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The Paris Agreement[1] aims to address the gap between existing climate policies and 

policies consistent with ‘holding the increase in global average temperature to well 

below 2C’. The feasibility of meeting the target has been questioned both in terms of the 

possible requirement for negative emissions[2], and ongoing debate on the sensitivity of 

the climate-carbon cycle system[3]. Using a sequence of ensembles of a fully dynamic 

three-dimensional climate-carbon cycle model, forced by emissions from an integrated 

assessment model of regional-level climate policy, economy, and technological 

transformation, we show that a reasonable interpretation of the Paris Agreement is still 

technically achievable. Specifically, limiting peak (decadal) warming to less than 1.7°C, 

or end-century warming to less than 1.54°C, occurs in 50% of our simulations in a 

policy scenario without net negative emissions or excessive stringency in any policy 

domain. We evaluate two mitigation scenarios, with 200 GTC and 307 GTC post-2017 

emissions, quantifying spatio-temporal variability of warming, precipitation, ocean 

acidification and marine productivity. Under rapid decarbonisation decadal variability 

dominates the mean response in critical regions, with significant implications for 

decision making, demanding impact methodologies that address non-linear spatio-

temporal responses. Ignoring carbon-cycle feedback uncertainties (explaining 47% of 

peak warming uncertainty) becomes unreasonable under strong mitigation conditions. 

 

A widely-held misconception is that given ~1°C warming to-date, and considering committed 

warming concealed by ocean thermal inertia, the 1.5°C target of the Paris Agreement[1] is 
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already impossible. However, it is cumulative emissions that define peak warming[4]. When 

carbon emissions cease, terrestrial and marine sinks are projected to draw down atmospheric 

CO2, approximately cancelling the lagging warming. While the sign of this “zero emissions 

commitment” is uncertain, its contribution can be neglected for low CO2 scenarios[5]. 

Therefore, at least when considering CO2 emissions in isolation, the 1.5°C target will remain 

physically achievable until the point that it has been crossed. The physical achievability of 

the Paris target has been demonstrated in a complex carbon cycle model with a simplified 

atmosphere[6] and updated recently using a simple carbon cycle model forced by a modified 

RCP2.6 scenario[7] and by policy-driven scenarios with substantial reliance on negative 

emissions technology[8]. Here, we demonstrate that the target is achievable using a fully-

dynamic three-dimensional climate-carbon cycle model forced with emissions from a 

detailed set of sectorally and regionally specific mitigation policies without net negative 

emissions[9,methods].  

 

We use the intermediate-complexity three-dimensional Earth system model PLASIM-

GENIE[10], a model with similar ocean, atmosphere and carbon cycle dynamics to full 

complexity models, but with simpler parameterisations and lower spatial resolution. The 

model will not produce the full range of small-scale variability in high-complexity models, 

but it has the computational efficiency to allow a comprehensive treatment of uncertainties 

cognizant, for instance, of ongoing discussions on the state dependency of climate 

sensitivity[11,12] and ocean heat uptake efficacy[13]. We evaluate climate-carbon cycle 

uncertainty using a 69-member history-matched[14] ensemble designed from 940 training 

simulations (see methods). The ensemble climate sensitivity is 2.6 to 4.5°C (90% 

confidence), which compares to 1.9 to 4.5°C in CMIP5[15]. The transient climate response is 
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1.1 to 1.8°C, 1.2 to 2.4°C in CMIP5[15]. Ensemble ocean heat uptake (1965 to 2004) is 207 

to 330 ZJ, 182 to 363 ZJ (1970 to 2010) in IPCC[15]. 

 

We validate the history-matched ensemble in Table 1A, by comparison with the CMIP5 

multi-model ensembles forced by Representative Concentration Pathway (RCP) 2.6 

(mitigation scenario) and RCP8.5 (‘business-as-usual’ scenario)[16]. Under RCP8.5, the 

PLASIM-GENIE end-century CO2 concentration, global warming and Atlantic Meridional 

Overturning Circulation (AMOC) strength[15,17] are remarkably consistent with the CMIP5 

ensemble, illustrating that uncertainties in transient climate sensitivity, carbon cycle 

sensitivity and AMOC stability capture the spread of high complexity models. Mean surface 

pH is also well represented, the significantly lower uncertainty in CMIP5 pH[18] arises 

because these particular CMIP5 simulations were concentration forced. Overstated impacts in 

marine productivity are apparent relative to CMIP5[18], but there is significant overlap in the 

highly uncertain distributions. Under RCP2.6 forcing, there is a less complete analysis of 

CMIP5 outputs. The PLASIM-GENIE ensemble understates the mean warming in RCP2.6 by 

0.3°C relative to CMIP5, under-estimating the warmest ensemble members (Table 1A). We 

therefore apply 0.3°C to bias-correct warming estimates in the rapid decarbonisation 

scenarios (Table 1B). 

 

Our future simulations are forced with emissions from policy scenarios of the simulation-

based integrated assessment model E3ME-FTT-GENIE[19]. The E3ME macroeconomic 

model differs fundamentally from the equilibrium models more usually used to assess climate 

policy by representing realistic (non-optimal) behaviour based on empirical relationships, and 

by relaxing the constraint of a fixed money supply. Investment in renewables therefore can in 

principle generate economic stimulus, for instance through increased employment[20]. 
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Furthermore, the framework is suited to flexible application of a range of policy 

implementations that are not limited to a carbon tax, including regulations, subsidies, 

focussed taxation policies and public procurement. The model contains a bottom-up 

representation of technological diffusion in multiple-sectors (FTT) and is connected to a 

climate-carbon cycle model (GENIE) with a single-layer atmosphere. We consider three 

scenarios: 1) Current policy CP[19,21], 2) 2P0C[19,21], rapid decarbonisation policies to 

avoid 2°C peak warming with 75% confidence (according to GENIE) and 3) 1P5C[9, 

methods], representing our most optimistic set of policy assumptions, avoiding 1.5°C peak 

warming with 50% confidence.  

 

Time series for the PLASIM-GENIE ensembles forced with the three policy scenarios are 

illustrated in Fig 1, and ensemble distributions are summarised in Table 1B. Note that the 

time series of ensemble median values do not correspond to fixed simulations, thus the 

distribution of peak decadal warming (Table 1B) show slightly higher values as individual 

trajectories cross owing to decadal variability. Steady-state decadal variability of mean 

surface temperature in PLASIM-GENIE is ±0.08°C (one standard deviation). 

 

Small differences in assumptions can make significant differences to cumulative emissions 

budgets under strong mitigation, noting that 0.1°C incremental warming is equivalent to 

~50GTC[4]. Here, we consider both maximum and end-century change, as the former is most 

relevant for impact assessment and most consistent with the text of the Paris Agreement, with 

change expressed relative to a preindustrial (1856-1885) baseline taken from ensembles of 

1805-2105 AD transient simulations. RCP2.6 non-CO2 forcing is applied for both mitigation 

scenarios, and RCP8.5 non-CO2 forcing for the current-policy scenario.  
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Bias-corrected median peak warming estimates (Table 1B) are 1.82°C (2P0C) and 1.70°C 

(1P5C), and 2100 estimates are 1.71°C and 1.54°C. Correlations suggest an increasing 

relative contribution of carbon-cycle processes to warming under rapid decarbonisation 

(Table S1). The response of the maximum value of Atlantic meridional overturning 

circulation (AMOC) in the mitigation scenarios is notable. The simulated expected peak 

weakening to 84% of preindustrial (Table 1B) arises from natural variability (steady-state 

decadal variability is 0.9Sv); the median response through the Century is steady (Fig1). 

However, in one 1P5C and two 2P0C simulations the AMOC reduces to ~50% of its present-

day strength. We therefore cannot rule out significant AMOC weakening under mitigation, 

but note the suggestion of a reduction in the probability of this unlikely event under 

accelerated decarbonisation. 

 

We now consider the mean climate-change patterns for a range of impact-relevant climate 

stressors: decadal DJF surface air temperature (Fig 2A), decadal JJA precipitation (Fig 3A), 

annual surface ocean acidity (Fig 4A) and annual marine primary productivity (Fig 4D). 

Patterns are 1P5C ensemble averages of (2090 minus 1990) change, expressed per 1°C mean 

ensemble warming. The mean patterns of changes of temperature and precipitation are 

broadly consistent with CMIP5 projections. Changes in pH (Fig 4A) result from increased 

concentrations of dissolved CO2 and the associated reduction in carbonate ion concentrations 

approximately uniform across the surface ocean, except in the Arctic where amplified CO2 

uptake is apparent under melting sea ice[22]. This pattern is robust, explaining more than 

95% of the variability in the ensemble (quantified through singular vector decomposition); a 

similar robust pattern of acidification was found in CMIP5[18]. Changes in primary 

productivity (Fig 4D) are dominated by large reductions of up to ~10% per °C of warming 

that are simulated in the Equatorial Pacific. Significant reductions are also simulated in mid-
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latitude Pacific and Indian oceans, and in the Equatorial and high-latitude Atlantic. Despite 

the simplified ecosystem model[23], the patterns and magnitudes of productivity change are 

consistent with CMIP5 analysis; in RCP8.5, decreases of up to 30-50% are simulated in these 

regions[18], attributed to increased ocean stratification and slowed circulation, with 

consequent reductions in nutrient supply[24]. Increases in productivity are apparent in the 

Arctic and in parts of the Southern and Indian Oceans, here likely attributable to increased 

nutrient supply[25]. In stark contrast to pH, the pattern of productivity change explains only 

20% of ensemble variability. 

 

The ensemble-projections are now used to quantify spatio-temporal uncertainty by evaluating 

the adequacy of the approximations made in “pattern scaling”[26], a widely used approach to 

estimating climate fields for impacts evaluation. In pattern scaling an average climate 

response is calculated, typically as a multi-decadal average pattern of change. The pattern, 

normalised per °C global mean warming, is then scaled as appropriate for scenarios of 

interest. The strengths and limitations of pattern scaling, including modified approaches, have 

recently been reviewed[27]. It is known to be less accurate under strong mitigation[28]. 

 

Figures 2B, 3B, 4B and 4E plot the normalised mean field difference (1P5C – CP), capturing 

non-linear scenario-dependent feedbacks, and examining the pattern-scaling approximation 

of a scenario-invariant pattern. The temperature pattern differences reveal modest changes, 

for instance in the northern Atlantic, where the stronger AMOC leads to relatively warmer 

temperatures under mitigation. The largest precipitation pattern differences are associated 

with the Indian and SE Asian monsoons. The magnitudes of pH change patterns are very 

different in the two scenarios, approximately -0.1pH unit per °C under current policy and -

0.03 per °C for rapid decarbonisation. This difference reflects the different response times of 
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pH and temperature to changing CO2. The 2090 temperature is influenced by cumulative 

excess CO2 but the surface pH in 2090 is determined by 2090 CO2 with no significant lag; 

mitigation acts at the timescale of natural CO2 sinks to reduce acidification impacts on the 

surface ocean. In contrast, the patterns of change of marine productivity in the two scenarios 

are spatially different, with amplified relative reductions in the Atlantic, Indian and Southern 

Oceans, and a reduced relative reduction in the Equatorial Pacific. 

 

The most important error when using pattern scaling arises from the neglect of variability. 

This emerges from two distinct sources, the neglect of model uncertainty and the neglect of 

natural variability, both of which alter the pattern of change itself. It is well established that 

natural variability, which has a magnitude that differs with location, is a critical limiting 

factor for the accuracy of climate projections and impact evaluation[29]. If we assume that 

the spread of climate model outputs encompasses possible reality, then model error can be 

estimated by applying the patterns from different climate models to test robustness of the 

impacts that result. However, internal variability is generally not considered, and pattern 

scaling impacts are derived from climate means. Under strong mitigation we argue this 

neglect may be inappropriate. The signal-noise ratio in strong mitigation scenarios is of order 

one and, for instance, decadal variability will be a significant contributor to the uncertainty in 

determining peak (~2050 AD) climate change. 

 

In the final columns of Figs 2, 3 and 4, each 1P5C simulation anomaly field is normalised by 

its respective warming, and the RMS ensemble variability about the 1P5C scenario mean is 

plotted. For the climate fields (Figs 2 and 3), comparison of variability about the mean fields 

30-year averages (predominantly parametric uncertainty) and 10-year averages (internal and 

parametric uncertainty) relative to a 30-year baseline, indicates that the two sources of 
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variability are comparable in amplitude. For the ocean impact fields (Fig 4) the variability is 

derived from annual averages. In all fields, the uncertainties in the patterns (1P5C - CP) are 

dominated by the variability about the pattern (right panels). The uncertainties often dominate 

even the mean response. For instance, in parts of the Arctic, RMS uncertainty of ~3°C per °C 

warming compares to a mean signal of ~3°C (Fig 2, Table S2), while RMS uncertainty of 

precipitation is comparable to the mean signal in monsoon regions (Fig3, Table S2). 

Simulations forced by current-policy emissions are associated with significantly lower 

fractional uncertainty (Table S2), reflecting an increased signal-noise ratio, and 

demonstrating that the assumptions of pattern scaling are well justified under high-emission 

scenarios. 

 

The implications of our findings for policy-making are important: if policy and market-based 

responses to climate change are sufficient to uphold the level of ambition of the Paris 

Agreement, climate change impacts could still be of large amplitude in sensitive regions such 

as the Arctic. However, in these scenarios, uncertainties from model error and internal 

variability can dominate expected mean patterns. Consequently, we argue that a paradigm 

shift in impacts evaluation is now essential to support decision making. Estimates based on 

mean patterns of change will be insufficient. Instead, statistical methodologies developed to 

address non-linear spatio-temporal feedbacks[30] will need to be extended to high-

complexity models. Holding the increase in (multi-decadal) global average temperature 

above pre-industrial to 1.5 °C appears still to be possible, but results in a world where the 

superposition of climate change onto natural variability is key to understanding impacts on 

inter alia ecosystems, biodiversity, ice sheets and permafrost stability. 
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Tables 
 

 
B Current policies 2P0C policies 1P5C policies 
Peak decadal warming (°C) (2.54, 3.12, 4.18, 5.17, 5.47) (1.09, 1.19, 1.52, 1.95, 2.02) (1.04, 1.11, 1.40, 1.74, 1.85) 
Peak annual CO2 (ppm) (649, 703, 863, 996, 1048) (394, 405, 446, 485, 493) (381, 391, 429, 458, 468) 
Min decadal AMOC (%) (33, 44, 68, 80, 87) (43, 76, 83, 90, 95) (51, 74, 84, 90, 94) 
Max annual surf acidification (pH) (-0.50, -0.47, -0.39, -0.31, -0.27) (-0.22, -0.19, -0.15, -0.12, -0.10) (-0.19, -0.17, -0.14, -0.10, -0.09) 
2100 decadal warming (°C) (2.54, 3.12, 4.18, 5.17, 5.47) (0.73, 1.10, 1.41, 1.81, 1.87) (0.63, 0.97, 1.24, 1.61, 1.67) 
2105 annual CO2 (ppm) (649, 703, 863, 996, 1048) (371, 382, 415, 445, 453) (357, 367, 394, 416, 427) 
2100 decadal AMOC (%) (33, 45, 69, 83, 91) (43, 79, 90, 102, 104) (52, 82, 92, 101, 107) 
2105 annual surf acidification (pH) (-0.50, -0.47, -0.39, -0.31, -0.27) (-0.19, -0.17, -0.13, -0.10, -0.09) (-0.16, -0.15, -0.11, -0.09, -0.08) 
2105 annual productivity (%) (-33.7, -24.3, -13.8, -4.6, -3.5) (-9.5, -5.0, -3.0, -1.1, -0.8) (-5.7, -4.1, -2.2, -0.7, -0.1) 
Bias corrected peak warming (°C)  (1.39, 1.49, 1.82, 2.25, 2.32) (1.34, 1.41, 1.70, 2.04, 2.15) 
Bias corrected 2100 warming (°C)  ((1.03, 1.40, 1.71, 2.11, 2.17) (0.93, 1.27, 1.54, 1.91, 1.97) 

 
Table 1: A) PLASIM-GENIE validation against multi-model ensembles of 
Representative Concentration Pathways. Data are expressed as 2090-1990 decadal 
anomalies except for CO2 which is 2100 concentration and PLASIM-GENIE productivity 
which is 2105-2005 anomaly. The 1990 PLASIM-GENIE baselines are 30-year averages 
(1976-2005) except for ocean pH and productivity (where annual averages are used for all 
analysis). Ensembles are summarised as mean ± 1 standard deviation (5th and 95th 
percentiles), except for CMIP5 CO2 and AMOC where the bracketed ranges represent 11-
member and 10-member ensemble spreads respectively. B) PLASIM-GENIE summary 
confidence intervals of the E3ME-FTT-GENIE-1 scenarios. Minima, 5th percentile, 
median, 95th percentile and maxima of the 69-member ensembles. Warming, AMOC and 
acidification are expressed relative to a 30-year average baseline centred on 1870. 
Productivity is 2105-2005 anomaly. The 0.3°C bias correction under strong mitigations is 
implied by the RCP2.6 CMIP5 comparison (Table 1A).  
 
 
 
 
 
 
 
  

A RCP2.6 RCP8.5 
 CMIP5 PLASIM-GENIE CMIP5 PLASIM-GENIE 

Warming (°C) 1.0 ± 0.4 (0.3, 1.7) 0.7 ± 0.2 (0.4, 1.0) 3.7 ± 0.7 (2.6, 4.8) 3.6 ± 0.6 (2.6, 4.4) 
CO2 (ppm)  402 ± 19 (373, 429) 985 ± 97 (794, 1142) 1010 ± 110 (829, 1185) 

AMOC (% change)  -6 ± 10 (-17, 4) (-60, -15) -32 ± 12 (-54, -16) 
Surface pH (pH) -0.07 ± 0.001 -0.04 ± 0.01 (-0.069, -0.028) -0.33 ± 0.003 -0.33 ± 0.04 (-0.41, -0.27) 
Productivity (%) -2.0 ± 4.1 -2.7 ± 1.2 (-4.8, -1.2) -8.6 ± 7.9 -15.1 ± 4.1 (-21.7, -7.43) 
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Figure Captions 
 
 
Figure 1: Summary time series of the 69-member Current-Policy, 2P0C and 1P5C 
E3ME-FTT-GENIE emissions-forced PLASIM-GENIE ensembles.  
 
Figure 2: December-January-February surface air temperature scaling patterns and 
uncertainty. Scaling patterns are 1P5C and CP ensemble means (2086-2095 minus 1976-
2005, °C) normalised per 1°C warming. Ensemble variability is calculated by normalising 
each ensemble member per 1°C warming and calculating the RMS difference with respect to 
the mean pattern (A). Variability is derived for both (C)10-year (2086-2095) and (D) 30-year 
(2076-2105) patterns to help isolate the contributions of decadal variability and parametric 
uncertainty. 
 
Figure 3: June-July-August precipitation scaling patterns and uncertainty. Scaling 
patterns are 1P5C and CP ensemble means (2086-2095 minus 1976-2005, mm/day) 
normalised per 1°C warming. Ensemble variability is calculated by normalising each 
ensemble member per 1°C warming and calculating the RMS difference with respect to the 
mean pattern (A). Variability is derived for both (C)10-year (2086-2095) and (D) 30-year 
(2076-2105) patterns to help isolate the contributions of decadal variability and parametric 
uncertainty. 
 
Figure 4: Ocean stressor scaling patterns and uncertainty. Top: surface pH, pH units per 
°C warming. Bottom: marine productivity, fractional change per °C warming. Scaling 
patterns (left) are 1P5C ensemble means (2105-2005), and 1P5C - CP scaling pattern 
difference (centre). Ensemble variability is calculated by normalising each ensemble member 
per 1°C warming and calculating the RMS difference with respect to the appropriate mean 
pattern. All data are annually averaged. 
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Methods 
 

PLASIM-GENIE is a coupling of the intermediate-complexity spectral atmosphere model 

PLASIM[31] to the Grid-Enabled Integrated Earth system model GENIE[32]. The coupling 

and climatology are described in detail in [10]. PLASIM-GENIE is not flux corrected; the 

moisture flux correction required in the original tuning[10] was removed during the history-

matching calibration (see below). We here apply PLASIM-GENIE with carbon-coupled 

biosphere modules BIOGEM and ENTS, described in [32] for the energy-moisture balance 

atmosphere configuration. We apply BIOGEM with the default Michaelis-Menton 

phosphate-limited productivity scheme[23]. The carbon-cycle model has been extensively 

validated through model inter-comparisons[33,34]. 

 

Important neglects of the PLASIM-GENIE carbon cycle are anthropogenic land-use change, 

peat and permafrost. These omissions tend to overstate the terrestrial carbon sink (by 

overstating natural forest) and they neglect potentially significant terrestrial sources (from 

peat and permafrost). We note that the history-matching calibration is designed to subsume 

such structural deficiencies (here, for instance, into CO2 fertilization and soil respiration). 

 

 PLASIM-GENIE is freely available. Please contact the authors for information. 

 

Atmosphere-ocean gearing. PLASIM-GENIE simulates approximately 2.5 years per CPU 

hour, so that 2,000-year spin-ups take one month of computing. In order to enable the 

exploration of parameter space, the implementation of an atmosphere-ocean gearing approach 

was required. The spin-up simulation time is determined by the ocean timescale, but the 

simulation speed of the model is determined by the atmosphere, which uses approximately 

99% of the CPU demands of the physical model. In gearing mode, applied only to 
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equilibrium spin-ups, the model alternates between a conventionally coupled mode (for 1 

year) and a fixed-atmosphere mode (for 9 years), reducing spin-up CPU time by an order of 

magnitude. During the conventional coupling mode, atmosphere-ocean coupling variables are 

accumulated and saved as daily averages. These variables comprise energy fluxes, moisture 

fluxes and wind stresses. During the fixed atmosphere phase, the atmospheric variables are 

kept constant and these daily averaged fluxes are applied to the ocean. Latent heat, sensible 

heat and longwave radiation ocean heat loss are recalculated at every atmosphere time step 

during the fixed atmosphere phase, when energy conservation is therefore not imposed. This 

is necessary for numerical convergence because these fluxes depend upon ocean temperature, 

which evolves during the fixed atmosphere phase. Evaporation is not recalculated during the 

fixed atmosphere phase in order to ensure moisture conservation. AO-geared spin-up states 

are consistent with the standard model, as demonstrated by smooth spun-on historical 

transient simulations in all ensemble members, though we note that rapid (sub-decadal) and 

modest (a few Sv) AMOC adjustments are seen in some simulations, arising from different 

inter-annual variability. 

 

Experimental design. Each model configuration was spun-up with a 2,000-year AO-geared 

quasi-equilibrium preindustrial simulation, with atmospheric CO2 relaxed to 278ppm. 

Simulations were continued as emissions-forced historical transient simulations (AO-gearing 

off, CO2 freely evolving). Historical forcing (1805 to 2005) comprised anthropogenic CO2 

emissions and non-CO2 radiative forcing. Fossil fuel, cement and gas flaring emissions were 

prescribed from CMIP5 (https://cmip.llnl.gov/cmip5/forcing.html) and were combined with 

ISAM C-N land-use change emissions[35] from the HYDE land-use dataset[36]. Non-CO2 

forcing data was taken from [16] implemented in PLASIM-GENIE as effective CO2. Future 

(2005-2105) emissions were taken from the E3ME-FTT-GENIE scenarios, scaled by 
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9.82/8.62, to match estimated 2015 total emissions[37], accounting for sources not 

represented in E3ME. Future land use change emissions and non-CO2 radiative forcing were 

taken from RCP2.6 (1P5C and 2P0C scenarios) and RCP8.5 (CP scenario). 

 

History-matched ensemble 

Carefully designed ensembles of simulations are central to our approach to quantifying Earth 

system uncertainties. We applied a ‘history matching’ calibration strategy[14,38], sampling 

throughout high-dimensional model input space to identify model configurations that are 

capable of producing reasonable simulations in the PLASIM-GENIE Earth system model, 

and then running the plausible configurations forward to characterise uncertainty about the 

future. Each configuration is required only to provide a ‘plausible’ simulation[39], thereby 

avoiding the introduction of bias through over-fitting[40]. A configuration is ruled out only if 

it is inconsistent with an observation, allowing for the imperfections of both model and 

data. Thus, the history matching philosophy generates simulations that encompass the full 

range of realistic dynamical feedbacks implemented in model[41].   

 

In PLASIM-GENIE, identifying large numbers of history-matched configurations would be 

prohibitively demanding computationally. We render the problem tractable by using 

emulators[42] to search throughout model input space. The emulators are trained on a 

sequence of preliminary ensembles amounting to 1.9 million years of climate simulation in 

total (940 completed simulations). The process produced 69 model variants, each validated 

by simulation, having considered hundreds of millions of randomly sampled parameter 

configurations in the emulator. The final models all adequately simulate ten key global-scale 

observational targets including surface air temperature, vegetation and soil carbon, Atlantic, 
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Pacific and Southern Ocean circulation measures, dissolved O2 and calcium carbonate flux, 

and transient temperature and CO2 changes (Table S4). 

 

For the purposes of the history matching, the simulator (here applied to the preindustrial spin-

up state) can be considered as a function that maps from 32 input parameters (Table S3) to 

the eight different outputs (Table S4). Our aim is to infer the input values that lead to outputs 

within the plausible climate ranges as defined in Table S4. It is not possible to naively 

explore the simulator output over the full input parameter ranges by repeatedly evaluating the 

simulator, as for example, just doing one evaluation in each corner of the input space would 

require 232 ≈ 109 model evaluations. Instead, we build emulators[42,43] that mimic the 

simulator response surface, and allow us to predict its value for any input. An initial large 

exploratory analysis was performed, motivated by the iterated waves approach[40]. Starting 

from a 100-member maximin latin hypercube ensemble, sequential series of 100-member 

ensembles were performed, probing regions of likely plausible space by using stepwise-

selected linear regression models that were continually refitted as simulations completed. 

This produced 940 completed simulations that we used to train the final history match. Part 

of the motivation for the exploratory ensemble was to develop a general understanding of the 

range of model responses. Most notably it enabled us to identify regions of parameter space 

that satisfied the plausibility constraints without flux correction so that the associated 

parameter (APM, Table S3) could be fixed at zero for the final history match. 

 

For the final history match, a variety of emulation approaches were considered, including 

stepwise regression, the LASSO[44] which is a regularized version of linear regression, and 

Gaussian process regression with a combination of different mean and covariance 

functions[45]. To determine the optimal approach for each of the eight outputs, we split the 
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data into test and training datasets and evaluated the emulators' predictive performance 

(RMSE, statistical coverage), repeating the process 10 times to get an average performance. 

The optimised emulators were used to find input values that are expected to give plausible 

simulations (i.e. within tabulated ranges for all emulator-filtered metrics, Table S4), to 

generate a sample of design points which encapsulate the uncertainty about future climate. 

We used an approximate Bayesian computation type approach[46], using rejection sampling 

to sample parameters from the prior distribution and evaluating the probability of these 

values leading to plausible outputs, to generate a large number of plausible future climates, 

considering hundreds of millions of emulator evaluations. A final 200-member candidate 

ensemble for the future transient simulations was then chosen using a ‘greedy’ design, adding 

points to maximize a criterion that combined the probability the simulation would be 

plausible (according to the emulator), and the distance of candidate points to the other points 

already in the design, so as to ensure design points fully span the 32-dimensional plausible 

input space.  

 

The 200 history-matched parameter sets were applied to PLASIM-GENIE, and 183 were 

accepted as giving plausible preindustrial climates in the simulator. These were spun on 

through the industrial period (1805 to 2005) with emissions and non-CO2 radiative forcing. 

Sixty-nine simulations were selected as also having plausible climate sensitivity (2005 -1870 

warming between 0.6 and 1.0K) and carbon cycle (2005 CO2 in the range 355 to 403ppm). 

These 69 model configurations were applied in the future transient ensembles. 

 

In total, 1140 spin-up simulations (2000 years each) were performed with the geared model 

and 345 transient simulations (300 years each) with the standard model, representing 



 21 

approximately 15 CPU years of computing, corresponding to the CPU time needed to 

simulate a few decades with a CMIP5 type Earth System Model. 

 

Decarbonisation policies to meet 1.5°C and 2°C 

The E3ME-FTT-GENIE modelling framework and the particular policy scenarios used here 

have been described in detail elsewhere[9,19,21], below we give a summary of the policy 

choices taken as inputs to the modelling framework in deriving the emissions scenarios used 

here as input to PLASIM-GENIE. Three scenarios are used: a current-policy baseline, a 

scenario in which there is an 75% chance of limiting peak warming to 2°C and a scenario in 

which there is a 50% chance of limiting peak warming to 1.5°C. 

 

The model baseline is consistent with the IEA’s ‘Current Policies’ scenario[47]. The baseline 

can broadly be considered as a continuation of current trends; existing policy remains in 

place and has some lagged effects that continue into the projection period, but there is no 

additional policy stimulus. Most policy instruments in the baseline are implicitly accounted 

for through the data itself (e.g. diffusion trends). 

 

The 1.5°C and 2°C scenarios are designed as sets of policies that are added to the baseline 

case. In almost all countries, these policies encapsulate the measures put forward in the 

INDCs that were submitted to the Paris COP and complement them with other measures in 

order to scale up the level of ambition of decarbonisation. The scenarios are designed from a 

‘bottom-up’ perspective. Essentially, policies are added across the full range of economic 

sectors sequentially until the targets are met. The 1.5°C scenario includes all the measures in 

the 2°C scenario, plus additional ones, as described below. 
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Many of the policies are specific to particular sectors, but two economy-wide policies are 

implemented: 

• The first measure is an economy-wide programme of energy efficiency. Our 2°C 

scenario assumes that the programmes are in line with the IEA’s analysis[48] for a 

450ppm scenario (excluding houses, which are treated separately, see below). They 

are further scaled up 25% for the 1.5°C scenario. 

• The second measure is a carbon tax that is applied equally across the world. The 

carbon tax rates rise to $310.2/tCO2 and $96.4/tCO2 by 2030 in the 1.5°C and 2°C 

scenarios respectively, and $886.3/tCO2 and $274.8/tCO2 by 2050. The carbon taxes 

are applied to all industrial sectors, but not to road transport nor households, where 

separate rates are levied (since these sectors are likely to, or already have, their own 

specific carbon or energy tax rates). 

 

Building on [49], the following power sector policies were added to both scenarios: 

• Feed-in-Tariffs - 100% of the difference between the levelised cost for wind and solar 

and a fixed value of $80/MWh is paid by the grid to promote renewable uptake. 

• Direct renewables subsidies – in most cases 50-60%, to provide an incentive to 

increase uptake, across a range of technologies (this is in addition to feed-in-tariffs). 

The subsidies gradually decrease over time and are phased out by 2050. 

• In several countries there are immediate mandates to prevent the construction of new 

coal capacity.  

 

In addition, it is assumed that electricity storage technologies advance up to 2050 such that 

the requirement for back-up flexible generation capacity (e.g. oil and gas peaking plants) is 

limited. 



 23 

 

Combinations of policies are used to incentivise the adoption of vehicles with lower 

emissions [50] in both scenarios. The list includes:  

• fuel efficiency regulations of new liquid fuel vehicles 

• a phase out of older models with lower efficiency 

• kick-start programmes for electric vehicles where they are not available (by public 

authorities or private institutions, e.g. municipality vehicles and taxis) 

• a tax of $150/gCO2/km (2015 prices), to incentivise vehicle choice 

• a fuel tax (increasing from $0.10 in 2018 to $1.00 per litre of fuel in 2050, 2015 

prices) to curb the total amount of driving 

• increasing/introducing biofuel mandates between current values to between 10% and 

30% (40% in Brazil) in 2050, different for every country, extrapolating IEA 

projections [51] for the 2°C scenario, and to 97% in the 1.5°C scenario 

 

Aviation is assumed to switch to biofuels gradually over the period 2020-2050 (faster in the 

1.5°C scenario), but total bioenergy consumption remains within 150 EJ/yr. 

 

The following policies were applied to homes in both scenarios: 

• taxes on the residential use of fossil fuels, applied in Annex I and OPEC countries: 

starting at an equivalent of $110/tCO2 (2015 values) and linearly increasing to 

$240/tCO2 in 2030, constant at 2030 levels afterwards 

• direct capital subsidies on renewable heating systems, applied globally: -40% on the 

purchase and installation of heat pumps, solar thermal systems and modern biomass 

boilers, phased out between 2030 and 2050 
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• kick-start programmes for renewable heating systems where they are not available, 

for a limited time period of five years (e.g. installations in publicly owned housing 

stock) 

 

In some industrial sectors in East and South East Asia, a further mandate was added to 

electrify sectors that are currently dependent on coal (only in the 1.5°C scenario). Emissions 

from industrial processes are modelled as fixed in relation to real production levels from the 

relevant sector. In the baseline scenario, no efficiency improvements are assumed. In the 2°C 

and 1.5°C scenarios it is assumed that the production efficiency of process emissions 

improves by 3% a year over the projection period. Land-use change emissions are calculated 

in GENIE, with LUC assumed to follow RCP2.6 in the mitigation scenarios and RCP8.5 in 

the current policy baseline. 

 

Data availability 

 

The data that support the findings of this study are available from the corresponding author 

upon request. 

 

Methods References 

[31] Fraedrich, K. A suite of user-friendly climate models: Hysteresis experiments Eur. Phys. 

J. Plus 127, 53 (2012)  

[32] Lenton, T. M. et al. Millennial timescale carbon cycle and climate change in an efficient 

Earth system model Climate Dynamics 26, 687–711 (2006) 

[33] Zickfeld, K. et al. Long-term climate change commitment and reversibility: An EMIC 

intercomparison J. Climate 26, 5782– 5809 (2013)  



 25 

[34] Joos, F. et al Carbon dioxide and climate impulse response functions for the computation 

of greenhouse gas metrics: a multi-model analysis Atmos. Chem. Phys. 13, 2793-2825 (2013) 

[35] Jain, A. K., Meiyappan, P., Song, Y., & House, J. I.  CO2 Emissions from land-use 

change affected more by nitrogen cycle, than by the choice of land cover Data Global 

Change Biology 19, 2893-2906 (2013) 

[36] Ramankutty, M. et al. Challenges to estimating carbon emissions from tropical 

deforestation Global Change Biology 13, 51-66 (2007) 

[37] Jackson, R.B. et al. Reaching peak emissions Nature Climate Change 6, 7-10 (2016) 

[38] Craig, P.S., Goldstein, M., Seheult A.H. & Smith, J.A. Pressure matching for 

hydrocarbon reservoirs: a case study in the use of Bayes linear strategies for large computer 

experiments in Case Studies in Bayesian Statistics. Lecture Notes in Statistics 121 Springer, 

New York, NY (1997) 

[39] Edwards, N.R., Cameron, D. & Rougier, J. Precalibrating an intermediate complexity 

climate model. Climate dynamics 37, 1469–1482 (2011)  

[40] Williamson, D. B., Blaker, A.T. & Sinha, B. Tuning without over-tuning: parametric 

uncertainty quantification for the NEMO ocean model Geoscientific Model Development 10, 

1789-1816 (2017) 

[41] Holden, P.B., Edwards, N.R., Oliver, K.I.C., T. Lenton, T. M. & Wilkinson, R.D. A 

probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1. 

Climate Dynamics 35, 785–806 (2010)  

[42] Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. Design and analysis of computer 

experiments Statistical Science 4, 409–23 (1989)  

[43] O’Hagan, A. Bayesian Analysis of Computer Code Outputs: A Tutorial Reliability 

Engineering & System Safety 91, 1290–1300 (2006) 



 26 

[44] Tibshirani, R. Regression Shrinkage and Selection via the Lasso Journal of the Royal 

Statistical Society. Series B (Methodological). 58, 267–88 (1996) 

[45] Rasmussen, C.E. Gaussian processes in machine learning, in Advanced Lectures on 

Machine Learning, O. Bousquet, U. von Luxburg, and G. Rätsch (Eds.) Springer, Berlin, 

Heidelberg, New York (2004) 

[46] Marin, J.-M., Pudlo, P., Robert, C.P. & Ryder, R.J. Approximate Bayesian 

Computational Methods. Statistics and Computing 22, 1167–1180 (2012) 

[47] ‘World Energy Outlook’, 2015 edition, OECD/IEA, Paris. 

[48] ‘World Energy Investment Outlook’, OECD/IEA, Paris. 

[49] Mercure, J. F., Pollitt, H., Bassi, A. M., Viñuales, J. E. & Edwards, N. R. Modelling 

complex systems of heterogeneous agents to better design sustainability transitions policy. 

Global Environmental Change 37, 102-115 (2016). 

[50] Mercure, J.F., Lam, A., Billington, S. & Pollitt, H. Integrated assessment modelling as a 

positive science: modelling policy impacts in road transport to meet a climate target well 

below 2°C, pre-print at arXiv:1702.04133. (2018) 

[51] ‘World Energy Outlook’, 2014 edition, OECD/IEA, Paris. 


