
Eye Movements in Risky Choice

NEIL STEWART1*, FROUKE HERMENS2 and WILLIAM J. MATTHEWS3

1University of Warwick, UK
2University of Aberdeen, UK
3University of Cambridge, UK

ABSTRACT

We asked participants to make simple risky choices while we recorded their eye movements. We built a complete statistical model of the eye
movements and found very little systematic variation in eye movements over the time course of a choice or across the different choices. The only
exceptions were finding more (of the same) eye movements when choice options were similar, and an emerging gaze bias in which people looked
more at the gamble they ultimately chose. These findings are inconsistent with prospect theory, the priority heuristic, or decision field theory.
However, the eye movements made during a choice have a large relationship with the final choice, and this is mostly independent from the
contribution of the actual attribute values in the choice options. That is, eye movements tell us not just about the processing of attribute values
but also are independently associated with choice. The pattern is simple—people choose the gamble they look at more often, independently of
the actual numbers they see—and this pattern is simpler than predicted by decision field theory, decision by sampling, and the parallel constraint
satisfaction model. © 2015 The Authors. Journal of Behavioral Decision Making published by John Wiley & Sons Ltd.

key words eye tracking; decision under risk

Risky decisions are central to our behaviour, from frequent
but small decisions that have a large cumulative effect
(e.g., whether to smoke the next cigarette) to more rare but
similarly significant decisions (e.g., where to invest pension
funds or whether to start a new business). Economics has
been largely concerned with the application of expected uti-
lity theory (Bernoulli, 1954; von Neumann & Morgenstern,
1947) as the normative model of risky decision making.
But psychology and behavioural economics have taken the
model seriously as a description of risky choice behaviour,
and this has led to modifications of expected utility to accom-
modate systematic departures from normative behaviour.
The most notable is prospect theory (Kahneman & Tversky,
1979; Tversky & Kahneman, 1992), but there are many sig-
nificant models (e.g.,Birnbaum, 2008b; Birnbaum & Chavez,
1997; Edwards, 1962; Loomes & Sugden, 1982; Quiggin,
1993; Savage, 1954). These models all have in common
the property that the subjective valuation of a risky option
is a product of the subjective evaluation of the risks and
outcomes involved. These models are constructed almost
entirely from choice data and are considered “as-if” models—
they claim that people’s choices are consistent with these
expected-value-like calculations, without claiming that people
are actually making these calculations. That is, the models de-
scribe the choices but not the process of choosing. Further,
these models agree very closely in their choice predictions
(Birnbaum, 2004); using measures beyond choice to develop
models is therefore appealing.

In parallel, psychologists have developed models of risky
decision making that do make claims about the processes that
take place. Some process models emerged from the heuristics
literature, in which people are assumed to use rules of thumb
or shortcuts that may exploit the statistical structure of the

environment to approximate optimal decisions (see Gigerenzer
& Gaissmaier, 2011, for a review). For risky choice, the best
developed heuristic model is perhaps the priority heuristic
(Brandstätter, Gigerenzer, & Hertwig, 2006). In this model,
people use an ordered sequence of rules to choose, starting
with the minimum gain as an initial criterion, proceeding to
the probability of the minimum if there is a tie, and finally to
the maximum gain if both previous criteria are tied. However,
it has been shown that heuristic choice models have difficulties
describing choice data (Birnbaum, 2008a, 2010; Birnbaum &
LaCroix, 2008) and are not consistent with process data
(Johnson, Schulte-Mecklenbeck, &Willemsen, 2008; Glöckner
& Betsch, 2008a; Fiedler & Glöckner, 2012).

Other process models have roots in the perceptual choice
literature and involve the idea of repeatedly sampling proper-
ties of competing gambles in a series of micro-evaluations.
These samples are accumulated until the evidence suffi-
ciently favours one gamble over the other. This accumulation
process, known as a random walk (in the discrete case) or
diffusion process (for the continuous case), is ubiquitous
throughout psychological modelling of choice (for recent
reviews, see Huang, Sen, & Szidarovszky, 2012; Teodorescu
& Usher, 2013), particularly in decision making and percep-
tual choice (e.g., Krajbich, Armel, & Rangel, 2010; Laming,
1968; Loomes, Navarro-Martinez, Isoni, & Butler, 2012; Ratcliff
& Rouder, 1998; Usher & McClelland, 2001; Vickers, 1970).
There is good neurophysiological evidence to support these ac-
cumulation models (see Gold & Shadlen, 2007, for a review).
We pick two examples that differ, primarily, in what is accu-
mulated. In decision field theory (Busemeyer & Townsend,
1993; Diederich, 1997; Roe, Busemeyer, & Townsend, 2001,
and see alsoWollschläger &Diederich, 2012), attention fluctu-
ates over attribute dimensions on each step in the accumulation
process, with the differences in attribute values on the attended
dimension accumulated on each step. In decision by sampling
(Noguchi & Stewart, 2014; Stewart, 2009; Stewart, Chater, &
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Brown, 2006; Stewart, Reimers, & Harris, in press; Stewart &
Simpson, 2008), a pair of attribute values is compared on each
step in the accumulation process, with the number of
favourable comparisons for each alternative accumulated.

The last class of model we consider are the parallel con-
straint satisfaction models (Glöckner & Betsch, 2008b;
Glöckner & Herbold, 2011), examples of semantic networks
(Collins & Loftus, 1975). In these networks, nodes for gam-
bles and nodes for outcomes are connected by weights that
represent probabilities. Excitation of outcome nodes and in-
hibition between gamble nodes lead to a dynamic pattern of
activation spreading through the network that settles with
one gamble node more active than the other.

We shall return to these models throughout the article. Re-
searchers have begun to use eye movement data to constrain
models of decision making. There is a strong case for a link
between eye movements and cognitive processing (e.g.,
Liversedge & Findlay, 2000; Rayner, 1998, 2009; Yarbus,
1967). Glaholt and Reingold (2011), Orquin and Mueller
Loose (2013), and Russo (2011) all provide comprehensive
reviews of eye tracking in the decision making literature, so
we will just outline some key relevant issues.

EYE TRACKING AND DECISION MAKING

The final fixation made at the point of choice is strongly bi-
assed towards the chosen option (Fiedler & Glöckner,
2012; Glaholt & Reingold, 2009b; Krajbich et al., 2010;
Schotter, Berry, McKenzie, & Rayner, 2010; Schotter,
Gerety, & Rayner, 2012; Shimojo, Simion, Shimojo, &
Scheier, 2003; Shi, Wedel, & Pieters, 2013), showing a
strong link between choice and eye movements. A core ques-
tion is whether eye movements drive or reflect choice.
Shimojo et al. (2003, see also Simion & Shimojo, 2006,
2007) have argued for a two-directional gaze cascade mech-
anism in which we look at options we like more and we like
options more the more we look at them, resulting in a posi-
tive feedback loop. In judging which of two faces was the
more attractive, they found a gradual increase in the likeli-
hood of fixating the ultimately chosen face over the course
of a trial—a gaze bias. To infer the direction of causation,
eye movements need to be experimentally manipulated.
Shimojo et al. (2003) did this and found that forcing partici-
pants to orient towards one face more often than the other
created a preference shift for that face (about 10%) but that
just viewing one face more than the other (without shifting
gaze) did not. Armel, Beaumel, and Rangel (2008) also
found a modest (about 10%) increase in the probability of
selecting a food when viewing was experimentally manipu-
lated so that the food was looked at three times as often as
an alternative, and Glaholt and Reingold (2011) found a
weak (5%) bias for selecting art photographs blanked on
each dwell after a long (400milliseconds) instead of a short
(200milliseconds) interval in a gaze contingent display (but
see Glaholt & Reingold, 2009a, for a null effect of exposure).

Glaholt and Reingold (2011) and Schotter et al. (2010,
2012) explain the bias to the chosen option differently from
Shimojo et al. (2003). Glaholt and Reingold (2009b, 2009a,

2011) found a bias for fixations to the ultimately chosen op-
tion to be longer in duration throughout the choice and a de-
veloping bias to fixate the ultimately chosen option more
often later in the choice for both preference and typicality de-
cisions. They interpreted the fixation duration findings as evi-
dence for early selective encoding of information and the
fixation frequency findings as evidence for a later compari-
son and evaluation process. By comparing like and dislike
decisions, Schotter et al. (2010) found that the early develop-
ing fixation duration bias is towards stimuli people like but
that the later developing fixation frequency bias is towards
stimuli people choose (but dislike, in the case of dislike deci-
sions). Schotter et al. (2012) found that manipulating the
congruency between whether an image is presented in colour
or black and white and whether it is older or newer affects
only the initial dwell time and not later fixation frequencies
—a further dissociation between these effects.

Intuitively, the gaze bias suggests that people have a ten-
dency to look more at options as a preference for those op-
tions develops. However, in simulations of the evidence
accumulation process, Mullett and Stewart (2014) found that
it is sufficient to assume that evidence for an option accumu-
lates at a higher rate while it is being fixated. There is no
need for a positive feedback loop. The gaze bias emerges
naturally in any accumulator model where the stopping rule
is based on the difference in evidence accumulated because,
just before a decision, there must necessarily have been a run
of fixations to the chosen option for the evidence difference
to build up. Retrospective plotting of fixations locked to the
point of decision will thus show a bias even when fixations
are in fact random.

A second question is whether eye movements are consis-
tent with models of decision making. Early work focussed on
the idea that people were calculating something like expected
value, and thus, eye movements should be mostly within a
gamble, as probability and amount are integrated (Russo &
Dosher, 1983). Only partial evidence was found for this hy-
pothesis. Arieli, Ben-Ami, and Rubinstein (2011), Fiedler
and Glöckner (2012), Glöckner and Herbold (2011), and
Su et al. (2013) found that eye movements seem to reflect a
compromise between within-gamble eye movements pre-
dicted from an expected-value framework and between-
gamble eye movements predicted from a trade-off
framework.

Glöckner and Herbold (2011) and Fiedler and Glöckner
(2012) have also carefully considered the kinds of eye move-
ments predicted by prospect theory, decision field theory, the
priority heuristic, and the parallel constraint satisfaction
model. They found that more finely balanced choices take
longer and involve more fixations, which is inconsistent with
literal process interpretations of prospect theory (or expected
utility), where people actually multiply probabilities by
amounts. Further, the brief fixation durations found in these
studies—typically about 200milliseconds—are not consis-
tent with the longer fixations seen under effortful processing
(Horstmann, Ahlgrimm, & Glöckner, 2009) and suggest
some simpler automatic process. Eye movements were not
consistent with the order of information use in the priority
heuristic. The gaze bias (in which a bias to fixate the
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ultimately chosen option emerges) was not consistent with
decision field theory, which predicts no systematic bias in
attention emerging over time, but was consistent with the
parallel constraint satisfaction model, in which one option
becomes accentuated over time.

Finally, Krajbich et al. (2010) and Krajbich and Rangel
(2011) have used eye tracking data to constrain a drift diffusion
model of choice (much like the decision field theory described
earlier). They asked participants to make decisions between
different snack options and used fixation data aggregated over
trials to set parameters of a drift diffusion model. By assuming
that evidence is accumulated faster when an option is fixated
than when it is not, they found evidence that the accumulation
model can predict the choice and choice time data.

TOWARDS COMPLETE STATISTICAL MODELLING
OF EYE MOVEMENTS AND CHOICE

In the present study, we asked people to make a series of
simple risky choices. We used off-the-shelf generalized
linear models to model the frequency of the different types
of eye movement and the link between eye movements and
choice. This approach subsumes the carefully targeted,
theory-guided comparisons of specific eye movements that
others have used and, we hope, represents an exhaustive
exploration of the eye movements. We think it is important
to take an exhaustive descriptive approach because theory
linking choice models to eye movements is relatively underde-
veloped. And, by using off-the-shelf models, we think our re-
sults can be used outside the context of specific theoretical
accounts. Throughout, we use the statistical modelling results
to sketch constraints for the development of process models
of risky decision making. As we describe later, our most
frequent recommendation to improve a model’s match to the
eye movement data is to simplify the model. This is only one
study, and so, of course, our results will need replicating in
other labs, in more complicated risky decisions, and with
different presentation formats.

In the first wave of modelling, we built a Poisson regression
model of the frequency of the different types of eye move-
ments during each choice. The coefficients from the Poisson
regression capture directly the frequencies of different types
of eye movements (e.g., fixations to probabilities vs amounts,
and within-gamble vs between-gamble comparisons). We used
this model to explore how the pattern of eye movements varies
over the course of a single choice and how the pattern of eye
movements varies across different choices. To anticipate the
results, eye movements during risky choices turn out to be
quite simple.

In the second wave of modelling, we use a logistic regres-
sion model to predict the choices people make from their eye
movements at the level of individual trials. In this way, we
explore the link between the eye movements people make
during a choice and the choice they ultimately make. Again,
the logistic regression approach is more exhaustive than spe-
cific theoretical comparisons, and we know of only one other
study using a related approach (Glöckner, Fiedler, Hochman,
Ayal, & Hilbig, 2012). We find that eye movements predict

choice independently of the attribute values—a claim no
existing analysis can support. Because choices and eye move-
ments are both observed and neither is experimentally manip-
ulated, we do not make claims about the direction of causality.

METHOD

Participants
Forty-eight participants from the University of Essex partici-
pant pool completed the experiment (18 males; median=21,
range=18–54; age and gender not recorded for one partici-
pant). Five additional participants did not begin the experiment
because it was not possible to track their eye movements. Data
from one participant were replaced without inspection because
he or she appeared to fall asleep. Participants received a flat
payment of £3 plus between £0 and £2.50 contingent upon
their choices. Participants provided written consent in line with
the institutional ethical approval.

Apparatus
Stimuli were presented on an LCD monitor viewed from
approximately 85cm with a 60Hz refresh rate and a resolution
of 1024×768. Eye movements were recorded with an Eyelink
1000 desk-mounted eye tracker (SR Research, Ontario,
Canada), which has a reported average accuracy between .25
and .50° of visual angle and RMS resolution of .01° (www.
sr-research.com). We tracked participants’ right eye move-
ments using the combined pupil and corneal reflection setting
at a sampling rate of 1000Hz. A chin rest was used tominimize
head movements.

Stimuli
Choices
Simple choices were used to keep the number of attributes on
the screen to a minimum. Each choice was between two gam-
bles of the form p chance of x otherwise 1� p chance of 0.
For example, Figure 1a shows a choice between a 50%
chance of £200 (otherwise nothing) and a 40% chance of
£500 (otherwise nothing).

Choices were constructed using the following recipe.
Probabilities were taken from the set 10%, 20%, 30%, …,
90%, and 100%. Amounts were taken from the set £100,
£200, £300, £400, and £500. These simple round numbers
make multiplication relatively easy and should promote
within-gamble eye movements (Arieli et al., 2011). Using
these attribute values, there are 211 possible choices where
one gamble does not stochastically dominate the other. For
these choices, we label the lower probability p and higher
amount x and call this gamble the risky gamble. We label
the higher probability q and the lower amount y and call this
gamble the safe gamble. Thus, choices were always between
a high amount with low probability (the risky px gamble) and
a low amount with a higher probability (the safe qy gamble).

Because we wanted to predict people’s choices, we
wanted the risky and safe options to be chosen roughly
equally often. For this reason, guided by pilot research, we
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selected only choices where the amount for the risky choice
exceeded that of the safe choice by at least £100 (because of risk
aversion in our population), leaving 71 choices. The median dif-
ference in expected value was £150 with a maximum of £350.

We included an additional four catch choices where one
option stochastically dominated the other, to check for partic-
ipants who were not making sensible choices. Only two
participants failed to choose the dominant option on all four
occasions, each choosing the dominated option once. We
retained all participants in the analysis.

Display
The attributes for the two gambles were presented in a square
(see Figure 1a). The sides of the square were approximately
100mm (6.7° of visual angle), measured from the centre of
the attributes defining each corner. Thus, when fixating one
attribute, the other attributes should fall outside the fovea
(2° around fixation) and parafovea (5° around fixation). We
chose a font size of 30 points to increase the probability of
participants making eye movements between attributes.
While we cannot exclude the possibility that participants
could read one attribute while fixating another without an
experimental test, this is not essential for our design. Our
own experience is that it is difficult to read one attribute while
fixating another, and this is also what our data suggest, as par-
ticipants made eye movements on most of the trials. Currency
and percentage signs were included on the display so that the
type of each attribute could be obviously identified. Attributes
were presented in black font on a white background.

Counterbalancing design
The attributes defining a gamble could be aligned vertically (so
that one gamble was on the left and the other was on the right)
or horizontally (so that one gamble was above the other).
Similarly, the probabilities could appear first (to the left for
horizontal alignment or at the top for vertical alignment) or
second. To avoid confusion when reading the displays, we

counterbalanced these factors between participants in a 2×2 de-
sign, with 12 participants in each cell. The order of the choices
was randomized for each participant. Whether the risky gamble
appeared first (at the top for horizontal alignment or on the left
for vertical alignment) or second was randomized on each trial.
Analysis of the data showed that the counterbalancing and ran-
domization did not affect choices or fixation durations and only
affected eye movements in a way readily explained by left–right
reading biases.

Procedure
The lotteries were described to participants in terms of cups
of 100 blue and yellow counters, where the proportion of
yellow counters determined the probability of winning. The
experimenter explained that the probabilities and amounts
on the screen should be interpreted as two separate lotteries
and that participants should choose the gamble they pre-
ferred. Participants were told that they should respond
honestly and think about what they would choose if really
faced with the two options on the screen. Participants were
informed that at the end of the session, one trial would be
selected and the lottery chosen on that trial played out for real,
giving them the opportunity to acquire a bonus payment pro-
portional to the amount of the chosen lottery. (Specifically,
they received 1/200th of the lottery prize; this exchange rate
was not revealed until the end of the experiment.)

Before beginning the main part of the experiment, partici-
pants undertook practice trials drawn from a different set of
choices from those used in the main task. Eye movements were
not recorded during this practice phase. Once participants had
completed a few trials and indicated that they understood the
task, they progressed to the main session. This began with a
nine-point calibration of the eye tracker; calibration was
repeated as necessary during the task.

Each trial began with drift correction, during which the
participant fixated a small circular target in the centre of the
display. The trial was then initiated by a button press from
the experimenter that triggered a blank inter-trial interval with

Figure 1. (a) An example screenshot from the experiment. The red border marks the edges of the screen. The axes give coordinates on the
1024 × 768 pixel display. Participants only saw the four attributes (drawn to scale). (b) Fixations in four randomly selected trials from
Participant 1. Each green dot represents a fixation. The central dot represents the first fixation to the fixation circle before the attributes

appeared. Lines represent saccades and join fixations in order. The last fixation is the fixation at the point when the participant chose
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a random duration of 400–800milliseconds followed by the
presentation of the gambles, which remained on-screen until
the participant made a response. When the gambles were ver-
tically aligned, participants pressed “o” or “p” to indicate that
they would choose the gamble on the left or right; when the
gambles were horizontally aligned, they pressed “p” or “l”
to indicate choice of the top or bottom gamble.

RESULTS

Figure 1b plots the pattern of eye movements on four randomly
selected trials from Participant 1. The eye movements are a se-
ries of fixations, beginning at the start of the trial on the drift
correction target and then dotting between attributes until a
choice is made. In our analysis, we describe the pattern of
eye movements, explore how the pattern varies across different
questions as a function of the probabilities and amounts in the
gambles on offer, and finally explore the relationship between
the eye movements and the choice ultimately made. An over-
view of our main findings is presented in Table 1. We note
the theoretical importance of the results after each analysis.

Fixation clustering
We used a novel procedure for assigning fixations to attri-
butes that contrasts with the standard region-of-interest ap-
proach. A clustering algorithm was used to assign each
fixation as belonging to a particular attribute (or to elsewhere
on the screen). Separately for each participant, six Gaussian
clusters were fitted in a three-dimensional space defined by
the x and y locations of a fixation and the fixation duration.
Fixation duration was included, as fixations to blank regions
of the screen are typically shorter (mean =212milliseconds)

than to attributes (mean =275milliseconds), and so, duration
can be used to help classify fixations. The mean vector and
covariance matrix for each Gaussian cluster were free parame-
ters and were fitted, together with mixture parameters specify-
ing the proportion of fixations in each cluster, by adjusting
parameters to maximize the likelihood of each fixation. The
best fit from 100 seed points (where initial cluster parameters
were set by randomly allocating each fixation to one of the
clusters) was selected for each participant (note that many
starting points converged on the same best fit).

A six cluster solution was chosen, rather than one with more
or fewer clusters, as a trade-off between the simplicity of the
solution and the fit to the data. If the number of clusters is
selected by comparing the Schwartz’s Bayesian information
criterion (BIC) (a measure based on the likelihood of the solu-
tion corrected for the number of parameters in the model), then
a much larger number of clusters are preferred, but this com-
plexity is not required for our purpose of assigning clusters to
regions. In addition, a six cluster solution produced very simi-
lar results across all participants, identifying a cluster at each
attribute in every case. Figure 2 shows the solutions for each
participant. The most frequent solution was to identify clusters
for each attribute, a cluster for the central fixation, and a diffuse
cluster capturing a small proportion of fixations that are obvi-
ously to blank portions of the display. A second, less frequent
pattern identified a cluster for each attribute but then split the
fixations to blank parts of the screen into a higher and a lower
cluster. In the following analyses, we assign each fixation to
the cluster most likely to have generated it, labelling fixations
as to p, q, x, and y, or to a blank region (merging the last two
categories for each cluster pattern). Ninety per cent of fixations
made during a choice were classified as to p, x, q, or y.

A second, simpler approach to classifying fixations is to
define 100×100 pixel regions of interest centred on the four

Table 1. A summary of key results

Key results PT Priority DFT DbS PCS

Fixation durations are brief, stable over time, and depend only weakly on the
attribute fixated or its magnitude

× × ✓ ✓ ✓

Choices are fast × – ✓ ✓ ✓
Attributes are fixated, on average, about equally often ✓ × ✓ ✓ ✓
Within-gamble transitions are more frequent than between-gamble transitions ✓ × – – –
The proportion of fixations to each attribute and the pattern of transitions between
attributes is stable over questions: increasing p, q, x, and y lead to only a modest
increase in their share of fixations

✓ ✓ × ✓ ✓

People make more fixations (and so have longer choice times) on harder choices
(e.g., where the safe gamble is not a sure thing or when probabilities are similar)

× × ✓ ✓ ✓

The pattern of fixations and transitions is stable over the time course of a single trial,
apart from the emergence of a bias to fixate the attributes of the ultimately chosen
gamble (the gaze bias)

× × × ✓ ✓

Most participants fixate all four attributes before choosing but have not done so until
over half way through a trial

× × ✓ ✓ ✓

In predicting choices from eye movements, what matters, to a first approximation,
is how often each attribute is fixated

– × × ✓ ✓

In predicting choices from eye movements, interactions between fixation counts for
an attribute and its magnitude are very small

– × × × ×

The eye-movement-to-choice link and the attribute-value-to-choice-link overlap only
partially, with eye movements and attribute values each making large and independent
contributions to variability in choice

– – – – –

Note: PT, prospect theory; Priority, priority heuristic; DFT, decision field theory; DbS, decision by sampling; PCS, parallel constraint satisfaction. The ticks and
crosses indicate consistent and inconsistent results, and the blue dashes indicate when there is no clear prediction.
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attributes and to classify fixations inside each region as being to
their respective attributes, leaving fixations outside these regions
unclassified. Fixation classifications from this simple regions-of-
interest model agreed with classifications from the clustering
model for 91.9% of fixations. Of the remaining fixations, 5.3%
were unclassified by the regions-of-interest method but were
assigned to attributes by the clustering method, and 2.9% were
unclassified by the clustering method but were assigned to attri-
butes by the regions-of-interest method. No fixations were
assigned to different attributes by the different methods. In the rest
of this paper, we use assignments based on clustering, but the
exact method used does not influence the results significantly.

Choices
The mean proportion of risky picks was close to .50
(mean= .49, median = .48) as we intended. There were large

individual differences in the proportion of risky picks, with
participant means ranging from .00 to .89 (interquartile range
from .36 to .63). We model choices later.

Fixation duration
Fixation durations are an important focus of analysis in eye
movement research. For example, research on eye movements
in reading suggests that fixation durations increase with the
complexity of the text (Rayner, Pollatsek, Ashby, & Clifton,
2012). Because we have such small targets (e.g., “20%” rather
than a whole photograph), we joined consecutive fixations to
the same attribute. These were rare and were typically two short
duration fixations very close together on an attribute that
summed to one normal duration fixation. To preempt the results,
we find that fixation durations changed very little over time,
across attributes, or with attribute value.

Figure 2. Clustering solutions. Each panel is a separate participant. Each dot is a fixation. The ellipses represent a cluster solution and are equal
likelihood contours bounding 95% of the density of the best-fitting Gaussian clusters. The colour of each dot indicates the cluster that a fixation

is most likely to have come from and is thus assigned to
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The mean across subjects of the mean fixation duration
was 278milliseconds (SD=51milliseconds).

Fixation duration over the time course of a trial
Figure 3a plots the duration of fixations against trial time. The
fixation at the moment of choice (when the participant pressed
the button) is on the right, with earlier fixations appearing to the
left. Thefixation at themoment of choice is longer than the others.
Ignoring the final fixation, the mean across subjects of the mean
fixation duration was 248milliseconds (SD=32milliseconds).
The mean duration across subjects of the final fixation was
467milliseconds (SD=149milliseconds). Mixed effects model-
ling with a slope for fixation number and by-subject random ef-
fects for the intercept and slope shows that fixations did not get
significantly longer over time, β =�.63milliseconds/fixation,
MCMC p=.47. Consistent with our present result, Janowski

and Rangel (2012) found that fixation durations were constant
over a trial when choosing between a sure 0 and a lottery
offering a gain with some probability otherwise a loss, and
Horstmann et al. (2009) found that fixation durations were con-
stant over a trial when choosing which of two cities is the larger
given some predictive cues. In contrast, Glöckner and Herbold
(2011) found that later fixations are longer. However, they
aligned fixations at the first in a choice rather than the last, so
their result could reflect increases in the proportion of fixations
at a given time being the longer final fixations with increasing
fixation number. We see the same pattern as Glöckner and
Herbold (2011) when we align our data by the first fixation
rather than the last (Figure 3b).

Fixation duration and attribute type and value
To examine the influence of the attribute type and value on
fixation duration, the mean fixation duration was calculated

Figure 3. (a) Fixation duration plotted over the time course of a trial. Points are participant means and have been jittered horizontally for
visibility. The blue line shows the overall mean at each lag. The horizontal green line shows the overall mean fixation duration (excluding
the choice fixation at 0) as a reference. (b) The same data as panel (a), except aligned at the first instead of the last fixation. (c) The effect
of attribute values on fixation duration. Each column shows the effect of varying a different attribute value. Each row shows the effect on a

different region. Dots are participant means. Lines show the linear effect of attribute value
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for fixations to each region (p, q, x, and y) for each participant.
One might expect longer fixations to amount rather than proba-
bility (or vice versa), but these effects are small. Fixation dura-
tion does differ over region type, F(3, 141)=2.93,p=.039, with
fixations to q (mean=264milliseconds) slightly shorter than
fixations to the other attributes (p mean=279milliseconds,
x mean=287milliseconds, y mean=280milliseconds).

Each panel in Figure 3c shows the effect of attribute value
on fixation duration for fixations to the different attributes.
Each column shows the effect of changing a different attri-
bute. Each row shows the effect on fixations to a particular
region. For changes to p, there is no effect on fixation dura-
tion for any region. For changes to q, only the duration of
fixations to region y is affected, F(1, 43) = 18.48, p<.0001.
For changes to x, there is no effect. For changes to y, only
the duration of fixations to regions x, F(1, 43) = 4.94, p=.32,
and y, F(1, 43) = 8.01, p=.0071, are affected. (Adjusting the
alpha level to control the family-wise error rate for the 16
slope tests would mean that the effects of y were not signifi-
cant.) Of these effects, the effect of q on y fixations is larg-
est: As q changes from minimum to maximum, the mean
fixation duration changes from 243 to 289milliseconds, an
increase of 18%.

Discussion
In summary, fixation durations were brief, roughly the same
for the different regions p, q, x, and y, and did not depend
strongly on the values of p, q, x, and y. The first entry in
Table 1 notes this pattern. Glöckner and Herbold (2011)
and Fiedler and Glöckner (2012) also find similarly brief
fixations with more complex gambles. Like Glöckner,
Fiedler, and Herbold, we suggest that such brief fixations
are not consistent with a literal interpretation of expected-
utility-like models such as prospect theory, in which there
is a deliberative multiplication of probabilities and amounts
(e.g., in a weighted additive process, Payne, Bettman, &
Johnson, 1988, see also Pachur, Hertwig, Gigerenzer &

Brandstätter, 2013, for a review of literal interpretations).
But brief fixations are more consistent with automatic
processes as in the parallel constraint satisfaction model or
accumulator models.

Finding that fixation durations are insensitive to attribute
value contrasts with the fixation duration effects reported by
Glaholt and Reingold (2009b, 2011) and Schotter et al.
(2010, 2012) where even the initial fixation is longer for more
attractive images.We suspect that the core difference is our use
of simple written attribute values compared with the use of
photographs in other studies.

Had fixation durations differed over the time course of a
trial, this could have been taken as evidence for different pro-
cessing stages, as Fiedler and Glöckner (2012) also argue.
The priority heuristic has an expected-value screening stage
followed by a heuristic stage and so is not consistent with
constant duration fixations. But accumulator models and
the parallel constraint satisfaction model assume the same
cognitive operations over the time course of a decision and
so are consistent with constant duration fixations.

Attribute fixation counts and transitions
In this section, we analyse fixation and transition counts. Be-
cause fixation durations were not strongly dependent on the
attribute fixated, its magnitude, or its timing within the trial,
analysing fixation counts is approximately equivalent to
analysing dwell times or their sum, reaction time. Our ap-
proach to describing transitions is to build a complete statis-
tical model of the transitions and then to explore how the
model changes with the attribute values in each particular
choice and over the time course of a trial. By constructing
a complete model of the transitions, we can be sure that we
have not missed some systematic pattern that might be
overlooked by focussing only on certain comparisons.

Table 2 shows the frequency of each kind of transition,
aggregated over participants. For example, there were 2547
occasions on which someone was fixating p and then made
their next fixation to q. These totals correspond to a median

Table 2. Raw counts of each type of transition summed over participants (top) and the same data as the conditional probabilities of each type of
transition (bottom)

Note: Green highlighting indicates transitions within gambles. Blue highlighting indicates transitions across gambles within an attribute.
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of 7.5 fixations per choice (ranging from 4 to 11 across par-
ticipants) or a mean choice time of 2.8 seconds
(SD=1.0 seconds). The zero entries on the negative diagonal
are structural: In our analysis, we counted eye movements
within the same region as a single fixation (similar to com-
puting dwell times, see Krajbich et al., 2010). Fixations be-
ginning before the onset of the trial or after the response
were not included. The totals on the right indicate how often
each region was fixated, ignoring the fixation during the but-
ton press. The totals at the bottom include the choice fixation
but omit the fixation when the display first appeared (which
was to the drift correction target to 96.1% of the time)—
and thus indicate how often each attribute was fixated during
the choice. The lower part of Table 2 gives the same counts
as proportions. For example, the very bottom row reports that
each of the four attributes was fixated almost exactly one
quarter of the time (actual proportions vary from .24 to
.26). This means that for the average trial with 7.5 fixations,
we would expect an average of just under two fixations to
each attribute.

To interpret the transition counts in Table 2, a saturated
model of the transition counts was constructed using Poisson
regression as described in the Appendix. The first column in
Table 3 reports the coefficients from the regression (ignore
the later columns for now). These coefficients can be under-
stood as multiplicative adjustments to the transition counts
depending on the type of transition. These coefficients
completely describe the transition matrix. The (exponentially
transformed) currprob (for “current fixation is to a probability
rather than an amount”) coefficient is .99 and does not differ
significantly from 1.00, and indicates that probabilities and
amounts were fixated equally often. The currrisky (for “current
fixation is to the risky gamble rather than the safe gamble”)
coefficient is slightly and significantly higher than 1, indicating
that people looked a little more at the risky gamble attributes.
The currprob:currrisky interaction coefficient differs signifi-
cantly from 1, indicating that people viewed p and x about
equally often but viewed y slightly more than q. That is, there
was a small tendency to look more at amounts in the safe
gamble. Altogether, the currprob, currrisky, and currprob:
currrisky coefficients model the frequency of fixations to the
different attributes. Although some coefficients are significant,
their effects are small and show that, to a first approximation,
people fixated each attribute about equally often.

The remaining coefficients prevprob through to regretmodel
the conditional probabilities of transitions, indicating where
transitions are likely to have come from. The prevprob coeffi-
cient indicates that people were a little more likely to be
transitioning from a probability. Given that transitions end on
each type of attribute about equally often (currprob= .99) and
given that the previous attribute of the current fixation is the very
same fixation as the current attribute of the previous fixation, this
means that people started off more likely to fixate probabilities
(we will see this in the next section where we explore how the
transition matrix changes over the course of a trial).

There is a large effect of whether the transition is within or
between gambles (as the between coefficient indicates) with
p↔ x and q↔ y within-gamble transitions much more likely
than p↔ q and x↔ y between-gamble transitions. Forty per

cent of transitions are between gamble, and 61% of transi-
tions are within gamble. (This split can be directly calculated
from Table 2 or derived from the coefficient value of .82: be-
tween/(between+within) = (1×.82)/((1×.82) + (1/.82))=.40.)
Because we counterbalanced the location and order of the
attributes on the screen, the between coefficient indicates a
true bias for making eye movements within gambles, rather
than a bias for horizontal or vertical eye movements.

There is also a smaller interaction (captured by the regret
coefficient) that indicates that within the overall pattern,
people were a bit more likely to make transitions, indicating
they thought next about the “downside” rather than the
“upside.” For the screenshot in Figure 1a (counterbalanced
with probabilities before amounts and gambles read horizon-
tally), this corresponds to a tendency to make clockwise eye
movements (e.g., as if people think “50% but only £200
which is less than £400 but I only get this with 40% chance
which is less than 50% …”).

Discussion
Choices were made quickly in this study—more quickly than
in Glöckner and Herbold (2011) and Fiedler and Glöckner
(2012), probably because we used simpler gambles with only
four rather than eight numbers on the screen. Quick choices
are not consistent with literal expected utility accounts where
probabilities and amounts are multiplied (Fiedler & Glöckner,
2012), but are consistent with the more automatic processing in
accumulator and parallel constraint satisfaction models as
noted in Table 1.

The finding that all attributes were fixated about equally
often is consistent with all models except the priority heuris-
tic, which predicts that because all of these choices can be
made using the “lower probability of the minimum outcome”
rule, people will choose before needing to consider the
outcomes and so will look at probabilities more often. We
note these results in Table 1.

There is considerable variation across studies in the pro-
portion of eye movements that are within gamble rather than
between gamble, with between 50% and 80% of transitions
within gamble (Arieli et al., 2011; Fiedler & Glöckner,
2012; Glöckner & Herbold, 2011; Rosen & Rosenkoetter,
1976; Russo & Dosher, 1983; Su et al., 2013), probably
caused by differences in the number of branches and physical
layout. Understanding this variation will require meta-
analysis or further experimental manipulation of factors of
interest, but the proportion sits in between that for control
tasks that require within-gamble movements or require
between-gamble movements (Arieli et al., 2011; Su et al.,
2013 and also Payne & Braunstein, 1978). Only prospect
theory (and other expected-utility-like models) predicts that
within-gamble transitions will be more frequent, as we note
in Table 1. In its simplest form, decision by sampling as-
sumes that attribute values are sampled at random, which
would lead to equally frequent within-gamble and between-
gamble eye movements. However, as Stewart et al. (2006)
suggest, other sampling schemes are possible. The parallel
constraint satisfaction model does not make clear predictions
about the proportion of within-gamble versus between-
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gamble transitions (Fiedler & Glöckner, 2012). For decision
field theory, Fiedler and Glöckner (2012) suggest that the
predictions are not clear, while Noguchi and Stewart
(2014) argue that because all alternatives are compared at
each time point, between-gamble transitions should
dominate. Because the predictions are not clear, Table 1
has dashes for these models.

It is also worth contrasting the general finding that within-
gamble movements are more frequent than between-gamble
movements in risky choice, as described earlier, with the
finding from consumer choice that between-product eye
movements are more prominent (Shi et al., 2013).

Do fixation counts and transition probabilities change as
attribute values change?
A question of critical interest is whether the transition matrix
varies across the different choice problems. That is, as the
values of p, q, x, and y vary, does the pattern of fixations that
people make vary? Such variation would suggest that the eye
movements are driven by the numbers on the screen. The
columns under “Attribute Interactions” in Table 3 report
the fit of a Poisson regression that includes interactions with
the values of p, q, x, and y. In the regression, we scaled the
values of p, q, x, and y so that the interaction coefficients
indicate the size of the effect of changing an attribute from
its minimum to its maximum.

The “(Intercept)” row in Table 3 tells us how increasing p,
q, x, and y from minimum to maximum changes the number
of fixations in a choice. The value of .94 for p indicates that
the number of fixations per trial is reduced by 6% (i.e.,
1.00–.94) when p is increased from minimum to maximum,
although this change is not significant. Increasing q from
minimum to maximum results in 40% fewer fixations.
Increasing x or decreasing y also results in fewer fixations.

The lower entries in Table 3 indicate how the proportions
of different kinds of transitions change within the overall
total. First, note that despite the large number of eye move-
ments that went into the analysis, most interactions are not
significant. The significant interactions with currrisky show
that as p increased, people were 21% more likely to fixate
the risky gamble and that as q increased, people were 12%
less likely to fixate the risky gamble. As q increased, people
made 15% fewer between-gamble eye movements and 22%
more regret eye movements (as explained in the previous
section). As y increased, people made 6% fewer fixations to
the risky gamble and 7% more between-gamble eye move-
ments. These effects are all quite modest.

Discussion
To summarize the aforementioned results, the transition
matrix is quite stable across choices. Changes in p, q, x,
and y from their minimum to their maximum value had
reliable but not large effects on relative frequencies of the
different transitions, as noted in Table 1. This finding is con-
sistent with the literal interpretation of prospect theory, as the
size of the numbers multiplied is irrelevant. The results are

also consistent with decision by sampling and the multi-
attribute version of decision field theory. In these models, at-
tention alternates between probability and amount attributes
at each step, with the difference between gambles on that
attribute accumulated on each step. However, the result is
harder to reconcile with an alternative implementation of
decision field theory. This alternative implementation, pre-
ferred by Busemeyer (personal communication, 24 January
2011), uses a Savage act-state representation where differ-
ences between outcomes in each state are sampled in propor-
tion to state probabilities. For example, a choice between (i)
“a 20% chance of 100 otherwise nothing” and (ii) “a 60%
chance of 30 otherwise nothing” would be represented as
four states of the world “win A, win B”, “win A, lose B”,
“lose A, win B”, and “lose A, lose B” with outcome differ-
ences +70, +100, �30, and 0 and probabilities .12, .08, .48,
and .32. Each step is an outcome difference, and because
states of the world are attended in proportion to their proba-
bilities, the accumulated evidence is, effectively, an expected
value. With typical parameters, decision field theory uses
hundreds of micro samples to reach threshold. Our eye
movement data suggest that this may not be what is happen-
ing during choice. The numbers of fixations to x and y do not
increase in proportion with the values of p or q. That is, if eye
movements are indexing attention, people are not attending
to states of the world in proportion to their probabilities. Of
course, it could be that eye movements are not related to sam-
pling in decision field theory and that it is some intermediate
representation constructed after eye movements that is sam-
pled. This could be true, but this effectively makes decision
field theory an “as-if” model with respect to eye movements
and leaves their systematic relation to choice unexplained.

While changes in p, q, x, and y do not affect the relative
share of fixations each attribute receives, they do have strong
effects on the overall number of fixations made in a decision.
This is the next result in Table 1. This reflects the fact that peo-
ple choose in fewer fixations (i.e., more quickly—because
fixation durations do not vary systematically) when one option
is much better than the other. In fact, in the next section, we use
an alternative analysis to show that these effects of p, q, x, and y
occur because people are sensitive only to the difference in
probabilities q�p and because p, q, x, and y are correlated with
q�p in the choice set.

Varying decision time across choices is inconsistent with
literal expected utility because multiplication time should be
largely independent of the magnitudes being multiplied (and
if not, there would be the need to explain why the size of the
probability multiplicand matters but not the amount multipli-
cand). But varying decision times are a core property of de-
cision models that posit the accumulation of evidence, such
as decision field theory and decision by sampling: Evidence
is accumulated for longer in decisions with more finely
balanced choices. The priority heuristic also predicts that
choice time differs across different decision problems, as rules
are applied sequentially until a decision is made. But all of the
simple choice problems here are solved at the second rule
(“choose the option with the lower probability of the minimum
outcome”), so the priority heuristic cannot account for the
systematic differences in decision time across choices here.
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Similarity and the transition matrix
Do eye movements depend on the difference in the probabil-
ity of winning and the difference in the amount to be won?
We explored this question by examining whether the transi-
tion matrix interacted with the difference between x and y
and the difference between p and q. The results are shown
in the “Difference Interactions” columns of Table 3. We
scaled differences to have an overall range of 1, allowing
the interaction coefficients to be understood as the effect of
differences changing from their minimum to maximum
values. The interaction with the intercept indicates that
people took 24% fewer fixations to make a decision when
the difference q�p was at its maximum. The bigger the dif-
ference in probabilities, the faster people made their decision
(Glöckner & Herbold, 2011; Janowski & Rangel, 2012, also
find fewer fixations for dissimilar gambles). Our results also
show that when the difference in probabilities was larger,
people looked less at the risky gamble (i.e., they looked more
at the larger probability), made fewer between gamble eye
movements, and made more regret direction eye movements,
although there is no effect on the proportion of fixations to
probabilities. The difference in amounts does not have any
significant effect on the transition matrix.

Discussion
In interpreting these results, we note that the effects of prob-
ability difference and amount difference on the transitions
are small in magnitude, with the only large effect being that
people chose more quickly when probabilities are more dif-
ferent (Table 1). Fiedler and Glöckner (2012) also explored
how the number of fixations varied across choices in a subset
of the analysis we completed. They found more fixations to
options with higher probabilities, more fixations to options
with higher amounts, and more fixations in total when the
expected values of gambles were similar. Here, we have rep-
licated this pattern and extended the analysis by exploring
how the relative frequencies of fixations varied within the
overall total. Within the overall total, the effect of attribute
values on the proportion of fixations and transitions of each
type is modest, consistent with Reutskaja, Nagel, Camerer,
and Rangel (2011), who found that the split of fixations
between two snacks was not affected by the subjective values
of the snacks, and with Janowski and Rangel (2012) who
found, in a choice between a sure zero and a lottery offering
a gain with some probability otherwise a loss, that the split of
fixations between the gain and the loss was independent of
the expected value.

Do fixation counts and transition probabilities change
over the time course of a single trial?
To explore how the eye movements change as a preference
develops, Figure 4 plots how the transition matrix changes
over time. Each transition was classified as taking place in
the first or second half of a trial. Trials were split into px
choices and qy choices. The final columns in Table 3, under
the “Time Course” heading, indicate whether there is a main
effect of time (the “Half” column) and whether the effect of

time depends on the choice made (the “Gaze Bias” column).
The largest effect is a replication of the classic gaze bias
shown in the currrisky and prevrisky panels of Figure 4 in
which the probability of fixating the attributes of the ulti-
mately chosen gamble increases over the time course of a
trial. The interaction coefficients in the currrisky row indicate
this, with the 1.12 coefficient indicating a small overall in-
crease in the proportion of fixations to the risky gamble attri-
butes and the 1.25 coefficient indicating that this effect differs
depending on the final choice, with the proportion of risky px
gamble fixations staying about constant over time for safe
gamble qy choices but increasing for risky px gamble choices.

The prevprob panel of Figure 4 indicates a drop in the
proportion of fixations to probability attributes over time,
but the lack of an effect in the currprob panel means that this
must be due to a bias to fixate probabilities on the first fixa-
tion. The between panel indicates that the bias towards
within-gamble transitions increases slightly in the second
part of a choice (note that Glöckner & Herbold, 2011, find
a small effect in the opposite direction).

Discussion
This analysis gives us clues about what it is that people do
longer in the extra time they take choosing when gambles
are similar in probability. The probability of fixating each
attribute and the conditional probability of transitioning
between attributes are, to a first approximation, stable over
time. If eye movements give us a clue to cognitive process-
ing, then their stability indicates that whatever processing is
going on, it is the same processing in the first and second
halves of a trial (and binning trials more finely into quarters
or deciles gives similar results). The same argument can be
made from the stability of fixation durations over the time
course of a trial, described earlier. The theoretical implication
is that there is no evidence for different stages of processing
during a choice (this contrasts with consumers’ decisions
among products, where discrete stages have been identified
by Russo & Leclerc, 1994, and Shi et al., 2013). For example,
there are no reading phase followed by a multiplying phase as
literal expected utility claims, and no reading phase followed
by an expected value stage followed by a heuristic stage as
the priority heuristic claims. But the constant process over time
is consistent with the models like decision field theory, deci-
sion by sampling, and parallel constraint satisfaction. This
stability over time may not hold for choices between more
gambles or between more complicated gambles—but this has
not yet been explored in the literature.

The exception to the overall stability in transitions over
time is a reliable gaze bias, replicating findings described in
the Introduction (Fiedler & Glöckner, 2012; Glaholt &
Reingold, 2009b; Krajbich et al., 2010; Schotter et al.,
2010, 2012; Shimojo et al., 2003; Simion & Shimojo,
2006, 2007). The gaze bias is a gradually emerging bias to
fixate the gamble that is ultimately chosen. Note that our
analysis only reveals an association between fixations and
choice, and therefore does not permit conclusions about the
direction of causality. However, the gaze bias is not predicted
by literal expected utility, the priority heuristic, or decision
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field theory in either the act-state version (Busemeyer &
Townsend, 1993) or the multi-attribute version (Diederich,
1997; Roe et al., 2001). The priority heuristic and decision
field theory are driven by between-gamble comparisons at
all stages and thus necessitate equal attention to each gamble
throughout. The gaze bias is also not predicted by the 2N-ary
choice tree model (Wollschläger & Diederich, 2012) be-
cause, like the closely related decision field theory, this
model employs attribute-wise comparison of alternatives at
each step. (But note that with more than two gambles, the
2N-ary choice model would predict a gaze bias, as the
weakest gamble can by dropped part way through accumula-
tion.) Decision by sampling does predict a gaze bias, because
gambles that happen to receive more fixations will more
strongly drive the information accumulation process and will
therefore be more likely to be chosen, so the retrospective
conditioning of fixations on choice will show the effect.
Mullett and Stewart (2014) have shown that even a simple
accumulation of coin tosses to a fixed head–tails difference
produces a plot showing a gaze bias when the proportion of
heads at any given time is plotted as a function of the time
and the plot is averaged over different length sequences. This
means that any model where evidence is accumulated more
quickly when an option is fixated than when it is not will pro-
duce a gaze bias (Krajbich et al., 2010). Decision by sampling

therefore predicts a gaze bias without any top–down link be-
tween evidence accumulated so far and fixation probabilities.
The parallel constraint satisfaction model also predicts a gaze
bias, because processing of subsequent information is influ-
enced by the developing preference as activation settles within
the network (Fiedler & Glöckner, 2012).

To summarize the differences in eye movements across
choices, people make the same sorts of eye movements for
each choice with only small effects of the numbers they are
looking at—and they just make more of the same type of
eye movements for harder choices.

The acquisition of information over a trial
Even under the most efficient strategy, it will require four fix-
ations to read p, q, x, and y. In fact, most people read all four
attribute values on almost every trial even though, in this
experiment, the fourth could sometimes be inferred from
the other three. Across participants, the median proportion
of trials on which all four attributes are visited is 95%.
Figure 5 plots the point during a trial at which all four attri-
butes were visited as a function of the number of fixations
during the trial. Most participants lie above the horizontal
dotted line, which shows that most participants revisited
other attributes before they had visited each attribute at least

Figure 4. The development of the transitionmatrix over time, conditional on the final choice. The proportion of transitions of a particular type is plotted
for the first and second half of each choice. Trials are split by the final choice. Each panel plots the development of a different type of transition
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once. The blue line indicates the mean across subjects, and
the vertical black line marks the median total number of
fixations until choice. Typically, all four attributes were not
visited until just over half way through a choice, and this
result is listed in Table 1. It could be that people wait until
all four attributes have been visited before beginning the
decision process; however, given the similarity of early and
late eye movements, people may begin to choose before they
have fixated all four attributes.

Discussion
With a median of only 7.5 fixations per choice and 4 attributes
on the screen, it is somewhat inevitable that people cannot have
read each attribute until just over half way through a choice.
This means that early on during the trial, people cannot be
calculating differences in expected values (or anything simi-
lar), as this requires all four attribute values. Earlier, we saw
that fixation durations and fixation and transition probabilities
are static over the time course of a choice and so provide no
evidence that later processing differs from early processing.
Thus, if people definitely cannot be calculating expected value
in the first half of a choice, they are probably not doing this in
the second half of the choice—unless by some coincidence, the
eye movements associated with two different processes are the
same. Given the literature showing a strong dependence of eye
movements on the task performed (e.g., Arieli et al., 2011;

Yarbus, 1967), this is unlikely. So, this result, when combined
with earlier findings, presents a problem for prospect theory
and for the act-state version of decision field theory, but is
consistent with models without a literal multiplication such
as multi-attribute decision field theory, decision by sampling,
and the parallel constraint satisfaction model.

Predicting choices from eye movements
If eye movements during choice are related to the decision
making process, we would expect to be able to predict
choices from eye movements. Figure 6 plots the accuracy
in predicting the choice on a particular trial from choice attri-
butes, eye movements, or both (see also Glöckner, Fiedler
et al., 2012, for a related approach). Choices were predicted
in a logistic regression, where the choice on a trial (risky or
safe) was the dependent variable, and the independent vari-
ables varied according to the model. Figure 6 also reports
Schwarz’s BIC, which was used to compare the fits of non-
nested models after differences in the number of parameters
are taken into account. We have made the (ultra conserva-
tive) correction for the clustering of choices within subjects
by replacing the number of observations with the number
of subjects, but the pattern is the same whether or not BIC
values are corrected. When BIC values are lower for better-
fitting models, this means that the better fits are not due to
models with more parameters over-fitting the data.

Figure 5. The point during a trial at which all four attributes have been viewed as a function of the total number of fixations. In each column,
each point represents a subject mean, with the size indicating the number of observations contributing. The horizontal dotted line marks four
fixations and is thus the earliest point at which all four attributes can have been visited. The diagonal dotted line marks the last fixation and thus
the last point at which all four attributes can have been visited. The solid blue line is the mean across participants. The vertical line marks the

median number of fixations made during a choice
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In the Intercept Model, where a single free parameter is
used to fit the small bias towards making safe picks, the
choice predicted as most likely by the logistic regression
was the actual choice made on 51.4% of trials.

Choices from attribute values
The relationship between choice and attribute values has
been explored in 60 or more years of research. Here, we take
a very general approach. The Attribute Values Model uses
the values of p, q, x, and y on each trial to predict the choice
on that trial. No eye movement information was used in this
model. The model includes all interactions between p, q, x,
and y, and using one coefficient for each main effect and in-
teraction attains prediction accuracy of 69.5%. Treating p, q,
x, and y as factors by allowing one coefficient for each level
(e.g., allowing one coefficient for the effect of p=20%,
another for p=40%, and so on…) to allow for nonlinear
effects of p, q, x, and y and their interactions hardly improved
the fit, achieving accuracy of 70.3%, and the corrected BIC
values show that the extra complexity of allowing nonlinear
value and weighting functions is not warranted. This Attri-
bute Values (Nonlinear) Model is very general and, in its
application to these gambles for gains, includes best-fitting
prospect theory with completely free nonlinear functional
forms for value and weighting as a special case. That it is
not an improvement over the linear model indicates that for
these data, nonlinear value and weighting functions are not

warranted. The best model, by BIC, is one with linear effects
of p, q, x, and y, and only the p× q interaction (in which each
probability has a greater effect when the other is small)—
with a prediction accuracy of 69.3%. That is, removing the
interactions p× x and q× y—the very interactions at the core
of expected value, expected utility, and prospect theory—
reduces the model fit by only .2%, and the increased simplicity
of the reduced model more than offsets this small drop in pre-
diction accuracy. In short, the best model contains only addi-
tive but independent effects of each attribute, and the p×q
interaction that we saw earlier was important for predicting
the number of fixations (or equivalently time) until choice.

Choice from eye movements
The Final Fixation, Fixations, and Transitions Models use no
information about the values of p, q, x, and y. Instead, they
use only information about eye movements. Thus, we follow
an approach similar to Krajbich et al. (2010), who used a
drift diffusion model to predict choices from eye movements
(except that we use the eye movements on each trial to
predict the choice for that trial rather than using aggregate
eye movements to inform model parameters for modelling
aggregate choices). Our approach is also similar to that of
Glöckner, Heinen, Johnson, and Raab (2012), who used
eye movements to predict choice of play after viewing brief
video clips of handball games.

Figure 6. Accuracy with which choices can be predicted based on choice attributes, eye movements, or both. The numbers on the plot give
Schwartz’s Bayesian information criterion (BIC) for each model, corrected for the nesting of choices within subjects. The BIC values show

that better-fitting models do provide a better account of the data and that the extra model parameters are warranted
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The Final Fixation Model uses only the final fixation (i.e.,
whether the final fixation is to p, x, q, or y) to predict choice.
Previous work has found that people tend to fixate the option
they choose at the point of response (Fiedler & Glöckner,
2012; Glaholt & Reingold, 2009b; Krajbich et al., 2010),
and this allows an accuracy of 67.3% in our data.

The Fixations Model uses the number of fixations to each
of p, x, q, or y to predict choice (ignoring the ordering of fix-
ations). The Transitions Model breaks fixation counts to each
attribute down into transitions. That is, the Transitions Model
adds information about the ordering of fixations, breaking,
for example, the count of fixations to p into separate counts
for transitions x→ p, q→ p, and y→ p. This extra complexity
improves the fit (the BIC value is lower). Table 4 shows the
relationship between transitions and choice. Coefficients
from the logistic regression were used to model the effect
of one more transition of each type on the probability of a
risky pick. For example, the value of .20 for the q→ p
transition shows that the probability of a risky pick increases
from a baseline of .49 to .69 when one more q→ p transition
is made. Mixed effects logistic regression modelling with
transition counts as fixed effects and full random slopes
and intercepts—which thus accounts for the nesting of
choices within subjects—and shows that each transition has
a significant influence on choice (all ps <.002) except for
y→ q transitions. Note that the Transitions Model outper-
forms the Final Fixation Model, too.

The overall pattern in Table 4 is for transitions ending on
p or x to increase the probability of a risky px pick and for
transitions ending on q or y to decrease the probability of a
risky px pick (see columns alternating in sign). We compared
the fit with an improper linear model (Dawes, 1979) where
the free coefficients for the number of fixations to each attri-
bute are constrained to be equal in magnitude with only their
sign retained. This model does only slightly worse on predic-
tion accuracy (2.8% worse), suggesting equal weighting.
This pattern is qualified by the tendency for between-gamble
transitions to have an equal or stronger effect than within-
gamble transitions, and it is this secondary trend that gives
the Transitions Model the advantage over the Fixations
Model. The balancing of the influence of between-gamble
and within-gamble eye movements was tested by a second
improper linear model. Free coefficients for the counts for
each type of transition were constrained only to differ for
within-gamble versus between-gamble transitions. This
model does only very slightly worse on prediction accuracy
(1.4%). This improper linear modelling is important, because
it demonstrates that to a first approximation, transitions are
all equal in predicting choice.

Our data contain evidence for both bottom–up influences
of eye movements on choice and top–down influences of
choice on eye movements. For example, the fact that changes
in the value of x across questions do not affect the pattern of
fixations to p, q, x, and y (Table 3, described earlier), but that
the number of fixations to x does affect the probability of a
risky px pick (Table 4), indicates that x is not affecting how
our eyes move, but if we do happen to look more at x, we
are more likely to choose px. In contrast, increases in the
value of p do lead to more fixations of p and x, and fixations
to p and x increase the px picks. p is affecting how we move
our eyes and the choices we make. The case of x is perhaps
best characterised as bottom–up influences of eye move-
ments on choice, but the case of p could be characterised as
top–down influences of the choice process on eye move-
ments (Shimojo et al., 2003).

The interaction between eye movements and attribute values
in predicting choices
Does the effect of fixations on choice depend on the value of
the attribute being fixated? For example, does looking at x in-
crease the probability of a risky pick more when x is larger?
Larger attribute values are more likely to terminate compari-
sons and lead to a choice in the priority heuristic. Larger at-
tribute values should lead to bigger steps in the accumulation
process in decision field theory and more probable steps in
the accumulation process in decision by sampling. Incorpo-
rating attribute-value-by-fixation-count interactions into a
mixed effects logistic regression model with fixation count
and attribute value fixed effects (and full random effects) sig-
nificantly improved the fit of the model, χ2(8) = 38.7,
p<.0001. Only the attribute-value-by-fixation-count interac-
tion for p reached significance, p<.0001: Fixations to p in-
creased the probability of a risky pick more when p was
large. However, although significant, the interaction effect is
small, increasing accuracy by only .3%. The penultimate row
of Table 1 notes that most models predict that fixations should
count more when the values fixated are large—which is not
consistent with the very small and null effects observed.

We have repeated the aforementioned analysis replacing fix-
ation counts for an attribute with the total duration of fixations to
that attribute. Using fixation durations instead of counts predicts
choice significantly more poorly (a drop of 2.4%). Adding inter-
actions with attribute values improves this fit significantly, but
as for fixation counts, the improvement is very small (.1%).

Choice from eye movements and attribute values
The last model in Figure 6, the Transitions and Attribute
Values Model, shows that by using attribute values and tran-
sitions together, an accuracy of 79.6% can be obtained. Ob-
viously, using both attribute values and transitions together
is an improvement over either attribute values alone (Attri-
bute Values Model) or transitions alone (the Transitions
Model), as shown by the BIC values. But to what extent does
this improvement reflect the fact that transitions and attribute
values are explaining different variance in the choices? The
Nagelkerke R2 measure for each model provides this

Table 4. The change in the probability of a risky pick associated
with one more transition of each type

Previous region

Region

p q x y

p –.14 .16 –.28
q .20 .27 –.13
x .18 –.18 –.13
y .24 .00 .27
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information. Nagelkerke R2 = 0 means that no variance in
choices is explained; Nagelkerke R2 = 1 means that choices
would be perfectly predicted. Nagelkerke R2, rather than
one of the other pseudo R2 measures, was chosen because
these R2 values are additive for independent predictors. Table 5
shows the Nagelkerke R2s for the models. If the Attribute
Values Model and the Transitions Model were predicting
completely independent variance, then the Nagelkerke R2 for
the combined Transitions and Attribute Values Model would
be the sum for the separate models, .59. That means that of
the .27 of the variance that the Attributes Model could
contribute on top of the Transitions Model, .09 is already ex-
plained. And vice versa, of the .32 of the variance that the
Transitions Model could contribute on top of the Attributes
Model, .09 is already explained. Thus, about one third (i.e.,
.09/.27 or .09/.32) of the variance accounted for by transitions
is also explained by attribute values, and vice versa.

Discussion
The final findings in Table 1 concern the link between eye
movements and choice. Of course, these observations are
correlational, and so, we cannot and do not make claims about
causality. The findings earlier were as follows: (i) Eye move-
ments predict choice a little bit better than, for example, apply-
ing prospect theory to the attribute values. (ii) The relationship
between eye movements and choice is reasonably simple:
More fixations to p and x are associated with a higher probabil-
ity of a risky px choice, and more fixations to q and y are asso-
ciated with a higher probability of a safe qy choice. Weighting
fixations to each type of attribute equally hardly reduces the
predictive power of this model, so, to a first approximation,
all fixations contribute equally. This pattern contains a curious
result: Even the rare and uninformative between-gamble
between-attribute transitions (x↔q or y↔p) predict choice
as strongly as the sensible within-attribute between-gamble
transitions. (iii) A fixation to an attribute is not worth more if
the attribute value is larger. Together (ii) and (iii) suggest a
somewhat simple accumulation of evidence: If something
more complicated were accumulated, then the uninformative
diagonal transitions should have no weighting, and fixations
involving larger attribute values should have more weighting.
We may therefore sketch a very simple first-order model: In
making mostly sensible within-attribute between-gamble or
between-attribute within-gamble eye movements, people just
choose the gamble they look at more. In this model, it is fixa-
tion counts that are accumulated. In decision field theory, each
gamble is considered at every time step, so decision field
theory does not predict that more fixations to a gamble should
increase the likelihood that it is chosen. Decision field theory
and the related 2N-ary choice tree model do predict that more
attention to amounts should lead to the safe gamble being

chosen (Noguchi & Stewart, 2014), but this pattern is not seen
in Table 4. Decision by sampling does predict that more fixa-
tions to a gamble should increase the probability that it is cho-
sen (Noguchi & Stewart, 2014), but because the model
accumulates favourable comparisons, and because favourable
comparisons are more likely for larger attribute values, deci-
sion by sampling incorrectly predicts an interaction between
fixations to an attribute and its magnitude. Table 1 logs a tick
for the first prediction and a cross for the second. The parallel
constraint satisfaction model does not make clear predictions.
However, if one assumes that activations of the nodes for gam-
bles are associated with fixations to the attributes of those gam-
bles, then the parallel constraint satisfaction model will predict
the fixations-to-choice association. But as activation is higher
when the difference in gamble values is larger, the parallel
constraint satisfaction model incorrectly predicts a large inter-
action between fixations to an attribute and its magnitude.
So, like decision by sampling, this is recorded in Table 1 with
a tick and a cross. In summary, the simple model we sketch
earlier is simpler than decision field theory, which assumes that
attribute differences are accumulated, simpler than decision by
sampling, which assumes that favourable comparisons are ac-
cumulated, and simpler than the parallel constraint satisfaction
model, which assumes that probabilities and outcomes are inte-
grated. (iv) For attribute values, about two thirds of the vari-
ance in choice predicted is unique to attribute values, and one
third is shared with transitions. Similarly, for transitions, about
two thirds of the variance in choice predicted is unique to
transitions, and one third is shared with values. So, some of
the effect of attribute values on choice is picked up in the eye
movements, but some of the effect is not. Thus, whatever the
model relating attribute values to choices, be it prospect theory
or otherwise, only some of this processing is being picked up in
eye movements. This would be true if eye movements were
just a noisy measure of the process—but the second finding,
that some of the eye movements predict choice but are unre-
lated to attribute values, rules this out as a complete account:
Choices are affected by eye movements in a process that is in-
dependent of the attribute values. That is, at least some of the
effect of eye movements on choice has nothing to do with
the choice options people face. This places an upper bound
on the performance of models relating attribute values to
choices—a good deal of variance in choice comes from eye
movements that are nothing to do with attribute values.

CONCLUSION

We have analysed the eye movements made in simple risky
decisions. Key results are listed in Table 1. In the first part
of our analysis, we explored the relationship between attri-
bute values and eye movements. People fixated the probabili-
ties and amounts on the screen, revisiting them. They fixated
the different probabilities and amounts about equally often,
making more within-gamble probability-amount transitions.
The pattern of fixations and transitions was the same across
different choices—the eye movements did not depend on
the probabilities and amounts on offer, except for finding that
people made many more fixations (of the same types) before

Table 5. Nagelkerke R2 for choice models

Model Nagelkerke �R2

Attributes .27
Transitions .32
Attributes and transitions .50
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choosing when gambles were similar in probability. The pat-
tern of eye movements was constant over time, except for a
developing gaze bias, in which people fixated the attributes
of the gamble they ultimately chose more often as they get
closer to choosing.

In the second part of our analysis, we explored the rela-
tionship between eye movements and choice. The relation-
ship is simpler than that predicted by existing models:
People chose the gamble they most often fixated. The link
between eye movements and choice overlaps only partially
with the link between attribute values and choice. The impli-
cations are important. First, eye movements can tell us about
only part of the link between attribute values and choice.
Second, given that the eye-movement-to-choice link is about
the same size in terms of variability explained as the
attribute-value-to-choice link, eye movements are tapping
an aspect of risky choice that, thus far, has been explored
in only a handful of studies.

APPENDIX A: THE POISSON REGRESSION MODEL
OF TRANSITION COUNTS

Poisson regression was used to construct a saturated model
of the transition counts in Table 2. In using this regression,
our goal is to provide a statistical description of the counts,
not to provide a psychological explanation for the counts.
In the Poisson regression, each count in Table 2 is predicted
by starting with an intercept and then multiplying the inter-
cept by the coefficients that apply to that cell. In fact, Poisson
regression is part of the generalized linear model and, as
such, predicts the logarithm of the frequency of a cell as a
linear sum of coefficients. To account for the within-subjects
nature of the design, we used mixed effects model, with by
subjects intercepts and full by subjects slopes.

There are many ways to construct a saturated model of
transition frequencies. All that is required is that 12 coeffi-
cients are used to predict the 12 non-zero entries in Table 2.

For example, we could set the intercept to the value of one
cell and then use 11 coefficients to specify how to adjust that
value to obtain the value in each of the other cells. This
model would be saturated, perfectly fitting the data, but the
coefficients would not have a ready interpretation. The trick
is to choose a design matrix such that as many of the coeffi-
cients as possible have a simple interpretation.

Table A1 lists the terms we used in our Poisson regres-
sion. Figure A1 complements these verbal descriptions,
showing exactly how each coefficient was used to predict
the transition counts. Figure 7 is a design matrix, with each
row in the matrix corresponding to a particular transition fre-
quency from Table 2. Each column corresponds to a term
from Table 6. Gray cells in Figure 7 indicate zeros, green
cells indicate +1 entries, and red cells indicate –1 entries in
the matrix. For example, the currprob term is described as
indicating whether a transition ends on a probability in
Table 6. The second column in Figure 7 shows that this is
achieved by setting the currprob term to +1 for transitions
ending on a probability and –1 for transitions ending on an
amount. The design matrix (i.e., colouring in Figure 7)
completely defines the terms (i.e., the descriptions in
Table 6).

Consider, for example, the first eight rows of the design
matrix labelled “p→ q” through to “y→ x.” These rows
show how the intercept and the coefficients currprob
through to regret are used to model the within-gamble and
between-gamble transitions highlighted in Table 2. The first
column in the design matrix indicates that modelling each
cell frequency begins with the intercept. The intercept is
the geometric mean of the frequency of within-gamble and
between-gamble transitions. The next column currprob indi-
cates whether the transition ends on a probability attribute
(p or q) or an amount attribute (x or y). Green squares indicate
that the intercept should be multiplied by the currprob coeffi-
cient, and red squares indicate that the intercept should be di-
vided by the currprob coefficient. The currrisky column
indicates whether the transition ends on an attribute of the risky
gamble (p or x) or the safe gamble (q or y), and so on across the

Table A1. Terms in the design matrix

Term Description

(Intercept) The intercept is (the log of) the geometric mean of within and between transitions
Within (p↔ x and q↔ y) and between (p↔ q and x↔ y) gamble transitions

currprob Transition is to a probability rather than an amount
currrisky Transition is to the risky option rather than the safe option
currprob:currrisky Interaction
prevprob Transition is from a probability rather than an amount
prevrisky Transition is from the risky option rather than the safe option
between Transition is between gambles rather than within. This is the

prevprob:currprob interaction
regret Transition is from a good thing to a bad thing. This is the

prevrisky:currprob interaction
Diagonal transitions: Transitions that swap between both gambles and attributes (p↔ y and q↔ x)

diagonal Adjustment to the intercept if the transition is diagonal
diagonal.prevprob Transition is from a probability rather than amount
diagonal.prevrisky Transition is from the risky option rather than the safe option
diagonal.prevprob:diagonal.prevrisky Interaction
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columns. Altogether, the intercept and the seven coefficients
(eight parameters in total) are used to model the eight within-
gamble and between-gamble transition frequencies.

The estimated coefficients are shown in column “exp(coef)”
of Table 3. The coefficients are exponentially transformed.
Because, in a Poisson regression, the transformed coefficients
are multiplied to create cell frequencies, what matters is whether
transformed coefficients are greater or less than 1. For each
subject, the frequencies of each type of transition are given
by multiplying the intercept by the coefficients. For exam-
ple, the frequency of “p→ q” transitions is given as follows:
1×49.04×.99/1.04/.97×1.11×1.01×.82×1.15, with the pattern
of multiply, multiply, divide, divide, multiply, multiply, multiply,
and multiply given by the +1, +1, –1, –1, +1, +1, +1, and +1
(green, green, red, red, green, green, green, and green) in the
“p→q” row of the Figure 7 design matrix. Because the coeffi-
cients in Table 3 are the fixed effects from the mixed effect
model, this is the estimate for the average participant.

In the main text, we describe the modelling of the within-
gamble between-attribute transitions (i.e., p↔ x and q↔y)
and the between-gamble within-attribute transitions (i.e., p↔q
and x↔y). These transitions comprise the majority, 89%, of
the transitions. We have analysed the diagonal transitions care-
fully, but the results are not very interesting, and we do not
report them here.
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