κ is retrieved, its fingerprint is verified against the one provided by

the author i.e. β.data.fingerprint. Then, the Contents block can be fetched and

decrypted with κ after which the multiple data blocks are accessible. From this

point, the routine can read the data identified by λ.

CHAPTER 4. DESIGN 77

Noteworthy is that an Access user entry lacking the read permission does not nec-

essarily mean that the user cannot access the data. Indeed, the user could still be

granted the read permission through one or more group memberships, in which case,

through a lord’s approval, the user could retrieve the encryption key. Nonetheless

and for the sake of clarity, this possibility is ignored in Algorithm 18.

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. if Kuser = β.owner.Kowner then

3. if read /∈ β.meta.owner.permissions then

4. error “the owner does not have the read permission”

5. end if

6. κ← β.meta.owner.token
˜kuser

7. else

8. χ← Get(β.meta.αaccess)

9. if ∃ι : Kuser = χ[ι].Kuser ∀ι ∈
{

1, ..., |χ|
}

then

10. if read /∈ χ[ι].permissions then

11. error “the lord does not have the read permission”

12. end if

13. κ← χ[ι].token
˜kuser

14. else

15. Ξ←
{
χ[ι].Kuser : read ∈ χ[ι].permissions ∀ι ∈

{
1, ..., |χ|

}}
16. ν ← Locate(Ξ)

17. κ← request lord ν for the key by sending the message 〈read, α,Kuser〉
18. end if

19. end if

20. if h(κ) 6= β.data.fingerprint then

21. error “the key does not match the fingerprint”

22. end if

23. σ ← Get(β.data.αcontents)

24. ξ ← decrypt σ with the key κ

25. δ ← read data from ξ at location λ

26. return δ

Algorithm 18: Read(α, λ) −→ δ

Write

The Write(α, λ, δ) routine takes the address of an object along with some data δ

and the location λ of the region of the object’s data that should be overwritten.

CHAPTER 4. DESIGN 78

The algorithm starts by retrieving the Object block. Then, depending on the user’s

relation to the object, being the owner, a lord or a vassal, a proof is constructed

and attached to the object i.e. β.author. For instance, a lord constructs a proof by

specifying the index of its user entry in the Access block while a vassal must contact

a lord willing to vouch for her. Once the proof is complete, the user can update the

data at λ and encrypt it with a freshly generated key κ, which is then distributed to

the read lords i.e. the lords with the read permission. Finally, the Object is sealed

and stored in the distributed hash table along with any additional data block.

Note that, although not depicted in Algorithm 19, an author without the read per-

mission would have no choice but to overwrite the existing Contents block while one

with the permission would be able to modify specific portions of the existing data.

CHAPTER 4. DESIGN 79

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. χ← Get(β.meta.αaccess)

3. if Kuser = β.owner.Kowner then

4. if write /∈ β.meta.owner.permissions then

5. error “the owner does not have the write permission”

6. end if

7. β.author ←⊥
8. else

9. if ∃ι : Kuser = χ[ι].Kuser ∀ι ∈
{

1, ..., |χ|
}

then

10. if write /∈ χ[ι].permissions then

11. error “the lord does not have the write permission”

12. end if

13. β.author.lord← ι

14. β.author.voucher ←⊥
15. else

16. Ξ←
{
χ[ι].Kuser : write ∈ χ[ι].permissions ∀ι ∈

{
1, ..., |χ|

}}
17. ν ← Locate(Ξ)

18. (ι, ϕ)← request lord ν for a voucher through 〈write, α,Kuser, δ〉
19. β.author.lord← ι

20. β.author.voucher ← ϕ

21. end if

22. end if

23. β.data.version← β.data.version+ 1

24. κ← generate cryptographic symmetric key

25. ξ ← write data δ at location λ

26. σ ← encrypt ξ with the key κ

27. β.data.αcontents ← Setup
CHB

(σ)

28. Seal
CHB

(β.data.αcontents, σ)

29. Put(β.data.αcontents, σ)

30. for all ι ∈
{

1, ..., |χ|
}

: read ∈ χ[ι].permissions do

31. χ[ι].token← κ
˜χ[ι].Kuser

32. end for

33. β.data.fingerprint← h(κ)

34. for all (ε, ζ) such that ζ is a new immutable block do

35. Seal
CHB

(ε, ζ)

36. Put(ε, ζ)

37. end for

38. SealObject[data]
OKB

(α, β)

39. Put(α, β)

Algorithm 19: Write(α, λ, δ)

CHAPTER 4. DESIGN 80

4.1.7 Analysis

Section 4.1.2 claimed unfeasible any access control scheme complying with the de-

fined objectives. As shown, any class of access control required some party to pro-

vide temporal or contextual information. Unfortunately, since the environment is

assumed to be untrustworthy, neither the clients nor the servers can be trusted to

provide such a decisive element of proof. The object’s owner, being the only author-

itative entity, cannot be relied upon either as no guarantee can be made regarding

her connectivity to the system. As a result, the connectivity constraint had to be

loosened in order to render the environment suitable for the design of a flexible

access control scheme.

As mentioned earlier, most centralised systems rely on a single manager through

which every request goes. Such managers thus can control the legitimacy of every

client action. Unfortunately, distributed systems cannot rely on a single centralised

entity and therefore tend to build and maintain managers in a dynamic way through

the use of consensus protocols. However, since known to be expensive, these proto-

cols have been ignored as not considered suitable candidates for an access control

system in the given large-scale environment.

The presented access control scheme is innovative in the sense that it makes use

of managers without achieving consensus. Indeed, the idea behind the described

system is to rely on some specific users to act as managers. Since these users do not

communicate, synchronise or achieve consensus, the access control scheme can fairly

be claimed to be decentralised, as a client only requires to contact a single manager.

Although neither storage nodes nor clients can be trusted, lords do benefit from a

special status. Since lords have certain rights over the object, such as the permission

to read and/or write its data, they can be considered as being partially trusted. It is

equally fair to assume that lords also have the power to act maliciously, by erasing

data for instance or by handing the decryption key to an unauthorised user. The

concept lying behind the designed access control scheme is therefore to let lords

act as managers, by validating requests related to the permissions they have been

personally granted on the object. The most important aspect of this scheme is that it

does not weaken the system’s security because a malicious write lord already had the

power to abuse the system by writing data on behalf of another unauthorised user.

Likewise, a malicious read lord could have distributed the key to anyone without

the system or the object’s owner ever noticing.

The access control scheme detailed throughout this section therefore enables users

to protect their objects from ill-disposed users and Byzantine storage servers. Fur-

thermore, the proposed model is flexible and expressive enough so that users can

organise their friends, family, acquaintances and so forth, hence easing the access

control management. Besides, the design complies with the very strong requirements

CHAPTER 4. DESIGN 81

defined in Section 4.1.1. Thus, every user is required to hold a single personal crypto-

graphic key pair in order to operate on the storage system; accountability is ensured

regarding object updates; every access modification issued by the object’s owner is

taking effect as soon as a write quorum of nodes has agreed on storing the updated

object’s blocks, as detailed in Section 3.4, while every user is able to consult the

current permissions associated with any object. Finally, the design complies with

the specific environment’s properties defined in Chapter 3.

Noteworthy is that since the access control scheme makes use of managers, it benefits

from most of the advantages of active models. Indeed, as mentioned previously, a

vassal wishing to, say, read an object would have to attach a proof showing evidence

she had the read permission but also that every group of the chain she claimed to be

a member of had been granted the read permission as well. This specificity provides

objects’ owners and group managers with fine-grained access control functionalities.

The scheme could also be embellished through the addition of black lists for instance.

Such a functionality would provide objects’ owners and group managers additional

flexibility by specifically listing users and/or groups that should be excluded from

the set of granted subjects. Therefore, a group manager could, for example, grant

read access to a sub-group but also specify that a subset of this sub-group’s members

are not to be considered by this authorisation. Note however that these additional

functionalities would increase the complexity of the process consisting for a lord to

verify that a vassal’s claim is legitimate as the black list of every group included in

the claim would have to be checked.

Although the presented scheme exhibits many interesting properties, the design de-

cisions especially regarding the connectivity requirement’s loosening imply a certain

number of trade-offs. Firstly, the access control scheme requires many cryptographic

signatures to be issued and verified, which in turn impacts the performance. Indeed,

while a single signature needed to be verified in Plutus [KRS+03], our design requires

objects to embed three cryptographic signatures. Secondly, clients wishing to op-

erate on an object through group memberships must explore the group hierarchy

until a chain of memberships is found granting the user the sought for permission.

Although techniques such as caching can be used to improve this process, it nonethe-

less represents an expensive task. Thirdly, the access control design largely relies on

the assumption that, given a set of users Ξ, at least one non-Byzantine member of

Ξ is connected at all times. Indeed, considering an object and its associated lords

and assuming that, at a precise time, none of those lords are connected, vassals

would become unable to perform legitimate operations. The following details the

probability of such an event occurring.

The probability PO of a vassal being able to perform a legitimate operation is equal

to the probability of at least one non-Byzantine lord being connected among the ρ

lords associated with the object; the probability of a lord being disconnected is given

CHAPTER 4. DESIGN 82

by PD. Note however that the following assumes the lords to act honestly. Indeed,

one should carefully distinguish the percentage of Byzantine nodes in a peer-to-peer

network from the percentage of malicious users belonging to a small set of privileged

users specifically chosen by the object’s owner. While Byzantine nodes misbehave

in order to perform unauthorised operations such as making a document diseappear

for instance, malicious lords have already been granted permission on the object,

hence cannot gain anything more. Equation 4.2 provides a formula for computing

the number ρ of lords required to achieve the desired probability PO depending on

the average lord disconnectivity PD.

ρ = logPD (1− PO) (4.2)

As illustrated by Figure 4.7, a probability PO = 0.99 can be achieved by relying

on five lords, assuming that users are connected to the network 60% of the time

i.e. have a probability of being disconnected PD = 0.4. These figures indicate that

the presented access control can realistically perform in a production environment.

Indeed, as discussed in Section 4.1.3, while nodes’ connectivity can be assumed to

be fairly low due to churn, this access control scheme relies on users’ connectivity

which is inherently higher.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ

PO

PO vs ρ

PD = 0.1

PD = 0.2

PD = 0.3

PD = 0.4

PD = 0.5

Figure 4.7: A graph showing the relations between PO and ρ

In addition, a certain number of optimisations can be considered which are described

next. Firstly, the connectivity of the group managers can be assumed to be higher

CHAPTER 4. DESIGN 83

than normal users. Indeed, such users create groups because they want to contribute

to the system in more ways than most users. Since some of these group managers

also act as lords, access control can benefit from this characteristic. Secondly, the

key used for encrypting the Contents block could be distributed to vassals in a

proactive manner, very much like Plutus [KRS+03]. Likewise, lords could try, on a

periodic basis, to distribute the key to authorised vassals which were disconnected

during the previous attempts. These techniques would increase the probability of a

vassal receiving the key, one way or another. Thirdly, vassals having retrieved the

key could act as read manager for other vassals. Therefore, a vassal incapable of

making contact with a lord could request the key from another vassal. Note that this

optimisation is even more interesting when coupled with the proactive distribution

while not weakening the overall system’s security. Although this optimisation would

require users to store a potential large number of keys, such keys could be stored

within the system, in a dedicated encrypted block. Nevertheless, vassals would

still need to request a lord in order to update the object. However, while delaying

read operations, because of lords’ unavailability, may degrade the user’s experience,

delaying write operations is perfectly acceptable and often used to optimise the

system’s cache, though such delays increase the probability of conflicting updates

for objects with multiple writers.

To conclude, the devised access control scheme complies with the very strong re-

quirements imposed by the environment. Indeed, compared to Plutus [KRS+03]

for instance, this scheme evolves in a completely decentralised and untrustworthy

environment, does not make use of expensive algorithms, ensures accountability,

guarantees that access modifications are made effective immediately, allows anyone

to consult an object’s current permissions and requires every user to keep a single

item: her personal cryptographic key pair. The major drawback of this system lies

in the fact that every object must grant permission to a sufficient number of lords in

order to ensure that, at any time, a manager is connected to validate vassals’ oper-

ations. However, it has been shown that the required connectivity was realistically

achievable with a small number of lords, especially through the use of optimisations.

4.2 Administration

Peer-to-peer file systems have emerged in the last decade as a way to provide avail-

able and durable storage capacity at low costs by relying on a large-scale set of

untrustworthy computers. Some projects such as CFS [DKK+01], Ivy [MMGC02],

Pastis [mBPS05], OceanStore [KBC+00], FARSITE [ABC+02], Plutus [KRS+03]

and Chefs [Fu05] succeeded in offering the user a file system interface. Unfortu-

nately, all of those projects omitted to address one of the fundamental requirement

CHAPTER 4. DESIGN 84

of such systems, the ability to administer the file system.

In common file systems, being centralised or distributed such as NFS [Osa88], SFS

[MKKW99] etc, a user has special privileges allowing her to perform administrative

tasks such as creating new users, managing the groups, removing files or directories

that she judges inappropriate and so forth. This specific user takes the name of root

on Unices and Administrator on Windows systems.

Decentralised file systems such as CFS [DKK+01], Ivy [MMGC02], Pastis [mBPS05]

etc. however, cannot rely on a special and privileged entity because such systems

are designed to prevent a single user from taking over the entire system.

The remainder describes the design of an administration scheme that prevents a

single user from completely controlling the system while enabling users to request

administrative operations.

4.2.1 Semantics

This section discusses the semantics of administrative tasks associated with common

file systems and their relevance to the context of decentralised file systems. Note

that since the access control scheme presented in Section 4.1 is based on the DAC

model, this section focuses on discretionary-access-control-based file systems.

In such systems, an object being a file, directory or link is controlled by a single

user, known as the owner, in a completely autonomous way. Thus, every operation

directed at the object is said to be object-oriented. The reader should notice that

such operations compose most of a file system’s operations.

However, assuming that a file system exposes a unique hierarchical organisation

to the users and/or that the data are stored on a hardware device whose access

is controlled by the operating system, functionalities operating at the system level

become necessary. Since normal users cannot be granted the permission to operate

at this critical level, file systems tend to rely on a super-privileged user, named root

on Unices and Administrator on Windows. Such a superuser is commonly allowed

to perform the following tasks.

� The superuser can create, delete and update user accounts;

� Likewise, the superuser can create, delete and update group accounts including

the list of members and their permissions;

� The superuser is granted all the permissions on the file system. As a conse-

quence, the superuser can create file system objects anywhere in the hierar-

chical namespace but also access, update and delete any file, directory etc;

and

CHAPTER 4. DESIGN 85

� The superuser is also able to change the ownership of a file system object so

that object management is transferred to another user.

The following discusses the relevance of such administrative tasks in the context of

decentralised file systems.

Entity

As detailed in Section 4.1, creating a user in the given peer-to-peer file system

comes down to (i) generating a cryptographic key pair (ii) creating and storing a

User block. Unlike common file systems in which the superuser manages the user

accounts, creating such a block implies that only the owner can update or delete the

user entity.

Note however that an organisation wishing to prevent users from creating entities in

an autonomous way would have to rely on a CA (Certification Authority) for signing

the User, Group etc. blocks associated with the fundamental entities. Although such

a CA would violate the decentralisation requirement, some research [ACMR02] has

been carried out on decentralised certificate management protocols.

It is therefore fair to assume that the creation, update and deletion of user entities

can be performed in a completely decentralised way, through the sole management

of the User block by its owner, without the need for a super-privileged user.

As for users, creating a group in a peer-to-peer file system comes down to storing a

Group block. Very much like user entities, groups are owned by a single user which

is responsible for its management, including maintaing the list of its members along

with their permissions.

Therefore, as for users, the creation, update and deletion of group entities can be

performed in a completely decentralised way.

Noteworthy is that the notion of user and group often comes with a functionality

enabling people to retrieve an entity’s identifier given a human-readable representa-

tion, such as a name. For instance, Unices store the system’s users and groups in

the files /etc/passwd and /etc/group, respectively. These files record the human-

readable user or group name along with its associated system identifier, known as

the UID (User Identifier) and GID (Group Identifier). Additionally, Unices provide

commands such as id which takes a username as argument and returns information

on the user account including her UID, the groups she belongs to etc.

Peer-to-peer file systems should integrate similar functionalities, especially because

such large-scale systems deal with potentially million of users. Although leaving

users the responsibility to communicate their storage user identifier—i.e. the user’s

public key—to their friends might seem reasonable to many systems, such a method

would not comply with the transparency requirement defined in Chapter 3.

CHAPTER 4. DESIGN 86

A very simple solution for mapping a username to its identifier would be to create

a block whose address is the hash of the username. Therefore, someone looking

for a specific user would compute the hash of the username and retrieve this block

which would then contain the associated user’s public key, hence leading to the

User block as explained in Section 4.1.5. Although such a scheme benefits from an

extreme simplicity, it forces users to know the exact names of the entities sought.

Thus, one would be unable to look up entities according to a pattern such as a

regular expression. Therefore, although functional, this method is limited in terms

of expressivity.

Object

As mentioned above, superusers are granted the privilege to access, rename, delete

and modify any file system object, independently of its location and without anyone’s

consent.

The environment’s properties defined in Chapter 3 stipulate that no user should have

control over the whole system. This super-privilege therefore seems to strongly con-

flict with the fundamental properties of the environment. Fortunately, the presented

decentralised file system has been designed to prevent any user from accessing an

object without the owner’s authorisation.

As a consequence, this access super-privilege turns out to be undesirable, unneces-

sary and unachievable in the given decentralised and discretionary environment.

Noteworthy is that, historically, the notion of a user with super-privileges has been

introduced in UNIX to deal with the root directory from which the name of the

superuser comes. This directory deserves special attention as it is the most critical

object in the file system hierarchy. Indeed, common file systems consider that having

the right to remove a directory entry is semantically equivalent to being allowed to

delete the object the entry points to. Therefore, a user removing a directory entry

pointing to a sub-directory indirectly deletes the directory object but also its data,

including the sub-entries being files or directories, and so on down to the leaf objects.

A file system in which everyone is allowed to modify the root directory would thus

inevitably lead to chaos as anyone could destroy branches of the namespace. As

a consequence, file systems tend to grant privileges on the root directory to the

administrator alone.

The specificity of the peer-to-peer environment implies that such special privileges

cannot be granted to a single user. Indeed, and as mentioned earlier, no user should

have the power to make file system objects disappear without the owner’s consent.

However, in order for the file system to evolve, the root directory must be modifi-

able as every other object in the namespace. Therefore, an administration system

adapted to the given environment’s characteristics should be provided to overcome

CHAPTER 4. DESIGN 87

this issue.

Finally, superusers are also granted the right to modify the ownership of an object.

Such an operation has probably been provided to the superuser to prevent users

from repudiating the ownership by suddenly giving it away to another user without

her authorisation or even her awareness.

As detailed in Section 4.1.5, the presented peer-to-peer file system, being based on a

discretionary access control scheme, makes it impossible for anyone but the owner to

modify the object’s metadata. Indeed, every Object block is associated with a user,

known as the object’s owner, through a digital signature. This signature is applied

on the owner’s public key and sealed with the block’s private key. Therefore, since

the block’s private key is known exclusively from the object owner, nobody can

modify this object-user link but the owner itself.

Transferring the object’s ownership to another user would consist in changing the

owner’s public key and re-signing it with the block’s private key. Unfortunately,

this method suffers from two major issues. Firstly, the block’s private key has

been discarded in order to prevent users from keeping too much access information.

Therefore, the signature of the owner’s public key could not be re-issued. Secondly,

assuming that owners keep the blocks’ private key, the owner’s public key could

indeed be re-signed. However, once the new owner is in place, nothing could prevent

the original owner from overwriting the owner’s signature once again.

Thus, the file system object representation described throughout Section 4.1.5 does

not seem suitable for enabling the transmission of ownership. An advanced and

more specific functionality involving both users to agree on the operation would be

necessary.

? ?

?

In conclusion, most of the privileges granted to a superuser turn out to be unneces-

sary as such tasks can be performed in a discretionary manner. However, a subset

of these operations do not comply with the given environment and therefore require

a specific solution. Among those, user and group entities, once created, should be

registered in an inventory of some kind. Additionally, the root directory should be

accessible by everyone in reading while writing should be carefully supervised in

order to prevent rash operations. Finally, an object’s owner should be given the

possibility to transfer the ownership to another user, assuming the other user agrees

to take over.

CHAPTER 4. DESIGN 88

4.2.2 Model

This section discusses the properties of the system-wide and user-wide organisation

models.

4.2.2.1 System-wide

The vast majority of file systems, being centralised or distributed, expose a single,

often hierarchical, namespace to the users such that everyone experiences the same

organisation of directories and files. Such file systems are therefore said to make

use of a system-wide organisation model because the organisation is applied at the

system level, independently of the users’ preferences. Note that such a model is

being used by a variety of other systems, from the DNS (Domain Name System)

[Com85, MD88] to Wikipedia.

Considering such a model implies numerous obvious advantages but also unexpected

issues, especially in the context of peer-to-peer networks. Indeed, as mentioned in

Section 3.4, peer-to-peer file systems store data blocks in an underlying distributed

hash table. The particularity of such file systems compared to centralised ones is

that every object is independent of the others. As such, the link existing between

a file and the directory that references it is more logical than physical. While a

malicious user would be unable to render a centralised file system inconsistent, in a

peer-to-peer file system, nothing can prevent a user from destroying a file without

updating its parent directory for instance. Should such a scenario occur, users would

be able to browse the directory normally, but trying to access the file by fetching

the Object block would inevitably result in a system failure.

Noteworthy is that an honest user deleting one of her files may end up in the same

situation, because not authorised to update the parent directory. Indeed, since the

access control model the presented file system relies upon is discretionary, a user must

have the permission to destroy the file and its data blocks from the distributed hash

table along with the right to update the file’s parent directory. Besides, coherency

within an object cannot be guaranted either. Indeed, a malicious user legitimately

updating a directory Object block may deliberately build the directory entries in a

way which does not comply with the file system’s format. Thus, any user reading

this directory would be incapable of understanding its content. Such an attack

is obviously inconceivable in a centralised or distributed file system because every

request is verified and applied by an authoritative entity.

Therefore, although consistency is naturally expected from file systems, it turns

out that such a property is unachievable in file systems relying on a system-wide

organisation model and devoid of any authoritative entity for controlling that every

update complies with the system’s format. Note however that assuming that most

CHAPTER 4. DESIGN 89

users follow the protocols, consistency should be maintained most of the time and

manually fixed when violated.

Finally, since peer-to-peer file systems cannot rely on a superuser, such systems

suffer from the issues discussed in Section 4.2.1 such as the transfer of ownership,

the permissions on the root directory etc.

4.2.2.2 User-wide

People have different cultures, backgrounds and tastes and therefore have different

ways of naming and organising information. For instance, one may organise music

according to the genre followed by the band name while another may ignore the

genre classification.

The user-wide organisation model decouples the data objects from the organisation

objects by enabling users to create their own view. A view is composed of organ-

isation objects referencing data objects. In the context of file systems, a view is

represented by a hierarchy of directories, every directory being stored in an Object

block. This way, a user can name and organise the file system content, i.e. the

data objects, according to its preferences. Note that such a model implies that the

organisation objects, i.e. the directories, are controlled by their respective owners

very much like data objects. Indeed, since both directories and files are stored in

Object blocks, access to such objects can be restricted or shared. Thus, one user can

imagine sharing its view with another user. Besides, the application could enable

users to use a view for some parts of the namespace and switch to another view for

a specific subset of the hierarchy. For example, one might want to use an official

view most of the time but switch to the view provided by Google when it comes to

the directory /company/google/ as information is believed to be better organised

in this specialised view. This feature is similar to the way stackable file systems

[HP94, PPD+95, WDG+06] use union mounts in order to alter the namespace ex-

posed to users according to the context.

In such a user-wide model, views evolve independently from the data. Besides, file

objects are no longer attached to a single hierarchy as they were in the system-wide

model. Therefore, a user deleting an object would not be able to update the various

directories referencing it as nobody can know the views involving this object. Note

however that the user may update views she owns and/or has agreed to maintain,

assuming she has the proper credentials. Therefore, a user-wide file system must be

considered as residing in a perpetual inconsistent state, as nothing can guarantee

otherwise.

Nonetheless, it is interesting to notice that the WWW (World Wide Web) has been

built on the same model in which pages evolved independently of the other pages ref-

CHAPTER 4. DESIGN 90

erencing them through hyperlinks. Therefore, whenever a page is moved or deleted,

none of the pages referencing it is updated. Instead the hyperlink becomes irrele-

vant as pointing to an invalid location, the various references being fixed over time

as webmasters notice and correct the problem.

Although this model has performed extremely well for the WWW, providing users

the liberty to express themselves ouside any control, the inconsistency drawback

resulting from the many references pointing to invalid locations may be less suitable

to file systems than it has been to the WWW. Indeed, by relying on such a model

in a file system, users may often end up seeing their accesses failing because of an

invalid address. Such a behaviour may irritate the user especially because using the

local file system has accustomed end-users to reliability and efficiency.

Noteworthy is that the issues mentioned in Section 4.2.1 are inherent to the system-

wide model and must therefore be reconsidered for the user-wide model. For in-

stance, system-wide models suffer from the fact that the root directory is critical as

being the base of the hierarhical organisation. In user-wide models however, multiple

root directories exist, one for every view. The access permissions of the view’s root

directory are directly controlled by the view’s owner such that a user disagreeing

with the way the view is managed can decide to use another view. Unfortunately,

the issues related to the transfer of object ownership as well as the necessity for

searching the database of users and groups remain.

? ?

?

Considering both models, it is highly probable that a user-wide organisation model

would perform better in terms of the acceptance and expansion of such a large-

scale system very much like the constraint-free hyperlinks enabled users to express

themselves through Web pages. However, as mentioned above, such a model may

not be suitable for the file system context as users are expecting reliability and

efficiency and would probably be irritated by the lack of consistency.

Although no model seems to perfectly fit with the required properties defined in

Chapter 3, it is interesting to note that the issues discussed throughout Section

4.2.1 are relevant to both models, with the exeption of the root directory. Further-

more, one may notice that both the root directory and the users/groups inventory

exhibit an identical flaw: the impossibility to prevent rash modifications should the

permission be granted to everyone.

CHAPTER 4. DESIGN 91

The remainder of this section therefore focuses on providing mechanisms for (i)

preventing impulsive object modifications (ii) transferring object ownership.

4.2.3 Objectives

The objectives regarding the design of an administration scheme are closely related

to the access control scheme’s defined in Section 4.1.1.

∇1 First, the environment fundamental properties defined in Chapter 3 must be

respected. These include decentralisation, scalability, untrustworthiness and

symmetry but also efficiency through quorum protocols, non-connectivity due

to churn though this property has been refined in Section 4.1.3;

∇2 The set of users allowed to moderate administrative tasks must be modifiable.

Note however that such an operation also constitutes an administrative task

as nobody should be allowed to suddenly reform this set without the consent

of several other users;

∇3 As for the users and groups having been granted permission on an object, the

set of moderators must be consultable. This is required should a user need to

complain for instance;

∇4 The scheme should not require users to store an excessive amount of informa-

tion related to administrative tasks; and

∇7 Finally, moderators should be made accountable for the administrative tasks

they approve so that their position can be challenged should they fail to honour

their duty for example.

Any administration scheme candidate will be considered unsuitable if violating at

least one of these objectives. As in Section 4.1, the reader will be able to refer

himself to the definitions summary located at the bottom of every page.

4.2.4 Scheme

This section describes the administration scheme which is composed of (i) a commu-

nity mechanism enabling users to request administrative tasks and (ii) a ownership

user-to-user protocol providing object owners the possibility to transfer their own-

ership to another user.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 92

4.2.4.1 Community

The community mechanism consists in the introduction of a physical block known

as the TKB (Table Key Block). TKBs differ from OKBs or even PKBs in the sense

that such blocks are neither owned nor administered by a single user, the block’s

owner, but instead by a set of users referred to as the table of knights. The idea

behind the presented mechanism is to require users wishing to update a block to

acquire the approval from a majority of knights.

The scheme has been designed in order to respect the various properties related to

the given environment, defined in Section 4.2.3. For instance, the table of knights

has been introduced for scalability purposes. Indeed, while the number of users

populating peer-to-peer networks can be assumed to be high, many of those users

may also be considered dead i.e. users which will no longer connect to the system.

Therefore, designing an administration scheme requiring a user to acquire the ap-

proval from the majority of all the users would be impractical but also extremely

inefficient. In order to comply with ∇1, the scheme thus requires an extremely small

set of users—i.e. compared to the total number of users—to contribute further to

the system by moderating a specific object’s updates. Noteworthy is that, when

coupled with the access control mechanism provided by the Object logical block,

administrative requests can be limited to some specific users by relying on the per-

missions field. The ability to precisely control which users are granted the permission

to request an operation from the table of knights can help limit the administrative

load put on the users acting as knights.

According to the modifications introduced by the community mechanism, the per-

missions must be refined in order to comply with the semantics of TKBs. Indeed,

the permissions described so far have been used to grant a user or group either

the right to read or write data. The table of knights introduces several subtleties

that deserve special attention. Firstly, the write permission is irrelevant to such

blocks as any operation involving the block’s modification is inherently prohibited;

any update must be approved by the knights. Therefore, instead of the permission

to write the object’s data, users are granted the permission to request an update

to the table of knights. Secondly, an Object logical block is composed of multiple

sections. While the data section could be updated by any user having been granted,

directly or indirectly, the write permission, the meta section was administered by

the block’s owner. However, TKBs are devoid of the notion of owner, concept which

has been replaced by the table of knights. Similarly, the table of knights itself must

be modifiable, as stipulated by ∇2. Indeed, some knights may wish to leave their

position, others may be evicted by the community while users may volunteer to

join. Updating the metadata and the table of knights both represent operations

that, as any other modification, must be approved by the knights. Therefore, the

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 93

permissions field should reflect these extensions through the addition of the gov-

ern—the administration of the object’s metadata—and elect—the administration

of the table’s composition—permissions. Thirdly, the TKB physical block could be

used by other logical blocks such as Groups for instance. Such a construct would

enable a set of users to cooperatively manage a group, a characteristic which should

be very much appreciated by communities. Unfortunately, no permission has been

associated with such operations because the group owner was the only user allowed

to administrate the Group block. Additional permissions should thus be introduced

in order to provide group members the right to request the modification of the

Group’s table of knights but also the list of members. Since group members could

theoretically be indirectly granted the permission to request the modification of the

metadata and table of knights associated with an Object, permissions to update the

Object and the Group blocks should be made distinguishable. Therefore, a group

member could be granted the manage permission to modify the Group’s table of

knights and the edit permission to modify the Group’s data i.e. the members and

their permissions. Note that the sub-groups recorded in the Members block could

also be granted those permissions. In addition to these permissions, every group

member can be indirectly granted the elect, govern, read and/or write permissions

on an Object. Table 4.1 summarises the permissions which can be granted to users

according to their role, i.e. lord or vassal, in the context of TKBs. These extensions

demonstrate the flexibility and adaptability of the access control scheme designed

in Section 4.1.

Figure 4.8 depicts the internal organisation of a TKB physical block. One might

notice that unlike most of the physical blocks presented in Section 4.1.5, TKBs

embed a seed. While the address of mutable blocks such as PKBs and OKBs is

computed by applying a one-way function on the public key of the block’s key pair,

the address of a TKB is computed by applying a one-way function on a randomly

generated integer: β.seed. Indeed, since TKBs are devoid of any owner, there is

no need to generate a cryptographic key pair. Additionally, the table of knights

is included in the block, hence complying with ∇3. Note that, as for PKBs and

OKBs, the data section contains a version number as well as a signature issued by

the author whose public key is also included in the block: β.Kauthor. Finally, and

in order to comply with ∇7, every acquired knight’s vote is attached to the block

so that anyone can verify the block’s validity: (i) every vote is unique and relates

to this block (ii) a majority of votes has been reached. Noteworthy is that every

vote contains an index to the related knight in β.table.board along with a signature

which has been applied on (i) the block’s identity i.e. the seed (ii) the table (iii) the

author’s public key and (iv) the data signature. Such inclusions prevent votes from

being forged or re-used in other contexts i.e. for another block, another operation

etc.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 94

K
user

K
user

[...]

user
K

TKB
α

table

seed

#i

board

version

#2

votes

signature

signature

knight

[...]

K
author

data

version

signature

[...]

knight

Figure 4.8: The representation of a TKB

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 95

Subject Permission Description

Lord

elect request a modification of the Object ’s table of knights

govern request a modification of the Object ’s metadata

read read the Object ’s data

write request a modification of the Object ’s data

Vassal

elect request a modification of the Object ’s table of knights

govern request a modification of the Object ’s metadata

read read the Object ’s data

write request a modification of the Object ’s data

manage request a modification of the Group’s table of knights

edit request a modification of the Group’s composition

Table 4.1: A summary of the permissions in the file system

Algorithms 20, 21 and 22 detail the set-up, seal and validation processes of TKBs,

respectively.

Require: (Kuser, kuser), the user’s personal key pair

1. β.seed← generate integer

2. β.table.board←
{
Kuser

}
3. β.table.version← 0

4. β.data.version← 0

5. α← h(β.seed)

6. return α

Algorithm 20: Setup
TKB

(β) −→ α

Require: (Kuser, kuser), the user’s personal key pair

1. β.data.signature← h(β.]2)
˜kuser

Algorithm 21: Seal
TKB

(α, β)

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 96

1. if α 6= h(β.seed) then

2. error “the address does not match the block”

3. end if

4. if |β.votes| <
⌈
|β.table.board|

2

⌉
then

5. error “the table’s majority has not been acquired”

6. end if

7. for all ι ∈
{

1, ..., |β.votes|
}

do

8. Kknight ← β.table.board[β.votes[ι].knight]

9. if β.votes[ι].signatureK̃knight 6= h(β.]i) then

10. error “the vote signature is invalid”

11. end if

12. end for

13. if β.data.signature
˜β.Kauthor 6= h(β.]2) then

14. error “the data signature is invalid”

15. end if

Algorithm 22: Validate[client]
TKB

(α, β) — client side

One may have noticed that, unlike mutable blocks such as PKBs and OKBs, TKBs

contain a section, the table, which is not protected through the use of a cryptographic

signature. Indeed, unlike other mutable blocks which are administered by a single

and static authority i.e. the block’s owner, TKBs’ authority is represented by the

table of knights whose composition evolves over time. Since no static relation exists

between the block’s address and its table of knights, the self-certification property

is violated. As a consequence, the table’s integrity and authenticity cannot be

guaranteed, implying that anyone can theoretically modify the table’s composition.

Thus, a client could submit a version of the block in which the table’s composition

has been replaced. The client would transfer the block to a write quorum of storage

nodes which would verify the block’s validity. According to the table of knights

embedded in the block, the votes prove the knights’ approval since (i) every vote is

valid and (ii) a majority of votes has been provided. Storage nodes, considering the

block as legitimate, would therefore agree on storing the data, hence overwriting the

previous version.

Let us consider a user updating an object from version νi to νi+1. In order for the

modification to be considered valid, the user has to attach votes showing evidence

that the knights at νi approved this modification. However, since the operation

relates to the modification of the data, the table is not, in theory, being modified

so that the tables at νi and νi+1 are identitical. Therefore, the votes issued by the

knights at νi and attached to the block νi+1 can legitimately be checked against

the table of knights at νi+1. Although the semantics regarding data modifications

conform to the administration scheme’s objectives, the operation consisting in up-

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 97

dating the table’s composition violates ∇2, as illustrated by the next scenario. A

user wanting to update the table of knights’ composition must provide evidence

that the current table of knights at νi approves the future composition which will

be attached to the instance νi+1. Unfortunately, the validation process, detailed in

Algorithm 22, checks the votes against the embedded table of knights i.e. both at

νi+1. The validation process can therefore be considered as fundamentally flawed

when it comes to verifying a block whose table of knights has been modified.

Besides, should the Validate[client]
TKB

(α, β) routine be revised to check every vote

in νi+1 against the table of knights at νi, the symmetry property2 would be violated.

Indeed, since clients cannot have access to the current and past versions of a given

block, this verification step could not be performed on the client-side. Thus, as

detailed in Section 3.4, clients would have no choice but to trust the servers, hence

inevitably violating the untrustworthiness property.

Although the system has been designed around quorum algorithms because such

algorithms exhibit better performances than their agreement counterpart, such algo-

rithms appear impotent regarding this issue. Indeed, quorum algorithms have shown

to perform well in the given environment because the validation process could detect

any illegitimate block instance. As such, by acquiring a read quorum composed of

2γ+ 1 instances, the potential γ invalid blocks can be identified and thus discarded,

leaving the client with γ + 1 valid blocks among which at least one instance is the

latest version i.e. with the highest version number. However, it has been previously

shown that, since the table of knights cannot be statically protected through self-

certification, valid instances of TKBs cannot be distinguished from illegitimate ones.

The storage algorithms must therefore be reconsidered in order to rely on consensus,

the only paradigm ensuring the client to retrieve the latest valid non-self-certified

instance in a Byzantine environment.

The system’s protocols must be modified for the specific purpose of TKBs to either

(i) rely on agreement algorithms such as BFT [CL99], Paxos [Lam98] etc. or (ii) rely

on specialised quorum algorithms by breaking the symmetry property, as explained

in Section 3.4. On the one hand, agreement protocols would provide the flexibility

required to handle advanced functionalities in which case the set of storage nodes Ω

would run a Byzantine protocol ensuring that every client’s request is processed by

the servers until a consensus is reached. On the other hand, relying exclusively on

quorum algorithms would avoid developers having to maintain the source code for

both agreement and quorum algorithms. For the sake of coherency within the system

but also because agreement protocols are known to be expensive, quorum algorithms

will be specialised for the purpose of TKBs. Another argument in favour of quorum

2... peer-to-peer nodes are considered equally unprivileged so that everything performed by one

node could also be performed by another one

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 98

algorithms is that symmetry has never been completely respected. Indeed, although

it has never been discussed in detail, every storage node receiving a mutable block to

store verifies the block’s validity but also checks that the embedded version numbers

are increasing in a strict monotonic way. Obviously, this validation step can only

be performed on the server-side since, unlike clients, servers can access both the

current and future versions of a block. Note however that although this additional

verification step violates the symmetry property, it is not fundamentally required

for ensuring the system’s safety. Indeed, assuming that version numbers are not

verified, block versions could increase in a non-monotonic way but this would not

prevent clients from retrieving the version with the highest number. Similarly, clients

could submit blocks with version numbers being lower than the current ones. Such

scenarios are especially likely to occur whenever different clients concurrently update

the same block. Therefore a client updating a block from version νi to νi+1 could

see her operation rejected because the block has been concurrently updated, say

thrice, to version νi+3 before receiving the client’s update. Without such a version

verification, a client could believe that her update has been applied while, in fact,

it does not have the highest version number. The submitted instance will therefore

never be used leading to the loss of the modifications.

Let us consider another scenario in which the storage nodes do break the symmetry

property by verifying the version νi+1’s votes against the current table of knights i.e.

which is located in version νi. Let us assume that the client wishes the addition of

five knights to the block’s table for a total of ten knights. The client, by requesting

the current knights, starts by acquiring a majority of three votes. The votes are then

included in the new block which embeds the future table composed of ten knights.

The storage nodes receiving this block verify that (i) a majority of votes has been

reached according to the table of knights at νi—i.e. three votes out of five—and

(ii) the embedded votes have been issued by the knights of this same table. Since,

in this scenario, both conditions have been met, storage nodes consider the block

as valid and therefore accept it. Let us recall that, as shown in Algorithm 22, the

client’s verification procedure checks the attached votes against the embedded table

of knights. Therefore, a client fetching and verifying the block νi+1 would reject

it because the three votes attached to the block have been issued by the knights

at νi and therefore do not match the embedded table which is composed of ten

knights. The votes provided for modifying the table of knights should therefore be

distinguished from the embedded votes.

The protocol for updating TKBs must therefore be slightly improved as detailed

next. Every client wanting to update a TKB, being the data or the table of knights,

must acquire a majority of votes from the knights at νi along with a majority from

the future knights i.e. at νi+1. Then, the client builds the new block by including

the new table along with the votes issued by these future knights. Finally, the client

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 99

sends to the storage nodes both the votes issued by the current knights and the

new block. Every storage node receiving the block starts by checking the additional

votes against the table composition at νi—hence proving that the modification has

been approved by the current knights—before verifying the block’s validity: (i) a

majority of votes has been reached and (ii) the attached votes have been issued by

the knights referenced in the block’s table.

Algorithm 23 illustrates the validation process from the server’s perspective. Note

that the verifications regarding the monotonically increasing version numbers are

ignored for the sake of simplicity as it has been throughout this chapter. This

verification procedure is composed of two steps. First, the additional votes are

checked against the table of knights referenced in the current version of the block,

hence proving that the current knights approved the modification. Then, the given

block is validated by following the client verification procedure: the votes are checked

against the embedded table of knights and the data signature is finally verified.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 100

Require: ϑ, the current version of the α block

ε, the set of votes provided by the client and issued by the knights in ϑ

1. if |ε| <
⌈
|ϑ.table.board|

2

⌉
then

2. error “the table’s majority has not been acquired”

3. end if

4. for all ι ∈
{

1, ..., |ε|
}

do

5. Kknight ← ϑ.table.board[ε[ι].knight]

6. if ε[ι].signatureK̃knight 6= h(β.]i) then

7. error “the vote signature is invalid”

8. end if

9. end for

10. if α 6= h(β.seed) then

11. error “the address does not match the block”

12. end if

13. if |β.votes| <
⌈
|β.table.board|

2

⌉
then

14. error “the table’s majority has not been acquired”

15. end if

16. for all ι ∈
{

1, ..., |β.votes|
}

do

17. Kknight ← β.table.board[β.votes[ι].knight]

18. if β.votes[ι].signatureK̃knight 6= h(β.]i) then

19. error “the vote signature is invalid”

20. end if

21. end for

22. if β.data.signature
˜β.Kauthor 6= h(β.]2) then

23. error “the data signature is invalid”

24. end if

Algorithm 23: Validate[server]
TKB

(α, β) — server side

Since TKBs do not comply with the self-certification property, the quorums must

be adapted so as to behave in a consensus way. Indeed, rather than relying on the

blocks’ self-certification property, the TKB -specific quorum algorithm relies on the

fact that up to γ replicas can be illegitimate such that the valid and latest version

can be identified by gathering at least γ + 1 identical instances. The quorums are

thus redefined in order to reflect this paradigm. Firstly, a client wishing to retrieve

the block would need to acquire a read quorum composed of 2γ + 1 so that it is

guaranteed to identify γ + 1 identical instances. Secondly, in order to ensure that

every storage node provides the block’s latest version, a modification requires the

client to acquire a write quorum composed of |Ω| = 3γ + 1 nodes.

Figure 4.9 depicts a scenario in which two Byzantine nodes collude in order to

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 101

mislead the clients. At first, the storage nodes are consistent, each one storing

version 4 except for both Byzantine nodes which answer every request with a forged

block embedding an illegal table of knights granting them full privileges. Then,

after having received the authorisation from the table of knights, a client submits

an update by acquiring a write quorum composed of the seven nodes, though the

Byzantine nodes ignore the update. Finally, another client acquires a read quorum,

receiving three version 5 and two illegal version 9. Following the protocol, the client

isolates the γ + 1 identical instances which happen to be the block’s latest and

legitimate version 5.

4

44

4

55

5

5

55

54 5

5

5

x

x

9 9 99 9 9

(i) (ii) (iii)

write read

non−Byzantine node

Byzantine node

quorum

Figure 4.9: A scenario illustrating the TKB -specific quorum algorithm

Figure 4.10 illustrates the internal organisation of an Object logical block built upon

a TKB. The Object benefits from the community features provided by the TKB such

that users and groups can be granted the permission to read the data; request a data

modification i.e. write; request a metadata modification i.e. govern or request the

modification of the table of knights i.e. elect. Apart from these permission exten-

sions, the Object block behaves as expected except that, obviously, every request

requires the user to acquire the table of knights’ consent through the voting process.

The internal organisation differences between OKB -based and TKB -based Object

blocks are twofold. First, let us recall that, within the context of OKB -based Ob-

jects, a vassal wishing to update the block needs to request a lord to certify that the

vassal had been granted the proper permission. In addition, TKBs require users up-

dating the block to request knights to certify that the modification conforms to the

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 102

community’s interests. Thus, TKB -based Object blocks theoretically require users

to request both a lord and a majority of knights. Since the critical component of

this process lies in users’ connectivity, requiring users to contact a lord would impact

the performance since knights, as the ultimate authority, could perform both certifi-

cations. The TKB -based Object ’s internal structure therefore no longer embeds an

author section containing the index of the lord along with a potential voucher. In-

stead, the user updating the data includes her public key in β.Kauthor while knights

verify that every user requesting an operation has been granted, directly or indi-

rectly, the proper permissions. Second, since TKBs are devoid of the notion of

owner, the TKB -based Object ’s metadata can be updated by any user having been

granted the govern permission. Thus, as for data modifications, a user wanting to

update the metadata, including the access permissions, must acquire the authorisa-

tion from the table of knights. In addition, assuming the table of knights approved

the update, the user must record her public key in the field β.Kgovernor.

Noteworthy is that the entries of the table of knights do not contain a permissions

field. Therefore, in order to be able to perform operations as other users, users acting

as knights must also be recorded in the Access block, directly as lords or indirectly

through group memberships as vassals. Interestingly and quite ironically, knights

may not be granted the read permission though they are requested to approve every

data modification.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 103

key

block
α

CHB

α
block

key

[...]

#i

CHB
Access

α

permissions

token

K
user

permissions

token

#4

group

[...]

K
user

K
user

K
user

[...]

votes

signature

signature

knight

knight

fingerprint

version

signature

meta

data

#2

K
governor

author
K

[...]

version

board

Object
α

table

seed

TKB

α
access

version

signature

#3

Contents

contents
α

Figure 4.10: The representation of a TKB -based Object block

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 104

Algorithm 24 details the set-up process while Algorithm 27 describes the client-side

validation processes. Note that the server-side validation process is not provided

as a combination of Algorithm 23 and Algorithm 27. Also, Algorithm 25 lists the

sealing steps for the TKB -based Object ’s data section while Algorithm 26 details

the meta section’s.

Require: (Kuser, kuser), the user’s personal key pair

1. β.seed← generate integer

2. β.table.board←
{
Kuser

}
3. β.table.version← 0

4. β.data.version← 0

5. β.meta.version← 0

6. α← h(β.seed)

7. return α

Algorithm 24: SetupObject
TKB

(β) −→ α

Require: (Kuser, kuser), the user’s personal key pair

1. β.data.signature← h(β.]2)
˜kuser

Algorithm 25: SealObject[data]
TKB

(α, β)

Require: (Kuser, kuser), the user’s personal key pair

1. if β.meta.αaccess =⊥ then

2. ~← h(β.]3)

3. else

4. χ← Get(β.meta.αaccess)

5. ~← h(β.]3|χ.]4)

6. end if

7. β.meta.signature← ~ ˜kuser
Algorithm 26: SealObject[meta]

TKB

(α, β)

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 105

1. if α 6= h(β.seed) then

2. error “the address does not match the block”

3. end if

4. if |β.votes| <
⌈
|β.table.board|

2

⌉
then

5. error “the table’s majority has not been acquired”

6. end if

7. for all ι ∈
{

1, ..., |β.votes|
}

do

8. Kknight ← β.table.board[β.votes[ι].knight]

9. if β.votes[ι].signatureK̃knight 6= h(β.]i) then

10. error “the vote signature is invalid”

11. end if

12. end for

13. if β.data.signature
˜β.Kauthor 6= h(β.]2) then

14. error “the data signature is invalid”

15. end if

16. if β.meta.αaccess =⊥ then

17. ~← h(β.]3)

18. else

19. χ← Get(β.meta.αaccess)

20. ~← h(β.]3|χ.]4)

21. end if

22. if β.meta.signature
˜β.Kgovernor 6= ~ then

23. error “the meta signature is invalid”

24. end if

Algorithm 27: Validate[client]Object
TKB

(α, β) — client side

Finally, Figure 4.11 details the organisation of a TKB -based Group block demon-

strating how TKBs can be adapted to a variety of logical blocks. The set-up, seal

and validation processes are not provided as identical to the TKB ’s.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 106

K
user

K
user

[...]

user
K

TKB
α

table

seed

#i

board

version

votes

signature

signature

knight

[...]

K
author

data

knight

Group

name

description

α
members

version

signature

#2

α
group

Members
CHB

permissions

permissions

K
user

K

permissions

user

[...]

Figure 4.11: The representation of an TKB -based Group block

4.2.4.2 Ownership

The other mechanism included in the administration scheme focuses on providing

users the possibility to transfer their ownership to another user, should this user

agree to take over this responsibility.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 107

Interestingly, the previously described TKB physical block seems to provide the

ideal construct for this functionality. Indeed, every Object could be built upon a

TKB such that the table of knights would be composed of a single user, the block’s

owner. Unlike OKB -based Objects, such blocks would not be statically bound to

their owner since the table of knights can evolve over time. This characteristic makes

the transfer of ownership achievable through the sole modification of the table of

knights’ composition.

Although this model would provide the required functionality, every file system

object whose ownership may eventually be transferred would have to be built on

such a physical block. Unfortunately, such blocks may perform extremely poorly

depending on the owner’s connectivity. Indeed, since every block modification must

be approved by the table of knights, which in this case is composed of a single

user, users wanting to update the block may fail to do so because of the owner’s

unavailability to validate the operation.

A solution could be to introduce another physical block benefiting from both OKBs’

and TKBs’ advantages. Such a physical block would embed a table of knights for

moderating operations regarding the modifications of the block’s metadata including

the composition of the table of knights. However, the data modifications would not

require knights’ approval. Therefore, such a physical block would perform exactly

as OKBs though relying on a table of knights. Besides, such a model, applied

to Object logical blocks, could benefit from the lords’ connectivity, as discussed in

Sections 4.1.3 & 4.1.7.

Unfortunately, while this model implies the introduction of another physical block,

hence increasing the system’s complexity, it also fails to fulfill the objective: the

future owner must accept to take over the ownership. Since the future owner must

be included in the process, a user-to-user protocol is absolutely necessary.

The remainder details an extremely simple user-to-user protocol which assumes that

every file system object is stored in an OKB physical block, except for community

objects such as the root directory, the users inventory and so forth which would rely

on TKBs.

Since OKBs are bound to their respective owners, transferring the ownership implies

creating a new OKB. However, although the content of the Object block must be

cloned, the Contents block, the Access block as well as the data blocks can be re-

used. As such, the Object block’s content is copied into another Object while the

new owner’s public key is inserted and the metadata section’s signature is re-issued,

by the new owner. This straightforward process is therefore very efficient: (i) a

single key pair must be generated (ii) a single block must be cloned and (iii) two

cryptographic signatures must be recomputed.

Noteworthy is that this method implies several additional actions to be performed.

∇1: environment, ∇2: modification, ∇3: consultation, ∇4: space, ∇5: flexibility, ∇6: efficiency, ∇7: accountability

CHAPTER 4. DESIGN 108

Firstly, the old Object block must be deleted though the blocks it references such

as the Access, Contents and data blocks must not. Note however that a garbage

collection mechanism would not require the original owner to do anything as the

system would detect the block as no longer used and it would therefore be automat-

ically swept out. Secondly, every directory referencing the old Object block must be

updated with the address of the new Object.

The protocol, detailed below, enables a user to transfer the ownership of the block

identified by its address α to another user µ.

1. First, the Object ’s current owner sends the message 〈transfer, α, κK̃µ〉 to the

potentially future owner µ.

Note that κ, the data encryption key, is provided so that the future owner can

access the data. However, the key is encrypted with the µ user’s public key in

order to ensure security.

2. The user receiving such a message decides whether or not to accept the own-

ership. If so, the block is cloned through the creation of another Object block

and updated accordingly.

Then, the message 〈accept, α, ε〉 is sent back to the original owner. The

message includes ε, the address of the cloned Object block.

3. Finally, the original owner, having received the accept message, updates every

directory referencing the Object block with the new address ε.

This protocol is particularly interesting because it can be applied to every physical

block. Thus, a user could decide to transfer the ownership not to another user

but instead to a community so that a TKB would be created to replace the OKB.

Similarly, a community could decide that the object no longer needs several users

to monitor the object but instead that a single user should be made owner, hence

transforming a TKB into an OKB.

4.2.5 Algorithms

This section provides the reader a complete set of algorithms for manipulating TKB -

based Object and Group logical blocks.

� Elect(α, θ)

� Govern(α, ψ)

� Read(α, λ) −→ δ

CHAPTER 4. DESIGN 109

� Write(α, λ, δ)

� Manage(α, θ)

� Edit(α, ψ)

� Transfer(α,Kuser)

Note that, as described earlier, every TKB -related Put() request must provide both

the block to store and a set of votes issued by the current knights. This action is

symbolised next by the | operator which concatenates the block with the additional

votes so that every storage node can extract the necessary information and perform

the server-specific verification process.

Although every algorithm described below makes use of timeouts, no information is

given regarding the mechanism to handle such timeouts. The reader should consider

that clients are supposed to retry the operation later and eventually return an error

after a certain number of successive failures.

Elect

The Elect(α, θ) routine takes the address α of an Object object along with a set of

knights θ and requests that the table’s composition be changed. The elect permission

authorising users to perform this operation can be granted to anyone, directly in

the Access block associated with the Object or indirectly through a chain of group

memberships, assuming that every group of the chain is granted the elect permission

along with the user.

Algorithm 28 illustrates the client’s process which consists in acquiring votes from

the current knights in order to prove the storage nodes that the operation has been

approved but also from the future knights in order to build a valid block.

CHAPTER 4. DESIGN 110

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. for all φ ∈ β.table.board do

3. request a vote from knight φ by sending the message 〈elect, α,Kuser, θ〉
4. end for

5. ε← wait until
⌈
|β.table.board|

2

⌉
votes have been received, or timeout

6. for all φ ∈ θ do

7. request a vote from knight φ by sending the message 〈elect, α,Kuser, θ〉
8. end for

9. υ ← wait until
⌈
|θ|
2

⌉
votes have been received, or timeout

10. β.votes← υ

11. β.table.board← θ

12. β.table.version← β.table.version+ 1

13. SealObject
TKB

(α, β)

14. Put(α, β|ε) – the | operator designates concatenation

Algorithm 28: Elect(α, θ)

Govern

The Govern(α, ψ) routine enables any user having been granted the govern permis-

sion to update the Object ’s metadata, including the access control list in the Access

block.

The function takes the address of the Object block along with a set of modifications

to apply on the metadata.

CHAPTER 4. DESIGN 111

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. for all φ ∈ β.table.board do

3. request a vote from knight φ by sending the message 〈govern, α,Kuser, ψ〉
4. end for

5. υ ← wait until
⌈
|β.table.board|

2

⌉
votes have been received, or timeout

6. β.votes← υ

7. β.meta.version← β.meta.version+ 1

8. apply the set of modifications ψ

9. for all (ε, ζ) such that ζ is a new immutable block do

10. Seal
CHB

(ε, ζ)

11. Put(ε, ζ)

12. end for

13. SealObject[meta]
TKB

(α, β)

14. Put(α, β|υ) – the | operator designates concatenation

Algorithm 29: Govern(α, ψ)

Read

The Read(α, λ, δ) method is very similar to the OKB -based Object-specific Algorithm

18 except that there is no special case for the owner.

Let us recall that vassals are no longer required to acquire the validation of their

modification from a lord as it was with OKBs. Instead, in the context of TKBs,

the knights perform this verification for every modification, no matter the role of

the author: knight, lord or vassal. However, vassals must still contact a lord when

it comes to reading the data in order to retrieve the key required to decrypt the

Object ’s Contents block.

CHAPTER 4. DESIGN 112

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. χ← Get(β.meta.αaccess)

3. if ∃ι : Kuser = χ[ι].Kuser ∀ι ∈
{

1, ..., |χ|
}

then

4. if read /∈ χ[ι].permissions then

5. error “the lord does not have the read permission”

6. end if

7. κ← χ[ι].token
˜kuser

8. else

9. Ξ←
{
χ[ι].Kuser : read ∈ χ[ι].permissions ∀ι ∈

{
1, ..., |χ|

}}
10. ν ← Locate(Ξ)

11. κ← request user ν for the key by sending the message 〈read, α,Kuser〉
12. end if

13. if h(κ) 6= β.data.fingerprint then

14. error “the key does not match the fingerprint”

15. end if

16. σ ← Get(β.data.αcontents)

17. ξ ← decrypt σ with the key κ

18. δ ← read data from ξ at location λ

19. return δ

Algorithm 30: Read(α, λ) −→ δ

Write

The Write(α, λ, δ) routine provides authorised users the possibility to request the

modification of the Object ’s data. Unlike OKB -based Objects, both lords and vassals

must acquire the approval from the table of knights.

As for elect, govern and read, the write permission can be granted to anyone, in-

cluding group members.

CHAPTER 4. DESIGN 113

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. χ← Get(β.meta.αaccess)

3. for all φ ∈ β.table.board do

4. request a vote from knight φ by sending the message 〈write, α,Kuser, δ〉
5. end for

6. υ ← wait until
⌈
|β.table.board|

2

⌉
votes have been received, or timeout

7. β.votes← υ

8. β.data.version← β.data.version+ 1

9. κ← generate cryptographic symmetric key

10. ξ ← write data δ at location λ

11. σ ← encrypt ξ with the key κ

12. β.data.αcontents ← Setup
CHB

(σ)

13. Seal
CHB

(β.data.αcontents, σ)

14. Put(β.data.αcontents, σ)

15. for all ι ∈
{

1, ..., |χ|
}

: read ∈ χ[ι].permissions do

16. χ[ι].token← κ
˜χ[ι].Kuser

17. end for

18. β.data.fingerprint← h(κ)

19. for all (ε, ζ) such that ζ is a new immutable block do

20. Seal
CHB

(ε, ζ)

21. Put(ε, ζ)

22. end for

23. SealObject[data]
TKB

(α, β)

24. Put(α, β|υ) – the | operator designates concatenation

Algorithm 31: Write(α, λ, δ)

Manage

The Manage(α, θ) routine is equivalent to the Elect(α, θ) method in every aspect

except that it operates on a Group block. Note however that this permission cannot

be granted to a user or group in an Access block since the operation is not related

to an Object.

As previously mentioned, distinguishing the manage from the elect permission en-

ables a group member to be given the right to modify the table of knights of both

the user’s Group and an Object the group has been granted the permission to.

CHAPTER 4. DESIGN 114

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. for all φ ∈ β.table.board do

3. request a vote from knight φ by sending the message 〈manage, α,Kuser, θ〉
4. end for

5. ε← wait until
⌈
|β.table.board|

2

⌉
votes have been received, or timeout

6. for all φ ∈ θ do

7. request a vote from knight φ by sending the message 〈elect, α,Kuser, θ〉
8. end for

9. υ ← wait until
⌈
|θ|
2

⌉
votes have been received, or timeout

10. β.votes← υ

11. β.table.board← θ

12. β.table.version← β.table.version+ 1

13. SealGroup
TKB

(α, β)

14. Put(α, β|ε) – the | operator designates concatenation

Algorithm 32: Manage(α, θ)

Edit

The Edit(α, ψ) routine takes the address of a Group block along with a set of

metadata modifications. As for manage, the edit permission can only be granted to

group members, granting them the right to request some modifications, including

the set of members and their permissions.

CHAPTER 4. DESIGN 115

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. for all φ ∈ β.table.board do

3. request a vote from knight φ by sending the message 〈edit, α,Kuser, ψ〉
4. end for

5. υ ← wait until
⌈
|β.table.board|

2

⌉
votes have been received, or timeout

6. β.votes← υ

7. β.data.version← β.data.version+ 1

8. apply the set of modifications ψ

9. for all (ε, ζ) such that ζ is a new immutable block do

10. Seal
CHB

(ε, ζ)

11. Put(ε, ζ)

12. end for

13. SealGroup
TKB

(α, β)

14. Put(α, β|υ) – the | operator designates concatenation

Algorithm 33: Edit(α, ψ)

Transfer

The Transfer(α, µ) routine enables a user owning an OKB -based Object to transfer

her ownership to another user.

The routine takes the address α of an Object block along with the identity µ of the

user to whom the ownership is to be offered.

Require: (Kuser, kuser), the user’s personal key pair

1. β ← Gather(α)

2. if Kuser 6= β.owner.Kowner then

3. error“the owner is the only user authorised to transfer the object’s ownership”

4. end if

5. κ← β.meta.owner.token
˜kuser

6. request user µ to take over by sending the message 〈transfer, α, κ〉
7. wait for message 〈accept, α, ε〉, or timeout

8. update the referencing directories with the address ε

Algorithm 34: Transfer(α, µ)

CHAPTER 4. DESIGN 116

4.2.6 Analysis

The previous sections detailed the design of an administration scheme composed

of a community and ownership mechanism. Although the community mechanism

enables objects to be managed with great flexibility, it also introduces numerous

inconveniences which are discussed below.

The TKB -specialized quorums have been optimised in order to prioritise reads over

writes. Firstly, readings have been assumed to be more common than writings. Al-

though this assumption seems fair, some specific file systems may wish to optimise

the file system the other way around. Fortunately, quorum algorithms are highly

adaptable and could therefore be optimised for writings: write quorums would re-

quire the acquisition of 2γ + 1 nodes while read quorums would be made more

expensive with 3γ + 1 nodes. Secondly, TKB physical blocks require every mod-

ification to be approved by acquiring knights’ vote, process which can drastically

delay the operation from taking effect. On the other hand, read operations can

be performed without such approvals though vassals may have to contact another

user to retrieve the key. Therefore, while write operations are prone to large delays,

readings can be performed in real-time, so to speak: in the worst case scenario a

single user’s node must be contacted.

The delay potentially implied by write quorums comes from the fact that the 3γ+ 1

storage nodes may not be operational at the time of the acquisition, hence making

the writing impossible to complete. However, since the underlying network protocols

have been designed with self-adaptability in mind, other nodes will be chosen to take

over the non-responsive ones such that, within a few seconds, a write quorum can be

expected to be acquired. Besides, let us recall that writings require users to request

votes from the table of knights, a process which could take from a few minutes to

several days. Unfortunately, this delay cannot be determined because independent

from the system. Indeed, should a majority of the knights of a single table be

absent for several days, every request made during this period would be delayed

until the knights come back and process the requests manually. As a result, the

delay inherent in write quorums can be ignored in regard to the expensive votes

acquisition process. Finally, note that most implementations purposely delay the

commit of write operations. This technique is often used to buffer successive writes

but also to avoid network communications should a file be created and immediately

destroyed, operations which are very common in the process of compiling source

code files for instance.

For all the reasons exposed above, the TKB -specialized quorum algorithm has been

optimised for reading rather than writing. Note that the common quorum algorithm

used for other mutable blocks such as OKBs and PKBs has not been been optimised

for one or the other type of operation because both can be performed in real-time i.e.

CHAPTER 4. DESIGN 117

without the approval of some authority. However, the file system could very much

be configured for optimising reading for instance, in which case read quorums would

require the acquisition of γ + 1 instances while write quorums would be composed

of 3γ + 1 storage nodes.

The TKB physical block has been designed for the specific purpose of administration

and should not be used otherwise. For instance, it would be inappropriate to build

an entire file system out of TKBs. Indeed, as most of the file system objects are

administered in a discretionary manner [Vog99], Object blocks would embed a table

of knights composed of a single user. Since approval is required to update such

blocks, the connectivity of the knights would thus be absolutely crucial to the system.

Unfortunately, Section 4.1.7 showed that the connectivity of a single user would not

suffice to ensure users the possibility to interact normally with objects.

Although TKBs suffer the exact same connectivity issue as OKBs, both blocks

exhibit different characteristics. Firstly, OKBs require vassals to request a lord in

order to operate on the object, both for reading and writing. TKBs, on the other

hand, require every user wanting to update the block to contact knights while vassals

have to request a lord for the encryption key when it comes to read operations.

Secondly, while a single lord was enough to perform an OKB -related operation, at

least half of the knights must be contacted in order to achieve consensus. Thirdly,

the users acting as an OKB ’s lords were designated by the block’s owner without

their accord. However, every user acting as a TKB ’s knight chooses this position

knowing exactly what it implies. Therefore, knights can be expected to be extremely

well-connected users, probably responding to every administrative request within a

few hours. Besides, the table of knights has been designed to be self-moderated so

that a knight failing to perform her duty could be evicted by the community itself.

The client’s connectivity also plays an important role in the votes acquisition pro-

cess. Assuming that some knights were disconnected at the time the client made its

request, the client should periodically try to resend the request so that every knight

eventually receives it. Besides, the client must be connected to the network in order

to collect the votes from the multiple knights.

To summarise, the TKB physical block is costly to manipulate because (i) the TKB -

specific quorums are expensive (ii) writes may suffer from delay, from a few minutes

to several days (iii) the block contains more information than OKBs, especially

because of the embedded table of knights along with the attached votes and (iv)

TKBs are more expensive to validate than OKBs because every vote includes a

cryptographic signature.

Unfortunately, TKB ’s disposition for inducing delays in write operations drastically

increases concurrency issues. As for OKBs, multiple users may concurrently update

a block from version νi to νi+1 implying that the first one to commit the modifications

CHAPTER 4. DESIGN 118

would automatically render the other ones invalid3. Alas, while the delay between a

block retrieval and the commit of its modifications may approximate several seconds

for OKBs, it could approach several days for TKBs. The probability of such update

collisions are therefore extremely high, especially since TKBs will probably be used

for popular content such as the users inventory, object which should be modified on

a regular basis. Noteworthy is that agreement protocols such as BFT [CL99], Paxos

[Lam98] etc. do not suffer from such a limitation because such algorithms ensure

serializability.

To conclude, although the community mechanism has been designed to prevent

chaos, especially regarding critical objects such as the root directory, the user in-

ventory and so on, the design’s extreme flexibility provides any set of users the

possibility to manage a block in a cooperative manner. Furthermore, it is inter-

esting to notice that Section 4.1.2 discussed the various access control paradigms,

from MAC and DAC to RBAC, discarding both MAC and RBAC models because

they require system-wide definitions. Ironically, the community mechanism designed

throughout this section shows how such system-wide definitions could actually be

achieved through the use of a dedicated community deciding whether or not to cre-

ate new roles or to include a user in a higher clearance level for instance. Note

however that although such paradigms could be designed through this framework,

they would not resolve the fundamental flaws that have been discussed throughout

this chapter.

? ?

?

This chapter focused on designing the key components required in order to build

a peer-to-peer file system. The first section introduced the notion of user but also

presented the design of the Object block abstraction upon which every file system

object can be built. Also, a flexible access control scheme has been integrated,

providing users the means to protect or share information with other users and/or

groups. The second section discussed several organisation models leading to the

conclusion that peer-to-peer file systems, as common centralised file systems, need

to provide an administration scheme. The proposed scheme is composed of both a

community and ownership mechanism enabling communities to manage blocks in a

cooperative manner.

3Let us recall that the version numbers must increase in a strictly monotonic way.

CHAPTER 4. DESIGN 119

The contributions of this design are threefold. Firstly, the access control scheme

enables users to express access restrictions in a flexible way that is unprecedented.

Secondly, this work seems to be the first, as far as the author is aware, to address

the issues related to providing an administration mechanism in such a decentralised

environment. Thirdly, an extremely simple yet efficient user-to-user protocol enables

users to transfer their ownership to other users.

However, the design does not come without trade-offs. First of all, the connectivity

requirement has been loosened against the fundamental properties defined in Chap-

ter 3, in order to achieve the required flexibility. Note however that this constraint

is minor, especially compared to other projects [KRS+03], as the study carried out

throughout Sections 4.1.7 & 4.2.6 showed that a set of five lords with a connectiv-

ity ratio of 0.6 suffices to enable vassals to interact with the object. Finally, the

major drawback lies in the community mechanism’s TKB physical block which, due

to its tendency to large delays, drastically increases the probability of conflicting

concurrent updates.

Chapter 5

Implementation

This chapter details the implementation of the Infinit peer-to-peer file system which

follows the philosophy of WheelFS [Sa07] by focusing on providing the fundamen-

tal functionalities such as access control and administration through a file system

abstraction.

The Infinit prototype is composed of 40, 000 lines of source code written in C++.

The implementation relies on several libraries, mainly the STL (Standard Template

Library) for common system features and the OpenSSL (Open Secure Socket Layer)

for cryptographic capabilities. Besides, since the file system has been written in

C++, the Infinit processes reside in userspace. Therefore, the implementation relies

on FUSE (File System in User Space) [FUS] for forwarding the system calls from

the operating system kernel to a specific Infinit process.

Note that although Infinit provides a completely useable file system abstraction,

many components have been implemented in their simplest possible form in order

to meet the time constraints.

5.1 Representation

The file system prototype relies, as defined in Chapter 3, on a distributed storage

layer which ensures some fundamental network properties such as scalability, dura-

bility, availability and so forth. It is important to note that, as for CFS [DKK+01],

Plutus [KRS+03] or even Pastis [mBPS05], the data being from a file, directory or

else are split into blocks in order to better balance the storage load between the

nodes.

Infinit follows the UFS (UNIX File System) organisation in which every file system

object such as files, directories etc. are represented by an inode, though Infinit uses

a slightly different terminology, detailed next.

120

CHAPTER 5. IMPLEMENTATION 121

File objects are represented through the logical block Object which contains, as

described throughout Chapter 4, the metadata. Also, the Access block contains the

access control rules enabling the object owner to restrict and/or share access to other

users. However, as described in Section 4.1, the access control scheme provides far

more expressivity than the UNIX permissions. Finally, the Contents block contains

references to the set of encrypted Data blocks. The relations between these logical

blocks, forming a so-called file, are illustrated by Figure 5.1.

α
OKB

Object

data

meta

CHB
Contents

Access
CHB

CHB

CHB

Data

Data

1011011000100001
1110011101011111
1011001101110111
1010010000110101
1010000110110101
1011010110110100
1011101101110101
1011011011010110
1101101110110111
1011011000011101
1101101011110101

0110110111101000
1101111101011010
1101110

0110110101100100

Figure 5.1: A file representation

Directory objects are similar to files in every aspect except regarding the data se-

mantics. The directory entries are stored in Catalog logical blocks, as shown on

Figure 5.2. Note that every directory entry is composed of the name of the ref-

erenced object along with the address of the pointed to Object block, being a file,

sub-directory etc.

In addition, Infinit provides users with objects commonly referred to as links. How-

ever, one should carefully note that these objects relate to UNIX symbolic rather

than hard links. Indeed, since every Infinit file system object is administered in a

discretionary manner, hard links would be impossible to implement, since a counter

should be updated following every hard link creation and destruction, not mention-

ing inconsistencies inherent to malevolent behaviours.

CHAPTER 5. IMPLEMENTATION 122

α
OKB

Object

data

meta

CHB
Contents

Access
CHB

CHB

CHB

firefox

emacs

Catalog

Catalog

wc

zsh

gcc

less

mplayer

Figure 5.2: A directory representation

α
OKB

Object

data

meta

CHB
Contents

Access
CHB

CHB
Reference

/user/jmq/

Figure 5.3: A link representation

The Reference block contains the path indicating the namespace location of the

CHAPTER 5. IMPLEMENTATION 123

target object. Noteworthy is that, should the path be extremely long, it would

actually be split over several Reference blocks chained and referenced by the object’s

Contents block.

Figure 5.3 illustrates these relations although, in this example, the path is short

enough to fit in a single Reference block.

The prototype makes use of a system-wide organisation model, meaning that a single

hierarchical namespace is exposed to the users, independently of their preferences.

As discussed in Section 4.2.2, the system-wide organisation model may suffer from

inconsistencies, though they are less likely to occur than in the user-wide model.

Besides, this model is far easier to implement than a user-wide scheme, which would

require the development of an extended set of applications for manipulating views.

1 /

2 users

3 music/

4 Tool/

5 Camel/

6 Magma/

7 . . .

8 README

Listing 5.1: An example of hierarchical namespace

Figure 5.4 depicts the relations between the various logical blocks composing the

hierarchical namespace given by Listing 5.1. This example illustrates the use of the

community mechanism described in Section 4.2. Indeed, both the root directory

and the /users file rely on the TKB construct. The /users special file is assumed,

in this context, to act as a user inventory in which every entry is composed of a

name and the address of the associated User logical block. Note that for the sake

of clarity, the Contents and Access blocks have been omitted from Figure 5.4.

CHAPTER 5. IMPLEMENTATION 124

CHB
Catalog

OKB
Object

README

music

users

TKB
Object

TKB
Object

CHB

PKB
User

OKB
Object

albert

isaac

α

root

Catalog
CHB

...

Camel

Tool

Data

CHB
Data

Magma

Welcome to
Infinit! Feel
free to store
your files in
a reliable way.

...

Figure 5.4: The Infinit system-wide hierarchical representation

5.2 Architecture

The architecture of Infinit has been broken down into small, coherent, and flexible

components known as Agent, Etoile, PIG and Hole. In addition, every component

relies on one or both of the Elle and Lune libraries. All these components are

described below.

Figure 5.5 details the components composing a node connecting to the Infinit peer-

to-peer network. Whenever a user, through an application, performs a file system-

related operation on an Infinit partition, the standard C Library issues a system

call to the operating system kernel. The kernel, noticing that Infinit is a userspace

file system, forwards the call to the PIG (POSIX/Infinit Gateway) component. PIG

aims at transcoding POSIX file system calls by sending the corresponding request

to Etoile. Note that whenever a cryptographic operation must be performed on

behalf of the requesting user, Etoile sends a message to the Agent component whose

CHAPTER 5. IMPLEMENTATION 125

purpose is to handle operations such as signing and decrypting data with the user’s

personal key pair. Finally, should Etoile require to update or retrieve information

from the distributed hash table, a request is sent to Hole which acts as the gate to

the peer-to-peer network.

fuse module

libc

etoile

hole

kernel

VFS

agent

PIG
user1

agent

wc

ls
user1

user1

user2
application

proc

proc

u
user−specific process

system process

trusted channel

authenticated channel

user2

user1

Figure 5.5: The architecture of an Infinit node

Noteworthy is that Infinit can be configured depending on the node’s purpose. For

instance, one may want to set up Infinit on an enterprise server in order to contribute

the server’s storage capacity to the company’s private Infinit network. However,

since nobody is using the server as a personal computer, the components PIG, Agent

and Etoile can be omitted. Similarly, one might be willing to configure Infinit, on

a mobile phone, so that whenever Etoile requires Agent to perform a cryptographic

operation, the request is sent to the user’s home desktop computer rather than to

an Agent running on the mobile phone. The decomposition of Infinit into several

units enables users to configure the software depending both on their preferences but

CHAPTER 5. IMPLEMENTATION 126

also on the device’s specifics, hence complying with the mobility property defined in

Chapter 3.

The remainder of this section discusses the internals of every component, including

the libraries.

5.2.1 Elle

Elle is a general-purpose library used by all the other components of the Infinit

file system. Elle provides several packages, each of which offers a specific set of

functionalities. The most important of those packages are described next.

core

The core package contains a set of basic types on which everything else is built.

These types were introduced in order to ease the process of data serialisation. Those

includes Boolean, Byte, Integer8, Integer64, Natural32, Real among others.

system

The system package contains system-specific definitions such as the microprocessor’s

endianness, the path to major locations including the user’s local home directory,

the local root directory etc.

standalone

The standalone package is very specific as it provides fundamental functionali-

ties which may require features provided by other Elle packages, leading to inter-

dependencies. The classes provided by this package were thus implemented by some-

times relying on code redundancy.

The package offers functionalities such as Region for manipulating static and dy-

namic buffers, Report for handling error messages or even Maid for automatic mem-

ory deallocation etc.

radix

The radix package contains fundamental base classes. Firstly, the Meta class repre-

sents the ultimate base class which is directly or indirectly inherited by any other

class. Secondly, every class must inherit one of the following classes: Object or

Entity.

CHAPTER 5. IMPLEMENTATION 127

The Object class must be inherited by any class which describes an object that can

be serialised, compared, cloned, recycled and so on. On the other hand, any other

class must inherit the Entity class.

archive

The archive package contains the Archive class which provides methods for serial-

ising and extracting the types defined in the core package. Since most objects are

built upon such types, an additional mechanism is required to render these types

serialisable.

Every class inheriting the Object class implicitely derives Archivable. Such classes

must implement the associated Serialize() and Extract() methods which specify

the internal attributes to be included in the serialisation process.

1 Status PublicKey : : Serialize (Archive& archive) const

2 {
3 // s e r i a l i z e the i n t e r n a l numbers .

4 i f (archive . Serialize (* th i s−>key−>pkey . rsa−>n ,
5 * th i s−>key−>pkey . rsa−>e) == StatusError)

6 escape (’ unable to s e r i a l i z e the i n t e r n a l numbers ’) ;

8 re turn (StatusOk) ;

9 }

Listing 5.2: The PublicKey::Serialize() method

1 Status KeyPair : : Extract (Archive& archive)

2 {
3 // ex t r a c t the i n t e r n a l keys .

4 i f (archive . Extract (th i s−>K , th i s−>k) == StatusError)

5 escape (’ unable to ex t r a c t the i n t e r n a l keys ’) ;

7 re turn (StatusOk) ;

8 }

Listing 5.3: The KeyPair::Extract() method

Listing 5.2 illustrates the implementation of the Serialize() method for the specific

purpose of the PublicKey class. Similarly, Listing 5.3 depicts the opposite process

through the Extract() implementation for the KeyPair class. The reader can notice

that the terminology—K and k for the public and private keys, respectively—is

equivalent to the notation introduced in Chapter 4.

CHAPTER 5. IMPLEMENTATION 128

io

The io package provides basic input/output classes and interfaces such as Fileable

and Dumpable. The most notable Uniquable interface enables any deriving class to

represent objects in the form of a unique literal string. Listing 5.4 illustrates the

use of the Uniquable interface for the address of a block. Also, the original object

can be reconstructed from a Unique representation making such strings extremely

convenient as human-readable tokens.

1 RUxMAQkCDwAgAAAAAAAAADau4cGNxRZEfNZJzG3vk2iOmVVdbwbad1uvRa7VDMj8

Listing 5.4: The Base64 Unique representation of a block address

factory

The factory package provides classes for the dynamic reconstruction of serialised

objects. By relying on the factory, one can receive a serialised item and reconstruct

the associated object without knowledge of its original type.

cryptography

The cryptography package provides a set of classes and methods for performing cryp-

tographic operations on any serialisable item. The functionalities provided range

from hash functions via the OneWay class to symmetric and asymmetric cryptosys-

tems through the SecretKey, KeyPair, PublicKey, PrivateKey classes, among oth-

ers.

concurrency

The concurrency package embeds common mechanisms such as Mutex, Condition,

Semaphore, Thread. Interestingly though, these functionalities are seldom used

because Infinit has been designed to rely on the event [Maz01, LCG07] programming

paradigm, as opposed to the multithreaded model.

The multithreaded paradigm relies on multiple threads operating in parallel and

synchronising whenever necessary. On the other hand, the event paradigm relies

on components processing events as they occur, potentially generating other events

which, in turn, would be processed whenever possible. Research [AHT+02] showed

that, although both models suffer pitfalls, the best of both worlds is achievable

through automatic stack management.

The event programming paradigm is well-known for simplifying concurrency while

reducing opportunities for race conditions and deadlocks. However, the model also

CHAPTER 5. IMPLEMENTATION 129

implies the event process’ local statelessness. Indeed, should an event process depend

on some other inputs, an event would be generated, leading to another computa-

tion and so on. Therefore, although very powerful, event-driven programming can

become cumbersome as one must manually store information in the global state

until an event is received in order to carry on a previously started logical unit of

computation. Adya et al. [AHT+02] showed that a programming style exists which

benefits from the event-driven paradigm’s advantages without the burden of manual

state management.

The Elle library incorporates such a continuation [MI09] mechanism through the

Fiber class. A fiber is a lightweight thread of execution as it solely consists of a stack

and a set of registers. Although fibers implement the event paradigm, such objects

can also block while maintaining a local state. Whenever a fiber stops, another

waiting fiber is scheduled by switching back on its stack as well as restoring its set

of registers. Once the event necessary for the blocked fiber to continue is received, it

can be re-scheduled, hence restoring its local state. The notion of fiber is extremely

powerful because developers do not have to change their habits regarding state

management. Listing 5.5 provides an example of fibers requiring another resource

in order to continue. Noteworthy is that both fibers, represented by the functions

Fiber1() and Fiber2(), evolve within their own environment such that the value

of the local variable i is maintained during the entire fiber’s lifespan.

1 Timer Timer1 ;

2 Timer Timer2 ;

4 Resource ResourceA ;

5 Resource ResourceB ;

7 Status Main (const Natural32 argc ,

8 const Character* argv [])

9 {
10 Callback<> fiber1(&Fiber1) ;

11 Callback<> fiber2(&Fiber2) ;

13 // c r e a t e and s t a r t the timer1 , launching the f i b e r 1 .

14 i f (Timer1 . Create (Timer : : ModeSingle , fiber1) == StatusError)

15 escape (’ unable to c r e a t e the t imer ’) ;

17 Timer1 . Start (1 0 0) ;

19 // c r e a t e and s t a r t the timer2 , launching the f i b e r 2 .

20 i f (Timer2 . Create (Timer : : ModeSingle , fiber2) == StatusError)

21 escape (’ unable to c r e a t e the t imer ’) ;

23 Timer2 . Start (1 000) ;

CHAPTER 5. IMPLEMENTATION 130

25 re turn (StatusOk) ;

26 }

28 Status Fiber1 ()

29 {
30 Natural32 i = 42 ;

32 // wait f o r ResourceA .

33 i f (Fiber : : Wait(&ResourceA) == StatusError)

34 escape (’ unable to wait f o r the r e sou r c e ’) ;

36 // awaken ResourceB .

37 i f (Fiber : : Awaken(&ResourceB) == StatusError)

38 escape (’ unable to awaken the r e sou r c e ’) ;

40 re turn (StatusOk) ;

41 }

43 Status Fiber2 ()

44 {
45 Natural32 i = 21 ;

47 // awaken ResourceA .

48 i f (Fiber : : Awaken(&ResourceA) == StatusError)

49 escape (’ unable to awaken the r e sou r c e ’) ;

51 // wait f o r ResourceB .

52 i f (Fiber : : Wait(&ResourceB) == StatusError)

53 escape (’ unable to wait f o r the r e sou r c e ’) ;

55 re turn (StatusOk) ;

56 }

Listing 5.5: An illustration of fibers

network

The network package contains high-level network functionalities from local syn-

chronous communication mechanisms via the Door and Lane classes to remote asyn-

chronous communication routines through Slot, Gate and Bridge.

Noteworthy is that every network message is identified by a Tag which specifies the

type of the message. The Tag is included in a Header which is followed by the

actual data. The Header also includes an Event number which can be used to link

a response to a previously sent request for instance.

The package is especially interesting for developing networking components because

CHAPTER 5. IMPLEMENTATION 131

of its template-based classes and methods. As such, a component willing to send

and/or receive messages must declare the associated types. This process can easily

be achieved through the macro-functions outward() and inward(). Listing 5.6

illustrates the Agent ’s message definitions, such definitions being usually located in

a file referred to as the component’s manifest.

1 inward (agent : : TagDecrypt ,

2 parameters (elle : : Code)) ;

3 outward (agent : : TagDecrypted ,

4 parameters (elle : : Clear)) ;

6 inward (agent : : TagSign ,

7 parameters (elle : : Plain)) ;

8 outward (agent : : TagSigned ,

9 parameters (elle : : Signature)) ;

Listing 5.6: The message definition process

In addition, a component willing to receive a message must register the tag cor-

responding to the message of interest and associate it with the callback to trigger

should such a message be received. Listing 5.7 illustrates this straightforward pro-

cess for the Agent ’s messages defined above.

1 elle : : Callback<const elle : : Code> decrypt(&Agent : : Decrypt) ;

2 elle : : Callback<const elle : : Plain> sign(&Agent : : Sign) ;

4 // r e g i s t e r the decrypt message .

5 i f (elle : : Network : : Register<TagDecrypt>(decrypt) == elle : : StatusError)

6 escape (’ unable to r e g i s t e r the decrypt ca l l ba ck ’) ;

8 // r e g i s t e r the s i gn message .

9 i f (elle : : Network : : Register<TagSign>(sign) == elle : : StatusError)

10 escape (’ unable to r e g i s t e r the s i gn ca l l ba ck ’) ;

Listing 5.7: The message registration process

Noteworthy is that whenever a message is received, a fiber is spawned in which

the associated callback is triggered. Therefore, the message handler can behave

according to the fiber’s specifics, such as waiting for a resource or spawning a sub-

fiber for instance.

util

The util package provides miscellaneous functionalities including format classes such

as Base64 and Hexadecimal but also time manipulation through Time, arguments

parser via the Parser class etc.

CHAPTER 5. IMPLEMENTATION 132

5.2.2 Lune

Lune is a small library which provides functionalities for manipulating locally stored

information such as the user’s key pairs, the addresses of the multiple Infinit net-

works the user’s has been authorised to connect to etc.

5.2.3 PIG

PIG (POSIX/Infinit Gateway) is an application which, through FUSE [FUS], re-

ceives every system call related to an Infinit file system. The objective of PIG is

to translate these POSIX system calls into requests complying with Etoile’s API

(Application Programming Interface).

Listing 5.8 illustrates PIG ’s internals through the rmdir() FUSE call. The function

starts by loading both the parent and target directories, hence retrieving two context

identifiers. The directory entry pointing to the target sub-directory is then deleted.

Finally, the modifications on the parent directory are commited while the target

sub-directory is destroyed.

1 i n t PIG : : Rmdir (const char * path)

2 {
3 etoile : : path : : Slice name ;

4 etoile : : path : : Way child (path) ;

5 etoile : : path : : Way parent (child , name) ;

6 etoile : : context : : Identifier directory ;

7 etoile : : context : : Identifier subdirectory ;

9 // load the d i r e c t o r y .

10 i f (PIG : : Channel . Call (

11 elle : : Inputs<etoile : : TagDirectoryLoad>(parent) ,

12 elle : : Outputs<etoile : : TagIdentifier>(directory)) ==

13 elle : : StatusError)

14 error (ENOENT) ;

16 // load the subd i r e c to ry .

17 i f (PIG : : Channel . Call (

18 elle : : Inputs<etoile : : TagDirectoryLoad>(child) ,

19 elle : : Outputs<etoile : : TagIdentifier>(subdirectory)) ==

20 elle : : StatusError)

21 error (ENOENT) ;

23 // remove the entry .

24 i f (PIG : : Channel . Call (

25 elle : : Inputs<etoile : : TagDirectoryRemove>(directory , name) ,

26 elle : : Outputs<etoile : : TagOk>()) == elle : : StatusError)

27 error (EACCES) ;

CHAPTER 5. IMPLEMENTATION 133

29 // s t o r e the d i r e c t o r y .

30 i f (PIG : : Channel . Call (

31 elle : : Inputs<etoile : : TagDirectoryStore>(directory) ,

32 elle : : Outputs<etoile : : TagOk>()) == elle : : StatusError)

33 error (EINTR) ;

35 // des t roy the subd i r e c to ry .

36 i f (PIG : : Channel . Call (

37 elle : : Inputs<etoile : : TagDirectoryDestroy>(subdirectory) ,

38 elle : : Outputs<etoile : : TagOk>()) == elle : : StatusError)

39 error (EINTR) ;

41 re turn (0) ;

42 }

Listing 5.8: The PIG ’s rmdir() POSIX system call

Note that although most FUSE calls are converted into Infinit requests, some are

ignored, such as link(), while the semantics of others are slightly modified in order

to comply with Infinit. For instance the getattr() FUSE call is invoked in order to

retrieve information on the object referenced by the given path. Such information

ranges from the object’s mode, to the owner’s UID and GID, to the data size and

so on. Unfortunately, the system cannot translate an Infinit user/group identifier

into a UNIX UID/GUID, respectively. The system has to be provided with a

set of pre-defined mappings between Infinit and UNIX identifiers. The local file

$HOME/.infinit/map.asct provides such a mapping. However, should the system

fail to translate an Infinit identifier, PIG would rely on a special entity referred to

as somebody. The somebody UNIX user and group are therefore attributed to any

file system object whose owner identity has not been linked to a UNIX entity.

5.2.4 Agent

The Agent component aims at performing cryptographic operations on behalf of a

specific user. This component has been introduced in order to isolate the sensitve

user’s key pair from other potentially more vulnerable components. Noteworthy is

that this data isolation process is similarly used in SSH (Secure Shell) through its

so-called SSH agent.

Whenever Etoile receives a request that requires performing a cryptographic oper-

ation, the component contacts the user’s Agent and requests the operation to be

performed. That way, the user’s keys never leave its Agent whose source code, being

extremely small, is easier to maintain and secure than Etoile or Hole for instance.

CHAPTER 5. IMPLEMENTATION 134

The Agent component starts by connecting and identifying itself to the Etoile com-

ponent. The Etoile component then challenges the Agent regarding the identity

of the user by sending a phrase encrypted with the user’s public key. The Agent

decrypts the phrase and sends back a hash of the phrase, hence proving that it

legitimally operates on behalf of the claimed user. Besides, the phrase is stored in

the local file $HOME/.infinit/$USER.phr so that the user’s applications, including

PIG, can authenticate to Etoile by providing this phrase.

As discussed in Section 5.2.1, the Agent exports an interface composed of function-

alities for decrypting and signing data with the user’s private key. Listings 5.9 &

5.10 provide the source code for these operations.

1 elle : : Status Agent : : Decrypt (const elle : : Code& code)

2 {
3 elle : : Clear clear ;

5 // perform the cryptograph ic opera t i on .

6 i f (Agent : : Pair . k . Decrypt (code , clear) == elle : : StatusError)

7 escape (’ unable to perform the decrypt ion ’) ;

9 // rep ly to the c a l l e r .

10 i f (Agent : : Channel−>Reply (
11 elle : : Inputs<TagDecrypted>(clear)) == elle : : StatusError)

12 escape (’ unable to r ep ly to the c a l l e r ’) ;

14 re turn (StatusOk) ;

15 }

Listing 5.9: The Agent::Decrypt() method

1 elle : : Status Agent : : Sign (const elle : : Plain& plain)

2 {
3 elle : : Signature signature ;

5 // perform the cryptograph ic opera t i on .

6 i f (Agent : : Pair . k . Sign (plain , signature) == elle : : StatusError)

7 escape (’ unable to perform the s i gna tu r e ’) ;

9 // rep ly to the c a l l e r .

10 i f (Agent : : Channel−>Reply (
11 elle : : Inputs<TagSigned>(signature)) == elle : : StatusError)

12 escape (’ unable to r ep ly to the c a l l e r ’) ;

14 re turn (StatusOk) ;

15 }

Listing 5.10: The Agent::Sign() method

CHAPTER 5. IMPLEMENTATION 135

components

Directory
File

Object

User

System
Journal

Community
Link

Group

kernel

ObjectPublicKeyBlock

Access

User

Catalog

Group

Data

ReferenceContentHashBlock

wall

depot

context

path user

Etoile

journal

proc

proc
u

system process

user−specific process

authenticated channel

intra−Etoile calls

PIG
user

application
user

user
agent

hole

Figure 5.6: The internals of the Etoile component

5.2.5 Etoile

The Etoile component implements the Infinit file system API. Following Infinit ’s

architecture and as shown in Figure 5.6, Etoile is partitioned into logical units such

as wall, path, context, kernel etc. which are discussed below.

wall

The wall unit exports Etoile’s interface such that every incoming message generates

an event triggering a method located in this unit. Listing 5.11 provides some of

CHAPTER 5. IMPLEMENTATION 136

Etoile’s message definitions while Listing 5.12 illustrates the related event handlers.

The reader will notice that these definitions correspond to the messages sent by PIG

in Listing 5.8.

Whenever a request is received, wall retrieves the context associated with the given

context identifier. The request is then passed to the components unit. Finally, a

response is sent back to the requesting client.

1 // d i r e c t o r y

2 inward (etoile : : TagDirectoryCreate ,

3 parameters ()) ;

4 inward (etoile : : TagDirectoryLoad ,

5 parameters (etoile : : path : : Way)) ;

6 inward (etoile : : TagDirectoryAdd ,

7 parameters (etoile : : context : : Identifier ,

8 etoile : : path : : Slice ,

9 etoile : : context : : Identifier)) ;

10 inward (etoile : : TagDirectoryLookup ,

11 parameters (etoile : : context : : Identifier ,

12 etoile : : path : : Slice)) ;

13 outward (etoile : : TagDirectoryEntry ,

14 parameters (etoile : : kernel : : Entry)) ;

15 inward (etoile : : TagDirectoryConsult ,

16 parameters (etoile : : context : : Identifier ,

17 etoile : : kernel : : Index ,

18 etoile : : kernel : : Size)) ;

19 outward (etoile : : TagDirectoryRange ,

20 parameters (etoile : : kernel : : Range<etoile : : kernel : : Entry>)) ;

21 inward (etoile : : TagDirectoryRename ,

22 parameters (etoile : : context : : Identifier ,

23 etoile : : path : : Slice ,

24 etoile : : path : : Slice)) ;

25 inward (etoile : : TagDirectoryRemove ,

26 parameters (etoile : : context : : Identifier ,

27 etoile : : path : : Slice)) ;

28 inward (etoile : : TagDirectoryDiscard ,

29 parameters (etoile : : context : : Identifier)) ;

30 inward (etoile : : TagDirectoryStore ,

31 parameters (etoile : : context : : Identifier)) ;

32 inward (etoile : : TagDirectoryDestroy ,

33 parameters (etoile : : context : : Identifier)) ;

Listing 5.11: Etoile’s wall message definitions for directory objects

1 c l a s s Directory

2 {
3 pub l i c :

4 s t a t i c elle : : Status Create () ;

CHAPTER 5. IMPLEMENTATION 137

5 s t a t i c elle : : Status Load (const path : : Way&);

6 s t a t i c elle : : Status Lock (const context : : Identifier&);

7 s t a t i c elle : : Status Release (const context : : Identifier&);

8 s t a t i c elle : : Status Add (const context : : Identifier&,

9 const path : : Slice&,

10 const context : : Identifier&);

11 s t a t i c elle : : Status Lookup (const context : : Identifier&,

12 const path : : Slice&);

13 s t a t i c elle : : Status Consult (const context : : Identifier&,

14 const kernel : : Index&,

15 const kernel : : Size&);

16 s t a t i c elle : : Status Rename (const context : : Identifier&,

17 const path : : Slice&,

18 const path : : Slice&);

19 s t a t i c elle : : Status Remove (const context : : Identifier&,

20 const path : : Slice&);

21 s t a t i c elle : : Status Discard (const context : : Identifier&);

22 s t a t i c elle : : Status Store (const context : : Identifier&);

23 s t a t i c elle : : Status Destroy (const context : : Identifier&);

24 } ;

Listing 5.12: Etoile’s wall handler definitions for directory objects

context

Depending on the request, a context is either created, loaded, stored or discarded.

For example, a call such as Directory::Load() creates a context while Direc-

tory::Remove() retrieves an existing context according to the given Identifier.

The notion of context has been introduced in order to optimise the system’s perfor-

mance by delaying expensive operations. As detailed in Chapter 4, an Object logical

block contains several signatures. These signatures are computed in order to seal the

object before being stored in the peer-to-peer network. However, considering a file

system devoid of the notion of context, signatures would be re-computed following

every call to the write() POSIX function. One can easily imagine many scenarios

such as copying files leading to a large number of signatures being unnecessarily

computed. Contexts, on the other hand, enable an application to perform a set

of operations on an object before commiting the modifications, in which case the

object is sealed and finally stored in the distributed hash table. The context unit

contains functionalities for manipulating such contexts.

components

The components unit provides a very similar interface to the wall ’s, carrying on

operations on a given context. The objective of the components unit is to maintain

CHAPTER 5. IMPLEMENTATION 138

consistency between the blocks composing an object. Indeed, while the kernel unit

provides functionalities at the block level, the components unit ensures that, should

the Access or Contents blocks be modified for instance, the Object is updated ac-

cordingly. Listing 5.13 illustrates the Remove() method for a directory object. This

method takes the context of the directory object along with the name of the entry to

remove. First, the requesting client’s rights are determined and checked. Then, the

contents is opened by potentially fetching additional blocks. Finally, the Contents

and Catalog blocks are modified by requesting the kernel unit.

1 elle : : Status Directory : : Remove (context : : Directory* context ,

2 const path : : Slice& name)

3 {
4 // compute the cur rent user ’ s r i g h t s on the context .

5 i f (Rights : : Determine (context) == elle : : StatusError)

6 escape (’ unable to determine the r i g h t s ’) ;

8 // check the user ’ s r i g h t s accord ing to the opera t i on .

9 i f (! (context−>rights−>record . permissions & kernel : : PermissionWrite))

10 escape (’ unable to perform the opera t i on without the permis s ion ’) ;

12 // open the contents .

13 i f (Contents : : Open (context) == elle : : StatusError)

14 escape (’ unable to open the contents ’) ;

16 // remove the entry from the d i r e c t o r y contents .

17 i f (context−>contents−>content−>Remove (name) == elle : : StatusError)

18 escape (’ unable to remove the d i r e c t o r y entry ’) ;

20 re turn (StatusOk) ;

21 }

Listing 5.13: The components unit’s Directory::Remove() method

path

The path unit provides methods for manipulating paths such as resolving a path

into an object’s address.

user

The user unit contains information regarding the clients connected to Etoile. A

client is composed of an agent and a set of applications such as PIG. Whenever the

connection with the client’s Agent is broken, all the applications are notified and

their connection discarded.

CHAPTER 5. IMPLEMENTATION 139

kernel

The kernel unit contains the internal representations of the fundamental blocks.

The unit includes classes such as Object, Access, Contents, Data, Reference,

User, Group, ContentHashBlock among others. Listing 5.14 depicts the internal

representation of an Object logical block through its Object class. The reader will

notice that this structure closely resembles the OKB -based Object logical block

depicted on Figure 4.6.

1 c l a s s Object :

2 pub l i c OwnerKeyBlock

3 {
4 Author author ;

6 s t r u c t

7 {
8 s t r u c t

9 {
10 Permissions permissions ;

11 Token token ;

12 } owner ;

14 Genre genre ;

15 elle : : Time stamp ;

17 Attributes attributes ;

19 hole : : Address access ;

21 Version version ;

22 elle : : Signature signature ;

23 } meta ;

25 s t r u c t

26 {
27 hole : : Address contents ;

29 Size size ;

30 elle : : Time stamp ;

32 elle : : Digest fingerprint ;

34 Version version ;

35 elle : : Signature signature ;

36 } data ;

37 } ;

Listing 5.14: The Object class

CHAPTER 5. IMPLEMENTATION 140

depot

The depot unit provides an abstraction for storing and retrieving blocks, indepen-

dently of their location. Indeed, although the depot may, most of the time, rely on

the Hole component in order to retrieve data from the underlying distributed hash

table, the block could also lie in one of Etoile’s caches, either in the depot ’s cache,

referred to as the repository, or in the journal ’s. Note that a block located in the

repository may actually be stored in either the cache i.e. in main memory or in

the reserve i.e. on the local hard disk. Therefore, whenever a block is requested by

the components unit, the depot is invoked. The unit then sequentially inspects the

journal, the cache, the reserve and, at last, sends a request to the Hole component.

journal

Whenever the modifications applied to a context are requested to be commited, the

context is pushed into the journal. As discussed throughout Chapter 4, updates

are delayed in order to optimise the system’s performances since blocks could be

subsequently modified or even destroyed. Then, on a periodic basis, the blocks are

stored in the distributed hash table by requesting the depot ’s Put() method.

5.2.6 Hole

The Hole component provides an abstraction for storing, retrieving and deleting a

Block associated with an Address. The interface exported by the component is

composed of the methods listed in Listing 5.15. Note that this interface closely

resembles the one defined in Section 3.4.

1 c l a s s Hole

2 {
3 pub l i c :

4 s t a t i c elle : : Status Put (const Address&,

5 const Block *) ;

6 s t a t i c elle : : Status Get (const Address&,

7 Block *&);

8 s t a t i c elle : : Status Erase (const Address&);

9 } ;

Listing 5.15: The Hole component’s interface

Noteworthy is that an Address contains a header composed of (i) a family represent-

ing the physical block (ii) a component representing the logical block and (iii) the

hash of the creating user’s public key. This particular construct prevents different

blocks’ addresses from conflicting.

CHAPTER 5. IMPLEMENTATION 141

Since this interface is common [DZD+03] to most DHT s, the implementation can

easily be changed, even at run-time. The Infinit prototype is currently composed of

the Hole implementations discussed next.

local

The local implementation stores the data blocks locally. This implementation,

though benefiting from extreme simplicity, obviously lacks fundamental properties

such as availability, durability, scalability etc.

remote

The remote implementation stores the data blocks on a unique remote server. As

for local, the remote implementation suffers from fundamental limitations. However

both these implementations are useful regarding debugging.

kool

Finally, the kool implementation stores blocks in a distributed hash table, hence

complying with the properties defined in Chapter 3.

As the mobility property defined in Chapter 3 suggests, devices lacking the re-

sources to contribute or even maintain the network’s state should be able to configure

the distributed hash table accordingly. Structured overlay networks have been de-

signed with scalability in mind. For instance, Chord [SMK+01] performs lookups in

O
(
log(η)

)
hops while nodes are required to maintain a state composed of O

(
log(η)

)
entries, where η represents the number of nodes. Unfortunately, a node could find

itself in a position where the network state it must maintain exceeds its storage

capacity.

kool follows the Kelips [GBL+03] design but extends it so that the DHT can be con-

figured by specifying the degree of partitioning δ. This characteristic implies that, as

δ increases, the routing path is lengthened while the network state to be maintained

on every node is reduced. Therefore, while the routing complexity remains O
(
1
)
,

the state complexity becomes O
(
δ
√
η
)
.

For instance, kool2 represents a Kelips network in which nodes are assigned to

groups, kool3 relies on cube roots, hence dividing the space into a two-level hierarchy

while kool4 goes one step further and partitions the identifier space into three layers.

By relying on such a flexible DHT, Infinit can easily be set up on a variety of exotic

devices. Mobile phones for instance would probably make use of kool4 in order to

CHAPTER 5. IMPLEMENTATION 142

reduce the memory fingerprint while a desktop computer could afford to trade off

memory consumption for faster lookups through kool2 or even kool1.

Although such configurations could be applied to other overlay networks such as

Chord [SMK+01], the Kelips [GBL+03] design has been chosen for its simplicity.

Table 5.1 summarises the relations between the several configuration factors given a

degree of partitioning δ, a network designed to support η nodes and a set of connected

nodes ζ. The cardinality represents the size of every group, the number of groups

in every level of the hierarchy as well as the hierarchy depth. The neighbourhood

parameter specifies the number of connected nodes populating every group. This

equation assumes the use of a consistent hash function for attributing nodes to

groups in a uniform manner. Finally, the connectivity indicates the number of links

a node must maintain (i) with every other node in its group i.e. the neighbourhood

and (ii) with every other group belonging to the node’s hierarchical level plus every

super-group in the hierarchy upper-level plus every super-super-group in the upper-

upper-level and so on. Note that every link to groups, upper-groups, upper-upper-

groups etc. are made redundant according to the ratio γd depending on the degree

d. However, for the sake of simplicity the following assumes that γ = γd for every

degree d.

Cardinality κ = δ
√
η

Neighbourhood φ =
ζ

κδ−1

Connectivity λ = φ− 1 +
δ−1∑
d=1

(
γd
(
κ− 1

))

Table 5.1: kool parameters

Figure 5.7 depicts a network illustrating the relations between the parameters de-

tailed above. This example shows how every group is populated by an average of

φ = 2 nodes while every node maintains a total of λ = 5 links with the other groups

and upper-groups.

CHAPTER 5. IMPLEMENTATION 143

η = 27

δ = 3

ζ = 18

γ = 1

κ = 3

φ = 2

λ = 5

Parameters

node

second−level group

first−level group

Figure 5.7: An example of a kool3 network

Table 5.2 provides formulas for computing the number of hops as well as the size of

the network state nodes are expected to maintain. Note that the state is assumed to

be composed of a table of 30-byte entries containing the target node’s IP (Internet

Protocol) address.

Hops δ − 1

State λ× 30B

Table 5.2: kool formulas

Finally, Table 5.3 compares three different kool configurations capable of supporting

η = 1010 nodes. The network is assumed to be populated by ζ = 109 nodes while

the connectivity redundancy ratio is set to γ = 3, hence improving resilience. This

study shows that the state can be reduced from 8.86MB for kool2 to 384.72KB for

kool3, representing a gain of 95.7% at the expense of a single additional hop.

CHAPTER 5. IMPLEMENTATION 144

Network Configuration Parameters Hops State

η = 1010 ζ = 109

γ = 3

kool2

δ = 2
κ = 105 φ = 104 λ = 309996 1 8.86MB

kool3

δ = 3
κ = 2154 φ = 215 λ = 13132 2 384.72KB

kool4

δ = 4
κ = 316 φ = 31 λ = 2865 3 83.95KB

Table 5.3: Comparison of the kool configurations

Although Kelips would incur a high background communication overhead to keep

a 8.86MB state up-to-date, kool can be configured to trade off one additional hop

against a state reduction. This flexibility appears extremely useful since resource-

limited devices such as mobile phones should be able to maintain a 83.95KB state.

Note that an overlay network such as Chord [SMK+01] could also benefit from such

flexible configurations by modifying the base parameter for instance.

? ?

?

The presented prototype follows the UFS representation consisting in expressing

every file, directory and link through an inode. Given the decentralised nature of the

Infinit peer-to-peer file system, inodes are not stored in the kernel or on a dedicated

server but rather in the underlying distributed hash table; inodes are represented

by the Object logical block which has been detailed throughout Chapter 4.

Regarding the actual implementation of the Infinit prototype, the system has been

broken down into independent units which communicate by sending messages, also

referred to as IPC (Inter-Process Communication) [DMM08]. Finally, the Hole com-

ponent which implements the storage layer interface offers several network imple-

mentations which can be used according to the environment: topology, constraints

etc.

Chapter 6

Evaluation

The administration scheme presented in Section 4.2 enables users to request special

tasks. However, such operations may take several days to complete, depending on

the availability and commitment of the users contributing to the system. Unfortu-

nately, this particular aspect of the system cannot be evaluated in an unrealistic

environment; a well-established production environment with hundreds of users is

required to perform a long term analysis, especially regarding the impact of the

users’ connectivity as well as the concurrency of administrative requests.

Likewise, the access control scheme is particularly interesting because of its extreme

flexibility. Unfortunately, this expressivity comes at the expense of an increased

connectivity requirement. Although it has been shown in Section 4.1.7 that such

a connectivity was realistically achievable, evaluating its impact would, once again,

require a production environment populated by hundreds of users sharing files, cre-

ating and managing groups and so forth.

Since evaluating the qualitativeness of the file system through a simulation is incon-

ceivable because reliance on human actions for validating administration requests, for

example, and since setting up a production environment may take years to achieve,

the evaluation of the Infinit design and implementation has been performed in sev-

eral complementary environments.

This chapter therefore discusses the details of this evaluation. Firstly, aspects of the

underlying overlay network and distributed hash table are evaluated, such as the

routing latency and the network scalability. Secondly, the peer-to-peer file system is

evaluated both regarding its implementation and deployment especially considering

the access control and administration mechanisms designed in Chapter 4.

145

CHAPTER 6. EVALUATION 146

6.1 Methodology

This section discusses the environments, benchmarks and data sets this evaluation

relies upon.

6.1.1 Environments

The large-scale specificity of peer-to-peer file systems implies that experiments should

be carried out in an appropriate environment i.e. a network populated by thousands

of nodes and hundreds of users. Unfortunately, since setting up such a network is

extremely complicated and time-consuming, researchers tend to rely on other tech-

niques. This evaluation follows the common practice which consists in measuring the

file system’s behaviour in several complementary environments, offering a trade-off

between realism and scalability.

The first environment, referred to as the simulated environment, makes use of the

ns-3 [NSN] discrete-event network simulator. The simulator is run on a Linux -based

computer with a dual-core 1.8Ghz microprocessor and 4GB of RAM (Random Ac-

cess Memory). This environment is especially useful to simulate a large-scale net-

work composed of several thousand nodes. Thus, both the evaluations of the overlay

network and the distributed hash table take place in this environment. The network

topology used by these benchmarks has been generated with the iNet Topology Gen-

erator [iNe] in which the maximum latency between diametrically opposed nodes has

been set to 300ms.

The second environment, known as the realistic environment, is composed of 16

heterogeneous nodes located throughout Europe and the United States of America.

This environment is used to evaluate the implementation of the Infinit file system,

in a more realistic way, through the use of Andrew benchmarks.

Finally, the third environment, referred to as the production environment, is com-

posed of 2, 156 heterogeneous nodes populating a campus network split into two

geographic sites. This network is used on a daily basis by five schools for approxi-

mately 6, 000 users including students, teachers, staff etc. This environment is used

to evaluate the behaviour of the Infinit file system in a production environment in

order to validate the assumptions made regarding the connectivity requirements for

both the access control and administration schemes.

6.1.2 Benchmarks

This section presents the three types of benchmarks carried out on the system along

with their processing methods and data sets.

CHAPTER 6. EVALUATION 147

Firstly, the evaluation focuses on the overlay network and distributed hash table

components. The experiments carried out on the kool implementation aim at eval-

uating some characteristics of the underlying network such as the latency of the

routing requests. In order to perform such experiments, the simulated environment

is set up for hosting several thousand nodes. Then, a benchmark composed of a

pre-generated set of requests is run, hence stressing the network’s behaviour.

Secondly, the peer-to-peer file system implementation is evaluated and compared

with NFS [Osa88] through the Andrew [HKM+88b] benchmark. This methodology

makes Infinit comparable with many other file systems which have been evaluated in

very similar conditions, including OceanStore [KBC+00], Ivy [MMGC02], Pangaea

[SKKM02], FARSITE [ABC+02] and Pastis [mBPS05].

The Andrew [HKM+88b] benchmark aims at individually evaluating specific aspects

of the file system. This benchmark is composed of several phases, each one dealing

with a particular file system operation such as copying directories or creating files

through a compilation process. The source code of the Andrew benchmark used

throughout this evaluation is given in Listing 6.1.

1 #! /bin / sh

3 Prepare ()

4 {
5 echo ‘‘−−−[Prepare ’ ’

6 cd ‘ ‘ ${from }/ ’ ’
7 directories=$ (find . / −type d)

8 time \
9 (f o r directory in ${directories} ; do

10 mkdir ‘ ‘ ${to}/${directory } ’ ’
11 done) >>andrew . log

12 }

14 Copy ()

15 {
16 echo ‘‘−−−[Copy ’ ’

17 cd ‘ ‘ ${from }/ ’ ’
18 files=$ (find . / −type f −or −type l)

19 time \
20 (f o r file in ${files} ; do

21 cp −P ‘ ‘ ${file } ’ ’ ‘ ‘ ${to}/${file } ’ ’
22 i f [${?} −ne 0] ; then e x i t 1 ; f i

23 done) >>andrew . log

24 }

26 List ()

27 {
28 echo ‘‘−−−[List ’ ’

CHAPTER 6. EVALUATION 148

29 time \
30 (ls −Rla ‘ ‘ ${to } ’ ’) >>andrew . log

31 }

33 Search ()

34 {
35 echo ‘‘−−−[Search ’ ’

36 time \
37 (grep −R ‘ ‘ teton ’ ’ ‘ ‘ ${to } ’ ’) >>andrew . log

38 }

40 Compile ()

41 {
42 echo ‘‘−−−[Compile ’ ’

43 cd ‘ ‘ ${to }/ ’ ’
44 time \
45 (. / configure && make) >>andrew . log

46 }

48 i f [${#} −ne 2] ; then

49 echo ‘ ‘ [usage] andrew . sh {from} {to } ’ ’
50 e x i t 0

51 f i

53 cd ‘ ‘ $ {1} ’ ’
54 from=’ ’${PWD } ’ ’
55 cd ‘ ‘ ${OLDPWD } ’ ’

57 cd ‘ ‘ $ {2} ’ ’
58 to=’ ’${PWD } ’ ’
59 cd ‘ ‘ ${OLDPWD } ’ ’

61 rm −f andrew . log

63 Prepare

64 Copy

65 List

66 Search

67 Compile

Listing 6.1: The Andrew benchmark

The first phase of the Andrew benchmark, referred to as Prepare in Listing 6.1,

clones the hierarchy of directories of a given project. The second phase copies the

files into the freshly created hierarchy. The List phase lists all the files and directories

created so far, hence retrieving the attributes of every file system object. The fourth

phase, known as Search, reads the content of every file by invoking the grep utility.

CHAPTER 6. EVALUATION 149

Finally, the fifth phase launches the make command, hence compiling and linking

the source files.

This benchmark has been, and still is, widely used for evaluating file systems because

every phase focuses on a specific aspect. For instance, the first and second phases

illustrate the process of creating directories and files, respectively. Likewise, the third

phase focuses on inspecting every object’s metadata information while the fourth

retrieves the files’ content. The fifth phase however is more general as it includes all

the previous operations: retrieving Make files’ attributes, reading source files and

writing object files, among others.

The Andrew benchmark therefore takes a project directory containing Make files and

source files and measures the duration of every phase. In order to make this evalua-

tion’s experiments as realistic as possible, the executions of the Andrew benchmark

are based on the project directory of OpenSSL-1.0.0. This project is composed of

approximately 900 source files and 200 header files while the compilation process

generates around 700 object files.

Thirdly, the Infinit file system is stressed in a production environment by replaying

the operations recorded in a 3-week file system trace generated from a system in

production. This benchmark is extremely interesting for measuring two things: the

accessibility of the file system objects depending on the users’ connectivity and the

conflicts generated by concurrent updates.

In order to validate the assumptions defined in Chapter 4, the Infinit file system is

evaluated by setting up an environment in which user and group entites have been

created in order to best match the file system trace, especially when it comes to

sharing and working cooperatively. The following gives some insights into the file

system trace.

Table 6.1 provides general information on the file system trace. This table indicates

the number of files and user accounts being active, as opposed to the total number

of users and files. Indeed, since the file system trace covers a 3-week period, only

the users and files recorded in the trace are considered.

Number of users 5, 932

Number of files 1, 339, 776, 000

Table 6.1: General information regarding the users and files

Noteworthy is that the Infinit file system set up for this evaluation relies on the

campus’ topology which implies that the nodes do not belong to the users as is

common in open peer-to-peer networks. Instead, an instance of Hole, set up by the

system administrators, runs on every computer so that every user must launch her

CHAPTER 6. EVALUATION 150

own Infinit client in order to access her files. This specificity mainly implies two

things regarding the design presented in Chapter 4. First, the nodes populating the

network are highly available since always running; this is part of the campus policy.

Therefore, the peer-to-peer network does not suffer from churn. Second, since the

nodes do not belong to the users, the users’ Infinit instance is running as long as

the user is logged in the campus network. This is very different from an open peer-

to-peer network in which a user could have multiple Infinit instances running: one

on her smartphone, another on her desktop computer and so on. This particularity

implies that contacting a user—in order to request an operation or provide a key for

instance—is far more complicated as the users’ connectivity is impacted.

Average Node Availability 87.4%

Average Daily User Uptime 5 hours, 48 minutes and 33 seconds

Table 6.2: General information regarding the nodes and users connectivity

Table 6.2 provides information regarding the average node availability and user

uptime. The user uptime represents the period of time during which the user is

logged in the campus network, daily. Note that the uptime is extremely high because

only the users repreented in the file system trace are taken into account. This period

directly impacts the availability of a user’s Infinit instance for responding to other

users’ requests.

The following discusses the interactions betweens user and group entities by analysing

the sharing properties of files, directories etc., both in reading and writing.

First, the sharing distribution is studied shedding light on how and with whom

users share objects in reading. Figure 6.1 shows with how many users file system

objects are being shared. This study confirms the fact that most objects, i.e. 79.9%,

are kept private in which case, in an Infinit file system, no Access block would be

referenced. This figure also shows that users tend to share with many users, up to

twelve, with an unexpected peak for sixteen readers, though most shared objects,

i.e. 99.8%, are shared with a single user. Note that the system files, which are

accessible by any user, have been ignored from this evaluation.

The second analysis focuses on file system objects that are writable by multiple

users, implying some sort of a cooperative behaviour. Figure 6.2 shows that, as

expected, the number of such “cooperative” objects is lower than the number of

shared ones. It is however interesting to notice that these measures indicate that

users tend not to cooperate, or at least not to rely on file systems access control

mechanisms for doing so. Indeed, a further analysis showed that many users relied

upon third-party applications such as Subversion, Git etc. for cooperative work,

CHAPTER 6. EVALUATION 151

especially given the fact that the campus’ IT (Information Technology) department

provides functionalities for setting up such tools.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10 12 14 16 18 20

O
b

je
c
ts

Readers

Sharing

Figure 6.1: General information regarding the users’ sharing behaviours

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10

O
b

je
c
ts

Writers

Cooperation

Figure 6.2: General information regarding the user’s cooperative behaviours

CHAPTER 6. EVALUATION 152

This analysis of the file system trace provides enough information for setting up

Infinit file system environments in which the evaluation of both the access control

and administration mechanisms will take place.

6.1.3 Metrics

The primary metric this evaluation is interested in relates to the overlay network,

especially regarding the latency of the routing requests. Likewise, the distributed

hash table’s benchmarks are intended to illustrate the complexity of the operations

consisting of storing and retrieving blocks.

As a second step, the Infinit file system implementation will be stressed, the evalu-

ation focusing on the execution time of the various Andrew benchmark phases.

Finally, the benchmarks taking place in the production environment concentrate on

analysing the accessibility of the file system objects along with the concurrency of

the updates. These metrics will be analysed through a two-phase process. First, an

Infinit file system will be set up in order to study the access control mechanism.

For this, all the file system’s Object blocks will be built upon OKBs. Then, another

environment will be set up in order to examine the cooperative interactions through

the use of TKB -based objects.

Note that in order to ensure the results’ validity, every benchmark is run several

times.

6.2 Results

This section discusses various results, from the impact of the cryptosystems on the

overall performance to the latency of the block retrieval process. Also, the Infinit

file system’s behaviour is evaluated in more realistic environments, hence assessing

the impact of the access control and administration schemes designed in Chapter 4.

6.2.1 Overlay Network

The first set of experiments aims at validating the routing algorithm of the kool

implementation, as presented in Section 5.2.6. This evaluation illustrates the per-

formance of the Lookup(ι) routine in several kool configurations and depending on

the number of nodes composing the peer-to-peer network.

CHAPTER 6. EVALUATION 153

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000 10000 100000

L
a

te
n

c
y
 (

m
s
)

Nodes

Lookup()

kool
2

kool
3

kool
4

Figure 6.3: The performance of the overlay network’s Lookup(ι) routine

The results of Figure 6.3 confirm the design expectations of Section 5.2.6 i.e. the

requests’ latency evolves according to the routing path’s length. Let us recall that

the kool2 configuration performs lookups in a single hop while the kool3 and kool4

require two and three hops, respectively. Noteworthy is that the number of nodes

has a small though noticeable impact on the routing complexity, probably because

of the node failures which force the clients to re-send some messages.

6.2.2 Distributed Hash Table

The multiple physical and logical blocks defined throughout Chapter 4 differ from

one another depending on their function but also their mutability. The mutability

property is especially important in regard to the performance of the underlying dis-

tributed hash table. Indeed, as explained in Section 3.4, the Get(α) and Gather(α)

routines exhibit radically different behaviours. While the Get(α) method can easily

identify the block but also make extensive use of caching, the Gather(α) method is

required to contact a quorum of nodes responsible for the given block.

The following experiments concentrate on the distributed hash table, starting with

the Get(α) routine. Note that for the sake of simplicity, the next experiments are

carried out in a simulated network of 10, 000 nodes.

CHAPTER 6. EVALUATION 154

 0

 100

 200

 300

 400

 500

kool
2

kool
3

kool
4

L
a

te
n

c
y
 (

m
s
)

Configurations

Get()

Figure 6.4: The performance of the immutable-specific Get(α) routine

Figure 6.4 provides the results of the experiments carried out on 4096-byte chunks

of data. Let us recall that the Get(α) method can benefit from caching techniques

because of the immutability property of the blocks associated with this routine.

Note however that the cache has been disabled throughout these experiments. The

results show that immutable blocks can be retrieved very efficiently from the dis-

tributed hash table. This is especially interesting since most blocks composing the

file system’s hierarchy are CHBs such as Access, Data, Contents, Catalog, Members

etc.

The next set of experiments focuses on the performance of the distributed hash

table regarding mutable blocks. The benchmarks consist of a set of Gather(α) calls

involving 4096-byte mutable blocks. These experiments illustrate the behaviour of

the distributed hash table under several quorum configurations identified by their

fault-tolerance factor γ i.e. the number of Byzantine nodes such a quorum can

tolerate. For instance, γ = 3 refers to a quorum configuration in which every

block is replicated on 10 storage nodes while every client willing to retrieve a block

must assemble a read quorum composed of 7 of those nodes. Likewise, the γ = 9

quorum configuration consists of 28 storage nodes while clients must assemble a

read quorum of 19 nodes. As expected and illustrated by Figure 6.5, the Gather(α)

method is several times more expensive than its Get(α) counterpart since several

block instances must be retrieved directly from the quorum of storage nodes.

CHAPTER 6. EVALUATION 155

 0

 100

 200

 300

 400

 500

kool
2

kool
3

kool
4

L
a

te
n

c
y
 (

m
s
)

Configurations

Gather()

γ = 2
γ = 3
γ = 5
γ = 9

Figure 6.5: The performance of the mutable-specific Gather(α) routine

 0

 100

 200

 300

 400

 500

kool
2

kool
3

kool
4

L
a

te
n

c
y
 (

m
s
)

Configurations

Put()

γ = 2
γ = 3
γ = 5
γ = 9

Figure 6.6: The performance of the Put(α, β) routine

Finally, the Put(α, β) routine is evaluated in a similar environment i.e. a network

of 10, 000 nodes with 4096-byte blocks. Figure 6.6 shows the results related to this

CHAPTER 6. EVALUATION 156

series of experiments. Note that the kool implementation does not send the block

to every one of the write quorum’s nodes. Instead, a single instance is sent to one

storage node while the others are sent a hash of the block along with the network

address of the node with the complete block. This technique drastically improves

the client’s performance though complicating the process on the server’s side. Note

that this process could further be improved to behave in a way similar to Bittorrent

[Coh03]’s dissemination protocol.

These experiements show that both the overlay network and the distributed hash

table behaves as expected i.e. in a scalable way. The following studies the perfor-

mance of the distributed hash table when it comes to blocks composing an Infinit

file system.

Table 6.3 provides a summary of the blocks composing the Infinit peer-to-peer file

system. For every logical block, the table provides (i) its median size and (ii) the la-

tency of the process consisting in retrieving this particular block from the distributed

hash table. Note that next to the latency are provided, between parentheses, the re-

trieving and validation time. The retrieving time represents the sum of the network

latencies involved in the fetching process. The validation time however is composed

of the times spent verifying the integrity and authenticity of the block instances.

Note that this experiment has been carried out in a kool2 network populated by

10, 000 nodes with a fault-tolerance factor γ = 3. Therefore, whenever a client as-

sembles a read quorum, at least seven instances of the mutable block are transferred

back to the client while the Validate(α, β) routine is invoked between four and

seven times.

It is also worth noting that this evaluation considers worst case scenarios. For exam-

ple, the OKB -based Object logical block’s verification process depends on whether

the author is the owner, a lord or a vassal. For the purpose of this evaluation, a

vassal is assumed to be the author since representing the most expensive case i.e.

the Access block must be fetched, the vouching lord’s permission must be checked

and the voucher’s signature must be verified. Besides, every benchmark starts with

empty caches although such optimisations would greatly improve the system’s per-

formance. For instance, fetching the Access block accounts for nearly 64% of the

verification process mentioned above. Note however that once the Access block has

been fetched, the subsequent requests can benefit from the cache. Therefore, out of

seven ValidateObject
OKB

(α, β), a single call will actually make a network request for the

Object ’s associated Access block.

The reader may also notice that TKB physical blocks are far larger than their OKB

counterparts. As discussed throughout Section 4.2, TKBs embed both the public

key of the knights composing the table as well as the votes of the knights having

authorised the last modification. These cryptographic components are responsible

CHAPTER 6. EVALUATION 157

for a large portion of the size of TKBs. Note that for the purpose of the evaluation,

TKBs’ table is composed of 5 knights—the maximum number of writers measured

from the file system trace, as illustrated by Figure 6.2—while embedding 3 votes

i.e. a majority.

Let us recall that the TKB -specific quorum algorithm differs from the one used

for other mutable blocks. Indeed, while the size of the read quorum remains the

same i.e. 2γ + 1, the client selects the proper block by identifying γ + 1 identical

instances. The important aspect about this quorum algorithm is that a hash is

applied onto every received instance in order to detect the identical elements. Then,

once detected, the Validate
TKB

(α, β) routine is invoked in order to ensure the

integrity and authenticity of the selected instance. Therefore, while the integrity

and authenticity of every received instance of an OKB is validated, a TKB however

is validated once. This insight is made clear in Table 6.3. While the validation

process of OKB -based Groups takes 3.91 ms, it takes only 2.23 ms for the equivalent

TKB -based Groups. Noteworthy is that this ratio is not respected for the Object

logical block because the step consisting in fetching the Access block covers the rest

of the validation process.

Block Median Size Latency

CHB

Contents 4071 bytes 72.02 (72.01
0.01) ms

Access 1045 bytes 56.08 (56.07
0.01) ms

Data 3095 bytes 71.42 (71.41
0.01) ms

Catalog 2278 bytes 63.24 (63.23
0.01) ms

Reference 56 bytes 46.21 (46.20
0.01) ms

Members 1181 bytes 56.23 (56.22
0.01) ms

PKB

User 367 bytes 102.63 (101.68
1.86) ms

OKB

Object 974 bytes 179.16 (119.89
59.27) ms

Group 517 bytes 129.04 (125.13
3.91) ms

TKB

Object 3551 bytes 340.43 (279.42
61.01) ms

Group 2177 bytes 198.42 (196.19
2.23) ms

Table 6.3: An evaluation summary of the Infinit blocks

CHAPTER 6. EVALUATION 158

6.2.3 File System

Until now, the implementation has been evaluated through the Infinit network com-

ponent only, i.e. Hole. This section evaluates the Infinit design and implementation

by taking into account the whole system architecture composed of the several com-

ponents presented in Chapter 5.

6.2.3.1 Implementation

This section focuses on implementation aspects by discussing some design choices

and analysing their impact on the performance.

First, the cryptosystems must be studied in order to evaluate their impact on the

system’s performance. Indeed, some cryptosystems perform some operations faster

than others but at the expense of larger keys for instance. The Infinit file system

prototype makes use of the cryptosystems which are listed in Table 6.4 along with

their respective benchmarks. Note that every experiment has been performed on

a randomly generated chunk of 4096 bytes of data. These algorithms have been

chosen based on the study carried out by Busca [Bus07] which showed that these

cryptosystems were the most beneficial to systems making use of mutable blocks

such as PKBs and OKBs. One can notice that the generation process of the RSA

(Rivest Shamir Adleman) asymmetric cryptosystem is several orders of magnitude

more expensive than the other operations.

Cryptosystem Operation Duration

RSA1024

Generation 96.281 ms

Encryption 0.315 ms

Decryption 2.728 ms

Signature 2.854 ms

Verification 0.233 ms

AES256

Generation 0.011 ms

Encryption 0.072 ms

Decryption 0.069 ms

SHA256 Hash 0.005 ms

Table 6.4: Performance of the Infinit ’s cryptosystems

In addition, Table 6.5 provides the reader with the size of the principal cryptographic

components whenever embedded in blocks such as the ones described throughout

CHAPTER 6. EVALUATION 159

Chapter 4. These components are assumed to be issued from the cryptosystems

described above i.e. RSA1024 and SHA256.

Component Size

Public Key 151 bytes

Private Key 644 bytes

Signature 128 bytes

Hash 20 bytes

Table 6.5: The size of the principal cryptographic components

Given this information, one may wonder how cryptography impacts the file system,

especially regarding the use of OKBs. Indeed, since Object blocks rely on the OKB

physical block, whenever a file, directory or link is created, a RSA key pair is actually

generated. This design decision is expected to drastically impact the system’s overall

performance and must therefore be studied.

 0

 1000

 2000

 3000

 4000

 5000

Prepare Copy List Search Compile Total

D
u

ra
ti
o

n
 (

s
)

Phases

Initial Benchmark

File System Logic
Cryptography
Network Communication
Inter-Component Communication

Figure 6.7: An initial benchmark with time phases

Figure 6.7 shows the result of an initial Andrew benchmark carried out in the realistic

environment. For each phase, the duration is split into four sections. The File

System Logic represents the time spent processing the file system call within one

CHAPTER 6. EVALUATION 160

of the Infinit components such as Etoile. The Inter-Component Communication

represents the time spent sending messages between the Infinit components. The

Network Communication and Cryptographic sections are self-explanatory.

Although one may have thought that cryptography would have had an enormous im-

pact on the file system performance, it appears that inter-component communication

does much more harm. The Infinit implementation has therefore been re-worked in

order to merge all the components into a single processing unit. In addition, the

OKB physical construct has been replaced by another physical construct referred to

as IB (Imprint Block) which is detailed next.

IB
α

K
owner

timestamp

salt

data

#2

version

signature

[...]

#1

Figure 6.8: The representation of an IB

Figure 6.8 depicts the IB internal organisation. This construct ensures that, for a

given user, every block created has a unique address by applying a one-way func-

tion on the tuple (Kowner, timestamp, salt). In addition, Algorithms 35, 36 and 37

illustrate an IB ’s set-up, seal and validation processes, respectively.

Require: (Kuser, kuser), the user’s personal key pair

1. β.Kowner ← Kuser

2. β.timestamp← retrieve current timestamp

3. β.salt← generate random salt

4. β.data.version← 0

5. α← h(β.]1)

6. return α

Algorithm 35: Setup
IB

(β) −→ α

CHAPTER 6. EVALUATION 161

Require: (Kuser, kuser), the user’s personal key pair

1. β.data.signature← h(β.]2)
˜kuser

Algorithm 36: Seal
IB

(α, β)

1. if α 6= h(β.]1) then

2. error “the address does not match the block”

3. end if

4. if β.data.signature
˜β.Kowner 6= h(β.]2) then

5. error “the data signature is invalid”

6. end if

Algorithm 37: Validate
IB

(α, β)

As the reader can notice, the IB construct is interesting because it removes the key

pair generation but also simplifies the block verification process which now requires

a single signature verification.

 0

 1000

 2000

 3000

 4000

 5000

Prepare Copy List Search Compile Total

D
u

ra
ti
o

n
 (

s
)

Phases

Refined Benchmark

File System Logic
Cryptography
Network Communication

Figure 6.9: A refined benchmark with time phases

Figure 6.9 illustrates the performance gain resulting from the components merging

along with the introduction of the Imprint Block. While the inter-components com-

munication has completely been removed, the cryptography-specific optimisation by

itself led to a 9.78% gain in overall performance.

CHAPTER 6. EVALUATION 162

The following evaluates the Infinit file system through a set of experiments which

aim at comparing Infinit, in several configurations, with NFS [Osa88]. Since similar

systems have also performed such a comparative evaluation, the performance of

Infinit can be indirectly compared with similar projects, especially Pastis [mBPS05].

Note that for this bencharmk, a couple of caching optimisations have been activated.

The first one, known as “block cache”, is a common technique which consists in

keeping a local copy of accessed blocks for some time in order to speed up future

accesses. The second one, referred to as“path cache”, consists in caching the relations

between logical paths such as /bin/ls and the address of the associated Object block.

The impact of such an optimisation is quite important since the system no longer

has to fetch the intermediate directory objects in order to resolve a recently accessed

path.

As shown in Figure 6.10, this experiment compares the performance of NFS against

Infinit using three different Hole implementations, as detailed in Section 5.2.6. Note

that the kool2 implementation relies on the realistic environment, as presented in

Section 6.1.1, which is composed of 16 nodes located throughout the world. Also,

the quorum algorithm has been configured to tolerate up to γ = 3 Byzantine nodes

implying that every block is constantly replicated on 10 storage nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

Prepare Copy List Search Compile Total

D
u

ra
ti
o

n
 (

s
)

Phases

Optimised Benchmark

NFS
Infinit [local]
Infinit [remote]
Infinit [kool

2
]

Figure 6.10: Comparison between NFS and several Infinit configurations

The results of this experiment show that Infinit generally performs well with execu-

tion times approximately 1.8 times slower than NFS. By comparison, Ivy [MMGC02]

CHAPTER 6. EVALUATION 163

is 2 to 3 times slower, depending on the configuration. Unfortunately, Pangaea

[SKKM02], which exhibits better performance than NFS, cannot be considered for

comparison because of only accessing local copies while not being designed to toler-

ate Byzantine behaviours. Likewise, FARSITE [ABC+02] has been compared with

NTFS (NT File System) from which it draws its features. Pastis [mBPS05] however

did perform a complete analysis of its performance to which Infinit can be compared.

Pastis performs slightly better than Infinit, between 1.4 and 1.9 slower than NFS,

depending on the client’s consistency model. However, several configuration param-

eters as well as system characteristics must be taken into account. Firstly, Pastis

relies on Pastry [RD01a] which has a slightly longer routing path than kool2’s. This

characteristic however favours Pastis regarding the experimental results. On the

other hand, Infinit suffers from more communication due to a higher replication

factor. Indeed, every block is replicated ten times in Infinit against four in Pastis.

Also, Pastis relies on a single mutable block for representing file system objects

while providing some means of access control. Infinit however stores access control

information in a separate immutable block, the Access logical block. Thus, follow-

ing every Object block retrieval, the Access block must be fetched as well, hence

incurring additional network overhead. Finally, while Infinit ’s architecture has been

realistically deployed through the use of FUSE [FUS], Pastis, although supporting

FUSE as well, performed its evaluation by providing a specific Java [JAV] interface.

These differences may account for Pastis’ slightly better performance results.

6.2.3.2 Design

This section focuses on evaluating the Infinit file system in a production environment

in order to analyse both the accessibility of the file system objects along with the

concurrency of the updates.

Accessibility

In this first phase, the accessibility of the file system objects is analysed. More

precisely, the aim of this evaluation is to study the file system access control mech-

anism by measuring the rate of accesses successfully performed on files, directories

etc. that have been shared in reading, as shown in Table 6.1.

For that purpose, an Infinit file system environment is created based on the campus

topology. Then, user entities are generated according to the file system trace. Un-

fortunately, the group entities could not be generated that easily since, as for most

centralised file systems, the trace’s groups are managed following the MAC access

control policy, i.e. users are not granted the right to create or even manage groups

in the system.

CHAPTER 6. EVALUATION 164

Since Infinit complies to the opposite policy, i.e. DAC, the groups had to be gener-

ated through another technique. For every file system object that has been shared in

reading, a group is generated that includes all such users with read permission. Note

that such a group generation process implies that, in the Infinit environment, every

such file, directory etc. actually references groups only. In other words, such file

system objects mainly reference vassals with only the object owner acting as lord.

Although this decision represents the worst case scenario, given the Infinit design

presented in Chapter 4, the system could not have decided automatically how many

lords to create, or even which users to include as a lord.

Noteworthy is that there is an exception when it comes to file system objects that

are shared in reading with a single user other than the owner, in which case no group

is created, i.e. the single user granted permission acts as a lord.

In order to alleviate this extreme arrangement in which a group is created for every

set of readers, several optimisations have been activated such as the proactive distri-

bution of the key used for encrypting the Contents block. In addition, users acting

as vassals can request the key from other vassals, should one of them be connected

at that time.

Figure 6.11 summarises the 156, 729 file system object accesses according to the

entity requesting it. This figure shows that most accesses are actually performed by

the owner along with lords. The large number of accesses performed by lords can

probably be explained by the fact that 99.8% of the 267, 955, 200 shared file system

objects are shared with a single user i.e. a lord.

Entities

Owner 62.0%

Lord 33.4%

Vassal 4.5%

Figure 6.11: Summary of the accesses according to the entity

CHAPTER 6. EVALUATION 165

Finally, Figure 6.12 focuses on the vassals’ accesses by analysing the file system’s

state when such accesses are requested. As shown on the figure, it appears that 43.4%

of the the accesses made by vassals could be performed because the vassal already

had received the key or could contact the owner to retrieve it. This high number can

probably be explained by social interactions where students, for example, actually

seated next to each other, decide to share a file. Such scenarios might explain the

availability of both parties during the object creation or the access. The figure also

demonstrates the efficiency of the proactive distribution optimisation which enables

54.5% of the accesses to be performed by retrieving the key from another vassal which

happened to be logged in when the object was created. Unfortunately however, 2%

of the accesses could not be performed because of the unavailability of the owner

and the impossibility to retrieve the key from another vassal.

State

Contacted Owner 32.0%

Proactively Received Key 11.4%

Contacted Other Vassal 54.5%

Unable to Access 2.0%

Figure 6.12: State of the accesses performed by the vassals

Concurrency

The second phase aims at analysing the update conflicts especially when it comes

to the administration scheme described in Chapter 4.

Let us recall that the administration mechanism requires file system objects to be

associated with a set of users responsible for taking management decisions including

the modification of the object’s content. As discussed in Section 4.2, although this

design is extremely flexible, these special users, referred to as knights, may not

be well-connected enough in order to handle the flow of requests generated by the

object’s lords and vassals.

CHAPTER 6. EVALUATION 166

For the purpose of this evaluation, an Infinit file system environment is created for

which some file system objects will rely on the administration mechanism. Indeed,

for every object being writable by multiple users, a TKB -based Object is created

while all the writers are included in the table of knights. Note that such an organisa-

tion represents the worst-case scenario. Indeed, in a deployed Infinit environment,

users would likely elect another user to the grade of knight assuming this user is

well-connected and involved in the system. This condition is crucial for the admin-

istration requests to be processed as quickly as possible.

The following benchmark analyses every one of the 632 modification requests made

to file system objects which have been shared with other writers, as summarised in

Table 6.2.

Figure 6.13 summarises the results by considering several time frames. A time frame

indicates how much time a knight needs to be connected in order to process a request

i.e. issue a vote. For instance, the shortest time frame considered is 1 minute, which

indicates that a user acting as a knight will take, on average, 1 minute to issue her

vote. Such time frames emulate the fact that users may take some time to (i) notice

the fact that a request has been made and (ii) consider the request and vote. The

figure shows that as the time frame increases, consensus take less time to be reached.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8 9 10
 0

 1

 2

 3

 4

 5

 6

 7

 8

A
v
e

ra
g

e
 C

o
n

s
e

n
s
u

s
 P

e
ri
o

d
 (

m
)

N
u

m
b

e
r

o
f

C
o

n
fl
ic

ts

Time Frame (m)

Concurrency

Consensus
Conflicts

Figure 6.13: Concurrency analysis depending on the knights’ reactivity

In addition, the figure depicts the number of conflicts detected. A conflict can be

identified whenever an object’s knights have not yet reached consensus on a request

CHAPTER 6. EVALUATION 167

while a new request is issued. The reader can notice that the number of such conflicts

is quite low: 8. It is fair to assume that users relying on the file system’s access

control mechanism do not intend to update files in a concurrent manner. For that

purpose, users tend to rely on specific tools such as Subversion, Git etc. as further

analyses confirm.

The number of such conflicts appears to decrease as consensus is reached more

quickly. Note however that a conflict remains anyway. A detailed analysis showed

that this conflict comes from users updating, a few seconds apart, the same directory

by creating different files. Unfortunately, the knights do not have the time to vote

and reach consensus within such an extremely short period of time. This conflict

illustrates the core drawback of the given administration scheme.

? ?

?

To conclude, although Infinit exhibits decent performance results, one must be re-

minded that many components have been implemented in their simplest form pos-

sible. In addition, a number of optimisations could be applied in order to decrease

the impact of some of the design’s characteristics. Beside optimisations that could

be applied both from the design and implementation perspectives, interesting con-

cepts could also be borrowed from similar systems. For example, Plutus [KRS+03]

introduced the idea of filegroups so that objects sharing similar access control rules

could be optimised in several ways: (i) fewer keys are generated since shared among

the objects of the same filegroup and, in turn, (ii) less space is used for metadata

while the system can rely further on caching techniques. Therefore, although Infinit

performs generally well, many additional design and implementation improvements

could be made in order to bring its performance closer to those of NFS [Osa88].

The analysis of a file system trace proved that the Infinit design presented in Chapter

4 could actually work in a production environment. The access control mechanism

proved itself efficient given extreme configurations including the worst-case scenario

in which object owners grant access to users solely through the use of group en-

tities. The benchmark illustrated that the extremely small number of lords along

with their unpredictable connectivity could be overcome by applying several optimi-

sations such as the proactive distribution of the key used for encrypting the object’s

content. Although the analysis revealed that some accesses could not be performed

due to the unavailability of users from which to retrieve the key, it is fair to assume

that an Infinit production environment would behave differently. For instance, by

CHAPTER 6. EVALUATION 168

relying on an open peer-to-peer network, users would be more likely to be connected

through one of their computing devices which in turn would alleviate the discussed

accessibility issues.

Although the access control mechanism deployment was proven successful, the ad-

ministration scheme suffered from the knights’ reactivity to treat the incoming re-

quests. This trait became critical when considering concurrent updates since, as de-

scribed in Section 4.2, administrative requests cannot be treated in parallel. Should

such a conflict occur, the user would have to delay her request and re-submit it

later, which obviously could represent an important hurdle for users. Note however

that the evaluation considered the worst-case scenario in which every object being

writable by multiple users was considered a cooperative object. Indeed, in practice,

it is very likely that the number of such objects would remain extremely small, the

administration scheme being used for critical objects only.

Chapter 7

Conclusion

The peer-to-peer model has shown itself to be a powerful paradigm for the design

of large-scale, adaptative and highly-resilient systems. Over the last decades, many

peer-to-peer systems have been conceived offering services as diverse as telephone,

video streaming or even file sharing through the popular Bittorrent [Coh03] applica-

tion. On the other hand, the file abstraction provided by the hierarchical file system

interface has become the common way for organising, naming and accessing digital

data. As mentioned in Section 3.2, these paradigms can be combined in order to

build a file system benefiting from the properties inherent to the peer-to-peer model

such as scalability, fault-tolerance, durability, availability and so forth.

Throughout this thesis, the author has shown it possible to design a modern storage

system based on these paradigms in order to ensure a certain number of fundamental

properties, defined in Section 3.1. Therefore, an access control and an administration

scheme have been designed, paving the way for the implementation of such a system.

Noteworthy is that this work has been based on several assumptions which could

very well be challenged by other authors. Note however that such decisions have

been justified in Section 3.4.

The first assumption relates to the peer-to-peer environment which implies a number

of properties such as the untrustworthiness of the computers populating the network,

the decentralised and symmetric behaviour of those nodes as well as the required

scalability of the underlying network protocols such as locating a node responsible for

a given identifier. Besides, the network’s untrustworthiness and symmetry implies

that the data blocks associated with an identifier must be self-certified so that anyone

can distinguish a valid from an illegitimately forged block. Note however that the

administration scheme presented in Section 4.2 introduced blocks, referred to as

TKBs, which do not conform to these principles, thus violating both the symmetry

and self-certification properties.

The nodes and especially their connectivity to the peer-to-peer network constitutes

169

CHAPTER 7. CONCLUSION 170

another assumption. Section 4.1.2 showed that the fundamental properties were too

constraining for an access control scheme to be designed in such an environment.

Therefore, the connectivity requirement was loosened as thought to be the more

flexible parameter. Most research interested in such aspects of peer-to-peer networks

has focused on the nodes’ churn ratio. The access control scheme presented in this

document relies on the connectivity of users which, in such a modern system, can

be connected to the system through multiple computing devices being computers,

mobile phones, tablets, netbooks etc.

The third and final assumption stipulates that the distributed hash table upon

which the presented file system relies should ensure consistency among the replicas

through a quorum-based protocol. Although similar projects such as CFS [DKK+01]

or Pastis [mBPS05] have also made this assumption, most Byzantine-fault-tolerant

distributed systems tend to make use of agreement algorithms such as BFT [CL99]

or Paxos [Lam98] because these algorithms provide far more flexibility than their

quorum counterparts. On the other hand, quorum algorithms are well suited for

distributed file systems because they rely on the basic operations consisting of read-

ing and writing data items. As such, file systems do not require the underlying

storage layer to provide advanced functionalities. All in all, quorum algorithms

imply self-certification which in turn requires more cryptographic operations while

agreement protocols require storage nodes to exchange more messages in order to

achieve consensus. However, and as shown in Chapter 6, the cryptographic opera-

tions account for an extremely small portion of the retrieval and storing processes,

hence confirming the initial assumption regarding the better performance of quorum

algorithms.

The contributions of this work are threefold. First, the functionalities such a modern

storage system should provide to end-users have been defined though some have

intentionally been left for future work. In addition, the system’s properties such

as untrustworthiness, decentralisation, symmetry, self-certification etc. have been

inferred from the peer-to-peer file system’s paradigms. Second, the fundamental

file system components such as file, directory, user, group etc. have been defined

through the design of an access control and administration scheme. Unlike previous

projects such as Chefs [Fu05], Plutus [KRS+03] and Pastis [mBPS05], the access

control scheme has been designed for large-scale decentralised and untrustworthy

environments while providing users with the means to express access control rules in

a very flexible way. In addition, the administration scheme allows users to request

administrative tasks while preventing a single user from taking complete control

over the system. Third, a prototype implementation has been developed proving

feasible the deployment of such a system. This prototype has been developed so as

to provide a modular architecture enabling the user to set up the system according

to its device’s hardware characteristics as well as the user’s preferences.

CHAPTER 7. CONCLUSION 171

The evaluation carried out in Chapter 6 shows that Infinit performs generally well,

especially compared to similar systems such as CFS [DKK+01], Ivy [MMGC02]

and Pastis [mBPS05]. Interestingly, the access control mechanism has been proven

efficient and robust especially in extreme environments with low connectivity. How-

ever, a long-term analysis would still have to be performed in a large-scale realistic

environment in order to validate the qualitative aspects of the system especially re-

garding the administration scheme which suffers from the knights’ reactivity when

it comes to concurrent updates.

Finally, although this thesis provides the fundamental components for the imple-

mentation of a large-scale decentralised and Byzantine-fault-tolerant storage system,

some properties have been left as future work, such as anonymity and versioning,

while other aspects have been voluntarily ignored including garbage collection, con-

sistency models, advanced quorum algorithms, concurrency conflicts resolution and

many more. Although every one of these topics has been tackled through other re-

search projects, Infinit could not be considered complete without taking such design

factors into account.

List of Figures

1.1 A worldwide storage infrastructure 4

2.1 A flat unstructured overlay network 9

2.2 A two-level hybrid overlay network 10

2.3 A ring-based structured overlay network 12

2.4 A Chord network of degree 5 with 17 nodes 15

2.5 A Kelips network for 36 nodes . 17

2.6 A small-world-based social overlay network 19

2.7 The replication-based DHash distributed hash table 22

2.8 The Paxos agreement protocol . 23

2.9 Three Gifford quorum configurations 24

2.10 Pangaea file system representation 27

2.11 OceanStore’s organisation . 29

2.12 The FARSITE architecture . 30

2.13 The CFS hierarchical organisation 32

2.14 The Ivy log-based representation . 34

2.15 The Plutus ’ keys, locks and groups 36

2.16 The Pastis organisation . 37

3.1 A three-step representation of a symmetric quorum-based system . . 50

3.2 A three-step representation of an asymmetric quorum-based system . 51

4.1 The representation of a CHB . 63

4.2 The representation of a PKB . 64

4.3 The representation of an OKB . 65

172

LIST OF FIGURES 173

4.4 The representation of a PKB -based User block 67

4.5 The representation of an OKB -based Group block 69

4.6 The representation of an OKB -based Object block 72

4.7 A graph showing the relations between PO and ρ 82

4.8 The representation of a TKB . 94

4.9 A scenario illustrating the TKB -specific quorum algorithm 101

4.10 The representation of a TKB -based Object block 103

4.11 The representation of an TKB -based Group block 106

5.1 A file representation . 121

5.2 A directory representation . 122

5.3 A link representation . 122

5.4 The Infinit system-wide hierarchical representation 124

5.5 The architecture of an Infinit node 125

5.6 The internals of the Etoile component 135

5.7 An example of a kool3 network . 143

6.1 General information regarding the users’ sharing behaviours 151

6.2 General information regarding the user’s cooperative behaviours . . . 151

6.3 The performance of the overlay network’s Lookup(ι) routine 153

6.4 The performance of the immutable-specific Get(α) routine 154

6.5 The performance of the mutable-specific Gather(α) routine 155

6.6 The performance of the Put(α, β) routine 155

6.7 An initial benchmark with time phases 159

6.8 The representation of an IB . 160

6.9 A refined benchmark with time phases 161

6.10 Comparison between NFS and several Infinit configurations 162

6.11 Summary of the accesses according to the entity 164

6.12 State of the accesses performed by the vassals 165

6.13 Concurrency analysis depending on the knights’ reactivity 166

List of Tables

4.1 A summary of the permissions in the file system 95

5.1 kool parameters . 142

5.2 kool formulas . 143

5.3 Comparison of the kool configurations 144

6.1 General information regarding the users and files 149

6.2 General information regarding the nodes and users connectivity . . . 150

6.3 An evaluation summary of the Infinit blocks 157

6.4 Performance of the Infinit ’s cryptosystems 158

6.5 The size of the principal cryptographic components 159

174

Listings

5.1 An example of hierarchical namespace 123

5.2 The PublicKey::Serialize() method 127

5.3 The KeyPair::Extract() method 127

5.4 The Base64 Unique representation of a block address 128

5.5 An illustration of fibers . 129

5.6 The message definition process . 131

5.7 The message registration process . 131

5.8 The PIG ’s rmdir() POSIX system call 132

5.9 The Agent::Decrypt() method . 134

5.10 The Agent::Sign() method . 134

5.11 Etoile’s wall message definitions for directory objects 136

5.12 Etoile’s wall handler definitions for directory objects 136

5.13 The components unit’s Directory::Remove() method 138

5.14 The Object class . 139

5.15 The Hole component’s interface . 140

6.1 The Andrew benchmark . 147

175

List of Algorithms

1 Setup
CHB

(β) −→ α . 63

2 Seal
CHB

(α, β) . 63

3 Validate
CHB

(α, β) . 63

4 Setup
PKB

(β) −→ α . 64

5 Seal
PKB

(α, β) . 65

6 Validate
PKB

(α, β) . 65

7 Setup
OKB

(β) −→ α . 66

8 Seal
OKB

(α, β) . 66

9 Validate
OKB

(α, β) . 66

10 Setup User
PKB

(β) −→ α . 68

11 Seal User
PKB

(α, β) . 68

12 Validate User
PKB

(α, β) . 68

13 SetupObject
OKB

(β) −→ α . 73

14 SealObject[data]
OKB

(α, β) . 73

15 SealObject[meta]
OKB

(α, β) . 73

16 ValidateObject
OKB

(α, β) . 74

17 Govern(α, ψ) . 76

18 Read(α, λ) −→ δ . 77

19 Write(α, λ, δ) . 79

20 Setup
TKB

(β) −→ α . 95

21 Seal
TKB

(α, β) . 95

22 Validate[client]
TKB

(α, β) — client side 96

23 Validate[server]
TKB

(α, β) — server side 100

24 SetupObject
TKB

(β) −→ α . 104

25 SealObject[data]
TKB

(α, β) . 104

26 SealObject[meta]
TKB

(α, β) . 104

27 Validate[client]Object
TKB

(α, β) — client side 105

28 Elect(α, θ) . 110

29 Govern(α, ψ) . 111

30 Read(α, λ) −→ δ . 112

31 Write(α, λ, δ) . 113

32 Manage(α, θ) . 114

176

LIST OF ALGORITHMS 177

33 Edit(α, ψ) . 115

34 Transfer(α, µ) . 115

35 Setup
IB

(β) −→ α . 160

36 Seal
IB

(α, β) . 161

37 Validate
IB

(α, β) . 161

Bibliography

[ABC+02] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ron-

nie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin

Theimer, and Roger P. Wattenhofer. FARSITE: Federated, available,

and reliable storage for an incompletely trusted environment. In In

Proceedings of the 5th Symposium on Operating Systems Design and

Implementation (OSDI), pages 1–14, 2002.

[ACMR02] Sameer Ajmani, Dwaine E. Clarke, Chuang-Hue Moh, and Steven Rich-

man. ConChord: Cooperative SDSI certificate storage and name res-

olution. In In First International Workshop on Peer-to-Peer Systems,

pages 141–154, 2002.

[ADN+95] Thomas Anderson, Michael Dahlin, Jeanna Neefe, David P. Terson,

Drew Roselli, and Randolph Wang. Serverless network file systems. In

In Proceedings of the 15th Symposium on Operating System Principles.

ACM, pages 109–126, Copper Mountain Resort, Colorado, December

1995.

[AHT+02] A. Adya, J. Howell, M. Theimer, W. Bolosky, and J. Douceur. Coop-

erative task management without manual stack management, 2002.

[AJ92] Gagan Agrawal and Pankaj Jalote. An efficient protocol for voting in

distributed systems. In International Conference on Distributed Com-

puting Systems, pages 640–647, 1992.

[AMN01] Michel Abdalla, Sara K. Miner, and Chanathip Namprempre. Forward-

secure threshold signature schemes. In Proceedings of the 2001 Con-

ference on Topics in Cryptology: The Cryptographer’s Track at RSA,

CT-RSA 2001, pages 441–456, London, UK, UK, 2001. Springer-Verlag.

[And04] Ken H. And. Small world overlay P2P networks, 2004.

[App] http://www.me.com.

178

BIBLIOGRAPHY 179

[BBB+04] Jean-Michel Busca, Marin Bertier, Fatima Belkouch, Pierre Sens, and

Luciana Arantes. A performance evaluation of a quorum-based state-

machine replication algorithm for computing grids. In Proceedings of

the 16th Symposium on Computer Architecture and High Performance

Computing, pages 116–123, Washington, DC, USA, 2004. IEEE Com-

puter Society.

[BCK+09] Gal Badishi, Germano Caronni, Idit Keidar, Raphael Rom, and Glenn

Scott. Deleting files in the celeste peer-to-peer storage system. Journal

of Parallel and Distributed Computing, 69(7):613–622, July 2009.

[BDET00] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer.

Feasibility of a serverless distributed file system deployed on an existing

set of desktop PCs. SIGMETRICS Perform. Eval. Rev., 28(1):34–43,

June 2000.

[BF08] João Barreto and Paulo Ferreira. The obscure nature of epidemic quo-

rum systems. In Proceedings of the 9th workshop on Mobile computing

systems and applications, HotMobile ’08, pages 69–73, New York, NY,

USA, 2008. ACM.

[BJZH04] Ali R. Butt, Troy A. Johnson, Yili Zheng, and Charlie Y. Hu. Kosha:

A Peer-to-Peer enhancement for the network file system. In The Inter-

national Conference for High Performance Computing and Communi-

cations (SC2004), page 51, November 2004.

[BLV05] A. Blanc, Yi-Kai Liu, and A. Vahdat. Designing incentives for peer-to-

peer routing. volume 1, pages 374–385 vol. 1, March 2005.

[Box] http://www.box.net.

[BS10] Fatemeh Borran and André Schiper. A leader-free byzantine consen-

sus algorithm. In Proceedings of the 11th international conference on

Distributed computing and networking, ICDCN’10, pages 67–78, Berlin,

Heidelberg, 2010. Springer-Verlag.

[BTC+04] Ranjita Bhagwan, Kiran Tati, Yu C. Cheng, Stefan Savage, and Geof-

frey M. Voelker. Total recall: system support for automated availability

management. In Proceedings of the 1st conference on Symposium on

Networked Systems Design and Implementation - Volume 1, page 25,

Berkeley, CA, USA, 2004. USENIX Association.

[Bus07] Jean-Michel Busca. Pastis : Un Système Pair à Pair de Gestion de

Fichiers. PhD thesis, Université Pierre et Marie Curie, 2007.

BIBLIOGRAPHY 180

[CCB07] James Cipar, Mark D. Corner, and Emery D. Berger. TFS: a transpar-

ent file system for contributory storage. In FAST’07: Proceedings of

the 5th conference on USENIX Conference on File and Storage Tech-

nologies, page 28, Berkeley, CA, USA, 2007. USENIX Association.

[CCR05] M. Castro, M. Costa, and A. Rowstron. Debunking some myths about

structured and unstructured overlays. In 2nd Symposium on Networked

Systems Design and Implementation (NSDI’05), pages 85–98, 2005.

[CDG+02] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron,

and Dan S. Wallach. Secure routing for structured peer-to-peer overlay

networks. SIGOPS Oper. Syst. Rev., 36(SI):299–314, 2002.

[CFK03] Edith Cohen, Amos Fiat, and Haim Kaplan. A case for associative

peer to peer overlays. SIGCOMM Comput. Commun. Rev., 33:95–100,

January 2003.

[CGKV08] Gregory Chockler, Rachid Guerraoui, Idit Keidar, and Marko Vukolic.

Reliable distributed storage. IEEE Computer, 2008.

[CGM02] Brian F. Cooper and Hector Garcia-Molina. Bidding for storage space

in a peer-to-peer data preservation system. In Proceedings of the

22 nd International Conference on Distributed Computing Systems

(ICDCS’02), ICDCS ’02, pages 372–, Washington, DC, USA, 2002.

IEEE Computer Society.

[CL99] Castro and Liskov. Practical byzantine fault tolerance. In OSDI: Sym-

posium on Operating Systems Design and Implementation, pages 173–

186. USENIX Association, Co-sponsored by IEEE TCOS and ACM

SIGOPS, 1999.

[Cla83] Anne-Marie G. Claybrook. Directions in computer security. In Proceed-

ings of the 1983 annual conference on Computers : Extending the hu-

man resource, ACM ’83, pages 42–, New York, NY, USA, 1983. ACM.

[CLL07] Chin-Chen Chang, Chih-Yang Lin, and Keng-Chu Lin. Simple effi-

cient mutual anonymity protocols for peer-to-peer network based on

primitive roots. J. Netw. Comput. Appl., 30:662–676, April 2007.

[CN03] L. Cox and B. Noble. Samsara: Honor among thieves in Peer-to-

Peer storage. ACM SIGOPS Operating Systems Review, 37(5):120–132,

2003.

[Coh03] Bram Cohen. Incentives build robustness in BitTorrent, 2003.

BIBLIOGRAPHY 181

[Com85] Douglas E. Comer. Domain names (panel session, abstract only): hi-

erarchy in need of organization. SIGCOMM Comput. Commun. Rev.,

15:72–, September 1985.

[CRB+03] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and

Scott Shenker. Making gnutella-like p2p systems scalable. In Pro-

ceedings of the 2003 conference on Applications, technologies, archi-

tectures, and protocols for computer communications, SIGCOMM ’03,

pages 407–418, New York, NY, USA, 2003. ACM.

[CRS05] Germano Caronni, Raphael Rom, and Glenn Scott. Maintaining object

ordering in a shared p2p storage environment. In Proceedings of the

Third IEEE International Security in Storage Workshop, pages 52–62,

Washington, DC, USA, 2005. IEEE Computer Society.

[CSP07] Lásaro Jonas Camargos, Rodrigo Malta Schmidt, and Fernando Pe-

done. Multicoordinated paxos. In Proceedings of the twenty-sixth an-

nual ACM symposium on Principles of distributed computing, PODC

’07, pages 316–317, New York, NY, USA, 2007. ACM.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.

Freenet: a distributed anonymous information storage and retrieval

system. In International workshop on Designing privacy enhancing

technologies, pages 46–66. Springer-Verlag New York, Inc., 2001.

[DAB+02] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and

Marvin Theimer. Reclaiming space from duplicate files in a serverless

distributed file system. In ICDCS ’02: Proceedings of the 22 nd Inter-

national Conference on Distributed Computing Systems (ICDCS’02),

pages 617–624, Washington, DC, USA, 2002. IEEE Computer Society.

[dALF10] Francisco de Asis Lopez-Fuentes. A routing scheme for content local-

ization in peer-to-peer networks. In Proceedings of the 2010 IEEE Elec-

tronics, Robotics and Automotive Mechanics Conference, CERMA ’10,

pages 249–254, Washington, DC, USA, 2010. IEEE Computer Society.

[DB99] John R. Douceur and William J. Bolosky. A large-scale study of file-

system contents. In SIGMETRICS ’99: Proceedings of the 1999 ACM

SIGMETRICS international conference on Measurement and modeling

of computer systems, pages 59–70, New York, NY, USA, 1999. ACM.

[DFM01] Roger Dingledine, Michael J. Freedman, and David Molnar. The free

haven project: distributed anonymous storage service. In International

BIBLIOGRAPHY 182

workshop on Designing privacy enhancing technologies, pages 67–95,

New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[DGWR07] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran.

Network coding for distributed storage systems. In INFOCOM 2007.

26th IEEE International Conference on Computer Communications.

IEEE, pages 2000–2008, May 2007.

[DHA03] Anwitaman Datta, Manfred Hauswirth, and Karl Aberer. Updates in

highly unreliable, replicated Peer-to-Peer systems. In 23rd Interna-

tional Conference on Distributed Computing Systems (ICDCS 2003),

pages 76–87, Providence, Rhode Island, USA, May 2003.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly

available key-value store. SIGOPS Oper. Syst. Rev., 41:205–220, Octo-

ber 2007.

[DKK+01] Frank Dabek, Frans M. Kaashoek, David Karger, Robert Morris, and

Ion Stoica. Wide-area cooperative storage with CFS. In Proceedings

of the 18th ACM Symposium on Operating Systems Principles (SOSP

’01), Chateau Lake Louise, Banff, Canada, October 2001.

[DLLKA05] George Danezis, Chris Lesniewski-Laas, Frans M. Kaashoek, and Ross

Anderson. Sybil-Resistant DHT routing. pages 305–318. 2005.

[DMM08] John Day, Ibrahim Matta, and Karim Mattar. Networking is ipc: a

guiding principle to a better internet. In Proceedings of the 2008 ACM

CoNEXT Conference, CoNEXT ’08, pages 67:1–67:6, New York, NY,

USA, 2008. ACM.

[DMS03] Roger Dingledine, Nick Mathewson, and Paul Syverson. Reputation in

P2P anonymity systems, 2003.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The

Second-Generation onion router. In Proceedings of the 13th USENIX

Security Symposium, pages 303–320, San Diego, CA, USA, August

2004.

[Dou02] John R. Douceur. The sybil attack. In Revised Papers from the First

International Workshop on Peer-to-Peer Systems, IPTPS ’01, pages

251–260, London, UK, 2002. Springer-Verlag.

[Dro] http://www.getdropbox.com.

BIBLIOGRAPHY 183

[DW01] John R. Douceur and Roger P. Wattenhofer. Optimizing file availability

in a secure serverless distributed file system. 2001.

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and Stoica. Towards

a common API for structured Peer-to-Peer overlays. In International

Workshop on Peer-to-Peer Systems, 2003.

[FJG06] Ronaldo A. Ferreira, Suresh Jagannathan, and Ananth Grama. Local-

ity in structured peer-to-peer networks. J. Parallel Distrib. Comput.,

66:257–273, February 2006.

[FKK06] Kevin Fu, Seny Kamaram, and Yoshi Kohno. Key regression: Enabling

efficient key distribution for secure distributed storage. In Network and

Distributed System Security Symposium (NDSS ’06), 2006.

[FKM02] Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast and secure

distributed read-only file system. ACM Trans. Comput. Syst., 20(1):1–

24, February 2002.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-

possibility of distributed consensus with one faulty process. J. ACM,

32:374–382, April 1985.

[Fu99] Kevin Fu. Group sharing and random access in cryptographic storage

file systems. Master’s thesis, Massachusetts Institute of Technology,

May 1999.

[Fu05] Kevin E. Fu. Integrity and access control in untrusted content distribu-

tion networks. PhD thesis, Cambridge, MA, USA, 2005. AAI0808990.

[FUS] http://fuse.sf.net.

[GBL+03] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Rob-

bert van Renesse. Kelips: Building an efficient and stable P2P DHT

through increased memory and background overhead. In IPTPS ’03:

2nd International Workshop on Peer-to-Peer Systems, 2003.

[GDZ+05] Lei Gao, Mike Dahlin, Jiandan Zheng, Lorenzo Alvisi, and Arun Iyen-

gar. Dual-quorum replication for edge services. In Proceedings of the

ACM/IFIP/USENIX 2005 International Conference on Middleware,

Middleware ’05, pages 184–204, New York, NY, USA, 2005. Springer-

Verlag New York, Inc.

[GEvS07] P. Garbacki, D. H. J. Epema, and M. van Steen. Optimizing peer

relationships in a Super-Peer network. In ICDCS ’07: Proceedings of

BIBLIOGRAPHY 184

the 27th International Conference on Distributed Computing Systems,

page 31, Washington, DC, USA, July 2007. IEEE Computer Society.

[Gif79] David K. Gifford. Weighted voting for replicated data, 1979.

[GKLQ07] Rachid Guerraoui, Dejan Kostic, Ron R. Levy, and Vivien Quema. A

high throughput atomic storage algorithm. In ICDCS ’07: Proceedings

of the 27th International Conference on Distributed Computing Sys-

tems, page 19, Washington, DC, USA, 2007. IEEE Computer Society.

[HAF10] Yaser Houri, Bernhard Amann, and Thomas Fuhrmann. A quanti-

tative analysis of redundancy schemes for peer-to- peer storage sys-

tems. In Proceedings of the 12th international conference on Stabiliza-

tion, safety, and security of distributed systems, SSS’10, pages 519–530,

Berlin, Heidelberg, 2010. Springer-Verlag.

[HAY+05] Ragib Hasan, Zahid Anwar, William Yurcik, Larry Brumbaugh, and

Roy Campbell. A survey of Peer-to-Peer storage techniques for dis-

tributed file systems. In ITCC ’05: Proceedings of the Interna-

tional Conference on Information Technology: Coding and Computing

(ITCC’05) - Volume II, pages 205–213, Washington, DC, USA, 2005.

IEEE Computer Society.

[HB11] Cyrus Harvesf and Douglas M. Blough. Replica placement for route

diversity in tree-based routing distributed hash tables. IEEE Trans.

Dependable Secur. Comput., 8:419–433, May 2011.

[HCW10] Guowei Huang, Jiangang Chen, and Lian Wei. Routeguard: A trust-

based scheme for guarding routing in structured peer-to-peer overlays.

In Proceedings of the 2010 International Conference on Communica-

tions and Mobile Computing - Volume 01, CMC ’10, pages 330–334,

Washington, DC, USA, 2010. IEEE Computer Society.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview:

practical accountability for distributed systems. In SOSP ’07: Proceed-

ings of twenty-first ACM SIGOPS symposium on Operating systems

principles, pages 175–188, New York, NY, USA, 2007. ACM.

[HKLF+06] S. B. Handurukande, A. M. Kermarrec, F. Le Fessant, L. Massoulié,

and S. Patarin. Peer sharing behaviour in the eDonkey network, and

implications for the design of server-less file sharing systems. In EuroSys

’06: Proceedings of the 2006 EuroSys conference, pages 359–371, New

York, NY, USA, 2006. ACM Press.

BIBLIOGRAPHY 185

[HKM+88a] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A.

Nichols, M. Satyanarayanan, Robert N. Sidebotham, and Michael J.

West. Scale and performance in a distributed file system. ACM Trans.

Comput. Syst., 6(1):51–81, February 1988.

[HKM+88b] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A.

Nichols, M. Satyanarayanan, Robert N. Sidebotham, and Michael J.

West. Scale and performance in a distributed file system. ACM Trans.

Comput. Syst., 6(1):51–81, February 1988.

[HMD05] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly

durable, decentralized storage despite massive correlated failures. In

IN PROC. OF NSDI, 2005.

[HP94] John S. Heidemann and Gerald J. Popek. File-system development

with stackable layers. ACM Trans. Comput. Syst., 12(1):58–89, 1994.

[iNe] http://topology.eecs.umich.edu/inet/.

[IRF04] Adriana Iamnitchi, Matei Ripeanu, and Ian Foster. Small-World File-

Sharing communities. In The 23rd Conference of the IEEE Communi-

cations Society (InfoCom 2004), Hong Kong, # 2004.

[JAV] http://www.java.com.

[JB94] Marjan Jurečič and Herbert Bunz. Exchange of patient records-

prototype implementation of a security attributes service in x.500. In

Proceedings of the 2nd ACM Conference on Computer and communi-

cations security, CCS ’94, pages 30–38, New York, NY, USA, 1994.

ACM.

[JGH+98] Jr, R. Guy, J. Heidemann, D. Ratner, P. Reiher, A. Goel, G. Kuenning,

and G. Popek. Perspectives on optimistically replicated, Peer-to-Peer

filing. Software Practice and Experience, February 1998.

[JXY07] Yi Jiang, Guangtao Xue, and Jinyuan You. Distributed hash table

based peer-to-peer version control system for collaboration. In Pro-

ceedings of the 10th international conference on Computer supported

cooperative work in design III, CSCWD’06, pages 489–498, Berlin, Hei-

delberg, 2007. Springer-Verlag.

[Kar86] P A Karger. Authentication and discretionary access control in com-

puter networks. Comput. Secur., 5:314–324, December 1986.

BIBLIOGRAPHY 186

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,

Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea,

Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao.

OceanStore: An architecture for global-scale persistent storage. In In

Proceedings of the 9th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS,

2000.

[KLW11] Andreas Klappenecker, Hyunyoung Lee, and Jennifer L. Welch.

Quorum-based dynamic regular registers in systems with churn. In

Proceedings of the 3rd International Workshop on Theoretical Aspects

of Dynamic Distributed Systems, TADDS ’11, pages 3–7, New York,

NY, USA, 2011. ACM.

[KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and

Kevin Fu. Plutus: Scalable secure file sharing on untrusted storage.

In FAST ’03: Proceedings of the 2nd USENIX Conference on File and

Storage Technologies, pages 29–42, Berkeley, CA, USA, 2003. USENIX

Association.

[KS10] Jinu Kurian and Kamil Sarac. A survey on the design, applications,

and enhancements of application-layer overlay networks. ACM Comput.

Surv., 43:5:1–5:34, December 2010.

[KSMK03] Michael Kaminsky, George Savvides, David Mazieres, and Frans M.

Kaashoek. Decentralized user authentication in a global file system.

SIGOPS Oper. Syst. Rev., 37(5):60–73, December 2003.

[KWR06] P. Knezevic, A. Wombacher, and T. Risse. Highly Available DHTs:

Keeping Data Consistency After Updates. In 4th International Work-

shop, AP2PC 2005, July 25, 2005, Revised Papers, Utrecht, Nether-

lands, July 2006.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16(2):133–169, May 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25,

December 2001.

[LCG07] Haifeng Liu, Xianglan Chen, and Yuchang Gong. Babyos: a fresh start.

In Proceedings of the 38th SIGCSE technical symposium on Computer

science education, SIGCSE ’07, pages 566–570, New York, NY, USA,

2007. ACM.

BIBLIOGRAPHY 187

[LKMS04] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Se-

cure untrusted data repository (SUNDR). In OSDI’04: Proceedings of

the 6th conference on Symposium on Opearting Systems Design & Im-

plementation, page 9, Berkeley, CA, USA, 2004. USENIX Association.

[LMZ09] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and

primary-backup replication. In Proceedings of the 28th ACM sympo-

sium on Principles of distributed computing, PODC ’09, pages 312–313,

New York, NY, USA, 2009. ACM.

[LSG+04] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and

M. Frans Kaashoek. Comparing the performance of distributed hash

tables under churn. In In The 3th International Workshop on Peer-to-

Peer Systems (IPTPS’04), 2004.

[MAD02] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal

byzantine storage. In DISC ’02: Proceedings of the 16th International

Conference on Distributed Computing, pages 311–325, London, UK,

2002. Springer-Verlag.

[Maz01] David Mazières. A toolkit for User-Level file systems. In Proceedings of

the General Track: 2002 USENIX Annual Technical Conference, pages

261–274, Berkeley, CA, USA, 2001. USENIX Association.

[mBPS05] Jean michel Busca, Fabio Picconi, and Pierre Sens. Pastis: A highly-

scalable multi-user peer-to-peer file system. In in Euro-Par 2005, 2005.

[MBRI03] Gurmeet S. Manku, Mayank Bawa, Prabhakar Raghavan, and Verity

Inc. Symphony: Distributed hashing in a small world. In In Proceedings

of the 4th USENIX Symposium on Internet Technologies and Systems,

pages 127–140, 2003.

[MCG05] M. Muhammad, A. S. Cheema, and I. Gupta. Efficient mutual ex-

clusion in peer-to-peer systems. In Proceedings of the 6th IEEE/ACM

International Workshop on Grid Computing, GRID ’05, pages 296–299,

Washington, DC, USA, 2005. IEEE Computer Society.

[MCM01] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A

low-bandwidth network file system. In SOSP ’01: Proceedings of the

eighteenth ACM symposium on Operating systems principles, pages

174–187, New York, NY, USA, 2001. ACM Press.

[MD88] P. Mockapetris and K. J. Dunlap. Development of the domain name

system. SIGCOMM Comput. Commun. Rev., 18:123–133, August 1988.

BIBLIOGRAPHY 188

[MGGM04] Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina. Dht rout-

ing using social links. In 3rd International Workshop on Peer-to-Peer

Systems (IPTPS 2004), February 2004.

[Mha11] Darshan Mhapasekar. Accomplishing anonymity in peer to peer net-

work. In Proceedings of the 2011 International Conference on Commu-

nication, Computing & Security, ICCCS ’11, pages 555–558, New

York, NY, USA, 2011. ACM.

[MI09] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines.

ACM Trans. Program. Lang. Syst., 31:6:1–6:31, February 2009.

[MKKW99] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and Emmett

Witchel. Separating key management from file system security. In

Proceedings of the seventeenth ACM symposium on Operating systems

principles, SOSP ’99, pages 124–139, New York, NY, USA, 1999. ACM.

[MM02] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer informa-

tion system based on the XOR metric, 2002.

[MMGC02] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie

Chen. Ivy: A Read/Write Peer-to-Peer file system. In Proceedings

of 5th Symposium on Operating Systems Design and Implementation,

2002.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable

and dynamic emulation of the butterfly. In PODC ’02: Proceedings of

the twenty-first annual symposium on Principles of distributed comput-

ing, pages 183–192, New York, NY, USA, 2002. ACM.

[MR97] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. In

STOC ’97: Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, pages 569–578, New York, NY, USA, 1997.

ACM Press.

[MT03a] Tim Moreton and Andrew Twigg. Enforcing collaboration in peer-to-

peer routing services. In Proceedings of the 1st international conference

on Trust management, iTrust’03, pages 255–270, Berlin, Heidelberg,

2003. Springer-Verlag.

[MT03b] Tim Moreton and Andrew Twigg. Trading in trust, tokens and stamps.

In 1st Workshop on the Economics of P2P systems, 2003.

[NSN] http://www.nsnam.org.

BIBLIOGRAPHY 189

[OM94] Kazuo Ohta and Mitsuru Matsui. Differential attack on message au-

thentication codes. In Proceedings of the 13th Annual International

Cryptology Conference on Advances in Cryptology, CRYPTO ’93, pages

200–211, London, UK, 1994. Springer-Verlag.

[Omn] http://www.omnidrive.com.

[Ope] http://www.openomy.com.

[Osa88] Alex Osadzinski. The network file system (nfs). Comput. Stand. Inter-

faces, 8:45–48, July 1988.

[OSV09] Christian Ortolf, Christian Schindelhauer, and Arne Vater. Classifying

peer-to-peer network coding schemes. In Proceedings of the twenty-

first annual symposium on Parallelism in algorithms and architectures,

SPAA ’09, pages 310–318, New York, NY, USA, 2009. ACM.

[PCT04] Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum. Safe

and private data sharing with turtle: Friends Team-Up and beat the

system. In In Proc. of the 12th Cambridge Intl. Workshop on Security

Protocols, 2004.

[PPD+95] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thomp-

son, Howard Trickey, and Phil Winterbottom. Plan 9 from bell labs.

Computing Systems, 8(3):221–254, 1995.

[PRR97] Greg C. Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Ac-

cessing nearby copies of replicated objects in a distributed environment.

In ACM Symposium on Parallel Algorithms and Architectures, pages

311–320, 1997.

[PSAS01] Marius Portmann, Pipat Sookavatana, Sébastien Ardon, and Aruna

Seneviratne. The cost of peer discovery and searching in the gnutella

peer-to-peer file sharing protocol. In Proceedings of the 9th IEEE Inter-

national Conference on Networks, ICON ’01, pages 263–, Washington,

DC, USA, 2001. IEEE Computer Society.

[RD01a] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized

object location, and routing for Large-Scale Peer-to-Peer systems. Lec-

ture Notes in Computer Science, 2218:329–351, 2001.

[RD01b] Antony Rowstron and Peter Druschel. Storage management and

caching in PAST, a large-scale, persistent peer-to-peer storage utility.

In Proc. of the 18th ACM Symposium on Operating System Principles,

October 2001.

BIBLIOGRAPHY 190

[RFSH01] Sylvia Ratnasamy, Paul Francis, Scott Shenker, and Mark Handley.

A scalable Content-Addressable network. In In Proceedings of ACM

SIGCOMM, pages 161–172, 2001.

[RGRK04] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz.

Handling churn in a DHT. In Proc. of the 2004 Usenix Annual Technical

Conference, June 2004.

[RH04] Sriram Ramabhadran and Joseph M. Hellerstein. Prefix hash tree: An

indexing data structure over distributed hash tables, 2004.

[Sa07] Jeremy Stribling and Emil Sit and. Don’t give up on distributed file

systems. In Proc. of the 6th IPTPS, February 2007.

[SBA03] Sbarc: A supernode based peer-to-peer file sharing system. In Proceed-

ings of the Eighth IEEE International Symposium on Computers and

Communications, ISCC ’03, pages 1053–, Washington, DC, USA, 2003.

IEEE Computer Society.

[SFH+99] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alis-

tair C. Veitch, Ross W. Carton, and Jacob Ofir. Deciding when to forget

in the elephant file system. SIGOPS Oper. Syst. Rev., 33(5):110–123,

1999.

[SKK+90] M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.

Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A highly available

file system for a distributed workstation environment. IEEE Transac-

tions on Computers, 39(4):447–459, 1990.

[SKKM02] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik

Mahalingam. Taming aggressive replication in the pangaea wide-area

file system. SIGOPS Oper. Syst. Rev., 36(SI):15–30, 2002.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and

Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. In SIGCOMM ’01: Proceedings of the 2001 con-

ference on Applications, technologies, architectures, and protocols for

computer communications, volume 31, pages 149–160, New York, NY,

USA, October 2001. ACM.

[SMZ03] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location

using interest-based locality in peer-to-peer systems. In IEEE Infocom,

San Francisco, CA, March 2003.

BIBLIOGRAPHY 191

[SNDW06] Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S. Wallach.

Eclipse attacks on overlay networks: Threats and defenses. In 25th

Conference on Computer Communications (INFOCOM 2006). IEEE,

2006.

[SS96] Mirjana Spasojevic and M. Satyanarayanan. An empirical study of

a wide-area distributed file system. ACM Trans. Comput. Syst.,

14(2):200–222, May 1996.

[SS02] J. Sabater and C. Sierra. Regret: a reputation model for gregarious

societies. In C. Castelfranchi and L. Johnson, editors, Proceedings of the

1st International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS-2002), pages 475–482. ACM Press, 2002.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput.

Surv., 37(1):42–81, March 2005.

[Vas08] Nadejda Belbus Vasilyevna. An rbac design with discretionary and

mandatory features. In Proceedings of the 2008 International Sympo-

sium on Ubiquitous Multimedia Computing, pages 260–263, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[Vog99] Werner Vogels. File system usage in windows NT 4.0. In SOSP ’99:

Proceedings of the seventeenth ACM symposium on Operating systems

principles, pages 93–109, New York, NY, USA, 1999. ACM.

[WA93] Randolph Y. Wang and Thomas E. Anderson. xFS: A wide area mass

storage file system. In Workshop on Workstation Operating Systems,

pages 71–78, 1993.

[WDG+06] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan,

David P. Quigley, Erez Zadok, and Mohammad N. Zubair. Versatility

and unix semantics in namespace unification. Trans. Storage, 2(1):74–

105, 2006.

[Win] http://skydrive.live.com.

[WK02] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication:

A quantitative comparison. In Revised Papers from the First Interna-

tional Workshop on Peer-to-Peer Systems, pages 328–338, 2002.

[Wua] http://www.wuala.com.

[WV03] Yao Wang and Julita Vassileva. Trust and reputation model in Peer-

to-Peer networks. In Third International Conference on Peer-to-Peer

Computing (P2P’03), 2003.

BIBLIOGRAPHY 192

[XDr] http://www.xdrive.com.

[YM02] Beverly Yang and Hector G. Molina. Improving search in Peer-to-Peer

networks. In ICDCS ’02: Proceedings of the 22 nd International Con-

ference on Distributed Computing Systems (ICDCS’02), Washington,

DC, USA, 2002. IEEE Computer Society.

[YVGM04] B. Yang, P. Vinograd, and H. Garcia-Molina. Evaluating GUESS and

non-forwarding peer-to-peer search. pages 209–218, 2004.

[ZH07] Runfang Zhou and Kai Hwang. PowerTrust: A robust and scalable

reputation system for trusted Peer-to-Peer computing. Transactions

on Parallel and Distributed Systems, 18(4):460–473, 2007.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infras-

tructure for fault-tolerant wide-area location and routing. Technical

Report UCB/CSD-01-1141, Computer Science Division, UC Berkeley,

April 2001.

[ZKW05] Chi Zhang, Arvind Krishnamurthy, and Olph Y. Wang. Brushwood:

Distributed trees in peer-to-peer systems. In In Proceedings of the

4th International Workshop on Peer-to-Peer Systems (IPTPS’05, pages

47–57, 2005.

[ZSJ06] Bo Zhu, Sanjeev Setia, and Sushil Jajodia. Providing witness

anonymity in peer-to-peer systems. In Proceedings of the 13th ACM

conference on Computer and communications security, CCS ’06, pages

6–16, New York, NY, USA, 2006. ACM.

	Introduction
	Motivation
	Contributions
	Outline

	Background
	Overlay Networks
	Unstructured Overlay Networks
	Hybrid Overlay Networks
	Structured Overlay Networks
	Chord
	Kelips

	Social Overlay Networks

	Distributed Hash Tables
	Peer-to-Peer File Systems
	Pangaea
	OceanStore
	FARSITE
	CFS
	Ivy
	Plutus
	Pastis

	Environment
	Properties
	Model
	File System
	Peer-to-Peer

	Mission
	Assumptions

	Design
	Access Control
	Objectives
	Model
	Policy
	Pattern
	Class

	Constraints
	Concept
	Scheme
	Physical Blocks
	Logical Blocks

	Algorithms
	Analysis

	Administration
	Semantics
	Model
	System-wide
	User-wide

	Objectives
	Scheme
	Community
	Ownership

	Algorithms
	Analysis

	Implementation
	Representation
	Architecture
	Elle
	Lune
	PIG
	Agent
	Etoile
	Hole

	Evaluation
	Methodology
	Environments
	Benchmarks
	Metrics

	Results
	Overlay Network
	Distributed Hash Table
	File System
	Implementation
	Design

	Conclusion

