Towards a worldwide storage infrastructure

Julien Quintard

firstname.lastname@cl.cam.ac.uk

September 2010

University of Cambridge

Computer Laboratory

Jesus College

This dissertation is submitted for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except where specifically indicated in the

text.

This dissertation does not exceed the regulation length of sixty thousand words,

including tables and footnotes.

Towards a worldwide storage infrastructure

Julien Quintard

Abstract

Peer-to-peer systems have recently gained a lot of attention in the academic com-
munity especially through the design of KBR (Key-Based Routing) algorithms and
DHT (Distributed Hash Table)s. On top of these constructs were built promising
applications such as video streaming applications but also storage infrastructures

benefiting from the availability and resilience of such scalable network protocols.

Unfortunately, rare are the storage systems designed to be scalable and fault-tolerant
to Byzantine behaviour, conditions required for such systems to be deployed in an
environment such as the Internet. Furthermore, although some means of access
control are often provided, such file systems fail to offer the end-users the flexibility
required in order to easily manage the permissions granted to potentially hundreds
or thousands of end-users. In addition, as for centralised file systems which rely
on a special user, referred to as root on Unices, distributed file systems equally
require some tasks to operate at the system level. The decentralised nature of these
systems renders impossible the use of a single authoritative entity for performing
such tasks since implicitly granting her superprivileges, unacceptable configuration

for such decentralised systems.

This thesis addresses both issues by providing the file system objects a completely
decentralised access control and administration scheme enabling users to express ac-
cess control rules in a flexible way but also to request administrative tasks without
the need for a superuser. A prototype has been developed and evaluated, prov-
ing feasible the deployment of such a decentralised file system in large-scale and

untrustworthy environments.

Acknowledgments

I would like to thank Jean Bacon for her incredible patience, understanding and
kindness. I am also indebted to Alastair Beresford for his advice and encourage-
ment throughout the years. I would also like to thank the Opera group, especially
Pedro Brandao, David Eyers, David Evans, Luis Vargas, Samuel Kounev, Jatinder
Singh, Eiko Yoneki, Sriram Srinivasan, David Ingram, Salman Taherian, Scarlet
Schwiderski and Ken Moody.

During my PhD, I have been fortunate enough to cross Myoung Jin Nam’s path who

I would like to thank sincerely for everything.

Finally, I would like to thank my parents and my friends for bearing with me all

these years and making me a better person.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Contributions 3
1.3 Outline. 5

2 Background 6
2.1 Overlay Networks 8

2.1.1 Unstructured Overlay Networks 8
2.1.2 Hybrid Overlay Networks 10
2.1.3 Structured Overlay Networks 11
2131 Chord 14

2132 Kelipso 16

2.1.4 Social Overlay Networks 18

2.2 Distributed Hash Tables 20
2.3 Peer-to-Peer File Systems 25
2.3.1 Pangaea 26
2.3.2 OceanStore 28
2.3.3 FARSITE 29
234 CFS . . . 31
235 Ivy o oo 33
236 Plutus 35
237 Pastis 37

3 Environment 39

3.1 Properties 39
3.2 Model 43
3.2.1 FileSystem 43
3.2.2 Peer-to-Peer oo 44

3.3 Mission 45
3.4 Assumptions 46
4 Design 53
4.1 Access Control 53
4.1.1 Objectives 54
4.1.2 Model 56
4.1.2.1 Policy 56

4.1.22 Pattern 57

4123 Class. 57

4.1.3 Constraints 59
414 Concept 60
4.1.5 Scheme 62
4.1.5.1 Physical Blocks 0oL 62

4.1.5.2 Logical Blocks 67

4.1.6 Algorithms 75

4.1.7 Analysis 80

4.2 Administration Lo 83
4.2.1 Semantics 84

4.22 Model 88
4.2.2.1 System-wide 88

4.22.2 User-wide 89

4.2.3 Objectives 91
424 Scheme 91
4241 Community 92

4.24.2 Ownership, 106

4.2.5 Algorithms 108

4.2.6 Analysis 116

5 Implementation

5.1 Representation

5.2 Archite
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

6 Evaluation

cture

6.1 Methodology

6.1.1

Environments .

6.1.2 Benchmarks . .

6.1.3 Metrics

6.2 Results
6.2.1
6.2.2
6.2.3

7 Conclusion

Overlay Network

Distributed Hash Table

File System . .

6.2.3.1
6.2.3.2

Implementation L.

Design

120
120
124
126
132
132
133
135
140

145
146
146
146
152
152
152
153
158
158
163

169

Chapter 1
Introduction

This chapter introduces the thesis by detailing the motivation driving this research

before presenting the contributions this work brings to the research community.

1.1 Motivation

Over the last decade, computers have become the universal tool for work, commu-
nication and entertainment. Despite the incredible technology progress, computers
still fail to provide the end-user a way to deal with data in an easy, reliable and
secure way. Although people use computers daily for both personal and profes-
sional tasks, users cannot rely on them when it comes to reliably storing documents,
transparently sharing files with other users or synchronising data between multiple

devices.

The following further details these three functionalities—storage, sharing and
synchronisation—and explains why existing products and services fail to provide

end-users the features and properties they expect.

Storage

Computer networks are growing rapidly in importance as a medium for the storage
and exchange of information. After years of encouraging people to amass a hoard
of digital media as well as to store personal data on their local hard disk, users now
expect computers to become as reliable as any other home devices such as televisions,

Compact Disc players and so forth.

Although computers will probably never be as reliable as televisions, most people
feel like their local hard disk is a safe place for storing their sensitive files. The very

few end-users concerned about losing their files tend to rely on manual backups.

CHAPTER 1. INTRODUCTION 2

Unfortunately, even for those users, files cannot be considered safe on external back-
ups. Indeed, many plausible scenarios might lead to the complete loss of data

including fire and theft amongst many others.

The Internet made it possible to store files on company-run storage clusters such as
Amazon’s |] and many others | , , , |. Unfortunately, people
willing to use such services must completely trust the company for reliably storing
their files while not disclosing or using their personal information for any purpose.

For the obvious above reasons, such systems may not be suitable for everyone.

Peer-to-peer file sharing applications have gained great popularity over the last
decade as a way for users to share their files with the rest of the world in a com-
pletely decentralised manner. Although peer-to-peer applications are interesting for
increasing privacy and anonymity in the sense that nobody has complete control
over the system, such applications do not provide any guarantees in terms of persis-
tence, availability and security. Therefore, such peer-to-peer applications cannot be

used for reliably storing users’ files.

Sharing

Peer-to-peer file sharing applications completely changed the users’ day-to-day In-
ternet experience. Indeed, people are now used to launching such an application
whenever they want to listen to an unknown band’s music, download the last episode

of their favourite T'V series, watch or re-watch a famous movie and so forth.

Unfortunately, the well-known eDonkey | |, Gnutella | |, Bittorrent
[| ete. still lack some fundamental functionalities. Indeed, although these ap-
plications are generally very efficient at downloading popular content, no availability

guarantees are provided for rare files, making it problematic for users to locate them.

Additionally, these applications usually rely on a flat name space, making it com-
plicated for users to look for a rare file whose name resembles another popular but

completely different file.

Finally, such applications basically aim at providing users a way to share their files
with the rest of the world. However, one could be interested in controlling who has
access to the shared files. Unfortunately, none of the well-known peer-to-peer file

sharing applications provides any access control mechanism.

Although some company-run storage systems [, , ,] provide such
sharing capabilities, they cannot succeed in offering as much diverse content as peer-
to-peer communities, not mentioning the cost in storage and bandwidth for such a

company to provide this service.

CHAPTER 1. INTRODUCTION 3

Finally, popular social websites such as Youtube, Flickr etc. also provide sharing
capabilities but those services target a single medium such as video, sound or image,

forcing the user to deal with multiple accounts and interfaces.

Synchronisation

With the advent of ubiquitous and mobile computing, people start getting their
hands on multiple devices, all with amazing computing capabilities. With so many
devices each with its own storage, users are forced to manually synchronise their

data so that they can access a file from different devices and locations.

Company-run products such as Apple’s MobileMe | |, Windows Live SkyDrive
[Win] etc. make it easier for end-users to synchronise their devices through the use

of an online storage space.

Unfortunately, the online storage capacity is generally limited in many ways: number
of files, file size, storage capacity and so forth. Besides, people might be concerned
about privacy when relying on a private company for storing their personal and/or
professional files. Finally, such applications often target the products of the same
company only, making it difficult, if not impossible, for users to change or even use

them on other systems.

Interestingly, the three scenarios above have three points in common. Firstly, the
devices involved are connected to the Internet being mobile phones, netbooks, office
computers etc. Secondly, all these devices embed an unreliable storage capacity that
can be used for storing, sharing and synchronising data. Thirdly, all these tasks—
storing, sharing and synchronising—are related to the common abstraction known
as the file.

A unique system for storing, sharing and synchronising files, independently of their
medium type, in a reliable, secure and transparent way would therefore make it easy

for users to manage their data.

1.2 Contributions

The thesis of this dissertation is that a file system abstraction on top of a peer-to-

peer network is a viable platform and the most cost-effective one for ensuring the

CHAPTER 1. INTRODUCTION 4

fundamental properties end-users expect when it comes to storing, sharing and syn-
chronising their data. As detailed in Section 3.1, these properties include availability,

integrity, durability, privacy and efficiency among others.

The first contribution of this work is the definition of the properties that are required

for the system to provide the end-users the expected guarantees.

Several peer-to-peer file systems such as vy | |, CFS | |, Pastis
[| etc. were developed over the last decade. However, very few of them
provided common file system features, such as an access control mechanism for in-
stance, while administration in such systems was completely ignored by the research
community. The second contribution of this dissertation is the design of an access
control and administration scheme for decentralised untrustworthy environments

making them suitable building blocks for peer-to-peer file systems.

The third and final contribution is the implementation of a complete working peer-
to-peer file system prototype along with an extensive evaluation proving feasible the

deployment of such a system to a large community of users.

Figure 1.1 illustrates a peer-to-peer network connecting nodes physically distributed
throughout the world. The work presented in this document aims at building a
storage infrastructure on top of such a network in order to ensure fundamental

properties such as reliability, availability, privacy, anonymity and so forth.

A C QJ‘ - = ~
— N R
% . ~-.
PR
\N
N .
|
‘ J
. node

Figure 1.1: A worldwide storage infrastructure

CHAPTER 1. INTRODUCTION)

1.3 Outline

The remainder of this dissertation is structured as follows.

Chapter 2 discusses the relevant background from overlay networks to distributed
hash tables. Special attention is given to the presentation of the extensive body of

work on peer-to-peer file systems.

Chapter 3 discusses the objectives of this work by precisely defining the required
properties and deducing that the peer-to-peer file system model is suitable for achiev-

ing them all.

Chapter /4 discusses the semantic differences between centralised file systems and
decentralised file systems and the impact on the user experience. Then, the chapter
presents the design of the two building blocks peer-to-peer file systems require,

namely, an access control and administration scheme.

The prototype implementation is discussed in Chapter 5, detailing how the system

has been broken into small independent units and how they relate to each other.

Chapter 6 evaluates the performance of the prototype and validates the overall de-

sign. The chapter also suggests some possible improvements in specific areas.

Finally, Chapter 7 concludes and discusses directions for future investigation.

Chapter 2
Background

This chapter introduces peer-to-peer systems from overlay networks to routing al-
gorithms capable of locating a node given its identifier in a decentralised manner
to distributed hash tables which provide a storage abstraction to peer-to-peer file
systems which enable the user to interact with the system following a standard file

system interface.

Peer-to-peer systems differ from common distributed systems in the sense that nodes
composing the network can self-organise with very little information on the whole
network. Such networks are designed with fault tolerance in mind because the num-
ber of nodes populating such networks is generally so high that nodes disconnecting,
crashing or acting maliciously are more probable than in other, more controlled,

distributed systems.

Such systems are often used to aggregate the resources of many heterogeneous com-
puters across the world. Although those resources can be very diverse, this document

focuses on the storage capacity such nodes provide.

The lack of centralised servers makes such networks suitable to accommodate a very
large number of nodes. However, these peer-to-peer networks also exhibit specific

characteristics that need to be taken into account.

CHAPTER 2. BACKGROUND 7

Scalability

The decentralised nature of peer-to-peer networks implies that the more nodes join
the network, the more aggregated resources the system acquires, hence, the better

the system.

However, the network must cope with this potentially large number of nodes by
relying on scalable protocols ensuring that the system keeps providing client nodes

the expected service as nodes dynamically join and leave the network.

Latency

Unlike centralised topologies that require low-latency servers with a high bandwidth
to supply all the clients, peer-to-peer networks rely mostly on personal computers.
Such computers are generally connected to the network through a high-latency and

low-bandwidth Internet connection.

Systems built upon such networks, e.g. Internet, therefore cannot afford using the

same protocols and algorithms as for centralised or partially-distributed systems.

Churn

The decentralised nature of peer-to-peer networks implies that every node con-
tributes to the system by taking part in the basic tasks such as routing messages

between nodes, managing the network state etc.

Therefore, every node is considered an important component of the system. When-
ever a node fails, other nodes must be informed and past operations involving this
failing node may have to be re-performed. In addition, most peer-to-peer systems
are open such that new nodes constantly join the network, in which case, the other

nodes must be informed of their arrival.

Unfortunately, studies showed that the churn rate of the studied peer-to-peer net-
works was high | , |. Peer-to-peer systems must integrate this char-
acteristic in the design of their algorithms such that, for instance, nodes are not

assumed to be connected to the network at all times.

Untrustworthiness

Clients composing a peer-to-peer network run on computers under the full control
of their respective user. The system therefore has no authority to force nodes to

follow the system’s protocols. The network is thus assumed to be untrustworthy

CHAPTER 2. BACKGROUND 8

since many of the nodes populating the system may be faulty. For example, a virus
may have infected the whole client’s operating system or the user may have installed
a modified version to take advantage of the system without contributing resources,

nodes referred to as free riders.

Peer-to-peer systems must be designed with this property in mind making sure that
nothing relies on a single node, such a node being faulty could endanger the system

in its entirety.

2.1 Overlay Networks

The computers connected together and collaborating in the same peer-to-peer system

form an overlay network |] on top of a physical network e.g. the Internet.

The topology of the overlay network, its degree of decentralisation as well as the
communication protocol, vary from one peer-to-peer system to another. These char-
acteristics are fundamental as they impact the scalability and performance of the

network but also its capacity to self-organise and tolerate faults.

Overlay networks can be classified in four categories according to the way nodes are
connected to one another. Depending on the overlay network’s topology, it may be
easier to join/leave the network but more difficult to locate a precise object in the

network.

The following discusses the different models of overlay networks along with the way

objects are located in such networks.

2.1.1 Unstructured Overlay Networks

The very first deployed peer-to-peer applications enabled users to contribute files
to the system that any other user could download. These peer-to-peer file sharing
applications allow users to search for files matching the keywords the user specified.
The objective of such a system is to locate all the files whose name matches with
those keywords. Then, the user, through the application, can download the files of

interest to her.

The overlay networks on which such applications were built had the property of
lacking organisation in the way nodes were connected to each other. Besides, nodes
connected to the network were all considered equal i.e. no node had more privileges
than others. Such unstructured overlay networks |] are therefore sometimes
referred to as being flat, forming a completely random graph. In such an environ-
ment, a node wishing to join the network basically has to connect to an already

connected node.

CHAPTER 2. BACKGROUND 9

Since such networks have no overall structure, unstructured overlay networks are
very easy to manage. Indeed, whenever a node leaves the network, only its neigh-
bours must detect its departure and update their internal state. However, the other
nodes of the network do not need to be notified of the change in the network’s

topology, hence lowering the communication costs of maintenance.

Figure 2.1 depicts such a unstructured overlay network in which nodes are connected

without following any pre-defined structure.

o node

link

Figure 2.1: A flat unstructured overlay network

Locating an object—e.g. a file—in such a network without any centralised entity
maintaining a global state of the network requires every node to contribute. Indeed,
one of the first routing algorithms designed for unstructured overlay networks con-
sisted of flooding the network. The node issuing the search request starts by sending
a message to all its neighbour nodes, asking them to locate files matching a list of
keywords. Whenever a node receives such a request, it starts by checking if it does
have such files among the files it contributed to the peer-to-peer system, and replies
to the requesting node accordingly. Then, the message is forwarded to all the other

neighbours until the message expires i.e. the TTL (Time To Live) reaches zero.

Unfortunately, such an algorithm implies a high network overhead since messages

CHAPTER 2. BACKGROUND 10

are sent to a large fraction of nodes which do not have the sought resource and are
therefore not interested in the process. Such a routing algorithm and its variants
[, , | are extremely simple to deploy and do not constrain the
overlay network topology. However, the implied overhead makes these algorithms
only suitable for small networks, though many projects are known to have used and
still use them, most notably Gnutella | | and Freenet | | among many
others | :].

2.1.2 Hybrid Overlay Networks

Although flat unstructured overlay networks are very good for handling churn, they
do not perform well when it comes to locating a particular object or node. Hybrid
overlay networks | ,], also known as multi-level unstructured overlay
networks, address this problem by adding a level of highly-available supernodes,
a.k.a. superpeers, forming a small inner overlay network. These supernodes are
responsible for referencing the nodes connected to the network along with the objects

they contribute to the system.

node

link
O supernode

,,,,,,,, superlink

Figure 2.2: A two-level hybrid overlay network

CHAPTER 2. BACKGROUND 11

The main drawback of such a topology is the high load implied as well as the
large state that must be kept by the supernodes. Figure 2.2 illustrates such a
centralisation within the inner overlay of supernodes. If one of these supernodes
fails, the impact on the overall network’s performance may be disastrous as the load

the faulty supernode was handling must be balanced on the others.

The routing algorithm in such overlay networks is however trivial. Indeed, whenever
a user performs a search, the client node requests the supernode it is connected
to, supplying some keywords. The supernode performs the matching process by
comparing the keywords with the names of all the files in its records, and possibly

contacts other supernodes if required.

Although such routing algorithms [] involve only a few nodes, they require
supernodes to be extremely reliable, powerful and well-connected in order to handle

all the client nodes’ requests.

2.1.3 Structured Overlay Networks

Structured overlay networks were developed to overcome the limitations of unstruc-
tured and hybrid overlay networks. Such networks are completely decentralised and
organised such that nodes communicate with well-identified nodes according to the
protocol in contrast with unstructured overlay networks in which nodes connect to

other nodes in a unplanned way, hence forming a random graph.

Figure 2.3 illustrates a structured overlay network in which every node is assigned
an identifier following a ring-based identifier space | |: nodes are identified by
a number such that every node follows the node with the preceeding number—i.e.
highest number which is smaller than the current node’s—with the exception of the
node with the smallest identifier which follows the node with the highest one, hence

creating a loop within the identifier space.

Although unstructured and hybrid overlay networks were primarily used for keyword-
based lookups, other search criteria such as object identifiers, regular expressions and
so on could have been used. In contrast, structured overlay networks organise nodes
by assigning them an identifier while routing algorithms make use of this organ-
isation to perform fast lookups. Therefore, structured overlay networks were not
designed to perform attribute-based lookups as quickly as identifier-based lookups,
though some decentralised data structures | | were designed for specific types
of queries. Besides, dissemination techniques used in unstructured overlay networks
can also |] be used in structured overlay networks. Routing algorithms based
on identifiers are sometimes referred to as KBR (Key-Based Routing) algorithms
and provide an interface composed of a single routine, Lookup(¢), which returns the
IP (Internet Protocol) address of the node in charge of the identifier ¢.

CHAPTER 2. BACKGROUND 12

Although attribute-based routing algorithms used in unstructured and hybrid over-
lay networks enable rich searches within the set of objects, such algorithms do not
scale well since they do not distribute the resource requirements evenly across the
nodes. KBR algorithms, however, aim at locating the node responsible for an iden-
tifier. Such algorithms were designed to scale so that locating an identifier involves

a small number of nodes while each node maintains only a few links to other nodes.

. node

link

Figure 2.3: A ring-based structured overlay network

Every node in a structured overlay network is assigned an identifier from a large
identifier space. Identifiers are generated in a random fashion in order to provide
network resource balancing and fault tolerance. Besides, nodes with close or even
adjacent identifiers are, with high probablity, in different geographic locations, under

distinct users’ control and with different computing and network resources.

Objects, e.g. data blocks, files etc., are assigned identifiers from the same identifier
space. Every object in the network is dynamically associated with a node, called
the object’s home, or sometimes root. This node is responsible for storing the object

and answering requests related to this object.

Every node maintains a routing table containing the identifier and IP address of

CHAPTER 2. BACKGROUND 13

some other nodes, depending on the topology. In most systems, nodes also maintain
a set of neighbours containing the [P address of a few closest nodes. These two
data structures are updated whenever a node is detected to have joined or left the

network but also periodically in order to maintain the network in a consistent state.

KBR algorithms are distinctive from other routing algorithms in the way that they
determine the size of the routing tables as well as the length of the search paths,
as detailed next. These metrics are important as they characterise the robustness
and performance of the routing algorithm, hence of the whole network. Indeed, the
more entries in a routing table, the more communication is required to maintain it
in a consistent state. Likewise, the shorter the search path, the more efficient the

lookup process.

Several structured overlay networks and routing algorithms were designed over the

last decade, from Chord | | that is based on an oriented ring, to CAN
(Content-Addressable Network) | | with its multi-dimensional Cartesian co-
ordinate space, to Pastry | | which is based on the Plazton | | structure,
to Tapestry | |, Kademlia | |, Kelips | |, Viceroy |] and
many more | , |, all with different trade-offs between routing com-

plexity, maintenance overhead and memory footprint.

Although key-based routing algorithms are far more efficient than other previously
described routing algorithms, the fact that they are based on collaboration implies

several issues which are discussed next.

Structured overlay networks have long been considered to tolerate churn. However,
subsequent studies [] showed that well-known DHTs suffered from churn.
Research | | therefore explored the critieria impacting churn tolerance such
as periodic versus reactive recovery, the choice of nearby versus distant neighbours

etc.

Peer-to-peer networks have also been shown to implicitly suffer from attacks known
as Sybil [] and Eclipse |]. The Sybil attack consists of an attacker
that generates enough virtual nodes to take over a large portion of the overlay
network’s identifier space. Therefore, a malicious node could, for instance, control all
the replicas of an object. On the other hand, the Eclipse attack consists of malicious
nodes corrupting honest nodes’ routing table in order to increase the number of
requests passing through such Byzantine nodes. Although these issues are very
difficult to deal with, some routing algorithms were improved | , ,

] to cope with such attacks.

Routing algorithms in peer-to-peer systems rely on the collaboration of the nodes
populating the network. Since peer-to-peer networks are, by nature, untrustworthy;,
a single node being unwilling to cooperate e.g. to contribute to the routing process,

to store the object it has been given the responsibility for etc. suffices to harm

CHAPTER 2. BACKGROUND 14

the system and its users. KBR algorithms tend to rely on iterative routing instead
of recursive routing to minimise the impact and more easily detect such malicious

nodes, though such a design makes the lookup process less efficient.

Former peer-to-peer file sharing applications’ problems with free riders came from
the lack of incentive for the users to contribute their files and /or bandwitdh. In the
last decade, research started exploring a completely different but more promising way
to cope with such behaviours by enforcing collaboration in peer-to-peer networks.
Systems bringing incentive to peer-to-peer systems fall in two categories. The first
class is composed of systems relying on resource bidding. These systems | ,

, , | guarantee that, for instance, whenever a node wants to
store a block of data on another node, it must offer this node some local storage
space in return. The second class is composed of reputation systems. Those systems
[, , , ,] dynamically keep track of nodes’ behaviour in
a completely decentralised way. Then, reputation is propagated through the system
and correlation is made to detect Byzantine behaviours. Although both categories
suffer some limitations, they represent the most promising solutions for enforcing

collaboration in peer-to-peer networks.

The remainder of this section focuses on detailing two very different structured
overlay networks along with their key-based routing algorithm, giving the reader a
good understanding of the trade-offs involved in the design of such systems: Chord

achieves high scalability while Kelips focuses on ensuring constant time lookups.

2.1.3.1 Chord

Chord is a KBR algorithm relying on a structured overlay network in which nodes
are assigned random identifiers through the use of a hash function, for instance by
applying SHA (Secure Hash Algorithm) on the node’s IP address.

Identifiers are ordered in an identifier circle modulo 2™. Key k is assigned to the
node whose identifier is equal to or follows k in the identifier space. This node
is called the successor of key k, denoted successor(k). Note that the successor
basically corresponds to the home or root node in other protocols i.e. the node

responsible for the identifier.

The idea of Chord is to provide efficient routing i.e. to locate the successor of a

given key, by relying on a very small amount of local information.

First, each node need only be aware of its successor node on the circle, ensuring that
by passing the query around the circle, the key’s successor will eventually be reached.
Although Chord nodes do maintain a link with their successor and therefore ensure

that all lookups can be resolved correctly, this routing scheme is very inefficient i.e.

O(n).

CHAPTER 2. BACKGROUND 15

interval | successor
[4, 5] 9
[5,7(9
interval | successor [7, 11] 9
[27, 28] 28 P) PS [11, 19 11
(28,300 | 28 31 0 1 o | o3 21
30, 2[31 2 3 -
[2, 10[2
[10, 26[11

interval | successor
[10, 11] 11

— T’ [11, 13[11
interval | successor
[22,23[22 13. [13,17] 13
14
[23,25(24 .18 . ® [17,25(18
[25, 29[26 . [25,9(26
[29, 5[29
[5,21[9
. node
- link
18 node identifier
@ node’s routing table
il routing hop

Figure 2.4: A Chord network of degree 5 with 17 nodes

To accelerate the process, Chord maintains additional, but few compared to the
network size, routing links. Each node maintains a routing table, known as the
finger table, composed of m entries. Recall that the maximum number of nodes in
the network has been set to 2. Therefore, by keeping only m links, the finger table
grows logarithmically with the size of the network. In the routing table of node n,
the i'" entry contains the identifier of the first node, s, that succeeds n by at least

21 on the identifier circle:
s = successor(n + 2'71) mod m, l<i<m

The system calls s the i finger of node n. A finger entry in Chord contains both

CHAPTER 2. BACKGROUND 16

the identifier and IP address of the node. Note that the first entry—i.e. index

zero—of the finger table points to what has been earlier called the node’s successor.

This scheme has two important characteristics. First, each node stores information
about only a small number of nodes, and knows more about close nodes than nodes
on the other side of the circle. Second, often, a node’s finger table does not contain
enough information to perform the resolution by itself. Therefore, a node wishing
to locate a node it does not know about would have no choice but to take a node
in its finger table, whose identifier is closer to the key £k than its own, and ask it
to carry on the lookup process. By repeating this operation, every node without
the necessary information forwards the request so that every step brings the request

closer to the target node and eventually reaches it.

Figure 2./ shows the organisation of a Chord ring along with the finger table of some
nodes. In this illustrated network, node 3 issues a lookup on key 27 which is held
by node 28. Since node 3 does not have the location of node 28 in its finger table,
it forwards the request to the node 21, located in the farthest interval [19,3[. Once
node 21 receives the request, it inspects its finger table and notices that it cannot
resolve the mapping either, hence forwards the message to the node 26 located in
interval [25,29]. One can easily notice that the interval is shrinking by half every
time the request is forwarded. At this point, node 26 knows that node 28, located in
interval [27, 28], is responsible for the key 27 and therefore returns to the requesting

node 3 the /P address of node 28, node 26’s successor.

Chord provides a protocol for resolving an identifier into an /P address in a com-
pletely decentralised manner. Assuming the network is composed of 1 nodes, Chord
resolves lookups in O(log(n)) messages while nodes are required to maintain links
to O(log(n)) other nodes.

2.1.3.2 Kelips

As previously explained, malicious nodes involved in the routing process can interfere
and harm the system by refusing to comply with the protocol. Since the longer
the routing path, the higher the probability of a malicious node interfering, Kelips
was designed to achieve O(l) routing complexity at the cost of increased storage
overhead. Considering a network of 1 nodes, Kelips uses O(\/ﬁ) space per node.
This soft state suffices to resolve lookups with 0(1) time and message complexity

at the cost of more background communication.

Kelips consists of k virtual groups identified from 0 to kx — 1. Each node lies in a
group determined by using a consistent hashing function such as SHA-1, applied
on the node’s IP address for instance. The distribution property of hash functions

ensures that, with high probability, the number of nodes in each group will be close

CHAPTER 2. BACKGROUND 17

to I.
K

Nodes’ soft state consists of two data structures. The first one, known as Contacts,
contains the address of a small number of nodes lying in each of the other xk — 1
groups. The second data structure, known as Neighbours, contains the address of
all the other nodes in the same group, hence the location of the home nodes of any

key falling in this group.

neighbours | contacts
11 group0(3)
group2(16)
group3(18)
group4(24)
group5(31)
group 0 N group 1 group 2
T AN oor |
| . : | A : | . :
| | N ! 3
! 0 ® Lo b B
| I | \ I | I
I ! I ‘ ! I !
I I I
e ® ' 9 1 14 !
neighbours | contacts | 2 3 v v !
I I I
0 groupl(9) ! . ! o ! ! o !
I : I 11 : I 16 :
1 group2(14) o _______ | o _______ | o _______ |
3 group3(22) e ERWRD o EOWE OO
roupd(29) | b b o : ~—
g i . ! i . 2 ! i - 5 ! neighbours | contacts
| | | -7 31
groupS(31) ! 18 b b | group0(1)
|l | | | [|
! [@ R 1 groupl(11)
| 21 : | 26 P . : | :
| v o b ! group2(14)
. . I . . B . I . I
I 22 ! I v 29 ! I ! group3(21)
L ___ | [,’, ,,,,,,,,,,, | L ___ |
i group4(28)
neighbours | contacts
24 group0(3)
26 groupl(11)
. node
29 group2(16)
group3(21)
22 node identifier
group5(31)
Lo
! ! group
[
@ node’s routing table
il routing hop

Figure 2.5: A Kelips network for 36 nodes

The routing algorithm consists of the following steps. The node wishing to locate
the root node of a given key starts by extracting the group identifier corresponding
to that key, for instance by using the m most significant bits of the key. The node
looks into its Contacts table, and, if not located in its own group, picks a node

belonging to the destination group. It then sends a message to this node. When the

CHAPTER 2. BACKGROUND 18

node receives the message, it simply looks in its Neighbours data structure to locate

the root node of the given key.

Figure 2.5 illustrates a Kelips network designed for n = 36 nodes. The network is
composed of k = v/36 = 6 groups while every group can contain up to 6 nodes. The
Contacts and Neighbours data structures are detailed for some nodes. Finally, an
example of a routing process is depicted. Node 31 wants to find the node responsible
for the key 25. Kelips follows the same rule as Chord, the node whose identifier is
equal to or follows the key is considered its root. Node 31 starts by extracting the
group number corresponding to the key 25: group 4. It then picks in its Contacts
a node lying in the group 4, node 28, and sends it a message request. When node
28 receives the request, its looks in its Neighbours data structure and notices that
node 26 is the root node of key 25. Therefore, node 28 directly returns node 31 the

address of root node 25.

Kelips ensures a O(l) routing complexity because a single hop is required to locate
the home node: either directly within the node’s group or by contacting a node
from the group in which lies the target node. Aside from the obvious performance
benefits, this scheme allows the system to more easily detect malicious nodes since
fewer intermediate nodes are asked to contribute to the routing process. However,
Kelips does not scale well as the more nodes in the network, the more often the

state changes, hence more communication is required to keep the state consistent.

2.1.4 Social Overlay Networks

A social network is a social structure made of individuals connected through relation-

ships such as friendship, kindship, belief, knowledge, collaboration or just interest.

Such networks provide very interesting properties. Firstly, since routing in such
networks consists in traversing nodes with some degree of trust, the routing process
is less likely to be disturbed by malicious nodes than in other overlay networks.
Secondly, many social networks exhibit the small-world phenomenon in which a
generally short chain of acquaintances exists connecting one arbitrary node to any
other node. Thus, the distance between two randomly chosen nodes grows pro-
portionally to the logarithm of the number of nodes 7 in the network. Thirdly, in
many applications, a node’s acquaintances share the same interests such that most
objects requested by that node will already be held by its neighbours, hence, greatly

improving data retrieval.

Recently, research was conducted regarding the application of social behaviours to
overlay networks in order to improve the performance and reliability of routing algo-
rithms. Indeed, some existing networks, such as peer-to-peer file sharing communi-

ties, have been shown |] to exhibit small-world patterns, while non-small-world

CHAPTER 2. BACKGROUND 19

networks have been improved | | through the addition of social links.

As shown on Figure 2.6, nodes are connected to their friends, forming multiple
loosely connected groups. In addition, every node could maintain a few links on a
structured overlay in order to guarantee monotonic lookup progression. Indeed, if
a node does not have any friend connection located closer to the target identifier,

structured links can be used to move forward, hence guaranteeing liveness.

=5

IR

. node

—_— link
Figure 2.6: A small-world-based social overlay network

Some applications have been making use of social connections such as Turtle |],
a peer-to-peer file sharing application relying on the friend relationship. Turtle’s
routing protocol is similar to those of unstructured overlay networks, consisting of
forwarding the request to the neighbour nodes, hence flooding the network. Other
projects tried to enhance existing systems, such as SPROUT | | which
augments the Chord structured overlay network with social links in order to take
advantage of the small-world network properties when possible and to rely on the
structured nature of the underlying network otherwise. Finally, some social overlay

networks were designed from the ground up to take advantage of the small-world

CHAPTER 2. BACKGROUND 20

phenomenon. For instance, the SWOP (Small World Overlay Protocol) |]
achieves improved object lookup performance over the existing routing protocols

but also provides efficient replication especially regarding popular content.

2.2 Distributed Hash Tables

A DHT (Distributed Hash Table) provides a hash table abstraction on top of a
peer-to-peer overlay network. Such a service aggregates the network peers’ storage
resources providing a distributed data structure. A DHT provides a way to store
a block of data (given an address—a.k.a. storage key—a, usually through an

interface | | as simple as Put(a, 3) and Get(a).

In order for the service to be efficient but also scalable, DHT's make use of key-based
routing algorithms. For instance, the distributed hash table PAST | | is built
upon the Pastry KBR while DHash is based on the Chord overlay network.

As discussed through the remainder of this section, redundancy is an absolute re-
quirement for ensuring availability, durability and integrity. Distributed hash tables
therefore abstract the process of replicating data and maintaining replication con-

sistency | | as nodes fail and join the system.

Indeed, considering a DHT in which every block is stored by a single node, avail-
ability could not be ensured since the failure of this node would make all the blocks
it was responsible for storing inaccessible. Besides, assuming that the node crashes
permanently, the block would be lost forever. Redundancy is therefore an absolute

requirement for ensuring both availability and durability.

Furthermore, in a system lacking redundancy, nothing would prevent the home node
from altering the data content and/or returning fake content to a client’s request.
Although systems such as SUNDR |] ensure integrity without relying on
trusted storage servers, clients cannot retrieve the block’s latest valid content if the
block’s only storage node does not want to cooperate and keeps acting maliciously.
In order to provide the clients the assurance of valid data retrieval, the system must

rely on redundancy so that a block is always stored by a set of nodes.

There are basically two ways of achieving redundancy, either through replication or
network coding schemes. Replication | , | consists of storing multiple
identical instances of an object on different nodes, hence increasing availability and
durability. Network coding schemes | | however rely on error-redundant codes
such as Reed-Solomon, an erasure code |] widely used in DVD (Digital
Versatile Disc). Instead of plain object replication, erasure code schemes divide the
object into m fragments and recode them into n segments, where n > m. The n

segments are then stored in the DHT. The rate of encoding r = ™ increases the

CHAPTER 2. BACKGROUND 21

storage cost by a factor of % The key property of erasure codes is that the original

object can be reconstructed from any m segments. For example, using a ratio
1
4
increasing the storage cost by a factor of four. Then, a client able to retrieve sixteen

r = 1, a block is divided into m = 16 fragments and encoded into n = 64 segments,
segments out of the sixty four present in the system would be able to reconstruct
the original object. Noteworthy is that replication represents a subset of erasure
codes where the number of segments n is one 7.e. a single segment is enough to

reconstitute the original object.

Network coding schemes are very interesting because they require less storage space
in order to achieve the same degree of availability and durability as through standard
replication. As an example, assuming that ten percent of the ten million machines
populating a network are down, replication ensures 99% availability by storing two
replicas of each block. However, erasure codes can achieve over 99.9999998% yet
consume the same amount of storage and bandwidth than their replication counter-

part.

Unfortunately, network coding schemes all suffer from the same problem. As nodes
fail, the system loses the segments belonging to the network-coded objects the nodes
were storing. In order to avoid losing them all, the system must, for every object
involved, periodically refresh the missing segments. This refreshing process consists
of reconstructing the object, re-computing all the segments and then re-storing the
missing segments on other storage nodes. Unfortunately, this process is extremely
costly, especially for large objects, though network coding schemes were designed to

rarely require refreshing segments.

Figure 2.7 illustrates DHash, a Chord-based distributed hash table in which blocks
are replicated on the nodes following the home node, known as the neighbours.
Since nodes with close identifiers are, with high probability, located in very different
geographic places, storing replicas on such nodes ensures a low rate of correlated
failures. Note that, whenever the home node fails, the Chord protocol takes over
and assigns a new home node to the orphan objects. In addition, the DHT makes
sure the replication ratio is maintained at all times by generating additional replicas

if required.

Although network coding has been studied |] for decades and applied in nu-
merous research systems as well as commercial products [Wua], replication |]
remains the most widely used technique to provide redundancy in peer-to-peer net-

works.

Given that redundancy is required for ensuring availability and durability, the sys-
tem must guarantee consistency among the replicas. Unfortunately, like every In-
ternet-based distributed system, DHT's are built on top of an asynchronous physical

network, making it impossible | | to distinguish slow from faulty nodes. This

CHAPTER 2. BACKGROUND 22

property impacts the consistency algorithms which must often take further steps

should the nodes not be responding or acting maliciously.

DHTs rely on consensus algorithms in order to cope with Byzantine behaviours in
asynchronous networks. As summarised by Chockler et al. | |, such algo-
rithms vary in several dimensions from the consistency guarantees, to the number
of failures tolerated, to the performance achieved. Consensus algorithms can be

classified in two categories: agreement and quorum protocols.

node .

home node

O O @

neighbour node
—— routing link

neighbour link

Figure 2.7: The replication-based DHash distributed hash table

Byzantine agreement protocols such as the BFT (Byzantine Fault Tolerant) |]
protocol and Pazos | : | achieve consensus through voting and can tol-
erate up to v Byzantine nodes by relying on ¢ > 3+ + 1 servers. Such algorithms
work as follows. A client willing to perform an operation starts by sending a re-
quest to a server i.e. the leader. The server having received the client’s request
then forwards it to the other servers. Every server receiving such a vote request

responds to every other server, hence leading to a consensus. Finally, the leader

CHAPTER 2. BACKGROUND 23

server transmits the servers’ decision back to the client. This multi-phase protocol
is illustrated by Figure 2.8. Although such algorithms are extremely powerful for
dealing with Byzantine behaviours, they unfortunately suffer from the several rounds
of communication which generate a number of messages quadratically proportional
to the number of servers involved. Agreement algorithms are thus often considered
as being too expensive | , | for many applications. Noteworthy is that
many improvements and optimisations have been developed over the years. For in-
stance, Borran et al. | | proposed a leader-free Byzantine consensus algorithm
while others | , | presented optimisations of the Pazos algorithm re-
garding specific configurations: multiple coordinators, reduced number of rounds in

the absence of failures etc.

client

server
leader
server

server

server

request ‘ propose ‘ accept ‘ reply

Figure 2.8: The Paxos agreement protocol

On the other hand, quorum-based algorithms | , , ,]
consist of retrieving a subset of the replicas to make sure to identify the latest
valid version of the object. Quorums rely on the property of intersection in order to
minimise the number of storage nodes to contact but also to prevent conflicts. As for
agreement protocols, quorum-based algorithms have been the subject of numerous
research projects which have led to further improvements, especially in the field

power management and mobile networks | : ,]

Although many quorum-based algorithms have been presented throughout the his-
tory of distributed computing, Gifford et al.’s | | quorum-based protocol is de-

tailed next because of its simplicity.

CHAPTER 2. BACKGROUND 24

Considering a distributed system in which blocks are replicated on ¢ storage nodes,
a client willing to perform an operation must acquire a quorum complying with
the following rules, where ¢, and (, represent read and write quorums’ cardinality,

respectively:

1. G4+ Cuw >0

2. Gw> %

The first rule prevents read-write conflicts while the second rule prevents write-write

conflicts, both contributing to maintain serialisability.

. . . ! . !
| |
|
I)
-
| |
|
. . ‘ . .
|
|
|
| I
F——————- — |
[|
|
\. . . .‘

® (i) (iif)

Figure 2.9: Three Gifford quorum configurations

Figure 2.9 depicts a set of twelve storage nodes in three different quorum config-
urations. In the first configuration, read and write quorums are composed of six
and seven nodes, respectively, such that the quorums intersect on a single replica.
Therefore, assuming that a client updates an object by contacting seven replicas
out of the twelve present in the system, a subsequent read through a quorum of six
replicas will inevitably provide the client the recently updated version. The second
configuration does not comply with the Gifford quorum rules since ¢, > ¥ is not
respected. Therefore, up to four clients could modify the object concurrently, lead-
ing the system to an inconsistent state. Finally, the last configuration is generally
referred to as ROWA (Read One, Write All). Indeed, in such a configuration, read-
ing an object requires the client to contact a single node while all the nodes must

respond positively whenever an object is updated.

It is however extremely important to note that most of the configurations depicted
in Figure 2.9 would not be suitable for Byzantine environments. Indeed, in case of

arbitrary failures, such as in peer-to-peer networks, ¢ > 3v 4 1 storage nodes are

CHAPTER 2. BACKGROUND 25

required to tolerate up to v Byzantine nodes while read and write quorums must

contain, at least, 2v + 1 replicas.

To conclude, agreement protocols provide more expressivity than quorum protocols.
Indeed, while agreement protocols can achieve consensus on virtually any kind of
operation, quorum protocols are limited to reads and writes. However, quorum
algorithms have proved to be well suited for peer-to-peer file systems which are
built on top of distributed hash tables, such constructs providing functionalities as
basic as Put(a, f) and Get(«). Besides, both agreement and quorum protocols are
equally constrainable from the client’s perspective since at most 2y + 1 instances
of the block must be retrieved in order to cope with Byzantine behaviours. On
the other hand, agreement protocols’ several voting phases imply a high number of
message exchanges. Thus, agreement protocols are often considered as being very
expensive | , , |, especially in the context of peer-to-peer file

systems though many projects have been making use of those | ,].

2.3 Peer-to-Peer File Systems

The very first distributed systems targeted local-area networks, the most famous
and still widely used being NFS (Network File System) | |. Such local-area
distributed file systems are characterised by a low network latency as well as trust-

worthy clients and servers, both evolving within a single administrative domain.

Unlike local-area network file systems, AFS (Andrew File System) | | ad-
dresses larger networks characterised by higher latencies and a larger number of
computers. Such file systems rely on loose caching policies |] in order to reduce
the communication between the clients and the servers. Moreover, systems such as
Coda |] and Ficus | | enable offline access through the use of opti-
mistic replication | |, applying modifications once the computer re-connects to

the network.

Many other file systems were designed for small- and medium-sized networks, all

with different objectives and constraints including Kosha |] which equips
NFS with redundancy over a scalable network, zFS | , |, a wide-area
file system relying on massive caching techniques, Plan9 |], a distributed

computing environment following the UNIX philosophy and LBFS (Low Bandwidth
File System) | | which reduces communications by relying on indexes and

applying Rabin fingerprints to the chunks of data.

Unfortunately, these distributed file systems rely on trusted and often centralised
servers making them impractical in more open environments. SFS (Self-Certifying

File System) | , , ,] addresses this issue by relying

CHAPTER 2. BACKGROUND 26

on multiple self-certifying domains rather than a single global open network. Since
the domains are independent, the domain management is assured by the local au-
thority with its own rules and policies. The self-certifying property of SF'S makes
it impossible for an attacker to pretend to be or belong to another domain. SFS
therefore achieves scalability through openness although the domains’ independence
implies that the failure of a single domain renders all the users, groups, files and

directories of this domain unavailable.

Peer-to-peer networks have been shown | | to exhibit very interesting prop-
erties for building highly available and reliable file systems. The remainder of this
section discusses in detail some of those peer-to-peer file systems especially regarding
their capacity to scale, cope with Byzantine behaviours but also provide common

file system features such as access control.

2.3.1 Pangaea

Pangaea | | is a wide-area read/write file system which relies on an ad hoc
decentralised storage infrastructure of trusted servers. Pangaea aims at providing

clients efficient data access through the use of pervasive replication.

In order to optimise the data placement, the nodes of the system are split into disjoint
regions. A region is composed of nodes grouped according to their network latency.
Every node maintains a global state of the whole system including the list of the
nodes of the region, their network latency and free disk capacity, the location of the
root directory’s replicas, the list of the regions etc. This information is propagated

throughout the network periodically by means of an epidemic protocol.

Pangaea maintains, for every file, a distributed and highly connected graph of the
nodes storing replicas known as gold replicas. Such replicas are statically defined at
file creation and are used to maintain a minimum replication ratio at all times. In
addition, bronze replicas are also connected to the graph in a loose manner. Indeed,
bronze replicas are created in a dynamic way 7.e. every time a node accesses the file.
This replication graph, composed of both gold replicas and bronze replicas, is used

to propagate updates throughout the network in an efficient way.

Figure 2.10illustrates two directories along with both their gold and bronze replicas.
Every directory replica instance contains the locations of the entries, being files or
sub-directories. These locations are represented on the figure by the references. In
addition, although not depicted by the figure, every replica maintains a backpointer
to the parent directory which is used to update the parent directory should the gold

replicas of a sub-entry be moved to another node.

The data structure described above has the advantage of distinguishing the repli-

cation of the directory from the replication of the objects, files and directories it

CHAPTER 2. BACKGROUND 27

contains. Therefore, adding or removing bronze replicas only requires updating the
graph related to this object while leaving both the parent directory and the potential
sub-objects out of the process. Indeed, the only operation requiring updating of the

parent directory is the modification of a gold replica’s location.

The modifications applied to a replica are propagated throughout the graph following
the edges connecting the replication nodes. Note that an operation description—e.g.
create file ‘bar’ in directory ¢/foo/’ —rather than the new object’s state
is propagated to the replication nodes. Pangaeca makes use of the last-write-wins
consistency model by relying on global timestamps through the use of a NTP (Net-
work Time Protocol) server. However, directory conflicts are resolved automatically

if possible or left to the user otherwise.

// A
O< """""""""""""""""""" ﬂ>©
B\ @ = 4%4© ¥
\‘ 4 ~. .
o N
\‘\ ,’/ _ \7© ~
b(fé ; =0
N J
e N
/foo/
@ object - O
O gold replica LR
O N o
bronze replica S
p s)= e
< ---> replication edge - I J
""""" > reference

Figure 2.10: Pangaea file system representation

Although Pangaea provides a powerful storage infrastructure through localised repli-
cation, the assumption of a trustworthy network makes it impractical for most en-
vironments. Indeed, since both authentication and access control is handled by the

trusted servers, a single Byzantine node could easily harm the whole system.

CHAPTER 2. BACKGROUND 28

2.3.2 QOceanStore

OceanStore | | is a generic distributed storage infrastructure relying on the
Tapestry | | DOLR (Decentralised Object Location and Routing). OceanStore
aims at providing a wide range of consistency models in order for applications to bal-
ance the trade-offs between performance and consistency. OceanStore’s architecture

is partitioned into two levels or tiers.

The first level, known as the primary tier, is composed of highly available nodes
divided into multiple groups. Each group is responsible for a subset of the objects of
the system. The nodes belonging to a group store the primary replicas of the objects
the group is in charge of. The BFT | | agreement algorithm is used by the group
members for authorising, validating and applying operations on the replicas despite
the potential presence of Byzantine nodes. Note however that such an algorithm is
expensive as it requires three communication rounds between the servers to perform
a single operation, generating O(?ﬁ) messages, assuming every group is composed of
1 servers. Therefore, the nodes composing the primary tier must be very powerful,

well connected and highly available to handle the high network load.

The secondary tier is composed of more transient nodes with high latency and low
bandwidth such as personal computers for instance. This level constitutes the mass
storage capacity of the system in which secondary replicas are created in order to

improve local accesses.

As Figure 2.11 illustrates, whenever a client node modifies an object, being a file
or a directory, a request is sent to the primary replication nodes as well as some
randomly chosen secondary replication nodes. While primary servers serialise and
verify the operation validity by running the BFT algorithm, the request is propa-
gated to the other secondary replication nodes in an epidemic way. Finally, once
approved, a confirmation is propagated throughout the network, sealing all the sec-

ondary replicas.

A certificate is attached to every object’s version, asserting the approval of the
primary tier. Since primary servers may be malicious, the certificate cannot be
generated by a single server. Therefore, OceanStore relies on threshold signature
schemes | | so that a certificate is considered valid if composed of L%J +1

legitimate partial signatures.

OceanStore makes use of optimistic concurrency control for optimising operations’
response times. In order to detect conflicts, the system implements a semantic
detection mechanism based on predicates. Therefore, depending on the type of
object, whenever a conflict is detected, a pre-defined list of operations is applied to
the object such as inserting, replacing or truncating the data. Note however that,

although this mechanism is generic enough to automatically resolve conflicts, the

CHAPTER 2. BACKGROUND 29

system often lacks semantic information since objects are usually encrypted.

primary tier
. o |
e ; °
/ A i
4 K o
(@) i
¢ e
Ay o
// S~ - . :
b o |
\ |
@ - Lo
! \
! \ N ©)]
secondary tier \ \ N
N
\ N S N
A " T L@ T
. o O ¢ .)
AN \
S e -
! RS \\(
(%)‘/ ’.\ S ®
o . /’(1) NS @
\ /’ T~ __---7 \\
\\ , \
. L . 3) .
N o e
[¢ [°
o node
***** = message

Figure 2.11: OceanStore’s organisation

Security is provided through the use of ACL (Access Control List)s. An ACL con-
tains the public keys of the users allowed to access and modify the object. Whenever
an object is modified, it is signed by the user and submitted to the primary repli-
cation servers. Then, every client and server retrieving the object can check the
object’s validity by verifying the digital signature.

Although OceanStore provides a powerful and flexible storage infrastructure, its
hybrid architecture makes it more difficult to scale to large networks than other,

completely decentralised, peer-to-peer file systems.

2.3.3 FARSITE

FARSITE (Federated, Available, and Reliable Storage for an Incompletely Trusted
Environment) |) | is a file system based on an ad hoc partially

decentralised storage infrastructure. FARSITE aims at emulating the behaviour

CHAPTER 2. BACKGROUND 30

of a centralised file system such as NTFS (NT File System) in a medium-scale
environment and without introducing new semantics such as file versions, conflict

resolutions etc.

FARSITE has been designed to be deployed on the commodity hardware of medium-
sized networks such as universities or companies. Such an environment is charac-
terised by a high bandwidth network and transient nodes. Every node in FARSITE
can play up to three roles: clients issue requests on behalf of end-users, servers
store object replicas and managers, as members of a management group, take part
in administrating the system’s metadata. Every management group is in charge of
a subset of the file system’s namespace. The members of a management group act

collectively through the use of the BFT agreement protocol.

"/ . \\
g .1 [
N !
\.\ . /‘
P S 7
/’>‘}/ > R 3 //VO ,‘, . \\‘
/ O \\ \\ L/ ' . i .
i : ® : !
\‘\ ! aad . x \‘\ \ //‘
«\»\\. /'/' I‘/ f \‘ \‘\ .)
B i @ 7 S
\ mmm———— o -
O @ e
® ORI ¥ e =0
OA/ e \\\
e °
,'/ . ‘\l‘. .
! i IR
o °
R4 \
S . :‘/ .\]
'\\ .v/’/‘/ .
. node
@ client
O replication server

) management group

- - __ Inessage

Figure 2.12: The FARSITE architecture

Every member of the management group maintains a copy of the metadata related to
the namespace’s subset it is in charge of. Access and modification requests are sent
to the management group which runs a vote to serialise the operation. The man-

agement group keeps the locations of the replicas of every file lying in its namespace

CHAPTER 2. BACKGROUND 31

as well as the hash of the file’'s content. A client willing to access a file starts by
contacting the management group in order to locate the file’s replicas. The client
retrieves an instance of the file from one of these locations and checks the file’s
integrity by re-computing the hash of the content. The client then caches the file
locally for subsequent accesses and/or modifications. Whenever modified, a hash of
the new file’s content is computed and sent to the management group which verifies
that the user has the proper credentials for that operation. If the request is accepted,
the servers storing the file’s replicas are told to retrieve the new file directly from

the client. Figure 2.12 illustrates the described update protocol.

FARSITE ensures strong consistency guarantees by relying on leases. Whenever
a client reads a file, it is granted a lease by the management group, guaranteeing
the freshness of the client’s local copy. FARSITE provides two types of lease: read
leases ensure that the file will not be modified until the lease expires or is revoked
while write leases guarantee an exclusive access to the file. Note that considering
a client requesting a file, the system would immediately revoke the leases so that
the eventual modifications are pushed back to the replication nodes, bringing the
system back to a consistent state. Then, the requesting client could carry on its

operation and retrieve the file in its latest form.

FARSITE provides security through the use of convergent encryption. Every file
is assigned an ACL containing the public key of the users authorised to modify
the object. Whenever a client requests an operation to the management group,
a secure communication channel is established in order to authenticate the user.
The system guarantees that unauthorised users cannot access a file through the
following protocol. For every new file, the client generates a random symmetric
key and encrypts the file’s content with it. Then, the symmetric key is encrypted
with the public key of every user having been granted permission to read the file.
These encrypted symmetric keys are finally sent to the management group so that
whenever a client requests a read operation, the management group returns the
client its encrypted symmetric key. Then, the client can decrypt the symmetric key

using the user’s private key.

2.3.4 CFS

CFS (Chord File System) | | is a completely decentralised file system relying
on the DHash distributed hash table as a block storage abstraction. CFS aims at
ensuring data integrity while balancing the storage load across the system’s nodes.
The particularity of this system lies in the fact that a single user can update it, such

that CFS is often considered a read-only file system.

The entire CFS architecture relies on a block unit known as the CHB (Content

CHAPTER 2. BACKGROUND 32

Hash Block). The special property of CHBs is that such blocks are self-certified,
making the integrity verification process straightforward. Indeed, a CHB’s address
is computed by applying a one-way function, such as the SHA-1 hash function for
instance, to the block’s content. That way, whenever a client retrieves such a block,
its integrity can be verified by re-computing the block’s hash and checking if the

fingerprint corresponds to the requested address.

Unlike other file system objects however, the root directory is stored in a PKB
(Public Key Block). PKBs are associated with a cryptographic key pair such that
the block’s address is computed by applying a one-way function to the public key.
In addition, a digital signature of the block’s content is embedded in the block
for authenticity and integrity purposes. Noteworthy is that, unlike CHBs which
are immutable, PKBs can be modified since their public key does not change over
time. PKBs also embed a version number, which is increased whenever the object

is updated, to differentiate the multiple instances of an object.

Inode

Data

users
music -~ 1j
PKB home Nl
README |1« _
v ~

Inode

P ————.
CHB \

Data

B i = | imq TTH--- Inode
README, |} e

CHB

caB” T

\ \\
\ N
\ N
\\ N \\
v Inode N
mutable block q N
AN
Data
immutable block [= [H
Welcome to | i}
CFS! [

CHB

CHB
****** ks relation

R biviivsissiviivsivtimbet
CHB

Figure 2.13: The CFS hierarchical organisation

Since the root directory block is mutable, the administrator can update the file sys-
tem by re-signing the PKB with the private key he possesses. However, modifying
the file /home/README, for instance, would imply, creating a new CHB for the file.
Since the directory containing the file is a CHB as well, modifying a file also changes
the directory content. Indeed, the file has a new content hence a new address and

the directory content contains tuples of the form (name, address). Since the address

CHAPTER 2. BACKGROUND 33

for the file /home/README has changed, the directory must be updated accordingly.
Finally, since the directory /home/ just changed ¢.e. has a new address, the parent
directory must be updated as well, and so on up to the root directory block. There-
fore, modifying a single byte in a file implies updating the file system hierarchy up
to the root block, which is in turn, re-signed by the administrator. Such a modifica-
tion process is extremely expensive and inconceivable in a production environment.
Figure 2.13 illustrates the CFS hierarchical organisation based on the UFS (UNIX

File System) in which metadata are stored in objects known as inodes.

The CFS’s approach regarding file representation differs from many systems such
as PAST |]. In PAST, every file constitutes a DHT block while CFS split
files into chunks of regular size. Splitting files into chunks has the advantage of
better balancing the storage load across nodes. However, since files are composed of
multiple data blocks, the DHT routing process is requested more often, potentially

leading to performance loss and increased security threats.

2.3.5 lvy

Ivy |] is a multi-reader/multi-writer file system relying, like CFS, on the
DHash distributed hash table. [vy’s architecture is based on per-participant logs
describing the modifications the given participant has performed on the file system.
Ivy implements a log in the form of a chain of records. Every record is stored
in a CHB while the head of the chain is referenced in a PKB, modifiable by the

participant.

A wview of the file system is composed of a set of such logs, as illustrated in Figure
2.14. The address of the log head blocks of the participants involved in the view are
referenced in a view block. The wview is stored in a CHB. The address of the view
block identifies the file system and is therefore distributed to the users, enabling
them to access and potentially modify it. Noteworthy is that since the view block

is immutable, adding or removing a user to the view implies creating a new wview.

The records are sequentially numbered while the highest attributed number n is
kept in the log head. Every record is also identified by a vector timestamp [n;]
corresponding to the highest sequence number n of the various i logs composing the

view at the time of the record creation.

A user willing to modify the file system starts by reading the head block of every log
composing the view in order to determine the vector timestamp to use for the new
record. Then, the user adds a record to her log describing the operation performed

such as the file path, offset, length and data for a write operation for instance.

Consulting the file system however requires the user to explore all the view’s logs

from head to tail, looking for records related to the object and area of interest.

CHAPTER 2. BACKGROUND 34

During this process, the client sorts the records according to their vector timestamps.
For example, reading a file would require the client to locate all the write records

related to the given file and intersecting with the area to read.

View Head Record Record Record

Lo T T RN N

Ta B
AT _:BD
Y

PKB CHB CHB

PN RN

CHB

D mutable block

immutable block

****** = relation

Figure 2.14: The vy log-based representation

Although this process of serialisation is extremely expensive, as the performance
depends on the number of writers involved, representing a file system by means of
per-participant logs has two advantages. Firstly, assuming that a malicious user
is detected, a participant can easily use another view which does not include the
malicious user. Indeed, any subsequent operation would simply make use of the new
set of logs. Secondly, in case of a partitioned network, every participant can continue
accessing the file system, assuming that every partition contains at least one copy
of the logs. Although modifying the file system in such a partitioned environment
can potentially lead to more conflicts, [vy already provides the necessary tools for

dealing with such situations.

Tvy makes use of optimistic concurrency control since operations are independently
transcribed into records and serialised whenever a client needs to reconstitute the
object. Note however that relying on independent per-participant logs does not pre-
vent conflicts. Indeed, a scenario involving two participants modifying the same area
of the same file based on the same file system state—i.e. vector timestamps—would

obviously lead to a conflict. [vy resolves such conflicts by ordering modifications

CHAPTER 2. BACKGROUND 35

according to the user’s public key, hence guaranteeing the same consistent view for

all the participants.

Regarding security, lvy does not provide access control mechanisms. Indeed, a user
willing to restrict access to one of her files would have no choice but to manually
encrypt it and distribute the encryption key to the authorised users making vy

impractical for deployed environments.

2.3.6 Plutus

Plutus | | is a decentralised file system built upon an ad hoc overlay network.
Plutus aims at detecting and preventing unauthorised accesses, differentiating be-

tween read and write permissions and enabling the change of access rights.

Plutus access control is based on two ideas. Firstly, the key distribution process is
delegated to the client, leading to better server scalability while allowing the user to
set arbitrary policies. Secondly, in order to reduce the number of keys users must

keep, files are grouped into filegroups.

The aggregation mechanism of filegroups prevents the number of keys the user has
to manage to grow proportional to the number of files. An RSA (Rivest Shamir
Adleman) key pair is associated with each filegroup. Files are grouped in filegroups
according to their sharing attributes so that two files shared by the same users will
have the same encryption key. Since users tend to use the same access control rules
for their files, the number of filegroups a user’s files belong to can be expected to be

very low.

On the downside, using the same key for encrypting multiple files has the disadvan-
tage that the same key encrypts more data, potentially increasing the vulnerability
to known plaintext and ciphertext attacks. Plutus therefore uses unique encryp-
tion keys for different files and stores those keys in a file-lockbox whose key is then

distributed to the users of the same filegroup.

Figure 2.15 illustrates the different keys involved in Plutus. Every file is split into
data blocks, each of those blocks being encrypted with a unique symmetric file-
block key. The lockbox contains all the file-block keys of the file and is encrypted
with a symmetric file-lockbor key which is distributed to both readers and writers
alike. Note that file-lockbox keys are the same for all the files belonging to the same
filegroup. A hash of the file contents is computed for integrity purposes and signed
with a file-sign private RSA key. The signature can subsequently be verified with
a file-verify key i.e. the associated RSA public key. The file-sign key is handed
to writers while the file-verify key is handed to readers so that the system can
differentiate read from write access control. Thus, whenever a user modifies a file,

she re-computes the hash and re-signs it. Readers however check the file’s integrity

CHAPTER 2. BACKGROUND 36

by verifying the signature with the file-verify key and then make sure the hashes are

valid according to the file’s contents.

File Group
Data
v
Inode
Lock Box file—block
"
= hash 1 Data
file-block T
Read hash T
eader - P E—
signature ., . | T file-block
file—sign ~ - T
file—verify N
. L, - file—block
file—lockbox file—block B RIS N
-~ T S
file-lockbox o (AN Data
Reader/Writer
file—sign file—block
file—verify Inode Data
file—lockbox i
. hash
. [Em— file-block
Writer _ file—block -
file—sign " hash N TN -, Data
file—lockbox file—block
file—lockbox
file—block

block

******* = relation

Figure 2.15: The Plutus’ keys, locks and groups

Regarding access control management, Plutus makes use of lazy revocation. Indeed,
re-encrypting the file’s contents whenever a user is revoked would incur a large
performance overhead. Instead, the re-encryption is delayed until the file is modified.
Plutus relies on key rotation | | to address the issues of lazy revocation in the

context of file groups.

Although Plutus aggregation of files according to their access control rules is ex-

CHAPTER 2. BACKGROUND 37

tremely interesting, the overlay network has never been described. Besides, Plutus’
access control scheme may lack flexibility when it comes to managing hundreds,
thousands or millions of users since the system does not provide any mechanism for
aggregating users into groups, for instance, which would greatly ease access control

management, especially in large-scale peer-to-peer file systems.

2.3.7 Pastis

Pastis | , | is a large-scale read/write peer-to-peer file system. Pastis
relies on the PAST |] distributed hash table built upon the Pastry |]

overlay network.

Inode

Data

users
music ~ <[}

H

PKB home N
README |1~ _

v ~

P ———. Inode
CHB \

Data

******* = | mq TTH--- Inode
README, |} e

[
PKB

Inode N
mutable block \§

immutable block

D ats
-

Welcome to | i}
Pastis! !

***** = relation PKB

[——
[ivbissivbivtvsiottvtistiett
CHB

Figure 2.16: The Pastis organisation

Pastis follows CFS’s architecture but introduces mutable-block-based metadata in
order to overcome CFS’s major issues. Indeed, CFS is said to be a read-only file
system because it can only be modified by the administrator. Besides, since its
architecture is based on immutable blocks, whenever an object is modified, the
hierarchy must be updated up to the root block, which is then re-signed by the
administrator. Pastis introduces PKBs along the way so that modifying an object
only implies creating new immutable data blocks as well as updating the mutable
metadata block. Since the number of blocks modified is independent of the hierarchy
depth, Pastis’s design is far more efficient than CFS’s. In addition, since PKBs can

CHAPTER 2. BACKGROUND 38

only be updated by a user possessing the private key required to re-sign the content,
a Pastis file system can be modified by multiple users i.e. every object can be

updated by its owner.

Figure 2.16 illustrates the Pastis’ UFS-like hierarchical organisation composed of
both metadata PKBs, known as inodes, and data CHBs. The figure depicts the use
of PKBs which stops the update propagations.

Since creating a file system object in Pastis implies creating a PKB, the user may
end up keeping a lot of cryptographic key pairs. In order to avoid storing all those
sensitive keys, PKBs embed both the public key of the block owner and a signature
of that key done with the block’s generated private key. Therefore, the user does not
need to keep any keys except her own key pair. Then, every operation performed

on an object is signed with the user’s private key instead of the block’s private key.

Pastis also provides a write-only certificate-based access control mechanism. Any
user willing to grant the permission to modify one of her objects can generate a
certificate and distribute it to the authorised users. Then, whenever such a user
performs a modification on the given object, she attaches the certificate to the
imode’s PKB, proving that this operation is legitimate. Thus, a client retrieving
the inode can verify that both the block and the certificate are valid. A certificate
embeds the inode block’s public key, the authorised user public key as well as an

expiration date, the whole being signed by the object owner.

Pastis therefore provides both the access control and consistency models required
to build a usable file system in a peer-to-peer environment. However, the access

control scheme still suffers from the number of certificates the user must keep.

This section intended to detail the internals of the major peer-to-peer file systems
developed over the last decades and to give an overview of the trade-offs involved
in the design of such systems. Research was also conducted in order to improve
peer-to-peer file systems in alternative ways: Chefs | | is an access-controlled
content distribution network built upon SFSRO (SFS Read-Only) | |, Total
Recall |] is a system predicting hosts availability in order to optimise replica
placement, TFS (Transparent File System) | | is a transparent layer which
makes use of the unused local storage until the local operating system claims it and
overwrites the cached peer-to-peer data and Glacier | | is a storage system

relying on erasure codes in order to increase availability and durability.

Chapter 3
Environment

This chapter starts by defining the properties end-users expect a modern storage
system to provide before carefully defining a model capable of guaranteeing them
all. Finally, the objectives and assumptions of this work are defined according to

the background discussed in Chapter 2.

3.1 Properties

This section discusses the properties end-users expect from a modern storage system.
Although the properties below have been defined with the objective of designing an
ideal storage system, some may seem more desirable than mandatory: anonymity,

mobility, transparency, capacity or even cost for instance.

Durability

Durability ensures that once the system has agreed on storing some data blocks,

those blocks will never be lost.

A system lacking this property would be incapable of guaranteeing the user to even-
tually retrieve her files. Commodity hardware such as hard disks but also external

backups fail to ensure this property.

It is actually impossible to ensure durability by relying on a single instance of the
data because the hardware storing this instance could be destroyed, stolen etc.
Therefore, reliable systems tend to rely on redundancy such as replication to guar-

antee durability.

Noteworthy is that peer-to-peer file sharing applications such as Bittorrent |]
actually lack this property. Indeed, such systems make use of pervasive replication

since every client retrieving a file implicitly creates a new replica which can be used

39

CHAPTER 3. ENVIRONMENT 40

to serve other client requests. Therefore, while popular content achieves a high
replication ratio, rarely accessed files eventually get lost. This lack unfortunately

makes the system difficult to use for users seeking unpopular content.

Integrity

A system providing integrity ensures that a client retrieving a block of data will
end up with the exact content that has been previously inserted. Therefore, this

property also guarantees that the data has not been altered in any way.

The property is usually provided through the use of integrity codes such as crypto-

graphic hash functions, authentication codes or digital signatures.

Although most distributed systems perform the integrity verification process on
the server handling the client’s request, the client itself should be able to verify the
block’s integrity if given enough information such as the identity of the user emitting

the authentication code for instance.

Availability

The availability property ensures that a data block stored by the system remains
accessible at all times. This property coupled with the durability property makes

the system reliable.

As for durability, replication is a way of achieving availability by maintaining a
replication ratio such that even if some replication nodes fail, enough replicas remain

in the system for the clients to access the data.

Note that applications relying on pervasive replication, such as Bittorrent |],
can ensure neither the durability nor the availability property because the replication

ratio depends on the content’s popularity.

Privacy

The privacy property ensures the user the possibility to keep her files completely
private, both from other users and more powerful entities such as the potential
organisation distributing the software, the user’s ISP (Internet Service Provider) or

even governments etc.

Privacy is usually provided by means of cryptography: every stored data block is
first encrypted on the client side so that the servers never have access to the data

in its plain form.

CHAPTER 3. ENVIRONMENT 41

Sharing

As described in Section 1.1 sharing has become increasingly important to Internet

users.

A viable system would therefore provide users means to share data with other specific

users in an easy way.

In order to prevent both the organisation running the system and unauthorised users
from accessing the data, systems usually distribute the cryptographic key used for

encrypting the data to the users granted access.

Anonymity

People are usually concerned about companies or govenment entities analysing users’
doings on the Internet. Indeed, people expect the same rights they are granted when

it comes to their home privacy for instance.

Anonymity should therefore be guaranteed by the system such that nobody, not even
the government or the user’s ISP can know what data the user is storing, sharing

or accessing.

Although anonymity has been studied through various projects | ,],
the mechanisms used for providing such a guarantee are often very expensive and

therefore impact the user experience.

Versioning

Computers have become the ultimate tool for treating information. As such, every

document evolves in its digital form from one version to the next.

However, users may wish to undo a modification or rollback to a past version. Such a
feature is considered fundamental in revision control systems such as CVS (Concur-
rent Control System), Subversion and Git. Besides some storage systems |]

have started integrating such a functionality at the file system level.

Therefore, any modern storage system should provide a way for users to track the
modifications applied onto documents but also to naviguate through the versions

and potentially restore a specific one.

Mobility

With the increasing diversity in mobile devices, people are trading their old sin-
gle desktop computer for a variety of small nomad devices from mobile phones to
netbooks to tablets and so forth.

CHAPTER 3. ENVIRONMENT 42

A viable platform for storing, sharing and synchronising files should be accessible
from all these mobile devices by coping with the characteristics of such resource-

limited computers.

Organisation

Since the advent of personal computers, people have been used to manipulate in-
formation through the abstraction known as the file. In addition, the hierarchical
organisation consisting of a directory containing files and sub-directories has made

its way to the general public as the traditional way for organising information.

However, recent research along with some commercial products tried to introduce
another way for retrieving and searching documents through tags. Although this
scheme has not yet supplanted the hiearchical organisation on personal computers,

it appears to be a serious alternative.

No matter which scheme a storage system uses, the user requires a way for organising

and managing her files.

Transparency

The files stored by the system should be accessible in a transparent manner such
that the end-user does not have to differentiate accessing a locally stored file from

accessing a file stored through a remote system.

More precisely, the system should enable existing applications to manipulate the
files stored through the given storage system as they did when stored on a local

hard disk for instance.

Efficiency

The user experience is crucial, especially when it comes to accessing files that were
supposedly stored locally and therefore quickly retrievable.
The system should therefore focus on giving the end-user the impression that ac-

cessing files residing on other computers through the Internet is actually “as fast as’

accessing them locally.

The user could well be aware of the fact that the network protocols impact the
performance of the system especially regarding the network latency since nodes may
be geographically far from each other. However, the networking aspect of the system
should not make the user’s common operations a hassle, such as watching a movie,

working on an office document, listening to music etc.

CHAPTER 3. ENVIRONMENT 43

Various techniques could be used for achieving efficiency from optimised network

protocols | | to caching algorithms for instance.

Capacity

The user should not be limited regarding the number of files or the size of the files
that she can store and should have access to a storage capacity of the same order of

magnitude as the capacity offered by her local hard disk.

Indeed, given the evolution of the hard disk prices, user may lack incentive to move
on to a reliable, secure and available storage infrastructure if one can get twice
as much storage capacity by buying cheap external drives from a nearby hardware

store.

Cost

Along with the capacity property, the cost of such a system should be low for the

client wishing to use it.

Besides, the costs for the organisation developing and maintaining the infrastructure
should also be as low as possible because such costs would have to be passed on to

the consumer, one way or the other.

3.2 Model

This thesis claims that a file system abstraction on top of a peer-to-peer network is

the most suitable model for achieving the fundamental properties defined above.

3.2.1 File System

End-users have been accustomed to hierarchical organisations since the introduction
of the file system paradigm. Providing the user a similar way to organise files is
crucial. Although most storage services and products [Box, , | provide such
a hierarchical organisation, some still put the user in front of a flat name space.
Peer-to-peer file sharing applications | , ,] for instance fail to
offer users a hierarchical organisation making it difficult for people to organise the

files they contribute to the system but also to browse other users’ contributions.

Although the organisation property is fundamental, transparency is also extremely
important. Much storage software [Box, | forces the user to use a specific appli-

cation. It may, at first, seem natural from the system designer’s perspective because

CHAPTER 3. ENVIRONMENT 44

defining a specific interface gives the application the liberty to interact directly with
the end-user but also to offer features specially designed for this system. However,
such systems also suffer from it since breaking the compatibility with all the appli-
cations relying on the file system interface automatically isolates the software from
the rest of the world. Indeed, applications would not be able to use files stored
through a system incompatible with the standard file system interface meaning that
users would not be able to play their music files or watch their movies, they would
have to first retrieve the file from the network, store it on the local disk before the

application could proceed and open it.

Thus, in order to respect the organisation and transparency properties, and accord-
ing to end-users habits, such a storage infrastructure should be accessible through

a standard file system interface.

3.2.2 Peer-to-Peer

As studies | , , ,] suggest, file systems can benefit

from the peer-to-peer architecture in a number of ways.

Peer-to-peer systems offer a way to aggregate and make use of the resources on com-
puters across the network hence building a virtually infinite and highly adaptable
system. Research showed | , | that the usage of computers’ storage oscil-
lates between 53% and 87% meaning that a large portion of the local storage space
is, most of the time, unused. This storage characteristic indicates that peer-to-peer
networks can ensure the durability, availability, versioning and capacity properties
by making use of a user’s unused space for replicating the other users’ data. Fur-
thermore, by relying on the clients for contributing the system in bandwidth and
storage capacity, the costs for running such a system are kept extremely low, both

for the organisation running the software and the end-user.

As shown in Chapter 2, peer-to-peer overlay networks, more specifically structured
overlay networks, have been designed to be highly scalable. However, although this
characteristic implies that the load put on the nodes depends on the size of the
network, it does not guarantee that mobile devices, for instance, will have enough
resources to support such a load. Indeed, a user might want to contribute the peer-to-
peer network from her home desktop computer only, while accessing it from multiple
other devices, not mentioning that such resources-limited devices may not have
the capacity to maintain the local network state. Fortunately, structured overlay
networks have been designed to be highly tunable through several parameters. For
instance, the Chord | | overlay network’s base parameter can be chosen in
order to achieve the desired trade-off between lookup performance and the size of

the local state every node must maintain.

CHAPTER 3. ENVIRONMENT 45

The large-scale nature of peer-to-peer networks also contributes to improving the
overall system performance. Indeed, since data can be distributed throughout the
network but also retrieved from multiple nodes at the same time, the bandwidth
load is naturally balanced between the computers contributing to the system. The
Bittorrent |] peer-to-peer file sharing application gained in popularity due to

its efficient network protocol which makes use of this characteristic.

The peer-to-peer model therefore appears as a natural network paradigm for ensuring
most of the system’s properties such as durability, availability, versioning, mobility,

efficiency, capacity and cost.

3.3 Mission

Peer-to-peer networks have been shown to exhibit many interesting characteristics
but also introduce many challenges. This thesis does not discuss the challenges
related to overlay networks or even distributed hash tables because a substantial
amount of work has already been achieved in these fields, as attested by Chap-

ter 2. Topics ignored by this work therefore include, but are not limited to, re-

dundancy algorithms |], consistency models, agreement protocols, fault tol-
erance, atomicity, garbage collection |], overlay network’s identifiers as-
signment |], mutual exclusion algorithms | | and routing algorithms

[: : J

Unlike centralised facilities which are very expensive to build and maintain, peer-
to-peer systems do not require any special administrative or financial arrangements.
Such systems therefore became very popular for exchanging information freely, out-
side any control. Research in anonymity arose as an additional step to freedom on
the Internet, led by well-known projects such as FreeNet | | and FreeHaven
[|. Although anonymity may be considered by many as a fundamental re-
quirement in today’s digital world, this research topic will not be discussed in this

thesis and is left as future work | , : .

Likewise, the versioning | : | feature is not studied in this thesis. As
such, the underlying distributed hash table is assumed to store the latest version of

every block.

Since overlay networks and distributed hash tables have been the focus of the re-
search community for more than a decade, this work concentrates on providing file

system functionalities in a decentralised, hence untrustworthy environment.

The file system component, built on top of a block storage layer, provides the fol-
lowing fundamental functionalities. First, file systems introduce the file abstraction:

a block of arbitrary information. Then, files are associated with a human-readable

CHAPTER 3. ENVIRONMENT 46

identifier, known as path in hierarchical systems, forming a tree-like organisation
scheme. Third, the notion of user distinguishes the multiple entities interacting
with the file system. Finally, the access control scheme enables users to control their

files, directories etc. enabling files to be shared with or protected from other entities.

File systems integrate another inherent but non-obvious functionality. Although
most file systems’ operations relate to objects such as directories, files and links, a
few operate on the whole system configuration. Centralised file systems tend to rely
on a specific user, known as root on UNIX-like systems and Administrator on Win-
dows, to perform such special operations. This user, being granted super-privileges,
can perform system-wide actions such as creating users and groups, accessing or
removing any file but also modifying the file system metadata such as its name, its
capacity along with some specific parameters. Decentralised file systems however,
cannot rely on such a special user because such systems were specifically designed
to prevent a single entity from controlling the whole system. Therefore, the admin-

istrator entity must be re-considered to fit such a decentralised environment.

This thesis focuses on designing a flexible access control scheme for decentralised
untrustworthy storage environments, providing peer-to-peer file systems’ users a
way to control their files individually. In addition, an administration scheme is
discussed which both prevents a single user from completely controlling the system
and enables users to request an administrative operation such that, if it is beneficial

to the system, it will be carried out.

Although the community showed great interest in such distributed systems,
rare | | are the decentralised file systems to have been deployed. The final ob-
jective of this thesis is to develop a viable prototype proving feasible the deployment

of such a system to a large number of users in a production environment.

3.4 Assumptions

The file system described in this document relies upon a distributed hash table,
which in turn, is built on a peer-to-peer overlay network. Although the challenges
related to overlay networks and distributed hash tables are not discussed throughout
this thesis, several assumptions are made regarding the interface of the underlying

storage layer but also the properties and guarantees of the network architecture.

First, the peer-to-peer network is assumed to be untrustworthy. Indeed, since such
networks are mostly populated by personal computers, no assumption can be made
regarding the trustfulness of the contributing nodes. Furthermore, the decentralised
nature of such networks coupled with the untrustworthy assumption implies that

nodes must operate in a completely symmetric way. Indeed, since peer-to-peer nodes

CHAPTER 3. ENVIRONMENT 47

are considered equally unprivileged, everything performed by one node could also
be performed by another one. In addition to those fundamental characteristics—
decentralisation, untrustworthiness and symmetry— the high dynamicity of such
networks requires protocols to be scalable. Finally, the inherent network’s churn

implies that no assumption should be made regarding nodes’ connectivity.

Second, in order to ensure the durability and availability properties, redundancy has
been shown to be an absolute requirement. Projects such as OceanStore |]
and FARSITE | | have been using agreement algorithms such as the BFT
[| protocol and Pazos | | in order to ensure consistency among the repli-
cas. Unfortunately, such algorithms are known to be expensive | , | as
detailed in Section 2.2. Other projects such as CFS |], vy | | and
Pastis | | chose to rely on quorums. Indeed, since peer-to-peer file systems
only require to store and retrieve data, such algorithms achieve better performance
than their agreement counterparts. According to the efficiency property, the under-
lying distributed hash table will therefore be assumed to be making use of quorums

for maintaining the replicas in a consistent state.

As detailed in Section 2.2, quorum-based Byzantine systems replicate every object
on ¢ > 3+ 1 storage nodes in order to tolerate up to v malicious nodes while read
and write quorums must contain contain, at least, 2y + 1 replicas. Note however
that every client must be able to distinguish the illegitimate replicas provided by
Byzantine nodes. Therefore, and since the untrustworthy property implies that
storage nodes cannot be trusted, every data item must be self-certified that is,
every data block must include the necessary information in order to ensure that ()
the block corresponds to its supposed address (i) the block’s integrity has been
maintained and (i) the block’s authenticity is guaranteed. The self-certification
property along with the replication and symmetry ensures that any client can select

the valid instance from a set of replicas.

Third, the distributed hash table should provide an interface composed of, at least,

the four fundamental routines below.

e Put(a,)
e Get(a) — 8
e Gather(a) — f3

e Erase(a)

The following details some of the essential distributed hash table’s protocols. Since
these protocols reflect the particularities—untrustworthiness, symmetry and self-
certification—of the given environment, understanding those protocols will help the

reader comprehend the design decisions made in Chapter 4.

CHAPTER 3. ENVIRONMENT 48

Put

The Put(a,) routine takes a unique address a along with the data block /5 to be
stored. In order to ensure durability and availability, the block is replicated on a
set of nodes 2 such that |Q2] = ¢. The process of storing a block in the distributed

hash table goes as follows.

The client starts by sealing the block in order to ensure self-certification. Indeed,
since the block is going to be stored on untrustworthy nodes, future clients retrieving
the block must be able to detect blocks that have been illegally altered by malicious
nodes. Integrity can be ensured through the use use of a cryptographic signature, a
MAC (Message Authentication Code) | | or equivalent.

The client then computes the block’s address and invokes the Put() routine which
locates the nodes €2 responsible for the given address a. The block 3 is sent to a
write quorum of storage nodes after which the client waits for their responses. Once
27+ 1 acknowledgements have been received, the block is considered as being stored

by the system.

From the storage node perspective, the process consists in verifying the received
block’s validity before storing it. The self-certification process is composed of several
steps. Firstly, the node verifies that the address a corresponds to the block 3. Note
that this implies that the block’s address computation must be a function of the
block itself. Secondly, the block’s integrity and authenticity is checked, by verifying

the embedded cryptographic signature for instance.

Note that the €2 storage nodes periodically synchronise with each other in order to
maintain replica consistency. Besides, write operations performed on quorums are
actually composed of two phases. The first phase consists in locking the quorum
nodes in order to ensure mutual exclusion. In the second phase, the client sends the
block’s content to the quorum nodes. However, for the sake of simplicity and clarity,

the first phase is ignored and will therefore not be discussed throughout this thesis.

Get

The Get(«) routine is used to retrieve the block identified by «. More specifically,
this routine returns to the client the first valid block instance located throughout the
network. Therefore, depending on the implementation and the context, the block
may be retrieved from one of the €2 nodes, from a node contributing to the routine

process and having the block in cache, or even from the client’s cache.

Once the client has received the block, it proceeds to the exact same verification
process as the servers: (i) the received block 8 corresponds to the requested address

a and (7i) the block’s integrity and authenticity is maintained. The reader should

CHAPTER 3. ENVIRONMENT 49

notice the symmetry of the nodes’ behaviour. Indeed, the verifications performed
by a node acting as a server will eventually be performed by a client. Therefore, the
information necessary to enact a block’s validity must be available to every node,

being a client or a server, hence the self-certification.

Gather

The Get(«) routine’s particularity lies in the fact that the first valid instance found is
returned. Therefore, this routine is particularly interesting for retrieving immutable
blocks. Indeed, since such blocks do not evolve over time, the client cannot end
up with an incorrect version as a single version of this block will exist for ever.
Therefore, retrieving an immutable block which passes the validity tests is sufficient

to affirm that this block is the one the client is seeking.

However, such a routine would not be satisfactory should an application make use
of mutable blocks. By using the Get(«) method, a client could end up with a block
which is valid but happens to represent an older version of the requested block.
Indeed, since data dissemination in computer networks is by definition asynchronous,
hence unreliable and non-atomic, multiple nodes may, at the same time, store or

cache different versions of the same block.

The Gather(«) routine addresses this issue by directly requesting the block from
through the formation of a read quorum composed of 2y + 1 storage nodes. Once
27 + 1 instances of the block have been received, the client starts by discarding any
invalid block i.e. violating the integrity and/or authenticity for instance. Since the
algorithm has been designed to tolerate up to v Byzantine nodes, the number of such
invalid blocks should not exceed ~. Finally, among the remaining instances, the client
picks the one with the highest version number. Indeed, mutable blocks are expected
to embed a version number in order to differentiate the multiple variations of a given
block «. Besides, note that a storage node being requested to overwrite a mutable
block would verify that the version number of the new block is strictly higher than
the currently stored one. This additional verification step ensures mutable blocks

evolve in a monotonic way.

Figure 3.1 illustrates the protocol in a network tolerating up to v = 2 Byzantine
nodes. The system initial state is consistent since the {2 nodes store the exact same
version of the block 7.e. version 3, except for the Byzantine nodes whose behaviour
cannot be predicted. Then, a client modifies the block by updating a write quorum
containing both malicious nodes. Finally, another client requests a read quorum
which contains the Byzantine nodes and the two nodes that were not included in
the previous write quorum. However, since the algorithm ensures read and write

quorums intersection, the client can discard the invalid blocks and pick the latest

CHAPTER 3. ENVIRONMENT 20

version among the three remaining instances which happens to be version 4, as

expected.

read

©0 0060 | 00

066 0008 00606
©o 00] 00

(i) (ii) (iii)

Byzantine node

non—-Byzantine node

quorum

Figure 3.1: A three-step representation of a symmetric quorum-based system

The following example, illustrated by Figure 3.2, shows that symmetry is absolutely
crucial to decentralised untrustworthy environments. Let us consider a distributed
hash table which, for some optimisation purposes, authorises clients to store data
between 2 a.m. and 4 a.m. only. A client would start by sending its block to a write
quorum of Q. The storage nodes would verify that (i) the block is valid and (i) the
request has been made between 2 a.m. and 4 a.m., in other words, the current time
lies in this interval. Then, let us consider the Byzantine node w € €2 which stores one
of the block’s replicas. This node decides, although it is 5 p.m., to modify the block.
However, instead of following the protocol, it just replaces the local replica with its
new version and does not bother contacting the other {2 nodes. Considering that
the block is valid and has the highest version number, a client wishing to retrieve
the block could form a read quorum including w. Therefore, the client would end
up with, say, up to v — 1 invalid instances of the block, v 4 1 valid instances of the
block and one valid, though illegally forged, instance of the block embedding the
highest version number. The client, following the protocol, would therefore discard
the invalid instances and keep the latest version, version 5 in the example, which

happens to be an illegal instance.

CHAPTER 3. ENVIRONMENT 51

read

ONO ONOIENINONO
OO0 OO OO0
ONO ONO ONO

(i) (ii) (iii)

Byzantine node

non—Byzantine node

quorum

Figure 3.2: A three-step representation of an asymmetric quorum-based system

This example illustrates the system’s lack of symmetry. Indeed, the validation pro-
cess is not symmetric because it cannot be performed by clients since they do not
have access to the time the block has been stored. Therefore, the clients have no
choice but to trust the servers regarding this predicament. Since the environment is

assumed to be untrustworthy, the assumption is violated and the system is flawed.

Noteworthy is that the Get(«) and Gather(a) methods are distinguished in this
document for the sake of clarity. However, most implementations, including the
one discussed in Chapter 5, merge both functionalities into a single routine which,

depending on the address «, operates in one or the other mode.

Erase

The Erase(«) routine takes the address of a block that must be removed from the
distributed hash table. The client wishing to perform such a removal starts by
sending a request to the) nodes storing a replica of the block. Storage nodes
receiving such a request then challenge the user in order to verify the legitimacy of
the operation. Once the client has been authentified as the creator, every replica
is destroyed. Note however that the authentication process depends on the type of
block, as described in Chapter 4.

CHAPTER 3. ENVIRONMENT 52

To summarise, this thesis makes several assumptions among which are the dis-
tributed hash table’s properties: decentralisation, untrustworthiness, symmetry, self-

certification, scalability, replication through quorum protocols and non-connectivity.

Considering such a distributed hash table, this thesis aims at designing a decen-
tralised peer-to-peer file system by focusing on providing a flexible access control
scheme along with a mechanism for users to request administration tasks in a sys-

tem devoid of any authoritative entity.

Chapter 4
Design

This chapter details the design of the fundamental components of a peer-to-peer file

system.

The first section focuses on describing the access control scheme which introduces
both the notion of user and the abstract representation of file system objects such
as files, directories etc. This section starts by defining the objectives of the access
control scheme given the environment described in Chapter 3. The model of the
access control scheme is then discussed though this model will be refined later one.
Finally, the concept behind the access control mechanism is introduced before dis-
cussing in details the internal representation of the blocks composing the file system

hierarchy.

The second section discusses the file system organisation and the necessity for en-
abling users to perform administrative operations. First, the semantics of centralised
file systems are discussed in the context of peer-to-peer file systems. A model is then
proposed for both administering the file system and transferring object ownership.
The design of the proposed model is then detailed through the introduction of a new
physical block.

By the end of this chapter, the fundamental components will have been designed,

leading the way to the implementation of a viable peer-to-peer file system prototype.

4.1 Access Control

Although many decentralised peer-to-peer file systems have emerged in the last

decade, none of them succeeded in providing users with a flexible access control

system.
The well-known file sharing applications such as Bittorrent | |, Freenet |
FreeHaven | | etc. actually provide a content distribution infrastructure more

53

CHAPTER 4. DESIGN 54

than a way of sharing files since users cannot decide which users are allowed to re-
trieve the documents they contribute to the system. Although users may not be
interested in controlling access to movies, they might be for more personal informa-

tion such as family photos, work documents and so forth.

While some distributed file system projects [, | lack an access
control mechanism, others such as OceanStore |] and FARSITE |]
do provide privacy control functionalities. Unfortunately, such systems suffer from
fundamental flaws regarding our target environment such as the non-scalability of

the network architecture or the use of expensive algorithms, as explained in Chapter
2.

More recently, several research projects, including Chefs | |, Plutus |]

and Pastis |], focused on access control in untrustworthy environments.

Chefs’ single-writer /multi-reader design might well suit content distribution applica-
tions such as Bittorrent | | but unfortunately lacks flexibility when it comes to
large-scale file systems. On the contrary, Plutus provides a multi-writer /multi-reader
scheme but, like Chefs, requires the users to be connected whenever an object’s owner
wishes to grant them access. This connectivity requirement is unpractical for large-
scale networks where the churn rate has been measured to be very high [].
Plutus also puts some trust constraints on the storage nodes handling write op-
erations, hence, violating the untrustworthiness predicate. Finally, Pastis’ access
control scheme, very much like Plutus’, constrains the users in keeping a constantly

growing number of certificates and cryptographic keys.

Noteworthy is that the most recent work achieved through Chefs, Plutus and Pastis
indicate that issues remain to be addressed. The remainder of this section therefore
presents the design of a flexible access control scheme for the given environment
which does not require users to keep any access information but their identity i.e. a

single cryptographic key pair.

4.1.1 Objectives

The following statements define the scope within which the access control scheme has
been designed along with the characteristics such a mechanism should incorporate.
Although one might disagree with these definitions, this set of rules has been defined
in order to provide the access control mechanism functionalities common to most

file systems while taking the environment’s particularities into consideration.

V, First, the environment characteristics and fundamental properties defined in
Chapter 3 must be respected throughout the design process. These include

decentralisation, scalability, untrustworthiness, symmetry and self-certification

CHAPTER 4. DESIGN 5}

Vs

VE

Vy

Vs

Vi

Vr

but also non-connectivity due to churn, efficiency through quorum protocols

and so on;

A user must be able to modify its object’s permissions. Furthermore, the
effects of those modifications should be made effective immediately. Although
atomicity is obviously unachievable given the asynchrony of the underlying
physical network, this rule suggests that any operation that does not comply

with the object’s last set of access control rules should be rejected;

Any user should be able to consult an object’s current permissions. Note
that this rule conflicts with most common file systems which prevent users
from collecting information on inaccessible objects. However, in the given
context, the lack of a centralised entity makes it difficult to prevent a user
from retrieving the block corresponding to the file’s metadata—assuming she

knows the block’s address—hence accessing its access control information;

Section 4.1 showed that the most recent research regarding access control
in decentralised environments suffered from the amount of access information
users have to keep locally. Indeed, both Plutus | | and Pastis |]
require clients to store a linearly increasing number of keys and certificates.
The storage space required on clients for managing objects’ access control

should therefore be ideally reduced to a single item;

The large-scale environment’s characteristic implies an extremely large and dy-
namic number of users and files. While common centralised file systems such
as ext?2 (Second FEztended File System) were designed with space consump-
tion and simplicity in mind, decentralised file systems must provide flexible
capabilities for users to manage the possibly thousands of users having been
granted access to an object. The access control scheme should therefore en-
able users to create hierarchical groups which, as the name suggests, can be
composed of both users and/or sub-groups. This paradigm would enable users
to organise their friends, acquaintances, family etc. hence easing the access

control management;

According to the environment specifics and with regard to V5, the access
control scheme should be as efficient as possible. Especially, the complexity of
the process consisting in verifying that a user’s operation is legitimate should

be logarithmic, if not constant time; and

Since data retrieval cannot be controlled, anyone is allowed to request a data
block from the underlying distributed hash table. Therefore, accountability
regarding users accessing data seems unachievable. However, users should not

be capable of repudiation regarding object modification.

CHAPTER 4. DESIGN 26

Note that every access control scheme candidate will be considered unsuitable if
violating at least one of these objectives. Besides, whenever such an objective is
mentioned through its V,, symbolic name, the reader will be able to refer himself to

the definitions summary located at the bottom of the page.

4.1.2 Model

The following discusses the particularites of access control schemes in the given

environment.

4.1.2.1 Policy

An access control system is one which enables an authority to control the access
to resources. In the context of file systems, access control systems enable a user to
grant a set of other users access permissions onto an object, being a file, directory,
link etc.

Access control systems are often categorised as either discretionary or non-discretionary,
the most widely recognised models being MAC' (Mandatory Access Control) | 1,
DAC (Discretionary Access Control) |] and RBAC' (Role-Based Access Con-
trol) | :].

MAC is an access control policy determined by the system, through an authoritative
entity. Historically, MAC has been designed and used by military organisations
processing highly sensitive data. In such systems, subjects and objects are assigned
a label so that a user can access a document only if her clearance level is equal or

higher than the document’s sensitivity level.

DAC is an access policy determined by the object’s owner. Therefore, the user de-
cides who has access to the object and what operations they are allowed to perform.

Note that unlike MAC, DAC models do not require any authoritative entity.

Finally, RBAC is an alternative approach consisting in the definition of various
roles matching the multiple organisation’s personnel functions. The permissions to
perform certain operations are then assigned to roles. Finally, every member of the
personnel is assigned a particular set of roles such that, through those assignments,
the user acquires the permissions associated with the roles. The RBAC model
simplifies the whole access control management since controlling the access policies

consists in assigning roles to individuals.

As discussed in Chapter 3, a consequence of the peer-to-peer environment is that
no entity has complete control over the whole system. For this reason, both MAC
and RBAC models, which require system-wide definitions, cannot be used in this

context. Therefore, in order not to violate V1, the DAC model must be used.

V1: environment, Va: modification, V3: consultation, V4: space, Vs: flexibility, Vg: efficiency, V7: accountability

CHAPTER 4. DESIGN o7

4.1.2.2 Pattern

Systems such as operating systems, file systems, websites etc. are said to make
use of active access control because permission is granted at the time an operation
is requested or performed. Most systems follow this pattern because all requests
are made to a manager which decides whether or not to grant access. Since access

control information is centralised, the manager can easily take such a decision.

On the other hand, distributed systems tend to dynamically build managers by re-
lying on Byzantine agreement protocols. Unfortunately, and as discussed in Chapter
3, since they reduce concurrency | , |, such algorithms are impractical

for many applications, especially large-scale distributed file systems.

As a consequence, the given environment cannot make use of managers. Access
control is therefore said to be passive. The idea behind passive access control is to
store access control information along with the object so that any client retrieving
an object can verify that the last modification has been performed by a legitimate
writer i.e. the writer had the permission at the time, 7, the operation was carried
out. If, as described through Section 3.4, the block happens to be illegitimate, it is

discarded until a valid instance is found.

Thus, users writing an object must attach an atemporal proof such that, at any later
time, anyone can verify that the object has been properly constructed according to
the permissions in place at 7. By doing so, the system’s symmetry is maintained
and V; is respected. Furthermore, and in order to prevent violating V7, the proof

should enable users to identify the writer.

Regarding read operations, since the storage nodes cannot be trusted, the objects’
content should always be encrypted. The access control scheme should therefore
enable objects’ owners to distribute the key to authorised readers while respecting
Vs and V.

4.1.2.3 Class

Access control schemes basically fall into one or both of the two following classes:
token-based and record-based. This section takes both of the access control classes
and shows that no scheme can achieve the required properties in the given environ-

ment.

An implication of V5 is that permissions must be flexibly manageable through hi-
erachical groups, giving the user a tool for organising users very much as a tree-like

file system view enables users to organise their files.

As mentioned in the previous section, a passive access control model implies that

users must attach to the object a proof showing evidence of the legitimacy of the

V1: environment, Va: modification, V3: consultation, V4: space, Vs: flexibility, V: efficiency, V7: accountability

CHAPTER 4. DESIGN o8

operation. In more practical terms and with consideration of group hierarchies,
every proof involving one or more of those groups will be composed of sub-proofs,
each providing evidence of group membership at 7, the whole forming a chain of

proofs.

Token-Based

In token-based access control schemes, objects’ owners distribute unforgeable tokens
to clients, granting them the permission to perform operations, while nothing is kept
on the manager’s side except what is strictly necessary to verify tokens’ validity.

Certification and Capabilities, for instance, fall into this category.

In active access control models, clients pass their token to the manager. If the chain
of tokens is valid, the requested operation is accepted. In a passive scheme, the user
attaches a chain of tokens to the object to be modified so that nodes retrieving the

object can verify that the writer provided a proof of her legitimate action.

Note that since everybody must be able to verify the tokens’ validity, such tokens
must be protected from public disclosure, for example by securely identifying its
holder. Certification schemes, for instance, include the user’s identity in a digital
signature for ensuring this property. Additionally, such a user identification complies
with V5.

A problem arises when it comes to verifying a proof. Indeed, to verify that a user
had the permission—the tokens had neither expired nor been invalidated—at T,
the object must carry time-related information such as the time the object was
updated. Unfortunately, even assuming that the system benefits from a globally
synchronised clock, neither the storage servers nor the users can be trusted to provide
a correct time. Indeed, malicious clients and servers could go back in time and claim
a date that makes past tokens still valid. The solution would be to either rely on
a centralised and trusted time server for digitally timestamping every update or to

make use of consensus algorithms, both violating V; and V.

Record-Based

In record-based access control models, a subject’s access depends on whether her
identity is located in the records associated with the object. In active models, the
manager keeps the records and performs the verification for every received request
while, in passive models, an attached proof must provide evidence that, at 7, the
user’s identity could be located in the records of the groups she claimed to have
been a member of. ACL (Access Control List)s, for instance, fall into this class of

access control.

Unlike token-based access control models, access information is recorded in blocks,

V1: environment, Va: modification, V3: consultation, V4: space, Vs: flexibility, V: efficiency, V7: accountability

CHAPTER 4. DESIGN 29

along with the other object’s metadata. V5 and V3 imply that independent entities

such as groups also record their access information in blocks.

Besides, objects and groups, in order to be accessible through the same address « at
all times, must rely on mutable blocks because the address of such blocks remains

the same while their content evolves.

Proving that a subject had the permission to perform the operation at 7 comes
down to proving there existed a link between the object and the subject, perhaps
indirectly through several groups’ memberships. Therefore, a client updating an
object must attach a snapshot of the chain of groups, hence proving the existence,

at 7, of a path from the object to the subject.

Unfortunately, since groups evolve over time, a group’s block exists in different
versions. Therefore, nothing could prevent a malicious user from using a past group’s

snapshot, at a time when she was a valid member.

Thus, as nodes could not be trusted to provide a valid timestamp in token-based
models, servers and clients, once again, cannot be trusted to include, in the chain of
proofs, the proper latest version of the groups’ snapshot at 7. A malicious user could
therefore go back in time by providing past versions of groups’ snapshots, granting

herself the permission to perform the operation.

4.1.3 Constraints

The previous section showed that any passive access control scheme violates the

fundamental symmetry property.

However, one should notice that, by loosening constraints, it becomes possible to
design such a scheme. For instance, Plutus | | makes use of a token-based
access control scheme where an object’s owner distributes a key to the writers and the
complement key to the readers. Since accountability is not a requirement, users are
free to re-distribute the keys to whoever they wish. Therefore, Plutus requires users’
connectivity for passing keys. Besides, since keys are freely distributed, nobody can

consult the currently granted permissions.

The requirements of this work are therefore extremely strong compared to Plutus’

and as a result, it has been shown impossible to achieve them all.

There is therefore no choice but to loosen the constraints in order to provide access
control to peer-to-peer applications. Although V3 and V7 might seem questionable
in terms of usefulness, especially in large-scale networks, connectivity is the envi-
ronment property that the author believes is usually misinterpreted for the reasons

exposed below.

V1: environment, Va: modification, V3: consultation, V4: space, Vs: flexibility, Vg: efficiency, V7: accountability

CHAPTER 4. DESIGN 60

e Research regarding churn rates in peer-to-peer networks has been performed
on peer-to-peer file sharing applications such as Bittorrent | | because
these are the only deployed large-scale applications that can be used to gather

such information.

However, the application itself has an impact on the node churn since, for
example, users tend to stop sharing a file that has been downloaded to avoid

wasting their upload bandwidth.

Therefore, the author claims that different well-integrated systems such as file
systems, instead of file sharing applications, would decrease the churn rate

especially if users have incentives in contributing to the system’s connectivity;

e Connectivity, very much like bandwidth, should increase as it has been the
case since the advent of computer networks. On the other hand, new devices
such as mobile phones, netbooks along with new user behaviours must be taken

into consideration.

One should note that although the number of such mobile devices is increasing
extremely rapidly, most users possess multiple computers including a desktop
computer at home and/or at work, a laptop, a mobile phone etc. Therefore,
although the increasing mobility of computing devices implies nodes frequently
joining and leaving the network, the user behind these devices is likely to be

connected at all times through one or more of those devices; and

e Finally, although the probability of a specific user being connected might not
be as high as expected because of the high churn rate measured in peer-to-
peer networks, the probability of having at least one member in a set of users

connected to the network should be higher, depending on the set cardinality.

Therefore, loosening the non-connectivity requirement will enable users, as in Plutus,

to retrieve information from other users.

4.1.4 Concept

The following provides insights into the passive ACL (Access Control List)-based—
i.e. DAC and record-based—access control scheme described throughout this sec-
tion. Note that the record class has been chosen in order to prevent users from having
to store access information such as certificates or keys as both Plutus |] and

Pastis | | suffer from this characteristic.

The idea behind the presented access control scheme is to distinguish users according
to their access relation to the target object. First, the users who have been granted

access to the object directly by the owner are referred to as the lords. These users

V1: environment, Va: modification, V3: consultation, V4: space, Vs: flexibility, Vg: efficiency, V7: accountability

CHAPTER 4. DESIGN 61

play a particularly important role in the access control scheme because their access
permissions can only be modified by the object owner. On the other hand, users
who have been granted access to the object indirectly through one or more group
memberships are referred to as the vassals. The object owner has no direct control
over these users since the access management has been delegated to the respective
group managers. Therefore, vassals could join or leave groups that have been granted

permissions on the object without the object owner even knowing.

The access control scheme’s fundamental concept is to let lords access the object
without additional constraints, assuming that they have been granted the appro-
priate permissions. However, the vassals are never given the key for decrypting the
data, neither can they update the object directly. Rather, the idea is to rely on lords
to vouch for the vassals by verifying that the requesting vassal has the permission
to perform the operation. Assuming that the vassal does have the proper rights, the
lord generates a certificate stating that, at 7, the vassal had been indirectly granted
the permission to update the object. Likewise, a vassal wishing to read an object
would need to contact a lord which would verify the vassal’s permission before pass-
ing her the key for decrypting the data. Quite obviously, the object’s owner as well

as the group managers could also act as lords, hence vouch for vassals.

Noteworthy is that, although the users’ connectivity is assumed to be higher than
previously stated, only users accessing objects indirectly will need to contact other
more privileged users. The lords’ connectivity is therefore absolutely crucial to the
system. Thus, object owners should make sure to grant access to several lords in
order to ensure that the number of connected lords is sufficient to enable legitimate
vassals to operate on the object. Should the number of such lords be insufficient,

the application could warn the user for instance.

Finally, the access control scheme introduced hereby requires users to exchange
information with one another. Therefore, as the overlay network enables nodes
to route a message to the home node responsible for a given identifier, users now
require the overlay network to provide a routine for locating a particular user. The
rest of this document thus assumes that the underlying overlay network provides
a Locate() method, which, given a set = of user identities, returns the identity of
a currently connected user. An easy way to provide such a functionality would be
for the application to automatically set the user’s, potentially multiple, IP (Internet
Protocol) address in its associated User logical block, described next, such that given

an identifier, one can easily contact the user by sending a message to her node.

V1: environment, Va: modification, V3: consultation, V4: space, Vs: flexibility, Vg: efficiency, V7: accountability

CHAPTER 4. DESIGN 62

4.1.5 Scheme

The access control scheme detailed in this section enables users to protect their ob-
jects against unauthorised read and write operations by granting permission directly
to specific users and/or indirectly by delegating access control to third parties i.e.

groups.

The following introduces the data block representations necessary to the access con-
trol mechanism, from physical blocks to logical blocks such as file system objects,
users, groups and so forth. Every block representation is illustrated by a figure along

with the three procedures below:

e The Setup(f) — « method is invoked whenever a block is built and returns
the address of the freshly initialised block;

e The Seal(q,) routine is called whenever the block has been modified and
requires to be sealed, before being stored in the underlying distributed hash

table for instance; and

e Finally, the Validate(a,) procedure verifies that the given block is valid.
This method is never explicitly invoked but rather used internally by the
Get(a) — [and Gather(a) — [routines.

4.1.5.1 Physical Blocks

As in CFS | |, Pastis |], SES | |, OceanStore |]
and many other projects, the physical blocks are distinguished according to their

immutability.

Content Hash Block

CHB (Content Hash Block)s are immutable blocks whose address is computed by
applying a one-way function on the data. Thus, assuming the block is modified,
a new content is implicitly created, hence generating a new address. Figure 4.1
illustrates such a CHB.

CHBs are extremely interesting in terms of performance, as mentioned in Section
3.4. Indeed, a client wishing to access a CHB that is present in cache would not need
to initiate network communication as it would be formally ensur