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We know more about the repertoire of cellular behaviours that

define the stem and progenitor cells maintaining the intestinal

epithelium than any other renewing tissue. Highly dynamic and

stochastic processes define cell renewal. Historically the

commitment step in differentiation is viewed as a ratchet,

irreversibly promoting a given fate and corresponding to a

programme imposed at the point of cell division. However, the

emerging view of intestinal self-renewal is one of plasticity in

which a stem cell state is easily reacquired. The pathway

mediators of lineage selection are largely known but how they

interface within highly dynamic populations to promote

different lineages and yet permit plasticity is not. Advances in

understanding gene regulation in the nervous system suggest

possible mechanisms.
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Introduction
The sheet of cells that comprises the small intestinal

epithelium is indented to create glandular crypts in

which cell proliferation is restricted and from which all

cell types are generated. Absorptive enterocytes and

secretory (Goblet and enteroendocrine) cells actively

migrate from crypts while undergoing a phenotypic

maturation that is accompanied by a restricted number

of transient cell divisions (Figure 1). The most morpho-

logically undifferentiated cells are located at or near the

crypt base where they interface with long-lived differ-

entiated secretory Paneth cells. These undifferentiated

cells are maintained by robust levels of active Wnt

signalling, characterised by expression of Lgr5 (a R-

spondin receptor) and contain much of, and arguably

all, the steady-state stem cell activity as shown by lineage
www.sciencedirect.com 
tracing. The colonic epithelium has similar organisation

but lacks both villi and Paneth cells.

There are differences in the properties of cells in the

crypt base which are recognised by heterogeneous

expression of markers and that arises from both the

geography of the lower crypt and the availability of

Paneth cells for cell-cell interaction. Together these

factors create a nuanced biology; undifferentiated

cells immediately above the Paneth cell region (at, or

around, cell position 4 from the crypt base) tend to

express different markers than those within it. The cells

within these different zones have been proposed as

alternative candidates for the stem cell population.

Position specific heterogeneity in marker expression

and in properties such as quiescence has previously

been interpreted as indicative of relatively stable sub-

populations moving unidirectionally through discrete

cellular intermediates from multipotent stem cells to

committed progeny. However, recent evidence for

plasticity challenges this interpretation and suggests

that normal cell fates are easily altered and stemness

regained.

Intestinal lineage specification by Notch and
the bHLH proteins
Historically attempts to explain how multiple phenoty-

pically distinct cell types arise within the crypt have

assumed the creation of lineage-restricted progenitors

that can be distinguished by different transcription factor

profiles [1,2]. Commitment has been viewed as a series of

binary decisions, the first directing absorptive versus a

‘pan’ secretory fate, followed by further diversification

into the four principal secretory types [3].

Several key bHLH ‘proneural’ proteins play distinct and

crucial roles in early lineage specifications as well as

differentiation events in the crypt, and their expression

and activity are spatially and temporally regulated

(Figure 1). A large part of this regulation appears to be

via the Notch signalling pathway [4–7].

Ultimately Notch signalling regulates the stem versus

secretory fate decision as well as further fate choice and

differentiation events in the crypt [8,9]. Expression of the

proneural bHLH transcription factor Ascl2 is associated

with stemness and is absolutely required for intestinal

stem cell maintenance. Active Notch is required for Ascl2

expression and its loss results in precocious crypt cell

differentiation [8,10]. The proneural protein Atoh1 acts as

a master regulator of fate specification of the secretory

lineage [2,11]. Ascl2 expression is maintained by active
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Figure 1

Stem/Paneth
Suprabasal/CP4

Proliferative

Differentiated

Stem/Paneth
Suprabasal/CP4

Proliferative

Differentiated

(a)

(b)

Stem cell 

Enterocyte 

Secretory 

Paneth, Goblet 

Enteroendocrine 

Mature
Enteroendocrine

Notch

Ascl2 Atoh1 

Ngn3 

NeuroD1 

( )

Stem cell 

Enterocyte 

Secretory 

Paneth, Goblet 

Enteroendocrine 

Mature
Enteroendocrine

Notch

Ascl2 Atoh1 

Ngn3 

NeuroD1 

Current Opinion in Cell Biology

Organisation and lineage control in the intestine. (a) H&E section of

intestine showing crypt-to-villus axis. Expanded view of crypt shown

alongside a schematic showing the location of the different functional

zones. (b) Schematic of classical view of bHLH transcription factor-

driven control of fate choice and differentiation in the intestine, and a

simplified view of their regulation by Notch signalling. However, complex

interaction between cells, potential oscillating expression of bHLHs, and

a clear ability to move back up the hierarchy towards stemness, points

strongly to a great deal of potential for plasticity, rather than cells

following a linear pathway as depicted here.
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Schematic of the Notch signalling pathway. In brief, activation of the

Notch membrane receptor requires binding by a member of the

membrane-bound ligand Delta family (primarily Delta-like, Dll 1 and 4

and Jag 1 in the crypt) [9]. Binding of ligand to the receptor leads to

release of the Notch intracellular domain (ICD) by protein cleavage. NICD

translocates to the nucleus and associates with the CSL complex (CBF-

1/RBP-J, Su(H), Lag1), displacing transcriptional repressors. This

complex now associates with transcriptional co-regulators of the MAML

family, resulting in upregulation of multiple downstream targets including

Hes (Hairy/Enhancer of Split) proteins. Notch signalling via Hes proteins

act to potentiate stem cell maintenance and inhibit secretory via

regulation of bHLH transcription factors. For many more details see [5].
Notch signalling that also acts to suppress Atoh1. Expres-

sion of Atoh1 is cell-autonomously inhibited by Hes

proteins and in the absence of Notch signalling, crypt

stem cells precociously differentiate into secretory goblet

cells [7,12].

The spatial organisation of cells expressing Notch ligand

and receptor in the crypt evokes a classic lateral inhibition

scenario for control of stem versus secretory fate

(Figure 2). Stem cells towards the crypt base found

preferentially adjacent to Delta-expressing Paneth cells,

express Notch receptor [13�,14], and are maintained in an

undifferentiated state by constant Notch signalling and

suppression of Atoh1 [7,9,15,16], As migrating cells lose

contact with Paneth cells and the high Notch signalling

they confer, they become poised between secretory and

non-secretory fate. Lineage selection may then arise by

stochastic variation in Delta expression leading some cells

to express higher levels than others. This initial stochastic

imbalance in Delta expression becomes reinforced allow-

ing only a subset of cells (Delta high, Atoh high) rising up

the crypt to become committed to a secretory fate while

the rest become absorptive enterocytes.
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This regulation and functional organisation readily

explains a binary fate in a supra-Paneth cell poised

population but fits less well with a subsequent down-

stream cascade of secretory lineage choices specified after

a series of cell divisions each progressing unidirectionally

towards a more restricted fate. Moreover, recent evidence

derived from regenerating systems casts doubt both on

the existence of stable populations of progenitors and the

irreversibility of lineage specification.

Plasticity
For many years it has also been known that intestinal

regeneration following damage is not solely a function of

surviving stem cells expanding to restore homeostasis

(Figure 3) [17]. Following radiation induced injury the

clonogenic fraction of crypt cells is elevated suggesting that

these might correspond to the abundant and immature

absorptive cells present within the early transit-amplifying
www.sciencedirect.com
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Schematic showing routes for stem cell restoration. Normal

differentiation (black arrows) follows unidirectional lineage choice via

intermediates. Stem cells occupy a sustaining environment created by

Paneth cells (grey box). Following damage regenerative processes allow

stemness to be regained (solid red arrows) from immediate stem cell

descendants. Experimental upregulation of pathways shown can act to

effect lineage fates from differentiated cells (dashed arrows).
compartment of the lower crypt. In support, specific abla-

tion of the key Lgr5+ population using targeted diptheria

toxin is not catastrophic as non-Lgr5+ cells (Bmi1+) cells

are able to act as a replacement stem cell pool at least for a

limited time [18]. Strikingly though, Lgr5+ cells do appear

to be essential for intestinal regeneration after irradiation,

indicating that context of either the initial damage and/or

the subsequent regenerative response may reveal plasticity

in different populations [19�]. Even in steady state con-

ditions, some interconversion occurs between Lgr5+ cells

and cells residing at higher crypt levels, defined by Hopx

expression indicating a ready accessibility of early com-

mitted cells to the stem compartment [20].

Recent discoveries indicate more dramatic plasticity

within the absorptive lineage (Figure 3). Hyperactivation

of pathways synergising with Wnt signalling are appar-

ently able to generate stem cells as part of an oncogenic

process even within terminally differentiated villus cells

[21��]. Hyper-elevation of NF-kB signalling, by deletion

of negative regulators of the pathway, synergises with

Wnt signalling, elevating targets such as Ascl2 and leading

to ectopic formation in villi of crypt-like structures

expressing stem cell markers [21��,22]. Further 3-D

spheroid culture of isolated villi confirms the potential

of these cells to proliferate over several passages and show

multilineage differentiation in xenografts.
www.sciencedirect.com 
Evidence that secretory progenitors can also contribute to

regeneration comes from functional studies of cells

expressing Delta-like 1 (see below). Lineage tracing in

Dll1-CreER mice following Tamoxifen treatment

demonstrates that single Dll1+ cells in the steady state

give rise mainly to short lived secretory clones [13�].
Equivalent lineage tracing following damage shows that

many Dll1+ cells can give rise to long lived clones

comprising both absorptive and secretory lineages,

demonstrating that they have regained stem cell activity

[13�]. Further, elevated Notch signalling in intestinal villi

can cause phenotypic switching of mature differentiated

cells from an absorptive to secretory lineage [23].

Subsequently the status of quiescent or label-retaining

cells (LRCs) in the epithelium was investigated using a

conditionally expressed, histone-conjugated fluorescent

protein (H2BYFP) that could be widely induced initially

and subsequently retained in cells that are quiescent [24��].
Characterisation of isolated YFP-LRCs shows these cells

have a secretory signature associated with Paneth and

enteroendocrine cells. Moreover, inheritance of the label

into these cell types is observed over time. Functional

lineage tracing of these YFP-LRCs shows that they do not

normally give rise to multilineage clones but do so after

regenerative stimuli. Together these findings suggest that

quiescent cells are committed to become Paneth and

enteroendocrine cells but after damage and regeneration

are capable of reacquiring stem cell potential.

In summary both absorptive and secretory lineages dis-

play plasticity in experimental settings. For cells of either

type, plasticity requires responsive cells not only to

proliferate but also to demonstrate acquisition of the

opposing phenotype, that is, multipotentiality.

Notch and bHLH proteins regulate cell fate
and plasticity
The classical model of Notch-mediated lateral inhibition,

whereby initially equivalent cells interact with each other

to adopt alternative fates, was originally formulated to

describe the specification of individual neural precursors

from an equivalence group of cells under the control of a

network of bHLH proneural transcription factors and Hes

proteins, analogous to those in the gut [25]. Yet this model

notably fails to explain intestinal plasticity where the

reverse applies, that is, the acquisition of stem cell

‘equivalence’ from phenotypically diverse cells. Again,

advances in our understanding of mammalian neurogen-

esis indicate the potential for a more dynamic regulation

of these types of specification events than originally

proposed that may help explain intestinal plasticity.

In the mammalian nervous system, expression of the pro-

neural bHLH transcription factors Ngn2 and Ascl1 oscillates

with a periodicity of 2–3 hours in neural stem/progenitor

cells. Oscillations are controlled by a transcriptional double
Current Opinion in Cell Biology 2014, 31:39–45
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negative feedback loop; the proneural transcription factors

control expression of Delta-like ligands, activating Notch

signalling and consequently resulting in delayed anti-

phased expression of short-lived repressors (the Hes

proteins) [26,27��]. Such Notch/Delta-mediated inter-

actions between adjacent cells result in reciprocal Delta,

bHLH and Hes oscillations where neighbours are out of

synchrony and progenitor maintenance prevails [27��,28].

Cessation of oscillations of both proneural and Hes proteins

coincides with fate choice decisions, and results in sustained

high expression of proneural proteins to drive differen-

tiation, with reciprocal sustained low expression of Hes

inhibitors. Indeed, in the nervous system stable, as opposed

to oscillatory, bHLH expression seems to be absolutely

required for cells to exit the cell cycle and adopt a differ-

entiated fate [27��,28,29]. As the essential players in fate

decisions in the crypt are highly analogous to those in the

nervous system, it seems likely that such oscillatory expres-

sion of proneural and Hes proteins also occurs in the

intestine. For instance, Atoh1 upregulates Delta expression
Figure 4
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and is itself repressed by Notch and Hes activity [5,9], so is

well-placed to be part of a similar double negative feedback

loop driving oscillatory expression as is seen for Hes1, Ngn2

and Ascl1 (Figure 4) [29,30]. Active Notch is required for

Ascl2 expression but may also have contradictory effects as

Hes1 has been described as suppressing Ascl2’s expression

in epidermal cells [31]. Ascl2 can also be directly activated

by Wnt and has a crucial role in maintaining stemness

[8,10,31]. Speculatively, oscillatory expression of Ascl2

may be required for this function, as is the case for Ascl1

and neural stem cell maintenance.

Where in the crypt stem/progenitor pool might such

oscillations operate? This will be hard to determine in
vivo with current methodologies, as all oscillatory expres-

sion will probably fall beneath the detection threshold of

common visualisation techniques [26,27��]. There may be

clues however from studies of Dll1 where in situ hybrid-

isation indicates that high (and maybe stable) Delta

expression occurs in supra-Paneth cell positions in cells
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that also express high levels of Atoh1 (Figure 4) [13�].
Low-level oscillations may occur at the lower cell posi-

tions containing the intercalated, Lgr5+ population.

Additionally, lower levels of Delta are seen in individual

cells higher in the crypt and even on the villus (though the

bHLH and Hes proteins are not), commensurate with

Notch signalling playing roles later in the specification/

differentiation programme (see below) [13�].

Notch also regulates Ngn3, a bHLH that is absolutely

required for secretory cells to adopt enteroendocrine fate

[32]. The molecular mechanism of regulation of Ngn3 by

Notch signalling is analogous to the regulation of Atoh1 as

well as Ngn2 in the nervous system; where Notch acti-

vation inhibits Ngn3 expression, suppressing enteroen-

docrine cell formation and promoting alternate enterocyte

or goblet fates [7,33��,34]. It is striking that enteroendo-

crine numbers are limited but not eliminated by Notch

activation in Ngn3 positive cells while Notch activation

driven by the villin promoter, that acts earlier in crypt

specification results in complete enteroendocrine cell loss

showing context-dependence of Notch sensitivity

[33��,35].

Concluding remarks
In terms of plasticity the iterative role of Notch signal-

ling means that the pathway is accessible to cells

throughout the crypt to villus axis. After epithelial cell

depletion, surviving cells have a number of options to

be restored to a stem cell state. At the level of an

individual cell this may require regaining low-level

oscillatory Notch signals associated with the poised

state perhaps by altering the stability or post-transla-

tional regulation of the bHLH proteins that promote

fate decisions [36]. Alternatively, in maturing entero-

cytes [37,38], upregulation of Hes family proteins could

actively promote Ascl2 while suppressing Atoh1 expres-

sion and function. Notably the Ascl2 axis with poten-

tially competing roles for elements of the Notch

pathway also allows input and crosstalk from the Wnt

pathway. Cell interactions favouring acquisition of

stemness might include occupying a vacant cell position

adjacent to a DeltaHi expressing cell to promote active

Notch signalling in neighbours.

The outline circuitry defined by the bHLH/Hes axis

regulation can be fleshed out by a variety of post-tran-

scriptional interactions and modification to limit or

potentiate available Notch signalling in a context de-

pendent manner. For example Notch transcript itself

can be sequestered by regulatory microRNAs such as

miR-34a. Downregulation of miR-34a following damage

could promote not only acquisition of stemness but allow

for rapid expansion of stem cells by symmetric divisions

[39�]. Post-translational interactions such as Numb-

mediated degradation of membrane-bound Notch or

translational inhibition of Numb by RNA binding
www.sciencedirect.com 
proteins such as Musashi1 could similarly act to inhibit

or promote Notch signalling respectively [40,41].

Finally, recently it has been shown that the chromatin

status cells of secretory and absorptive progenitors remain

constant. It is likely that throughout the crypt the palette

of accessible loci remains unchanged with lineage choice

making the restoration of stemness from maturing cell

types purely dependent on expression on key transcrip-

tion factors [42��]. In confirming the dependency of the

epithelium on bHLH family members attention must

turn to determining their modes of expression and how

these are regulated to achieve different outcomes in

different contexts including both in homeostasis and

the plasticity associated with regeneration.
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