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ABSTRACT 

 

 

In August 2011 at the International Symposium on Integrated Functionalities [1] in 

Cambridge, a whole session was devoted to the electrocaloric effect, which is undergoing 

a modest renaissance.  Surprisingly, the various reports showed that the indirect method 

of measuring cooling (described in the following sections) did not usually agree with the 

direct method (actually measuring temperature change with a thermometer).  However, 

there was no obvious systematic error: sometimes the indirect temperature change was 

larger and sometimes smaller.  The discrepancies were beyond the experimental errors. 

 

The majority of the present thesis is dedicated to careful reexamination of some of the 

assumptions made in the indirect method, both during measurement and in the subsequent 

data analysis that leads to inferred temperature changes.  Experimentally, I conclude that 

the most serious systematic error is likely to be the unwarranted assumption that 

polarization and field measurements, recorded in hysteresis loops that are traced within a 

millisecond or less, are all taken at the same temperature.  In reality, the experience of the 

material during such loops is neither isothermal nor adiabatic.  Other systematic errors 

relate to data analyses and are discussed in detail. 

 

In some ways, therefore, this thesis has a negative flavour.  But it is not designed to 

criticise prior work.  Rather, it is intended to discriminate between reliable experimental 

procedures and those less convincing.  This is a line of research with important 

technology transfer possibilities, and hence the numerical values of electric cooling must 

be unusually reliable if we are to avoid unwise capital investment as a country.  
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SYMBOLS AND ABBREVIATIONS 

 

𝐴   𝑈 − 𝑇𝑆 + 𝐸0𝑃𝑚 / capacitor electrode area 

𝐴′   𝑈 − 𝑇𝑆 − 𝐸𝑃𝑚 

𝐴𝐶   𝑈𝐶 − 𝑇𝑆 − 𝐸𝐷𝑚 

𝛼   thermal diffusivity 

BTO   barium titanate 

𝐶   heat capacity 

𝑐   heat capacity per unit volume 

𝑫   displacement field 

𝑫𝑣𝑎𝑐   displacement field of empty capacitor 

𝐷𝑚   𝐷𝑣 

𝑬   overall field of filled capacitor 

𝑬0   field of capacitor due to free charge on electrodes 

𝑬𝑀   field of filled capacitor due to bound charge in medium 

𝑬𝑣𝑎𝑐   field of empty capacitor 

ℇ𝐹   field energy of 𝑬 

𝜀0   permittivity of free space 

𝐹   Helmholtz free energy 

𝐹′   Helmholtz free energy based on 𝑈′ 

FC   fast cooled 

𝑯   magnetizing field in absence of medium 

ℎ   convection heat transfer coefficient 

𝑘   thermal conductivity 

𝑘𝐵   Boltzmann constant 

𝑙   capacitor thickness 

𝑴   magnetization 

OIP   “over intermediate points” 

𝑷   polarization 

𝒑   dipole moment 

𝑃𝑚   magnitude of total dipole moment of medium 

𝒫   air pressure 

𝑝𝑖   probability of system being in given, accessible microstate 
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𝜙   electric potential 

𝜙𝑣𝑎𝑐   electric potential at empty-capacitor electrode 

Poly   polynomial fit 

POIP   polynomial fit over intermediate points 

PMN-PT  lead magnesium niobate-lead titanate 

PST   lead scandium tantalate 

P(VDF-TrFE)  poly(vinylidene fluoride-trifluoroethylene) 

P(VDF-TrFE-CFE) poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) 

PZ   lead zirconate 

PZST   lead zirconate stannate titanate 

PZT   lead zirconate titanate 

PZT 95/05  PbZr0.95Ti0.05O3 

𝑞   heat 

∆𝑞𝐼𝑆𝑂   heat change during isothermal process 

𝑄   charge 

𝑄𝑣𝑎𝑐   charge on electrode of empty capacitor 

𝜌   material density / charge density 

𝜌𝑓𝑟𝑒𝑒   free-charge density 

𝑆   entropy 

𝑠   entropy per unit volume 

𝑆𝐶   configurational entropy 

𝑆𝑇   temperature-related entropy 

SBT   strontium bismuth tantalate 

SC   slow cooled 

SEM   scanning electron microscope 

Smth   boxcar smoothed 

SOIP   smoothed over intermediate points 

𝜎   surface charge density 

𝑇   temperature 

𝑇𝑚
𝑝    temperature at plane m and moment p (finite-element model) 

𝑡   time 

𝑈   internal energy of medium 

𝑈′   pseudo-internal energy of medium 



 viii 

𝑈𝐶   internal energy of (medium+conductors) system 

𝑣   volume 

𝑉   potential difference 

𝑉𝑚𝑎𝑥   maximum applied voltage 

𝑊   total work done in charging / discharging a capacitor 

𝑊𝐵   work done by battery in charging / discharging a capacitor 

𝑊𝐵0   work done by battery in charging / discharging an empty capacitor 

𝑊𝑀  work done by battery on medium in charging / discharging a filled 

capacitor 

𝑊𝐸0𝑃   ∫𝑄𝑑𝜙 

𝑥   distance in direction of heat flow 

XRD   X-ray diffraction 
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1. Introduction 

 

What is the electrocaloric effect? 

 

The electrocaloric effect is an induced change in temperature of a nominally insulating 

material, caused by changing its entropy through application or removal of a field across 

it.  This temperature change is largest where the process is adiabatic, i.e. where no heat 

enters or leaves the system, and reversible.  Under these conditions, the process is 

isentropic, meaning the overall change in entropy is zero, characterised by two types of 

entropy change occurring simultaneously, that is, there are changes in configurational and 

temperature-related entropy, but in opposite senses, so the overall change is always zero. 

 

The entropy of a system is defined classically as: 

 
(1.1) 

𝑆 = −𝑘𝐵�𝑝𝑖 ln𝑝𝑖
𝑖

 

 

where 𝑘𝐵 is Boltzmann’s constant and 𝑝𝑖, the probability of an atom in the system being 

in an accessible microstate of certain position and momentum, summed over all 

accessible microstates of all atoms.  As a field is applied across a polarizable material, the 

field reduces configurational entropy, as the thermal fluctuations of the atoms or ions and 

their associated charge, are spatially restricted.  Under isentropic conditions, an equal and 

opposite increase in entropy occurs at the same time, as the lattice vibrates more 

vigorously, opening its constituents up to states of more possible momenta and thus 

increasing the temperature of the material.  Removing the field causes the configurational 

entropy to increase and the temperature to drop. 

 

Prior to the existence of an external field, a material may be uncharged, but as a field is 

applied, positive and negative charge within the material are pulled with ever-greater 

force, in opposite directions.  The small separation of charge at the microscopic level 
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manifests macroscopically as charged surfaces of the material.  The material then has a 

total dipole moment, where dipole moment is defined as equal and opposite charge 

separated by a distance and thus expressed in SI units as coulomb-metres.  An alternative 

formulation of this phenomenon is to take the dipole moment accounted for by these 

microscopic dipoles over unit volume.  This is polarization, having SI units of coulombs 

per square metre.  The average polarization of a slab of material is equivalent to the 

charge per unit area on one of the surfaces [2]. 

 

Two types of material that can be readily polarized are dielectrics and ferroelectrics, 

which are a subset of dielectrics.  In the absence of an external field, a dielectric is 

unpolarized and the larger the applied field, the larger the separation of bound charge in 

the material.  A ferroelectric can have a zero, or finite, average polarization in the absence 

of an external field.  Unit cells of similar configuration are arranged in domains, which 

are not charge neutral.  Each domain can point in one of two opposite directions, that is, 

the average dipole of the domain can have its positive charge at either end, where the 

direction of the dipole runs from the negative charge towards the positive charge, as is the 

convention for dipole moment and polarization.  Progressive application of a field causes 

domains to nucleate and grow.  The dipole moment of nucleated domains will point more 

in the direction of the field than away from it, increasing polarization in the direction of 

the field.  Removal of the field can cause the dipole moment of domains to switch to the 

opposite direction, though a ferroelectric also behaves like a dielectric with the dipole 

moments of the domains being stretched or compressed. 

 

The change in configurational entropy and hence the size of the electrocaloric effect in 

the material, is a function of the polarization of the material and in turn, the applied field. 

 

The indirect method 

 

The indirect method takes advantage of the exchange between configurational and 

temperature-related entropy under isentropic conditions and applies thermodynamics to 

determine electrocaloric temperature changes from polarization, field and temperature 

data, which in certain circumstances are much more easily obtainable than direct 

measurements of temperature. 
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The electrocaloric effect was first discovered in 1930 by Kobeko and Kurtschatov, in 

Rochelle Salt [3] and since then, 64 experimental papers have been published.  Only half 

of those, however, were published over the 74-year period from 1930 to 2004.  During 

that time, all electrocaloric temperature change measurement was direct and made on 

bulk samples and hopes for solid-state cooling via the electrocaloric effect were never 

fulfilled.  No temperature drop greater than 2.6 ºC was recorded [4] and this required a 

large applied voltage of 750 V.  Such a small return in cooling for a large investment in 

power was a likely reason for such little interest in the electrocaloric effect.  However, in 

2006, Alex Mischenko et al. [5] published a paper that made use of the indirect method 

and suggested cooling in zirconium-rich PZT 95/05 (PbZr0.95Ti0.05O3) of up to 12 ºC, 

starting from 226 ºC.  This reignited enthusiasm in the topic and the output rate of 

experimental papers has increased 15-fold since then.  At the time of that paper, the 

indirect method was not new.  The idea had been cited in three previous electrocaloric 

papers [4, 6] and reasonable agreement of 15-20% had been observed between indirect 

method predictions and direct temperature measurements [4, 7].  The paper by Mischenko 

was the first to predict large cooling effects, though no direct measurement data was 

given to support it. 

 

The reason for this is that thin films were being studied, as opposed to bulk.  PZT 95/05 

was chosen for its high dielectric constant and relatively low bulk Curie temperature, at 

242 ºC, where the greatest electrocaloric effects are expected due to the large entropy 

changes of the ferroelectric to paraelectric structural phase transition.  It is also similar to 

the PZST (Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)0.98O3) studied by Tuttle and Payne in 1981, 

where the largest cooling thus far, of 2.6 ºC had been observed.  By using a film only 

350 nm thick, large fields of over 700 kV/cm could be applied and removed with 25 V, 

which compares to 30 kV/cm using 750 V in the case of Tuttle and Payne.  Previous 

experiments on bulk materials had not withstood fields much above 50 kV/cm, but in this 

thin film, 700 kV/cm had been achieved without suffering breakdown.  Speculation at the 

time suggested high fields had been achieved due to a lack of defects in the film, though 

the speed of field application and removal, which was considerably higher, was 

undoubtedly significant.  A ferroelectric tester had been employed to measure hysteresis 

loops from which the necessary polarization and field data, measured at different 

temperatures, was extracted.  Such loops had a period of 0.1 ms, compared to the 



 4 

20 seconds-per-cycle loops measured by Tuttle and Payne, where direct measurements 

agreed reasonably with indirect method predictions.  Direct measurements on thin films 

were deemed to be very difficult, given that not only was the film very thin, but small 

electrodes (circular, 200 µm diameter) were used to apply the field, as larger electrodes 

can often result in film breakdown or measurement-current overload for precision 

ferroelectric testers.  Thus the volume of material that underwent testing in the work of 

Mischenko et al. was of the order of 10-8 mm3 and would have experienced, at most, an 

electrocaloric heat change of the order of microjoules.  Measuring such a small heat 

change in such a small volume is unsurprisingly difficult and prone to inaccuracy.  

 

However, a few very recent papers have reported large electrocaloric temperature 

changes that have been measured directly [8-11] in ferroelectric polymers and the indirect 

method will now probably disappear from the electrocaloric literature.  Nonetheless, since 

2006, 21 of the 32 experimental papers published produced results based on the indirect 

method. 

 

All papers that have used the indirect method are listed in the table below, alongside 

several relevant characteristics.
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Date Author and reference Material Thickness 

(µm) 

Field change 

(kV/cm) 

Frequency  (Hz) / Field removal 

time (s) 

∆T indirect method 

(ºC) 

∆T measured directly 

(ºC) 

Aug 2011 Luo et al. [12] PMN-PT 600 40 1 / 0.25 1 None 

Jun 2011 Feng et al. [13] PMN-PT/PZT 0.250 600 100 / 0.0025 13.4 None 

Mar 2011 Correia et al. [14] PST 0.200 774 1000 / 0.00025 -6.9 None 

Mar 2011 He et al. [15] PMN-PT N/A N/A N/A 4.25 N/A 

Jan 2011 Rozic et al. [16] P(VDF-TrFE) N/A N/A N/A N/A N/A 

Nov 2010 Feng et al. [17] PMN-PT 0.200 600 1000 / 0.00025 14.5 None 

Nov 2010 Lu et al. [10] P(VDF-TrFE-CFE) 5 700 Not specified 0.87 3.6 

May 2010 Bai et al. [18] BTO 1.4 176 Not specified 0.68 ±1.8 

Feb 2010 Liu et al. [19] P(VDF-TrFE-CFE) 0.090 3500 1000 / 0.00025 21.6 None 

Jan 2010 Kar-Narayan et al. 

[20] 

BTO 6.5 300 0.01 / 25 -0.9 -0.5 

Nov 2009 Correia et al. [21] PMN-PT 0.210 723 100 / 0.0025 9 None 

Jun 2009 Saranya et al. [22] PMN-PT 0.240 747 200 / 0.00125 31 None 

May 2009 Chen et al. [23] SBT 0.200 600 10000 / 0.000025 +4.93 None 

Jan 2009 Neese et al. [24] P(VDF-TrFE-CFE) 1 3000 1000 / 0.00025 9 None 

Aug 2008 Neese et al. [25] P(VDF-TrFE) 2 2090 1000 / 0.00025 12 None 

July 2008 Parui [26] PZ 0.7 400 1000 / 0.00025 -11.4 None 

Mar 2007 Sebald et al. [27] PMN-PT 1000 27.5 1 / 0.25 -0.46 -0.65 

Dec 2006 Mischenko et al. [28] PMN-PT 0.260 895 10000 / 0.000025 5 None 
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Dec 2006 Sebald et al. [29] PMN-PT 1000 25 1 / 0.25 ±0.89 ±0.62 

Sep 2006 Guyomar et al. [30] PMN-PT 1000 13.5 1 / 0.25 -0.94 -0.40 

Mar 2006 Mischenko et al. [5] PZT 0.350 481 10000 / 0.000025 12 None 

1981 Tuttle & Payne [4] PZST 250 30 0.05 / 10 2.21-2.99 2.6 

1980 Olsen et al. [7] PZST 250 20 0.04 / 12.5 -2.4 -2.0 

 
Table 1.  Papers that have predicted electrocaloric changes via the indirect method
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Where ∆T values in this table are not preceded by a negative or positive sign, it is because  

neither was specified in the paper.  It can be seen that this lack of sign applies to most 

papers for the indirect ∆T data, which is an important omission in relation to the 

temperature at which these indirect predictions apply and hints at a lack of understanding 

in the literature, as will be explained in chapter 3.  Two papers were unavailable and eight 

of the rest of the 23 listed papers supply both an indirect peak ∆T prediction and a direct 

measurement, where the larger value ranges from being 15% to over 300% bigger than 

the smaller value.  The best levels of agreement were achieved with relatively slowly 

recorded polarization data. 

 

Alongside taking a look at new experimental data and potentially adding to this list, it 

will be suggested that the indirect method should no longer be trusted, until a significant 

body of experimental evidence can be built up that demonstrates under what conditions it 

can be regarded as reliable.  Not only are scientists now able to measure temperature 

change directly on robust polymer films, recording even greater cooling than that 

predicted by the indirect method and rendering the indirect method essentially obsolete 

[8-11], but the underlying assumptions of the indirect method are generally applied 

dubiously.  This author is of the opinion that these assumptions should not be ignored or 

dismissed as “negligible”, nor should they conveniently be consumed by referring to such 

predictions as “approximate”.  In fact, a wide range of results can be produced from good 

quality data measured on the same sample.   

 

This thesis will begin by examining the theoretical foundations of the indirect method, 

where a long-standing discrepancy in the thermodynamic literature will be resolved.  The 

main body of the thesis will then look at the analysis of experimental data taken on 

PZT 95/05 and PMN-PT, in continuation of the studies initiated by Alex Mischenko and 

the present Cambridge group of this author.  This will demonstrate a significant 

variability in temperature change predictions, even when the only reason for such 

variation is the choice of one of several valid methods of analysis.  Thirdly, rules implicit 

in the theory of the indirect method will be exposed and used to discard temperature 

change predictions that do not comply; and finally, there will be a thorough estimation of 

the necessary isothermality of measured 𝑃(𝐸) loops using finite-element modelling. 
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2. Thermodynamics 

2.1. Fifty-five years of disagreement 

2.1.1. electrical work 

 

There is a lack of agreement across thermodynamic textbooks as to the identity and 

definition of the electrical work performed on a capacitor medium during charging and 

discharging.  It is often derived as a simple analogy to magnetic work and rarely is it 

treated carefully and in detail.  In the few textbooks that it is, there are differing 

approaches and thus the potential for misunderstanding.  The predominant conclusion is 

that the infinitesimal term that describes the work done on a capacitor medium, per unit 

volume, is 𝐸𝑑𝑃, where 𝐸 represents a uniform field across the medium and 𝑃, a uniform 

polarization throughout the medium (e.g. [31-36]).  In several other publications, the 

work term per unit volume is found to be −𝑃𝑑𝐸0, under the same uniform conditions, 

where 𝐸0 represents the “applied” field, meaning the field one would find between the 

plates of a capacitor, were all charge to be frozen in their position and the medium then 

removed from the capacitor [37-43].  The difference between −𝑃𝑑𝐸0 and 𝐸𝑑𝑃 is quite 

profound, as they differ in sign.  The former means that the medium does work, while the 

latter does not.  This discrepancy has existed ever since the original proposition of  

−𝑃𝑑𝐸0 in 1956 by Volker Heine [41] without any attempt since, at reconciliation with 

𝐸𝑑𝑃.  

 

The majority of the experimental findings in the electrocaloric literature of the last five 

years, when activity has been most fervent, employ the indirect method, which is based 

on the work term being 𝐸𝑑𝑃.  This chapter presents a logical and detailed case for 

−𝑃𝑑𝐸0, with special consideration for uncompensated ferroelectrics.  It also explains 

how 𝐸𝑑𝑃 has been mistakenly derived, identifies its physical meaning and hence resolves 

this long-standing disagreement.  In addition, the indirect method gains alternative 

equations for predicting temperature change, where all temperature changes predicted 

would be the same for each equation, for an ideal dataset, i.e. data that describe reversible 

processes.  Fortunately, both work terms can be used indiscriminately in the indirect 

method.  However, the fundamental character of this discrepancy warrants a clear 

resolution. 



 10 

 

If one takes a polarizable medium, sandwiches it between two parallel plates and creates a 

charged capacitor, we have the following situation: 

 

 
Figure 2-1.  A snapshot of a charging capacitor, showing charge, the field, E, across the capacitor and the 

polarization, P, of the medium. 

 

A charged capacitor containing a polarizable medium implies a macroscopic field across 

it, referred to here as 𝑬.  This is the superposition of the field due to the charges on the 

electrodes, 𝑬0, and the field due to the polarized medium, 𝑬𝑀 (see fig. 2-2).  The external 

field, 𝑬0, must not be mistaken for being the field across an empty capacitor, though that 

is possible.  When the capacitor is empty, the field across it, 𝑬 = 𝑬0, but when the 

capacitor contains a medium, 𝑬 = 𝑬0 + 𝑬𝑀, i.e. 𝑬0 is the field due to the free charge that 

reside on the capacitor electrodes, whether the capacitor is empty or not.  When one 

measures the voltage across the capacitor to establish the field across the capacitor, one is 

measuring 𝑬, which is due to both the free charge on the electrodes and the bound charge 

in the medium.  The following figure shows the medium outside the capacitor, but this is 

just for clarity.  One is to imagine the medium sitting between the capacitor electrodes 

with 𝑬0 and 𝑬𝑀 combining to give 𝑬, as is the situation in fig. 2-1. 
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Figure 2-2.  The constituent fields of E (E0 and EM) across a charging capacitor. 

 

As free charge is forced onto the plates, bound charge within the medium, of opposite 

polarity, is attracted to this charge, causing the surfaces of the medium to become charged 

as it is polarized.  𝑬 and 𝑷 come together to form the definition of the displacement field, 

𝑫 = 𝜀0𝑬 + 𝑷.  It should be noted that the two figures above, present an instructive 

picture, but they lack accuracy, describing uniform fields and polarization between the 

capacitor plates.  This approximation excludes fringing fields, taking the capacitor as an 

imagined section of a capacitor that is infinite in x and y, i.e. its thickness is finite, but the 

electrode areas are infinite.  A lack of material homogeneity would also destroy 

uniformity, but in all real cases, the surface charge density on the electrodes is larger at 

the edges, so none of these vectors is uniform at the capacitor edges.   
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Figure 2-3.  The field, E=E0, represented by field lines, across an empty, charging capacitor.  Fringing fields exist 

at the capacitor edges. 

 

The infinitesimal work done by the voltage source, hereon referred to as “the battery”, in 

placing charge on the plates can be determined, as for every negative charge that is placed 

on the negative plate, a positive charge is placed on the positive plate.  An equivalent 

interpretation would be to move a positive charge from the lower-potential plate to the 

higher-potential plate.  Hence, a small amount of positive charge, 𝑑𝑄, is moved through 

the potential difference between the plates, so: 

 
(2.1) 

𝛿𝑊𝐵 = 𝑉𝑑𝑄 

 

An alternative, but equal, view of moving charge through the potential difference, 𝑉, 

starts with the same idea that the work is done in placing free charge on both electrodes, 

this time being brought in from zero potential at infinity [44].  Then one begins with: 

 
(2.2) 

𝛿𝑊𝐵 = 𝜙𝑑𝑄 = � 𝜙(𝑑𝜌𝑓𝑟𝑒𝑒

 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

) 𝛿𝑣 
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where 𝜌𝑓𝑟𝑒𝑒 is the free charge density, i.e. that which is not bound charge.  𝛿𝑣 here 

represents a small volume element and 𝜙 is the electric potential.  Now: 

 
(2.3) 

� ∇ ∙ 𝑑𝑫
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

= 𝑑𝜌𝑓𝑟𝑒𝑒 

 

Then, as ∇ ∙ (𝜙 𝑑𝑫) = 𝜙(∇ ∙ 𝑑𝑫) + (∇𝜙) ∙ 𝑑𝑫: 

 
(2.4) 

𝛿𝑊𝐵 = � [∇ ∙ (𝜙 𝑑𝑫)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

− (∇𝜙) ∙ 𝑑𝑫] 𝛿𝑣 

 

and as −∇𝜙 = 𝑬, 

 
(2.5) 

𝛿𝑊𝐵 = � ∇ ∙ (𝜙 𝑑𝑫) 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

+ � 𝑬 ∙ 𝑑𝑫
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 

 

The first term on the right-hand side can be turned into a surface integral by the 

divergence theorem, which disappears when integrated over all space, as the potential is 

zero at infinity.  So, one has: 

 
(2.6) 

𝛿𝑊𝐵 = � 𝑬 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

=  𝜙𝑑𝑄 

 

Another energy change is now introduced: 
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(2.7) 

𝛿𝑊𝐸0𝑃 = 𝑄𝑑𝜙 = � 𝜌𝑓𝑟𝑒𝑒

 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝑑𝜙 𝛿𝑣 = � (∇ ∙ 𝑫)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝑑𝜙 𝛿𝑣 

 

Similarly, as ∇ ∙ (𝑫 𝑑𝜙) = (∇ ∙ 𝑫)𝑑𝜙 + (∇𝑑𝜙)𝑫: 

 
(2.8) 

𝛿𝑊𝐸0𝑃 = � [
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

∇ ∙ (𝑫 𝑑𝜙) − (∇𝑑𝜙)𝑫]𝑑𝜙 𝛿𝑣

= � ∇ ∙ (𝑫 𝑑𝜙)𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

+ � 𝑑𝑬
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

∙ 𝑫 𝛿𝑣 

 

Again, if the first term is turned into a surface integral and integrated over all space, it 

vanishes, as 𝑑𝜙 is zero at infinity.  One has: 

 
(2.9) 

𝛿𝑊𝐸0𝑃 = � 𝑫 ∙ 𝑑𝑬
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 𝛿𝑣 =  𝑄𝑑𝜙 

 

The subscript of 𝛿𝑊𝐸0𝑃 makes reference to ∫ −𝑬0 ∙ 𝒅𝑷
 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒  𝛿𝑣, which can be shown 

to be equivalent to ∫ 𝑫 ∙ 𝑑𝑬 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒  𝛿𝑣 when 𝑬0 is constant.  This work is part of an 

internal redistribution of energy within the medium in a process where only the potential 

of the electrodes changes and the free charge remains constant, such as when a charged 

capacitor is disconnected from the battery and heated or cooled.  As the medium changes 

its polarization in a fixed, external field, the dipoles’ potential energy changes by 

∫ −𝑬0 ∙ 𝒅𝑷
 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒  𝛿𝑣, which, combined with the field energy of the medium, is 

compensated for by the opposite change in energy due to internal forces. 

 

These two energy changes, 𝛿𝑊𝐵 and 𝛿𝑊𝐸0𝑃, form the basis of determining the work done 

by the battery on the medium in charging or discharging a capacitor.  This is the work 
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done in changing the free charge on the electrodes of an empty capacitor, subtracted from 

that done on a filled capacitor [38]: 

 
(2.10) 

𝛿𝑊𝑀 = � 𝑬 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

− � 𝑬𝑣𝑎𝑐 ∙ 𝑑𝑫𝑣𝑎𝑐  𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 

 

For an empty capacitor, there is no polarization and hence 𝑫𝑣𝑎𝑐 = 𝜀0𝑬𝑣𝑎𝑐, so: 

 
(2.11) 

𝛿𝑊𝑀 = � 𝑬 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

− � 𝑫𝑣𝑎𝑐 ∙ 𝑑𝑬𝑣𝑎𝑐  𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

=  𝜙𝑑𝑄 −  𝑄𝑣𝑎𝑐𝑑𝜙𝑣𝑎𝑐 

 

As the charging process is the same in both the filled and empty cases, 𝑄 = 𝑄𝑣𝑎𝑐 and 

𝑑𝑄 = 𝑑𝑄𝑣𝑎𝑐, hence: 

 
(2.12) 

𝛿𝑊𝑀 =  𝜙𝑑𝑄𝑣𝑎𝑐 −  𝑄𝑑𝜙𝑣𝑎𝑐 = � 𝑬 ∙ 𝑑𝑫𝑣𝑎𝑐  𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

− � 𝑫 ∙ 𝑑𝑬𝑣𝑎𝑐 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

= � (𝜀0𝑬 − 𝑫) ∙ 𝑑𝑬𝑣𝑎𝑐  𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

= − � 𝑷
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

∙ 𝑑𝑬0𝛿𝑣 

 

or: 

 
(2.13) 

𝑊𝐵 −𝑊𝐵0 = − � � � 𝑷

𝑬02

𝑬01

∙ 𝑑𝑬0�
 

𝑚𝑒𝑑𝑖𝑢𝑚

 𝛿𝑣 

 

where 𝑊𝐵 and 𝑊𝐵0 represent the total work done by the battery on a filled and empty 

capacitor, respectively, so: 
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(2.14) 

𝑊𝐵 = � �𝜀0 � 𝑬0 ∙ 𝑑𝑬0

𝑬02

𝑬01

�
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 − � � � 𝑷

𝑬02

𝑬01

∙ 𝑑𝑬0�
 

𝑚𝑒𝑑𝑖𝑢𝑚

 𝛿𝑣 

 

It should be noted that values of 𝑬0, such as the limits in the above integrals, 𝑬01 and 

𝑬02, do not refer to a single field, rather, the macroscopic field in each volume element 

for a given state.  The second term here need only be integrated over the medium, as 

outside this volume, there is no polarization.   

 

A simplified version of this derivation can be carried out if one begins with the 

approximate model of a section from an infinite-area capacitor.  This model is necessary 

for the indirect method and its ramifications are explained in detail in appendix A.   

 

An implication of equation 2.14 is that: 

 
(2.15) 

𝛿𝑊𝐵 = � (𝜀0𝑬0 − 𝑷) ∙ 𝑑𝑬0

 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 = � 𝑬 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 

 

where the middle expression of the above equation is an abbreviation of the infinitesimal 

version of equation 2.14 and the final expression is a restatement of equation 2.6.  So 

even though it is known that 𝑫 ≠ 𝜀0𝑬0 (see appendix A), in the case of a charging or 

discharging capacitor, ∫ 𝑫 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = ∫ 𝜀0𝑬0

 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = ∫ (𝜀0𝑬 + 𝑷) 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 must 

be true for equation 2.15 to hold.   

 

As 𝑬 = 𝑬0 + 𝑬𝑀, then ∫ 𝜀0(𝑬0 − 𝑬) 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = −∫ 𝜀0𝑬𝑀

 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = ∫ 𝑷 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣.   

 

The medium sits in the 𝑬0-field and is influenced by it, but the energy of this field does 

not constitute part of the internal energy of the medium.  For an empty capacitor, the 

work done by the battery in moving free charge around the external circuit is the total 

work performed and is stored as the energy of the 𝑬0-field.  For a filled capacitor, the 
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work done by the battery causes work to be done by the medium, which can either be 

seen as reducing the potential difference against which the battery works, or in “pulling” 

charge on to the electrodes.  So the battery and the medium perform this collaborative 

work in moving charge.  Hence, for both cases: 

 
(2.16) 

𝑊 = 𝑊𝐵0 = 𝑊𝐵 −𝑊𝑀 

 

where 𝑊 is the total work done, 𝑊𝐵0 is the work done to create the 𝑬0-field, which is 

therefore the energy of this field and 𝑊𝑀 is the work done on the medium by the battery.  

The energy of the 𝑬0-field is built up as work is done against itself through the movement 

of free charge. 

 

When one thinks of the work done in charging a capacitor, it is natural to assume that this 

is the work done by the battery in moving free charge around the external circuit.  

However, both the battery and the medium collaborate to move the free charge and hence, 

the work done in charging the capacitor is the sum of their contributions, which is equal 

to the energy of the external field.  Though the battery does work by forcing charge onto 

the electrodes, which attract bound charge in the medium, the bound charge attracts the 

free charge in the external circuit as much as the free charge attracts the bound charge in 

the medium. 

 

Thus, the battery can be seen to be responsible for the increase in energy of the external 

field and the drop in energy of the medium, while the actual energy of the external field 

comes from the battery and the medium.  Once again, the drop in energy of the medium 

can be interpreted either as reducing the potential through which the battery moves charge 

or in “pulling” free charge onto the electrodes.  This is further supported here, by 

recognising that: 

 
(2.17) 

𝛿𝑊𝐵 = � 𝑬 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

= � 𝑬0 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

+ � 𝑬𝑀 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒
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the final term of which, is the work done by the battery in moving free charge through 

potential differences in the external circuit, due to the field of the medium alone.  As 

∫ 𝑫 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = ∫ 𝜀0𝑬0

 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 and  ∫ 𝜀0𝑬𝑀

 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = −∫ 𝑷 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣, then 

∫ 𝑬𝑀 ∙ 𝑑𝑫 𝛿𝑣 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 = ∫ �–𝑷 ∙ 𝑑𝑬0�

 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣.  By restating the work done by the 

medium, ∫ (𝑷 ∙ 𝑑𝑬0) 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣, as ∫ (−𝜀0𝑬𝑀 ∙ 𝑑𝑬0) 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 and simplifying for the 

infinite-area capacitor model, one has an equivalent thermodynamic term to 𝑣𝑃𝑑𝐸0, 

which is 𝑣𝜀0𝐸𝑀𝑑𝐸0 (𝑣 is the volume of the medium).  Note as with all expressions of 

work in thermodynamics, this term is the product of a force and the change that is 

effected by that force.  𝑣𝜀0𝐸𝑀 is the magnitude of a force per unit charge, multiplied by a 

constant, causing a change, 𝑑𝐸0, in the external field, as it pulls charge towards the 

medium. 

 

The definition of 𝑑𝑊𝑀 = −∫ (𝑷 ∙ 𝑑𝑬0) 
𝑚𝑒𝑑𝑖𝑢𝑚  𝛿𝑣 has only been derived by a few 

authors1, through a variety of methods.  These authors, in chronological order, are Heine 

[41], Landau and Lifshitz [39], Leupold [42], Böttcher [37], Howard [43], Waldram [40] 

and Carrington [38]. 

 

                                                 
1 The earliest presentation of this term, in the paper by Volker Heine [41], is derived by considering the 

entropy of the medium, as opposed to its energy.  As an interesting side note, at the time it was published, 

Heine had recently completed his master’s degree at the University of Otago, New Zealand (Gerald 

Carrington later wrote his aforementioned book on thermodynamics there) and was working on his PhD at 

the Royal Society Mond Laboratory within the Cavendish, at Cambridge.  Heine thanks Brian Pippard, later 

Sir Brian Pippard and Cavendish Professor of Physics between 1971 and 1984, for encouragement and 

advice, at the end of this paper.  In 1957, Pippard published a seminal book entitled “Classical 

Thermodynamics” [45] in which the paper by Heine is referred to.  The treatment Pippard provides for 

electrical work arrives at a slightly different answer by claiming an analogous relationship between 

electrical work and magnetic work, though with a little consideration, one can see where the discrepancy 

lies (explained in the following section).  In 1958, Pippard supervised a student named John Waldram, who 

went on to become a member of the Cavendish and later published “The Theory of Thermodynamics” [40] 

in 1985, which also concludes 𝛿𝑊𝑀 = −∫ (𝑷 ∙ 𝑑𝑬0) 
𝑚𝑒𝑑𝑖𝑢𝑚  𝛿𝑣, this time via a quantum mechanical 

approach.  These three distinguished scientists spent the vast majority of their careers at the Cavendish and 

John Waldram and Volker Heine are currently Cavendish emeritus professors.  Brian Pippard passed away 

in 2008. 
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2.1.2. Why is edp mistakenly derived? 

 

𝐸𝑑𝑃 is often derived as the work done, per unit volume, by the battery on the medium.  

This term only comprises the magnitudes of the overall field and polarization vectors 

because it originates from a treatment that considers the model of an imagined section 

from an infinite-area capacitor, where all field and polarization vectors are uniform and 

normal to the capacitor electrodes (see appendix A).  Hence, only vector magnitudes are 

required.  Furthermore, all fields are confined to the volume of the medium (𝑣), so the 

work done on the medium becomes 𝑣𝐸𝑑𝑃.  The derivation starts from equation 2.1, 

reproduced and expanded upon, below: 

 
(2.18) 

𝛿𝑊𝐵 = 𝑉𝑑𝑄 = 𝐸𝑙𝑑(𝐷𝐴) = 𝑣𝐸𝑑𝐷 

 

where 𝐴 is electrode area and 𝑙 is capacitor thickness.  𝐷 is equivalent to the surface 

charge density on one electrode [2].  As 𝐷 = 𝜀0𝐸 + 𝑃, then:  

 
(2.19) 

𝛿𝑊𝐵 = 𝑣𝜀0𝐸𝑑𝐸 + 𝑣𝐸𝑑𝑃 

 

As the voltage of the battery is changed, this potential difference is passed to the 

capacitor, created by the progressive change of charge on the electrodes.  The work done 

on the capacitor is then: 

 
(2.20) 

𝑊𝐵 = 𝑣𝜀0 � 𝐸𝑑𝐸

𝐸2

𝐸1

+ � 𝐸

𝑃𝑚2

𝑃𝑚1

𝑑𝑃𝑚 

 

The derivation reaches equation 2.19 and states that the first term exists whether or not 

there is a medium present in the capacitor, therefore the second term represents the work 

done on the medium by the battery.  At first sight, this may seem logical, but equation 

2.20 reveals this is not correct. 
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The limits of the integrals in this equation are those that represent field and polarization 

values that correspond to the initial and final charge state of the electrodes, so: 

 
(2.21) 

𝑊𝐵 = � 𝑉𝑑𝑄

𝑄2

𝑄1

= 𝑣𝜀0 � 𝐸𝑑𝐸

𝐸2

𝐸1

+ � 𝐸

𝑃𝑚2

𝑃𝑚1

𝑑𝑃𝑚 

 

If one wishes to compare the work done by the battery in charging an empty and filled 

capacitor, claiming the difference in this work to be the work done on the medium when 

charging a filled capacitor, then one must perform these comparative-charging processes 

between the same charge limits.  Then the work done on the medium by the battery is 

−∫ 𝑃𝑚
𝐸02
𝐸01

𝑑𝐸0 (see appendix A). 

 

When charging is performed from 𝑄1 to 𝑄2 without the medium in the capacitor, i.e. 

when there is a vacuum between the electrodes, the limits 𝐸1 (except where 𝐸1 = 0) and 

𝐸2 will be larger than in the case where a medium is present.  The field energy of a filled 

capacitor is smaller than that of an empty one, for the same amount of charge on the 

electrodes.  Thus, when considering the work done in changing the charge on an empty, 

then filled capacitor from 𝑄1 to 𝑄2, the first term of 𝑊𝐵 in equation 2.21 is not the same 

and the difference in work is not equal to ∫ 𝐸𝑃𝑚2
𝑃𝑚1

𝑑𝑃𝑚.  

 

The overall field, 𝐸, is due to the superposition of the field due to the charge on the 

capacitor electrodes and the field of the polarized medium, so the energy of 𝐸, which is 

the first term of equation 2.21, includes part of the energy of the medium, i.e. the field 

energy due to bound charge in the medium.  For ∫ 𝐸𝑃𝑚2
𝑃𝑚1

𝑑𝑃𝑚 to be the work done by the 

battery on the medium, 𝑣𝜀0 ∫ 𝐸𝑑𝐸𝐸2
𝐸1

 would have to be independent of the energy of the 

medium, which it is not. 

 

It has been suggested [46] that it is just as logical to say that the work done by the battery 

on the medium is the difference in work done in the comparative charging processes 
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(empty and filled capacitor) where the change in potential difference across the capacitor 

is the same in each case.  The integral limits, 𝐸1 and 𝐸2, are the same in both cases and 

the difference in work done in those two processes is ∫ 𝐸𝑃𝑚2
𝑃𝑚1

𝑑𝑃𝑚.  However, this does not 

represent the work done by the battery on the medium.  In order for the limits, 𝐸1 and 𝐸2, 

to be identical in both the filled and empty capacitor cases, the external field due to the 

charge on the plates, 𝐸0, must be different in the two charging processes.  Hence, the 

energy of the 𝐸0 field is different in each process.   

 

The only part of the work done by the battery that is independent of the medium, is in 

building 𝐸0.  If one breaks down the actual field, 𝐸, into its constituent parts, 𝐸0 is the 

only part that cannot be described in terms of the properties of the medium.  𝐸0 is due to 

the charge on the electrodes, which reside outside of the medium and it exists whether or 

not there is a medium between the electrodes.  Subtracting the changing energy of 𝐸0 

from the work done by the battery, results in − 𝑃𝑚𝑑𝐸0, showing the medium moves to a 

lower energy state in the presence of 𝐸0.  It should be noted that in quantum mechanics, 

the energy of a body due to its charge configuration in an external field, such as the field 

of the medium in 𝐸0, is as described here, including the energy of its own field and the 

interaction energy, but excluding the energy of the external field [40]. 

 

For an ideal, non-dissipative, closed system of battery-conductors-medium, when 

charging a filled capacitor, the work done by the battery on the medium is the difference 

between the total work done by the battery and the energy of the 𝐸0 field.  The work done 

by the battery is not all done on the medium, it is all done in moving the free charge.  

This results in a change of polarization of the medium and an 𝐸-field.  These changes 

represent an energy increase in the conductors-medium subsystem, transferred from the 

battery subsystem, within the overall closed battery-conductors-medium system.  There is 

no energy change in the overall system, but the energy of the battery drops, while the 

energy of the conductors-medium subsystem increases by the same amount.  Of the 

energy changes in the conductors-medium subsystem, only the energy of the 𝐸0-field can 

be considered to not be part of the internal energy of the medium.  The battery transfers 

energy in creating the 𝐸0-field and the medium responds to this field.  Only when the 

same amount of energy is transferred into the 𝐸0-field in each of the two comparative 

processes (1. filled capacitor, 2. empty capacitor), can one deduce that the difference in 
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work done by the battery in the two processes represents the work done by the battery on 

the medium in charging a filled capacitor.  This turns out to be a negative quantity, that is, 

the work the battery did not need to do, instead, done by the medium, when charging a 

filled capacitor.  The medium contributes energy to the 𝐸0-field.  If one performs the two 

processes between 𝐸1 and 𝐸2 and thus creates a different 𝐸0-field change in each process, 

it cannot be said that the difference in work done by the battery in these two cases is equal 

to the work it does on the medium. 

 

2.1.3. The meaning of edp 

 

Returning to the general description of work performed by the battery in charging a filled 

capacitor (equation 2.6) and noting that 𝑫 = 𝜀0𝑬 + 𝑷: 

 
(2.22) 

𝑊𝐵 = � � � 𝑬 ∙ 𝑑𝑫

𝑫2

𝑫1

�
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣

= � �𝜀0 � 𝑬 ∙ 𝑑𝑬

𝑬2

𝑬1

�
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 + � �� 𝑬

𝑷2

𝑷1

∙ 𝑑𝑷�
 

𝑚𝑒𝑑𝑖𝑢𝑚

 𝛿𝑣 

 

In accordance with the observation made on equation 2.14, the values 𝑬01, 𝑬02, 𝑷1 and 

𝑷2, refer to each volume element for a given state.  𝑊𝐵, as seen in the last expression of 

this equation, accounts for all the field energy and an extra term, ∫ �∫ 𝑬𝑷2
𝑷1

∙ 
𝑚𝑒𝑑𝑖𝑢𝑚

𝑑𝑷�  𝛿𝑣.  This 𝑬 ∙ 𝑑𝑷 term refers to the work done by the battery that is not stored in the 

overall field.  By elimination, this energy must be that which is stored in the medium due 

to restorative internal forces between charged particles.  As free charge is forced to 

accumulate on the electrodes, work is done in pulling at bound charge in the medium 

against forces that give the medium its form in the first place.  These forces exist in 

addition to the electrostatic forces that account for the energy of the charge configuration 

and in the energetically conservative scenario, this “spring” energy is recovered upon 

capacitor discharge.  
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2.1.4. Where is the energy? 

 

The energy of an overall field, 𝑬2, due to a given charge configuration is: 

 
(2.23) 

ℇ𝐹 = �
1
2
𝜀0𝑬22

 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 𝛿𝑣 

 

𝑬2 is the vector sum of 𝑬02 and 𝑬𝑀2, where 𝑬𝑀2 is the field due to the polarized medium 

alone.  These extra subscripts (the number “2”) denote a specific value of the variables. 

 

So: 

 
(2.24) 

ℇ𝐹 = �
1
2
𝜀0�𝑬02 + 𝑬𝑀2�

2
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 𝛿𝑣 

 

and 

 
(2.25) 

ℇ𝐹 = �
1
2
𝜀0�𝑬02

2 + 2𝑬02 ∙ 𝑬𝑀2 + 𝑬𝑀2
2�

 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 𝛿𝑣 

 

The middle term refers to the energy required to bring together the two charge 

distributions of 𝑬02and 𝑬𝑀2.  As 𝑬𝑀2 is due to a collection of dipoles and the work 

required to place a dipole in a fixed external field is −𝒑 ∙ 𝑬0,  then this middle term can 

be re-written as ∫ �−𝑷2 ∙ 𝑬02�
 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒  𝛿𝑣, so:   
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(2.26) 

ℇ𝐹 = � �𝜀0 � 𝑬0 ∙ 𝑑𝑬0

𝑬02

𝑬01

�
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 − � � � 𝑷 ∙ 𝑑𝑬0

𝑬02

𝑬01

�
 

𝑚𝑒𝑑𝑖𝑢𝑚

𝛿𝑣 

− � �� 𝑬0 ∙ 𝑑𝑷

𝑷2

𝑷1

�
 

𝑚𝑒𝑑𝑖𝑢𝑚

𝛿𝑣 + � �𝜀0 � 𝑬𝑀 ∙ 𝑑𝑬𝑀

𝑬𝑀2

𝑬𝑀1

�
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣  

 

the infinitesimal change of which, is: 

 
(2.27) 

𝑑ℇ𝐹 = � 𝜀0(𝑬0 ∙ 𝑑𝑬0 + 𝑬𝑀 ∙ 𝑑𝑬𝑀)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 − � (𝑷 ∙ 𝑑𝑬0 + 𝑬0 ∙ 𝑑𝑷)
 

𝑚𝑒𝑑𝑖𝑢𝑚

𝛿𝑣

= � (𝜀0𝑬 ∙ 𝑑𝑬)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 

 

The infinitesimal work done by the battery is (after equation 2.22): 

 
(2.28) 

𝛿𝑊𝐵 = � (𝜀0𝑬 ∙ 𝑑𝑬 + 𝑬 ∙ 𝑑𝑷)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 

 

and combining it with equation 2.27: 

 
(2.29) 

𝛿𝑊𝐵 = � 𝜀0(𝑬0 ∙ 𝑑𝑬0 + 𝑬𝑀 ∙ 𝑑𝑬𝑀)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 − � (𝑷 ∙ 𝑑𝑬0 + 𝑬0 ∙ 𝑑𝑷)
 

𝑚𝑒𝑑𝑖𝑢𝑚

𝛿𝑣

+ � (𝑬 ∙ 𝑑𝑷)
 

𝑚𝑒𝑑𝑖𝑢𝑚

𝛿𝑣 

 

or: 
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(2.30) 

𝛿𝑊𝐵 = � (𝜀0𝑬0 ∙ 𝑑𝑬0 + 𝜀0𝑬𝑀 ∙ 𝑑𝑬𝑀 + 𝑬 ∙ 𝑑𝑷)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 + � (𝑑(−𝑷 ∙ 𝑬0))
 

𝑚𝑒𝑑𝑖𝑢𝑚

𝛿𝑣 

 

This equation shows how the work done is stored in various forms.  There is the energy 

of the external field, ∫ (𝜀0𝑬0 ∙ 𝑑𝑬0) 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣, the energy of the field due to the 

polarization of the medium, ∫ (𝜀0𝑬𝑀 ∙ 𝑑𝑬𝑀) 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣, the “spring” energy stored 

between charged particles in the medium (∫ (𝑬 ∙ 𝑑𝑷) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣) and the change in 

potential energy of the total dipole moment of the medium, ∫ (𝑑(−𝑷 ∙ 𝑬0)) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣, 

first referred to as the “interaction energy” by Charles Kittel (magnetic context) [47].  

 

During charging, the battery, via 𝑬0, does work on the medium by polarizing it, which in 

turn gives the medium its own field, 𝑬𝑀 and there is an amount of energy stored in the 

medium due to the charge being pulled apart, that is equal to ∫ (𝑬 ∙ 𝑑𝑷) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣, passed 

from the battery to the medium.  However, as 𝑬0 is built up by the battery, there is an 

energy saving provided to the battery by the polarizing medium due to the falling 

potential energy of the bound charge in the medium, as it sits in an increasing 𝑬0.  This 

can be seen by considering the remaining energy: 

 
(2.31) 

𝛿𝑊𝐵 − � (𝜀0𝑬0 ∙ 𝑑𝑬0 + 𝑬 ∙ 𝑑𝑷)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣

= � (𝜀0𝑬𝑀 ∙ 𝑑𝑬𝑀 − 𝑷 ∙ 𝑑𝑬0 − 𝑬0 ∙ 𝑑𝑷)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 

 

In the last expression here, the first and last terms combine to give: 

 
(2.32) 

� (−𝑷 ∙ 𝑑𝑬0 − 𝑬 ∙ 𝑑𝑷)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 
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as ∫ 𝜀0𝑑𝑬𝑀
 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = −∫ 𝑑𝑷 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 and −𝑬0 − 𝑬𝑀 = −𝑬. 

 

The term for the changing energy density of the field of the medium, 𝜀0𝑬𝑀 ∙ 𝑑𝑬𝑀 =

−𝑬𝑀 ∙ 𝑑𝑷, is a positive quantity and mitigates the drop in potential energy, 

∫ (𝑑(−𝑷 ∙ 𝑬0)) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣 = ∫ (−𝑷 ∙ 𝑑𝑬0 − 𝑬0 ∙ 𝑑𝑷) 

𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣.  In equation 2.31,  

−𝑬𝑀 ∙ 𝑑𝑷 combines with −𝑬0 ∙ 𝑑𝑷 to give −𝑬 ∙ 𝑑𝑷 in equation 2.32, which is a negative 

quantity, but less negative than −𝑬0 ∙ 𝑑𝑷.  The second term of equation 2.32 is then equal 

and opposite to the ∫ (𝑬 ∙ 𝑑𝑷) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣 work done on the medium by the battery, leaving 

an overall drop in energy of the medium, ∫ (−𝑷 ∙ 𝑑𝑬0) 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣. 

 

As the battery drops its energy by ∫ �𝜀0 ∫ 𝑬0 ∙ 𝑑𝑬0
𝑬02
𝑬01

� 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 − ∫ �∫ 𝑷𝑬02

𝑬01
∙ 

𝑚𝑒𝑑𝑖𝑢𝑚

𝑑𝑬0�  𝛿𝑣 and the energy of the medium drops by ∫ �∫ 𝑷𝑬02
𝑬01

∙ 𝑑𝑬0�
 
𝑚𝑒𝑑𝑖𝑢𝑚  𝛿𝑣, one can see 

that energy from these two sources accounts for the energy of 𝑬0, or in other words, the 

work done by the battery and the medium in moving free charge around the circuit.  In 

this sense, one can intuitively see that the positive and negative bound charge of the 

polarizing medium, that moves towards electrodes of opposite polarity, reduces the 

workload on the battery. 

 

One could say that the energy of the total charge configuration, comprising both the 

bound charge in the medium and the free charge on the electrodes, belongs to the 

configuration as a whole and that it is unreasonable to assign any portion of the energy to 

any specific part of this configuration.  First of all, this idea negates the argument for 

𝑣𝐸𝑑𝑃 being the work done on the medium, as it must exclude the energy of the whole 

charge configuration that is due, in part, to the presence of the bound charge, which is 

clearly part of the medium.  Furthermore, though the energy of a charge configuration is 

well defined, the location of that energy is not.  It is just as reasonable to say the energy 

of a charge configuration is located in the space occupied by the charge, as it is in the 

space occupied by the field.  This is well explained by David Griffiths [48] and 

reproduced in appendix B.  Hence, the energy of the charge configuration that is 

responsible for 𝑬0 can be said to be located outside of the medium and the problem of 

ascertaining the work done by the battery on the medium simply and clearly reduces to 
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the total work done by the battery, less the energy of 𝑬0, which of course, is 

−∫ �∫ 𝑷𝑬02
𝑬01

∙ 𝑑𝑬0�
 
𝑚𝑒𝑑𝑖𝑢𝑚  𝛿𝑣. 

 

2.1.5. An uncompensated ferroelectric 

 

Now consider an uncompensated ferroelectric.  It has been shown that a thin-film 

ferroelectric can self-pole when cooled through its Curie temperature in a vacuum [49, 

50].  Were the vacuum to be broken, free charge in the surroundings of the ferroelectric 

would be attracted to its charged surface.  The work done by the ferroelectric, via its field, 

𝑬𝑀, is again, ∫ �∫ 𝑷𝑬02
𝑬01

∙ 𝑑𝑬0�
 
𝑚𝑒𝑑𝑖𝑢𝑚  𝛿𝑣.  The difference between this situation and that 

of a dielectric or a compensated ferroelectric in a capacitor that is worked upon by a 

battery, is that here there is only an uncompensated ferroelectric and its surroundings.  

There is neither a battery, nor electrodes and the ferroelectric leads the work process. 

 

Free charge of opposite polarity to that on a given surface of the ferroelectric, is pulled 

onto that surface by 𝑬𝑀 and so the ferroelectric does work on its surroundings.  In doing 

so, an 𝑬0-field is built up, against which the free charge must work as they approach the 

surface of the ferroelectric.  Even though the free charge in the surroundings gain the 

energy ∫ �∫ 𝑷𝑬02
𝑬01

∙ 𝑑𝑬0�
 
𝑚𝑒𝑑𝑖𝑢𝑚  𝛿𝑣, they also convert some of it into the energy of the 𝑬0-

field.  At the beginning of this process, the infinitesimal of the work done by the 

ferroelectric on its surroundings is much larger than that which the free charge do in 

building the 𝑬0-field, but as the 𝑬0-field increases, more work is done by the free charge 

for the same change, 𝑑𝑬0, against an increasing 𝑬0.  Equation 2.14 describes the work 

done by the free charge and as ∫ (𝜀0𝑬0 − 𝑷) 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = ∫ 𝜀0𝑬

 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣: 

 
(2.33) 
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𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 
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Throughout the compensation process, 𝑬 acts in the opposite direction to 𝑬0, so this final 

integral gives a negative quantity, showing the compensation proceeds naturally, as the 

ferroelectric does work on its surroundings.  A final point of equilibrium is reached when 

the work that the ferroelectric would have to do on its surroundings against 𝑑𝑬0, would 

be equal to the corresponding drop in energy of the free charge to increase the energy of 

𝑬0.  At this point, all forces balance, 𝑬0 =  −𝑬𝑀, there is no macroscopic field present 

and no further work is done.   

 

If 𝑷 were to remain constant during this process, 𝑬𝑀 would also remain constant and no 

work would be done by internal forces in the ferroelectric (∫ (𝑬 ∙ 𝑑𝑷) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣).  Thus 

the only change in the energy of the ferroelectric would be that due to the change in 

potential energy of its dipoles in the 𝑬0-field.  This is ∫ 𝑑(−𝑬0 ∙ 𝑷) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣 =

∫ (−𝑷 ∙ 𝑑𝑬0 − 𝑬0 ∙ 𝑑𝑷) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣 = ∫ (−𝑷 ∙ 𝑑𝑬0) 

𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣.  If 𝑷 were to change, the 

work done by internal forces would be balanced by part of the change in the potential 

energy of the dipoles and the change in the energy of 𝑬𝑀: ∫ (𝑬 ∙ 𝑑𝑷 − 𝑬0 ∙ 𝑑𝑷 + 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝜀0𝑬𝑀 ∙ 𝑑𝑬𝑀) 𝛿𝑣 = 0.  Hence, in all these cases, the ferroelectric does ∫ �∫ 𝑷 ∙𝑬02
𝑬01

 
𝑚𝑒𝑑𝑖𝑢𝑚

𝑑𝑬0� 𝛿𝑣  work on its surroundings. 

 

2.1.6. Analogous to the magnetic case? 

 

In “Classical Thermodynamics” [51], published in 1957, the electrical analogue to the 

magnetic scenario described consists of a battery doing work both in creating 𝑬0 and 

against the polarizing medium2, the infinitesimal term for which is concluded as being 

∫ (𝑬0 ∙ 𝑑𝑷) 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣. 

 

The treatment models the magnetizing field as that produced by a solenoid and the 

magnetic moment of a magnetic material placed in the solenoid as the sum of elementary 
                                                 
2 This argument is soon adopted by Callen [52] and later, in large part, by Adkins [53], a contemporary of 

Waldram and Heine and currently an emeritus professor alongside John Waldram in the Quantum Matter 

group at the Cavendish, Cambridge. 
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magnetic dipoles modelled as small current loops of a certain area.  The mutual induction 

between the solenoid and one of these current loops is considered to ascertain the work 

done by the battery against the back emf in the solenoid due to the changing current in the 

loop, i.e. the changing magnetic moment.  This is then summed over all elementary 

magnetic dipoles and added to the work done by the battery against the back emf due to 

the self-inductance of the solenoid as the magnetizing field is built up.  By this method, 

the work done by the battery is concluded to be: 

 
(2.34) 

𝛿𝑊𝐵 = � (𝜀0𝑯 ∙ 𝑑𝑯 + 𝑯 ∙ 𝑑𝑴)
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝛿𝑣 

 

where 𝑯 is the field in the solenoid in the absence of the magnetic material, i.e. in a 

vacuum, and 𝑴 is the magnetization of the magnetic material, both of which can vary 

with position.  The work done on the magnetic material alone is then ∫ 𝑯 ∙ 𝑑𝑴 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣.  

The book moves on by stating that the corresponding case for electric fields leads to the 

work done on a polarizable medium in a capacitor being ∫ 𝑬0 ∙ 𝑑𝑷
 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣. 

 

However, if one moves back a couple of steps in this argument, the work done on the 

medium is said to be that which is performed against the back emf due to the medium.  In 

the electrical analogue, this is the work the battery does against the change in potential 

difference across the capacitor, due to the presence of the medium.  If one separates 

equation 2.6 into its constituent fields: 

 
(2.35) 

𝛿𝑊𝐵 = � 𝑬 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

= � 𝑬0 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

+ � 𝑬𝑀 ∙ 𝑑𝑫 𝛿𝑣
 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 

 

then the final term is this work done against the changing potential difference due to the 

medium and is equal to −∫ 𝑷 ∙ 𝑑𝑬0
 
𝑚𝑒𝑑𝑖𝑢𝑚  𝛿𝑣, as ∫ 𝑫 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = ∫ 𝜀0𝑬0
 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 and 

∫ 𝜀0𝑬𝑀
 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = −∫ 𝑷 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣.  Hence this approach produces the same result 

proposed in this chapter and not that proposed by Pippard (∫ 𝑬0 ∙ 𝑑𝑷
 
𝑚𝑒𝑑𝑖𝑢𝑚 𝛿𝑣), which 
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seems to have been arrived at by merely substituting analogous variables.  That is, 𝑯 is 

the magnetic field in the solenoid in the absence of the magnetic medium, while 𝑬0 is the 

electric field in the capacitor in the absence of a polarizable medium.  Similarly, 

magnetization 𝑴 and polarization 𝑷, of the media, are analogous.  Thus, 𝑬0 ∙ 𝑑𝑷 is the 

equivalent of 𝑯 ∙ 𝑑𝑴 when one considers the analogous variables alone.  However, if 

Pippard had applied the same logic and reasoning to the electric case, as he did for the 

magnetic case, he would have arrived at −∫ 𝑷 ∙ 𝑑𝑬0
 
𝑚𝑒𝑑𝑖𝑢𝑚  𝛿𝑣 as the work done by the 

battery on the medium.  Interestingly, the second edition of the aforementioned book by 

Callen, published in 1985, retains the same argument for magnetic systems used by 

Pippard, but omits the electrical system version. 

 

2.2. The indirect method 

 

The electrocaloric temperature change inference of the indirect method is based on the 

following derived equation: 

 
(2.36) 

𝑑𝑇 = −�
𝑇
𝑐�𝐸

�
𝜕𝑃
𝜕𝑇�𝐸

𝑑𝐸 

 

Where 𝑃 is polarization in the direction of the field, 𝑇 is the temperature in Kelvin, 𝐸 is 

the field and 𝑐𝐸, the heat capacity per unit volume at 𝐸.  𝑃 is a charge per unit area of the 

capacitor electrode, normal to the electric field and is equivalent to the polarization in the 

capacitor medium [2].  At the root of this equation, lies a work term that is derived within 

the infinite-area capacitor model.  The infinitesimal change in temperature the equation 

describes would be attained under isentropic conditions and comes from the initial and 

reasonable supposition that the entropy of the polarizing medium is only affected by a 

change in its temperature and / or changes in the field across the medium, which in turn, 

changes the dipole moment of the medium and thus its configurational entropy.  Hence, 

one begins with:  
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(2.37) 

𝑑𝑆 = �
𝜕𝑆
𝜕𝑇�𝐸

𝑑𝑇 + �
𝜕𝑆
𝜕𝐸�𝑇

𝑑𝐸 

 

Then, under reversible, adiabatic conditions the change in entropy, 𝑑𝑆 = 0 and: 

 
(2.38) 

−�
𝜕𝑆
𝜕𝑇�𝐸

𝑑𝑇 = �
𝜕𝑆
𝜕𝐸�𝑇

𝑑𝐸 

 

As 𝑑𝑆 = 𝑑𝑞/𝑇 where 𝑞 is heat: 

 
(2.39) 

−�
𝐶
𝑇�𝐸

𝑑𝑇 = �
𝜕𝑆
𝜕𝐸�𝑇

𝑑𝐸 

 

Where 𝐶𝐸 = 𝑑𝑞/𝑑𝑇 is heat capacity.  Thus: 

 
(2.40) 

𝑑𝑇 = −�
𝑇
𝐶�𝐸

�
𝜕𝑆
𝜕𝐸�𝑇

𝑑𝐸 

 

At this point, the following Maxwell relation is introduced: 

 
(2.41) 

�
𝜕𝑆
𝜕𝐸�𝑇

= �
𝜕𝑃𝑚
𝜕𝑇 �𝐸

 

 

where 𝑃𝑚 is the total dipole moment of the medium.  By using this relation and taking 

both the total dipole moment and the heat capacity over unit volume, equation 2.40 

becomes equation 2.36, reproduced here:  
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(2.42) 

𝑑𝑇 = −�
𝑇
𝑐�𝐸

�
𝜕𝑃
𝜕𝑇�𝐸

𝑑𝐸 

 

This refers to a change in temperature from a given field and temperature, i.e. in the limit 

as 𝑑𝐸 tends to zero.  The constraint of this being an isentropic process introduces 

reversibility and thus equilibrium states and their 𝑃(𝐸,𝑇) data surface.  The inclusion of a 

Maxwell relation is then possible. 

 

An alternative to this 𝑑𝑇 equation is to start with an entropy dependence on temperature 

and total dipole moment, as opposed to field: 

 
(2.43) 

𝑑𝑆 = �
𝜕𝑆
𝜕𝑇�𝑃𝑚

𝑑𝑇 + �
𝜕𝑆
𝜕𝑃𝑚

�
𝑇
𝑑𝑃𝑚 

 

and employ the alternative Maxwell relation: 

 
(2.44) 

�
𝜕𝐸
𝜕𝑇�𝑃𝑚

= −�
𝜕𝑆
𝜕𝑃𝑚

�
𝑇
 

 

which leads to: 

 
(2.45) 

𝑑𝑇 = �
𝑇
𝑐�𝑃

�
𝜕𝐸
𝜕𝑇�𝑃

𝑑𝑃 

 

where 𝑐𝑃 is the heat capacity per unit volume at 𝑃. 

 

The Maxwell relations originate from the thermodynamic equation for the internal energy 

of a system and thermodynamic potentials that follow from that.  The common 

description of the infinitesimal change in the internal energy of a capacitor medium (e.g. 
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[31-36]) mistakenly considers 𝐸𝑑𝑃𝑚 to be the electrical work done on the medium and 

takes the form: 

 
(2.46) 

𝑑𝑈′ = 𝑇𝑑𝑆 + 𝐸𝑑𝑃𝑚 

 

where 𝑑𝑈′ is the change in internal energy3.  𝑇𝑑𝑆 is the heat gained by the medium.  This 

equation could include further energy terms such as the pressure-volume work and stress-

strain work, but they are left out here, considered negligible.  

 

At first sight, it could be considered simpler to derive useful Maxwell relations for the 

indirect method by starting with the internal energy of a different system to that of the 

medium, i.e. the system that is everything outside the battery.  Then as it is known that 

the work done by the battery, within the infinite-area capacitor model, is 𝛿𝑊𝐵 = 𝑣𝐸𝑑𝐷, 

then the change in internal energy of this system is:  

 
(2.47) 

𝑑𝑈𝐶 = 𝑇𝑑𝑆 + 𝐸𝑑𝐷𝑚 

 

where 𝐷𝑚 = 𝐷𝑣.  A thermodynamic potential can then be defined: 

 
(2.48) 

𝐴𝐶 ≡ 𝑈𝐶 − 𝑇𝑆 − 𝐸𝐷𝑚 

 

and so the infinitesimal change in this energy is:  

                                                 
3 If one follows the 𝑑𝑇 equations along the trail of referenced papers back from Mischenko et al. [5], it 

leads to the 1968 paper by Thacher [54], which refers to the textbooks by Nye [35] and Cady [32], where 

the expression for internal energy of the system is as described in equation 2.46, except in terms of unit 

volume, i.e. 𝐸𝑑𝑃 is the work term. 
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(2.49) 

𝑑𝐴𝐶 = −𝑆𝑑𝑇 − 𝐷𝑚𝑑𝐸 

 

Via the equivalence of second derivatives, which in this case, is: 

 
(2.50) 

𝑑2𝐴𝐶
𝑑𝑇𝑑𝐸

=
𝑑2𝐴𝐶
𝑑𝐸𝑑𝑇

 

 

the following Maxwell relation is established: 

 
(2.51) 

−�
𝜕𝑆
𝜕𝐸�𝑇

= −�
𝜕𝐷𝑚
𝜕𝑇 �

𝐸
 

 

This modifies equation 2.36 to become: 

 
(2.52) 

𝑑𝑇 = −�
𝑇
𝑐�𝐸

�
𝜕𝐷
𝜕𝑇�𝐸

𝑑𝐸 

 

The system to which this equation refers is the capacitor as a whole, comprising the 

medium and the conductors.  Note that this system includes electrodes and wires and only 

excludes the battery from the larger battery-conductor-medium system.  Work is done by 

the battery to create a potential difference by charging the conductors.  In considering the 

ideal, non-dissipative case, that energy is stored in the field change due to the new charge 

configuration and as potential energy due to the internal restorative forces of the polarized 

medium.  The charge configuration includes free charge on the conductors and bound 

charge in the medium.  Considering this system has an important drawback, as there are 

four variables in the internal energy expression that are required, by thermodynamics, to 

be invariant with position throughout the system.  They are 𝑇, 𝑆, 𝐸 and 𝐷 (see equation 

2.47), where 𝐷 is a function of 𝐸 and 𝑃.  Even if it were experimentally possible to pass 

the conductor-medium subsystem (medium, electrodes and wires that lead right up to the 
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battery), upon which the battery works, through a series of quasi-static equilibrium states 

where 𝑇 was invariant with position throughout the system, 𝑆, 𝐸 and 𝑃 cannot be 

positionally invariant throughout this system.  𝑆 in the medium is different to 𝑆 in the 

electrodes and wires; and 𝐸 and 𝑃 do not even exist outside the medium.  There is an 

illusion created here when 𝑉𝑑𝑄 is reformulated as 𝑣𝐸𝑑𝐷, as 𝐸 and 𝐷 are both entirely 

located at the medium in this model, but it must be remembered that this is actually the 

work done by the battery on its surroundings, which includes the conductors of the 

external circuit.  This issue is thus avoided by considering work done on the medium 

alone. 

 

Only by both using the model of an imagined section within an infinite-area capacitor and 

by considering the medium alone as the relevant system, can one apply thermodynamics 

to predict temperature changes due to the electrocaloric effect.  This is because all the 

relevant variables, 𝑇, 𝑆, 𝐸, 𝐸0, 𝐸𝑀, 𝑃 and 𝐷, are invariant over the volume of the medium 

in this model, at each state the medium passes through during a quasi-static process.  

 

2.3. Maxwell relations 

 

Four useful Maxwell relations are now established.  For the error incurred by the infinite-

area capacitor model to be considered negligible, the capacitor must be much wider than 

it is thick.  Experiments presented in the following chapter comply with this requirement.  

Some energy functions related to the medium are now summarised. 

 
(2.53) 

𝐹 ≡ 𝑈 − 𝑇𝑆 

 
(2.54) 

𝐴 ≡ 𝑈 − 𝑇𝑆 + 𝐸0𝑃𝑚 

 
(2.55) 

𝐹′ ≡ 𝑈′ − 𝑇𝑆 
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(2.56) 

𝐴′ ≡ 𝑈′ − 𝑇𝑆 − 𝐸𝑃𝑚 

 

The first function is clearly the Helmholtz free energy.  The rest are energy expressions.  

The corresponding infinitesimal energy changes are: 

 
(2.57) 

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑚𝑑𝐸0 

 
(2.58) 

𝑑𝐴 = −𝑆𝑑𝑇 + 𝐸0𝑑𝑃𝑚 

 
(2.59) 

𝑑𝐹′ = −𝑆𝑑𝑇 + 𝐸𝑑𝑃𝑚 

 
(2.60) 

𝑑𝐴′ = −𝑆𝑑𝑇 − 𝑃𝑚𝑑𝐸 

 

Each of these last four equations leads to a Maxwell relation, all of which apply to the 

medium.  They are: 

 
(2.61) 

−�
𝜕𝑃𝑚
𝜕𝑇 �𝐸0

= −�
𝜕𝑆
𝜕𝐸0

�
𝑇
 

 
(2.62) 

�
𝜕𝐸0
𝜕𝑇 �𝑃𝑚

= −�
𝜕𝑆
𝜕𝑃𝑚

�
𝑇
 

 
(2.63) 

�
𝜕𝐸
𝜕𝑇�𝑃𝑚

= −�
𝜕𝑆
𝜕𝑃𝑚

�
𝑇
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(2.64) 

−�
𝜕𝑃𝑚
𝜕𝑇 �𝐸

= −�
𝜕𝑆
𝜕𝐸�𝑇

 

 

 

The above Maxwell relations provide four different expressions for electrocaloric 

temperature change, all of which would be equivalent when integrated between the 

corresponding limits and starting from the same temperature, providing the data 

employed represent equilibrium states in reversible processes.  These expressions are: 

 
(2.65) 

𝑑𝑇 = −�
𝑇
𝑐�𝐸0

�
𝜕𝑃
𝜕𝑇�𝐸0

𝑑𝐸0 

 
(2.66) 

𝑑𝑇 = �
𝑇
𝑐�𝑃

�
𝜕𝐸0
𝜕𝑇 �𝑃

𝑑𝑃 

 
(2.67) 

𝑑𝑇 = �
𝑇
𝑐�𝑃

�
𝜕𝐸
𝜕𝑇�𝑃

𝑑𝑃 

 
(2.68) 

𝑑𝑇 = −�
𝑇
𝑐�𝐸

�
𝜕𝑃
𝜕𝑇�𝐸

𝑑𝐸 

 

The equivalence of these equations will be put to use in chapter 4, to investigate the 

validity of applying the indirect method to real data. 
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2.4. summary 

 

• When measuring the voltage across a filled capacitor, to establish the field across 

it, one is measuring a potential difference due to both the free charge on the 

electrodes and bound charge within the medium.  The field thus measured is 

𝐸 = 𝑉/𝑙, where 𝑉 is the voltage and 𝑙 the thickness of the capacitor.  It is also 

possible to consider 𝐸0, which is the field due only to the free charge on the 

electrodes and calculated from 𝐷 = 𝜀0𝐸0, where 𝐷 is the surface charge density of 

one electrode.  There is also 𝐸𝑀, which is the field due to the bound charge in the 

medium, where 𝐸 = 𝐸0 − 𝐸𝑀. 

• The work done by a battery on the polarizable medium of a capacitor during 

charging or discharging, in a non-dissipative process, is: 

 

− � � � 𝑷

𝑬02

𝑬01

∙ 𝑑𝑬0�
 

𝑚𝑒𝑑𝑖𝑢𝑚

 𝛿𝑣 

or, within the inifinite-area capacitor model, −𝑃𝑚𝑑𝐸0, where 𝑃𝑚 is the total dipole 

moment of the medium.  It is not 𝐸𝑑𝑃𝑚, which is only part of the story, being 

energy stored in the medium due to internal restorative forces.  Though it may not 

seem so at first glance, −𝑃𝑚𝑑𝐸0, like all thermodynamic work terms, is the 

product of a force causing a change, evident in reformulation:  −𝑃𝑚𝑑𝐸0 =

−𝑣𝜀0𝐸𝑀𝑑𝐸0 = −𝐸𝑀𝑙𝑑𝑄. 

• As the work done by the battery on the medium is negative, this actually means 

the medium does work on its surroundings.  It collaborates with the battery to 

move the free charge around the circuit and create 𝐸0.  

• ∫ 𝜀0𝑬𝑀
 
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 = −∫ 𝑷 

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝛿𝑣 

• The indirect method uses thermodynamics to generate expressions for 𝑑𝑇, which 

are functions of easily measured variables.  An important part in their derivation is 

the inclusion of Maxwell relations, which come from energy expressions relevant 

to the system and defined in terms of system variables.   
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It is not possible to use Maxwell relations derived from energy expressions that 

have a 𝑣𝐸𝑑𝐷 term, as this refers to the work done by the battery on both the 

medium and the conductors that join the battery and medium.  This is a larger 

system than the medium alone, across which, the system variables are not 

invariant with position.  Such invariance is required by thermodynamics.  
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3. Typical electrocaloric predictions 

 

This chapter will present predictions for electrocaloric temperature change using the 

indirect method.  It will also draw attention to the possible variation of such predictions, 

where different methods of analysis, measurement and material processing are involved. 

 

3.1. experimental method  

 

The majority of the thin films of lead zirconium titanate (PZT) presented here, were 

fabricated at Cranfield University by Tatiana Correia using a sol-gel method.  Two 

samples, a 1.1 µm thick “fast cooled” film and a 1 µm “slow cooled” film (details to 

follow) were fabricated by Silvana Corkovic, also at Cranfield university.  All films were 

of the same composition, containing a ratio of zirconium to titanium ions of 95:5 

(PbZr0.95Ti0.05O3).  The films fabricated by Tatiana Correia began with the substrate.  A 

700 nm layer of silicon dioxide was grown on a silicon wafer by heating the wafer at 

1200 ºC for 11 hours in air.  An 8 nm layer of titanium was then RF sputtered onto the 

SiO2 surface in vacuum and then annealed in air at 550 ºC for 15 minutes to oxidise the 

titanium.  A second 8 nm titanium layer was then sputtered to improved adhesion of the 

subsequent 100 nm platinum layer, which was sputter deposited.  The final substrate 

structure was then Si/SiO2/TiO2/Ti/Pt. 

 

The film solution consisted of lead acetate trihydrate, zirconium n-propoxide and titanium 

butoxide, mixed in a solution of methanol and acetic acid.  Lead acetate trihydrate was 

first dissolved in methanol by stirring while heating.  The zirconium n-propoxide and 

titanium butoxide were then mixed together with acetic acid and this solution was diluted 

with methanol.  The lead based solution was then heated and mixed, under reflux, with 

the zirconium-titantium solution, for 2 hours.  This mixture was then allowed to cool to 

room temperature, at which point ethylene glycol was added to stabilise the sol.  An 

excess of 10 mol% lead was added to the solution to compensate for lead loss during later 

pyrolysis. 

 

After cleaning the platinum surface of the substrate with acetone and isopropanol, a few 

drops of the sol were deposited onto a small piece of the substrate using a 0.2 micron 
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filter.  The substrate was then spun at 3000 rpm for 30 seconds.  During spinning, the 

moisture in the air allowed hydrolysis of the precursor to occur and a gel was formed.  A 

subsequent pyrolysis step took place at 300 ºC for 1 minute, which is below the 

crystallisation temperature of the gel, evaporating organic residuals.  This formed an 

intermediate pyrochlore phase4.  The film and substrate were then placed on a hotplate at 

530 ºC for a further 10 minutes.  The film thus crystallized from pyrochlore to perovskite.  

In this way, a layer of PZT of ~70 nm was fabricated and the process repeated for 

subsequent layers, to build up the thickness of the film and create samples having a range 

of thicknesses. 

 

When the film and substrate had cooled to room temperature, the PZT surface was 

cleaned with acetone and isopropanol and an array of square, chromium / gold electrodes, 

measuring 350 microns along one side, were deposited onto the surface, via evaporation, 

through a lithographically produced mask.  The chromium (similarly high work function 

to gold) was deposited to 10 nm to improve the adhesion of the 60 nm of gold on top.  

Access to the underlying layer of platinum was gained by using a 5% solution of fluoridic 

acid and a 10% solution of nitric acid, to etch away a corner portion of the film.  A cross 

section of the final sample is shown below: 

 

                                                 
4 Pyrochlore phases have the composition A2B2O7, where A is a large trivalent cation and B is a smaller 

tetravalent cation, as opposed to the ABO3 composition of perovskites, such as PZT. 
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Figure 3-1.  Cross section of PZT 95/05 sample mounted on sapphire disc. 

X-ray diffraction measurements show the lack of pyrochlore, which would be apparent 

from a peak around 29º. 

 

 
 

Figure 3-2.  XRD measurements on PZT 95/05 

 

The large peak at 40º is due to the platinum bottom electrode, whereas the peaks at 21º 

and 45º indicate PZT (100) and (200), respectively.  Energy-dispersive X-ray 

spectroscopy was employed to confirm composition. 
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For the two films fabricated by Silvana Corkovic, there was a slight difference in the 

annealing process after pyrolysis, where the samples were annealed for 5 minutes at 

450 ºC and then a further 5 minutes at 530 ºC.  Following this, the “slow cooled” sample 

was placed on a hotplate, which had been pre-heated to 200 ºC, for 1 minute, before 

finally placing the sample on a metal block at room temperature.  The “fast cooled” 

sample was placed directly on the metal block after annealing.  Additional SEM images 

of the cross-section of these films were obtained: 

 

 

 
 

Figure 3-3.  The top SEM image is of the “slow cooled”, 1000 nm PZT film and the bottom SEM image of the 

“fast cooled” 1100 nm PZT film. 
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where it seems the “slow cooled” sample is somewhat more homogeneous. 

 

Electrode deposition for these films was performed at Cambridge using a SEM coater, 

sputtering platinum through an aluminium mask to create 100 nm thick electrodes.  The 

mask itself was cleaned in an ultrasonic bath with acetone, then ethanol, while the surface 

of the sample was lightly sprayed with the same two solvents using a compressed-air 

nozzle, then placed on a hotplate to evaporate any remaining solvent.  The mask was then 

clamped down onto the sample surface before being introduced into the SEM coater.  

This resulted in well-defined, circular electrodes, of diameters 100 µm, 200 µm and 

400 µm: 

 

 
 

Figure 3-4.  Electrode-mask schematic. 

 

The samples were then annealed at 300 ºC for 10 minutes, to improve electrode quality 

and adhesion. 

 

The two PMN-PT samples, of composition 0.93(PbMg1/3Nb2/3O3)-0.07(PbTiO3), were 

fabricated by Tatiana Correia at Cranfield university and began with lead acetate 
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trihydrate, magnesium ethoxide, titanium n-butoxide and niobium ethoxide.  The lead 

acetate trihydrate was dissolved in acetic acid and methanol, while the magnesium and 

niobium ethoxides were mixed in a solution of acetic acid, methanol and acetylacetone.  

Titanium n-butoxide was then added to the latter solution and stirred at room temperature 

for one hour.  The dissolved lead acetate trihydrate in solution was then slowly added to 

the magnesium-niobium-titanium mixture.  A 20 mol% excess of lead was ensured to 

allow for loss of lead during annealing.  Finally, ethylene glycol was added to the solution 

to prevent film cracking during later crystallisation.  This solution was stirred for four 

hours. 

 

As with the PZT 95/05 fabrication, the PMN-PT sol was spin-coated at 3000 rpm, for 30 

seconds, to form a 70 nm layer and the process repeated to create the desired final film 

thickness.  In this case, however, the Si/SiO2/TiO2/Ti/Pt substrate was initially spin-

coated with a 15 nm thick “seed layer” of PZT 30/70, which proved to improve film 

crystallisation and assured elimination of any pyrochlore phase.  The pyrolysis step was 

performed at 350 ºC for one minute and then the film was annealed at 650 ºC for 5 

minutes. 

 

 
 

Figure 3-5.  XRD of 0.93PMN-0.07PT films. 

 

The XRD data shows pyrochlore reflections at 29º and 33º for the unseeded film, which 

are eliminated in the case of the seeded film. 
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For 𝑃(𝐸,𝑇) measurements, there were two experimental set-ups used.  In the main one, 

the sample was connected into a simple circuit consisting of a Radiant Premier Precision 

ferroelectric tester and a Janis CCS-400H/204N high temperature cryostat.  This cryostat 

is a closed circuit refrigerator, cooled via helium pumped through it from an external 

compressor; and the sample stage temperature is controlled externally by a Lakeshore 

331S temperature controller.  It has an operating temperature range from 800 K down to 

around 10 K.  The ferroelectric tester houses an internal motherboard and is controlled via 

an external keyboard and monitor. 

 

 
 

Figure 3-6.  Equipment set-up. 

 

The cryostat has two cold stages made from copper, the first attaches to and cools a 

radiation shield and the second cools the sample holder, which is thermally distanced 

from the second stage, via columns, to allow for gradual heat transfer.  Just below the 

sample holder, a 50 W electrical heater is housed to heat the sample holder while the 

second cold stage cools it, the competing efforts of which, set the temperature of the 

sample stage.  A diagram is shown here: 
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Figure 3-7.  Beneath external shroud of cryostat. 

 

The temperature of the sample stage is measured by an E-type thermocouple, which is 

recommended for measurements above room temperature.  An optional silicon diode 

thermometer can be installed for low temperature measurements, where it is more 

accurate.  Calibration of the thermometers was performed at Janis and the system 

delivered to Cambridge in August 2009.  The precision of the temperature measurement 

due to the resistance of the E-type thermocouple is 0.01 K. 

 

The following photograph shows how the cryostat is positioned vertically, when in 

operation: 
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Figure 3-8.  Cryostat on table top. 

 

Just to the right of centre, one can see the cryostat standing upright.  Over to the left, next 

to the stack of three pieces of equipment, the uppermost of which is the ferroelectric 

tester, there is the temperature controller, which is connected to the cryostat via a multi-

pin connector situated on the front of the cryostat. 

 

The base of the cryostat is the cold head, where it is possible to see the send and return 

lines of the helium compressor entering the right-hand side, just behind the more obvious 

vacuum pump line that enters the photograph from the bottom-right corner.  At the same 

height as the multi-pin connector, one can see BNC connectors and cables attached on the 

left and right.  These connect probes at the sample stage in the cryostat, with the drive and 

return ports on the ferroelectric tester. 

 

The upper part of the cryostat is the shroud.  It sits over a radiation shield, which in turn, 

covers the second cold stage and the sample stage.  It is clamped on to the cold head at its 

base, where a rubber o-ring, lightly covered in high vacuum grease, ensures the vacuum 

of the evacuated shroud.  Four windows at the top of the shroud allow the experimenter to 

see the radiation shield and sample inside.  The compressor sat on the floor, next to the 

table on which the crysotat stood: 

 



 49 

 
 

Figure 3-9.  Compressor and vacuum pump. 

 

One can also see the basic rotary pump on the right of the photograph.  The silver-

coloured helium braided flex-hoses connect to the cold head of the cryostat, while the 

black hoses supply recirculated laboratory water for the cooling needs of the compressor.  

The black power cable is visible and the lighter grey cable is connected to the cryostat 

cold head to control valves within the cold head that open and close during the helium 

pump cycle. 
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Figure 3-10.  Shroud removed. 

 

With the shroud removed, one can see the o-ring, the radiation shield, which is firmly 

held against the first cold stage by six screws; and in the area below the radiation shield, 

insulated wires are visible.  These run from the BNC ports to tungsten probes at the 

sample stage.  There are two holes at the top of the radiation shield – one can be seen here 

at the front and there is another on the opposite side, to allow views of the sample. 
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Figure 3-11.  Cold stages and sample stage. 

 

With the radiation shield removed, this photograph shows the first cold stage, at the 

bottom of the picture.  Insulated wires run around the shaft protruding from this first cold 

stage and a metal tube is screwed onto the second cold stage.  This tube houses a J-type 

thermocouple which is connected to an external breaker circuit that disconnects the 

cryostat heater to prevent the second cold stage from rising above 325 K, which could 

damage the cryostat.  There is a four-pin connector between the shaft and the metal tube, 

which is used to connect the optional silicon-diode thermometer. 

 

On the second cold stage sits a thick copper disc, upon which there are four columns, then 

another copper disc and a further four columns and finally a copper section, or high 

temperature stage, in which two holes are visible.  The heater is housed inside this copper 

section and its two wires are seen leaving from the hole on the right.  This structure, 
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comprising copper discs and columns, allows for a more gradual thermal link between the 

heated and cooled sections of the cryostat. 

 

The final block of copper is the sample stage: 

 

 
 

Figure 3-12.  Sample holder. 

 

The probes pass through copper blocks that are screwed to the vertical section of the 

sample stage.  There are a total of four probes that can be used, but in this picture, the two 

unused probes are screwed to the opposite side to allow for more space.  They can be held 

in position at various heights by the spring loaded adjusters in the copper blocks.  The 

circular recessed area in the middle allows for a 0.5 mm thick sapphire disc to sit 

comfortably, held tight against the copper block by the washers of four screws.  At the 

bottom of the circular feature, one of these washers can be seen.  The sample is then stuck 

to the sapphire disc by covering its bottom surface with silver dag and curing at 160 ºC 

for 10 minutes. 

 

The sapphire disc has a thermal conductivity that varies from ~20 to ~45 W/mK [55], 

across the temperature range used in the experiments presented here, which is similar to 

that of 20% chrome steel at our temperatures of greatest interest (22 W/mK at 

200-300 ºC) and about an order of magnitude smaller than that of copper at ~372 W/mK 
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[56].  This may be relevant as all experiments attempted to measure 𝑃(𝐸) at given 

temperatures, so the intention was for the process to be isothermal.  This means that as 

the film changes its temperature due to the change in its entropy, heat must flow into and 

out of the film fast enough to maintain the film at the same temperature.  The degree to 

which the process is isothermal can be estimated with thermal modelling, though for the 

moment, it is to be assumed that the process is isothermal, as has been the case in all the 

electrocaloric literature that uses the indirect method.  

 

The unfortunate characteristic of this cryostat is that the manipulation of the probes is 

rather awkward and imprecise.  Electrical contact with the bottom, platinum electrode, 

which covers the whole area of the film, was simple.  The probe was either held down on 

an exposed area of the electrode, due to previous chemical etching of the film, or against 

the lightly-sanded side of the sample where silver dag had been applied.  In the case of 

the exposed electrode, silver dag was also applied to ensure good electrical contact.  

When the cryostat was running at temperatures of around 200 ºC or more, if the probe 

contacting the top electrode rested there, applying light pressure so as not to damage the 

electrode and film, it was able to move and nearly always slipped off, onto the sample 

surface.   

 

For this reason, it was decided to make contact between the electrode on the top of the 

film and the probe with a wire.  Wire bonding to the top electrode proved ineffective as 

subsequent 𝑃(𝐸) measurements gave distorted hysteresis loops and eventual conduction 

through the film, thought to be due to a damaged film surface, due to the force applied 

during wire bonding.  To solve this problem,  a 25 µm thick platinum wire was stuck to 

the electrode at one end and the probe at the other.  At the probe, silver dag was sufficient 

to keep the wire in place and provide good conduction, but sticking the wire to an 

electrode was a different matter.   

 

Not only was it a very fiddly business, but also, not any silver-based adhesive would do.  

Silver dag would not form a small enough drop to remain only on the electrode.  It would 

spread beyond the edges of the electrode and cause conduction through the film.  

Standard silver-epoxy adhesives were more promising in this respect and by bending the 

very end of the wire at 90º to the rest of the wire, it was possible to dip this “foot” of the 

wire into the epoxy mix and lightly stick it to the electrode, within the electrode area.  
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This provided enough adhesion to be able to move the sample to a hotplate for curing.  

Unfortunately, at temperatures of around 200 ºC and higher, conduction through the film 

was occurring, evident from capacitor measurements as a function of temperature and 

greatly enlarged and rounded 𝑃(𝐸) loops. 

 

The solution came from a silver epoxy designed for high temperature applications, 

EPO-TEK H21D.  The epoxy was cured for 30 minutes at 150 ºC.  This allowed for 

experiments where the sample temperature was cycled from room temperature up to 

nearly 300 ºC, and back again, twice a day, over a two to three day period, without 

suffering the suspected silver migration and resulting conduction through the film. 

 

After evacuating the chamber within the shroud for 30 minutes, the compressor was 

switched on and the cryostat cooled until the second cold stage reached a safe operating 

temperature to be used in conjunction with the heater, below 275 K.  The sample stage 

could then be heated via the temperature controller until a given temperature was reached, 

at which 𝑃(𝐸) measurements were performed by the ferroelectric tester.  As the sample 

stage is brought to a desired temperature, this is initially overshot, then brought back, also 

passing the set temperature, though to a lesser degree and this continued oscillation is 

gradually brought to near rest.  The procedure in all experiments, except where indicated 

in the results section, was to wait until the oscillation reduced to ±0.01 K and then to wait 

one minute, before measuring 𝑃(𝐸). 

 

The second experimental method, which applies to just two datasets presented in this 

thesis, fixed the sample to the centre of a hotplate with Kapton tape and used tungsten 

probes mounted in micro-adjusters.  Temperature measurement was less precise, using a 

K-type thermocouple and hand-held reader.  The thermocouple was held against the 

hotplate, next to the sample, using Kapton tape; and it was observed that the difference 

between the temperature measured in this position and with the thermocouple held 

against the sample surface, was about ±1 K.  It was possible to stabilise the measured 

temperature to ±0.1 K around room temperature and ±0.5 K at 250 ºC. 

 

𝑃(𝐸) measurements were taken by applying a bi-polar voltage over a given period, 

resulting in a hysteresis loop.  For example: 
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Figure 3-13.  Bipolar voltage applied by the ferroelectric tester. 

 

The maximum voltage in both directions and the period of the voltage excursion is set by 

the user.  The tester ramps the voltage up and down in steps.  For a 0.1 ms excursion, 

there are 100 steps, whereas for a 1 ms excursion or longer, 1000 steps.  Thus there is 

1 µs between each step in these cases and the charge on one electrode is measured 

simultaneously with the voltage just before the next voltage step is executed.  This is 

ample time for the polarization to adjust, which takes place over the nanosecond 

timescale, while reducing any leakage (partial conduction through the film) to a 

minimum.  Should leakage affect the hysteresis loops, this can be easily seen, as the 

sharply pointed ends of the loop begin to round off .  This is where even the smallest 

amount of leakage is evident. 
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Figure 3-14.  Two P(E) loops.  The top loop shows negligible leakage, the bottom loop is very significantly 

affected by leakage. 

   

3.2. analytical method 

 

To illustrate the methods used in the analysis of raw data, the data measured on the 1 µm 

thick, “slow cooled”, PZT 95/05 sample, fabricated by Silvana Corkovic, will be used.  

The raw data supplies a 𝑃(𝐸,𝑇) surface, across which one predicts an adiabatic 

temperature change due to a changing field.  As this is a prediction that employs 

thermodynamics, the data points that constitute the surface are implicitly taken to 

represent equilibrium states and that any process that moves from one state on the surface 
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to another, must be reversible.  Thus, any adiabatic process across this surface would also 

be isentropic.  This condition introduces the derived 𝑑𝑇 equations presented in chapter 2, 

which predict isentropic temperature changes.   

 

Data is assumed to be taken isothermally and as a result of the applied bipolar voltage, 

takes the form of a loop: 

 

 
 

Figure 3-15.  P(E) loop at 215 ºC. 

 

The measured polarization as a function of field is therefore hysteretic and strictly, one 

cannot apply thermodynamics to hysteretic systems.  However, all samples measured and 

presented in this thesis, are ferroelectrics, which nominally have two equilibrium states 

for every field value, separated by an energy barrier.  

 

Figure 3-15 indicates a division of a typical 𝑃(𝐸) loop, into four parts.  Before applying 

the bipolar voltage, the ferroelectric is set to its negative remnant state, either because the 

last measured loop at an adjacent temperature left it in this state, or this is the first 

measurement in a dataset and a preset bipolar voltage is applied before taking loop data.  

The first quadrant, then, is measured from zero volts up to the maximum voltage, and 

thus, field, stipulated in the ferroelectric tester control panel.  The second quadrant is the 

one of interest, as the voltage is stepped back down to zero volts.  If the measurement of 

the second quadrant were performed adiabatically, rather than isothermally, the 𝑃(𝐸) 
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states measured along this quadrant would be at different temperatures, where a lower 

voltage would correspond to a lower temperature.  This is electrocaloric cooling.  The 

data in the fourth quadrant of all measured loops could equally be used. 

 

The idea is that all the states measured in the second quadrant represent equilibrium states 

of the ferroelectric at the temperature at which the voltage excursion began, as we assume 

the loop to have been measured isothermally.  By reducing the loops to just their second 

quadrants and joining up the data points in the temperature dimension, the desired 

𝑃(𝐸,𝑇) surface is obtained.  As the field is decreased and the material experiences an 

isentropic change, it is assumed that the equilibrium states through which the material 

would pass lie on this 𝑃(𝐸,𝑇) surface built from second quadrant data, as it is highly 

unlikely that the material would cross the energy barrier to its alternative equilibrium 

state for any given field.  Having said that, if one were to measure loops where the 

maximum voltage were slightly reduced, the top-right end of this minor loop would trace 

out metastable states, so the predicted isentropic cooling path may well pass through 

metastable states, rather than equilibrium states.  The principal 𝑑𝑇 equation that has been 

used in the electrocaloric literature is: 

 
(3.1) 

𝑑𝑇 = −�
𝑇
𝑐�𝐸

�
𝜕𝑃
𝜕𝑇�𝐸

𝑑𝐸 

 

To predict isentropic cooling, one would then choose a starting temperature and field and 

move across the 𝑃(𝐸,𝑇) surface according to equation 3.1.  The following figure shows 

the second quadrant data for the 1 µm thick, “slow cooled” PZT 95/05: 
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Figure 3-16.  Second quadrant data from P(E) loops measured on 1µm thick PZT 95/05.  The lower polarization 

curves were measured at higher temperatures. 

 

When the data from these curves are presented in a three dimensional format, one has: 

 

 
 

Figure 3-17.  P(E,T) data points measured on 1µm thick PZT 95/05. 

 

Each black dot is a single data point and one can see how the three dimensional plot 

shows the second quadrant curves spread along the temperature dimension. 
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The 𝑑𝑇 calculation is then applied to this discrete data, which of course, implies an 

approximate temperature change prediction, as 𝑑𝑇 should be calculated in the limit as 𝑑𝐸 

tends to zero, when in practice, 𝑑𝐸 must be finite.  The other approximation that is 

consistently applied in the electrocaloric literature is in the value of the specific heat 

capacity, which is taken as constant throughout the field and isentropic temperature 

change, though estimations of maximum possible variance in heat capacity suggest a 

reduction in cooling of no more than around 3% of the predicted temperature drop (based 

on [81]). 

 

The ferroelectric tester is designed to measure polarization and voltage values at equal 

time intervals.  This means that when comparing data from loops taken at different 

temperatures, such as on the 𝑃(𝐸,𝑇) surface constructed, the voltage values can differ 

very slightly and hence the calculated field values.  The heart of the 𝑑𝑇 calculation, is 

�𝜕𝑃
𝜕𝑇
�
𝐸
𝑑𝐸, so one can start on the surface at some measured point and calculate the 

difference between the polarization value at that point and at the same field on the second 

quadrant curve of the next temperature up, giving �𝜕𝑃
𝜕𝑇
�
𝐸

.   

 

This implies the necessity for linear interpolation between two points on the higher 

temperature second quadrant, thus slightly deviating from actual measured points.  This 

deviation is unavoidable and it is simpler to linearly interpolate each of the second 

quadrant curves, using an equal number of points, so that all their data points occur at the 

same field values and then transpose 𝑃(𝐸) at a set of 𝑇 values, to give 𝑃(𝑇) at a set of 𝐸 

values.  From this, one can differentiate and transpose again to gain �𝜕𝑃
𝜕𝑇
�
𝐸

(𝐸) at the 

original set of 𝑇 values, i.e. the temperatures at which the loops were taken.  Stepwise 

integration then completes the analysis to give the predicted temperature change.  

Interpolation and transposition of the second quadrant data for the 1 µm thick PZT 95/05 

sample, leads to the following 𝑃(𝑇) graph: 
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Figure 3-18.  P(T) at a set of field values.  Points at the same field (E) are joined to give a set of curves, where 

those higher up the graph correspond to larger fields. 

 

The red crosses in the above figure mark the linearly interpolated data points and one can 

see those that were measured at the same temperature.  In the electrocaloric literature, 

there are examples of predicted temperature changes, where it is not clear whether the 

predictions are for electrocaloric cooling or heating [4, 5, 10, 12, 13, 17-19, 21, 22, 24, 

25, 28].  Where any ∆𝑇 calculations are presented, they are often displayed as a function 

of temperature and field change, such as the following graph from D. Saranya et al.: 

 

 
 

Figure 3-19.  From D. Saranya et al. [22].  Temperature change predictions from applied / withdrawn voltage. 
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In this case, it was not made clear as to whether the ∆𝑇 curves refer to an application or 

release of electric field, but in general, it must be made clear that when calculating ∆𝑇 for 

a given field change across some 𝑃(𝐸,𝑇) surface, that the temperature referred to along 

the bottom axis is a starting temperature and that for any given ∆𝐸, there will be one ∆𝑇 

curve that corresponds to electrocaloric cooling and another that corresponds to heating.  

As the thermodynamic nature of these calculations implies a reversible 𝑃(𝐸,𝑇) surface, 

then if the curve representing ∆𝐸=747 kV/cm in fig. 3-19, refers to cooling, there will be 

a heating curve that peaks at around 31 ºC below the peak of the cooling curve.  The 

heating and cooling curves will have data points at the same ∆𝑇 values and these 

corresponding data points will be separated horizontally by their ∆𝑇 value.  It is equally 

important to recognise that when stepping across the 𝑃(𝐸,𝑇) surface according to 𝑑𝑇 

calculations over small 𝑑𝐸 steps, that �𝜕𝑃
𝜕𝑇
�
𝐸

 varies from point to point and one must take 

this into account. 

 

 
 

Figure 3-20.  Blue arrow represents electrocaloric temperature change, starting at high field at 240 ºC and 

cooling by releasing the field. 

 

The above figure illustrates this quite well, as one can imagine starting at high field at 

240 ºC and releasing the field under isentropic conditions to cause the material to cool.  
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The blue line represents an approximation to the electrocaloric cooling, along which, one 

can see that the �𝜕𝑃
𝜕𝑇
�
𝐸

 values are quite different to those along the black line at 240 ºC, 

which refers to an isothermal change. 

 

Once the 𝑃(𝑇) data has been differentiated and transposed, the final graph is obtained, 

from which ∆𝑇 predictions are obtained: 

 

 
 

Figure 3-21.  dP/dT vs E at different T. 

 

The cooling calculation starts at a given temperature, represented by one of the curves in 

the above graph, and the maximum field value.  By gradually increasing the field range 

over which one integrates this curve, i.e. by gradually decreasing the lower limit of the 

integration, the calculated 𝑑𝑇 increases to a point where one must change to another 

curve, representing an adjacent temperature.  At this point, the field is lower and 

integration continues with the new curve, from this field downwards, moving from one 

temperature curve to another and so on, until the minimum field.  In this case, 

∆𝐸=929 kV/cm.  As the differentiation of 𝑃(𝑇) was performed with a forward difference 

method, a given temperature curve in fig. 3-21 covers all temperatures between its own 

and the next highest temperature.  This ∆𝑇 calculation follows an adiabatic temperature 

change path, albeit a rather coarse one, due to the discrete nature of the data and large 

intervals between temperatures.  By inserting intermediate curves between those in fig. 
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3-21, one gains finer calculations, though of course, this does not represent finer data in 

the temperature dimension, but merely the artificial insertion of intermediate points 

between adjacent temperature curves. All analysis was performed in Igor Pro, via user 

defined functions, which are included in appendix C.  The resulting electrocaloric cooling 

and heating predictions are presented here: 

 

 
 

Figure 3-22.  Electrocaloric cooling and heating calculated from P(E,T) measurements on a 1 µm thick film of 

PZT 95/05.  Data points are joined by lines.  ∆E=929 kV/cm. 

 

The ∆𝑇 values of the electrocaloric cooling curve in the above figure, have been 

multiplied by -1 and the vertical axis renamed “T change”, to allow for an easier visual 

comparison between heating and cooling curves.  Perhaps the most surprising 

characteristic of these curves is the degree to which they fluctuate, not following a 

smooth progression as one might hope for and expect.  This highlights the large effect 

that minor deviations in the smooth progression of 𝑃(𝐸,𝑇), can have on the final 

electrocaloric predictions.  For this reason, predictions from raw 𝑃(𝐸,𝑇) data have 

generally not been presented in the electrocaloric literature and attempts have been made 

at drawing smooth lines through 𝑃(𝑇) curves derived from the raw data. 
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What is evident, however, is how heating and cooling predictions trace out different 

curves, where logically, the larger the change in temperature, the greater the separation 

between cooling and heating curves.  This relationship, where the separation of the curves 

would be equal to their height at any given point, is not represented exactly here, due to 

the discrete nature of the data, but one can see how the peak cooling and heating values 

calculated here turn out to be identical, though their separation differs from these peak 

values by about a degree Celsius.  

 

Three methods have been used in the literature to draw smoother lines through 

imperfectly smooth 𝑃(𝑇) data.  These have been via polynomial regression (e.g. [5, 12, 

13, 18, 28]), boxcar smoothing [20] and cubic spline interpolation [21].  The first 

attempts to fit a mathematical expression to the data while the second redefines the 𝑃 

value at a given 𝑇 and 𝐸, by taking an average of itself and its neighbours along the 

temperature axis, at the same 𝐸.  Such data manipulation may assume that the smoother 

data more accurately represents the data one would gain by taking an average of a large 

amount of 𝑃(𝐸,𝑇) data measured identically, on identical samples.  It is clear from 

ferroelectric hysteresis measurements, that no two loops are identical, though they can be 

very similar. 

 

More fundamentally, one would hope that the manipulated data more closely represents 

equilibrium points on a reversible surface, so that the thermodynamic treatment of the 

electrocaloric effect becomes more, rather than less, of an approximation.  This theme 

will be explored in the following chapter. 

 

In what remains of this section, various forms of data smoothing will be presented and the 

electrocaloric prediction results compared.  These will initially be the polynomial fit and 

boxcar smoothing, as previously mentioned, plus a surface smoothing, where the whole 

of the 𝑃(𝐸,𝑇) surface is smoothed, not just data in the 𝑃(𝑇) planes.  As temperature 

change predictions utilise the three dimensions of the 𝑃(𝐸,𝑇) surface, as opposed to the 

two dimensions of a 𝑃(𝑇) curve, it would perhaps seem more appropriate to smooth the 

whole surface, rather than just 𝑃(𝑇) at different 𝐸.   
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(a)  

(b)  

 
Figure 3-23. 1 µm thick PZT 95/05.  (a) P(T) at various E.  The red curves are 4th order polynomial fits through 

isofield, black data points.  (b) Heating and cooling predictions.  ∆E=929 kV/cm. 

 

The polynomial curves in the graph (a) of the above figure fit very closely to the field 

curves, with the exception of the bottom two or three, principally, the second curve from 

the bottom.  In this case it is not clear whether or not the raw data point at 149 ºC, is an 

outlier.  The calculated cooling and heating curves show less fluctuating predictions of 

temperature change with starting temperature, compared with the calculations based on 

raw data.  The peak changes are slightly smaller and the peak cooling starting temperature 

is about 20 ºC lower than in the raw data case. 
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(a)   

(b)  

 
Figure 3-24.  1 µm thick PZT 95/05.  (a) P(T) at various E.  Red lines join boxcar smoothed (five point averaging) 

black data points at a specific E.  (b) Heating and cooling predictions.  ∆E=929 kV/cm. 

 

The smoothed data in the graph (a) in the above figure, represented by the red lines, joins 

points that are averages of the data points along each field curve.  Here, this boxcar 

smoothing is performed over five points, so the polarization for every raw data point on a 

field curve is replaced with the average of the polarization values of itself and those of the 

two raw data to its left and two to its right.  This is five point boxcar smoothing, a 

moving-average method.  At the ends of the field curves, imaginary data points are 

created to determine averages.  The points along a curve are numbered from zero to n, so 

n will be one less than the number of points on the curve.  Then the imaginary points 

beyond the ends of the curve are created by setting the polarization value of curve point -i 

equal to that of curve point i, at the beginning of the curve; and curve point n+i takes on 
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the polarization value of point n-i, at the end of the curve.  This is appropriately referred 

to as the “bounce” method.  The temperature change predictions, in this case, are very 

similar to those from the polynomial fit data, though the peak cooling starting 

temperature is around 6 ºC lower.    

 

(a)  

(b)  

 
Figure 3-25.  1 µm thick PZT 95/05.  (a) P(T) at various E.  Red isofield curves are extracted from surface 

smoothing of data.  (b) Heating and cooling predictions.  ∆E=929 kV/cm. 

 

In this case of surface smoothing a kernel moves across the raw 𝑃(𝐸,𝑇) surface, taking a 

similar five-point average as in the boxcar smoothing example, except here, the average is 

over an extra dimension, making it an average of 25 points.  The kernel is a 5x5 square 

matrix and it centres on each data point on the surface, replacing the polarization value of 

that data point with the average of all 25 points in the matrix.  This is another moving-
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average method, where calculations at the edges of the surface are dealt with by 

replicating the edge data to artificially extend the surface.  It is clear from the graph (a), in 

the above figure that this method unfortunately results in field curves that deviate very 

significantly from the raw data at lower fields.  However, the gradients of these curves, 

which are the key elements in the temperature change predictions, are rather similar to 

those in the boxcar smoothing case.  Hence, heating and cooling peaks in graph (b) of the 

above figure, are only about a degree lower than in the boxcar smoothing analysis. 

 

A summary of ∆𝑇 predictions are presented below: 

 

(a)  

(b)  

 
Figure 3-26.  A summary of (a) electrocaloric cooling and (b) electrocaloric heating predictions, calculated from 

raw data and P(T) data that was smoothed in various ways – by fitting a polynomial curve (poly), by applying a 

five point moving average (smth) and by using a 5x5 square matrix averaging across the P(E,T) surface (SS).  

∆E=929 kV/cm. 



 70 

 

There seems to be a common, general shape to all the curves in fig. 3-26 and the three 

𝑃(𝑇) data smoothing methods have produced similar ∆𝑇 results.  Predictions based on 

raw data, however, vary greatly and oscillate about this general shape.  Despite the 

surface smoothing giving a bad fit to the data, the ∆𝑇 curves from the 𝑃(𝑇) smoothing 

and 𝑃(𝐸,𝑇) surface smoothing methods are almost identical.  The peak cooling values 

vary from -24.63 ºC to -28.56 ºC, which is a difference of just under 4 ºC.  The starting 

temperatures at which these peak cooling predictions are calculated to occur, range from 

207.54 ºC to 234.06 ºC, a spread of 26.52 ºC.  If one excludes the predictions from raw 

data, peak cooling varies from -24.63 ºC to -25.77 ºC, just over 1 ºC of difference.  This 

seems negligible in light of the difference between heating and cooling calculations, 

where the discrete nature of the data can cause such variation.  The starting temperatures, 

however, range from 207.54 ºC to 215.44 ºC, which is a difference of 7.9 ºC.  The 

following table summarises the results: 

 

 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -28.58 234.82 28.55 206.34 

Polynomial fit -25.78 215.89 25.76 190.05 

Smoothed -25.71 209.47 25.72 183.96 

Surface 

Smoothed 

-24.65 207.99 24.64 183.30 

 
Table 2.  Peak electrocaloric cooling and heating predictions in 1µm thick, “slow cooled” PZT 95/05.  ∆E=929 

kV/cm. 

 

When calculating how the isentropic temperature change progresses over the 𝑃(𝐸,𝑇) 

surface, it is necessary to make certain assumptions.  By manipulating the raw 𝑃(𝑇) 

values at each 𝐸, to give fit or smoothed data, the number of points nor the temperature of 

those points on the 𝑃(𝑇) curves was changed.  In the final integration of �𝜕𝑃
𝜕𝑇
�
𝐸

, 

assumptions must be made about the �𝜕𝑃
𝜕𝑇
�
𝐸

 values between the �𝜕𝑃
𝜕𝑇
�
𝐸

 curves at different 
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temperatures, that have been extracted from the 𝑃(𝑇) data.  The simplest assumption, 

which is the one made here, is that 𝑃(𝑇) isofield data points are joined by straight lines. 

 

The above calculations, illustrating the relationship between heating and cooling curves, 

were made by inserting equidistant points along those straight lines that join 𝑃(𝑇) points 

and hence, no further assumptions are made by doing so.  By calculating temperature 

changes from many temperature starting points, it has been possible to demonstrate how 

the starting temperatures of the electrocaloric heating and cooling curves are separated by 

their ∆𝑇 values at any given starting temperature.  Any ∆𝑇 versus starting temperature 

graph must be clear about whether it represents heating or cooling predictions.  However, 

if one chooses to calculate ∆𝑇 only from the starting temperatures where data was 

measured, the results can differ significantly to those where intermediate values are 

inserted.  This can be seen in the following figures and table, where calculations were 

performed only at the measurement temperatures.  The peak temperature changes seen 

from the raw data are over 3 ºC less (over 10%) than in the previous data and the peak-

change starting temperatures differ by up to ~6 ºC.  This excludes the surface smoothed 

calculations, which have only been presented here to illustrate how little difference one 

can find in the ∆𝑇 predictions, despite significant manipulation of the raw data. 
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(a)   

(b)  

 
Figure 3-27.  As fig. 3-26, except calculations made at measurement temperatures only. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -25.86 228.00 25.80 205.00 

Polynomial fit -25.78 216.00 25.36 184.00 

Smoothed -24.62 216.00 25.73 184.00 

Surface 

Smoothed 

-24.17 216.00 24.44 184.00 

 
Table 3.  As table 2, , except calculations made at measurement temperatures only. 

 

These variations between the peak temperature change predictions, depending on whether 

one includes the implicit intermediate 𝑃(𝑇) data or only calculates at the measurement 

temperatures, are merely due to that simple difference.  Temperature change calculations 

return the exact same result at the measurement temperatures, regardless of whether the 

calculation is performed across twenty  �𝜕𝑃
𝜕𝑇
�
𝐸

 curves, or two hundred, for example.  The 

following figure shows the ∆𝑇 calculations for such a dataset: 

 

 
 

Figure 3-28.  Comparison of predictions (field applied or released) from data at measurement temperatures and 

that from the same, plus intermediate P(T) data.  Dataset measured from 285 ºC to 45 ºC in 20 ºC steps, on 

1.05µm thick PZT 95/05.  ∆E=440 kV/cm. 
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The calculations from the denser data are stepped.  This is due to the artificial insertion of 

data along straight lines joining 𝑃(𝑇) points and particular to a dataset where data is 

measured at temperature intervals that are large compared to the calculated temperature 

changes.  Though ∆𝑇 calculations are thus made at many intermediate 𝑃(𝑇) points, those 

points are nonetheless taken to exist when ∆𝑇 calculations are only made at the 

measurement temperatures. 

 

One could argue that if 𝑃(𝑇) data is to be manipulated at all, then the line that would be 

drawn through any set of isofield 𝑃(𝑇) data should consist of a large number of points 

and follow the curvature of the surface, which is evident to the eye, between measured 

data.  This can be attempted either by using a polynomial fit with many points or by 

linearly interpolating each isofield curve and then boxcar smoothing over many points.  

The following figure shows how 𝑃(𝑇) graphs can vary, depending on how one decides to 

draw a line through raw data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-29.  1 µm thick PZT 95/05. P(T) at various E.  Red lines are isofield alternatives to raw data (black 

crosses).  Graphs (a) and (b) are reproduced from fig. 3-23 and fig. 3-24.  (a)  Red lines are 4th order polynomial 

fits, joining 15 points at the same temperatures as raw data.  (b)  Red lines join five-point boxcar smoothed raw 

data (15 points).  (c)  Red lines are 4th order polynomial fits, joining 211 points.  These correspond to points at 

the same temperatures as raw data, plus 14 intermediate points between each pair of raw data points. (d)  Red 

lines join 15-point boxcar smoothed data, which are the linear interpolation of raw data (14 intermediate points 

per raw data pair). 
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All four of the alternative isofield curves in the above figure are nominally good fits.  It is 

debatable as to which of the four represents the better alternative.  Graph (d) seems to 

most closely follow the raw data, but the best choice would be that which most closely 

represents equilibrium states through which the material should pass, were this whole 

thermodynamic approach valid.  Essentially, one is taking blind guesses by drawing lines 

through raw data and the above alternatives are just as good as each other.  Despite 

seemingly smoothly varying 𝑃(𝑇) data, analyses using raw data often result in the 

violently oscillating ∆𝑇 predictions shown in this section and though drawing lines 

through 𝑃(𝑇) data is guesswork, it is arguably an improvement over the use of raw data 

for ∆𝑇 predictions, producing smoother varying ∆𝑇 predictions over a given field and 

temperature range.  Looking past the small lumps and bumps on the measured 𝑃(𝐸,𝑇) 

surface, one can plainly see how the surface undulates smoothly and hence, should 

provide smoothly varying ∆𝑇 predictions.  The difficulty lies in finding the best way to 

remove the imperfections on the surface and this topic has not been dealt with in the 

electrocaloric literature.  The rest of this chapter intends to demonstrate the extent of the 

variation in ∆𝑇 predictions, depending on whether raw data or some reasonable 

alternative is used; and how that variation is amplified when more than one dataset 

measured on the same piece of material is considered.  This variation can be further 

extended when data is measured on the same film, but at different locations and tiny 

changes in film processing can make quite startling differences. 

 

The ∆𝑇 predictions from polynomial fits and boxcar smoothing of raw 𝑃(𝑇) data, over an 

increased number of points (fig. 3-29, graphs (c) and (d)) , are presented below: 
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(a)   

(b)  

 
Figure 3-30. (a) Cooling and (b) heating predictions from polynomial fits to and smoothing of many points per 

P(T) isofield curve, i.e. an extra 14 intermediate points per pair of P(T) raw data points. 

 

At this point, it may be useful to clarify the difference between the ∆𝑇 predictions in the 

above figure and those made in fig. 3-26.  For predictions made from polynomial fits to 

𝑃(𝑇) data, in one case, the fits are made using the same number of points as there are 

isofield, raw data points to which one is fitting.  Then straight lines are drawn between 

these new fit points and an additional 14 points introduced at equidistant positions along 

each of these straight lines.  Each new point will be at a different temperature.  To create 

fig. 3-26, ∆𝑇 calculations were made at all of these temperatures, which are those where 

raw data was measured, plus all the intermediate temperatures.  In the second case, 

polynomial fits to 𝑃(𝑇) data are made using a larger number points than the number of 

measurement temperatures, specifically, 14 more points between each pair of isofield, 
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raw 𝑃(𝑇) data points.  So in this second case, the fit also applies to the intermediate 

temperatures, whereas in the first case, the fit is over the raw data points alone.  ∆𝑇 

calculations from this method are shown in the above figure, where “OIP” is used in the 

graph legend to indicate that the polynomial fits to 𝑃(𝑇) data from which these ∆𝑇 

predictions have been made, were fits that were also made Over Intermediate Points. 

 

For predictions made from boxcar smoothed data, the first case smooths the isofield, raw 

data and straight lines are drawn between the smoothed points.  Then 14 intermediate 

points, per pair of adjacent smoothed points, are introduced at equidistant positions.  

Figure 3-26 shows ∆𝑇 calculations made from all of these temperatures.  In the second 

case, straight lines are drawn between isofield, raw 𝑃(𝑇) data points, the 14 intermediate 

points introduced and then smoothing is performed over 15 points.  This results in 𝑃(𝑇) 

curves that weave their way from one measured 𝑃(𝑇) point to the next.  The more uneven 

the raw data, the more the ∆𝑇 predictions from such data will oscillate in a similar way to 

∆𝑇 predictions from raw data, as is the case for this dataset.  OIP smoothing results in ∆𝑇 

predictions that are more distinctive than those from raw data where raw data are 

smoother in 𝑃(𝑇) and measured at larger temperature intervals. 

 

The difference between the 𝑃(𝑇) curves is shown in the following figure over several 

raw, isofield data points: 
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(a)  

(b)  

 
Figure 3-31.  (a) Two types of polynomial fits to raw data (b) Two types of smoothing of raw data. 

 

It should be noted that, in general, temperature change predictions due to the isentropic 

application, as opposed to release of a field, result in the material getting warmer due to 

the electrocaloric effect.  Isentropic release of a field would generally cool the material 

due to the electrocaloric effect.  Hence the usual reference to cooling and heating 

predictions relating to the release and application of a field, respectively.  However, 

across certain field ranges at certain temperatures, the indirect method suggests that the 

opposite occurs.  This is the negative electrocaloric effect and where it is evident, the ∆𝑇 

curves will be referred to as those due to application or release of a field (see fig. 3-28).  

In fig. 3-30, more clearly than any graph so far, it could be construed that there is a 

negative electrocaloric effect at the highest temperatures.  This usually occurs with 
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predictions from polynomial fits to 𝑃(𝑇) data, at the extremes of the temperature range 

and is due to the nature of the polynomial curves curling slightly at the ends.  It can also 

be seen in predictions from raw data, where �𝜕𝑃
𝜕𝑇
�
𝐸

 can change from being positive to 

negative, along the 𝑃(𝑇) isofield curves, which are commonly uneven.  In both cases, the 

∆𝑇 predictions are to be considered appropriately. 

 

 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Polynomial fit 

OIP 

-25.38 224.85 25.37 199.27 

Smoothed OIP -27.38 235.38 27.32 208.30 

 
Table 4.  Peak cooling and heating predictions from fig. 3-30. 
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3.3. PZT 

3.3.1.  1100 nm thick. Fast cooled. Hotplate. 

 

(a)  

(b)  

 
Figure 3-32.  1.1µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops.  (b) P(E,T). 3D view of the 

same data. 

 

The data in the above figure was measured on a 1100 nm thick film of PZT 95/05.  This 

is the second sample fabricated by Silvana Corkovic at Cranfield University.  It differs 

from the 1000 nm sample presented in the previous section, as a guinea pig for the 

explanation of the analytical method, only in that it is slightly thicker and during its 

fabrication, was cooled from its annealing process in one swift step.  Whereas the 

1000 nm sample was taken from its 530 ºC hotplate annealing step and placed on a pre-

heated 200 ºC hotplate for one minute before finally placing it on a metal block at room 

temperature, this 1100 nm sample was placed directly onto the metal block from the 
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530 ºC hotplate.  Measurement was performed on a hotplate, using a thermocouple and 

reader for temperature determination and loops were taken at 47 temperature points 

between 255 ºC and 85 ºC at intervals varying between 3 ºC and 5 ºC.  

 

(a)  

(b)  

(c)  
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(d)  

 
Figure 3-33.  1.1 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield, black data points.  (a) 4th 

order polynomial fit.  (b) Five-point boxcar smoothing (c) 4th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP. 

 

Figure 3-33 shows fits to raw data.  Graphs (a) and (c) seem identical to the eye at this 

resolution.  However, the red lines in graph (c) join 691 points, whereas graph (a) shows 

red isofield curves that join 47 measured data points.  The smoothed data in graph (b) is 

very similar to (a) and (c), but graph (d) stands out as being different.  This is because the 

isofield raw data oscillates along its trajectory from low to high temperature and the 

15-point smoothing of 691 points does little to change that.  The temperature change 

calculations are presented below: 

   



 84 

 

(a)  

(b)  

 
Figure 3-34.  1.1µm thick PZT 95/05.  (a) Electrocaloric cooling and (b), heating predictions.  Each graph shows 

calculations from raw data and four alternatives.  ∆E=759 kV/cm. 

 

As with the 1000 nm sample, the raw data is erratic and in general, the ∆𝑇 predictions are 

substantially lower, by up to nearly 8 ºC (nearly 30%) lower than in the 1000 nm sample 

case.  This sample was subjected to a field change that was 18% smaller than that 

experienced by the 1000 nm sample. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -20.02 219.71 20.03 199.94 

Polynomial fit -21.72 207.51 21.73 185.89 

Smoothed -22.63 207.88 22.62 185.34 

Polynomial fit 

OIP 

-20.37 210.65 20.36 190.20 

Smoothed OIP -20.80 219.77 20.78 199.07 

 
Table 5.  Peak electrocaloric cooling and heating predictions in 1.1µm thick, “fast cooled” PZT 95/05.  

∆E=759 kV/cm. 

 

Peak temperature changes calculated at measurement temperatures only, are shown 

below: 
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(a)  

(b)  

 

Figure 3-35.  As fig. 3-34, except calculations made at measurement temperatures only. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -19.85 220.00 18.88 156.00 

Polynomial fit -21.52 208.00 21.65 186.00 

Smoothed -22.59 208.00 22.36 186.00 

 
Table 6.  As table 5, except calculations made at measurement temperatures only. 
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3.3.2. 1050 nm thick. higher anneal temperature. 

Cryostat. 

 
LOOPS MEASURED FROM 211 ºC TO 275 ºC AT 1 ºC INTERVALS 

 

(a)  

(b)  

 
Figure 3-36.  1.05 µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops measured from 211 ºC to 

275 ºC in 1 ºC steps.  (b) P(E,T). 3D view of the same data. 

 

This dataset is the first presented here that was measured in the cryostat.  The highly 

precise temperature control afforded by this environment (± 0.01 ºC) allows for confident 

𝑃(𝐸) loop measurement at starting temperatures that differ by only 1 ºC.  This sample is 

of very similar thickness to the previous two films, at 1050 nm and the only difference 

between its fabrication and that of the previous two samples, is that it was annealed at 

530 ºC for 10 minutes, as opposed to five minutes at 430 ºC, followed by 530 ºC for five 
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minutes.  It was also made by Tatiana Correia, as opposed to Silvana Corkovic, so there 

are possible, subtle  differences in the processing that would not be recognised between 

the two experimentalists. 

 

(a)  

(b)  

(c)  
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(d)  

 
Figure 3-37.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to the isofield, black data points.  

(a) 4th order polynomial fit.  (b) Five-point boxcar smoothing.  (c) 4th order polynomial fit OIP (d) 15-point 

boxcar smoothing OIP.  Data measured as P(E) from 211 ºC to 275 ºC in 1 ºC steps. 
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The ∆𝑇 predictions are shown below: 

 

(a)   

(b)  
 

Figure 3-38. 1.05 µm thick PZT 95/05 measured from 211 ºC to 275 ºC in 1 ºC steps.  (a) Electrocaloric cooling 

and (b), heating predictions.  Each graph shows calculations from raw data and four alternatives.  

∆E=662 kV/cm. 

 

As is seemingly standard in the electrocaloric literature that utilises the indirect method to 

date, the heat capacity for PZT 95/05 was taken as constant throughout its temperature 

and field excursion.  It was based on a specific heat capacity of 330 J/K.kg and material 

density of 8.3×103 kg/m3 [5], giving a volumetric specific heat capacity of 

2.739×106 J/K.m3.   
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Surprisingly, both sets of polynomial fit data returned ∆𝑇 curves without a peak over this 

temperature range, but what is most startling is the difference in peak temperatures 

compared to the previous two samples.  The thicknesses of these three samples are similar 

(1000 nm, 1100 nm and 1050 nm), though it must be acknowledged that the field range is 

about one third wider in the previous two datasets.  Even so, peak temperature change 

calculations here do not rise above 8 ºC, whereas in the previous two datasets, they start 

at around 24 ºC.  This is a stark difference considering the principal differences are the 

fabricator and the extra 80 ºC over five minutes, during annealing.  The two types of 

polynomial fits to 𝑃(𝑇) returned nearly identical ∆𝑇 predictions, due to the small 

temperature interval between raw 𝑃(𝑇) data and relatively small ∆𝑇 predictions 

compared to the previous two datasets. 

 

One could decide to reject the results from this dataset, as it suggests the peak 

temperature change, taken from polynomial 𝑃(𝑇) fits, can be achieved by starting 

somewhere above 275 ºC, which is a long way from the bulk ferroelectric to paraelectric 

phase transition temperature of 242 ºC.  This is the temperature around which one would 

expect the largest electrocaloric changes, as the structural phase transition will constitute 

a large entropy change by itself.  Then again, the second-order nature of thin-film phase 

transitions spreads the transition temperature over a temperature range and the application 

of these large fields will also shift Tc up in temperature [57].  The fact remains that we 

still do not know whether peak electrocaloric changes necessarily take place from starting 

temperatures that are close to Tc, so such ∆𝑇 predictions will continue to be considered a 

possibility.  Dielectric constant measurements taken on the same day at the same 

electrode, suggest a broad, zero-bias transition temperature range around 245 ºC: 
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Figure 3-39.  Dielectric constant as a function of temperature and zero-voltage bias, taken from capacitance 

measurements as a function of temperature.  Lines join data points. 

 

 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -5.81 267.80 6.00 262.00 

Polynomial fit -6.99 274.80 6.99 268.00 

Smoothed -7.61 269.80 7.60 262.40 

Polynomial fit 

OIP 

-6.99 275.00 6.99 268.00 

Smoothed OIP -7.76 260.87 7.74 253.13 

 
Table 7.  Peak electrocaloric cooling and heating predictions in 1.05µm thick PZT 95/05 measured from 211 ºC 

to 275 ºC in 1 ºC steps.  ∆E=662 kV/cm. 

 

It can be seen in the following figure and table that the difference between the above 

temperature change predictions and those calculated at the measurement temperatures 

only differs by up to two tenths of a degree Celsius.  The smaller the difference in 

temperature between measured data points, the less the temperature change predictions 

differ when calculating from the measured temperatures, compared to when including 

intermediate temperatures. 
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(a)  

(b)  

 
Figure 3-40.  As fig. 3-38, except calculations made at measurement temperatures only. 

 

 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -5.97 268.00 6.06 262.00 

Polynomial fit -6.98 275.00 6.98 268.00 

Smoothed -7.60 270.00 7.60 263.00 

 
Table 8.  As table 7, except calculations made at measurement temperatures only. 
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LOOPS MEASURED FROM 275 ºC TO 211 ºC AT 4 ºC INTERVALS 

 

(a)  

(b)  

 
Figure 3-41.  1.05µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops measured from 275 ºC to 

211 ºC in 4 ºC steps.  (b) P(E,T). 3D view of the same data. 

 

The dataset in the above figure was taken on the same 1.05µm thick PZT 95/05 film just 

presented.  It was measured between the same temperature limits and at the same 

electrode, on consecutive days.  First, the previous dataset was measured, the cryostat 

then cooled to room temperature and the sample exposed to the laboratory atmosphere.  

The shroud was then replaced, shielding the sample, though air could freely move in and 

out of the chamber.  This was left overnight and the dataset in fig. 3-41 was measured the 

following day.  The principal difference here is that the data was taken from high to low 

temperature and the temperature measurement interval was 4 ºC. 
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(a)  

(b)  

(c)  
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(d)  

 
Figure 3-42.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield, black data points.  (a) 

4th order polynomial fit.  (b) Five-point boxcar smoothing.  (c) 4th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 275 ºC to 211 ºC in 4 ºC steps.  ∆E=662 kV/cm. 

 

It has been suggested that indirect data for electrocaloric predictions be taken only from 

high to low temperatures, to avoid pronounced �𝜕𝑃
𝜕𝑇
�
𝐸

 gradients due to ferroelectric 

fatigue [5], but fatigue is seen only to set in after many repeated hysteresis loop 

measurements, of the order of 106 cycles or more [58, 59] and these films are likely to 

never see more than a 100 cycles, so data that varies imperceptibly in 𝑃(𝑇) graphs of 

measurements on robust films such as these, are not expected to return distinctive ∆𝑇 

predictions.  However, ∆𝑇 values do differ by nearly a degree Celsius; and the starting 

temperatures can differ by around 10 ºC.  Most remarkably, the imperceptible difference 

between this dataset and the last has resulted in a polynomial fit to 𝑃(𝑇) data that led to 

∆𝑇 predictions that had a peak over the temperature measurement range, where the 

previous dataset did not. 
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(a)   

(b)  

 
Figure 3-43.   1.05µm thick PZT 95/05 measured from 275 ºC to 211 ºC in 4 ºC steps.  (a) Electrocaloric cooling 

and (b), heating predictions.  Each graph shows calculations from raw data and four alternatives.  

∆E=662 kV/cm. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -7.25 262.00 7.27 255.00 

Polynomial fit -6.79 258.40 6.79 251.80 

Smoothed -6.87 260.80 6.87 255.00 

Polynomial fit 

OIP 

-6.78 258.73 6.78 251.80 

Smoothed OIP -7.44 260.87 7.44 253.40 

 
Table 9.  Peak electrocaloric cooling and heating predictions in 1.05µm thick PZT 95/05 measured from 275 ºC 

to 211 ºC in 4 ºC steps.  ∆E=662 kV/cm. 

 

The difference in 𝑃(𝑇) data that led to these distinct results is displayed in the following 

figure: 

 

  
 

Figure 3-44.  Comparison of raw P(T) data between (a) that measured as P(E) from 211 ºC to 275 ºC in 1 ºC 

steps and (b) that measured as P(E) from 275 ºC to 211 ºC in 4 ºC steps.  The blue lines join isofield points in 

dataset (a) and the black circles lie on isofield curves of dataset (b).  The right-hand graph compares the isofield 

values from the two datasets. 
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One can see in the left-hand graph in the above figure, how the data points represented by 

the black circles, i.e. the measurements on the film while reducing the temperature in 4 ºC 

intervals, closely follow the blue lines of 1 ºC spaced data taken while increasing the 

temperature of the film in 1 ºC steps.  Though the set field range of the tester was 

identical for both datasets, it can be seen that the data taken downward in temperature was 

subject to lower voltages, earlier in the voltage descent, which persisted for about half of 

the voltage release range.  This would suggest larger �𝜕𝑃
𝜕𝑇
�
𝐸

 values overall and larger 

calculated temperature changes, for the dataset represented by black circles, i.e. 275 ºC to 

211 ºC in 4 ºC steps, yet this is only supported by the peak ∆𝑇 predictions from raw data.  

Comparisons between the ∆𝑇 predictions calculated from the polynomial fits in each 

dataset are unreliable, as the fits to 𝑃(𝑇) data in the 211 ºC to 275 ºC dataset did not 

produce peaks.  Those ∆𝑇 predictions calculated from smoothed 𝑃(𝑇) data in the 211 ºC 

to 275 ºC dataset are susceptible to larger values merely due to the greater number of raw 

data points along the temperature axis inducing greater variability in ∆𝑇 calculations, 

evident in comparison of fig. 3-38 and fig. 3-43. 

 

The calculations made only at measurement temperatures are presented below and the 

differences in ∆𝑇 are limited to tenths of a degree, while starting temperatures differ by 

about a degree Celsius, akin to the small differences seen for the same sample measured 

upwards in temperature and consistent with the similar values of �𝜕𝑃
𝜕𝑇
�
𝐸

 across the two 

datasets. 
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(a)  

(b)  

 
Figure 3-45.  As fig. 3-43, except calculations made at measurement temperatures only. 

 

 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -7.00 259.00 7.27 255.00 

Polynomial fit -6.78 259.00 6.78 251.00 

Smoothed -6.82 263.00 6.86 255.00 

 
Table 10.  As table 9, except calculations made at measurement temperatures only. 
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3.3.3. ∆T prediction comparison between three PZT 

95/05 samples 

 

The first two datasets presented here, those measured on the 1000 nm thick and the 

1100 nm thick PZT 95/05 samples, returned temperature change predictions that were 

around three times larger than those calculated on the 1050 nm thick PZT 95/05 sample.  

The three film thicknesses are very similar, but the field application/release ranges 

employed were quite different.  The 1000 nm thick sample was subjected to 929 kV/cm, 

the 1100 nm sample, 759 kV/cm and the 1050 nm sample, 662 kV/cm.  Though it would 

seem that such differences in field range would not account for the much smaller ∆𝑇 

predictions from the 1050 nm sample dataset, it would be interesting to compare ∆𝑇 

predictions for the three datasets between the same field limits.  The results from such 

calculations, using raw data and the four approximations to raw 𝑃(𝑇) data explained so 

far, are presented below. 
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(a)   

(b)  

 
Figure 3-46.  Electrocaloric heating and cooling predictions from (a) raw data in three datasets and (b) 

polynomial fits to raw P(T) data in the same three datasets, between the same field limits. 
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(a)   

(b)  

 
Figure 3-47.  Electrocaloric heating and cooling predictions from same three datasets as previous figure, using 

(a) five-point boxcar smoothing of and (b) polynomial fits OIP to raw P(T) data. 
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(a)  

(b)  

 
Figure 3-48.  (a) Electrocaloric heating and cooling predictions for same three datasets as previous two figures, 

using 15-point smoothing OIP to raw P(T) data.  (b) Peak heating and cooling predictions for each dataset. 

 

In the above three figures, 1100FC refers to the 1100 nm thick film, which was “fast 

cooled”, as described in the experimental method section and 1000SC, refers to the 1000 

nm “slow cooled” film.  “275-211 4ºC step”, refers to the second of the datasets presented 

here that was measured on the 1050 nm thick film.  

 

Even when temperature changes are calculated using the indirect method, over the same 

field range, between the same field limits, the 1000SC and 1100FC datasets suggest 

temperature changes that are approximately three times larger than those in the 1050 nm 

thick film.  When looking at the results in peak temperature changes, as shown in the 

table below, the 1000SC ∆𝑇 predictions show larger peak values in general.  However, if 

one takes the view that the predictions that oscillate most along the starting temperature 
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axis are unreliable and ignores those predictions from raw or smoothed OIP data, then it 

is the 1100FC dataset that shows the highest ∆𝑇 predictions, at -20.58 ºC for cooling and 

20.69 ºC for heating. 

 

Curiously, comparing the peak ∆𝑇 predictions from the 1050 nm film with those from the 

other two films, i.e. the 1000SC and 1100FC datasets, not only is there an approximately 

three-fold difference, but the maximum polarization values for roughly equal applied 

fields differs by the same factor.  Specifically, the ‘275-211 4ºC step’ dataset gives a 

0.34 C/m2 polarization at 683 kV/cm at the lowest measured temperature, compared to 

1.11 C/m2 in the 1000SC dataset and 0.93 C/m2 in the 1100FC dataset, for an 

approximately equal field.  As this means, in an average sense, that �𝜕𝑃
𝜕𝑇
�
𝐸

 is roughly three 

times larger for the 1000 nm and 1100 nm film datasets, compared to the ‘275-211 4ºC 

step’ dataset measured on the 1050 nm film, there is the possibility of explaining this as a 

three-fold difference in domain density per unit volume.   

 

The spread of ∆𝑇 predictions is displayed in graph (b) of fig. 3-48.  The 1050 nm thick 

film dataset shows relatively less variation in starting temperature, compared to the other 

two films.  The peak changes differ, at most, by 0.67 ºC, which is 9.1% of the largest 

change of -7.40 ºC.  If those predictions from raw and smoothed OIP data are ignored, the 

spread of changes reduces to a mere 0.10 ºC, which is only 1.5% of the peak change of -

6.83 ºC.  The starting temperatures at which these peaks are predicted vary by only two or 

three degrees Celsius. 

 

In the case of the 1100FC dataset, there is a variation in peak changes of 2.35 ºC, which is 

11.4% of the largest change, 20.69 ºC.  Ignoring the predictions from raw and smoothed 

OIP data, the peak change variation drops to 1.92 ºC, which is 9.3% of the largest peak 

change.  Starting temperatures then vary by 6.9 ºC. 

 

Looking across all predictions made on the 1000SC dataset, variation in peak ∆𝑇 is 

3.68 ºC, which is 16.2% of the largest change, 22.65 ºC.  However, ignoring predictions 

from raw and smoothed OIP data leaves only a small variation of 0.81 ºC, which is 4.1% 

of the largest change, 22.76 ºC.  The most striking variation in predictions from this 
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dataset is in the starting temperatures, which even when ignoring the results calculated 

from raw and smoothed OIP data, vary by 23.14 ºC. 

 

 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

275-211ºC 1050nm 

Raw data -7.22 261.82 7.22 255.00 

Polynomial fit -6.74 258.29 6.74 251.71 

Smoothed -6.83 260.65 6.83 254.06 

Polynomial fit 

OIP 

-6.73 258.20 6.73 251.53 

Smoothed OIP -7.40 260.87 7.39 253.40 

255-85ºC 1100nm 

Raw data -18.37 222.36 18.34 204.49 

Polynomial fit -19.78 205.11 19.81 186.01 

Smoothed -20.58 206.34 20.69 186.01 

Polynomial fit 

OIP 

-18.78 211.39 18.77 192.91 

Smoothed OIP -19.08 215.33 19.07 196.36 

273-115ºC 1000nm 

Raw data -22.66 238.58 22.65 216.57 

Polynomial fit -19.76 215.44 19.78 196.26 

Smoothed -19.09 202.46 18.97 183.28 

Polynomial fit 

OIP 

-19.63 225.60 19.60 206.04 

Smoothed OIP -21.70 234.63 21.66 212.81 

 

Table 11.  Peak heating and cooling predictions for three datasets measured on three different films.  

∆E=654 kV/cm. 
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3.3.4. negative electrocaloric effect 

 

(a)  

(b)  

 
Figure 3-49.  1.05µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops measured from 285 ºC to 45 ºC 

in 20 ºC steps.  (b) P(E,T). 3D view of the same data. 

 

This dataset and all remaining datasets measured on PZT to be presented in this chapter, 

bar one, were measured on the same 1050 nm thick film, using a bipolar voltage profile 

rising to a maximum of 50 V, which is the equivalent of 476 kV/cm. 

 

In this case, as shown in the above figure, measurements were performed from 285 ºC 

down to 45 ºC, in 20 ºC steps.  This section has been entitled the “negative electrocaloric 

effect” as from around 50 ºC to 140 ºC, in the lower half of the field range, �𝜕𝑃
𝜕𝑇
�
𝐸

 is 

positive, so 𝑑𝑇 calculations in that region will suggest positive temperature changes when 

considering the release of a field.  It will suggest the contrary, negative temperature 
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change when considering application of the field.  This behaviour is known as the 

negative electrocaloric effect. 

 

(a)  

(b)  

(c)  
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(d)  

 
Figure 3-50.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield, black data points.  (a) 

6th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 6th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 285 ºC to 45 ºC in 20 ºC steps.  

 

It seems the “OIP” fits in graphs (c) and (d) of the above figure are more smoothly 

varying alternatives to the raw data than the polynomial fits and smoothed 𝑃(𝑇) data in 

graphs (a) and (b).  It can also be seen that at the very lowest temperatures, �𝜕𝑃
𝜕𝑇
�
𝐸

 is 

positive right up to the highest fields and the negative electrocaloric effect prediction 

should be at its largest there.  None of the 𝑃(𝑇) approximations in the above figure 

appears to give a satisfactory fit at this minimum extreme of the temperature range, so the 

raw data will give the most reliable temperature change predictions in this region. 
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(a)  

(b)  

 
Figure 3-51.  1.05µm thick PZT 95/05 measured from 285 ºC to 45 ºC in 20ºC steps.  (a) Electrocaloric 

predictions based on releasing and (b) applying a field.  Each graph shows calculations from raw data and four 

alternatives. 

 

Initially, this is to be examined in terms of peak cooling and heating predictions. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -5.87 244.00 5.87 239.00 

Polynomial fit -5.63 245.00 5.63 240.00 

Smoothed -5.38 245.00 5.37 240.00 

Polynomial fit 

OIP 

-5.62 246.33 5.63 241.00 

Smoothed OIP -5.72 239.67 5.74 234.33 

 
Table 12.  Peak electrocaloric cooling and heating predictions in 1.05 µm thick PZT 95/05 measured from 285 ºC 

to 45 ºC in 20 ºC steps.   
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(a)  

(b)  

 
Figure 3-52.  As fig. 3-51, except calculations made at measurement temperatures only. 

 

 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Raw data -5.92 245.00 5.68 225.00 

Polynomial fit -5.62 245.00 5.46 225.00 

Smoothed -5.37 245.00 5.21 225.00 

 
Table 13.  As table 12, except calculations made at measurement temperatures only. 
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Some of the predictions described in fig. 3-51 were originally displayed in the earlier 

section of this chapter that explained the analysis methods and it was remarked upon how 

the temperature change predictions have a stepped characteristic as a function of starting 

temperature.  It was mentioned that this feature would be revisited.  In contrast to the ∆𝑇 

calculations made on the two datasets measured between 211 ºC and 275 ºC on the same 

film, their progression as a function of starting temperature is far smoother and for the 

first time here, the raw data lead to predictions that do not fluctuate along the starting 

temperature axis.  This is because the temperature interval between data measurement 

points is a lot larger, resulting in a relatively smoother 𝑃(𝑇) relationship.  This is 

illustrated by the following three graphs, which show the final sets of �𝜕𝑃
𝜕𝑇
�
𝐸

 curves 

extracted from raw data that are then integrated over the relevant field range to calculate 

∆𝑇 from each starting temperature.   

 

 
 

Figure 3-53.  1.05 µm thick PZT 95/05.  dP/dT vs. E from raw data measured from 285 ºC to 45 ºC in 20 ºC steps. 
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(a)  

(b)  

 
Figure 3-54.  1.05 µm thick PZT 95/05.  dP/dT vs. E from raw data measured (a) from 275 ºC to 211 ºC in 4 ºC 

steps and (b) from 211 ºC to 275 ºC in 1 ºC steps. 

 

As can be seen in the above two figures, the larger the temperature interval between 

measured data, the less erratic these pivotal �𝜕𝑃
𝜕𝑇
�
𝐸

 versus 𝐸 graphs become and the 

smoother the progression of ∆𝑇 predictions with starting temperature.  The stepping 

feature of fig. 3-51 occurs due to the small predicted temperature changes, of up to nearly 

6 ºC, relative to the temperature interval of raw data, which is 20 ºC.  For the calculations 

from raw data and those from 𝑃(𝑇) fit and smoothed data, the intermediate temperatures 

between raw data temperature points, lie on a straight line joining isofield, raw 𝑃(𝑇) 

points, so �𝜕𝑃
𝜕𝑇
�
𝐸

 is the same for these intermediate points at a given field.  Hence, when 

starting the series of 𝑑𝑇 calculations from one of these intermediate temperatures, many 

∆𝑇 results will have seen a very similar set of 𝑑𝑇 components in their integration and will 



 116 

be virtually identical for many of the starting temperatures in the 20 ºC intervals between 

raw data measurement temperatures.  As the polynomial fit OIP and smoothed OIP 

alternatives will provide �𝜕𝑃
𝜕𝑇
�
𝐸

 values that change gradually over the 20 ºC intervals, their 

∆𝑇 curves vary much more smoothly as a function of starting temperature. 

 

With respect to the negative electrocaloric effect, peak values are recorded in the table 

below: 

 

 COOLING (FIELD APPLIED) HEATING (FIELD RELEASED) 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

Calculated from many starting temperatures 

Raw data -1.98 65.00 1.98 64.00 

Polynomial fit -2.12 65.00 2.10 64.00 

Smoothed -1.51 85.00 1.49 84.00 

Polynomial fit 

OIP 

-2.11 47.67 2.14 45.00 

Smoothed OIP -1.69 57.00 1.69 54.33 

Calculated from measurement temperatures only 

Raw data -1.35 85.00 1.63 45.00 

Polynomial fit -1.80 65.00 1.70 45.00 

Smoothed -1.35 85.00 1.31 85.00 

 
Table 14.  Peak negative electrocaloric effect predictions in 1.05µm thick PZT 95/05 measured from 285 ºC to 45 

ºC in 20 ºC steps. 

 

The variation in peak ∆𝑇 predictions and their starting temperatures here, is larger than in 

previous results.  The largest range of peak changes are in heating calculations, from 

1.31 ºC to 2.14 ºC.  This is a spread of 0.83 ºC, which is 38.8% of the largest change, 

2.14 ºC.  The starting temperatures also vary most for the heating calculations, from 

45.00 ºC to 85.00 ºC.  This is due to a combination of smoothing and polynomial fits to 

𝑃(𝑇) diverging in their approximations at the end of the temperature range of the dataset 

and the odd ∆𝑇 calculation running off the 𝑃(𝐸,𝑇) surface and thus not being recorded, 
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as the calculation was not possible over the entire field range.  As noted earlier, the raw 

data should give the most reliable predictions in light of the poor fits and smoothing 

alternatives.  Unfortunately, calculations on raw data from measurement temperatures 

only, have suffered from ∆𝑇 calculations running off the 𝑃(𝐸,𝑇) surface and the only 

remaining noteworthy predictions are -1.98 ºC cooling from application of a field of 

476 kV/cm and 1.98 ºC of heating from the release of the same field. 

 

3.3.5. Parameter variation 

 

Five of the following six datasets were measured on the same 1.05 µm thick PZT 95/05 

sample, over 50 V. These include three datasets that were measured from 45 ºC and 

285 ºC, where hysteresis loops were taken every 5 ºC, 20 ºC and 30 ºC, respectively.  

Data were recorded in these three cases, as in all examples so far, in 10 kHz hysteresis 

loops (1 ms period).  This equates to second quadrant data comprising 25 points, each 

measured 1 µs apart.  The other two datasets of the five measured across 50 V, were 

measured from 230 ºC to 280 ºC in 5 ºC steps and 275 ºC to 215 ºC in 3 ºC steps, using 

1 kHz hysteresis loops (0.1 ms period), where data are also recorded every 1 µs, hence 

there are 250 points per second quadrant.  There was no evidence of leakage in any of the 

hysteresis loops.  The sixth dataset was measured from 300 ºC to 200 ºC in 10 ºC steps, in 

10 kHz loops, on the same film, but over 75 V.  ∆𝑇 calculations were then performed 

over 50 V for comparison with the other five datasets, by setting the upper field limit 

accordingly.  Additionally, the sample was left for an extra ten minutes at each 

measurement temperature, before taking a loop for this dataset. 

  



 118 

 

(a)  

(b)  

 
Figure 3-55.  1.05 µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops measured from 45 ºC to 

285 ºC in 5 ºC steps.  (b) P(E,T). 3D view of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-56.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 

8th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 8th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 45 ºC to 285 ºC in 5 ºC steps. 
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(a)  

(b)  

 
Figure 3-57.  1.05 µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops measured from 45 ºC to 

285 ºC in 20 ºC steps.  (b) P(E,T). 3D view of the same data. 

 

(a)  



 121 

(b)  

(c)  

(d)  

 
Figure 3-58.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 

6th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 6th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 45 ºC to 285 ºC in 20 ºC steps. 
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(a)  

(b)  

 
Figure 3-59.  1.05 µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops measured from 45 ºC to 

285 ºC in 30 ºC steps.  (b) P(E,T). 3D view of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-60.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 

6th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 6th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 45 ºC to 285 ºC in 30 ºC steps. 
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(a)  

(b)  

 
Figure 3-61.  1.05 µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops measured from 300 ºC to 

200 ºC in 10 ºC steps, where settling time at each temperature was increased to 10 minutes.  (b) P(E,T). 3D view 

of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-62.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 

4th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 300 ºC to 200 ºC in 10 ºC steps. 
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(a)  

(b)  

 
Figure 3-63.  1.05 µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops (250 points) measured from 

230 ºC to 280 ºC in 5 ºC steps.  (b) P(E,T). 3D view of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-64.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 

4th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 230 ºC to 280 ºC in 5 ºC steps. 
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(a)  

(b)  

 
Figure 3-65.  1.05 µm thick PZT 95/05.  (a) Second quadrant data from P(E) loops (250 points) measured from 

275 ºC to 215 ºC in 3 ºC steps.  (b) P(E,T). 3D view of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-66.  1.05 µm thick PZT 95/05.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 

4th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 275 ºC to 215 ºC in 3 ºC steps. 

 



 130 

Another notable feature is that the 45 ºC to 285 ºC datasets that were measured at 20 ºC 

and 30 ºC intervals used the same top electrode, on the same day.  The sample and 

electrical connections were not disturbed between measurement runs, nor was the vacuum 

in the cryostat broken.  The same applies to the 230 ºC to 280 ºC and 275 ºC to 215 ºC 

datasets.  

 

A comparison between the ∆𝑇 predictions follows: 

 

 
 

Figure 3-67.  1.05 µm thick PZT 95/05.  Electrocaloric heating and cooling predictions for six datasets from raw 

data.  Calculations from measurement temperatures only. 
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(a)  

(b)  

 
Figure 3-68.  1.05 µm thick PZT 95/05.  Electrocaloric heating and cooling predictions for six datasets from (a) 

polynomial fits to and (b) boxcar smoothing of raw P(T) data.  Calculations from measurement temperatures 

only. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

45-285 ºC in 5 ºC steps 

Raw data -6.11 250.00 7.87 230.00 

Polynomial fit -5.76 245.00 5.85 240.00 

Smoothed -6.32 245.00 6.64 235.00 

45-285 ºC in 20 ºC steps 

Raw data -4.93 245.00 4.78 225.00 

Polynomial fit -4.81 265.00 4.67 245.00 

Smoothed -4.47 245.00 4.33 225.00 

45-285 ºC in 30 ºC steps 

Raw data -5.16 255.00 4.91 225.00 

Polynomial fit -5.39 255.00 5.14 225.00 

Smoothed -4.90 255.00 4.66 225.00 

300-200 ºC in 10 ºC steps 

Raw data -6.06 240.00 6.01 230.00 

Polynomial fit -5.82 250.00 5.77 240.00 

Smoothed -5.77 241.33 5.72 230.00 

230-280 ºC in 5 ºC steps 

Raw data -5.92 250.00 5.91 245.00 

Polynomial fit -4.97 250.00 4.96 245.00 

Smoothed -4.87 250.00 4.87 245.00 

275-215 ºC in 3 ºC steps 

Raw data -6.25 257.00 6.92 251.00 

Polynomial fit -6.20 275.00 6.05 266.00 

Smoothed -6.05 272.00 6.03 266.00 

 
Table 15.  Peak electrocaloric cooling and heating predictions in 1.05 µm thick PZT 95/05 from six datasets, 

where calculations were made from measurement temperatures only. 
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Figure 3-69.  1.05 µm thick PZT 95/05.  Electrocaloric heating and cooling predictions for six datasets from raw 

data.  Calculations from measurement temperatures and additional intermediate temperatures. 
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(a)  

(b)  

 
Figure 3-70.  1.05 µm thick PZT 95/05.  Electrocaloric heating and cooling predictions for six datasets from (a) 

polynomial fits to and (b) boxcar smoothing of raw P(T) data.  Calculations from measurement temperatures 

and additional intermediate temperatures. 
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(a)  

(b)  

 
Figure 3-71.  1.05 µm thick PZT 95/05.  Electrocaloric heating and cooling predictions for six datasets from (a) 

polynomial OIP fits to and (b) boxcar smoothing OIP of raw P(T) data.  Calculations from measurement 

temperatures and additional intermediate temperatures. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

45-285 ºC in 5 ºC steps 

Raw data -7.82 238.00 7.87 230.00 

Polynomial fit -5.85 246.00 5.85 240.33 

Smoothed -6.65 242.33 6.66 235.67 

Polynomial fit 

OIP 

-5.83 245.00 5.82 239.33 

Smoothed OIP -7.31 238.67 7.32 231.33 

45-285 ºC in 20 ºC steps 

Raw data -4.95 246.33 4.95 242.33 

Polynomial fit -4.81 265.00 4.76 242.33 

Smoothed -4.50 246.33 4.49 242.33 

Polynomial fit 

OIP 

-4.86 251.67 4.86 246.33 

Smoothed OIP -4.87 239.67 4.86 234.33 

45-285 ºC in 30 ºC steps 

Raw data -5.16 255.00 5.15 249.00 

Polynomial fit -5.39 255.00 5.38 249.00 

Smoothed -4.90 255.00 4.88 249.00 

Polynomial fit 

OIP 

-5.37 251.00 5.38 245.00 

Smoothed OIP -5.01 245.00 5.02 239.00 

300-200 ºC in 10 ºC steps 

Raw data -6.07 243.33 6.07 237.33 

Polynomial fit -5.85 242.00 5.84 236.67 

Smoothed -5.77 241.33 5.77 235.33 

Polynomial fit 

OIP 

-5.84 244.67 5.84 238.67 

Smoothed OIP -6.00 240.00 6.00 234.00 
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230-280 ºC in 5 ºC steps 

Raw data -5.95 250.33 5.93 244.33 

Polynomial fit -4.97 250.00 4.96 245.00 

Smoothed -4.87 250.00 4.87 245.33 

Polynomial fit 

OIP 

-5.00 248.67 5.00 243.67 

Smoothed OIP -5.75 250.33 5.74 244.67 

275-215 ºC in 3 ºC steps 

Raw data -6.92 258.20 6.99 252.20 

Polynomial fit -6.20 275.00 6.18 268.60 

Smoothed -6.05 272.00 6.03 266.00 

Polynomial fit 

OIP 

-6.18 275.00 6.18 268.80 

Smoothed OIP -6.85 258.80 6.85 252.00 

 
Table 16.  Peak electrocaloric cooling and heating predictions in 1.05µm thick PZT 95/05 from six datasets, 

where calculations were made from measurement temperatures and additional intermediate temperatures. 

 

3.3.6. peak ∆T predictions 

 

It is now possible to compare the extent of variations in peak ∆𝑇 predictions and their 

starting temperatures, across many datasets measured on the same film.  The greatest 

difference between the data procured is that some were measured using different top 

electrodes on the sample, with either 25 or 250 points per second loop quadrant, where 

loops were taken at varying temperature intervals, over different temperature ranges.  

Even so, the starting temperature region where peak temperature changes are predicted, 

was included in every dataset.  ∆𝑇 predictions were calculated from five reasonable sets 

of 𝑃(𝑇) data, at measurement temperatures only, or by including intermediate 

temperatures in three ways. 

 

This comparison covers the six datasets shown in the last section, the ‘285 ºC to 45 ºC in 

20 ºC steps’ dataset presented in the section including the negative electrocaloric effect 

and the two datasets measured between 211 ºC and 275 ºC.  These last two were 
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measured over 75 V, but have been analysed here over 50 V, by reducing the upper field 

limit for ∆𝑇 calculation. 

 

 
 

Figure 3-72.  Peak ∆T as a function of starting temperature, for nine datasets. 

 

The peak predictions shown in the above figure are for both heating and cooling.  The 

nine datasets have sixteen predictions each, eight for cooling and eight for heating, as 

presented in peak ∆𝑇 tables such as table 15 and table 16. 

 

 
 

Figure 3-73.  As above figure, excluding peaks from erratic ∆T curves. 
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Figure 3-73 contains fewer data points than the previous figure, having excluded those 

values that came from ∆𝑇 prediction curves that varied erratically as a function of starting 

temperature.  As it can be seen that all measured 𝑃(𝐸,𝑇) surfaces follow a generally 

smooth curvature, the ∆𝑇 prediction results using any one method, that fluctuate as a 

function of starting temperature more than they actually follow a trend, could be regarded 

as invalid.  It is obviously a subjective decision as to which ∆𝑇 results this would include, 

but here the excluded ∆𝑇 sets are those calculated from raw data and 𝑃(𝑇) smoothing 

OIP in the following datasets: ‘45 ºC to 285 ºC in 5 ºC steps’, ‘275 ºC to 215 ºC in 3 ºC 

steps’, ‘211 ºC to 275 ºC in 1 ºC steps’ and ‘275 ºC to 211 ºC in 4 ºC steps’.  The 

following tables summarise the extent to which ∆𝑇 predictions vary. 

 

 Largest 
peak ∆T 
spread 

(ºC) 

Largest 
peak ∆T 
spread in 
% terms 

of its 
largest 

peak ∆T 

Largest 
peak ∆T 
starting 

temperature 
spread (ºC) 

Average 
peak  ∆T 
spread 

(ºC) 

Average 
peak ∆T 
spread in 
% terms 

of its 
largest 

peak ∆T 

Average 
peak ∆T 
starting 

temperature 
spread (ºC) 

Considering all individual datasets 
Eight 

alternative 
sets of 

predictions 

3.74 26.3 43.94 1.51 14.3 14.52 

Smoothly 
varying 

predictions 

2.26 18.2 25.33 0.72 8.1 8.76 

 
Table 17. Peak ∆T prediction variation.  PZT 95/05. 

 

Prediction results per individual dataset vary whether one decides to calculate from 

measurement temperatures alone, or whether to include intermediate temperature points.  

All ∆𝑇 results are encompassed by the second method when intermediate points are 

established along straight lines joining 𝑃(𝑇) data points, but the first method gives less 

precise starting temperature predictions and either approach is reasonable.   

 

In the above table, the first row considers all predictions per dataset, whereas the second 

excludes erratic ∆𝑇 curves, i.e. it considers values presented in fig. 3-73.  Each individual 

dataset will have a range of peak ∆𝑇 predictions, one range for heating predictions and 
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one range for cooling predictions.  The widest of these ranges is shown in the first data 

column.  The width of each range, expressed as a percentage of its largest peak ∆𝑇 

prediction, is then compared with the other ranges and the largest value is recorded in the 

second data column.  These peak ∆𝑇 predictions have corresponding starting 

temperatures, so the starting temperature ranges are also compared and the largest 

recorded in the third data column.  The average peak ∆𝑇 spread size is recorded in the 

fourth data column.  The fifth data column shows the average of the percentages 

considered for the second data column and the final column shows the average of the 

starting temperature ranges considered for the third data column. 

 

Even when omitting dubious ∆𝑻 predictions, it can be seen that the analysis method 

alone accounts for a variation in peak ∆𝑻 results that can represent up to 18.2% of 

its largest peak ∆𝑻 prediction, over a 25.33 ºC range of starting temperatures. 
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 Peak ∆T 
spread (ºC) 

Peak ∆T 
spread in 

% terms of 
its largest 
peak ∆T 

Peak ∆T 
starting 

temperature 
spread (ºC) 

Over two datasets: 45-285 ºC 20s & 45-285 ºC 30s.  Same electrode, measured same day. 
Eight 

alternative 
sets of 

predictions 

1.05 19.5 24.00 

Smoothly 
varying 

predictions 

1.05 19.5 24.00 

Over two datasets: 230-280 ºC 5s & 275-215 ºC 3s.  Same electrode, measured same day. 
Eight  

alternative 
sets of 

predictions 

2.12 30.3 26.33 

Smoothly 
varying 

predictions 

1.33 21.5 26.33 

Over two datasets: 211-275 ºC 1s & 275-211 ºC 4s.  Same electrode, consecutive days. 
Eight  

alternative 
sets of  

predictions 

1.64 24.8 20.00 

Smoothly 
varying 

predictions 

0.97 16.2 20.00 

Over all 50 V range calculations.  Same film, some different electrodes, mostly different 
days. 

Eight 
alternative 

sets of 
predictions 

3.54 45.0 44.87 

Smoothly 
varying 

predictions 

2.33 35.0 44.87 

 
Table 18.  Peak ∆T prediction variation.  PZT 95/05. 

 

Table 18 groups together peak ∆𝑇 predictions from more than one dataset and looks at the 

variation of these values as a whole.  The first three sets of results look at all peak ∆𝑇 

values from datasets that were measured using the same top electrode.  The largest 

variation is seen from values calculated from the two datasets measured from 230 ºC to 

280 ºC, in 5 ºC steps and 275 ºC to 215 ºC in 3 ºC steps.  This increases the variation in 

reliable peak ∆𝑻 results, compared to individual datasets, that can represent up to 
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21.5% of its largest peak ∆𝑻 prediction, over a 26.33 ºC range of starting 

temperatures. 

 

Finally, when pooling all peak ∆𝑻 predictions for the same sample, over the same 

voltage range, the reliable peak ∆𝑻 results can cover up to 35.0% of the largest peak 

∆𝑻 prediction, over a 44.87 ºC range of starting temperatures. 

 

3.4. PMN-PT 

 

PMN-PT here, refers to 0.93PbMg1/3Nb2/3-0.07PbTiO3.  Two films were studied, one of 

225 nm and another of 700 nm in thickness.  They were fabricated by Tatiana Correia at 

Cranfield University as described in the experimental method section.  Three datasets are 

presented here for each sample.  The datasets taken on the 225 nm thick sample were 

measured over a voltage range of 14 V, equivalent to 622 kV/cm, whereas the datasets of 

the 700 nm thick sample were taken over 50 V, equivalent to 714 kV/cm.  None of the 

datasets was measured at the same electrode.  The volumetric heat capacity was based on 

a specific heat capacity of 371 J/K.kg and a density of 8080 kg/m3 [28]. 

 

PMN-PT is an unexpected candidate for the indirect method, as it is a relaxor ferroelectric 

and it is known that relaxors can vary in their polarization response to a voltage sweep 

depending on the speed at which that sweep is carried out.  One could measure 

significantly varying 𝑃(𝐸) loops as a result. 

 

The benefit of applying the indirect method to ferroelectrics is their generally larger 

polarization response to given fields and thus, larger entropy change.  The down side is 

that for nearly every field there are nominally, two equilibrium states, where the indirect 

method formally requires just one.  When applying the indirect method to ferroelectrics, 

the thought is that, for example, every time a field is released from a given maximum, at 

which the polarization of the material is saturated, the material passes through the same 

set of equilibrium states represented by the second quadrant data of hysteresis loops and 

the use of thermodynamics is perhaps justified, or at least, represents an approximation 

under these conditions. 
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When considering frequency-dependent relaxors, one could try measuring 𝑃(𝐸) loops at 

ever lower frequencies with the hope that leakage does not become significant and that 

the resulting 𝑃(𝐸,𝑇) surfaces at sufficiently slow speeds differ negligibly.  Then the 

slowest surface would be taken to represent equilibrium states.  However, the literature 

suggests that relaxors are never in equilibrium [60-62].  Nonetheless, of the 23 papers to 

date that include the indirect method, 16 refer to experiments on relaxor ferroelectrics, i.e. 

over two-thirds of the total. 

 

Several of these papers make no mention at all of this frequency dependence [19, 22, 24, 

28].  Others show dielectric constant measurements as a function of frequency [12, 13, 

17, 21, 25], over a temperature range, but still make no link to the equilibrium issue.  A 

few of those papers [12, 13, 17] show that over several decades of loop frequency, there 

is no perceptible difference in the dielectric constant over the temperature range of 

interest, but that is no case for a single, equilibrium 𝑃(𝐸,𝑇) surface on field release, as 

dielectric constants are measured with the application of a small, oscillating voltage over 

the relevant temperature range and reveal nothing of the polarization response at those 

frequencies when the applied bipolar voltage is responsible for fields of several hundred 

kilovolts per centimetre. 

 

Guyomar et al. published reservations towards the indirect method in 2006 [30], but 

despite this, the same group found indirect method predictions to “reasonably” agree 

(within ~ 40%) with direct calorimetry measurements for PMN-PT [27, 29].  It may be 

worth noting that their loops were relatively slow, at 1 Hz, compared to the majority of 

loop frequencies quoted in the literature, which are most often at 1 kHz.  Good agreement 

between indirect method predictions and direct measurements was also seen by Luo et al. 

[12] comparing their indirect results with one of the aforementioned papers by Sebald et 

al. [27].  Two papers [14, 21] recognise the equilibrium issue, but suggest possible 

validity of ∆𝑇 predictions, including ergodicity in one case, despite there being no 

evidence to support that.  Lu et al. [10] found that their direct measurements and indirect 

method predictions on ferroelectric polymers differed greatly, concluding a lack of 

ergodicity and that the indirect method was ineffective.  
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The indirect method applied to the two PMN-PT samples studied here, results in a 

significantly wider variation in ∆𝑇 predictions, compared to the earlier results on PZT, 

where variations reach 79.4% of the maximum, reliable ∆𝑇 predictions, for that sample. 

 

3.4.1. 225 nm thick 

 

(a)  

(b)  

 
Figure 3-74.  225 nm thick PMN-PT.  (a) Second quadrant data from P(E) loops (250 points) measured from -

100 ºC to 100 ºC in 10 ºC steps.  Loop frequency, 100 Hz (10 ms period). (b) P(E,T). 3D view of the same data. 
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(a)  

(b)  

(c)  
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(d)  

 
Figure 3-75.  225 nm thick PMN-PT.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 4th 

order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit OIP (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from -100 ºC to 100 ºC in 10 ºC steps. 
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(a)  

(b)  

 
Figure 3-76.  225 nm thick PMN-PT.  (a) Second quadrant data from P(E) loops (250 points) measured from 0 ºC 

to 75 ºC in 5 ºC steps.  Loop frequency, 1kHz (1 ms period). (b) P(E,T). 3D view of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-77.  225 nm thick PMN-PT.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 4th 

order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit OIP. (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 0 ºC to 75 ºC in 5 ºC steps. 
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(a)  

(b)  

 
Figure 3-78.  225 nm thick PMN-PT.  (a) Second quadrant data from P(E) loops (250 points) measured from 0 ºC 

to 75 ºC in 5 ºC steps.  Between each loop measurement, the sample was taken up to 200 ºC before being cooled 

to the next measurement temperature.  Loop frequency, 1kHz (1 ms period). (b) P(E,T). 3D view of the same 

data. 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-79.  225 nm thick PMN-PT.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 4th 

order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit OIP. (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 0 ºC to 75 ºC in 5 ºC steps.  Between each loop measurement, the 

sample was taken up to 200 ºC before being cooled to the next measurement temperature. 
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The difference between the last two datasets is indicated in the above figure caption.  In 

the last dataset, the first loop was measured at 0 ºC, as in the previous dataset, but then 

the sample was heated to 200 ºC and subsequently cooled to the next highest 

measurement temperature and the process of heating to 200 ºC and cooled repeated, with 

the idea that this may remove thermal hysteresis effects.  For this reason, this dataset is 

referred to as ‘0-75Hyst 1kHz’ in the following graphs.  

 

A comparison between the ∆𝑇 predictions follows: 

 

 
 

Figure 3-80.  225 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from raw 

data.  Calculations from measurement temperatures only. 
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(a)  

(b)  

 
Figure 3-81.  225 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from (a) 

polynomial fits to and (b) boxcar smoothing of raw P(T) data.  Calculations from measurement temperatures 

only. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

0-75 ºC in 5 ºC steps.  1 kHz. 

Raw data -1.40 40.00 1.39 35.00 

Polynomial fit -0.31 25.00 0.30 20.00 

Smoothed -0.41 35.00 0.41 30.00 

0-75 ºC in 5 ºC steps – excursion to temperatures above Tc between each measurement.  

1 kHz. 

Raw data -1.31 70.00 1.50 10.00 

Polynomial fit -0.73 60.00 0.72 55.00 

Smoothed -1.01 50.00 1.00 45.00 

-100-100 ºC in 10 ºC steps.  100 Hz. 

Raw data -0.88 80.00 0.86 70.00 

Polynomial fit -0.48 30.00 0.46 20.00 

Smoothed -0.53 50.00 0.51 40.00 

 
Table 19.  Peak electrocaloric cooling and heating predictions in 225 nm thick PMN-PT from three datasets, 

where calculations were made from measurement temperatures only. 

 

 
 
Figure 3-82.  225 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from raw 

data.  Calculations from measurement temperatures and additional intermediate temperatures. 
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(a)  

(b)  

 
Figure 3-83.  225 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from (a) 

polynomial fits to and (b) boxcar smoothing of raw P(T) data.  Calculations from measurement temperatures 

and additional intermediate temperatures. 
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(a)  

(b)  

 
Figure 3-84.  225 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from (a) 

polynomial OIP fits to and (b) boxcar smoothing OIP of raw P(T) data.  Calculations from measurement 

temperatures and additional intermediate temperatures. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

0-75 ºC in 5 ºC steps.  1 kHz. 

Raw data -1.40 40.00 1.40 38.33 

Polynomial fit -0.31 25.00 0.31 24.67 

Smoothed -0.41 35.00 0.41 34.33 

Polynomial fit 

OIP 

-0.31 21.00 0.31 20.67 

Smoothed OIP -1.29 38.00 1.29 36.67 

0-75 ºC in 5 ºC steps – excursion to temperatures above Tc between each measurement.  

1 kHz. 

Raw data -1.52 14.67 1.52 13.33 

Polynomial fit -0.74 60.33 0.73 59.67 

Smoothed -1.01 50.00 1.01 48.67 

Polynomial fit 

OIP 

-0.73 58.33 0.73 57.67 

Smoothed OIP -1.40 13.00 1.40 11.67 

-100-100 ºC in 10 ºC steps.  100 Hz. 

Raw data -0.88 80.00 0.88 78.67 

Polynomial fit -0.48 30.00 0.48 29.33 

Smoothed -0.53 50.00 0.53 49.33 

Polynomial fit 

OIP 

-0.47 28.00 0.47 27.33 

Smoothed OIP -0.84 95.33 0.85 74.67 

 
Table 20.  Peak electrocaloric cooling and heating predictions in 225 nm thick PMN-PT from three datasets, 

where calculations were made from measurement temperatures and additional intermediate temperatures. 

  



 157 

3.4.2. 700 nm thick 

 

(a)  

(b)  

 
Figure 3-85.  700 nm thick PMN-PT.  (a) Second quadrant data from P(E) loops (250 points) measured from 

100 ºC to -100 ºC in 10 ºC steps.  Loop frequency, 1kHz (1 ms period). (b) P(E,T). 3D view of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-86.  700 nm thick PMN-PT.  P(T).  Red lines represent alternatives to isofield black data points.  (a) 4th 

order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit OIP. (d) 15-point boxcar 

smoothing OIP.  Data measured as P(E) from 100 ºC to -100 ºC in 10 ºC steps. 
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(a)  

(b)  

 
Figure 3-87.  700 nm thick PMN-PT.  (a) Second quadrant data from P(E) loops (25 points) measured from 75 ºC 

to 45 ºC in 5 ºC steps.  Loop frequency, 10kHz (0.1 ms period). (b) P(E,T). 3D view of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-88.  700 nm thick PMN-PT.  From 10 kHz loops.  P(T).  Red lines represent alternatives to isofield 

black data points.  (a) 4th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit 

OIP. (d) 15-point boxcar smoothing OIP.  Data measured as P(E) from 75 ºC to 45 ºC in 5 ºC steps. 
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(a)  

(b)  

 
Figure 3-89.  700 nm thick PMN-PT.  (a) Second quadrant data from P(E) loops (250 points) measured from 

75 ºC to 45 ºC in 5 ºC steps.  Loop frequency, 1kHz (1 ms period). (b) P(E,T). 3D view of the same data. 

 

(a)  
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(b)  

(c)  

(d)  

 
Figure 3-90.  700 nm thick PMN-PT.  From 1 kHz loops.  P(T).  Red lines represent alternatives to isofield black 

data points.  (a) 4th order polynomial fit.  (b) Three-point boxcar smoothing.  (c) 4th order polynomial fit OIP. (d) 

15-point boxcar smoothing OIP.  Data measured as P(E) from 75 ºC to 45 ºC in 5 ºC steps. 

 

A comparison between the ∆𝑇 predictions follows: 
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Figure 3-91.  700 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from raw 

data.  Calculations from measurement temperatures only. 
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(a)  

(b)  

 
Figure 3-92.  700 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from (a) 

polynomial fits to and (b) boxcar smoothing of raw P(T) data.  Calculations from measurement temperatures 

only. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

75-45 ºC in 3 ºC steps.  10 kHz. 

Raw data -2.96 66.00 2.96 63.00 

Polynomial fit -0.98 66.00 0.98 63.00 

Smoothed -1.35 51.00 1.35 48.00 

75-45 ºC in 3 ºC steps.  1 kHz. 

Raw data -1.34 51.00 1.34 69.00 

Polynomial fit -0.28 66.00 0.34 66.00 

Smoothed -0.73 51.00 0.74 48.00 

100 to -100 ºC in 10 ºC steps.  1 kHz. 

Raw data -1.36 80.00 1.33 70.00 

Polynomial fit -0.80 50.00 0.78 40.00 

Smoothed -0.94 80.00 0.92 70.00 

 
Table 21.  Peak electrocaloric cooling and heating predictions in 700 nm thick PMN-PT from three datasets, 

where calculations were made from measurement temperatures only. 

 

 
 
Figure 3-93.  700 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from raw 

data.  Calculations from measurement temperatures and additional intermediate temperatures. 
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(a)  

(b)  

 
Figure 3-94.  700 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from (a) 

polynomial fits to and (b) boxcar smoothing of raw P(T) data.  Calculations from measurement temperatures 

and additional intermediate temperatures. 
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(a)  

(b)  

 
Figure 3-95.  700 nm thick PMN-PT.  Electrocaloric heating and cooling predictions for three datasets from (a) 

polynomial fits OIP to and (b) boxcar smoothing OIP of raw P(T) data.  Calculations from measurement 

temperatures and additional intermediate temperatures. 
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 COOLING HEATING 

 Peak change 

(ºC) 

At (ºC) Peak change 

(ºC) 

At (ºC) 

75-45 ºC in 3 ºC steps.  10 kHz. 

Raw data -2.96 66.00 2.96 63.00 

Polynomial fit -0.93 66.20 0.98 65.00 

Smoothed -1.35 51.00 1.35 49.60 

Polynomial fit 

OIP 

-0.99 64.80 0.99 63.80 

Smoothed OIP -2.34 66.00 2.34 63.60 

75-45 ºC in 3 ºC steps.  1 kHz. 

Raw data -1.44 69.80 1.49 68.40 

Polynomial fit -0.34 68.80 0.34 68.60 

Smoothed -0.73 51.00 0.74 48.00 

Polynomial fit 

OIP 

-0.35 67.20 0.35 66.80 

Smoothed OIP -1.59 74.20 1.71 72.40 

100 to -100 ºC in 10 ºC steps.  1 kHz. 

Raw data -1.36 80.00 1.36 78.00 

Polynomial fit -0.80 50.00 0.80 48.67 

Smoothed -0.94 80.00 0.94 78.67 

Polynomial fit 

OIP 

-0.79 50.00 0.79 49.33 

Smoothed OIP -1.34 75.33 1.34 74.00 

 
Table 22.  Peak electrocaloric cooling and heating predictions in 700 nm thick PMN-PT from three datasets, 

where calculations were made from measurement temperatures and additional intermediate temperatures. 
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3.4.3. peak ∆T predictions 

 

(a)  

(b)  

 
Figure 3-96.  Peak ∆T as a function of starting temperature, for (a) three 225 nm sample datasets and (b) three 

700 nm sample datasets. 
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(a)  

(b)  

 
Figure 3-97.  As above figure, excluding values from erratic ∆T curves. 

 

The data measured on the two PMN-PT sample were less well-behaved compared to the 

PZT data and the isofield progression of 𝑃(𝑇) was less clear.  Hence, there were more 

alternative 𝑃(𝑇) options that led to ∆𝑇 results that fluctuated greatly as a function of 

starting temperature and could be considered dubious.   The excluded ∆𝑇 sets for the 

225 nm PMN-PT sample are all those from raw data, all from smoothed OIP data and 

from standard smoothing in the ‘0-75 1kHz’ and ‘0-75Hyst 1kHz’ datasets.  In the case of 

the 700 nm sample, ∆𝑇 calculations from raw data and all smoothing operations were 

ignored from the ’75-45 10kHz’ and ‘75-45 1kHz’ datasets.  The following tables 

summarise the extent to which ∆𝑇 predictions vary. 

 



 171 

 Largest 
peak ∆T 
spread 

(ºC) 

Largest 
peak ∆T 
spread in 
% terms 

of its 
largest 

peak  ∆T 

Largest 
peak ∆T 
starting 

temperature 
spread (ºC) 

Average 
peak ∆T 
spread 

(ºC) 

Average 
peak ∆T 
spread in 
% terms 

of its 
largest 

peak  ∆T 

Average 
peak ∆T 
starting 

temperature 
spread (ºC) 

225 nm sample: considering the three individual datasets 
Eight 

alternative 
sets of 

predictions 

1.10 78.6 67.33 0.77 59.2 45.00 

Smoothly 
varying 

predictions 

0.11 26.8 30.00 0.06 13.1 15.72 

 
Table 23.  Peak ∆T prediction variation.  225 nm PMN-PT. 

 

 Largest 
peak ∆T 
spread 

(ºC) 

Largest 
peak ∆T 
spread in 
% terms 

of its 
largest 

peak ∆T 

Largest 
peak ∆T 
starting 

temperature 
spread (ºC) 

Average 
peak ∆T 
spread 

(ºC) 

Average 
peak ∆T 
spread in 
% terms 

of its 
largest 

peak  ∆T 

Average 
peak ∆T 
starting 

temperature 
spread (ºC) 

700 nm sample: considering the three individual datasets 
Eight 

alternative 
sets of 

predictions 

2.03 82.4 38.67 1.31 63.8 25.70 

Smoothly 
varying 

predictions 

0.58 42.6 38.67 0.22 23.4 12.91 

 
Table 24.  Peak ∆T prediction variation.  700 nm PMN-PT. 
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The above two tables follow the same format and meaning as established with the PZT 

results.  It is clear from the peak ∆𝑇 graphs how the predictions are far more dispersed, 

though one must take into account the much smaller values.  In relative terms, the peak 

∆𝑇 values are far more varied, compared to the PZT results, whereas the starting 

temperature spreads are quite similar.  

 

Ignoring dubious ∆𝑻 predictions, the analysis method alone accounts for a variation 

in peak ∆𝑻 results that can represent up to 42.6% of its largest peak ∆𝑻 prediction, 

over a 38.67 ºC range of starting temperatures. 

 

 Peak ∆T 
spread (ºC) 

Peak ∆T 
spread in 

% terms of 
its largest 
peak ∆T 

Peak ∆T 
starting 

temperature 
spread (ºC) 

225 nm sample: over all datasets. 
Eight 

alternative 
sets of 

predictions 

1.22 80.3 82.33 

Smoothly 
varying 

predictions 

0.57 64.8 40.33 

700 nm sample: over all datasets. 
Eight  

alternative 
sets of 

predictions 

2.68 90.5 38.67 

Smoothly 
varying 

predictions 

1.08 79.4 38.67 

 
Table 25.  Peak ∆T prediction variation.  PMN-PT. 

 

When considering all ∆𝑻 predictions for each sample, over the same voltage range 

per sample, the reliable ∆𝑻 results for the 225 nm sample can cover up to 64.8% of 

the largest ∆𝑻 prediction, over a 40.33 ºC range of starting temperatures, while for 

the 700 nm sample, that percentage rises to 79.4%, over a 38.67 ºC range of starting 

temperatures. 
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4. Applicability of thermodynamics 

4.1.   Thermodynamic behaviour 

 

The last chapter presented much 𝑃(𝐸,𝑇) data and many electrocaloric temperature 

change predictions using the indirect method, finding that much variation is possible just 

by the way one decides to treat the data and that when many datasets measured on the 

same, small sample of material are considered, predicted ∆𝑇 can vary by up to 35%, for 

PZT. 

 

The underlying and most important question from the point of view of this author, is 

whether or not it is justifiable to apply the thermodynamically based indirect method to 

electrocaloric predictions in ferroelectrics.  The fundamental issues that precede the 

practical deduction of temperature changes via the indirect method, are whether or not the 

material passes through equilibrium points during loop measurement and the extent of the 

reversibility of that process.  Dragan Damjanovic has done much to study the reversibility 

of ferroelectrics [63-66], but even if those questions were answered, it remains to be seen 

how well predictions from the indirect method fare against direct measurements.  To date, 

far too little has been published on that topic for any conclusions to have been drawn. 

 

Curiously, if one delves deeper into the indirect method, several further conditions are 

found, that a 𝑃(𝐸,𝑇) surface must meet in order for it to be thermodynamic, which can be 

tested just by looking at the data itself.  This is where the four equivalent 𝑑𝑇 equations 

describing isentropic temperature changes due to the electrocaloric effect, derived at the 

end of chapter 2, become useful.  They are presented again, below: 

 
(4.1) 

𝑑𝑇 = −�
𝑇
𝑐�𝐸0

�
𝜕𝑃
𝜕𝑇�𝐸0

𝑑𝐸0 

 
(4.2) 

𝑑𝑇 = �
𝑇
𝑐�𝑃

�
𝜕𝐸0
𝜕𝑇 �𝑃

𝑑𝑃 
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(4.3) 

𝑑𝑇 = �
𝑇
𝑐�𝑃

�
𝜕𝐸
𝜕𝑇�𝑃

𝑑𝑃 

 
(4.4) 

𝑑𝑇 = −�
𝑇
𝑐�𝐸

�
𝜕𝑃
𝜕𝑇�𝐸

𝑑𝐸 

 

If the assumptions upon which the indirect method are based are correct, then these four 

𝑑𝑇 equations are equivalent at each point on a thermodynamic 𝑃(𝐸,𝑇) surface.  In the 

electrocaloric literature, 𝑐𝐸, 𝑐𝐸0 and 𝑐𝑃 have traditionally been taken as constant over 

isentropic temperature and field changes, but when one considers any given point on the 

𝑃(𝐸,𝑇) surface, which represents a specific state of the system, the volumetric heat 

capacity, or any type of heat capacity, can only have one value for that state, so 𝑐𝐸, 𝑐𝐸0 

and 𝑐𝑃 are identical at any given point on the 𝑃(𝐸,𝑇) surface.  This simplifies the 

equivalence to the following: 

 
(4.5) 

−�
𝜕𝑃
𝜕𝑇�𝐸0

𝑑𝐸0 = �
𝜕𝐸0
𝜕𝑇 �𝑃

𝑑𝑃 = �
𝜕𝐸
𝜕𝑇�𝑃

𝑑𝑃 = −�
𝜕𝑃
𝜕𝑇�𝐸

𝑑𝐸 

 

There is a very helpful illustration that can be used in this situation.  In the infinite 

capacitor model implicit in the thermodynamic treatment, 

𝐷 = 𝜀0𝐸0 = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑛 𝑜𝑛𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒.  This surface charge density 

is made up of two other surface charge densities: 𝜀0𝐸 + 𝑃, which can be pictured as 

follows: 
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Figure 4-1.  Relative charge densities on one capacitor electrode. 

 

where the length of each line is proportional to the surface charge density that each 

quantity represents.  So first of all, it can be seen from the above figure that: 

 
(4.6) 

�
𝜕𝐸
𝜕𝑇�𝑃

= �
𝜕𝐸0
𝜕𝑇 �𝑃

 

 

As when one holds 𝑃, i.e. the length of the red line representing 𝑃 remains unchanged, 

then any change in 𝜀0𝐸0 will be equal to the change in 𝜀0𝐸 and the change in 𝐸0 will be 

the same as the change in 𝐸.  So this can reduce equation 4.5 to: 

 
(4.7) 

�
𝜕𝐸
𝜕𝑇�𝑃

𝑑𝑃 = −�
𝜕𝑃
𝜕𝑇�𝐸0

𝑑𝐸0 = −�
𝜕𝑃
𝜕𝑇�𝐸

𝑑𝐸 

 

This expression can be simplified to: 

 
(4.8) 

𝑎𝑥 = 𝑏𝑦 = 𝑐𝑧 

 

where 

𝑎 = �
𝜕𝐸
𝜕𝑇�𝑃

, 𝑥 = 𝑑𝑃, 𝑏 = −�
𝜕𝑃
𝜕𝑇�𝐸0

,𝑦 = 𝑑𝐸0, 𝑐 = −�
𝜕𝑃
𝜕𝑇�𝐸

, 𝑧 = 𝑑𝐸 

 

As 𝜀0𝐸0 = 𝜀0𝐸 + 𝑃, then 𝐸0 = 𝐸 + 𝑃
𝜀0

, so equation 4.7 can be rewritten: 
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(4.9) 

�
𝜕𝐸
𝜕𝑇�𝑃

𝑑𝑃 = −�
𝜕𝑃
𝜕𝑇�𝐸0

𝑑(𝐸 +
𝑃
𝜀0

) = −�
𝜕𝑃
𝜕𝑇�𝐸

𝑑𝐸 

 

or 

 
(4.10) 

𝑎𝑥 = 𝑏𝑧 + (𝑏𝑥/𝜀0) = 𝑐𝑧 

 

Therefore: 

 
(4.11) 

𝑧 =
𝑎𝑥
𝑐

= �
𝑎
𝑏
−

1
𝜀0
� 𝑥 

 

and 

 
(4.12) 

𝑎
𝑐

=
𝑎
𝑏
−

1
𝜀0

 

 

or 

 
(4.13) 

1
𝜀0𝑎

=
1
𝑏
−

1
𝑐

 

 

or 

 
(4.14) 

1
𝜀0
�
𝜕𝑇
𝜕𝐸�𝑃

= �
𝜕𝑇
𝜕𝑃�𝐸

− �
𝜕𝑇
𝜕𝑃�𝐸0

 



 177 

 

Any 𝑃(𝐸,𝑇) surface that is to be analysed by the indirect method, must comply with the 

above equation.  Besides this, there are two things that can be deduced logically.  The 

first is that �𝜕𝑃
𝜕𝑇
�
𝐸0

 and �𝜕𝑃
𝜕𝑇
�
𝐸

 have the same sign.  Whether one holds 𝐸0 or 𝐸, 𝑃 changes 

in the same direction with rising 𝑇.  For example, if dealing with a dielectric or 

ferroelectric, 𝑃 will decrease with temperature.  If 𝐸0 is held by keeping the charge on the 

electrodes constant, for example by disconnecting a charged capacitor from the battery, or 

if 𝐸 is kept constant by reducing the charge on the electrodes as 𝑇 goes up and 𝑃 goes 

down, either way, 𝑃 decreases with temperature.  In the case of PZT, for example, where 

there is a phase transition from antiferroelectric to ferroelectric with rising temperature 

for zinc concentrations above 90%, at around 180 ºC, 𝑃 can increase with temperature, 

but then again, it increases whether 𝐸0 or 𝐸 is held constant.  So �𝜕𝑃
𝜕𝑇
�
𝐸0

 and �𝜕𝑃
𝜕𝑇
�
𝐸

 have 

the same sign. 

 

The second thing to note is that �𝜕𝐸
𝜕𝑇
�
𝑃

 has the opposite sign to �𝜕𝑃
𝜕𝑇
�
𝐸

.  Taking a 

ferroelectric or dielectric again, consider �𝜕𝐸
𝜕𝑇
�
𝑃

.  As 𝑃 drops with rising temperature, then 

in order to maintain 𝑃 constant, one needs to raise 𝐸 as the temperature rises, so this 

gradient is positive.  The second gradient, �𝜕𝑃
𝜕𝑇
�
𝐸

, as explained in the last paragraph, is 

negative under these conditions.  It is straightforward to see that in the case where 𝑃 

increases with rising temperature, the same arguments apply, but the other way round.  So 

the signs of �𝜕𝑃
𝜕𝑇
�
𝐸

 and �𝜕𝐸
𝜕𝑇
�
𝑃

 are always opposite. 

 

Finally, coming back to equation 4.14, the two gradients on the right-hand side of the 

equation thus have the same sign, which is opposite to the sign of the gradient on the left-

hand side of the equation.  In order for this equation to be true, the magnitude of 

�𝜕𝑇
𝜕𝑃
�
𝐸0

must be larger than that of �𝜕𝑇
𝜕𝑃
�
𝐸

 

 

These conditions can be exploited by evaluating whether or not they are met on any 

measured 𝑃(𝐸,𝑇) surface, indicating the suitability of a surface for ∆𝑇 calculations. 
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4.2. A Search for valid datasets 

 

The programming facility of the graphing and analysis software, Igor Pro, was used to 

define functions (see appendix D) that would go through a set of 𝑃(𝐸,𝑇) data, point by 

point, testing for these three conditions and whether or not equation 4.14 was satisfied.  

𝑑𝑇 is the same for each point, being taken as next highest temperature, less the 

temperature of the point in question.  𝑑𝑇 can be cancelled through and (𝜕𝑃)𝐸, (𝜕𝑃)𝐸0 and 

(𝜕𝐸)𝑃 are then calculated over that temperature interval, in exactly the same way as 

�𝜕𝑃
𝜕𝑇
�
𝐸

 is assessed in indirect method calculations, i.e. forward-difference differentiation.   

Thus, the equation was put in the form: 

 
(4.15) 

(𝜕𝑃)𝐸 = 1
� 1
𝜀0𝜕𝐸

�
𝑃

+ � 1
𝜕𝑃�

𝐸0

�
 

 

and the results of the two sides were compared and deemed to be the same if they agreed 

within 2×10-6 C/m2.  𝑃 is measured to a precision of ± 5×10-7 C/m2, so 𝑑𝑃 has a 

tolerance of ± 10-6 C/m2, which would apply to the left-hand side.  As for the right-hand 

side, 𝜀0 reduces the measurement error of 𝐸, taking an exact film thickness and 

considering the voltage measurement precision of ± 5×10-5 V, to a negligible level, even 

for the smallest (𝜕𝐸)𝑃 and regardless of the relevant film thicknesses.  This leaves the 

precision of 𝑑𝑃 as the only applicable tolerance and the comparison of the two sides of 

the equation was between two 𝑑𝑃 values, which could differ by up to 2×10-6 C/m2.    

 

The results of these tests are shown in the table below: 
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 Met three conditions? Agreed with equation? 

Raw Poly Smth POIP SOIP Raw Poly Smth POIP SOIP 

PZT 95/05 

45-285 ºC. 5 ºC steps Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

45-285 ºC. 20 ºC steps Yes Yes Yes Yes Yes No No No Yes Yes 

45-285 ºC.  30 ºC steps Yes Yes Yes Yes Yes No No No Yes Yes 

211-275 ºC. 1 ºC steps Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

230-280 ºC. 5 ºC steps No No No No No No No No No No 

275-215 ºC. 3 ºC steps No No No No No No No No No No 

275-211 ºC. 4 ºC steps Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

285-45 ºC. 20 ºC steps Yes Yes Yes Yes Yes No No No Yes Yes 

300-200 ºC. 10 ºC steps Yes Yes Yes Yes Yes No No Yes Yes Yes 

1000 nm Slow Cool Yes Yes Yes Yes Yes No No No Yes Yes 

1100 nm Fast Cool No Yes Yes Yes Yes No Yes Yes Yes Yes 

PMN-PT 225 nm 

0-75 ºC. 5 ºC steps No No No No No No No No No No 

0-75 ºC. Hys 5 ºC steps No No No No No No No No No No 

-100-100 ºC. 10 ºC st No No No No No No No No No No 

PMN-PT 700 nm 

75-45 ºC 10kHz. 5ºC st Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

75-45 ºC 1kHz. 5ºC st No No No No No No No No No No 

100—100 ºC. 10 ºC st No No No No No No No No No No 

 
Table 26.  Indirect method conditions test - pass or fail. 
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The above table covers all the datasets presented in this thesis.  The raw data of each was 

tested, along with  the manipulated data, referred to by the column headings.  “Raw” is 

obviously raw data, “Poly” and “Smth” refer to the raw data 𝑃(𝐸,𝑇) surface being 

adjusted by polynomial fits to and smoothing of the 𝑃(𝑇) at different 𝐸, while “POIP” 

and “SOIP” refer to polynomial fits over intermediate 𝑃(𝑇) points and smoothing over 

intermediate points, respectively. 

 

For many datasets, the three conditions were met, but for the raw data and some 

adaptations of that, the data did not agree with the equation.  The simplest way to deal 

with that is to ignore the ∆𝑇 predictions from those sets of information.  There are, 

however, many datasets that do not pass any of the tests and the one thing they have in 

common is that there are 250 points per second loop quadrant, i.e. the data that make up 

the 𝑃(𝐸,𝑇) surface, has 250 data points at each temperature, as opposed to 25 in all other 

datasets.  This is because the data were taken more slowly.  To clarify, a data point was 

measured once every microsecond in most cases, but for the 250 data point second loop 

quadrant data, an entire loop was measured in 1 or 10 ms, as opposed to 0.1 ms, for the 25 

point data case.  This means that one gains much more real information in the 250 point 

case.  On inspection, it is clear why these datasets are failing the tests, as is shown in the 

following graphs: 
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(a)  

(b)  

 
Figure 4-2. (a) P(E) from 230-280 ºC dataset.  Branch taken at 270 ºC. Data points are not marked by crosses, 

but only joined by lines, due to their quantity, that would obscure their progression. (b) Close-up of spurious 

data point. 

 

Graph (a), in the above figure, contains 250 measured points and though the shape of this 

second quadrant of the measured hysteresis loop is clear, the odd point is an outlier to the 

general shape, as shown in graph (b), where 𝑃 values are measured as being higher than 

other 𝑃 values at higher field.  This will cause the 𝑃(𝐸,𝑇) surface to fail the conditions 

necessary for thermodynamic interpretation with the indirect method.  Specifically, as 𝐸0 

is calculated as a function of 𝐸 and 𝑃, a spurious value of 𝑃 can be large enough to cause 
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𝐸0 to be larger than 𝐸0 at higher 𝐸 values, resulting in �𝜕𝑃
𝜕𝑇
�
𝐸0

 being of opposite sign to 

�𝜕𝑃
𝜕𝑇
�
𝐸

, failing the first three conditions and consequently not agreeing with the equation. 

 

Why would there be these spurious values of 𝑃?  Is it a limitation of the ferroelectric 

tester, or perhaps just an accurate measure of reality, where the material varies in its 

polarization, over time, with 𝑃 being occasionally measured at an extreme limit of 

oscillating values of 𝑃, which varies at the nanosecond scale? 

 

A program was written that takes all the 𝑃 values at one temperature and tries to adjust 

the 𝑃 values at the next highest temperature and so on, to make all the points on the 

𝑃(𝐸,𝑇) surface comply with equation 4.15.  This, however, proved to be a very tricky 

task, as (𝜕𝑃)𝐸, (𝜕𝑃)𝐸0 and (𝜕𝐸)𝑃 all depend on ALL the 𝑃 values at the next highest 

temperature.  Recursive programs of many sorts were tried, but to no avail.  In the end, by 

simply deleting some intermediate 𝑃(𝐸) values, leaving a total of 25 𝑃(𝐸), roughly 

equally spread values, as with the other dataset branches, were the 𝑃(𝐸,𝑇) surfaces with 

250 points per temperature branch able to be reduced to 25 points and agree with the 

necessary conditions and equality of the indirect method.  The kind of improvement, in 

terms of the indirect method, in data, can be seen by looking at the same 𝑃(𝐸) branch as 

presented in fig. 4-2, that has been reduced to 25 points, below: 
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(a)  

(b)  

 
Figure 4-3. (a) P(E) from 230-280 ºC dataset.  Branch taken at 270 ºC. (b) Close-up of region shown in graph (b), 

fig. 4-2. 

 

In the above figure, one can see how 𝑃 is always larger at higher 𝐸, thus not suffering 

from the same problems as the 250 point branch datasets, when being assessed for 

compliance with the indirect method conditions.  In fact, when reassessing the 250 point 

branch datasets, when reduced to 25 points per branch, all except the raw data of the 230-

280 ºC dataset, passed the tests.  This changes the spread of ∆𝑇 predictions and their 

starting temperatures, most importantly for the comparisons across many datasets 

measured over the same voltage ranges.  In terms of the 1000SC and 1100FC PZT 95/05 

datasets, the 1000SC predictions are reduced to cooling between -25.38 ºC and -27.38 ºC 
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at 224.85 ºC and 235.38 ºC, respectively, or heating between 25.37 ºC and 27.32 ºC at 

199.27 ºC and 208.30 ºC, respectively, while the 1100FC predictions are hardly affected. 

 

The spread of the starting temperatures of the peak ∆𝑇 predictions, when comparing the 

data across the 230-280 ºC and 275-215 ºC datasets, which were measured at the same 

electrode, on the same day, does not change, though the peak ∆𝑇 values drop from being 

21.5% of the maximum ∆𝑇 prediction, to 19.0%.  This change is relevant, but 

insignificant. 

 

The new ∆𝑇 curves, from the datasets reduced from 250 points per temperature branch to 

25 points, are shown in the following figures:  

 

(a)  

(b)  

 
Figure 4-4. (a) Cooling predictions and (b) Heating predictions for 230-280 ºC dataset measured on PZT 95/05. 
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The peak “Smth OIP” data sits noticeably outside the rest of the predictions, but 

nonetheless varies smoothly and is worthy of consideration for this reason. 

 

(a)  

(b)  

 
Figure 4-5. (a) Cooling predictions and (b) Heating predictions for 275-215 ºC dataset measured on PZT 95/05. 

 

Looking at the effect these re-calculated values have on the spread of peak ∆𝑇 predictions 

for the 50 V PZT datasets, the following graph compares the more conservative 

assessments of such predictions before and after the improvement of the datasets, with 

respect to their validity for the indirect method. 
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(a)  

(b)  

 
Figure 4-6. (a)  Original ∆T prediction set for PZT 95/05, measured over 50 V, excluding erratic ∆T curves. (b) 

New ∆T prediction set that only includes predictions that comply with thermodynamic conditions. 

 

As with original ∆𝑇 prediction set, the excluded, erratic ∆𝑇 curves were deemed to be 

those determined from raw data and smoothed OIP data, for the ‘275-211 ºC 4s’, ‘211-

275 ºC 1s’, ‘275-215 3s’ and ’45-285 ºC 20s’ datasets.  Comparison between the above 

graphs shows seemingly little change, but the following table specifies the differences: 
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 Peak ∆T 

spread (ºC) 

Peak ∆T spread in % 

terms of its largest 

peak ∆T 

Peak ∆T starting 

temperature spread 

(ºC) 

PZT 95/05, over all 50 V range calculations. 

More smoothly varying 

predictions, BEFORE fixing 

datasets 

2.33 35.0 44.87 

More smoothly varying 

predictions, AFTER fixing 

datasets 

1.80 27.0 39.87 

 
Table 27.  Peak ∆T prediction variation.  PZT 95/05. 
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The PMN-PT, 225 nm sample ∆𝑇 predictions changed to the following: 

 

(a)  

(b)  

 
Figure 4-7. (a) Cooling predictions and (b) Heating predictions for 0-75 ºC dataset measured on PMN-PT 225 

nm. 
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(a)  

(b)  

 
Figure 4-8.  (a) Cooling predictions and (b) Heating predictions for 0-75 ºC (“Hysteresis removed”) dataset 

measured on PMN-PT 225 nm. 

 



 190 

(a)  

(b)  

 

Figure 4-9.  (a) Cooling predictions and (b) Heating predictions for -100-100 ºC dataset measured on PMN-PT 

225 nm. 
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The peak ∆𝑇 predictions from the 250 point-per-branch and 25 point-per-branch data are 

shown in the following graphs: 

 

(a)  

(b)  

 
Figure 4-10.  (a)  Original ∆T prediction set for 225 nm thick PMN-PT, measured over 14 V, excluding erratic 

∆T curves. (b) New ∆T prediction set that only includes predictions that comply with thermodynamic conditions. 

 

The excluded ∆𝑇 curves were those determined from raw data and smoothed OIP data in 

all three datasets, plus the smoothed data in the two datasets measured between 0 ºC and 

75 ºC.  The change in the peak ∆𝑇 variation is shown in the table below.  
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 Peak ∆T 

spread (ºC) 

Peak ∆T spread in % 

terms of its largest 

peak ∆T 

Peak ∆T starting 

temperature spread 

(ºC) 

PMN-PT 225 nm: over all datasets 

More smoothly varying 

predictions, BEFORE fixing 

datasets 

0.57 64.8 40.33 

More smoothly varying 

predictions, AFTER fixing 

datasets 

0.41 56.2 40.00 

 
Table 28.  Peak ∆T prediction variation.  225 nm PMN-PT. 
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Finally, two of the PMN-PT, 700 nm sample ∆𝑇 predictions changed to the following: 

 

(a) (b) 

 
 

Figure 4-11.  (a) Cooling predictions and (b) Heating predictions for 75-45 ºC, 1 kHz dataset measured on 

PMN-PT 700 nm. 
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(a) (b) 

 
 

Figure 4-12.  (a) Cooling predictions and (b) Heating predictions for 100 - -100 ºC, 1 kHz dataset measured on 

PMN-PT 700 nm. 

 

The peak ∆𝑇 predictions from the original PMN-PT 700 nm datasets and those after 

exchanging 250 point-per-branch data for 25 point-per-branch data are compared by the 

following two graphs: 
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(a) (b) 

 
 

Figure 4-13.  (a)  Original ∆T prediction set for 700 nm thick PMN-PT, measured over 50 V, excluding erratic 

∆T curves. (b) New ∆T prediction set that only includes predictions that comply with thermodynamic conditions. 

 

The excluded ∆𝑇 curves were those determined from raw data and smoothed OIP data in 

all three datasets, plus the smoothed data in the two datasets measured between 75 ºC and 

45 ºC.  The change in the peak ∆𝑇 variation is shown in the table below. 
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 Peak ∆T spread 
(ºC) 

Peak ∆T spread in 
% terms of its 

largest peak ∆T 

Peak ∆T starting 
temperature spread 

(ºC) 
PMN-PT 700 nm: over all datasets 

More smoothly 
varying predictions, 

BEFORE fixing 
datasets 

1.08 79.4 38.67 

More smoothly 
varying predictions, 

AFTER fixing 
datasets 

0.75 75.8 30.00 

 
Table 29.  Peak ∆T prediction variation.  700 nm PMN-PT. 

 

In general, the reduction of the 250 point-per-branch data to 25 point per branch, allowing 

the dataset to comply with requirements of the indirect method, has resulted in a smaller 

spread of peak ∆𝑇 predictions, though the change is small, but perhaps most notable in 

the PZT 95/05 results, where the spread expressed as a percentage of the largest peak ∆𝑇 

prediction drops from 35.0% to 27.0%. 

 

By ignoring some of the measured polarization values, the new sets of ∆𝑇 predictions, in 

some cases, are simply based on less information.  However, the data are consistent 

with conditions implicit to the indirect method. 

 

4.3.   Isothermal or adiabatic? 

 

When 𝑃(𝐸,𝑇) data contained in this thesis were measured at a given temperature, it was 

assumed that the material experiences an isothermal process.  This has not just been the 

approach taken here, but applies to all the electrocaloric literature that employs the 

indirect method, where there is no mention of any tests or estimation of how isothermal 

the measurement process is.  On the face of it, this seems to be intuitively reasonable.  

One takes the sample to a stable temperature and then applies a bipolar voltage to 

measure a hysteresis loop, during which time the material will attempt to cool and heat, 

twice, as its configurational entropy is altered.  The process will be basically isothermal if 

the heat can enter and leave the material quickly enough.  The volume of material that is 
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subject to electrocaloric changes is very small in these experiments with thin films, of the 

order of 10-5 mm3.  It also takes the form of a disc or square tile, the area of which is very 

much larger than its thickness.  Given this, one might expect the measurement process to 

be isothermal.  However, measurements were also performed rather quickly, as in the 

electrocaloric literature, where the most popular hysteresis loop frequency is 1 kHz, 

during which, 250 polarization and voltage values are measured in each second loop 

quadrant, as defined earlier.  This means a polarization and voltage measurement is made 

once every microsecond.  The assumption of isothermality is rather fundamental and is 

worthy of a decent estimation as to its veracity. 

 

The experiments presented in this thesis were performed on two materials under different 

conditions and the volume of material, along with its geometry, would have affected the 

heat flow rate, which determines how isothermal one can maintain the material.  If it can 

be estimated that the flow of heat into and out of the film, during electrocaloric changes, 

was fast enough to maintain the film essentially isothermal, under the most demanding 

conditions for isothermality, then one can assume that all other experiments experienced 

isothermal conditions.  Such conditions would occur where the most amount of heat is 

required to move the most quickly. 

 

One could consider either the heat flow out of the film as the field is applied, or take the 

film to be at ambient temperature and consider the heat flow into the film as the field is 

released.  The latter is chosen here.   
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Figure 4-14.  Illustration of heat flow into PZT 95/05 sample as film cools electrocalorically. 

 

The above figure shows the component materials of the PZT 95/05 sample stuck to the 

sapphire mounting disc, as the PZT film is cooling electrocalorically in the cryostat, 

though the visual proportions are not representative.  The Au/Cr electrodes are 350 µm 

square compared to the roughly 1 µm thick film that is cooling.  This relationship 

between active film area and thickness means heat flow into the part of the film that is 

experiencing the electrocaloric effect, through the sides, will be negligible compared to 

that which passes through the top electrode and the equivalent area of the bottom 

platinum electrode.  The 1000SC and 1100FC datasets were measured on a sample that 

differed slightly, apart from the obvious PZT film thickness difference, as the top 

electrodes were 100 nm thick, made of platinum and circular, covering nearly one quarter 

of the area of the 350 µm square Au/Cr electrodes.  However, the diameter of these 

electrodes was 200 µm and the same argument of negligible heat flow through the sides 

of the film is applied here.   

 

For samples measured in the crysotat, the sapphire disc was held tight against the copper 

block of the sample stage, which will be treated as a thermal bath.  Measurements on the 

hotplate did not include the sapphire disc and the sample was held down on the centre of 

the hotplate, with Kapton tape.  In this case, the hotplate is also treated as a thermal bath.  

Heat flow through this bottom face of the sample is by conduction, whereas heat flow 

through the opposite surface in both cases, is from the thermal bath of the surrounding air, 
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through the top electrode via convection.  On the hotplate there is the free convection of 

the surrounding air in the laboratory, while in the cryostat, evacuation via a standard 

rotary pump can be expected, at most, to reduce the air pressure to 10-3 mbar.   

 

To estimate how much heat is required to move in each experiment, it will be assumed 

that the predicted electrocaloric temperature changes are correct.  Under the required 

isentropic conditions for these predictions, there would be no heat flow in or out of the 

electrocalorically active section of film.  There would be no change in its entropy, though 

its configurational entropy would change with the field, compensated for by the opposite 

change in entropy related to its temperature.  That is: 

 
(4.16) 

𝑑𝑆 = 𝑑𝑆𝐶 + 𝑑𝑆𝑇 = 0 

 

The overall change in entropy, 𝑑𝑆, is zero under isentropic conditions and can be viewed 

as a compensating change, 𝑑𝑆𝑇, as 𝑑𝑆𝐶 is effected by a changing field.  This can be 

described graphically. 
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(a)  

(b)   

 
Figure 4-15. (a) Configurational entropy, SC, vs temperature and (b) Entropy associated with temperature, ST, vs 

temperature for an isentropic field removal. 

 

In the above figure, the blue lines that stretch from T1 to T2 show how the material would 

approximately change temperature in relation to its configurational and temperature-

related entropy, in an isentropic process of field removal.  Regardless of the actual 

trajectory of these blue lines, the two graphs would always be a mirror image of each 

other, across the temperature axis.  The purple-shaded area in graph (a) is equal to the 

integral of 𝑇𝑑𝑆𝐶, while the equivalent area in graph (b) is equal to the integral of 𝑇𝑑𝑆𝑇.  

The two areas are equal in size, but opposite in sign: 
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(4.17) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 = � 𝑇𝑑𝑆𝐶
𝑆𝐶2

𝑆𝐶1
+ � 𝑇𝑑𝑆𝑇

𝑆𝑇2

𝑆𝑇1
= ∆𝑞1 + (−∆𝑞1) = 0 

 

where ∆𝑞1 represents a heat change. 

 

If, after performing such isentropic cooling, one removes the barrier to heat flow into or 

out of the system and the surroundings are a thermal bath at temperature, T1, then heat 

will flow into the material until there is thermal equilibrium and its temperature returns to 

T1.  Taking the heat capacity of this section of material to be constant, as is done in all the 

indirect method literature predictions, the heat required to return the material to T1, is 

𝐶(𝑇1 − 𝑇2), where 𝐶 is the heat capacity.  With the field now removed, 𝑑𝑆𝐶 = 0, while 

𝑆𝑇 will increase as the temperature rises.  The change will approximately follow the blue 

line of graph (b) in fig. 4-15, but in the opposite direction, from T2 to T1.  𝑑𝑆𝑇 will be 

positive, whereas it was negative in the isentropic cooling example. 

 
(4.18) 

𝐶(𝑇1 − 𝑇2) = � 𝐶𝑑𝑇
𝑇1

𝑇2
≈ � 𝑇𝑑𝑆𝑇 =

𝑆𝑇1

𝑆𝑇2
∆𝑞1 

 

By taking the indirect method predictions for peak temperature changes and a value for 

the heat capacity, one has ∆𝑞1.  This is slightly less than the heat required to enter the 

material during an isothermal removal of the field, as illustrated below: 
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Figure 4-16.  Isothermal change of configurational entropy as a function of temperature.  Orange rectangle 

behind the purple shape, represents heat required to maintain system isothermal, whereas the area of the purple 

shape is the integral of TdSC during isentropic cooling. 

 

During the isothermal removal of a field, 𝑑𝑆𝑇 = 0, so all entropy change is 

configurational and the corresponding heat that must enter the material is equal to the 

area represented by the orange rectangle in the above figure.  The rectangle is situated 

behind the purple area, which has been shown to be approximately the same as 𝐶(𝑇1 −

𝑇2), and stretches from T1 down to zero Kelvin .  Hence, if the area of the purple shape is 

visualised as a rectangle of the same height as the orange rectangle, but reaching a 

temperature which is half way between T2 and T1, then the amount of heat represented by 

the orange rectangle can be calculated as the area of the purple shape multiplied by the 

factor of 𝑇1/ �𝑇1 −
(𝑇1−𝑇2)

2
�.  This is: 

 
(4.19) 

𝐶(𝑇1 − 𝑇2)�𝑇1/�𝑇1 −
(𝑇1 − 𝑇2)

2
�� ≈ ∆𝑞𝐼𝑆𝑂 = 𝑇1∆𝑆 

 

In this way, it is possible to see which of the datasets was measured under the most 

demanding conditions for isothermality, i.e. where the heat transfer rate was required to 

be highest. 
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Dataset Loop 
frequency 

(kHz) 

Quarter 
loop 

duration 
(µs) 

Film area 
(10-8m2) 

Film 
thickness 

(nm) 

Film volume 
(10-14m3) 

Largest 
predicted 

peak cooling 
(ºC) 

Peak starting 
temperature (ºC) 

Heat per 
quarter 

loop (µJ) 

Average 
heat 

transfer 
rate (mW) 

PZT 95/05 
1000SC 10 25 3.14 1000 3.14 -25.79 228.00 2.28 91 
1100FC 10 25 3.14 1100 3.45 -22.50 208.00 2.17 87 

211-275ºC 1s, 
275-211ºC 4s, 
300-200ºC 10s, 
45-285ºC 5s, 

20s, 30s & 285-
45ºC 20s 

10 25 12.3 1050 12.9 -6.32 245.00 2.25 90 

230-280ºC 5s & 
275-215ºC 3s 1 250 12.3 1050 12.9 -6.16 275.00 2.20 8.80 

PMN-PT 
0-75ºC & 0-
75ºC Hyst 1 250 12.3 225 2.76 -0.73 60.00 0.06 0.242 

-100-100ºC 0.1 2500 12.3 225 2.76 -0.54 50.00 0.04 0.0179 
75-45ºC (a) 10 25 12.3 700 8.56 -0.98 66.00 0.25 10 

75-45ºC (b) & 
100--100ºC 1 250 12.3 700 8.56 -0.95 80.00 0.24 0.976 

 

Table 30.  Experimental parameters by dataset determining maximum necessary average heat transfer rate in final column.
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The above table groups together datasets measured on the same film, using the same area 

electrode, subject to the same speed of loop measurement.  The maximum ∆𝑇 predictions 

by the indirect method for each group, considering only the measurement temperatures, 

are then recorded in the seventh and eighth columns.  Only measurement temperatures are 

considered, of course, as the objective is to assess isothermality during measurement.  

The penultimate column shows how much heat energy was required to enter the 

electrocalorically active section of film, to keep it from cooling while the field was 

removed, i.e. during the second quadrant of the measured hysteresis loop.  The final 

column takes this heat energy and divides it by the duration of this second quadrant to 

give the largest average heat transfer rate, required for isothermality during measurement 

of the datasets for each group. 

 

The first three rows referring to PZT datasets show the highest heat transfer rates.  

Relevant differences to consider in comparing these three are the electrode areas and the 

temperature changes.  The 1000SC and 1100FC datasets were both measured using the 

200 µm diameter circular electrodes, while the third group were all measured using 350 

µm square electrodes.  Hence the area of the electrode of the third group is roughly four 

times larger, allowing for a potentially four-times-faster heat flow rate.  However, the 

predicted temperature change is coincidentally roughly four times smaller than the 

1000SC and 1100FC datasets, so one would expect actual heat transfer rates to be similar.  

Having said that, the third group of datasets were all measured in the cryostat, where heat 

transfer by convection, through the top electrode, will be considerably smaller in the 

reduced air pressure environment of the evacuated cryostat chamber.  Nonetheless, one 

might expect most heat transfer to be through the bottom electrode, via conduction and 

perhaps this difference in air pressure is irrelevant.  Finally, in the cryostat, the silicon 

substrate sits on a thin layer of silver dag, which sits on a sapphire disc.  The thermal bath 

of the copper sample stage makes contact with the sapphire disc, whereas with the 

1000SC and 1100FC measurements, the silicon substrate is in direct contact with the 

thermal bath of the hotplate.  These issues may or may not be relevant, so isothermality of 

both the 1000SC dataset and the ‘45-285 ºC 5s’ dataset, where maximum cooling was 

predicted for the third group, will be investigated. 
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Both of these datasets were measured with a 10 kHz hysteresis loop, meaning that the 

second quadrant consists of 25 points measured at 1 µs intervals, over a total of 24 µs.  

Each point is defined as a polarization at a voltage, both of which are measured at the 

same time.  It is known that the polarization response of a ferroelectric, to a changing 

field, takes place over the order of a nanosecond, so the electrocaloric cooling that takes 

place and the resulting heat flow into the film, is to be assessed nanosecond by 

nanosecond.  The Radiant ferroelectric tester takes the maximum value of the required 

bipolar voltage, input by the user and calculates a voltage step value, as (4𝑉𝑚𝑎𝑥)/

(𝑁𝑜. 𝑝𝑜𝑖𝑛𝑡𝑠 − 1).  By looking at measured hysteresis loops where demands on the 

voltage ramp rate are high, one can see that the tester does not quite manage to reach 

𝑉𝑚𝑎𝑥 in some cases, such as when measuring a 10 kHz loop to a maximum of ±90 V, 

which is right at the limit of its performance.  In this case, there are 101 points recorded, 

so the voltage step is ±3.6 V, depending on whether the voltage is being ramped up or 

down.  It can be seen that the tester only reaches 95% of the 90 V specified when ramping 

up the voltage and this represents an average attainment of each voltage step.  Over the 

microsecond between each loop-data-point measurement, the tester only manages to 

reach 95% of the prescribed voltage change.  Hence, 1 µs is equal to three RC time 

constants, or the RC time constant is 1/3 µs.  With this knowledge, one can determine the 

voltage reached at each nanosecond and translate that into a polarization change, by 

taking the change in polarization as linear between measured points. 

 

 
 

Figure 4-17.  Example of how voltage varies between measurement points and proportionally distributed 

polarization values. 
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The above figure illustrates how the voltage changes between measurement points and a 

linear relationship between voltage and polarization over the same interval.  The curve of 

black crosses is described by the top and right axes, showing the voltage to fall according 

to the RC time constant over the 1000 ns period between measurement points.  For the 

purposes of this isothermality estimation, it is taken that the variation of polarization 

between measured points, is linear.  Hence, as the voltage drops, so the polarization falls 

by the same proportion.  In the above example, the voltage drops from 90 V to 80 V, 

while the polarization drops from 1.0 C/m2 to 0.9 C/m2 over the same microsecond.  

When the voltage falls by some proportion of that interval, say 40%, to 86 V, then the 

polarization is taken to have fallen by the same proportion, to 0.96 C/m2.  This can be 

seen in the figure as corresponding black and blue crosses lie at the same height up the 

vertical axes.  By applying this idea to real data, an estimation for intermediate 

polarization values between measured points is obtained. 

 

Now if the increase in configurational entropy as the field is removed were proportional 

to the drop in polarization, the total changes in polarization and entropy over the second 

quadrant set of loop data points, ∆𝑃 and ∆𝑆 could be compared to ascertain the equivalent 

fractional changes.  ∆𝑃 is known from the measured data, while ∆𝑆 can be taken from the 

estimated ∆𝑞𝐼𝑆𝑂 = 𝑇1∆𝑆.  One of the Maxwell relations derived previously can be 

rewritten as: 

 
(4.20) 

�
𝜕𝐸
𝜕𝑇�𝑃

= −�
𝜕𝑠
𝜕𝑃�𝑇

 

 

where small “s” represents entropy per unit volume, proportional to total entropy.  

Looking at a typical graph of �𝜕𝐸
𝜕𝑇
�
𝑃

: 
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Figure 4-18.  Field vs temperature at different polarization for 211-275 ºC 1s dataset. 

 

at higher polarization values, �𝜕𝐸
𝜕𝑇
�
𝑃

 is slightly larger than at lower polarization, but 

basically constant at each 𝑃, over wide temperature ranges.  This is a feature that is 

common to all the datasets, at least around the peak ∆𝑇 prediction starting temperatures.  

From this, one could say then, that −�𝜕𝑠
𝜕𝑃
�
𝑇
 is larger at higher 𝑃 and this information can 

be used to weight the fractional changes in entropy over ∆𝑆 according to fractional 

changes in ∆𝑃.  The above graph is constructed by interpolating 𝐸(𝑃) data at each 

temperature to a set of 𝑃 values evenly distributed across the measured range.  �𝜕𝐸
𝜕𝑇
�
𝑃

 is 

taken at the peak cooling starting temperature, for each 𝑃, plotted against 𝑃 and the curve 

then interpolated to find �𝜕𝐸
𝜕𝑇
�
𝑃

 at the polarization values of the measured loop quadrant.  

These values are then used for weighting.  

 

Before loop measurement, the sample and all constituent parts, including the film, will be 

at a constant temperature.  By the time the tester has ramped up to the maximum voltage, 

the film may or may not have changed temperature relative to its starting value, but for 

the purposes of this isothermality estimation, the temperature at this point is taken to be 

equal to the starting temperature and constant throughout the sample.  Then as one 

imagines the voltage reducing to zero volts over 25 µs, the estimated entropy changes 

over each nanosecond period can be used to determine the electrocaloric cooling of the 

film, while heat moves into the film due to the temperature gradient induced.   



 208 

 

As this is an example of transient, as opposed to steady-state, heat flow, a numerical, 

finite-element method is used.  Heat will flow into the film through the top electrode via 

convection heat transfer, while conduction accounts for heat entering via the bottom 

electrode.  Thermal resistance between sample layers is taken to be negligible.  The 

finite-element method divides the sample materials into imaginary slices, in the sample 

plane and considers heat transfer across these elements.  For the film and those materials 

below it, the conducted heat flowing into any finite element is equated with the sum of 

the change in its internal energy and the heat flowing out [67].  The differential equation 

that describes this is [68]: 

 
(4.21) 

𝜕2𝑇
𝜕𝑥2

=
1
𝛼
𝜕𝑇
𝜕𝑡

 

 

where 𝑥 is distance in the direction of the heat flow, 𝑇 is the temperature, 𝑡 is time and 𝛼 

is thermal diffusivity, equal to 𝑘/𝜌𝑐, where 𝑘 is thermal conductivity, 𝜌 is material 

density and 𝑐, its specific heat.  If the thickness of a finite element of a given material is 

∆𝑥 and a series of three adjacent planes that sit between elements are denoted by (m-1), m 

and (m+1), then the left hand side of the above equation can be approximated by: 

 
(4.22) 

𝜕2𝑇
𝜕𝑥2

≈
1

(∆𝑥)2 (𝑇𝑚+1 + 𝑇𝑚−1 − 2𝑇𝑚) 

 

for plane, m [69].  Equation 4.21 can then be rewritten for this numerical method as: 

 
(4.23) 

(𝑇𝑚+1
𝑝 + 𝑇𝑚−1

𝑝 − 2𝑇𝑚
𝑝)

(∆𝑥)2 =
1
𝛼

(𝑇𝑚
𝑝+1 − 𝑇𝑚

𝑝)
∆𝑡

 

 

where the subscript “p” refers to a given moment in time and “p+1”, a time ∆𝑡 later.  This 

can be rearranged to give: 
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(4.24) 

𝑇𝑚
𝑝+1 =

𝛼∆𝑡
(∆𝑥)2 �𝑇𝑚+1

𝑝 + 𝑇𝑚−1
𝑝 � + �1 −

2𝛼∆𝑡
(∆𝑥)2� 𝑇𝑚

𝑝  

 

If (∆𝑥)2

𝛼∆𝑡
 is now set to be equal to 2, the above equation reduces to 𝑇𝑚

𝑝+1 = 1
2
�𝑇𝑚+1

𝑝 +

𝑇𝑚−1
𝑝 � and the temperature across plane m, at time (p+1) is then equal to the average of 

the temperatures of the planes either side of it, at time p [70].  The time interval, ∆𝑡 

proposed for analysing temperature changes, is one nanosecond, resulting in a 

characteristic element thickness, ∆𝑥 for each material in the sample. 

 

For convection heat transfer through the top electrode, an energy balance at the 

convection boundary results in [71]: 

 
(4.25) 

𝑇𝑚+1
𝑝+1 =

𝑇𝑚
𝑝+1 + �ℎ ∆𝑥𝑘 �𝑇∞

1 + �ℎ ∆𝑥𝑘 �
 

 

where (m+1) refers to the convection boundary and m, the next plane down, i.e. that on 

the interior side of the finite element at the convection boundary.  𝑇∞ is the temperature 

of the air well away from the electrode, which remains constant, at the starting 

temperature.  ℎ is the convection heat transfer coefficient, which depends on 𝑇𝑚+1
𝑝  and is 

calculated as: 

 
(4.26) 

ℎ = 0.59�
𝑇∞ − 𝑇𝑚+1

𝑝

𝐿
�
0.25

 

 

where 𝐿 is the electrode area divided by its perimeter length.  At reduced air pressures, ℎ 

is modified by multiplying the result of the above equation by the factor, � 𝒫
101.32

�
0.5

, 

where 𝒫 is the air pressure in kilopascals [72]. 
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For a given sample, each material is divided into a specific number of finite elements 

according to the characteristic value of ∆𝑥, based on the analysis time interval of one 

nanosecond and the properties of the material.  At time 𝑡=0, all planes between elements 

are set to the same starting temperature.  For the base of the sample, against the thermal 

bath of the hotplate or cryostat sample stage, the boundary temperature is set to the 

starting temperature for all 𝑡.  The following temperature, after one nanosecond, is 

determined for all planes between elements, as the average of the temperature of the two 

planes either side of each plane, at 𝑡=0.  Equation 4.25 is then used to determine the 

temperature of the convection boundary.  The cooling of the film is then calculated 

according to its polarization change after that nanosecond and the weighted, 

proportionally inferred entropy change.  This lowers the temperatures associated with 

elements of the film.  The process is repeated at nanosecond intervals, for the duration of 

the field removal and builds a picture of transient temperature changes throughout the 

sample. 

 

The first case to be analysed is that where the 1000SC dataset loops were predicted to 

experience the largest heat change due to the electrocaloric effect.  This corresponds to 

the loop measured at 228 ºC, where it was predicted that a 25 ºC drop in temperature 

would have occurred, were the removal of the field performed isentropically, i.e. 

adiabatically and reversibly.  The properties of the materials in the sample and their ∆𝑥 

values for a 1 ns ∆𝑡 are presented in the table below: 

 

Material k 
(W/m.K) 

𝜌 (kg/m3) c (J/K.kg) ∆𝑥 (nm) Material 
thickness 

(nm) 

No. of 
finite 

elements 
Top platinum 

electrode 
731 214002 1411 220 100 1 

PZT 95/05 1.255 83003 3303 30.2 1000 33 
Bottom platinum 

electrode 
731 214002 1411 220 100 1 

Titanium 201 45002 5861 120 8 0 
Titanium Oxide 7.01 40004 7114 70 8 0 
Silicon Dioxide 1.91 21001 7106 51 700 14 

Silicon 781 23302 8501 281 750000 2669 
 
Table 31.  Material properties, ∆x values and corresponding number of finite elements.  Sources: 1. [73], 2. [74], 

3. [5], 4. [75], 5. [76], 6. [77]. 
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The electrodes only really qualify for half an element and the thin layers of titania and 

titanium, around a tenth or less of an element.  However, this method requires whole 

numbers of elements, so compromises have been made, evident in the table.  The 

isothermality estimation should not suffer, given the large number of elements in the film 

and the sample base.  The temperature evolution of the finite-element model was 

performed with Igor and the programming can be found in appendix E. 

 

The modelled results for the temperature of each element within the PZT, as a function of 

the 24000 nanosecond steps (25 measured points – 1000 points per measured point 

interval), are shown in the following graph: 

 

 
 

Figure 4-19.  Temperature evolution of 33 equidistant planes across 1 µm thickness of PZT 95/05, during second 

quadrant of 10 kHz hysteresis loop measurement.  Sample on hotplate. 

 

The collection of multi-coloured curves in the above figure represent the temperature, as 

a function of time, of 33 equidistant planes in the PZT 95/05 being measured in the 

1000SC dataset.  All curves have this scalloped characteristic which reflects how the 

voltage changes and thus the polarization and entropy, between measured points.  The 

uppermost, light-green-coloured curve, is associated with the element that makes contact 

with the bottom platinum electrode, while the lowermost curve shows the PZT 

temperature next to the top electrode.  Hence, as the electrocaloric effect attempts to cool 

the film and heat flows in from both the top and bottom electrode sides, it is the heat 

transfer via conduction, through the bottom of the film, that most manages to stop the 
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film from cooling.  Nonetheless, the top element of the film still cools by as much as 

6.9 ºC, which is 28% of the 25 ºC predicted isentropic temperature change.  Based on this 

information, the hysteresis loop cannot be considered an isothermal measurement. 

 

It is also interesting to look at the temperatures across all 2718 elements at moments 

through the second quadrant measurement, as shown below: 

 

(a)  

(b)  

 
Figure 4-20.  (a) Element number vs associated temperature for entire sample thickness, at a range of times 

during field removal. (b)  Close-up of same data on the horizontal axis. 

 

Graph (a) in the above figure shows how the whole sample is taken to begin the process 

at 501 K (228 ºC) and how the drop in temperature in the film affects the temperature of 

the sample layers below it.  Elements are numbered from zero to 2717, so elements 1-33 
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represent temperatures within the film.  The elements from 49 upwards, are all associated 

with temperatures within the silicon substrate and the majority of the substrate is not 

affected at all by the electrocaloric change in temperature of the film.  This means that 

were this measured in the cryostat, where the sample was stuck to a mounting disc made 

of sapphire, using silver dag, the conductive heat flow through those extra layers would 

have been irrelevant to the transient temperature changes in the sample and heat flow 

through the bottom of the film would have been identical. 

 

The same analysis is now made for the relevant loop in the ‘45-285 5s’ dataset.  The 

degree to which this measurement was, or was not, isothermal is expected to be similar.  

The differences between this and the previous analysis are that the top electrode area is 

roughly four times larger here, while the predicted temperature change is roughly four 

times smaller.  The finite element model of transient heat flow is, however, independent 

of the active film area, as an increase in area and thus rate of heat flow, is accompanied 

by proportionally more material needing warming.  Also, for a larger attempted 

temperature change, the heat flow rate is increased proportionally.  The air pressure in the 

cryostat is taken to be 10-3 mbar, which will reduce the heat transfer rate through the top 

electrode due to free convection of the air above it, but it is expected that this will have 

little effect, as it was shown in the last estimation that heat transfer from the air was 

relatively unimportant compared to the conduction through the bottom electrode. 

 

 
 

Figure 4-21.  Temperature evolution of 35 equidistant planes across 1.05 µm thickness of PZT 95/05, during 

second quadrant of 10 kHz hysteresis loop measurement.  Sample in cryostat. 



 214 

 

Here, the estimation has the top element falling in temperature by as much as 1.8 ºC, 

which is 28% of the predicted cooling, on a par with the 1000SC case, as expected. 

 

(a)  

(b)  

 
Figure 4-22.  (a) Element number vs associated temperature for entire sample thickness, at a range of times 

during field removal. (b)  Close-up of same data on the horizontal axis. 

 

The temperature distribution through the sample is also very similar to the analysis of the 

1000SC data.  Here, the film is slightly thicker, giving an extra two finite elements to the 

PZT film, while the top electrode is thinner and mostly made of gold here, resulting in its 

exclusion due to the large ∆𝑥 values, which were at least 29 times the material 

thicknesses.  It seems the larger absolute temperature changes in the 1000SC film case 

affect the temperature of more of the silicon substrate, reaching as deeply as 190 µm into 

the silicon substrate, whereas here, temperature changes only reach as far as 170 µm. 
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Looking at the other material investigated, PMN-PT, the thermal conductivity of which is 

five times smaller than PZT [78], but at the same loop frequency, the following 

temperature versus time graph was obtained: 

 

 
 

Figure 4-23.  Temperature evolution of 54 equidistant planes across 700 nm thickness of PMN-PT, during second 

quadrant of 10 kHz hysteresis loop measurement.  Sample in cryostat. ’75-45a 10kHz’ dataset. 

 

The largest temperature change within this film, is 0.40 ºC, which is 41% of the estimated 

0.98 ºC of isentropic cooling.  This percentage is considerably larger than the 28% from 

the PZT estimations.  The sample temperature distributions are shown below: 
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(a)  

(b)  

 
Figure 4-24.  (a) Element number vs associated temperature for entire sample thickness, at a range of times 

during field removal. (b)  Close-up of same data on the horizontal axis. 

 

At the other end of the scale, the peak heat transfer required for isothermality in the 

‘-100-100 ºC’ dataset measured on the 225 nm thick sample of PMN-PT, was predicted to 

be much smaller, of the order of 10-5 W, due to the 100 Hz hysteresis loop frequency and 

taking its peak cooling as -0.54 ºC.  In order to set a number of calculations that the 

computer could handle for this estimation, the temperature of each element was assessed 

every 50 ns.  A 100 Hz loop results in the ferroelectric tester measuring 250 points in the 

second loop quadrant, where the time interval between each measurement was 10 µs, so 

temperatures were calculated for 200 intermediate point between those measured.  Over a 

250 point spread, the field removal time analysed is that of 249 intervals, or 2.49 ms.  The 
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increased ∆𝑡 interval for the finite element model, leads to larger ∆𝑥 values and less 

elements.  In this case, there were just two temperature points associated with the film 

and a total of 382 elements for the whole sample.  It seems, however, that the much 

slower loop frequency results in temperature changes of material that is further from the 

film.  Heat is conducted from beyond the base of the sample substrate, beyond the silver 

dag, from as far away as some point within the sapphire mounting disc.  This called for 

extra finite elements for the model and the relevant properties of silver dag and sapphire 

[55, 79, 80].  In total, there were then 1060 finite elements accounting for all the material 

up to the copper sample stage in the cryostat.  The film temperature distribution is shown 

here: 

 

(a)  

(b)  

 
Figure 4-25.  (a) Temperature evolution of 2 equidistant planes across 225 nm thickness of PMN-PT, during 

second quadrant of 100 Hz hysteresis loop measurement.  Sample in cryostat. (b) Close-up along time axis. 



 218 

 

Graph (a) is difficult to interpret at this scale, hence graph (b).  In both graphs there are 

the two “curves” that represent the PMN-PT film.  One is red, the other black, but since 

the two “curves” have virtually identical values and the red one was drawn last, this is the 

only visible data.  The reason for this is that the model defines the temperature of the 

convection boundary, i.e. the plane between the surrounding air and the sample, in terms 

of the current temperature of the next finite element plane down, within the film.  The 

convection boundary temperature is a modification of this adjacent temperature according 

to the heat transfer from the air and this contribution is tiny, hence a calculated difference 

of the order of merely 10-12 K.  In any case, the film temperature can be seen, by 

comparing graphs (a) and (b) in the above figure, to drop quickly as the voltage does, at 

the beginning of every interval between measured points.  Then as the entropy changes 

become rapidly smaller over the 10 µs interval between measurements, heat flow into the 

film brings its temperature up until the next dip down, after the following measurement. 

 

The largest deviation from ambient temperature is much smaller than previous analyses, 

at -0.0045 ºC, which is 0.83% of the estimated -0.54 ºC of isentropic cooling.  This is 

very arguably, an isothermal process.  The sample temperature distribution is shown 

below: 

 

 
 

Figure 4-26.  Element number vs associated temperature for mounted sample thickness, at a range of times 

during field removal. 
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Finally, the degree of isothermality of the ‘275-215 ºC’ dataset is analysed where cooling 

was predicted to be at its highest at a measurement temperature.  The equivalent loop 

frequency here is 1 kHz, i.e. 10 times slower than the estimated, non-isothermal 

processes, but 10 times faster than the estimated, isothermal process.  There were 250 

points measured during the second quadrant of the hysteresis loop, 1 µs apart and the 

analysis required calculations every 10 ns to be manageable.  A total of 859 finite 

elements were required to account for the entire sample, where the first 11 represented the 

film. 

 

 
 

Figure 4-27.  .  Temperature evolution of 11 equidistant planes across 1.05 µm thickness of PZT 95/05, during 

second quadrant of 1 kHz hysteresis loop measurement.  Sample in cryostat. ‘275-215 ºC’ dataset. 

 

The largest deviation from ambient temperature is -0.6 ºC, which is 9.7% of the estimated 

-6.16 ºC of isentropic cooling.  The sample temperature distribution is shown below: 
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Figure 4-28.  Element number vs associated temperature for sample thickness, at a range of times during field 

removal. 

 

There are several noteworthy characteristics of these analyses.  First and foremost, those 

measurements made in hysteresis loops of 10 kHz or 1 kHz, were not isothermal, whereas 

the 100 Hz measurements could well be considered so.  This is significant for the ∆𝑇 

predictions from those faster datasets, which were the largest, reaching as much as 25 ºC 

cooling.  Earlier assumptions that passing through one of the two polarization states, for a 

given field in the ferroelectric films, could be a possible description of the measured 

points on the hysteresis loops and that these points could be deemed to be in 

thermodynamic equilibrium, thus possibly validating the indirect method for 

electrocaloric predictions, are considerably weakened in light of this lack of thermal 

equilibrium.  In fact, the clear lack of thermal equilibrium means a categorical lack of 

thermodynamic equilibrium and for a classical definition, the entropy is not even well 

defined.  One could still also argue, however, that the indirect method remains valid for 

“approximations” of electrocaloric behaviour and adjusting the temperature coordinate of 

the data points is all that is necessary, that it would be excessive to ignore the temperature 

change predictions completely.   

 

Taking this view, one could say that as the hysteresis loops begin to be traced out and 

reach their peak field, before heading back to zero field along the second quadrant, they 

will have heated by the estimated 28% of the predicted electrocaloric temperature change.  

Then it could be said that the temperature coordinates of the data points along the second 
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quadrant follow a straight line back to the starting temperature.  Redefining the 

temperature coordinates of all the data points on the 𝑃(𝐸,𝑇) surface in this way changes 

its character very little.  Re-calculating ∆𝑇 predictions using the ‘polynomial OIP’ and 

‘smoothing OIP’ approaches to 𝑃(𝑇) approximation produces the following: 

 

(a)  

(b)  

 
Figure 4-29.  (a)  ‘Polynomial OIP’ predictions from original and adjusted P(E,T) data  (b) As (a), for 

‘Smoothing OIP’ approach. 

 

where the difference is very small, having slightly increased the peak predictions while 

shifting their starting temperatures up a little. 

 

It is seen that the slower the measurement, the further away from the film there is heat 

movement.  In the 100 Hz loop measurements, the temperature between finite elements 
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that represent parts of the cryostat mounting disc are affected, as far as 955 µm below the 

film, whereas in the faster measurements, there is no modelled change in temperature 

beyond the sample substrate, which is stuck to the mounting disc.  1 kHz loop 

measurements also affect the temperature of elements further away from the film (up to 

455 µm below film) than those affected during 10 kHz loop measurements (up to 162-

190 µm below film).  

 

Not only are the 100 Hz measurements more reliable in this sense, in terms of ∆𝑇 

predictions, but the loop frequency also seems to be the determining factor for thermal 

equilibrium for these analyses.  That may sound superficially obvious, but there are other 

seemingly important considerations, such as film thickness, the thermal conductivity of 

the materials and the electrocaloric temperature change.  If one increases film thickness, 

no change in polarization is expected, nor its change in polarization with temperature, 

hence no expected change in ∆𝑇 predictions.  For the difference in thickness of the films 

tested in this thesis, even considering large electrocaloric cooling by 25 ºC in all cases, 

further estimations show the degree of isothermality to be unaffected.  Nor are the 

differences in thermal conductivity anywhere as near as significant as the variation in 

isothermality due to measurement loop frequency. 

 

There are clear levels of the degree to which these processes are isothermal, 

according to the measurement loop frequency.  For 100 Hz, the deviation from 

ambient temperature is less than 1% of the predicted electrocaloric temperature 

change, for 1 kHz, it is around 10%, while for 10 kHz, the figure is around 30-40%. 
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5. final thoughts 

 

Though many electrocaloric predictions have been presented here, the sentiment behind 

them has been a deep mistrust of their validity.  Ferroelectrics nominally have two 

equilibrium states for every applied field and as such, do not lend themselves to 

thermodynamic treatments.  It has been shown in the literature that certain materials, 

under certain conditions, experience an essentially reversible electrocaloric temperature 

change, when measured directly.  This does not mean, however, that the material passes 

through the same states during field application as it does during field removal. We know 

it does not because when we measure polarization as a function of field, we get hysteresis 

loops.  For this reason, thermodynamic analysis should have no place here.  Despite this, 

when the indirect method has been applied alongside direct measurements, there have 

been similarities in the results to within as little as 15%.  This is, however, one case of 

only eight, published since the study of electrocalorics began.  In the other seven 

comparisons the larger of the values is 20%, 41%, 43%, 80%, 135%, 160% and over 

300% bigger than the smaller value.  This scant data and generally poor “agreement”, is 

not convincing. 

 

It has been demonstrated in this thesis that even with good quality 𝑃(𝐸,𝑇) data, the 

application of the indirect method to raw data does not generally return useful results and 

that some manipulation of the raw data is necessary.  In choosing the method for this 

manipulation, one finds several methods are arguably valid and hence electrocaloric 

predictions can vary considerably.  When consideration of predictions has been extended 

to other measurement points on the same film, all within just half a centimetre of each 

other, that variation grows and results can easily be separated by a factor of 2. 

 

A technique for testing data quality for use in the indirect method has also been put 

forward, showing how datasets can frequently be incompatible with the method and that 

the long assumed isothermality of measured data presented in the literature may well not 

exist, especially given the many commonalities between the experiments presented in this 

thesis and those of post-Mischenko literature. 
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As mentioned in the introduction, the recent advent of direct temperature measurement 

techniques in thin films may well mark the end of the indirect method, but this author 

urges against the use of the indirect method as an “easy” option.  As a growing body of 

published data on directly measured electrocaloric effects appears in journals, it would be 

useful to accompany them with indirect results.  Were this author both willing and in a 

position to continue in electrocalorics, the next step in this story would be to do just that – 

produce direct and indirect results, vary experimental and analytical parameters and 

perform hundreds of comparisons to see if a correlation can be established between 

direct/indirect agreement and experimental conditions and/or materials.  Such an 

investigation could lead to a greater understanding of the reversibility of ferroelectrics. 

 

The conclusions of this thesis are few and simple.  In the view of this author, the most 

important are that the thermodynamic work performed on a capacitor medium during 

charging or discharging is not the commonly purported version and that it is made clear 

why two versions have arisen, the reason for mistaken derivation of the incorrect version 

and the correct meaning of the incorrect version.  It is also important to note that the 

analogy generally drawn between the electrical work done on a polarizable medium and 

the magnetic work done on a magnetizable medium is false.  The study of the 

implementation of the indirect method of measuring electrocaloric temperature change 

has shown that there are several important aspects of both measurement and analysis that 

have not been considered in the electrocalorics community, which should be taken into 

account when declaring the cooling potential of materials.  With respect to guidelines for 

further, such indirect measurement of the electrocaloric effect, this author would urge 

checking the estimated isothermality of measured 𝑃(𝐸) loops under the given conditions 

before attempting an experiment and the avoidance of smoothing 𝑃(𝑇) data during 

analysis, by working only with raw data that results in non-erratic temperature change 

predictions over a starting-temperature range.  This can be achieved by measuring 

isothermal 𝑃(𝐸) loops at intervals of at least 20 ºC and calculating temperature change 

predictions from starting temperatures that are the same as the 𝑃(𝐸) loop measurement 

temperatures. 
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6. Appendices 

 

Appendix a – electrical work within the model of an 

infinite-area capacitor 

 

After the general definition of the infinitesimal work by the battery in charging or 

discharging a capacitor: 

 
(6.1) 

𝛿𝑊𝐵 = 𝑉𝑑𝑄 

 

a simplified model of the capacitor can be used where the capacitor is an imagined slab 

cut from a capacitor with electrodes of infinite area and finite thickness.  The charge on 

the electrodes is then uniform, as opposed to the real case, where the charge is denser at 

electrode edges.  This model, including the assumption of a homogeneous medium, 

results in a uniform field and polarization between the electrodes.  In addition, the field is 

confined to the volume between the electrodes.  There are no fringing fields and no fields 

on the battery side of the electrodes, as they cancel out there. 

 

The work done by the battery continues by considering 𝐷, the magnitude of the 

displacement field normal to the plates, which is equivalent to the charge density on one 

plate [2] and is defined as: 

 
(6.2) 

𝐷 = 𝜀0𝐸0 = 𝜀0𝐸 + 𝑃 

 

where 𝜀0 is the permittivity of free space, 𝐸 is the field magnitude across the capacitor 

and 𝑃 is the magnitude of the polarization of the medium in the direction of the field, 

normal to the capacitor plates.  As 𝐸 = 𝑉/𝑙 between the plates, where 𝑙 is the plate 

separation; and 𝐷 = 𝑄/𝐴, where 𝐴 is the plate area: 
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(6.3) 

𝛿𝑊𝐵 = 𝑉𝑑𝑄 = 𝐸𝑙𝐴𝑑𝐷 = 𝑣𝐸𝑑𝐷 

 

where 𝑣 is the volume between the plates.  

 

𝐸0 describes the magnitude of the field between the electrodes of an empty capacitor for 

the same charge on the electrodes as in the filled capacitor case.  That is to say, if one 

were to charge the filled capacitor, creating a field, 𝐸, across it and then all charges were 

frozen in their positions, then upon removal of the polarizable medium, there would be a 

larger field across the capacitor, represented by 𝐸0.  Experimentally, one measures the 

charge on one electrode and the voltage across the capacitor from which one can calculate 

𝐷 and 𝐸0 from the charge and 𝐸 from the voltage.  𝐸 is the resulting superposition of the 

field due to the charge on the electrodes (𝐸0) and the field due to the polarized medium 

(𝐸𝑀). 

 

For a capacitor with square or circular electrodes, where the length of one side of the 

square electrode, or the diameter of the circular electrode, is very much larger than the 

thickness of the medium filling the capacitor, the errors introduced by this model are 

considered to be small and the use of 𝐷 = 𝜀0𝐸0 = 𝜀0𝐸 + 𝑃 is usually justified.   

 

In general, 𝑫 is not equal to 𝜀0𝑬0, as the curl of 𝑫 is not zero everywhere, as it is for 𝑬.  

As 𝑫 = 𝜀0𝑬 + 𝑷 and the curl of 𝑷 is not zero everywhere, neither is the curl of 𝑫.  Hence 

𝑫 cannot be described as the gradient of a scalar and thus does not have an equivalent to 

the potential of an electric field.  The integral of 𝑫 from one point to another depends 

upon the path taken, so 𝑫 ≠ 𝜀0𝑬0.  However, in the simplified model, not only is 𝑷 

uniform throughout the medium, but all fields are confined to the volume of the medium, 

cancelling each other out above and below the plates, for the orientation shown in the 

above figures.  The work done by the battery is then stored in the medium and the field, 

hence the reason why only the volume of the medium is necessary to determine the work 

done in the simplified model, apparent from equation 6.3 onwards.  The curl of 𝑷 is zero 

everywhere in this volume, so 𝑫 = 𝜀0𝑬0 and 𝐷 = 𝜀0𝐸0, for this model.  𝐷 is equivalent 

to the total surface charge density of the free charge on either electrode, where 𝑃 is that 
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due to the free charge per unit area compensating the adjacent charged surface of the 

polarized medium and 𝜀0𝐸 accounts for the rest of the free charge per unit area.  If the 

capacitor were empty, this uniform surface charge density, 𝜀0𝐸, would create the field, 𝐸, 

between the plates: 

 
(6.4) 

𝐷 = 𝜀0𝐸0 = 𝜀0𝐸 + 𝑃       ≡       𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝐸 𝑖𝑛 𝑣𝑎𝑐𝑢𝑢𝑚 + 𝜎𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑛𝑔 𝑃 

 

where 𝜎 refers to the magnitude of surface charge density on either electrode.  The work 

done by the battery continues from equation 6.3: 

 
(6.5) 

𝛿𝑊𝐵 = 𝑣𝐸𝑑𝐷 = 𝑣𝜀0𝐸𝑑𝐸0 = 𝑣(𝜀0𝐸0 − 𝑃)𝑑𝐸0 = 𝑣𝜀0𝐸0𝑑𝐸0 − 𝑣𝑃𝑑𝐸0 

 

and hence: 

 
(6.6) 

𝑊𝐵 = 𝑣𝜀0 � 𝐸0𝑑𝐸0

𝐸02

𝐸01

− � 𝑃𝑚

𝐸02

𝐸01

𝑑𝐸0 = � 𝑉𝑑𝑄

𝑄2

𝑄1

 

 

When looked at from this point of view, the first term (middle expression) is the same in 

the cases of both the empty and filled capacitor, so the difference, the work done on the 

medium by the battery, is equal to the second term, −∫ 𝑃𝑚
𝐸02
𝐸01

𝑑𝐸0.  This clarifies an 

important point.  When a capacitor is charged, the medium does work on its surroundings 

and not the other way around, as claimed by the more common ∫ 𝐸𝑑𝑃𝑚
𝐸2
𝐸1

.  As more 

charged is placed on the electrodes, the medium polarizes and bound charge within the 

medium, of opposite sign to that on a given electrode, moves towards the electrode and 

effectively reduces the potential at that electrode as seen by the approaching charge in the 

wire.  Thus the battery does less work on the filled capacitor, compared with an empty 

capacitor, for the same change of charge on the electrodes.  The reduction in work is due 
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to the presence of the medium and the work done by the medium is logically equal to this 

reduction, ∫ 𝑃𝑚
𝐸02
𝐸01

𝑑𝐸0. 

 

Appendix b – the location of the energy of a charge 

configuration 

 

The energy of a charge configuration can be expressed in two ways: 

 
(6.7) 

ℇ𝐹 = �
1
2
𝜀0𝑬2 𝑑𝑣 = �  

1
2
𝜌𝜙𝑑𝑣 

 

where 𝜌 is the charge density and 𝜙, the potential at the charge.  This equality is 

explained below.  As 𝜌 = 𝜀0∇ ∙ 𝑬, then: 

 
(6.8) 

�  
1
2
𝜌𝜙𝑑𝑣 =

𝜀0
2
�  (∇ ∙ 𝑬)𝜙𝑑𝑣 

 

By integrating the expression ∫  ∇ ∙ (𝑬𝜙)𝑑𝑣 by parts, the right hand side can be turned 

into: 

 
(6.9) 

𝜀0
2
�  (∇ ∙ 𝑬)𝜙𝑑𝑣 =

𝜀0
2
�  ∇ ∙ (𝑬𝜙)𝑑𝑣 −

𝜀0
2
�  𝑬 ∙ (∇𝜙)𝑑𝑣 

 

and as ∇𝜙 = −𝑬, this becomes: 

 
(6.10) 

𝜀0
2
�  (∇ ∙ 𝑬)𝜙𝑑𝑣 =

𝜀0
2
�  ∇ ∙ (𝑬𝜙)𝑑𝑣 + �

1
2
𝜀0𝑬2 𝑑𝑣 
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and the first term on the right-hand side can be turned into a surface integral by the 

divergence theorem, which vanishes if the integration is performed over all space, hence: 

 
(6.11) 

𝜀0
2
�  (∇ ∙ 𝑬)𝜙𝑑𝑣 = �

1
2
𝜀0𝑬2 𝑑𝑣 = �  

1
2
𝜌𝜙𝑑𝑣 

 

The second expression is integrated over all space, but the third expression is integrated 

over the volume occupied by the charge.  So it is just as reasonable to say that the energy 

of a charge configuration is located over the volume occupied by the charge as it is over 

the volume occupied by the field.  The energy of the charge configuration is well defined, 

but its location is not.  Taking this view, the energy of the charge configuration due to the 

free charge on the plates, could be said to exist outside the medium and would therefore 

categorically not be part of the energy of the medium. 

 

Appendix c - Igor functions for typical 

electrocaloric predictions 

 

Prepare P(E,T) data 

Function PrepareData() 
 
Variable ThicknessFactor, Psf, Ntemps, Npoints, i, Temperature, j=0, Reset=0, pts, 
Variable StartT, EndT, Tint, tmpry, tmpry2, MaxField=9E20, MinField=0, eps=8.85418781762E-12 
Prompt StartT, "Lowest Temperature (ºC)" 
Prompt EndT, "Highest Temperature (ºC)" 
Prompt Tint, "Temperature Interval (ºC)" 
Prompt ThicknessFactor, "Thickness in nm" 
Prompt Psf, "Polarization Scale Factor" 
DoPrompt "Thickness", ThicknessFactor 
DoPrompt "PSF", Psf 
DoPrompt "Lowest Temperature", StartT 
DoPrompt "Highest Temperature", EndT 
DoPrompt "Temperature Interval", Tint 
Ntemps=(((EndT-StartT)/Tint)+1) 
 
//Load hysteresis loop data from Radiant, cut out second quadrant, turn D into P. 
i=1 
do 
 
String FirstFolderPath="Macintosh HD:Users:Lolita:Desktop:Thesis data & exps:Thesis data:PMNPT700 
75-45b" 
String FilePath=(FirstFolderPath+":"+num2str(StartT+((i-1)*Tint))+"a"+".txt") 
Print FilePath 
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LoadWave /A/G/D/W/K=0 FilePath 
 
Temperature=StartT+((i-1)*Tint) 
Npoints=numpnts(Point) 
 
Rename Point, $("T"+num2str(i)) 
Killwaves Date_Time 
Rename Drive_Voltage, $("E"+num2str(i)) 
Rename Measured_Polarization,$("D"+num2str(i)) 
 
//Create list of temperatures for P(T) later 
If (i==1) 
Make/D/N=1 Templist 
Templist[0]=Temperature 
else 
InsertPoints (i-1),1,Templist 
Templist[i-1]=Temperature 
endif 
 
//Create waves full of same temperature values for each loop 
j=0 
do 
WAVE x=$("T"+num2str(i)) 
x[j]=Temperature 
j+=1 
while (j<Npoints) 
 
//Calculate field 
WAVE y=$("E"+num2str(i)) 
y=y/(ThicknessFactor*1E-9) 
 
//Surface charge density correction, due to incorrect electrode area, if necessary 
WAVE z=$("D"+num2str(i)) 
z=z*Psf*0.01 
Duplicate z, $("P"+num2str(i)) 
 
//Calculate P values 
WAVE x=$("P"+num2str(i)) 
WAVE y=$("D"+num2str(i)) 
WAVE z=$("E"+num2str(i)) 
x=y-(z*eps) 
 
 
WAVE k=$("T"+num2str(i)) 
WAVE l=$("E"+num2str(i)) 
WAVE m=$("P"+num2str(i)) 
WAVE n=$("D"+num2str(i)) 
 
 
Duplicate/D k, $("UplT"+num2str(i)) 
Duplicate/D l, $("UplE"+num2str(i)) 
Duplicate/D m, $("UplP"+num2str(i)) 
Duplicate/D n, $("UplD"+num2str(i)) 
 
 
WAVE a=$("UplT"+num2str(i)) 
WAVE b=$("UplE"+num2str(i)) 
WAVE c=$("UplP"+num2str(i)) 
WAVE d=$("UplD"+num2str(i)) 
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//Cut out second quadrant 
If (mod(Npoints,2)>0) 
DeletePoints 0,1, a,b,c,d 
Npoints=Npoints-1 
Reset=1 
endif 
DeletePoints 0,(Npoints/4), a,b,c,d 
DeletePoints (Npoints/4),(Npoints/2),a,b,c,d 
pts=numpnts(a) 
If (Reset==1) 
Npoints=Npoints+1 
Reset=0 
endif 
 
//For each loop 
i+=1 
while (i<(Ntemps+1)) 
 
 
// Change T,E,P and D wave names 
i=0 
do 
Rename $("UplT"+num2str(i+1)),$("wave"+num2str((i*3)+1)) 
Rename $("UplE"+num2str(i+1)),$("wave"+num2str((i*3)+2)) 
Rename $("UplP"+num2str(i+1)),$("wave"+num2str((i*3)+3)) 
Rename $("UplD"+num2str(i+1)),$("Dwave"+num2str((i*3)+3)) 
i+=1 
while (i<Ntemps) 
 
 
// Find MaxField and MinField of all second quadrant data together 
i=2 
do 
  WAVE m = $("wave" + num2str(i)) 
  tmpry=WaveMax(m) 
  tmpry2=WaveMin(m) 
  if (tmpry<MaxField) 
   MaxField=tmpry       
  endif 
  if (tmpry2>MinField) 
   MinField=tmpry2       
  endif  
  i+=3 
while (i<(Ntemps*3))   
Print "MaxEField is",MaxField 
Print "MinEField is", MinField 
 
// Create universal, evenly spaced, E wave 
i=0 
Make/D/N=(pts) waveptsfields 
  do 
  waveptsfields[i]=MinField+(i*((MaxField-MinField)/(pts-1))) 
    i+=1 
  while (i<pts) 
Edit waveptsfields 
 
// Interpolate P(E) at each T to match universal E wave values   
i=0 
do 
WAVE E=$("wave"+num2str(2+(i*3))) 
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WAVE P=$("wave"+num2str(3+(i*3))) 
String interped=("Intwave"+num2str(3+(i*3))) 
XYToWaveJam(E,P, interped,pts, MaxField,MinField) 
i+=1 
while (i<Ntemps) 
 
// Replace P(E) with new interpolated set 
i=0 
do 
WAVE E=$("wave"+num2str(2+(i*3))) 
WAVE P=$("wave"+num2str(3+(i*3))) 
Killwaves E,P 
Duplicate/D waveptsfields, $("wave"+num2str(2+(i*3))) 
Rename $("Intwave"+num2str(3+(i*3))), $("wave"+num2str(3+(i*3))) 
i+=1 
while (i<Ntemps) 
 
//P(T)@E.  Make table of all interpolated P data for transpose  
i=3 
Edit 
do 
WAVE p = $("wave" + num2str(i)) 
AppendToTable p 
i+=3 
while (i<((Ntemps*3)+1)) 
 
// Transpose P(E) at T to give P(T) at E.  Ntemp points on each curve.  
WMTransposeWavesInTable("","OrigPT") 
 
//Display P(T) 
Display 
j=0 
do 
WAVE PT2 = $("OrigPT_"+num2str(j)) 
AppendToGraph PT2 vs wave0 
j+=1 
while (j<pts) 
 
 
End 
 

 

P(T) approximations 

Polynomial fitting 

//P=Polynomial fit order+1 (No. of coefficients) 
Function PolyNW(Ntemp,Nfields,P) 
Variable Ntemp,Nfields,P 
Variable j=0, pts=Ntemp  
String basename="OrigPT_" 
 
// Combine P(T) into one wave 
j=0 
do 
WAVE PT = $(basename + num2str(j)) 
String PT_solo=(basename + num2str(j)+"_solo") 
XYToWaveJambee(wave0,PT,PT_solo,pts) 
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j+=1 
while (j<Nfields) 
 
// Polynomial fitting 
j=0 
do 
WAVE PT1=$(basename + num2str(j)+"_solo") 
CurveFit/L=(Ntemp)/Q poly P, PT1/D 
j+=1 
while (j<Nfields) 
 
//Display fit curves 
Display 
Variable jump=(Nfields/25) 
j=0 
do 
WAVE PT1 =$(basename + num2str(j)+"_solo") 
WAVE PT2=$("fit_"+basename + num2str(j)+"_solo") 
AppendToGraph PT1 
ModifyGraph mode($(basename + num2str(j)+"_solo"))=3,rgb($(basename + num2str(j)+"_solo"))=(0,0,0) 
AppendToGraph PT2 
j+=(jump) 
while (j<Nfields) 
 
 
End 
 
smoothing 

//Smth=Odd number of data points over which to average 
Function SmoothNW(Smth, Ntemp,Nfields) 
Variable Smth, Ntemp, Nfields 
Variable pts=Ntemp, j 
String basename="OrigPT_" 
 
 
// Combine P(T) into one wave 
j=0 
do 
WAVE PT = $(basename + num2str(j)) 
String PT_solo=(basename + num2str(j)+"_solo") 
XYToWaveJambee(wave0,PT,PT_solo,pts) 
j+=1 
while (j<Nfields) 
 
//Duplicate P(T) single waves and plot 25 of them for ease of interpretation 
j=0 
do 
WAVE PT2 = $(basename + num2str(j)+"_solo") 
Duplicate/D PT2, $("PT2_Orig_"+num2str(j)) 
j+=1 
while (j<Nfields) 
j=0 
Variable jump=(Nfields/25) 
do 
WAVE PT2_Orig=$("PT2_Orig_"+num2str(j)) 
AppendToGraph PT2_Orig 
j+=(jump) 
while (j<Nfields) 
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//Smooth all P(T) single waves 
j=0 
do 
WAVE PT2 = $(basename + num2str(j)+"_solo") 
Smooth/B=1 Smth, PT2 
Rename PT2, $("Ready_"+num2str(j)) 
j+=1 
while (j<Nfields) 
 
//Plot 25 smoothed waves along with orginals 
j=0 
do 
WAVE PT2 = $("Ready_"+num2str(j)) 
AppendToGraph PT2 
j+=(jump) 
while (j<Nfields) 
 
 
End 
 
Polynomial fit over intermediate P(T) values 

//P=Polynomial fit order+1 (No. of coefficients) 
Function PolySNW(Ntemp,Nfields,P) 
Variable Ntemp,Nfields,P 
Variable j=0, pts=Ntemp, split=15, i  
String basename="OrigPT_" 
 
 
Ntemp=(((Ntemp-1)*split)+1)  
Print "Spoly Ntemps is",Ntemp 
 
// Combine P(T) into one wave 
j=0 
do 
WAVE PT = $(basename + num2str(j)) 
String PT_solo=(basename + num2str(j)+"_solo") 
XYToWaveJambee(wave0,PT,PT_solo,pts) 
j+=1 
while (j<Nfields) 
 
//Polynomial fitting to many points, adding intermediate values 
j=0 
Edit 
do 
WAVE PT1=$(basename + num2str(j)+"_solo") 
CurveFit/L=(Ntemp)/Q poly P, PT1/D 
WAVE PT2=$("fit_"+basename + num2str(j)+"_solo") 
AppendToTable PT2 
j+=1 
while (j<Nfields) 
 
//Create wave of new set of temperature values 
i=0 
Variable MaxTemp=wavemax(wave0), MinTemp=wavemin(wave0) 
Make/N=(Ntemp) waveptstemps 
  do 
  waveptstemps[i]=MinTemp+i*((MaxTemp-MinTemp)/(Ntemp-1)) 
  i+=1 
  while (i<Ntemp) 
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Edit waveptstemps 
Duplicate/O waveptstemps, wave0 
Redimension/Y=4 wave0 
 
//Plot original P(T) data and fit data on same graph 
Display 
Variable jump=(Nfields/25) 
j=0 
do 
WAVE PT1 =$(basename + num2str(j)+"_solo") 
WAVE PT2=$("fit_"+basename + num2str(j)+"_solo") 
AppendToGraph PT1 
ModifyGraph mode($(basename + num2str(j)+"_solo"))=3,rgb($(basename + num2str(j)+"_solo"))=(0,0,0) 
AppendToGraph PT2 
j+=(jump) 
while (j<Nfields) 
 
 
End 
 
 
Smoothing over intermediate P(T) values 

//Smth=Odd number of data points over which to average, normally 15 
Function SmoothSNW(Smth, Ntemp,Nfields) 
Variable Smth, Ntemp, Nfields 
Variable pts=Ntemp, j, i, split=15 
String basename="OrigPT_" 
 
Ntemp=(((Ntemp-1)*split)+1)  
Print "SmthS Ntemps is",Ntemp 
 
 
// Combine P(T) into one wave 
j=0 
do 
WAVE PT = $(basename + num2str(j)) 
String PT_solo=(basename + num2str(j)+"_solo") 
XYToWaveJambee(wave0,PT,PT_solo,Ntemp) 
j+=1 
while (j<Nfields) 
 
//Create wave of new set of temperature values 
i=0 
Variable MaxTemp=wavemax(wave0), MinTemp=wavemin(wave0) 
Make/N=(Ntemp) waveptstemps 
  do 
  waveptstemps[i]=MinTemp+i*((MaxTemp-MinTemp)/(Ntemp-1)) 
  i+=1 
  while (i<Ntemp) 
Edit waveptstemps 
Duplicate wave0, wave02 
Duplicate/O waveptstemps, wave0 
Redimension/Y=4 wave0 
 
//Plot original P(T) data and fit data on same graph 
Display 
Variable jump=(Nfields/25) 
j=0 
do 
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WAVE PT1 = $(basename + num2str(j)) 
WAVE PT2 = $(basename + num2str(j)+"_solo") 
AppendToGraph PT1 vs wave02 
AppendToGraph PT2 
ModifyGraph mode($(basename + num2str(j)))=3,rgb($(basename + num2str(j)))=(0,0,0) 
j+=jump 
while (j<Nfields) 
 
//Smoothing of all points, including new intermediate values 
j=0 
do 
WAVE PT2 = $(basename + num2str(j)+"_solo") 
Smooth/B=1 Smth, PT2 
Rename PT2, $("Ready_"+num2str(j)) 
j+=1 
while (j<Nfields) 
 
 
End 
 
Reset modified P(T) data waves to be called ORIGPT_ for next step 

Function Orig(Nfields) 
Variable Nfields 
Variable j 
 
 
j=0 
do 
//Choose following line or the one after, appropriately 
//WAVE PT = $("fit_FieldCv_"+num2str(j)+"_solo") 
WAVE PT = $("Ready_"+num2str(j)) 
Duplicate/O PT, $("OrigPT_"+num2str(j)) 
Killwaves PT 
j+=1 
while (j<Nfields) 
 
End 
 

Prepare final graph from which to calculate temperature 

changes 

(i.e. �𝜕𝑃
𝜕𝑇
�
𝐸

 vs. 𝐸, at many 𝑇) 

 
// HC=Heat Capacity per unit volume 
Function TruCoolorHeat(Ntemps,Nfields,HC) 
Variable Ntemps,Nfields,HC 
Variable i=0, j,MaxField=wavemax(waveptsfields), MinField=wavemin(waveptsfields) 
String basewave="wave" 
String basewave3="OrigPT_" 
String basewave4="_DIF" 
 
//Forward-difference differentiate P(T) waves 
If (wavetype(OrigPT_0)==2) 
Redimension/Y=2 wave0 
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endif 
do 
WAVE w = $(basename3 + num2str(i)) 
Differentiate/METH=1 w/X=wave0/D=$(basename3 + num2str(i)+basename4) 
i+=1 
while (i<Nfields) 
 
// Produce table of dPdT curves for transposing 
Edit 
i=0 
do 
WAVE p = $(basewave3 + num2str(i) + basewave4) 
AppendToTable p 
i+=1 
while (i<Nfields) 
 
// Transpose dPdT(T) at E to give dPdT(E) at T.  Ntemp temperature curves for dPdT(E) graph. 
// Nfields points on each curve. Produce table and graph. 
i=0 
WMTransposeWavesInTable("","Final") 
Edit 
Display 
do 
WAVE p = $("Final_" + num2str(i)) 
AppendToTable p 
AppendToGraph p 
i+=1 
while (i<Ntemps) 
Print MaxField 
Print MinField 
 
//Create single waves to work from in ∆T calculation 
j=0 
do 
WAVE PT = $("Final_"+num2str(j)) 
String PT2_solo=("Final_"+num2str(j)+"_solo") 
XYToWaveJambee(waveptsfields,PT,PT2_solo,Nfields) 
WAVE PT2=$("Final_"+num2str(j)+"_solo") 
Duplicate/O PT2, $("Final_"+num2str(j)) 
Killwaves PT2 
j+=1 
while (j<Ntemps) 
 
// Calculate and display dT vs T for specified field range 
TruFinalC(Maxfield, MinField, Ntemps, HC) 
//TruFinalH(Maxfield, MinField, Ntemps, HC) 
 
  
End 
 

Stepwise calculation of ∆T (cooling) 

(there is an equivalent function for heating) 

 
Function TruFinalC(Maxfield, MinField, Ntemps, HC) 
Variable MaxField, MinField, Ntemps, HC 
String rt="Final_" 
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Variable i, j, k, curve, strtE, CT, IT, inc=(Maxfield/1000000), integral, biggsttchange 
Variable tchange, bfld, Mintemp, Maxtemp 
 
//Make waves to store results 
Make/O/N=(Ntemps) dTresults 
Make/O/N=(Ntemps) Errors 
 
//Maxfield=45585710 
//MinField=2470700 
 
WAVE Twave=wave0 
 Maxtemp=wavemax(Twave) 
 Mintemp=wavemin(Twave) 
 Print "Maxtemp",Maxtemp 
 Print "Mintemp",Mintemp 
 
i=0 
do 
 // Set starting field=highest field (initial top integral limit) 
 strtE=MaxField 
 // IT is initial temperature, starting at temperature of curve 
 IT=Twave[i] 
 Print "IT is",IT 
 // CT is current temperature 
 CT=IT 
     
// Work out T changes 
k=0 
tchange=0 
biggsttchange=0 
 
do 
 
j=0 
do 
// Find curve to integrate with.  Each curve covers its temperature and all above it,  
// up to next temperature curve, in accordance with forward-difference differentiation. 
  If (CT>=Twave[j]) 
 curve=j 
 endif 
j+=1 
while (j<Ntemps) 
 
 
WAVE currentT=$(rt+num2str(curve)) 
 
 // Set lower integral limit.  Very small interval. 
 bfld=(strtE-(inc+(inc*k))) 
   
  // If move beyond lowest field, break loop 
  If (bfld<MinField) 
  break 
  endif 
   
 // Calculate area under curve 
 integral=area(currentT,strtE,bfld) 
  
 // Calculate dT 
 tchange=((CT+273.15)/HC)*integral*-1 
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 // Keep track of largest dT to watch for non-negligible error in calculation 
  If (abs(tchange)>biggsttchange) 
  biggsttchange=abs(tchange) 
  endif 
   
 // Set new temperature 
 CT=CT+tchange 
  
 // For next integral, lower limit is now top limit 
 strtE=bfld 
  
  // If stepwise calculation moves beyond temperature limits of data, it is nulled. 
  If (CT>Maxtemp  ||  CT<Mintemp) 
  break 
  endif 
 
// Next dT to calculate    
k+=1 
while(1) 
 
// If calculation moves beyond temperature limits, no ∆T is recorded. 
  If (CT>Maxtemp  ||  CT<Mintemp) 
  dTresults[i]=NaN 
  else 
// ∆T over max and min set field limits recorded in results wave. 
  dTresults[i]=CT-IT 
  Errors[i]=biggsttchange 
  Print "dT is", (CT-IT) 
  Print "Biggsttchange is", biggsttchange 
  endif 
 
// Repeat process starting from next temperature curve   
i+=1 
while (i<Ntemps) 
 
Display dTresults vs Twave 
//ErrorBars dTresults,Y wave=(Errors,Errors) 
 
End 
 

Supplemental functions 

(called during the above functions) 

 
// Modified from Wavemetrics built-in function 
Function XYToWaveJam(xWave, yWave, wWaveName, numPoints,MaxF,MinF) 
 Wave xWave       // x wave in the XY pair 
 Wave yWave       // y wave in the XY pair 
 String wWaveName     // name to use for new waveform 
wave 
 Variable numPoints     // number of points for waveform 
 Variable MaxF, MinF 
  
 Make/D/O/N=(numPoints) $wWaveName   // make waveform 
 Wave wWave= $wWaveName 
 SetScale/I x MinF, MaxF, wWave    // set X scaling for waveform 
 wWave = interp(x, xWave, yWave)    // do the interpolation 
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End 
 
// // Modified from Wavemetrics built-in function 
Function XYToWaveJambee(xWave, yWave, wWaveName, numPoints) 
 Wave xWave       // x wave in the XY pair 
 Wave yWave       // y wave in the XY pair 
 String wWaveName     // name to use for new waveform 
wave 
 Variable numPoints     // number of points for waveform 
 
 Interpolate2/T=1/N=(numPoints)/Y=$wWaveName xWave, yWave 
End 
 
// Wavemetrics built-in function 
Function/S WMTransposeWavesInTable(TableName, OutBase) 
 String TableName // can be "" for top table 
 String OutBase 
  
 OutBase= OutBase[0,26] // leave room for _ and 3 digits 
  
 if( strlen(TableName) == 0 ) 
  TableName=WinName(0,2) // ensure we get the top TABLE (if any) 
 endif 
  
 String ListofWaves=WMTransposeGetTableWaveList(TableName,1,";") 
  
 String OutputWaveList = "" 
   
 WAVE/Z w= $StringFromList(0,listofWaves) 
 if( !WaveExists(w) ) 
  return "" 
 endif 
  
 String ThisWaveName = NameOfWave(w) 
 Variable NumRows=numpnts(w) 
  
 Variable i = 0 
 do 
  WAVE/Z w= $StringFromList(i,listofWaves) 
  if( !WaveExists(w) ) 
   break 
  endif 
  if (numpnts(w) != NumRows) 
   DoAlert 0, "Waves must all have same length" 
   return "" 
  endif 
  i += 1 
 while(1) 
  
 Variable NumCols=i 
  
 if (NumCols < 2) 
  DoAlert 0,  "Must have at least two input waves" 
  return "" 
 endif 
 
 i = 0 
 do 
  ThisWaveName = CleanupName(OutBase+"_"+num2istr(i),1) 
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  Make/O/N=(NumCols) $ThisWaveName 
  OutputWaveList += PossiblyQuoteName(ThisWaveName)+"," 
  i += 1 
 while (i < NumRows) 
  
 i = 0 
 do 
  WAVE wIn= $StringFromList(i,listofWaves) 
   
  Variable j = 0 
  do 
   ThisWaveName = CleanupName(OutBase+"_"+num2istr(j),1) 
   WAVE wOut = $ThisWaveName 
   wOut[i] = wIn[j] 
   j += 1 
  while (j < NumRows) 
  
  i += 1 
 while (i< NumCols) 
  
 // remove trailing comma, which would be bad for an Edit command 
 OutputWaveList = OutputWaveList[0, strlen(OutputWaveList)-2] 
 return OutputWaveList 
End 
 

Appendix d - Igor functions for testing P(E,T) 

surfaces for compliance with indirect method 

conditions 

 

Main function 

Function ThermoConditionsTest(Ntemps, pts) 
Variable Ntemps,pts 
Variable i, j, k, eps=8.85418781762E-12, a1, b1, c1, tol, x, health 
 
// Make table of P(T) data for transpose  
i=0 
Edit 
do 
WAVE p = $("OrigPT_" + num2str(i)) 
AppendToTable p 
i+=1 
while (i<pts) 
 
// Transpose P(T) at E to give P(E) at T, i.e. makes P waves. 
WMTransposeWavesInTable("","CPwaveP") 
 
//Make E waves 
i=0 
do 
WAVE g=waveptsfields 
Duplicate g, $("CPwaveE_" + num2str(i)) 
WAVE f=$("CPwaveE_" + num2str(i)) 
i+=1 
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while (i<Ntemps) 
 
//Make E0 waves 
i=0 
do 
WAVE g=waveptsfields 
Duplicate g, $("CPwaveE0_" + num2str(i)) 
WAVE a=$("CPwaveE0_" + num2str(i)) 
WAVE b=$("CPwaveE_" + num2str(i)) 
WAVE c=$("CPwaveP_" + num2str(i)) 
a=b+(c/eps) 
i+=1 
while (i<Ntemps) 
 
//Check them out in graphs 
i=0 
Display 
do 
WAVE b=$("CPwaveE_" + num2str(i)) 
WAVE c=$("CPwaveP_" + num2str(i)) 
AppendToGraph c vs b 
i+=1 
while (i<Ntemps) 
 
i=0 
Display 
do 
WAVE a=$("CPwaveE0_" + num2str(i)) 
WAVE c=$("CPwaveP_" + num2str(i)) 
AppendToGraph c vs a 
i+=1 
while (i<Ntemps) 
 
// Go through, temp by temp, point by point, check to see if 3 conditions are met 
i=0 
do 
 
//Set E, E0 and P waves, plus equivalents at next temperature up 
WAVE E=$("CPwaveE_"+num2str(i)) 
WAVE E0=$("CPwaveE0_"+num2str(i)) 
WAVE P=$("CPwaveP_"+num2str(i)) 
WAVE Epl=$("CPwaveE_"+num2str(i+1)) 
WAVE E0pl=$("CPwaveE0_"+num2str(i+1)) 
WAVE Ppl=$("CPwaveP_"+num2str(i+1)) 
 
j=0 
do 
 
//dT is equal for a1, b1 and c1, so can be ignored 
a1=dE(E,P,Epl,Ppl,j) 
b1= dPE0(E0,P,E0pl,Ppl,j) 
c1=dPE(E,P,Epl,Ppl,j) 
 
//See if 3 conditions are met 
health=HealthCheck(a1,b1,c1) 
 
//If not, notify 
If (health==0) 
Print "i=",i,"j=",j 
Print "Bad dates!" 
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endif 
 
//Do for all data points at this T 
j+=1 
while (j<pts) 
 
//Repeat at each temperature except last 
i+=1 
while (i<(Ntemps-1)) 
 
Print "Checkpoint 1. Tested first 3 conditions." 
 
// Tolerance of following calculations based on x function and measurement limits 
tol=0.000002 
 
 
//Repeat above analysis of all data points, seeing if thermo conditions equation is satisfied 
i=0 
do 
 
WAVE E=$("CPwaveE_"+num2str(i)) 
WAVE E0=$("CPwaveE0_"+num2str(i)) 
WAVE P=$("CPwaveP_"+num2str(i)) 
WAVE Epl=$("CPwaveE_"+num2str(i+1)) 
WAVE E0pl=$("CPwaveE0_"+num2str(i+1)) 
WAVE Ppl=$("CPwaveP_"+num2str(i+1)) 
 
j=0 
do 
 
a1=dE(E,P,Epl,Ppl,j) 
b1= dPE0(E0,P,E0pl,Ppl,j) 
c1=dPE(E,P,Epl,Ppl,j) 
 
// Thermo equality 
x=1/((1/(a1*eps))+(1/b1)) 
 
If (abs(c1-x)>tol) 
Print "i=",i,"j=",j 
Print "Doesn't comply with equality" 
Abort 
else 
endif 
 
j+=1 
while (j<pts) 
 
i+=1 
while (i<(Ntemps-1)) 
 
Print "Success!!! Points on surface comply with thermodynamics." 
 
End 
 

Supplemental functions 

(called during main function) 
//Functions to calculate forward-going (i.e., rising temp) changes in E or P with P,E and E0 held 
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Function dE(E,P,Epl,Ppl,index) 
 Wave E,P,Epl,Ppl 
 Variable index 
 Variable dEpl 
 dEpl=interp(P[index],Ppl,Epl)-E[index] 
 return dEpl 
End 
 
Function dPE(E,P,Epl,Ppl,index) 
 Wave E,P,Epl,Ppl 
 Variable index 
 Variable dPEpl 
 dPEpl=Ppl[index]-P[index] 
 return dPEpl 
End 
 
Function dPE0(E0,P,E0pl,Ppl,index) 
 Wave E0,P,E0pl,Ppl 
 Variable index 
 Variable dPE0pl 
 dPE0pl=interp(E0[index],E0pl,Ppl)-P[index] 
 return dPE0pl 
End 
 
 
// Health Check 
 
Function HealthCheck(a1,b1,c1) 
Variable a1,b1,c1 
 
If (abs(c1) < abs(b1)) 
Print "dPdTatE is less than dPdTat E0" 
return 0 
elseif ((c1<0 && b1>0) || (c1>0 &&b1<0)) 
Print "dPdTatE and dPdTatE0 differ in sign" 
return 0 
elseif ((c1<0 && a1<0) || (c1>0 && a1>0)) 
Print "dEdTatP same sign as other two" 
return 0 
else 
return 1 
endif 
 
End 
 

Appendix e - Igor functions for finite-element model 

of temperature evolution in sample 

 
Plot e(t) data to extract weighting info 

Function ET(Ntemps,pts) 
Variable Ntemps, pts 
Variable i,j,tmpry,tmpry2,MaxField=9E20,MinField=0 
 
//E(T)@P 
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//Find MaxP and MinP of polarization data 
Variable MaxP=10, MinP=0 
i=3 
do 
  WAVE m = $("wave" + num2str(i)) 
  tmpry=WaveMax(m) 
  tmpry2=WaveMin(m) 
  if (tmpry<MaxP) 
   MaxP=tmpry       
  endif 
  if (tmpry2>MinP) 
   MinP=tmpry2       
  endif  
  i+=3 
while (i<=(Ntemps*3))   
Print "MaxP is",MaxP 
Print "MinP is", MinP 
 
//Create universal, evenly spaced, P wave 
i=0 
Make/N=(pts) waveptsP 
  do 
  waveptsP[i]=MinP+(i*((MaxP-MinP)/(pts-1))) 
    i+=1 
  while (i<pts) 
Edit waveptsP 
 
//Interpolate E(P) at each T to match universal P wave values 
i=2 
do 
Wave x=$("wave" + num2str(i+1)) 
Wave y=$("wave" + num2str(i)) 
String ww1=("OrigwaveETintp" + num2str(i+1)) 
XYToWaveJam(x, y, ww1, pts,MaxP,MinP) 
i+=3 
while(i<(Ntemps*3))  
 
//Make table of all interpolated E data for transpose  
i=3 
Edit 
do 
WAVE p = $("OrigwaveETintp" + num2str(i)) 
AppendToTable p 
i+=3 
while (i<=(Ntemps*3)) 
 
// Transpose E(P) at T to give E(T) at P.  Ntemp points on each curve.  
WMTransposeWavesInTable("","OrigET") 
 
//Display E(T) 
Display 
j=0 
do 
WAVE ET = $("OrigET_"+num2str(j)) 
AppendToGraph ET vs wave0 
j+=1 
while (j<pts) 
 
End 
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Create a wave for each finite element plane 

Function Iso1() 
Variable i 
 
i=0 
do 
Make/D/O/N=24000 $("Slice_"+num2str(i)) 
i+=1 
while (i<2719) 
 
End 
 
Extract weighting for polarization of loop data points 

Function Iso2() 
Variable i 
 
Duplicate Pol, Weight 
Wave polari=Pol 
 
i=0 
do 
Weight[i]=interp(polari[i],waveptsPol,Weight_Orig) 
i+=1 
while (i<25) 
 
i=1 
Variable totalweight=0 
do 
totalweight=totalweight+Weight[i] 
i+=1 
while (i<25) 
Print "totalweight=",totalweight 
 
Edit Weight 
Display Weight_Orig vs waveptsPol 
AppendToGraph Weight vs Pol 
 
End 
 
Perform transient temperature calculations 

(set initial data in function) 

Function Iso3() 
Variable T1=518, Thickness=1050, AdiabT=-6.32, Volume=12.25E-8*Thickness*1E-9 
Variable C=2739000*Volume, fact=1/(1-((1-((T1+AdiabT)/T1))/2)) 
Variable i,j, k, totaldeltaSIso, totaldeltaSAd, totalweight=39070133 
Variable RC=0.3333E-6, Fc, Polr, dS, DELS, LastDELS, dT, row 
 
totaldeltaSIso=((C*AdiabT)/T1)*-1*fact 
totaldeltaSAd=((C*AdiabT)/T1)*-1 
Print "Adiabatic Entropy Change",totaldeltaSAd,"Isothermal Entropy Change", totaldeltaSIso 
 
// Set up entropy values to coincide with measured points 
Killwaves/Z Ent 
i=1 
Duplicate Pol, Ent 
wave s=Ent 
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wave wt=Weight 
s[0]=0 
Variable stndint=totaldeltaSIso/24 
do 
s[i]=s[i-1]+(stndint*(wt[i]/(totalweight/24))) 
i+=1 
while (i<25) 
 
// Check entropy totals are OK 
Print "Total entropy of Ent wave is", Ent[24] 
Print "totaldeltaSIso=", totaldeltaSIso 
 
// Set all planes to T1 at time=0, i.e. row=0 
i=0 
do 
Wave a=$("Slice_"+num2str(i)) 
a[0]=T1 
i+=1 
while (i<2719) 
 
// Establish wave id 
Wave a=Fld 
Wave b=Pol 
Wave r=Ent 
 
// i corresponds to measured point number 
i=0 
LastDELS=0 
CurrentT=T1 
do 
 
// j corresponds to times of intermediate points between measured points 
j=1 
 
// Move on 1 nanosecond for first calculation, as row 0 is already done 
If (i==0 && j==1) 
j=2 
endif 
 
// Sort one row at a time, i.e. temperatures at one nanosecond later.  Time =(j-1)+(i*1000) 
do 
// Find field at Time 
Fc=a[i]+((100/95.022787)*(a[i+1]-a[i])*(1-(exp(-((j-1)*1E-9)/RC)))) 
 
// Find P, assuming it to have changed proportionally to the change in V, between measured points. 
Polr=b[i]+(((Fc-a[i])/(a[i+1]-a[i]))*(b[i+1]-b[i])) 
 
// Find change in entropy since last measured point 
DELS=r[i]+(((Polr-b[i])/(b[i+1]-b[i]))*(r[i+1]-r[i])) 
 
// Get change in entropy since last iteration and set change in entropy since last measured point 
dS=DELS-LastDELS 
LastDELS=DELS 
 
// Establish the row to determine, i.e. that of time. 
row=((j-1)+(i*1000)) 
 
// Set temperature for plane next to conductive heat source 
Wave m=Slice_2718 
m[row]=T1 
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// Calculate temperatures at new time for other planes, excluding entropy change influence. 
k=1 
do 
Wave l=$("Slice_"+num2str(k)) 
Wave f=$("Slice_"+num2str(k+1)) 
Wave d=$("Slice_"+num2str(k-1)) 
l[row]=(f[row-1]+d[row-1])/2 
k+=1 
while (k<2718) 
 
// Calculate temperature for plane at convection boundary 
Wave n=Slice_0 
Wave o=Slice_1 
Variable lowpressfac=(1E-4/101.32)^0.5,hconvect, lengthL=87.5E-6, delxtopelec=3.02E-8, ktopelec=1.25, 
term=hconvect*delxtopelec/ktopelec 
hconvect=0.59*(((T1-n[row-1])/lengthL)^0.25)*lowpressfac 
n[row]=(o[row]+(term*T1))/(1+term) 
 
// Add change in temperature to all planes in film due to electrocaloric effect 
k=0 
do 
Wave g=$("Slice_"+num2str(k)) 
dT=((g[row-1]*dS)*-1)/C 
g[row]=g[row]+dT 
k+=1 
while (k<35) 
 
j+=1 
while (j<=1000) 
 
i+=1 
while (i<24) 
 
End 
 
Plot temperature evolution of planes in film and at various times 

across sample 

Function Iso4() 
Variable i 
 
// Graph all film planes' temperature evolution with time 
Display 
i=0 
do 
Wave h=$("Slice_"+num2str(i)) 
AppendToGraph h 
i+=1 
while (i<35) 
 
End 
 
Function Iso5() 
Variable i,k 
 
//Plot temp distribution waves at 7 moments during process 
i=0 
Display 
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do 
Make/O/N=2719 $("TD_"+num2str(i)) 
Wave v=$("TD_"+num2str(i)) 
k=0 
do 
Wave theone=$("Slice_"+num2str(k)) 
v[k]=theone[i] 
k+=1 
while (k<2719) 
AppendToGraph v 
i+=3428 
while (i<24000) 
 
End 
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