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Abstract

Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical
assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum
likelihood-based methods such as Akaike’s Information Criterion (AIC), Bayesian methods have gained in popularity because
they provide more informative output in the form of posterior probability distributions. However, comparison between
multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large
parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and
applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for
inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice
with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the
original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of
the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior
predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative
mechanistic models and a relaxation of the quasi-stationary assumption should be considered.
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Introduction

Model comparison
Model-based inference is widely used in life sciences in order to

assess the plausibility of hypothesised biological mechanisms based

on data from observations or experiments. One of the most

common approaches to compare competing models representing

alternative hypotheses relies on Akaike’s Information Criterion

(AIC) [1]. For a given data set D, the plausibility of the candidate

models Mi is assessed by calculating their respective AIC values,

AICi:

AICi~{2 ln p(DDbhhMLE,i,Mi)z2ndf ,i: ð1Þ

In (1), bhhMLE,i is the maximum likelihood estimate of the set

parameters associated with modelMi, and ndf is the correspond-

ing number of degrees of freedom. If AIC1vAIC2 then M1 is

more plausible than M2, with respect to D, in the sense that the

Kullback-Liebler divergence ofM1 from the true model is smaller

[2].

An important drawback to the classic approach to model choice

is that it is based on a single point estimate bhhMLE,i of h, the

uncertainty in h being ignored. In contrast, the Bayesian approach

considers a probability distribution for h, with p(h(i)DD,Mi)

expressing the uncertainty in h(i) given D (for a model M(i)).

Suppose that we wish to select a model from a set of candidate

models fM1, . . . ,Mmg given our observation of data D. We can

express this goal probabilistically by stating that the aim is to

determine the most probable model: arg maxMi
p(Mi DD).

From Bayes’ theorem, we have

p(Mi DD)~
p(Mi)p(DDMi)Pm

j~1 p(Mj)p(DDMj)
; ð2Þ

therefore, if p(Mi) is known, or considered to be equal for allMi

then the focus is on the model evidence p(DDMi).
If h(i) is the set of parameters associated with model Mi, the

Bayesian approach to p(DDM(i)) is to integrate over all possible

values of h(i):

p(DDM(i))~

ð
h(i)

p(DDh(i),Mi)p(h(i)DMi) dh(i): ð3Þ

In addition to allowing for parameter uncertainty, (3) intrinsi-

cally penalizes against models that are better able to fit to observed

data because of their complexity [3], thereby removing the need

for an explicit complexity penalization term.

The integral of (3) can be estimated analytically or numerically.

In analytical approaches, the integral is approximated by the

adoption of simplifying assumptions; for example, as used for
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derivation of the Bayes Information Criterion [4]. Numerical

approaches are based on some form of Monte Carlo sampling

such as Gibbs Sampling [5].

One approach to estimating the integral

ð
q

p(DDh,M)
zfflfflfflfflfflffl}|fflfflfflfflfflffl{L(h)

=t p(hDM)
zfflfflfflffl}|fflfflfflffl{p(h)

=t dh

numerically is to sample h randomly from its prior,

ð
q

L(h)p(h) dh&
1

n

Xn

k~1

L(hk),where hk*p; ð4Þ

however, the prior p(h) is often concentrated in places where the

likelihood L(h) is relatively low. This problem becomes more

severe in high-dimensional parameter (h) spaces, or in problems

where the likelihood function L(h) is concentrated in a very small

region.

To overcome the problem, Skilling [6,7] proposed a means of

estimating
Ð

q
L(h)p(h)dh that, by design, samples h sparsely from

the h space where the likelihood L(h) is low, and densely where

L(h) is high, by means of ‘nested sampling’, which is the focus of

this paper. A recent addition to the Bayesian arsenal, nested

sampling has been used in cosmology to compare alternative

models of the universe against observed data [8]. Outside of

physics, it has, so far, received little attention [9,10].

Within-host dynamics of a bacterial infection
Quantitative research on infectious disease dynamics has

undergone rapid development over the last two decades,

motivated by concerns about emerging infections that can spread

globally and about the evolution of pathogens resistant to existing

control measures such as antimicrobials and vaccines. Bayesian

computation has become the method of choice to fit stochastic

dynamic models to epidemiological [11] or experimental datasets

[12]. This is in large part due to the appeal of being able to

produce measures of uncertainty and correlation for the model

parameters based on their posterior probability distributions.

Similarly, models for within-host dynamics of infection have more

recently started to benefit from Bayesian inference approaches

[13].

Salmonella enterica causes systemic diseases (typhoid and paraty-

phoid fever) [14], food-borne gastroenteritis and non-typhoidal

septicaemia (NTS) [15] in humans and in many other animal

species world-wide, which also cause a very serious problem for

the food industry. The global burden of typhoid fever is estimated

at ca. 22 million cases with a mortality estimated at ca. 200,000

deaths per year [14,16]. Paratyphoid has an estimated 5.4 million

illnesses worldwide [16]. The high incidence of these diseases, that

affect both travellers to and residents in endemic areas, and

threaten infants, children and immunodeficient patients, dictates

the urgent need for more efficacious preventive and therapeutic

measures.

In the mouse model of systemic infection, Salmonella reside and

proliferate mainly within phagocytic cells of the spleen liver, bone

marrow and lymph nodes [17–19]. Observation of Salmonella by

fluorescence microscopy in the tissues of mice has revealed that a

key feature of systemic infections with wild type bacteria is the

presence, on average, of low bacterial numbers within individual

phagocytes irrespective of net bacterial growth rate and time since

infection [20–23].

In an effort to understand the dynamics that underpin the

intracellular numerical distributions of Salmonella within the host

cells, and to capture the essential traits of the cell-to-cell spread of

the bacteria, we have used mathematical model frameworks for

the intensity of intracellular infection that links the quasi-stationary

distribution of bacteria to bacterial and cellular demography. An

example of this the work done by Brown et al. [24], who compared

the observed distribution fCng, where Cn is the number of cells

with n bacteria, across 16 candidate infection models. The models

under consideration were as follows: (a) one homogeneous model,

in which, for every cell, burst occurred only when the number of

bacteria n in a cell reached a single burst threshold N max; (b) five

heterogeneous models having a probability distribution of burst

thresholds; and (c) eight stochastic models for which there is a

probability that a given cell will undergo burst. Two datasets were

analysed, one for a virulent strain of bacteria and the other for an

attenuated strain. Brown et al. [24] computed the maximum

likelihood estimates of the parameters of each model, and selected

the ‘best’ model based on the corresponding AIC values.

In order to overcome the issues raised by AIC discussed above,

we decided to re-analyse the datasets and re-assess the models

within a Bayesian framework.

Methods

What follows is an elaboration of the description of nested

sampling given by Skilling [6,7].

Nested sampling
The expected value of a function g of a random variable X is

given by

E(g(X))~

ð
x

g(x)fX(x) dx

where f X is the pdf of X. On comparing this expression with the

target integral
Ð

h L(h)p(h)dh, it is clear that

ð
q

L(h)p(h) dh~E(L(h)); ð5Þ

that is to say, the expected value of the likelihood under the prior.

The cumulative distribution function FX (x) with respect to a

random variable X is defined by

FX (x)~p(Xvx)~

ðx

{?
fX (y) dy

and is related to the expectation E(X ) by

E(X )~

ð?
0

(1{FX (x)) dx,

[25]; consequently, from (5), we obtain the important relationship

ð
q

L(h)p(h)dh~

ð?
0

(1{FL(l))dl~

ð1

0

(1{FL(l))dl, ð6Þ

where l is likelihood, and L in the right-hand integral is equal to

L(h). The reason why (6) is important is that the multivariate

integral on the left-hand side has been equated to a univariate

integral.

Nested Sampling - Salmonella
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Since h has a distribution defined by prior p, and L~L(h), it

follows that L has a probability distribution and thus a cumulative

distribution function,

FL(l)~p(Lvl)~

ðl

0

fL(y) dy, ð7Þ

which is present in the integrand of the right-hand integral of (6).

We can replace
Ð 1

0
(1{FL(l)) dl in (6) with a more accessible

integral by the following steps. First, since the pdf of L is

connected to the pdf of h via L(h), we can write

ðl

0

fL(y) dy~

ð
h:L(h)vl

p(h) dh; ð8Þ

thus, from (6), (7) and (8), we can write

ð
q

L(h)p(h) dh~

ðl~1

l~0

1{

ð
h:L(h)vl

p(h) dh

� �
dl

~

ðl~1

l~0

ð
h:L(h)wl

p(h) dh dl:

ð9Þ

It will be convenient to rewrite the inner integral of (9) as w(l) to

give

ð
h

L(h)p(h) dh~

ð1

0

w(l) dl, ð10Þ

where w(l) is the probability of selecting h from the prior p such

that L(h)wl:

w(l)~

ð
h:L(h)wl

p(h) dh: ð11Þ

Introducing j~w(l), hence l~w{1(j), we can rewrite the

previous integral as

ð
q

L(h)p(h)dh~

ð1

0

w{1(j) dj, ð12Þ

where w{1(j) is that likelihood l such that p(L(h)wl)~j (cf.

Equation (11)); for example, if w{1(0:9)~0:0042 then 90% of h
drawn from the prior p(h) will have likelihoods greater than

0.0042.

The algorithm
The main steps of the nested sampling technique are as follows.

First, n points h (i.e., parameter vectors) are sampled from the

prior p, and their corresponding likelihoods L(h) determined. The

point hmin,1 having the smallest likelihood is determined and its

likelihood lmin,1 is recorded. Furthermore, the probability j1 that

L(h)wlmin,1 is also recorded.Point hmin,1 is replaced by a new h
drawn from the prior p but restricted to those h for which

L(h)wlmin,1. In other words, a restricted prior is used:

pD(L(h)wlmin,1). If V is the set of all possible h then the set

V1~fhDL(h)wlmin,1g is a subset of V.

The above sequence of determining hmin and the corresponding

j is performed on the new set of points, giving rise to lmin,2 and j2.

Point hmin,2 is replaced by a h drawn from the new restricted prior

pD(L(h)wlmin,2). In other words, h is sampled from

V2~fhDL(h)wlmin,2g, for which V25V1.

This cycle is repeated until some stopping criterion has been

reached. If this termination occurs at the J-th iteration then the

resulting values of lmin,i and ji will be

lmin,Jwlmin,J{1w � � �wlmin,1,

jJvjJ{1v � � �vj1,

and the resulting sequence of V subsets is

VJ5VJ{15 � � �5V15V;

hence the term nested sampling.

Model evidence Z~
Ð

q
L(h)p(h)dh can be estimated from the

recorded lmin,i and ji values by means of the approximation

Z~

ð1

0

w{1(j) dj&SJ
i~1D

bZZi, ð13Þ

where J is the number of iterations used, and D bZZ is a vertical

rectangular segment under the curve of Figure 1.

Algorithm 1 (Table 1) describes the above process in

pseudocode.

Practical adjustments to the algorithm
We will now consider how some of the aspects of Algorithm 1

can be implemented.

Segment D bZZi used in (13) could be evaluated by the trapezoidal

approach

D bZZi~lmin,i(ji{1{jiz1)=2

but Sivia and Skilling [26] have found

D bZZi~lmin,i(ji{1{ji)

to be adequate (line 9 in Algorithm 1).

Line 7 in Algorithm 1 used the assignment ji/P(L(h)wlmin,i),
but an alternative approach is to replace this assignment with

ji/E½ji�. An approximation of E½j� is derived as follows. Let ti

denote the ratio ji=ji{1, with j0~1. At the kth iteration we have

0vjJvjJ{1v � � �vj1v1,

and so

jk~tkjk{1~Pk
i~1ti,

therefore,

E½log jk�~Sk
i~1E½log ti�: ð14Þ

Now,

Nested Sampling - Salmonella

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e82317



E½log ti�~
ð1

0

log t p(t) dt

~

ð1

0

log t ntn{1 dt

[27]

~ tn log t½ �10{
tn

n

� �1

0

~
{1

n
,

therefore, from (14),

Figure 1. The shaded area below the curve for w{1(j) is equal to
Ð

h L(h)p(h) dh. See Equation (12).
doi:10.1371/journal.pone.0082317.g001

Table 1. Algorithm 1: The nested sampling algorithm.

Input: (a) likelihood function L(h); (b) prior p(h); (c) number n of active parameter vectors in use during nested sampling.

Out put: an estimate bZZ of Z.

1: Let S be a set of n parameter vectors h1, . . . ,hn *
iid

p

2: bZZ/0

3: i/1

4:while terminating condition not satisfied do

5: hmin,i/ arg min
h[S

L(h)

6: lmin,i/L(hmin,i)

7: ji/P(L(h)wlmin,i)

8: if iw1 then

9: DZi/lmin,i(ji{1{ji) xEstimated segment of Z

10: bZZ/ bZZzD bZZi

11: hnew*pD(L(h)wlmin,i) xRestricted prior

12: S/S{fhmin,ig
13: S/S|fhnewg

return bZZ
doi:10.1371/journal.pone.0082317.t001

Nested Sampling - Salmonella

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e82317



E½log jk�~Sk
i~1

{1

n

� �
~

{k

n
:

Since the logarithm function is strictly increasing and concave,

we have, from Jensen’s inequality, that

log E½jk�ƒE½log jk�

and thus

E½jk�ƒexp
{k

n

� �
;

however, Sivia and Skilling [26, p. 186] drop the inequality and

use the approximation

E½jk�&exp
{k

n

� �
:

As regards the termination of Algorithm 1, there is no rigorous

criterion as to when the algorithm should be stopped, but Skilling

[7] and Feroz and Hobson [28] have found

lmin,ijivf bZZ
to be an effective stopping condition, where f is the fraction of Z
that will not significantly contribute to the estimate of Z (according

to a user-defined value).

Chopin and Robert [29] have shown that the asymptotic

variance of the nested sampling approximation typically grows

linearly with parameter dimensions.

Table 2. Algorithm 2: An implementation of Algorithm 1 in which practical adjustments are included.

Input (a) likelihood function L(h); (b) prior p(h); (c) number n of active parameter vectors in use during nested sampling; (d) procedure for determining a regionR(S) of
parameter space that encloses a set of parameter vectors S; (e) fraction f of Z to be estimated.

Output: an estimate bZZ of Z.

1: Let S be a set of n parameter vectors h1, . . . ,hn *
iid

p

2: bZZ/0

3: i/1

4:Repeat

5: hmin,i/ arg min
q[S

L(h)

6: lmin,i/L(hmin,i)

7: ji/P(L(h)wlmin,i)

8: if iw1 then

9: DZi/lmin,i(ji{1{ji) xEstimated segment of Z

10: bZZ/ bZZzD bZZi

11: hnew*pD(h[R(S) ^ L(h)wlmin,i) xRestricted prior

12: S/S{fhmin,ig

13: S/S|fhnewg

14: until: lmin,ijivf bZZ xThe stopping condition

return bZZ
doi:10.1371/journal.pone.0082317.t002

Table 3. Probability distributions d(N Dh) for the burst thresholds N .

Model Distribution Parameters, h

1 d(N Dh)~dN ,Nmax N max[f2, . . . ,40g

2 d(N Dh)~rdN ,N 1z(1{r)dN ,N 2 N 1[f2, . . . ,5g, N 2[f2, . . . ,30g, r[½0,1�

3 d(N Dh)~(lN =N !)exp({l) l[(0,40�

4
d(N Dh)~

t

N

� �
pN (1{p)t{N t[f30, . . . ,45g, p[½0,1�

5
d(N Dh)~

Nzr{1

N

� �
pN (1{p)r r[f1, . . . ,30g, p[(0,1)

6 d(N Dh)~p(1{p)N{1 p[(0,1�

(1) Unimodal Kronecker, (2) bimodal Kronecker, (3) Poisson, (4) binomial, (5) negative binomial, and (6) geometric.
doi:10.1371/journal.pone.0082317.t003
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Finally, there is the structure of the restricted priors. Each new

point hnew for a set S of active points is sampled from prior p
conditioned on the restriction that L(hnew)wlmin. Rather than

searching across the entire h -space for such a point, it is more

computationally efficient to restrict the search to a region R(S)
that contains S. We have used rectangular cuboids for R(S).

Incorporating the above points into Algorithm 1 leads to

Algorithm 2 (Table 2). Before applying the algorithm to our

experimental datasets, we tested it on a simple two-parameter

likelihood function L(a,b)~a30(1{a)30b30(1{b)30. The analyses

and results are presented in Methods S1.

The Salmonella models
Evidence p(DDM) was estimated by nested sampling with

respect to two groups of models associated with within-host S.

enterica infection, were each model M provides an expression for

the probability q(nDh,M) that a host cell contains n bacteria.

In the first group of models, infected cells are assumed to burst

when the number of bacteria they contain reach a fixed threshold

N . The probability distributions considered for N are shown in

Table 3.

For the second group of models, the assumption is that, instead

of pre-programmed burst thresholds N , there is burst rate m that is

a function of the number of bacteria n in a cell. For these models,

the general relationship is

m(n; m0,m1,m2)~m0zm1nzm2n2 ð15Þ

where m0,m1,m2[½0,?). Furthermore, the rate of bacterial replica-

tion an is assumed to be related to n by

an~a0 exp({aen) ð16Þ

where a0,a1[½0,?). As explained in Brown et al. [24], in the

dynamic model, time can be re-scaled by the baseline replication

rate a0, therefore this parameter cannot be estimated using the

quasi-stationary distribution. For convenience, we set a0~1, so

Table 4. Parameters used for the eight stochastic models
based on (15) and (16).

Parameters, h

Model m0 m1 m2 a0 ae

7 m0 0 0 1 0

8 0 m1 0 1 0

9 0 0 m0 1 0

10 m0 m1 m2 1 0

11 m0 0 0 1 ae

12 0 m1 0 1 ae

13 0 0 m2 1 ae

14 m0 m1 m2 1 ae

For each model, some of the parameters were set equal to constant values,
which effectively removed the parameters from the model. The range of values
considered were m0,m1,m2[½0,2� and ae[½0,1�.
doi:10.1371/journal.pone.0082317.t004

Table 5. Algorithm 3: Estimation of q(nDh,M) using an
iterative estimation of the infection rate constant c.

Input: parameters h for model M.

Output: an estimate of probabilities q(1Dh,M),q(2Dh,M), . . . ,q(nmax Dh,M).

1: c/1 Initial value for c

2: cold/10c

3: while: D(c{cold )=cold Dw0:01 do

4: cold/c

5: F/½1,f2,f2f3, . . . ,f2 � � � fnmax�
where fn~(an{1(n{1))=(czannzm(n; m0,m1,m2)) xEquation (21)

6: q1/
Pnmax

n~1 F ½n�
� �{1

xEstimate of q(1Dh,M)

7: P/q1F xEstimates of q(nDh,M) where n~1, . . . ,nmax

8: P/P=
Pnmax

n~1 P½n� xNormalisation of the estimated probabilities

9: c/
Pnmax

j~1 jaj q(jDh,M)
	 


=
Pnmax

j~1 jq(jDh,M)
	 


return: P~½q(1Dh,M),q(2Dh,M), . . . ,q(nmax Dh,M)�

doi:10.1371/journal.pone.0082317.t005

Table 6. The number Cn of cells containing n bacteria when
virulent (SL5560) and attenuated (SL3261) strains of bacteria
were used.

Cn

n Virulent Attenuated

1 655 1189

2 250 396

3 87 104

4 86 70

5 54 40

6 42 25

7 13 8

8 30 10

9 8 9

10 19 3

11 5 7

12 12 4

13 5 3

14 1 4

15 6 0

16 3 2

17 2 1

18 0 2

19 1 1

20 4 0

21 0 0

22 0 0

23 0 0

24 0 1

25 1 0

26 0 0

27 0 0

28 0 0

29 1 0

doi:10.1371/journal.pone.0082317.t006
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that the values of other parameters are relative to the baseline

replication rate. The parameters of the eight stochastic models

considered are shown in Table 4.

Under the assumption that the number of host cells infected by

n bacteria reaches a quasi-stationary distribution, the probability

q(nDh,M) that a cell contains n bacteria can be derived for the 14

models [30]. For Model 1, we have the relationship

q(nDh,M)~
N max

(N max{1)n(nz1)
: ð17Þ

For Models 2 to 6, the relationship is

Figure 2. Estimates of the posterior model probabilities p(MDD) when using data from (A) the attenuated strain and (B) the virulent
strain.
doi:10.1371/journal.pone.0082317.g002
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q(nDh,M)!
1

n(nz1)

X?
N~nz1

d(N Dh): ð18Þ

For Models 7 to 16, we have the recursive relationship

q(nDh,M)~
an{1(n{1)

czannzm(n; m0,m1,m2)
q(n{1Dh,M), ð19Þ

where the infection rate constant c is given by

c~

P?
j~1 jajq(jDh,M)P?

j~1 jq(jDh,M)
: ð20Þ

The value for q(1| h, M) can be handled as follows. Let

fn~
an{1(n{1)

czannzm(n; m0,m1,m2)
, ð21Þ

so that (19) can be written as q(nDh,M)~fnq(n{1Dh,M), then

X?
n~1

q(nDh,M)~q(1Dh,M)zq(2Dh,M)zq(3Dh,M)z � � �

~q(1Dh,M)zf2q(1Dh,M)zf2f3q(1Dh,M)z � � �

~q(1Dh,M)(1zf2zf2f3z � � � )

but
P?

n~1 q(nDh,M)~1; therefore,

q(1Dh,M)~(1zf2zf2f3z � � � ){1:

When bacterial replication is not dependent on n, ae~0, in

which case c~1, but when replication is density dependent, (19)

and (20) need to be solved self-consistently. This can be done by

assuming an initial value for c, computing q(nDh,M) from (19),

updating c using (20), and repeating this iteratively until c no

longer changes significantly. This process is shown in Algorithm 3

(Table 5).

Likelihood function
With expressions for q(nDh,M) established for all the models, we

can now determine the likelihood L(h) required for Algorithm 2.

Following Brown et al. [30], we can express the likelihood function

by a multinomial distribution:

L(h)~p(DDh,M) ð22Þ

~p(fCngDfq(nDh,M)g) ð23Þ

~U! P
nmax

n~1

q(nDh,M)Cn

Cn!
ð24Þ

where fCng is the observed distribution of Cn (the number of cells

with n bacteria), and U~
P

n Cn, if observations are assumed to be

Table 7. Median { log10 ( bZZ) estimated for Models 1 to 6.

Model Distribution Attenuated Virulent

1 d(N Dh)~dN ,Nmax 77.59 38.56

2 d(N Dh)~rdN ,N 1z(1{r)dN ,N 2 69.49 92.79

3 d(N Dh)~(lN =N !)exp({l) 53.75 34.09

4
d(N Dh)~

t

N

� �
pN (1{p)t{N 245.87 281.46

5
d(N Dh)~

Nzr{1
N

� �
pN (1{p)r 30.26 34.18

6 d(N Dh)~p(1{p)N{1 84.26 79.97

The highest model evidence bZZ (bold) and second highest model evidence
(italic) models are highlighted.
doi:10.1371/journal.pone.0082317.t007

Table 8. Median { log10 ( bZZ) estimated for stochastic Models
7 to 14.

Parameters, h

Model m0 m1 m2 a0 ae Attenuated Virulent

7 m0 0 0 1 0 27.21 38.56

8 0 m1 0 1 0 28.00 36.93

9 0 0 m2 1 0 38.80 35.24

10 m0 m1 m2 1 0 29.21 39.21

11 m0 0 0 1 ae 27.32 34.27

12 0 m1 0 1 ae 30.13 34.43

13 0 0 m2 1 ae 41.25 34.60

14 m0 m1 m2 1 ae 30.04 36.34

The highest model evidence bZZ (bold) and second highest model evidence
(italic) models are highlighted.
doi:10.1371/journal.pone.0082317.t008

Table 9. { log10 ( bZZ) estimates for all models.

Attenuated Virulent

Model min median max min median max

1 77.56 77.59 77.63 38.55 38.56 38.58

2 69.38 69.49 69.66 92.66 92.79 92.88

3 53.71 53.75 53.79 34.07 34.09 34.10

4 245.83 245.87 245.91 281.36 281.46 281.50

5 29.93 30.26 30.52 34.16 34.18 34.24

6 84.23 84.26 84.30 79.93 79.97 80.01

7 27.19 27.21 27.24 38.52 38.56 38.58

8 27.94 28.00 28.02 36.88 36.93 36.97

9 38.78 38.80 38.85 35.20 35.24 35.98

10 29.06 29.21 29.39 38.66 39.21 43.12

11 27.28 27.32 27.38 34.24 34.27 34.28

12 29.99 30.13 30.36 34.39 34.43 34.50

13 40.93 41.25 41.84 34.53 34.60 34.63

14 29.86 30.04 30.48 36.19 36.34 39.65

doi:10.1371/journal.pone.0082317.t009
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independent. Garca-Pérez [31] provides an algorithm for the

accurate computation of multinomial probabilities.

As regards the prior p(h) for a modelM, it will be assumed to

be uniform across the parameter space of interest for that model;

consequently, the prior will be set equal to the reciprocal of the

size of the parameter space. More precisely,

p(h)~p(h1, . . . ,hD)~ P
D

i~1
max(hi){min(hi)

� �{1

:

A continuation approach
The theory underlying nested sampling assumes that all the

parameters for a model have continuous values, however, this will

not necessarily be the case in practice. For example, the binomial

model (Model 3) has a discrete parameter n and a continuous

parameter p.

It is possible to formulate a theory of nested sampling for

discrete parameters by replacing integrals with summations, but

modifications to Algorithm 2 would be required to take account of

the fact that, if h is discrete, several points could occupy the same

location in parameter space.

An alternative response to the presence of discrete parameters is

to use a type of continuation approach [32]; in other words, if f (x) is a

function defined only for integer values of x, replace it with

another function g(x) that takes real values, but for which

g(x)~f (x) when n[N (or N0).

For Model 2, the Kronecker delta dN ,N i
can be replaced with a

narrow Gaussian function exp({(N{N i)
2) with N i[½1,?). In

the case of Model 1, continuation can be applied directly to (17) by

allowing N max[½1,?).

For those models using a factorial of a parameter (i.e., Models 4

and 5), we can replace x! with C(xz1) since C is a function of a

real value.

The data
The data D consisted of the number Cn of mice cells observed

(via fluorescence microscopy) to contain n S. enterica bacteria:

D~fCng29
n~1. One dataset was used for a virulent bacterial strain

(SL5560); another for an attenuated strain (SL3261). The infected

cells were taken randomly from various locations in the liver. The

observed Cn values are shown in Table 6.

The data was pooled. If C
½t�
n denotes the number of cells having

n bacteria on day t then, for the virulent strain, Brown et al. [24]

used Cn~C
½3�
n zC

½4�
n , and for the attenuated strain they used

Cn~C
½4�
n zC

½6�
n zC

½10�
n zC

½12�
n .

Posterior model probabilities
If we assume that the set of candidate models is exhaustive, we

can apply (2) to estimate the posterior probability p(MDD) for each

model. Furthermore, if p(Mi) is assumed to be equal for all

models, we can use

p̂p(Mi DD)~
bZZiP14

j~1

bZZj

: ð25Þ

There are 14 models, each arbitrarily having 10 estimates of bZZ,

but it is impractical to systematically apply each of the 1014

possible combinations of bZZ to [25]; therefore, the bZZ values were

Figure 3. An estimate of the marginal probability distribution p(m0DD,Model7). D is data from the attenuated strain.
doi:10.1371/journal.pone.0082317.g003
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chosen randomly in order to obtain distributions for p(MDD). The

resulting distributions are shown in Figure 2.

An alternative approach to Bayesian model comparison is to use

the Bayes factor p(DDMi)=p(DDMj). This provides a relative

comparison of models Mi and Mj but not the absolute values of

their posterior probabilities p(MDD).

Results

The estimated model-evidence values bZZ obtained by nested

sampling for each model is shown in Tables 7 and 8. The ranges

are shown in Table 9.

With respect to the data from the attenuated strain, the most

probable model was Model 7 (m0 only) followed by Model 11 (m0

and ae). With respect to the data from the virulent strain, the most

Figure 4. Estimates of the marginal probability distributions p(m0DD,Model11) and p(aeDD,Model11). D is data from the attenuated strain.
doi:10.1371/journal.pone.0082317.g004
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probable model was Model 3 (Poisson) followed by Model 5

(negative binomial).

Parameter distributions
After having estimated the most probable model, M�, it is of

interest to estimate the posterior joint probability of the

parameters h with respect to D and M�: p(hDD,M�).
From Bayes’ theorem, we can write

p(hDD,M�)~
L(hDM�)p(h)Ð
h L(hDM�)p(h)

, ð26Þ

and the denominator of Eqn (26) can be estimated by nested

sampling:

p̂p(hDD,M�)~
L(hDM�)p(h)bZZ : ð27Þ

Parameter estimation via reject sampling
Distribution p(hDD,M) can be estimated using reject sampling

with approximation (27). As part of this process, the maximum of

p̂p(hDD,M) can be determined by performing Nelder-Mead

simplex optimisation with respect to this distribution over

parameter space.

The estimated parameter distributions obtained by reject

sampling for Models 3, 5, 7 and 11, are shown in Figures 3, 4,

5, and 6, respectively. In each case, the sample size n was 10000.

The samples obtained by reject sampling were also used to

construct density scatter plots (Figures 7 and 8), which provide a

visualisation of the correlations between the parameters.

Parameter estimation directly from nested sampling
The parameter sequence fhmin,1,hmin,2, . . . ,hmin,Jg is produced

during nested sampling. Can this set of parameters be regarded as

a random sample from p(hDD,M)? Sivia and Skilling [26]

proposed using fhmin,kgJ
k~1 for this purpose so long as it is

weighted by wk~D bZZk= bZZ, where D bZZk~lmin,k(jk{1{jk), on the

basis that wk&p(hmin,k DD,M). A theoretical justification for this is

given by Chopin and Robert [29].

The appropriateness of regarding fhmin,kgJ
k~1 as a random

sample from p(hDD,M), was ascertained empirically using the

Kolomogorov-Smirnov test, as follows.

The Kolmogorov-Smirnov statistic Dn is given by

Dn~ sup
x[R

D(x){F0(x)D,

where F0(x) is the cdf of the null-hypothesis pdf, and F (x) is the

empirical cdf obtained from a sample fXig:

F (x)~
1

n

Xn

i~1

1fXiƒxg: ð28Þ

This definition can be generalized to a weighted Kolmogorov-

Smirnov statistic by replacing (28) with a weighted cdf:

F (x)~
Xn

i~1

wi1fXiƒxg:

This allows us to take account of the weights fwkgJ
k~1 on

fhmin,kgJ
k~1.

Applying this method to the toy model Mtoy presented in

Methods S1, a sample fhmin,kgJ
k~1, with J~10586, was obtained

by performing nested sampling for the evaluation of evidence

Figure 5. An estimate of the marginal probability distribution p(lDD,Model3). D is data from the virulent strain.
doi:10.1371/journal.pone.0082317.g005
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p(DDMtoy), where h~½a,b�T . The corresponding sample

famin,kgJ
k~1 was compared with the marginal beta distribution,

p(aD:,Mtoy)~a30(1{a)30,

using the weighted Kolmogorov-Smirnov statistic DJ . This statistic

was equal to 0.01298. In order to obtain a frequentist p-value for

the statistic, an empirical probability distribution for DJ was

obtained by randomly selecting a set f~aakgJ
k~1 of a values from

p(aD:,Mtoy) and determining DJ for the set, this being done 10000

times. On comparing 0.01298 with this empirical distribution, the

p-value for famin,kgJ
k~1 was found to be 0.0276. In contrast, when

a sample of size J was obtained by reject sampling from

Figure 6. Estimates of the marginal probability distributions p(rDD,Model5) and p(pDD,Model5). D is data from the virulent strain.
doi:10.1371/journal.pone.0082317.g006
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p(aD:,Mtoy), the value of unweighted DJ was 0.00630, which has a

p-value of 0.5772.

As a result of this experiment, it was decided not to use

fhmin,kgJ
k~1 for estimating parameter distributions.

Model checking
It does not follow that the most probable model from a set of

candidate models is necessarily an acceptable model: the most

probable model may be the least worst of a set of poor models.

What is required is an assessment of the fit of the most probable

models to the observed data.

Figure 7. Density scatter plot of the estimated joint probability distribution p(m0,aeDD,Model11). D is data from the attenuated strain.
doi:10.1371/journal.pone.0082317.g007

Figure 8. Density scatter plot of the estimated joint probability distribution p(r,pDD,Model5). D is data from the virulent strain.
doi:10.1371/journal.pone.0082317.g008
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A common approach to assessing the fit of a model to data is to

use a p-value with respect to some statistic T(y), where y is

observed data. More formally, the classical p-value is given by

p(T(y
0
,h)§T(y,h)Dh,M), ð29Þ

where y
0

is a possible future value, and the probability is taken

over the distribution of y
0

given h, a single parameter estimate.

A drawback of (29) is that it does not take account of the

uncertainty in h expressed by the posterior distribution p(hDy,M).
In contrast, the Bayesian posterior predictive p-value [33,34]

Figure 9. The observed number of cells with n bacteria (blue) compared with 95% credibility intervals (red) predicted by Model 3
with respect to the virulent strain.
doi:10.1371/journal.pone.0082317.g009

Figure 10. The observed number of cells with n bacteria (blue) compared with 95% credibility intervals (red) predicted by Model 5
with respect to the virulent strain.
doi:10.1371/journal.pone.0082317.g010
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p(T(y
0
)§T(y)Dy,M), ð30Þ

overcomes the problem by using the posterior predictive distribution:

p(y
0
Dy,M)~

ð
q

p(y
0
,hDy,M) dh

~

ð
q

p(y
0
Dh,M)p(hDy,M) dh:

The posterior distribution can be simulated by drawing m

values ehh from p(hDy,M), and then, for each ehh, sampling a y
0

from

Figure 11. The observed number of cells with n bacteria (blue) compared with 95% credibility intervals (red) predicted by Model 7
with respect to the attenuated strain.
doi:10.1371/journal.pone.0082317.g011

Figure 12. The observed number of cells with n bacteria (blue) compared with 95% credibility intervals (red) predicted by Model 11
with respect to the attenuated strain.
doi:10.1371/journal.pone.0082317.g012
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p(y
0
Dehh,M). The resulting m values of y

0
represent draws from

p(y
0
Dy,M).

In the context of the Salmonella study, ehh was provided by the

parameter estimates obtained for p(hDD,M), m was set to 10000,

and p(y
0
Dehh,M) was modelled as a multinomial distribution

p(fy0ng
29
n~1Dfq(nDehh,M)g29

n~1)~U! P
29

n~1

q(nDehh,M)y
0
n

y
0
n!

, ð31Þ

where U is the total number of counts (cf. (22)).

In order to obtain m values of T(y
0
) drawn from p(y

0
Dy,M),

each y
0

drawn from p(y
0
Dehh,M) is mapped to T(y

0
,ehh).

We used the G-statistic for the test statistic T [35]. The G-

statistic is proportional to the Kullback-Leibler measure of

distribution divergence, and is given by

G(h,M)~2
X29

n~1

On ln
On

En(h,M)

� �
, ð32Þ

where On~Cn, and En(h,M) is the expected value for y
0
n:

En(h,M)~Uq(nDh,M).
Applying the above approach for estimating the distribution of

G under a given model M, the posterior predictive p-values for

fCng29
n~1 were found to be 0.005 for Model 7 and 0.006 for Model

11 (with respect to the attenuated strain), v10{4 for Model 3 and

v10{4 for Model 5 (with respect to the virulent strain). This

suggests a poor fit of the models to the data.

A visual representation of the fit of data to a model M can be

provided by comparing the observed count Cn (the number of cells

containing n bacteria) to the distribution of m possible count values

y
0

n obtained via (31). This visualisation is shown in Figures 9, 10,

11 and 12.

Discussion

The AIC is a common maximum-likelihood approach to model

comparison, but nested sampling enables a Bayesian approxima-

tion of model evidence p(DDM) to be computed, along with the

advantages of adopting the Bayesian approach. These include

integration across parameters; estimation of the posterior param-

eter distributions (with visualisation of parameter correlations); and

estimation of the posterior predictive distributions for goodness-of-

fit assessments of the models.

Under the assumptions used, the most probable models with

respect to the virulent and attenuated strains of S. enterica were

burst-threshold Model 3 (Poisson) and burst-rate Model 7 (m0

only), respectively. The next two most probable models were

burst-threshold Model 5 (negative binomial) and burst-rate Model

11 (m0 plus ae), respectively. However, the Bayesian posterior

predictive p-values indicate that alternative models and/or a

relaxation of the quasi-stationary assumption adopted by Brown et

al. [24] should be considered. It may be the case that one of the

candidate models is correct but the use of pooled data was

detrimental.

Other assumptions of the underlying mechanistic model may also

be wrong; in particular, the absence of bacterial death and the

assumption that each released bacterium infects a new macrophage.

For both the attenuated and virulent strains, the data D was

recorded over a number of days following infection and then

pooled, with D~fCng29
n~1. If time-dependent data is to be

retained and nested sampling is to be applied then a method is

required to estimate the likelihood function p(fD½t�gDh,M), where

D½t�~fC½t�n g and C
½t�
n is the number of cells containing n bacteria

on the t-th day. Branching processes have been used to model a

variety of biological systems [36], and we will investigate the

potential of estimating p(fD½t�gDh,M) through the use of Bellman-

Harris processes to model within-host infection dynamics.

We have demonstrated that a visualisation of the marginal and

joint posterior parameter distributions p(hDD,M) is readily

obtainable once model evidence Z has been estimated by nested

sampling. The estimated joint posterior distributions provided a

visualisation of the correlations between the parameters. Through

the use of a weighted Kolomogorov-Smirnov test, we also found

that the parameter sequence fhmin,kgJ
k~1 resulting from nested

sampling could not be regarded as a random sample from the

posterior parameter distribution p(hDD,M).
One drawback of Algorithm 2 is that the restricted priors will

converge to a single mode when a likelihood is multi-modal, and

this will cause the evidence Z to be underestimated. This issue can

be resolved by implementing a multi-modal version of nested

sampling, such as that proposed by Feroz et al. [37] for comparing

cosmological models.

Supporting Information

Methods S1 Toy example of nested sampling.
(PDF)
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