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Abstract

Investigating the Molecular Mechanisms of the Metabolic Syndrome

by Tiffany Jaye Morris

This thesis aims to highlight molecular mechanisms that have been altered by
prenatal undernutrition and may be involved in the metabolic syndrome. Two sepa-
rate studies were conducted both using a rat model developed through manipulation
of the maternal diet to provoke the key features of the metabolic syndrome in adult
offspring. Microarray technology was used to detect changes in gene expression in tar-
get tissues between offspring of control (normally fed, AD) and undernourished (UN)
mothers to obtain a broader picture of the cellular functions and genetic pathways
that may be implicated in the metabolic syndrome.

The first study compared gene expression differences in liver, skeletal muscle, and
white adipose tissue between 55 day old male offspring of AD and UN mothers. No
significant changes were found in muscle or adipose tissue; however, the differences
in the liver suggested the UN animals had been metabolically programmed to favour
fat as an energy source.

To investigate whether DNA methylation might be responsible for the observed
transcriptional changes, pooled liver samples from the first study were used with
the McrBC restriction enzyme assay to determine full, partial, incomplete, or no
methylation between AD and UN. Two differentially expressed genes (Zfand2a and
Mapk4 ) showed methylation changes.

The same liver samples were hybridised to a miRNA array. Two miRNAs showed
a nearly 2-fold upregulation in the UN livers. Both were found to be either directly
or indirectly associated with the metabolic syndrome. MiR-335 has been shown to
be upregulated in the livers of obese/diabetic mice. By association with miR-27a,
miR-451 might be involved in aspects of lipid metabolism in adipose tissue.

A second study used microarray to analyse the liver tissues of day 170 female off-
spring of the same rat model with additional insults (neonatal leptin treatment and
post-weaning high-fat (HF) diet). Leptin has been shown to reverse the programming
effects of the restricted maternal diet and this study aimed to highlight mechanisms
that could be involved in this reversal. The results revealed the importance of the in-
teraction between treatments. Significant gene expression changes were only present
when two or more treatments were combined. This study revealed significantly, dif-
ferentially expressed genes involved in immune function, regulation of the circadian
rhythm, and metabolism.

These findings provide a number of interesting genes and pathways for further
studies and also highlight the need to conduct a thorough study in multiple tissues
at different time-points to pinpoint the window of developmental plasticity.



‘. . .Two roads diverged in a wood, and I I took the one less traveled by, And that

has made all the difference.’ Robert Frost, 1920.

This thesis is dedicated to my family: Scott, Deborah, Crystal and Heather

(and Shelby too!)
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Chapter 1

Introduction

This thesis aims to investigate the molecular mechanisms behind the rising inci-

dence of metabolic syndrome related disorders. The work included here investigates

the metabolic effects of the nutritional environment by comparing the genetic makeup

of different phenotypes and considering this in light of the evolution of diet. The in-

tended outcome of this research is to enable us to gain a better understanding of

the molecular mechanisms that signal the body to utilise nutrients, store fat, and feel

hunger. This introduction provides the background on the theories behind the process

of development, the selection for our current biological makeup, and the evolution

of diet that has driven humans to develop this way. The background on microarray

will give details of the technique that is most important to the data presented in

this thesis. Each chapter in this thesis will begin with an introduction of its own to

present more detailed background on relevant topics.

1.1 The Metabolic Syndrome

In the 1920s, observations revealed that risk factors including obesity, hyperlipi-

daemia, and hypertension tended to occur together. This was termed ‘syndrome X’

and it was proposed that insulin resistance might be the underlying mechanism [1].

Today, this clustering of metabolic abnormalities is referred to as the metabolic syn-

drome. It occurs when several risk factors occur together in a single person. These
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risk factors include: obesity, insulin resistance or intolerance to glucose, proinflamma-

tory state, prothrombotic state, atherogenic dyslipidemia, and higher blood pressure.

Metabolic syndrome was defined in 2006 by the International Diabetes Federation

(IDF) as central obesity and two of the following: raised triglycerides, reduced HDL

cholesterol, elevated blood pressure, and elevated plasma glucose.

Understanding the metabolic syndrome has become important as studies have

shown that individuals with the metabolic syndrome are six times more likely to

develop diabetes, 2-3 times more likely to develop cardiovascular disease, and are

likely to suffer from obesity, particularly visceral obesity [2].

1.1.1 Obesity

The rate of obesity is quickly increasing worldwide. Before the 20th century

obesity was rare, but in 2005 it was estimated that 9.8% of adults are obese with

rates in the United States, Australia, and Canada increasing rapidly compared to the

overall rate (WHO organisation fact sheet). The growing obesity problem is impact-

ing human morbidity, mortality and quality of life, and results in costly healthcare.

With the increasing number of young obese women, obesity during pregnancy is also

a problem. This can have negative maternal health effects, can cause risks during

pregnancy, and can lead to persistent problems in the developing child. Type-2 dia-

betes is also becoming more common and affects particular groups of people with a

higher frequency.

1.1.2 Diabetes

Type-2 diabetes mellitus is characterised by high blood glucose associated with

insulin resistance and relative insulin deficiency. It is related to the inability to make

or respond to insulin. Fat and muscle cells require insulin to absorb glucose. If these

cells fail to respond to insulin, blood glucose levels will rise. The liver helps regulate

glucose levels by reducing the secretion of glucose in the presence of insulin. However,

if an individual is insulin resistant the liver’s production of glucose will not decrease.
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Insulin resistance normally refers to the reduced ability of insulin to lower glucose.

Other functions of insulin can also be affected: insulin resistance in adipocytes re-

duces uptake of circulating lipids and increased mobilisation of stored lipids in these

cells elevates free fatty acids in the blood plasma. The elevated blood fatty-acid con-

centrations, reduced muscle glucose uptake, and increased liver glucose production

all contribute to elevated blood glucose levels. A major component of the metabolic

syndrome is the high plasma levels of insulin and glucose due to insulin resistance.

If an individual is insulin resistant they can develop hyperglycemia (excessive blood

glucose) after a meal. The inability of the pancreatic β-cells to produce sufficient in-

sulin to maintain normal blood sugar levels is what causes the transition from insulin

resistance to type-2 diabetes [3].

The occurrence of diabetes often coincides with obesity and other symptoms of

the metabolic syndrome. Diabetes has been correlated with low birth weight and has

also been tied to poor maternal nutrition [4]. A better understanding of the cause of

metabolic syndrome and the metabolic pathways that have been altered could lead

to better treatment and hopefully prevention.

1.2 Developmental Plasticity

Developmental plasticity describes the time during development when organs and

body systems are sensitive to the environment and can change structure and func-

tion [5]. Intrauterine life is a critical point in development. Environmental factors

can have a large impact on fetal growth. Gestation is considered a time of develop-

mental plasticity because it is a period when organs and body systems are plastic

and particularly sensitive to developmental cues. The changes that occur during

these sensitive developmental windows are often irreversible. This permits a range

of phenotypes to develop from a single genotype depending on environmental con-

ditions [6, 7]. Different environments can directly induce changes in an individual’s

behaviour, morphology and physiology. This plasticity is adaptive, in that individu-

als that show a plastic response have higher fitness (potential to reach reproduction)
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than those that do not [8]. The responses can be immediate and short term or they

can be expressed in the offspring rather than the parent. Many organisms are known

to express specific predictive adaptive responses (PAR) to their environment. A PAR

is specifically defined as a type of developmental plasticity that evolved as an adap-

tive response to an environmental cue acting early in the life cycle, but where the

advantage of the induced phenotype is primarily manifest in a later phase of the life

cycle [9].

There are a plethora of examples of this concept in nature. One example is

the freshwater crustacean Daphnia. If the mother is exposed to chemical traces

left behind by a predator then the offspring will be born with a defensive ‘helmet’

that offers protection against the predator. However, the helmet takes considerable

resources during development and therefore, it can be detrimental to the success of

the organism in a predator-free environment where it is unnecessary [10]. A second

example is present in the plague locust Schistocerca gregaria. This locust can develop

into two very different phenotypes: the migratory form or the solitary form. These

phenotypes are so different that they could be mistaken for two different species. The

migratory form has bigger wings, different mouthparts, a different camouflage colour,

and a different metabolism. They also display different behaviours, as the migratory

form does not hide but congregates in large swarms. The selection for one phenotype

over the other depends on the population density. The signal comes from the mother

who secretes a chemical on the eggs that she lays [11]. In this example, the migratory

form takes more resources to develop. Therefore, it only develops when there are not

enough resources to support the solitary form. A higher initial investment must be

made to raise the chances of survival to reproduction. These examples, like others,

occur because of a cue during development that predicts the environment that the

offspring will encounter. The primary purpose of this type of adaptive response is

to increase the likelihood that an individual will survive to reproduction. These

examples are of major changes in morphology, but differences could also be much

more subtle with the effects magnified in later life. These are examples of trade-

offs. One phenotype takes more resources but allows for a chance of survival in a
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harsher environment, whereas the other takes less resources and is likely to result in

a longer life span. In humans, longevity runs in a family which indicates a genetic

component. It is also possible to select animals artificially for longevity. In mice,

prenatal undernutrition leads to reduced longevity [12], and postnatal undernutrition

leads to a marked prolongation of the lifespan [13].

1.3 DoHaD and Maternal Nutrition

DoHaD (developmental origins of health and disease) is an emerging field of study

investigating the concept that insults during development and early life can lead to

certain adult diseases (type-2 diabetes, obesity, hypertension). Studies in this field

have focussed on nutritional changes (low protein, caloric restriction) at different

windows during gestation. The developing foetus is completely dependent on its

mother, and so it follows that maternal nutrition during pregnancy in particular has

a strong influence on the intrauterine environment. The developing foetus responds

to undernutrition by changing the trajectory of development and slowing growth. It

is proposed that development is being induced by cues in the environment that are

preparing the developing organism for the type of environment into which it will likely

be born [10]. Thus the cue is acting as a predictor of the nature of this environment.

The DOHaD hypothesis proposes that the metabolic syndrome originates through

developmental plasticity in response to undernutrition during fetal life and infancy

[6]. Two common explanations for how this occurs have been developed: the thrifty

phenotype hypothesis proposed by Hales and Barker [14] and the predation release

hypothesis proposed by Speakman [15].

1.4 An Evolutionary Perspective

The thrifty phenotype hypothesis and the predation release hypothesis are two

attempts to explain this relationship between poor fetal and infant growth and the

increased risk of metabolic syndrome in later life. The thrifty phenotype hypothesis
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proposes that undernutrition during development leads to physiological and metabolic

changes that promote survival at the expense of health later in life [14]. Human dis-

eases are increasingly correlated with growth patterns early in life implicating early-

life nutrition as the underlying mechanism [16]. The predation-release hypothesis

suggests that the genes responsible for increased susceptibility to obesity were not

selected for but have been the result of random drift. Now that western lifestyles

have changed drastically in a short period of time the potential of these genes is

being realised [17].

1.4.1 Thrifty Genotype/Thrifty Phenotype

In 1962, James Neel [18] proposed the thrifty genotype hypothesis. This theory

proposed that ‘thrifty genes’ were selected during times of famine that enhanced

an individual’s ability to store fat. The theory hypothesises that in the current

environment these genes now predispose those individuals to the metabolic syndrome.

In 1992, Hales and Barker [14] proposed another hypothesis, the thrifty pheno-

type hypothesis. The theory is sometimes called ‘Barker’s hypothesis’ after David

J.P. Barker at the University of Southampton who published the theory in 1997 [19].

The theory proposed that early-life metabolic adaptations promote survival, with

the developing organism responding to cues of environmental quality by selecting an

appropriate trajectory of growth. If the fetal environmental is poor (i.e. undernutri-

tion), there may be an adaptive response, which optimises the growth of important

body organs sacrificing the health of others [20]. This enhances postnatal survival

under similar poor conditions but becomes detrimental when nutrition is more abun-

dant in the postnatal environment than it had been in the prenatal environment [21].

This theory is also used to explain insulin resistance. If individuals that are under-

nourished prenatally continue to be poorly nourished and remain thin and insulin

sensitive, the poor functional capacity for insulin secretion would not be detrimental;

however, increased food intake and decreased energy expenditure trigger glucose intol-

erance and lead to obesity [20]. The offspring can be said to have been ‘programmed’
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for the environment that the mother was living in at the time of pregnancy. The term

programming was chosen to describe the link between patterns of infant feeding and

later changes in physiology and disease risk. It now includes broader early life events

that contribute to altered growth patterns and altered risk of metabolic disease later

in life.

1.4.2 Predation Release Hypothesis and Genetic Drift

Speakman et al. [15, 17] states that the thrifty genotype hypothesis does not

account for the large number of thin people in western societies. The thrifty gene

hypothesis suggests that obesity was selected for as being beneficial for fecundity after

times of famine. Speakman argues that the frequency of alleles does not support that

interpretation. He presents an alternative hypothesis which he calls the ‘predation

release hypothesis’ or when combining it with similar theories involving genetic drift,

he calls them the ‘drifty gene’ hypotheses.

Speakman’s predation release hypothesis considers the evolutionary history of

humans to understand and put into context the way the body utilises and stores nu-

trients. For many centuries, there was evolutionary pressure to select against the very

lean as those that could store fat most effectively were more likely to survive until the

next meal could be found. In this hunter gatherer society, physical work and exercise

was an unavoidable part of daily life. This would put an additional selective pressure

against excessively lean people that would be too weak, but would also prevent people

from putting on excess weight. In early societies, although excessive fat and sugar

intake were not part of the diet, there was still a selective pressure against an ability

to store too much fat which would have led to decreased ability to move quickly and

escape predators. This balance was maintained by establishing upper and lower set-

limits. The lower limit was set by the risk of starvation and the upper limit by the

risk of predation. These set-limits evolved over many thousands of years until the

skill of fire-starting was acquired. This ‘release from predation’ relaxed the selection

against a fatter phenotype. This relaxation in the set-point allowed the upper weight
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limit to be affected by genetic drift (the change in allele frequencies in a population).

Even though this upper weight limit was not under selective pressure the lifestyle

required a significant amount of physical activity and so those individuals with a

higher set-point would be unlikely to reach that potential and become overweight

or obese. Now very recently (the last 50-100 years) the abundance, palatability, and

cheapness of food have changed the way food is consumed. Westerners consume more

calories than are required to maintain their health and have reduced physical activity

at work. So those people with a higher set point are able to reach that potential and

those are the people more prone to obesity. Today, lifestyle is very different to the

one that our bodies adapted to over the millennia [17, 22]. This hypothesis gives one

potential explanation for the variation in susceptibility to obesity seen in the human

population. This variation in set-point (described in more detail in Chapter 4 in re-

lation to leptin) may provide an explanation for the difficulty particular individuals

have in avoiding obesity and for the tendency for obesity to run in families.

1.4.3 Summary

It is likely that the rapid rise in obesity, diabetes, and metabolic syndrome involves

both of these theories. As discussed in more detail in Chapter 4, humans do have

varying set-points at which the feedback mechanism controlling obesity will function

properly. Speakman has shown that the rate of obesity in human society is not high

enough to indicate it has been selected for; however, the predicative adaptive response

has been observed in many species. The metabolic syndrome is a complex syndrome

that involves many disorders. It is likely that some aspects have been selected for

and others are the result of genetic drift. Several epidemiological studies have been

done showing the effect of maternal nutrition on the future health of the offspring

and the knock-down effects this has on generations to come.
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1.5 Epidemiological Data

The idea that maternal health may influence the future health of the baby has been

around since Victorian times [23]. Epidemiological data supports the hypothesis that

poor growth in fetal life and infancy is associated with type-2 diabetes, coronary heart

disease, stroke, hypertension and obesity [24]. Epidemiological studies by Forsdahl et

al. in Norway, first showed a causative link between early life environmental factors

and subsequent disease [25]. In 1986, David Barker and colleagues suggested that

poverty, poor nutrition, and general health of mothers produced high rates of infant

mortality, and also a lifelong risk of coronary heart disease. Epidemiological data from

several human populations have provided human data on the importance of maternal

nutrition during pregnancy and its influence on disease in the adult offspring.

1.5.1 Dutch Hunger Winter

The Dutch Hunger Winter was a short-term famine that occurred from 1944-

1945. Toward the end of the Second World War, the German occupation forces

in the Netherlands cut off the food supplies coming into the northern part of the

country. The population of much of the Netherlands suffered severe food shortages

for six months. The epidemiological data from women pregnant during this famine

shows that babies born to mothers who suffered severe starvation during the last three

months of their pregnancies grew up to have a dramatically reduced ability to deal

with high levels of sugar. These offspring often grew up nutritionally richer in the

post-war environment and experienced an increased risk of developing diabetes [26].

This indicates that undernutrition in the last trimester of pregnancy may programme

later obesity in men and women [27, 28]. These studies suggest that perturbations

of central endocrine regulatory systems established in early gestation may contribute

to the development of obesity in later life.
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1.5.2 Pima Indians

The Pima Indians, of the Gila River Indian community in Arizona, lived suc-

cessfully in the desert environment by maintaining the 2,000 year old tradition of

irrigation and agriculture. This was disrupted in the late 19th century when their

water supply was diverted. This disruption caused poverty, malnutrition and even

starvation. The community was forced to survive on the lard, sugar and white flour

provided by the U.S government for survival [29]. By 1929, irrigation was gradually

reintroduced and now agriculture is once again a major source of food, but the type

of farming has changed. The Pima Indians are now the subject of numerous studies

into the population’s high prevalence of obesity and particular chronic diseases. The

high risk of diabetes can largely be explained by the presence of maternal diabetes

during pregnancy [30]. In the Pima Indians, higher instances of diabetes have been

correlated with both high and low birth weight. This is in contrast to studies in the

USA, Sweden, France, Norway and Finland that demonstrate a significant correlation

between low birth weight and the later development of adult diseases [31]. McCance

et al. proposed that the population may have developed a genetic predisposition for

insulin resistance as it provided a survival advantage in their previous environment.

1.5.3 Cohort Studies

In addition to these retrospective studies, prospective studies are being conducted

worldwide. Here is a summary of one that was conducted in the UK.

Southampton Women’s Survey

The Southampton Women’s Survey (SWS) is a large study in Southampton, Eng-

land. The study began out the University of Southampton, where David Barker

developed the thrifty phenotype hypothesis, to investigate the diet and lifestyle fac-

tors that affect women’s health and the health of their children. It was established

to measure characteristics of women living in the city that are aged 20-34 before

pregnancy. The survey recruited 12,500 women and followed them through their sub-
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sequent pregnancies. The study includes 3,000 live-born infants that will be followed

throughout childhood. The objectives of the project are twofold. First, to characterise

the influence of a mother’s own fetal growth on her dietary balance, body composi-

tion, and endocrine profile before and during pregnancy on: (i)the early trajectory

of fetal growth; (ii)the maintenance of this growth trajectory in late gestation; and

(iii)placental and fetal adaptive responses, including altered regional blood flow and

body composition of the foetus. Second, to examine how maternal and intrauterine

influences interact with the offspring’s genes and postnatal environment to determine:

(i) weight gain, head growth and linear catch-up growth in infancy; (ii) the pathways

of growth and development during childhood that lead to poor adult health; and (iii)

cardio-respiratory function and asthma in childhood, as well as levels of risk factors

for adult coronary heart disease, type 2 diabetes mellitus and osteoporosis.

The studies in Southampton have demonstrated that the balance between carbo-

hydrate intake in the first trimester and animal protein intake in the last trimester

influences placental growth and neonatal body composition. Furthermore, studies of

early pregnancy, assisted reproductive technology and animal experiments, indicate

that maternal body composition, endocrine profile, diet and physical activity around

the time of conception, are important in establishing both the fetal growth trajectory

and the fetal supply line.

ALSPAC-Avon Longitudinal Study of Parents and Children

The ALSPAC study is a longitudinal population-based birth cohort study that

recruited 14,541 pregnant women in 1991-92, with 14,062 live-born children. These

women were residents of one of three former (Avon) Health Districts in the UK. The

women represented 85% of the eligible population. The goal was to understand the

ways in which the physical and social environments interact with the genotype to

affect, health, behaviour and development [32]. The study recorded information for

growth, onset of obesity, respiratory function, traits relevant to adult-onset diseases,

infections, motor and mental ability, educational achievements, sexual development,

accidents and injuries, and atopic diseases (i.e. asthma, eczema, allergies, mood
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behaviour, and temperament). Also, from late adolescence into adult life the study

will monitor the development of type-2 diabetes, markers of coronary heart disease,

schizophrenia and other psychotic disorders, criminal behaviour, ability to hold down

a job, onset of drug and alcohol abuse, and reproductive success and failure.

1.6 Animal Models of the Metabolic Syndrome

Animal models are very important in the study of the metabolic syndrome. The

metabolic syndrome involves the interaction of many factors (genetics, fetal program-

ming, eating habits, energy expenditure, age, and gender) that would be impossible to

manipulate and control in a human population. Several models have been developed

to investigate the metabolic syndrome. These models have been done in a variety of

different organisms including mice, rats, guinea pigs, rabbits, hamsters, pigs, sheep,

primates, horses, dogs, and frogs. The most common models utilise a maternal diet

manipulation during pregnancy (low protein and general calorie restriction, or high

fat/junk food diet). In addition, models given genetic or surgical manipulations, hor-

monal insults, or a particular postnatal diet can also be informative. Several studies

on the impact of severe undernutrition have been done by our collaborators using

small animal species (rats) as well as larger mammals (sheep). Cost, size, time, and

ethical issues are major reasons for choosing particular animal models over others.

Also, popularity can be a good reason for choosing a model. If many other studies

have been done on a particular model then animals will be easier to obtain and there

will be more data for comparison. The difference in gestation time and variation in

timing of the insult makes it possible to gain more information regarding the crucial

‘windows’ for fetal programming. A recent review by Warner and Ozanne [33] de-

tails the importance of animal models in studying fetal programming. Many of the

different models and the major findings associated with each are summarised here.
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1.6.1 Maternal Diets

Rodents are a useful model in maternal diet manipulation studies as the shorter

gestation time and lifespan. The development of the brain involved in regulating

feeding and energy expenditure develops in the early postnatal period in rodents,

whereas in humans it develops in the third trimester of pregnancy [34]. A guinea pig

would be a slightly better model as they are born with a well-developed endocrine,

cardiovascular, and central nervous systems [35]. Sheep are also a good model as

their pregnancies are usually singleton or twin so nutrient allocation between offspring

during pregnancy is more analogous to human. The examples listed below will focus

on rodent animal models, particularly rats, as that is the model used in this thesis.

Protein Restriction

The maternal low protein model is extensively studied due to the similarities found

between studies using this model and studies of individuals with type-2 diabetes

and/or the metabolic syndrome. Studies have shown that amino acids found in a

protein diet are key to normal fetal growth, but can also be detrimental at high

concentrations [33]. The commonly used low protein rat model involves feeding the

rats a low (5-8%) protein diet during pregnancy [36]. This mimics the nutritional

situation in many underdeveloped countries and results in growth restriction of the

offspring. If these offspring are suckled by the same protein-restricted mothers they

remain permanently growth restricted even when weaned to a normal chow diet (20%

protein). Cross-fostering to mothers being fed a normal chow diet during lactation

until weaning causes rapid catch up growth. Catch up growth is the rapid growth after

birth that brings a low-birth weight offspring up to the weight of control offspring. In

rats, catch up growth affects longevity by causing accelerated loss of kidney telomeric

DNA. Maternal protein restriction has long-term effects on insulin-sensitive tissues

[37] and causes reductions in pancreatic β-cell mass, skeletal muscle mass and central

adipose tissue weights. Offspring subjected to a low-protein diet during gestation

demonstrate improved glucose tolerance at a young age (6 weeks to 3 months) [38, 39].
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However, males undergo a gradual loss in glucose tolerance and by 17-months develop

Type 2 diabetes and insulin resistance [40]. The female offspring experience a more

gradual loss in glucose tolerance and do not develop Type 2 diabetes and insulin

resistance until 21 months [41].

Caloric Restriction

A calorie restricted rat model is utilised in this thesis (see Chapter 3 and Chapter

4). This involves feeding rats 30-50% of their normal diet during pregnancy. This

maternal dietary restriction during pregnancy in rats results in offspring that suffer

severe growth restriction and show endocrine and metabolic abnormalities. Studies

have shown that the timing of the restricted diet during development is critical in the

programming of metabolic disorders [33]. Work done by Garofano et al. has shown

that a 50% restriction of a normal chow diet in the last week of pregnancy results in

low birthweight offspring with decreased β-cell mass. The rat offspring demonstrate

this reduced β-cell mass and insulin content in adulthood [42] even after returning to

a normal diet and normal body and pancreatic weight. In addition, extended nutrient

restriction into the nursing period results in more permanent metabolic abnormali-

ties (permanent β-cell mass and loss of glucose tolerance [43, 44]) in offspring. The

model used in this thesis was more severely restricted (30% ad libitum) during preg-

nancy. Vickers et al. has shown that rats exposed to this level of maternal restriction

and then switched to a normal postnatal diet gain weight quickly and develop the

metabolic syndrome (obesity, hyperphagia, hypertension etc.) [45]. This effect is ex-

acerbated by a postnatal high fat diet. Even a restricted diet after birth (3-6 weeks)

will result in impaired insulin secretary response at 12 weeks of age [37]. Many stud-

ies have been done using caloric restriction. Diets differ between laboratories using

different proportions of macronutrients, which can help elucidate the importance of

different nutrients in fetal programming.
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Iron Restriction

Iron deficiency is a very common nutritional disorder and pregnant woman are

among the most susceptible. In the study by Gambling et al., rats were given 7.5

mg/kg compared to the control rats that were given 50 mg/kg. This mild iron

deficiency in utero caused a significant increase in the blood pressures of both male

and female offspring [46]. In addition, the offspring have decreased iron concentrations

in brain tissue and behavioural differences have been observed [47].

Overnutrition

High fat diets aim to imitate westernised diets. Relatively few studies have focused

on the long-term consequences of a maternal high-fat diet and maternal obesity during

pregnancy or lactation compared to other nutritional studies. Studies have revealed

effects on adiposity, cannibalism (presumably related to failure of lactation), and an

increased body weight and visceral fat depot [2]. In a study by Gorski et al. [48], rat

offspring of normally fed mothers were cross-fostered onto obese dams, which resulted

in increased obesity later in life suggesting the suckling period is still an important

developmental window in rats.

Maternal High-Fat Diet Offspring that experience maternal overnutrition during

pregnancy have been shown to have increased risk of developing Type 2 diabetes and

cardiovascular disease later in life [49]. These offspring develop abnormal cholesterol

and lipid metabolism, hyperinsulinaemia, insulin resistance and have an increased

risk of hypertension and cardiovascular disease [49, 50, 51]. Bayol et al. [52] de-

veloped a rat model using a ‘junk food’ diet with processed, palatable food items

developed for human consumption. The diet contained high levels of fat, sugar, and

salt with low protein levels and thus resembled a low protein model. The study found

that the diet influenced muscle development, feeding behaviour, and adiposity. This

preliminary study suggested that the observed changes in the muscles of the offspring

whose mothers had been on the junk food diet may have a decreased ability to move

effectively (i.e. exercise) and may therefore be more prone to obesity.
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Maternal Obesity Increase rates of obesity in western countries have led to an

increased prevalence of maternal obesity, which can lead to high-risk pregnancies and

complications at birth and in later life [2]. Animal models of maternal obesity can

help us understand the mechanisms that may transfer this susceptibility to obesity

and features of the metabolic syndrome from mother to offspring and into later life.

Offspring of obese mouse mothers have been shown to have an increased fat-to-lean-

mass ratio and hyperphagic behaviour. In addition, they were insulin resistant at

3 months and males had developed impaired glucose tolerance by 6 months. An

increase susceptibility to cardiovascular disease was demonstrated by hypertension

and signs of endothelial cell dysfunction [53]. Another study showed that both male

and female offspring of obese mothers developed metabolic syndrome phenotypes

and increase adiposity. Males also demonstrated insulin resistance and poor glucose

tolerance [54].

1.6.2 Postnatal Diets

High fat postnatal diets are often used in conjunction with undernutrition during

pregnancy (as done in the study described in Chapter 4. This is done to create a

mismatch between pre- and postnatal life that is often associated with the metabolic

syndrome as described by the thrifty phenotype hypothesis. Vickers et al. [45] has

shown that the postnatal high fat diet exacerbates the effects caused by the maternal

undernutrition diet.

1.6.3 Hormonal Insults

Glucocorticoid Treatment

It is established that glucocorticoid treatment during pregnancy in animals and

humans leads to reduced birth weight, and it is more recently being realised that

this has long-term effects on the offspring [37]. Exposing pregnant females to glu-

cocorticoids is another treatment used to induce the metabolic syndrome. A recent

study using the nonhuman primate marmoset, revealed that glucocorticoid exposure
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resulted in increased expression of 11β-hsd1 in liver, pancreas, and subcutaneous fat.

The increase in 11β-hsd1 occurred before the onset of obesity [55].

Adrenalectomy

Gardner et al. [56] conducted a study combining adrenalectomy (the removal of

one or both adrenal glands) in the rat with a glucocorticoid treatment and a low pro-

tein diet to confirm that maternal glucocorticoids are involved in the programming

of hypertension in the offspring. The maternal diet-induced hypertension is depen-

dent on an intact adrenal gland postnatally and glucocorticoids are key nutrients

responsible for maintaining high blood pressure.

Leptin Treatment

Leptin functions to sense and regulate body energy stores in humans and in ani-

mals. Leptin administration after birth has been used to investigate it as a possible

treatment to prevent obesity or to reverse the programming effects of maternal un-

dernutrition during pregnancy. Vickers et al. conducted a study utilising a leptin

treatment that reversed the effects of prenatal undernutrition in female rats [57] (these

samples are used in Chapter 4. However, the same protocol showed no significant

effect in male rats [58]. Yura et al. [59] conducted a similar study in mice that did

not result in a reversal of the programming effects, but rather caused a growth surge

in the mice that received normal maternal nutrition during gestation.

Growth Hormone

Growth hormone treatment was tested as a possible treatment for fetal program-

ming. Vickers et al. found that GH treatment after weaning in male rats that were

exposed to maternal undernourishment during gestation resulted in increased body

weight, but significantly reduced fat pad weight. Systolic blood pressure was markedly

decreased and the rats had an increased heart-to-body weight ratio indicating GH

treatment reduces hypertension and improves cardiovascular function.
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1.6.4 Surgical Interventions (Reduced Placental Transfer by

Uterine Artery Ligation)

A common cause of intrauterine growth restriction (IUGR) is due to placental

disease particularly in developing countries. The sheep is an ideal placental insuffi-

ciency model as the foetus can be monitored throughout gestation. However, these

studies usually only focus on fetal development as cost prohibits taking the offspring

to adult life. There is also a problem of the confounding of the factors of reduced ma-

ternal and fetal blood flow, nutrient restriction and hypoxaemia that vary in severity

between species (i.e. sheep, rodents and humans) [35].

1.6.5 Genetic Models

The ability to introduce or eliminate genes from the genome of rodents has made

rats and mice excellent complex, genetic models. Rodents are especially useful be-

cause of their large family size and easy measurement of phenotypic parameters.

There are several mouse models with knock-out genes that are useful for investigat-

ing the metabolic syndrome. Two genetic models that will be described in detail in

Chapter 4 are the ob/ob leptin deficient mouse and the db/db leptin-receptor defi-

cient mouse. Also mentioned briefly in Chapter 6 is the KKAy lethal agouti gene

mouse model. A recent publication by Artinano et al. [60] reviewed nine genetic

rat models of the metabolic syndrome that develop a number of disorders including

obesity, hypertension, hyperphagia, fatty liver, etc. The most common rat men-

tioned is the Zucker rat that has a mutation in the leptin-receptor similar to that

of the db/db mouse. A few of the other genetic models available for investigating

the metabolic syndrome include: IGF-I knockout mice, IGF-II transgenic mice and

IRS-I disrupted mice. The IGF-II transgenic mouse highly over-expresses IGF-II re-

sulting in increased fetal size, organ overgrowth, and has been used to investigate the

development of the endocrine pancreas [61].

18



1.6.6 Summary

This is a broad overview of the many animal models available for the investigation

of the metabolic syndrome. Of course none of these models manifest the disease in

the same way humans do, the combination of models helps to understand the role of

fetal programming in utero as a cause of adult disease [62].

1.7 Mechanisms of Nutritional Programming

Either in the introduction or in chapter 5 you need to include much more detail

about the proposed mechanisms of nutritional programming. This should include

a general introduction to epigenetics, how methylation blocks gene transcription,

histone modification, the reciprocal relationship between methylation and histone

modification and the evidence that early life environment can alter epigenetics pro-

cesses (in vitro culture, IUGR, maternal behaviour and the now wealth of evidence

that nutrition can alter DNA methylation and the fact that methylation changes have

been seen in your model).

The molecular mechanisms behind the developmental programming of disease in

response to insults during gestation are unclear. Waterland et al. [63] came up with

three criteria for considering possible mechanisms: 1) Nutritional programming is

an adaptive process, so only mechanisms consistent with an adaptive response are

considered; 2) Programming occurs during critical windows of development, so only

mechanisms that act in these windows can be considered and 3) The potential mech-

anism must explain a programming process and not be a reflection of the outcome of

the process.

The mechanisms that have been proposed and generally meet this criteria are:

organ structure, altered cell number, clonal selection, cell type, metabolic differenti-

ation, autoregulatory pattern of DNA binding proteins, precocious activation of the

HPA axis, increased local glucocorticoid axis and endocrine sensitivity, epigenetic

regulation of gene expression via altered chromatic structure or DNA methylation,

hepatocyte polyploidisation, impaired mitochondrial function, and reduced oxidative
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capacity [64, 63]. More than one mechanism is likely to be involved. These mech-

anisms may vary between tissues and depending on the duration and timing of the

insult. One mechanism that has gained significant support is the epigenetic regulation

of gene expression via DNA methylation. The understanding of how, when, and what

changes are made to the epigenome could have significant clinical implications. The

identification of methylation patterns that increase disease susceptibility could lead

to identification of individuals with these patterns and allow advanced preventative

treatment or lifestyle adjustments [65].

This thesis aims to take an exploratory look into whether DNA methylation may

be involved in any of the gene expression changes highlighted by the microarray

studies.

1.8 Microarray

Since the sequencing of the human genome the field of molecular biology has

been transformed. This has led to a new field of biology referred to as genome

biology or genomics. New technology combined with our growing knowledge enables

scientists to probe the genome investigating the structure and function of a very

large number of genes simultaneously. The types of investigations performed can

be grouped into subfields including structural genomics, comparative genomics and

functional genomics. Structural genomics includes the genetic mapping, physical

mapping and sequencing of genes in the genomes of various organisms. Comparative

genomics aims to make inferences based on the comparison of the genomes of different

organisms. Finally, functional genomics involves investigating the role that individual

genes or subsets of genes play in the development and life of an organism [66]. The

work in this thesis would fall in the subfield of functional genomics.

Many high-throughput techniques have been developed to investigate properties

of the genome. Microarray is a technique that enables the user to probe thousands

of genes simultaneously to look for changes in expression levels, methylation or SNPs

(single nucleotide polymorphisms).
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This thesis utilises microarray technology to probe the rat genome expression

profile for novel genes that are affected by the nutritional insult during pregnancy.

Microarray enables this large scale screening of gene expression by detecting the

presence and abundance of labelled nucleic acids. It makes it possible to measure

the expression of thousands of genes simultaneously. It also makes it possible to

compare the expression in different cell types (i.e. tissues) and to compare the effects

of different treatments.

An array is a glass slide on which single stranded DNAs (ssDNA) with various

sequences, referred to as the probe, have been placed or synthesised in a grid-like

pattern. This can be done using a variety of techniques including spotting, pho-

tolithographic synthesis, inkjet synthesis, or most recently, BeadArray technology.

The array is washed in a solution containing ssDNA that is generated from a particu-

lar biological sample that is being studied and is referred to as the target. The DNA

in the solution contains sequences complementary to the sequences of DNA on the

surface of the array and will hybridise to those complementary sequences. The solu-

tion is labelled with a fluorescent dye so that the hybridisation spot can be detected

and quantified easily.

The DNA target hybridised on the array is obtained by a reverse transcriptase

reaction from the mRNA extracted from a tissue sample. This DNA is fluorescently

labelled with a dye and a subsequent illumination with an appropriate source of light

will provide an image of the array of features (set of spots). The intensity of each

spot or the average difference between matches and mismatches can be related to

the amount of mRNA present in the tissue and in turn, with the amount of protein

produced by the gene corresponding to the given feature. The array is then used to

answer a specific question regarding the printed DNAs.

A number of microarray platforms have been developed using the different tech-

niques mentioned above; with different formats (one-channel/ two-channel, in-house/

commercial, cDNA/ oligonucleotide); by different companies (Affymetrix, Illumina,

Agilent and Nimblegen); with a different number of probes; for different species (most

common human, rat and mouse). To choose a particular platform considerations have
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to be made concerning the organism of study, the number of samples to hybridise, the

cost and the amount of extracted RNA available. One channel arrays are becoming

more common and are largely preferable because there is less variation introduced due

to dye bias. Homemade arrays allow for total flexibility and are low cost if enough of

them will be produced; however, they do not offer standardised protocols and tested

analysis methods that the commercial arrays offer[66].

In this thesis, two different types of mRNA arrays were used. The MEEBO

oligonucleotide array is a printed array that was made in-house by the Department

of Pathology Centre for Microarray Resources. The Illumina array is a BeadChip

that uses a bead coated in ssDNA inserted into the glass slide. Both are described in

more detail in Chapter 2.

1.8.1 microRNA Arrays

In addition to the mRNA arrays, this thesis also utilised microRNA (miRNA)

arrays. miRNAs are small noncoding RNAs that regulate gene expression by targeting

mRNAs for cleavage or translational repression. Recent developments in microarray

technology have included the manufacture of arrays with miRNA targets. Illumina

briefly released a miRNA expression array that had 380 sequences from the mouse

genome (described in more detail in Chapter 2). The miRNA array was used for

this thesis in Chapter 6 to investigate the effects of maternal undernutrition on the

miRNA expression levels in the livers of 55 day old male offspring.

1.8.2 Microarray Applied to Developmental Plasticity

By using microarray to find gene expression changes, it is possible to take a global

gene approach to investigating which genes/mechanism might be involved in program-

ming. Previous studies have used a candidate gene approach. By approaching the

problem with less bias, it may be possible to identify novel genes and pathways im-

portant in programming. In this study, genes will initially be identified by microarray

and then the methylation status of the promoter regions of these genes of interest
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will be analysed.

1.9 Structure and Aims of the Thesis

This thesis aims to pinpoint potential molecular mechanisms that underpin the

development of the metabolic syndrome. The thesis utilises microarray technology

and epigenetic assays to probe the genome for information. All the techniques and

materials used are introduced and described in Chapter 2.

Chapter 3 utilises samples from a previous study (Vickers unpublished study) to

compare the gene expression profiles of offspring of rats that were undernourished

during pregnancy (UN) to those whose mothers ate a normal chow diet during preg-

nancy (AD). Liver, white adipose, and skeletal muscle tissue samples are examined

from male animals that were 55 days old, before the development of the metabolic

syndrome phenotype. The chapter gives the background on metabolism and relevant

metabolic pathways. The chapter also summarises the results of the initial pheno-

typic study before detailing the results of the expression profiling and the associated

pathway analysis. The aim of the study presented in this chapter was to highlight

genes differentially expressed between AD and UN rats that may be involved in pre-

disposing the UN animals to the development of the metabolic syndrome in later

life.

Chapter 4 utilises the samples from a previous study [57] to compare the gene

expression profiles of rats subjected to three different treatments: undernourishment

during pregnancy (AD/UN); leptin treatment (SAL/LEP); and postnatal high-fat

diet (CHOW/HF). Liver samples were from female animals that were 170 days old

and had already developed metabolic syndrome in particular treatment groups. The

chapter introduces leptin and its role in appetite signalling and energy homeostasis.

The results of the initial phenotypic study are described to put the results of the ex-

pression profiling study in context. The results of the phenotypic study had suggested

that leptin treatment in UN animals resulted in a reversal of programming that made

these animals susceptible to the metabolic syndrome. This chapter aims to highlight
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genes differentially expressed between treatment groups and potentially involved in

the metabolic programming and the reversal of the programmed phenotype.

Chapter 5 introduces the hypothesis that epigenetic mechanisms are responsible

for the fetal programming. The preliminarily investigation presented here deter-

mined the methylation status of particular genes by conducting a restriction enzyme

methylation assay (McrBC) on samples that were highlighted in a preliminary anal-

ysis of the results presented in Chapter 3. This chapter aims to investigate whether

epigenetic effects through methylation at CpG dinucleotides in promoter sequences

are responsible for gene expression changes and could in turn be responsible for the

resulting phenotypic changes.

Chapter 6 utilises a newly developed miRNA microarray to investigate the effect

of maternal undernutrition on the microRNA (miRNA) expression levels using the

liver samples of male rats that were 55 days old (the same samples as utilised in the

study in Chapter 3). This chapter aims to highlight miRNAs involved in differentially

regulating genes as a consequence of maternal undernutrition during pregnancy.

Chapter 7 summarises the results of the work presented in this thesis and discusses

the implications of these results. This chapter aims to outline the general conclusions

and to state plans for future work.
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Chapter 2

General Methods

2.1 Animal Care/Sample Collection

Tissues (liver, retroperitoneal white adipose fat, and biceps femoris skeletal mus-

cle) for the data in Chapter 3 were collected and snap-frozen in liquid nitrogen by

collaborators at the Liggins Institute, University of Auckland. They were stored at

-80 ◦C until being shipped to the University of Cambridge on dry ice. Liver tissue for

the data in Chapter 4 was collected and snap-frozen in liquid nitrogen by collabora-

tors at the Liggins Institute, University of Auckland. All tissue was stored at -80 ◦C

until RNA extraction was done at the Liggins Institute. RNA was shipped to the

University of Cambridge on dry ice. All animal manipulations were performed under

the ethics and approval protocol number CR328 from the Animal Ethics Committee

of the University of Auckland.

2.2 RNA Extraction

2.2.1 For Oligonucleotide Expression Array (Undernutrition

Study and Leptin Study)

Total RNA was isolated from tissue using TRIzol reagent (Invitrogen, Paisley,

Scotland, UK). For each sample, 25 mg of frozen tissue was dropped in 1 ml of
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TRIzol solution. The tissue was homogenised at maximum speed for 30 seconds.

The homogeniser head was thoroughly cleaned between each sample. Muscle and

fat tissue was then centrifuged at 11,500 g (12,000 rpm) for 10 minutes at 4 ◦C.

This caused the extracellular membranes, polysaccharides, and high-molecular weight

DNA to form a pellet at the bottom of the tube with the RNA in the supernatant. In

fat samples, an excess of fat will collect in the top layer which can be removed. The

cleared homogenate solution can then be moved to a fresh tube. These samples along

with liver samples, were then left at room temperature for 5 minutes to promote the

dissociation of the nucleoprotein complexes. In the fume hood, 200 µl of chloroform

was added and the sample was mixed with a vortex on high speed for 15 seconds,

then incubated at room temperature for 3 minutes. Tubes were then spun at 11,500 g

(12,000 rpm) for 15 minutes at 4 ◦C. The aqueous phase was carefully transferred to

a new tube. Equal volume of 70% ethanol (50% for liver samples) was added to the

aqueous phase for total RNA precipitation. The subsequent steps were all preformed

at room temperature using the RNeasy Mini Column purification kit (Qiagen, UK)

following the manufactures instructions.

2.2.2 For microRNA Expression Array

Purification of total RNA and a separate miRNA-Enriched Fraction from 25 mg

of frozen liver tissue was performed using the miRNeasy kit (Qiagen, UK) following

the manufacturer’s protocol. This protocol also utilises Qiagen’s RNeasy MinElute

Cleanup Kit.

2.2.3 Quality Assessment

Total RNA quality was assessed by running 100–500 ng of the RNA sample on the

Nano Lab-on-a-chip system (Agilent, Palo Alto, CA.) to check for RNA degradation.

MicroRNA quality was assessed using the Small Lab-on-chip system. The Agilent

Bioanalyser 2100 separates the total RNA sample such that 18s and 28s ribosomal

RNA will dominate the electropherogram. When good quality RNA is analysed the
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ratio between the two peaks ranges from 1.5–2.0. The ND-1000 spectrophotome-

ter (Nanodrop) was used to measure the total RNA concentration and purity. A

280/260 nm (ratio of absorbance) of 1.98 was used as the quality threshold, as values

less than this would indicate protein contamination. A 260/230 nm of 1.8 threshold

was used to avoid samples with organic contamination.

2.3 Microarray

2.3.1 Experimental Design

An important aspect of a microarray experiment is the experimental design. A de-

signed experiment involves a series of tests in which purposeful changes can be made

to the input variables of a process or a system, so that the results can be observed

and the reasons for the changes in the output can be identified. Factors that may

contribute to noise in an experiment must be identified and if possible, controlled.

The appropriate statistical analyses should be chosen in advance. The three main

principles of experimental design are replication, randomisation, and blocking. Repli-

cation is the repetition of an experiment which allows an estimate of the experimental

error. In microarray, there are two types of replication: biological and technical. Bi-

ological replication involves the repetition of an experiment using different biological

samples that have gone through the same experimental conditions. This will reveal

biological variation between individuals in the population being studied. Technical

replication is an exact repetition of an experiment using the same biological sample.

This will reveal differences noise introduced in the experiment based on differences

in equipment or experimental conditions [66]. Randomisation requires the random

choice for every factor (nuisance factors) that is not of interest but might influence

the outcome of the experiment. Examples of this involve the placement of spots or

beads on an array, and the use of control and treatment samples on the same slide

of batch of slides. Randomisation can control for the confounding of factors. If all

treatment samples were run on one batch of slides and all the control samples on a
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different batch then the variation introduced by the experiment and that introduced

by the slides would be impossible to separate [66].

Blocking is a technique for experimental design that aims to increase the accuracy

with which the influences of the nuisance factors are assessed in a given experiment. A

block is a subset of experimental conditions that are expected to be more similar than

other conditions. Blocking is used to eliminate the variability due to the difference

between blocks. An example of a block is the chip itself. All spots in an array or

on a slide are subject to the same factors during slide processing; it is expected that

the spots on a single chip will have less variance than the measurements across the

entire experiment. The two channel array process deals with this by hybridising the

treatment and control samples on the same array; however, it introduces the nuisance

factor of the dyes, which in this experiment is dealt with by running replicates that

are dye swapped. This means that the same experiment is run twice with the control

and treatment hybridised with each dye. The BeadArray deals with blocking by

having more than one array on a single slide [66].

2.3.2 Quality Control

As the image analysis is fully automated, it is important to have good quality

assessment methods. With the spotted arrays, this is very crucial as spotting errors

can cause problems with spot shape regularity, spot area to perimeter ratio, displace-

ment, spot uniformity, and spot signal area to spot area ratio. With spotted arrays,

it is useful to visually inspect slides and images to check for any obvious problems

with the printing or hybridisation.

Many of these problems are overcome with BeadArray Technology. However, with

both methods there are still a variety of other potential problems that can be detected

using visualisation tools. BlueFuse R© performs a quality control assessment and uses

a flagging system to highlight potentially unreliable data, while Illumina uses a set

of internal controls for the same purpose. Visualisation tools are then used to look

for differences in slides or outlying samples, or to assess the information provided by
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BlueFuse R© or Illumina.

2.3.3 Reducing Error

Choosing the right statistical methods is an essential part of microarray analysis.

It is important to identify the potential sources of variability during the quality

control step and then choose normalisation methods that will correct for this without

covering the biological variability of interest. There is a large potential for error when

using microarray as cost restraints reduce the number of replicates that can be done

while the number of variables remains large. Data normalisation aims to remove the

external noise to reveal biologically relevant differences in gene expression. A lack

of statistical significance may indicate low experimental sensitivity rather than an

absence of biological effect. Low sensitivity may be caused by an inadequate number

of replicates and/or a failure to control noise that contributes to random error [67].

Data Filtering

Following the quality control analysis, it is important to remove samples that are

extreme outliers. If the experimental design has incorporated enough biological and

technical replicates, it should be possible to detect outliers that may negatively affect

the results.

Between Array Normalisation

The characteristics of each array should be similar. Proper experimental design

should have randomised samples in such a way that any sources of error will be dif-

fused when replicates are combined. If it is assumed that these precautions have been

successful and that filtering has removed samples that are extreme outliers, then the

within-array-normalisation step should centre all arrays on the same mean/median.
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2.3.4 Data Analysis

Once data has been filtered and normalised it is analysed to determine which

genes differ significantly in expression level between the treatment and the control.

In this thesis, a linear model is used to compare samples. This method requires

two matrices: one is the design matrix, which indicates what RNA samples have

been applied to the array and the second, is the contrast matrix, which specifies what

comparisons should be made between the samples. The differential expression is then

determined by calculating a p-value using an analysis of variance method (ANOVA)

or a pairwise comparison.

2.3.5 Validation of Microarray Data: Quantitative Real Time

PCR

The goal of microarray is to explore a large subset of the genome to find genes that

might be involved in a particular biological process related to the test sample utilised.

A list of genes with a chosen level of statistical significance will be revealed, but it

is absolutely essential to test the validity of these results by testing the expression

of that gene individually with an alternate method. RT-PCR and northern blotting

are two methods often used at this step. Quantitative RT-PCR is the method of

choice for validation of microarray experiments, as it has been shown to be the most

sensitive method for quantifying changes in expression. Comparative quantitative

RT-PCR has been used for validation in this thesis.

2.3.6 Mouse Exonic Evidence Based Oligonucleotide Expres-

sion Array

Initially, the samples were hybridised to a spotted array, specifically the Mouse

Exonic Evidence Based Oligonucleotide (MEEBO) array. This array is comprised

of DNA oligonucleotides representing the mouse genome that are pre-spotted to the

array using robotic spotting. This chip probes approximately 25,000 genes in the
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Rat hyb onto mouse chip gives signal in most spots (62%)Rat hyb onto mouse chip gives signal in most spots (62%)

Figure 2.1: Rat embryo DNA hybridised to the mouse MEEBO chip. The rat DNA
gave signal in approximately 62% of the features and scatter plots of data revealed a
R2 value of 0.993. This work was done by Peter Ellis.

mouse genome and uses a dual colour hybridisation protocol. Dual-colour hybridisa-

tion is used in a two-channel experiment by labelling the target and the probe with

Cy3 and Cy5 dyes. By using this chip, we were cross hybridising rat samples to a

chip with mouse oligonucleotides. To test the accuracy of hybridising rat samples to

a mouse chip, we performed several test hybridisations. Rat embryo DNA was am-

plified, labelled and self-self hybridised to the MEEBO chips. The rat embryo DNA

gave signal in approximately 62% of the features and scatter plots of data revealed a

R2 value of 0.993 as shown in figure 2.1 (work done by Peter Ellis). These are very

good results, but not as ideal as having an actual rat chip. For this reason, once the

technology was available, samples were also hybridised to the Illumina Bead Array

described below.

Smart PCR amplification, Klenow Labelling and Array Hybridisation

Extracted RNA samples were run on the Agilent to ensure RNA quality. Reverse

transcription was performed using Powerscript (Clontech), from 1 µg of total mRNA

mixed with 1 µl of cDNA synthesis primer (10 µM), and 1 µl of template switching

primer and RNase-free water up to 5 µl. This mix was incubated for 2 minutes

at 72 ◦C. To this mixture 2 µl of 5x First Strand Buffer, 1 µl DTT (20 µM), 1 µl
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dNTPs (10 µM), and 1 µl Powerscript RT were added and this mix was incubated for

60 minutes at 42 ◦C . The cDNA amplification used the SMART PCR amplification

protocol. A mix containing 75 µl of RNase-free water, 10 µl 10x PCR Buffer II, 2 µl

10 mM dNTPs, 4 µl IIA Primer, 5 µl 25 mM MgCl2, and 2 µl AmpliTaq (5 U/µl) was

made and added to 2 µl of product from the 1st Strand synthesis. Amplification was

performed at 95 ◦C for 1 minute in order to activate the enzyme, then for 14 cycles,

95 ◦C for 5 seconds, 65 ◦C for 5 seconds, and 68 ◦C for 6 minutes. Labelling was

performed using the Klenow Labelling kit (BioPrime) following the manufacturer’s

instructions. 20 µl of 2.5x Random Primer Buffer and 1 µl Klenow (40 U/µl) was

added to 22 µl of amplified DNA. The mix was incubated at 95 ◦C for 5 minutes.

This mix was placed on ice while 5 µl 10x Low-C dNTPs and 1 µl cyanine dye (Cy3 or

Cy5) was added and the mix was incubated for 2 hours at 37 ◦C. 5 µl of STOP Buffer

was added to stop the reaction. Labelled cDNA was purified using G50 Columns.

Labelling and synthesis was checked using the Nanodrop and purified Cy3 and Cy5

labelled products were combined. The sample was then pooled with 1 µl Cot1DNA,

1 µl yeast tRNA (Invitrogen), and 1 µl of poly-dA (Sigma) as blocking reagents.

Ethanol precipitation was performed by adding 250 µl of 100% Ethanol and 10 µl

3M NaAcetate (pH 5.2), inverting the mix, placing on dry ice for a 10 minutes, and

spinning at 11,500 g (12,000 rpm) for 15 minutes at 4 ◦C . The pellet was washed

with 500 µl of 75% Ethanol and spun for 5 minutes at 11,500 g (12,000 rpm). The

supernatant was discarded and the excess Ethanol was tapped away. The pellet

was immediately resuspended in 50 µl of hybridisation buffer (40% formamide, 5x

Denhardt’s solution, 5x SSC, 1.65 mM sodium pyrophosphate, 50 mM Tris-Cl pH 7.4,

and 0.1% SDS) at 50 ◦C for 10 minutes. The samples were denatured at 95 ◦C for

5 minutes, quickly pipetted onto slides, and covered with lifter-slips. The slides were

placed in hybridisation boxes containing tissues soaked with 50 µl of water to ensure

constant humidity, but not so much moisture that cover slips slide off. The boxes

were placed in a water bath at 48 ◦C and hybridised for 17 hours. After incubation,

the cover slip was separated from the array by immersing it into a solution of 1x SSC.

The labelled array was washed with agitation for 5 minutes each in baths of 1x SSC,
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followed by 0.5x SSC, and finally 0.1x SSC. The array was rinsed quickly in water

(no more than a few seconds to avoid denaturation) and in ethanol, and spun at 3000

x g to dry. Slides were then stored desiccated in a dark box until scanning and were

stable for at least a week. When possible, the arrays are scanned on the same day

as the washing step to avoid differential degradation of the dyes and accumulation of

dust.

Image Capture, Quantification and Quality Control

The MEEBO microarray image was captured using an optical scanner, the ArrayWorx R©

biochip reader (Applied Precision). The preliminary scan was performed at the mini-

mum exposure time in each channel (0.06 seconds), and the optimum exposure calcu-

lated to bring the brightest features on the array to the saturation limit of the scanner,

thus, increasing the sensitivity of the image analysis for the less bright pixels. The

final scan was performed with the new exposure times. The array was scanned to

produce a digital record of the red and green fluorescence emissions at each point

on the array. This digital record typically takes the form of a pair of 16-bit TIFF

images. Images must be analysed to extract numerical foreground and background

intensity for the red and green channels for each spot on the array. The localisation

of each spot on the array was done automatically by the software Bluefuse R© using

the basic array layout and the number of spots on the array. Bluefuse R© averages

intra-slide replicate spots to assess the reproducibility of the duplicates and provide

a confidence score. The setting of time-exposures for Cy3 and Cy5 is a way of ad-

justing, therefore, correcting for intensity variances between both channels. Images

were analysed with the Bluefuse R© software. Bluefuse R© performs a quality control

assessment of the data and allocates flags accordingly (A: highly reliable, E:highly

unreliable). This information can be used to filter bad data. For some analyses, a

balanced design is required and therefore flagged data was not filtered. However, the

flag was considered once the list of significant genes was obtained and genes with

E flags were considered unreliable. Data files were then imported into excel, where

relevant pieces of information could be cut out and transferred to an analysis software
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program.

2.3.7 Illumina BeadArray

The Illumina Bead Array technology is based on the random self-assembly of an

array of beads onto a patterned substrate. The 3-micron silica beads self assemble

in microwells on planar silica slides (see Figure 2.2). Each bead is covered with hun-

dreds of thousands of copies of a specific oligonucleotide that act as probe sequences.

The random loading of beads and subsequent decoding allows extreme miniaturisa-

tion and high-density packing which increases the redundancy of each element on the

array. The DNA-decoding method utilises sequential hybridisations of dye-labelled

oligonucleotides to create a combinatorial decoding method. By using an error check-

ing scheme, the median random error rate for the decoding algorithm was estimated

to be <1 x 10−4. This has negligible impact on the results of the hybridisations

which give the >20-fold redundancy and the five-fold minimum redundancy of each

bead type [68]. This system has a specific rat chip. The specific Illumina chip we

use in our hybridisation is the Rat-Ref12 chip, as shown in Figure 2.2. This chip was

designed from the NCBI RefSeq database and contains 12 arrays, each comprised of

22,500 oligonucleotide 50-mers and probes 21,910 genes covering almost the entire

rat transcriptome.

Each array has up to 1,536 different bead types. Each bead type is represented

by an average of ≈30 copies in any array. This means that each array is unique. Due

to the ≈30–fold oversampling (50,000 beads/1,536 bead types), it is insured that

decoded arrays have greater than or equal to five beads of each type in the array,

all sequences are represented. Each bead type has ≈700,000 copies of a particular

oligonucleotide probe covalently attached to the bead by the sequence’s 5′ end. These

chimeric oligonucleotides are approximately 75–nucleotides in length, comprising a

≈25–nucleotide identifier sequence and a 50–nucleotide gene-specific probe. Because

the population of beads in an array is a random sampling of a starting bead pool

containing 1,536 bead types, the representation of the bead types in the array follows
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Figure 2.2: Bead Array Image

the Poisson distribution. That is, there is a variable number of each of the 1,536 bead

types both within and between arrays. This randomness and redundancy provides two

important advantages. The randomness minimises the effects of spatially localised

artefacts and the redundancy increases measurement precision and robustness. These

factors combine to increase measurement accuracy [69].

It is also important that the identifier sequence of the oligonucleotide does not

interfere with the hybridisation. This is done by screening the sequences to avoid sim-

ilarity that would lead to cross-hybridisation. In addition, the identifier sequences are

half the length of gene-specific probes and have lower Tm’s (melting temperatures).

It is estimated that the signal provided by the identifier sequences is not enough to

affect the analysis [69].

RNA Amplification, Labelling and Array Hybridisation

The RNA samples were amplified following the Illumina TotalPrep RNA am-

plification protocol. This process begins with reverse transcription using the T7

Oligo(dT) Primer to synthesise first strand cDNA containing a T7 promoter se-

quence. Second strand cDNA synthesis converts the single-stranded cDNA into a

double-stranded DNA (dsDNA) template for transcription. The reaction uses DNA

polymerase and RNase H to simultaneously degrade the RNA and synthesize the sec-

ond strand cDNA. cDNA purification removes RNA, primers, enzymes, and salts that

would inhibit in vitro transcription. In vitro transcription generates multiple copies

35



of biotinylated cRNA from the double-stranded cDNA templates; this is the ampli-

fication and labelling step. cRNA purification removes unincorporated NTPs, salts,

enzymes, and inorganic phosphate. After purification, cRNA is ready for use with

Illumina’s direct hybridisation array kits. The samples were hybridised overnight at

55◦C to the RatRef-12 expression chip available from Illumina (sampling 21,290 genes

from the rat transcriptome).

Image Capture, Quantification and Quality Control

The BeadArray Reader and associated BeadStudio software was used for the

image analysis of the Illumina BeadArrays. The scanner uses a confocal-type imaging

system with -0.8–µm resolution and 532 and 635 nm laser illumination. Scans were

performed in the 532–nm channel [69]. The scanner completes the following steps

during the scanning of the BeadArrays: (i) All pixel intensities are altered using a

sharpening transformation. The intensity of a particular pixel is made higher/lower

if its intensity is high/low in comparison to the intensities of the pixels surrounding

it. (ii) Foreground intensities are calculated as a weighted average of signals obtained

using the four pixels nearest to each bead centre as a virtual bead centre. Sharpened

pixel intensities are used in the calculation. (iii) The local background, an average of

the five dimmest pixels (unsharpened intensities) within the 17x17 pixel area around

each bead centre, is subtracted.

It is essential to upload the slide specific decode file before scanning the slide,

as this gives the software the details of the location of the bead types on the slide.

Once the scan is complete, the files are transported to BeadStudio for the quality

assessment.

The Illumina Bead Studio software was used for the initial quality control as-

sessment. Bead Studio includes a spectrum of internal controls for determining data

quality. These check for consistency in signal intensity, expected background and

noise levels, mismatches versus perfect matches, and signal in housekeeping genes.
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2.3.8 microRNA Expression Array

RNA Amplification, Labelling and Array Hybridisation

DNA samples were run with the Illumina MicroRNA Profiling Assay using the

Mouse microRNA Panel which contains 380 sequences. The manufacturer provides

a detailed protocol for the assay which is an extension of the proven DASL (cDNA-

mediated Annealing, Selection, Extension, and Ligation) Assay. First, a stretch of

polyA tail was added to the 3′ end of each sequence in the RNA sample. Then

sufficient RNA from each sample was reverse-transcribed. The biotinylated cDNAs

were combined with microRNA-specific oligos (MSOs), hybridisation reagents, and

paramagnetic particles in an Assay Specific Extension (ASE) plate. The plate was

heated to allow the MSOs for each sequence target of interest to anneal to the bi-

otinylated cDNA samples. The cDNA was simultaneously captured by paramagnetic

particles. After the oligos were hybridised to the cDNA, mis-hybridised and excess

oligos are washed away. Next, an extension and ligation master mix (consisting of

extension and ligation enzymes) was added to each cDNA sample. The extension

and ligation reaction occurs at 45 ◦C . The DNA polymerase and the Uracil DNA

Glycosylase were added to the master mix for PCR. The PCR reaction used three

universal primers. Two were labelled with fluorescent dyes and the third was bi-

otinylated. The biotinylated primer captures the PCR product and allows the strand

containing the fluorescent signal to be eluted. The PCR plate was thermal cycled to

fluorescently label and amplify the templates generated in the Pre-PCR process. The

double-stranded PCR products were immobilised by binding the biotinylated strand

to paramagnetic particles. The solution was transferred to a filter plate and incu-

bated at room temperature so that the PCR product could bind to the paramagnetic

particles. The single-stranded fluor-labelled PCR product from the filter plate was

washed and then eluted into an intermediate (INT) plate. The product from this

plate was hybridised to the BeadChip. The BeadChips were hybridised overnight

using the Illumina Hyb Chamber with a temperature ramp from 60 ◦C to 45 ◦C .

The BeadChips were then removed from the Hyb Chamber and washed three times
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with UB2 and XC4 reagents.

Image Capture and Quantification

The Illumina BeadArray scanner was used to capture and quantify the hybridisa-

tion signals as described for the expression arrays. The Illumina Bead Studio software

was used for the initial quality control assessment. Subsequent analysis was done us-

ing the R package Limma as previously described for the expression arrays.

2.3.9 Filtering, Data Visualisation and Normalisation

Once the data has been captured and quantified, the raw data was imported into

an analysis software program. Most of the analysis done in this thesis utilised R. R

is an open source language and environment for statistical computing and graphics.

R provides a variety of statistical (linear and nonlinear modelling, classical statistical

tests, time-series analysis, classification, clustering, etc.) and graphical techniques,

and is highly extensible. Bioconductor is an add-on package for R that was developed

for Computational Biology and Bioinformatics [70]. As Bioconductor is commonly

used for microarray analysis, additional add-on packages are frequently being de-

veloped by users. These packages can be platform or analysis specific. The two

packages utilised most for analysis in this thesis are Limma and Lumi, which are

described later.

Inforsense Knowledge Discovery Environment 4.2 (KDE; www.inforsense.com)

was also occasionally used for data manipulation and analysis. KDE is a statisti-

cal package with a unique interface that appears as a pipeline of tasks. Although

less flexible than R, it is useful for visually manipulating datasets. The software

also includes a wide variety of normalisation methods, classifications, clustering, and

graphical options.

38



Filtering

Illumina data was filtered in R for those showing expression on at least one array.

Filtering out only those that were not detected at all is the least stringent filtering

available. A detect call was used to include a count of how many slides showed an

expression value for each gene. This information was useful in analysing the data to

see the robustness of the results for a particular gene.

Data Visualisation

Data visualisation is important to assess the success of the experiment, the quality

of the data, and to choose an appropriate normalisation method. Plots comparing the

arrays are useful to determine that all arrays performed in a similar way. A selection

of graphs including MA plots, pariwise comparisons, box plots, density plots and

hierarchical clustering were produced for all datasets.

Normalisation Methods

Normalisation was performed in R (Bioconductor) using the Limma [71] and Lumi

[72] Bioconductor packages for microarray analysis. Limma is a package that was

designed for the analysis of gene expression microarray data using linear models to

assess differential expression. Lumi is a package that was designed especially for

Illumina BeadArray Data. It includes algorithms specific to the unique aspects of

the Illumina BeadArray system. In particular, the variance-stabilising transformation

(VST) algorithm takes advantage of multiple technical replicates (on average 20–30

per array) unique to the Illumina BeadArray system [73]. It is therefore, better suited

to the analysis of Illumina data than a base-2 logarithmic (log2) transformation,

which is traditionally used in microarray analysis. Variance stabilisation is one of the

primary reasons for log2 transformation of microarray data. Larger intensities tend

to have larger variances when repeatedly measured and can cause a problem when

data is subsequently analysed using ANOVA models. The VST algorithm utilises the

within-array technical replicates to model the mean-variance relationship directly.
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This allows the direct calculation of parameters for optimal data transformation from

each array.

This was followed by quantile normalisation which was chosen to remove any

remaining technical variability between arrays. Quantile normalisation [74] method

transforms the distribution of intensities from one distribution to another.

Multiple Testing Correction

Due to the large number of genes being tested simultaneously it is important

to perform a multiple testing correction to correct for the chance of obtaining false

positives. Here, we have chosen the false discovery rate (FDR) to correct for false

positives. The FDR method orders genes in increasing order of the p-values provided

from the independent tests. The p-values are then compared to a threshold value

related to the genes position in the list. The null hypothesis is rejected for genes that

have a p-value less than their corresponding threshold. The FDR correction is not

one of the most stringent and is a good choice because it does not assume all genes

are independent.

2.3.10 Selection of Differentially Expressed Genes

Pairwise Comparison-Linear Modelling

Limma was used for pairwise comparisons between treatment groups using a linear

model to compute p-values, which were adjusted using the Benjamini and Hochberg

multiple testing correction. The derivation of the p-value reflects the degree of vari-

ance between biological replicates and thus, is a measure of the confidence in assigning

significance of small fold changes in gene expression. Genes with a p-value < 0.05

were considered to be significantly differentially expressed.

Mixed Model ANOVA

The Leptin Reversal Study (Chapter 4) involved three separate treatments. To

analyse the data effectively, it was necessary to find a method that could separate
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the effects of each treatment and provide a separate gene list for each. ANOVA

based methods are particularly suited to estimating variance in studies with several

experimental steps. The appropriate model for this experiment is a Mixed Model

ANOVA, which allows random and fixed effects and estimates the variability by

variance components. Peter Sykacek, previously at University of Cambridge, wrote

a software package for R called FSPMA: Friendly Statistical Package for Microarray

Analysis [75] that relies on another mixed model ANOVA package for R, YASMA: Yet

Another Statistical Microarray Analysis [76], which allows the precise specification of

nested effects. FSPMA requires a balanced study design and is run by entering the

specifics of the experimental design into a definition file specifically designed for one

channel microarray experiments. In this particular experiment, the fixed effects were

the three treatments (preg, the AD (normal) or UN (undernourished) diet during

pregnancy; lepsal, the leptin (LEP) or saline (SAL) injection at days 3-13 of life;

and diet, the normal (CHOW) or high-fat (HF) postweaning diet) and the random

effect was the biological replicates for each treatment group. The technical replicates

were taken into account during the normalisation. Once the definition file has been

accurately completed, including the list of genes after filtering and the list of data

files, the definition file is then loaded into R and produces output files that rank the

genes that were found to be significant (p-value < 0.05). The p-value is then adjusted

in R using the FDR multiple testing correction. (FSPMA lecture) The model used

is:

yijkl = µ+ αi + βij + Aijk + εijkl

where µ models the gene-specific global mean, αi models the main gene effect, βij

models the gene-time interaction, Aijk models the gene-time-sample interaction and

εijkl models the residual error. The effects that correspond to gene and time are fixed.

The effects corresponding to sample and replicate are random.

i = 1, . . . , n; (n = numberofgenes)

j = 1, . . . ,m; (m = numberoftimepoints)
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k = 1, . . . , a; (a = numberofsamples)

l = 1, . . . , b; (b = numberoftechnicalreplicates)

2-way ANOVA with an Interaction Term

The 2-ways ANOVA considers the interaction between two of the effects. This

model was also used for the Leptin Reversal Study (Chapter 4) to investigate the

interaction between the different treatments.

Xijk = µ+ αi + βj + (αβ)ij + εijk

This equation is similar as to that of the Mixed Model ANOVA. Here the term (αβ)ij

represents the interaction between the i -th factor α and the j -th factor β. This model

was implemented using Limma.

Principle Component Analysis

Principle Component Analysis (PCA) is a multivariate analysis method used for

exploratory analysis. It transforms a number of possibly correlated variables into

a smaller number of uncorrelated variables called principle components. This was

implemented using KDE.

2.3.11 Gene Ontology Analysis

Gene ontology analysis was done using DAVID: Database for Analysis, Visual-

ization, Integrated Discovery [77], Ingenuity Pathway Analysis software (Ingenuity,

Stanford USA) and Onto-Express [78].
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2.4 Polymerase Chain Reaction

2.4.1 Genomic PCR

Genomic DNA PCR was carried out in a total volume of 20 µl containing 2 µl

10x buffer, 3.2 µl dNTPs (2.5 mM each), 2 µl DNA (100 ng/ µl), 2.4 µl primer mix

(5mM each forward and reverse), 0.2 µl Hot Star Taq, and water up to 20 µl. PCR

conditions were adjusted based on the melting temperatures of the primers used in a

particular reaction.

2.4.2 Comparative Quantitative Real Time RT-PCR

The comparative expression levels of genes identified as differentially expressed

from our microarray data were verified by qRT-PCR, together with the expression

levels of several candidate genes not present on the array. Cyclophilin was used for the

generation of a standard curve and normalisation of the RNA concentration. Each

qRT-PCR was performed in triplicate. Real-time RT-PCR was performed in 96-well

white plates (Abgene) using the Verso SYBR Green 2-Step qRT-PCR Fluorescein

Kit (Thermo Scientific, UK) according to the manufacturer’s protocols; the resulting

fluorescence was quantified using an iCycler system (Bio-Rad). The Ct was obtained

for each well as the cycle number at which the measured fluorescence crossed the

arbitrary threshold of 150 units (all values are in log phase). The average Ct was

calculated for each gene in each sample. Data were normalised to cyclophilin, with

∆Ct calculated as follows: ∆Ct = Ct(test)-Ct(cyclophilin). ∆∆Ct values were then

calculated as the change in ∆Ct for the UN sample relative to the ∆Ct value for the

AD sample using the equation: ∆∆Ct = 2Ct(test)-2Ct(cyclophilin) . A melting curve was

also performed to verify the specificity and identity of the RT-PCR product.
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2.5 DNA Extraction

2.5.1 From Tissue (Undernutrition Study)

To extract DNA from tissue, 25 mg of frozen tissue was placed in separate white

capped 10 ml tubes each containing 1 ml of homogenising buffer for each sample. The

tissue was homogenised for 30 seconds. The homogeniser head was thoroughly cleaned

between each sample. To pellet the nuclei, the homogenate was slowly centrifuged

for 5 minutes at 500 g (2500 rpm). The pellet was then resuspended in 500 µl

homogenising buffer. If the pellet was not dissolving immediately a pipet-tip was

used to break it up. To yield a final concentration of 10 mM EDTA, 10 µl 0.5 M

EDTA (pH 7.0) was added to the solution. The solution was mixed thoroughly

and 20 mg/ml of proteinase K (5 µl) was added to yield a final concentration of

100 µg/ml. The solution was mixed thoroughly, and 10% SDS (51.5 µl) was added

to give a final concentration of 1% SDS. The solution was again mixed thoroughly

but gently by inversion. The samples were incubated overnight at 55 ◦C. The next

day 1 volume of 5 M ammonium acetate was added and the solution was mixed by

inversion. The solution was chilled on ice for 30 minutes and then centrifuged at

12,000 x g for 3 minutes. The supernatant was transferred to a clean tube and 0.6a

volume of isopropanol was added to precipitate the DNA. The solution was mixed

by inversion. The samples were then placed in the freezer to aid in precipitation

of DNA, if necessary. The precipitated DNA was carefully removed and washed by

soaking in 70% EtOH for 10 minutes. The DNA was allowed to air dry briefly, but not

completely, sometimes this took a long time. The DNA was dissolved in TE buffer

(approximately 100–300 µl). Finally, DNA samples were purified using the DNeasy

Column purification kit (Qiagen, UK) following the manufacturer’s instructions.

2.5.2 Following RNA extraction

For some samples, DNA was extracted from the frozen remnants (phenol and

interphase mix) of the TRIzol RNA extraction protocol. This frozen phenol and
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interphase mix was centrifuged for 15 minutes at 4 ◦C. It was important to make

sure the aqueous phase had been thoroughly removed before adding 300 ml of 100%

ethanol per 1 mL TRIzol Reagent originally used. This was mixed by inversion and

stored at room temperature for 2–3 minutes. The solution was then centrifuged at

no more than 2000 x g for 5 minutes at 4 ◦C. The phenol-ethanol supernatant was

removed and saved for protein isolation (approx 800 mL per 1 mL TRIzol). The DNA

pellet was washed twice in 0.1 M sodium citrate in 10% ethanol. For large pellets an

additional wash was required. For each 1 mL of TRIzol Reagent originally used, 1 mL

of the sodium citrate solution was used. At each wash, the DNA pellet was stored

in the washing solution for 30 minutes at room temperature with periodic mixing.

The solution was centrifuged at 2000 x g for 5 minutes at 4 ◦C. After two washes,

the DNA was suspended in 75% ethanol (1.5–2 mL per 1 mL TRIzol Reagent). The

solution was then left for 10–20 minutes at room temperature with periodic mixing

before centrifuging at 2000 x g for 5 minutes at 4 ◦C. The DNA was then air-dried

for 5 minutes in an open tube and then was dissolved in 8 mM NaOH such that the

concentration of DNA was 0.2–0.3 µg/µl. For DNA isolated from 50–70 mg of tissue,

300–600 µl of 8 mM NsOH was added. The insoluble (gel-like) material (fragments of

membranes, etc.) was separated by centrifugation at >12,000 x g for 10 minutes. The

supernatant containing the DNA was transferred to a new tube. The A260 value of

an aliquot of the DNA prep was measured in NaOH mixed with water. The expected

yield of DNA per mg of liver tissue was 3–4 µg.

2.6 Methylation PCR

The HpaII-McrBC PCR [79] was used to discriminate patterns of methylation. In

this method, HpaII is used to cut unmethylated alleles

(cutting at sites: 5′ . . . C∧CGG . . . 3′/3′ . . . GGC∧G . . . 5′),

while McrBC is used to cut methylated alleles

(cutting at sites: 5′ . . . PumC(N40−3000)Pu
mC . . . 3′.

MspI was used as a negative control as it cuts independent of methylation at HpaII
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sites. PCR was performed using the HotStarTaq PCR kit and optimised using ‘touch-

down’ techniques for individual primers. Products were separated by gel electrophore-

sis using 1–1.5 agarose with 0.5 mgml EtBr. The methylation changes were inferred

from the intensity of the bands from different digests. The subsequent digestions of

HpaII and McrBC gave four possible results. These results indicate full, null, incom-

plete, or composite methylation. This provides a general idea of where methylation

sites are located. The exact location of the methylation sites can then be examined

in more detail.

2.7 Bisulphite Sequencing

DNA samples were subjected to sodium bisulphite modification using EpiTect

Bisulphite conversion kit (Qiagen, UK) and used as template in PCR.
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Chapter 3

Expression Study of rats

undernourished in utero

3.1 Introduction

The data presented in this chapter has resulted in a manuscript that was published

in PLoSONE ([80]). The results have all been discussed in this chapter and certain

points have been examined in more detail for the purpose of this thesis.

In this chapter, an established rat model of balanced maternal undernutrition

has been used for investigation of gene expression differences in target tissues (liver,

retroperitoneal white adipose fat, and biceps femoris skeletal muscle) between off-

spring of control and undernourished mothers. Male rats are able to breed as early

as 35 days and can live to nearly 550 days. We studied young male adult rats at day

55 when they have not yet developed the abnormal phenotype in order to identify

any gene expression changes that may play a role in predisposing these animals to

the development of the metabolic syndrome. The genes that showed significant gene

expression differences in the liver suggest that the rats have suffered a substantial

impairment of their ability to utilise carbohydrate. They may have lost the flexibility

to switch between carbohydrate and fat as an energy source. The results suggest that

maternal undernutrition leads to offspring that favour fat as an energy source thus,

resulting in mitochondrial dysfunction. This chapter begins with a review of fuel
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metabolism as a background for the discussion of the results. This is followed by a

description of experimental design and data quality. Finally, the analysis is explained

and discussed.

3.1.1 Energy Balance and Starvation

In this study, pregnant rats are subjected to severe undernutrition (30% of their

normal diet). This is approaching a level of starvation. To understand the effects this

might have on their offspring, it is important to understand the basic biochemistry

of fuel metabolism (specifically lipid and carbohydrate metabolism) and the changes

that occur during starvation.

Metabolic Homeostasis

Cells require a constant supply of fuel in order to create adenosine triphosphate

(ATP) that is required for normal cell function and growth. A balance must be main-

tained between carbohydrate, fat, and protein intake; their storage when present in

excess, and their mobilisation; and synthesis when in demand. This is metabolic

homeostasis: the two major hormonal regulators are insulin and glucagon. Insulin

is a major anabolic hormone that promotes the storage of fuels and the utilisation

of fuels for growth. Glucagon is the major fuel mobilisation hormone. Other hor-

mones, such as adrenaline respond to stress and can increase the availability of fuels.

These hormones contribute to homeostasis by responding to changes in the levels of

circulating fuels that are determined by diet. Figure 3.1 shows the major sites of

insulin action on fuel metabolism in liver, adipocytes, and skeletal muscle and figure

3.2 shows the major sites of glucagon action in the same tissues.

Insulin and glucagon are very important in regulating blood glucose levels. After

a high-carbohydrate meal, blood glucose rises quickly. After the meal is digested and

absorbed, blood glucose levels decline because cells continue to metabolise glucose.

If blood glucose continued to rise after a meal, the high level of blood glucose would

cause the release of water from tissues including the brain. However, if blood glucose
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Figure 3.1: This figure shows the major sites of insulin action in fuel metabolism.
The plus sign represents pathways that are stimulated by insulin; the minus sign
represents pathways that are inhibited by insulin. This figure was adapted from
Lieberman et al. [81]

.

Figure 3.2: This figure shows the major sites of glucagon action in fuel metabolism.
The plus sign represents pathways that are stimulated by glucagon; the minus sign
represents pathways that are inhibited by glucagon. This figure was adapted from
Lieberman et al. [81]
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levels drop after a meal, glucose-dependent tissues would suffer from a lack of energy.

Insulin helps to regulate these levels so that even after 5-6 weeks of starvation blood

glucose levels do not decrease dramatically [81].

Metabolic Fasting

In the initial stages of fasting, stored fuels are used for energy. This state is called

the basal state and is illustrated in figure 3.3. During fasting, fatty acids released

from adipose tissue serve as the body’s major fuel. The liver oxidizes most of its fatty

acids only partially, converting them to ketone bodies, which are released into the

blood. Muscle and many other tissues are able to use fatty acids or ketone bodies;

however, red blood cells, the brain, and other neural tissues use mainly glucose. The

liver is the organ that maintains blood glucose levels during fasting, and therefore, its

role in survival is crucial. When blood glucose levels drop, the liver replenishes blood

glucose via gluconeogenesis. Figure 3.4 illustrates the key reactions of gluconeogene-

sis. During this process, lactate, glycerol, and amino acids (particularly alanine) can

be used as carbon sources to synthesize glucose. Most of the amino acid is supplied

by degraded muscle protein. The nitrogen of the amino acids can form ammonia,

because this is toxic, the liver converts it to urea [81].

Metabolic Starvation

The hormonal changes that occur during fasting stimulate the breakdown of adi-

pose triacylglycerols. This results in the release of fatty acids and glycerol into the

blood. Figure 3.5 shows the tissue interrelationships during fasting. Glycerol is the

major source of carbon for gluconeogenesis. Fatty acids become the major fuel for

the body and are oxidized by various tissues, which enable these tissues to reduce

their consumption of glucose. Fatty acids are also oxidized to acetyl CoA in the

liver to provide energy for gluconeogenesis. Acetyl CoA can be converted to ketone

bodies. If this pattern of fuel utilisation was prolonged, the body’s protein would be

rapidly consumed. Metabolic changes occur during prolonged fasting (starvation) to

conserve muscle protein. The starvation state is illustrated in figure 3.6. After 3-5
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Figure 3.3: This figure represents the basal state. This state occurs after an
overnight (12-hour) fast. The circled numbers serve as a guide indicating the
approximate order in which the processes begin to occur. KB=ketone bodies;
TG=triacylglycerols;FA=fatty acid; AA=amino acid; RBC=red blood cell. This
figure was adapted from Lieberman et al. [81]
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Figure 3.4: This figure depicts the key reactions that occur during gluconeogenesis.
The precursors are amino acids (particularly alanine), lactate, and glycerol. Heavy
arrows indicate steps that differ from those of glycolysis. The conversion of phos-
phoenolpyruvate to glyceraldehyde 3-phosphate requires the reversible enzymes of
glycolysis. This figure was adapted from Lieberman et al. [81]

.
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days of fasting the muscle decreases its use of ketone bodies and depends mainly on

fatty acids for fuel, while the liver continues to convert fatty acids to ketone bod-

ies. The result is that the concentration of ketone bodies in the blood rises. The

brain begins to take the ketone bodies from the blood and oxidise them for energy.

Gluconeogenesis in the liver is now the only process by which the liver can supply

glucose to the blood if fasting continues. However, due to the ketone body utilisation

the rate of gluconeogenesis can decrease, in turn decreasing the amount of protein

degraded to supply amino acids to gluconeogenesis. As the use of ketone bodies in-

creases, the body needs roughly one-third as much glucose. As a result of reduced

glucose utilisation, the rate of gluconeogenesis in the liver decreases, and the produc-

tion of urea go down. For this reason, urea can be used as a measure of the extent

of protein degradation. Proteins function as enzymes, as structural proteins, and in

muscle contraction. If tissue protein is severely degraded then body function can be

compromised. If starvation continues and no other problems occur the individual

can die of severe protein loss that causes organs to malfunction. For this reason, the

increase in ketone body levels that result in the conservation of body proteins allows

individuals to survive starvation for extended periods.

As fatty acids are released from the adipose tissue during fasting, they travel

in the blood complexed with albumin. These fatty acids are oxidized by various

tissues particularly muscle. In the liver, fatty acids are transported into mitochondria

because acetyl CoA carboxylase is inactive, malonyl CoA levels are low, and carnitine

pamlitoyltransferase I is active. Acetyl CoA, produced by β-oxidation, is converted

to ketone bodies.

Our energy expenditure is equivalent to our oxygen consumption. The majority

of our oxygen consumption (90-95%) is used for the synthesis of ATPases in the elec-

tron transport chain by oxidative phosphorylation. Most of the enzymes for the Citric

Acid (TCA) cycle, electron transport, and other pathways for oxidation are located in

the mitochodrial matrix. Fatty acid oxidation is the process in which very long chain

fatty acids are oxidized by peroxisomal β and α-oxidation pathways, which are essen-

tially chain-shortening pathways. Ketone bodies are synthesised in the mitochondrial
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Figure 3.5: This figure illustrates the tissue interrelationships during fasting.
(1)Blood glucose levels decrease, decreasing insulin, and raising blood sugar lev-
els. (2)Glycogenolysis is induced in the liver to raise blood glucose levels. (3,4)The
brain and red blood cells use the glucose released by the liver. (5)Adipose tissues
are signalled to release free fatty acids and glycerol from stored triglycerides. (6)The
muscle and liver use fatty acids for energy. (7,8)The liver converts fatty acid derived
acetyl CoA to ketone bodies for export, which the muscles and brain can use for
energy. (9)Protein turnover is induced in muscle, and amino acids leave the muscle
and travel to the liver for use as gluconeogenic precursors. (10) The high rate of
amino acid metabolism in the liver generates urea, which travels to the kidney for
excretion. (11) Red blood cells produce lactate, which returns to the liver as a sub-
strate for gluconeogenesis. (12)The glycerol released from adipose tissue is used by
the liver set gluconeogenesis. KB=ketone bodies; FA=fatty acid; AA=amino acid;
TG=triacylglycerols. This figure was adapted from Lieberman et al. [81]

.
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Figure 3.6: This figure represents the starved state. Broken lines indicate processes
that have decreased, and the heavy solid line indicates a process that has increased
relative to the fasting state. KB=ketone bodies; FA=fatty acid; AA=amino acid;
TG=triacylglycerols; RBC=red blood cell. This figure was adapted from Liebermanet
al. [81]

.
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Figure 3.7: This figure from Symonds et al. [64] illustrates the importance of the
maternal-fetal nutritional environment in contributing to the developmental program-
ming of cellular energy metabolism in favour of lipid storage.

matrix from acetyl CoA generated from fatty acid oxidation. These examples just

briefly highlight the role of mitochondria in metabolism. Mitochondrial dysfunction

could significantly impact many different aspects of metabolism and energy balance

[81].

In the study presented in this chapter liver, muscle, and fat were used for molecular

analysis based on their importance in metabolism as highlighted in the preceding

biochemical background.

3.1.2 Genes/Pathways Highlighted in Other Studies

Several candidate genes have been highlighted as showing altered expression lev-

els in animal studies using restricted diets. Lillycrop 2005 showed that maternal

protein restriction during pregnancy in rats increased glucocorticoid receptor (GR)

expression and decreased 11β-hsd2 expression and altered the expression of Pparα
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and acetyl-CoA oxidase (Aox ) [82]. These genes are of particular interest because

changes in their expression levels have been linked with disturbances in cardiovas-

cular and metabolic control in humans and animals. GR activity is important for

the regulation of blood pressure, Pparα is central to lipid and carbohydrate home-

ostasis. Aox is the rate-limiting factor in the peroxisomal β-oxidation pathway and

is directly regulated by Pparα. Pepck is the rate-limiting factor in gluconeogenesis,

whereby glucose is synthesised. Studies with mice have shown that over expression

of Pepck can lead to diabetes mellitus type 2.

3.1.3 Initial Study

This study exploited a well defined model of developmental programming via ma-

ternal undernutrition [45, 83]. Virgin Wistar rats (age, 100 ±5 days) were time mated

using a rat oestrous cycle monitor to assess the stage of oestrous of the animals before

introducing the male. After confirmation of mating, rats were housed individually in

standard rat cages with free access to water. All rats were kept in the same room

with constant temperature maintained at 25 ◦C and a 12 h light/12 h darkness cycle.

Animals were assigned to one of two nutritional groups: a) undernutrition (30% of

ad libitum) of a standard chow diet throughout gestation (UN group), b) standard

chow diet ad libitum throughout gestation (AD group). The study design is illus-

trated in Figure 3.8. Food intake and maternal weights were recorded daily until

the end of pregnancy. After birth, pups were weighed, and litter size was adjusted

to 8 pups per litter to assure adequate and standardised nutrition until weaning. A

minimum of four litters per group were used. Pups from undernourished mothers

were cross-fostered onto dams that had received AD feeding throughout pregnancy.

The animals were culled at day 55 following an overnight fast to represent an age

known to precede the development of increased adiposity and altered insulin sensitiv-

ity in UN offspring. Tissues (liver, retroperitoneal white adipose, and biceps femoris

skeletal muscle) were collected as described in Chapter 2. A subcohort of animals

(n=8 per group) were maintained until postnatal day 110 to represent an age where
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Figure 3.8: Study Design of Rats Undernourished in Utero. This figure summarises
the study design. During pregnancy rats were fed either ad libitum a standard chow
diet (AD) or 30% of a standard chow diet (UN). Pups from UN mothers were cross-
fostered onto dams that had received AD feeding throughout pregnancy.

phenotypic changes in growth and metabolism between AD and UN offspring have

previously been reported [45, 58].

3.2 Results

3.2.1 Previous Findings: Phenotypic Assessment

Physiological measurements were taken by the collaborators at the Liggins Insti-

tute as part of the initial unpublished study. These findings are summarised here.

Serial dual-energy x-ray absorptiometry (DEXA) analysis was performed on the an-

imals at day 55 to establish body composition and assessment of bone parameters.

In addition to DEXA, body composition was analysed via standard techniques (fat

depot dissection and weighing) following post-mortem. Body weight and food and

water intake were monitored. Plasma analysis incorporated these potential indicators

of metabolic syndrome: IGF-1, insulin, C-peptide (a measure of insulin secretion),

and lipid profiles. For comparison to an animal that had developed the phenotype,

we have included the phenotypic assessment of male rats (AD and UN) at day 110.

These animals were from a different cohort, and were given a saline injection (2.5

µ g/g· d) from day 3-13, but received the same nutritional treatment. Statistical

analyses were performed using KDE software. Differences between groups were de-

termined by a T-test for difference in variance with an FDR correction, and data are

shown as an adjusted p-value ± standard error (tables 3.1 and 3.2).

58



Measurement AD Mean UN mean Adjusted p-value

Body weight (grams) 282.4 ± 5.6 234.5 ± 5.5 0.001

Body length (mm) 203.6 ± 1.7 192.63 ± 1.9 0.005

Liver weight (% body weight) 3.7 ± 0.1 3.0 ± 0.1 0.014

Spleen weight (% body weight) 0.32 ± 0.01 0.33 ± 0.02 NS

Heart weight (% body weight) 0.36 ± 0.01 0.38 ± 0.01 NS

Fat pad weight (% body weight) 0.80 ± 0.06 0.59 ± 0.04 0.039

Plasma glucose (mmol/l) 6.24 ± 0.28 6.67 ± 0.48 NS

Urea (mmol/l) 4.76 ± 0.24 6.18 ± 0.29 0.010

Free Fatty Acids (mmol/l) 0.79 ± 0.08 0.68 ± 0.06 NS

Glycerol (mmol/l) 0.21 ± 0.03 0.19 ± 0.01 NS

Total Protein (g/DL) 5.45 ± 0.12 5.39 ± 0.07 NS

Lipase (U/l) 9.10 ± 0.97 9.06 ± 1.19 NS

C-Peptide (pg/ml) 132.18 ± 15.63 162.85 ± 24.72 NS

Triglycerides (mmol/l) 0.78 ± 0.1 0.77 ± 0.06 NS

IGF-1 (ng/ml) 1221.50 ± 55.06 1277.63 ± 63.72 NS

Creatinine (mmol/l) 20.15 ± 0.49 23.64 ± 1.36 0.014

Insulin (ng/ml) 0.33 ± 0.06 0.53 ± 0.07 0.017

Total Fat (%) 24.09 ± 0.95 23.66 ± 0.47 NS

LDL (mmol/l) 0.27 ± 0.03 0.46 ± 0.04 0.006

HDL (mmol/l) 1.27 ± 0.06 1.34 ± 0.07 NS

LDL:HDL ratio 0.21 ± 0.02 0.35 ± 0.02 0.003

Table 3.1: Phenotypic measurements relevant to metabolic syndrome measured for

each of the eight animals in each treatment group at day 55 and shown as mean ±
SEM. The p-value was calculated with a t-test and an FDR correction. NS = not

significant.
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Measurement AD Mean UN mean Adjusted p-value

Body weight (grams) 511 ± 23.30 489 ± 24.45 NS

Body length (mm) 238 ± 2.52 218 ± 2.61 0.05

Total Fat (%) 27.81 ± 1.64 35.89 ± 2.51 0.05

Fat pad weight (% body weight) 1.45 ± 0.14 2.14 ± 0.20 0.05

Leptin (ng/ml) 9.63 ± 1.56 22.53 ± 5.49 0.005

Insulin (ng/ml) 0.26 ± 0.08 0.50 ± 0.08 0.001

C-Peptide (pg/ml) 466 ± 108.6 729 ± 96.8 0.05

Plasma glucose (mmol/l) 7.0 ± 0.44 7.2 ± 0.24 NS

Free Fatty Acids (mmol/l) 0.86 ± ± 0.10 0.99 ± 0.08 NS

Liver weight (% body weight) 2.92 ± 0.07 2.78 ± 0.07 NS

IGF-1 (ng/ml) 1236 ± 70.87 1145 ± 72.69 NS

Table 3.2: Phenotypic measurements relevant to metabolic syndrome measured for

each of the eight animals in each treatment group at day 110 and shown as the mean

± SEM. The p-value was calculated with a t-test and an FDR correction. NS = not

significant.

3.2.2 Microarray

Tissue samples were shipped to the University of Cambridge on dry ice for RNA

extraction. Eight biological replicates were used for each of the two treatment groups

(AD and UN) and for each of three tissues (liver, skeletal muscle, and white adipose

tissue).

MEEBO

The liver samples were hybridised to the MEEBO chip as described in Chapter

2. The experimental design used a reference design with a dye swap as shown in

Figure 3.9. Each MEEBO slide contained one UN individual hybridised against the

reference. The reference was a control pool of all eight AD samples. Only four of

the UN samples were hybridised. A technical replicate was done for each of the four

biological replicates, in addition to two dye swaps. So a total of 16 MEEBO slides were

hybridised, four for each of the four UN samples. RNA extraction, amplifications, and

microarray hybridisations were done as described in Chapter 2 and were randomised

to avoid sample bias.

60



UN Sample

AD Sample

Array A Array B

Figure 3.9: Design of the Dye Swap Experiment for the Samples Hybridised on the
MEEBO Array. Control (AD) and treatment (UN) samples were labelled with cy3 or
cy5 dye and hybridised to MEEBO arrays. Samples were then labelled with alternate
dyes and again hybridised to arrays. These technical replicates allowed experimental
control over dye bias.

Data Quality Control

It is important to first check the quality of the hybridisations (described in Chapter

1). This can be done using a variety of visualisation tools. Figure 3.10 is a density

plot of the signal intensity against the density for each sample in each channel. This

is useful for visualising huge differences in intensity between samples or even between

dyes. Figures 3.11 and 3.12 show box plots of the amplitudes of intensities for each

dye separately across all samples. Both of these methods have revealed that although

there is variation in intensity across the samples, there does not seem to be a dye

bias.

Further quality control assessments can be made by comparing replicates within

treatment groups. This was determined using M-A plots which are shown for all

the samples in Figure 3.13. For most of the samples, the plot shows a funnel shape

indicating that there is higher variance at the lower intensities.
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Figure 3.10: This is a density plot of all MEEBO samples in each channel before
normalisation. This figure shows the density of intensities for the red and green
channels on each array. There is clearly variation in intensity, which can be corrected
with normalisation; however, there is no dye bias.
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Figure 3.11: This is a boxplot showing the amplitude of the intensities for each sample
in the red channel.
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Figure 3.12: This is a boxplot showing the amplitude of intensities for each sample
in the green channel.
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Normalisation/Differential Expression

Two different analyses of the data were performed. The initial analysis was done

using the R library FSPMA [75] for normalisation and to calculate p-values; FSPMA

is based on the mixed model ANOVA library YASMA [76] and is described in more

detail in Chapter 2. FSPMA averaged technical and biological replicates and nor-

malised the data using a loess normalisation. The analysis revealed 75 upregulated

genes (p-value < 0.001) and 100 significantly downregulated genes (p-value < 0.001)

(see Appendix C, Table 1).

The second analysis utilised the R library Limma. The data was normalised using

a loess within-array background correction and a quantile between-array normalisa-

tion. The differentially expressed genes were determined by pairwise comparison

with a FDR multiple testing correction to calculate p-values. This analysis revealed

956/38976 significant genes (see Appendix C, Table 2).

For both of these analyses the significant genes largely had A-flags with a few

B-flags which confirm that the data is reliable. This chip included several candidate

genes that are of interest in the literature including (Ppargc1b, Ppard, Pparc1a, Pparg,

Pparbp, Ppara, Acox1, Nr3c1, and Hsd11b2 ). Although all of these genes had A-

flags indicating successful hybridisation, none of them had significant p-values for

differential expression.

Illumina

After the initial hybridisation on the MEEBO chip, the Illumina platform was

acquired so the study was repeated and expanded using this technology. Subsequent

and more detailed analysis have focused on this dataset. Each Rat-Ref12 Illumina

chip has twelve arrays. As it is a single colour system there is no need for a dye swap.

In addition, as samples are hybridised independently AD samples were individually

hybridised rather than combined into a pool. In total, 4 Illumina slides (48 arrays)

were hybridised for the three tissue samples and two treatment groups. Figure 3.14

illustrates the experimental design. RNA was extracted from liver, muscle, and fat

65



Treated Rat (UN) Control Rat (AD)

Muscle WAT Liver

X8 X8{ 1

6

77

12

(48 Total Samples)

Figure 3.14: Microarray Design. This study included two treatment groups and three
different tissues. There were eight biological replicates for each treatment group.
RNA was extracted from the liver, muscle, and fat of each animal. The samples were
hybridised independently on Illumina RatRef12 chips. Each chip has 12 arrays; the
48 samples filled 4 Illumina slides.

tissue and hybridised to Illumina microarrays as described in Chapter 2.

Data Quality Control

The Illumina system includes several internal controls for estimating hybridisation

quality. Figure 3.15A-F shows six graphs of the quality control data for the liver,

muscle, and fat samples. Figure 3.15A compares the low, medium, and high intensities

across arrays. Ideally, arrays should have signal intensities in the same range. It is

expected that there be a linear increase of signal between the three intensities. In

figure 3.15A, there is a slight dip at medium intensity. To investigate this, it is

necessary to look at the individual data points for the medium intensity signals.

Figure 3.15B shows the detailed data for each array for the medium intensity signals.

This shows that all samples are not completely consistent. The medium intensity

signals, for the liver tissue samples, all fall in the tight range of 14,000-16,000 while the

muscle (12,000-22,000) and WAT (6,000-18,000) are much more spread out. Figure

3.15C shows the high stringency of the data. For high quality data, it is expected that

the biotin signal would be 3–4 fold lower than the high stringency signal, as shown

for this data. Figure 3.15D shows the low stringency of the data, by comparing the

signal intensity of two mismatches to the signal intensity of a perfect match. The

perfect matches should have a 3–4 fold higher signal, as shown for this data. No
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signal intensity indicates the hybridisation failed. Figure 3.15E shows the data for

the negative control. The background signal should be approximately 70. This value

is accounted for in the normalisation algorithms. The noise signal should be very low

for high quality data. Figure 3.15F compares the signal from the housekeeping genes

to the signal from all genes. As housekeeping genes are always expressed they should

have a much higher signal compared with all genes. This shows that this data was

generally high quality although a few of the muscle and WAT arrays had intensities

slightly higher or lower than most of the arrays.

To compare the samples in more detail the data was exported from BeadStudio

and imported into R Bioconductor. Here the raw data was plotted in several graphs

(pairwise, MA, density plot, boxplot), then normalised and re-plotted to compare

pre and post normalisation. In addition, the arrays were clustered using hierarchical

clustering. The hierarchical clustering in figure 3.16 shows that with few exceptions

the data clusters based on tissue type. This indicates there are more differences

between tissues than between treatment groups. In addition, it is a good quality

control check to confirm that samples do not cluster based on day of experiment or

other factors. Figures 3.17 to 3.22 show pairwise comparisons for each of the two

treatment groups for each of the three tissues. A tight diagonal line is expected

for replicates, as this indicates low variability between samples. Figure 3.20 and 3.22

reveal some data that do not look good. The UN-muscle samples 101.1 and 105.0 and

the UN-fat sample 105.0 show much more scatter than the others. Taking another

look at figure 3.16 reveals that two of these samples are the ones that did not cluster

in the same way as the other samples.
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A                                                                  C

B                                                                  D

                                                                     E                                                          

                                                                     F

Figure 3.15: Illumina Internal Controls. This figure shows the details of the internal
quality control tools for the Illumina platform. (A)Low, medium and high intensities
across arrays. Ideally, arrays should have signal intensities in the same range. It is
expected that there be a linear increase of signal between the three intensities. In
this data, there is a slight dip at medium intensity. (B)Detailed data for each array,
for the medium intensity signals. Individual array data is available for all internal
control measures, this one is being shown as an example. It shows that all samples are
not completely consistent. The medium intensity signals for the liver tissue samples
all fall in the tight range of 14,000-16,000 while the muscle (12,000-22,000) and WAT
(6,000-18,000) are much more spread out. (C)High stringency of the data. For high
quality data, it is expected that the biotin signal would be 3–4 fold lower than the
high stringency signal as shown for this data. (D)Low stringency of the data by
comparing the signal intensity of two mismatches to the signal intensity of a perfect
match. The perfect matches should have a 3–4 fold higher signal as shown for this
data. No signal intensity indicates the hybridisation failed. (E)Data for the negative
control. The background signal should be approximately 70. This value is accounted
for in the normalisation algorithms. The noise signal should be very low for high
quality data. (F)Comparison of the signal from the housekeeping genes to the signal
from all genes. As housekeeping genes are always expressed, they should have a much
higher signal compared with all genes. This shows that this data was generally high
quality although a few of the muscle and WAT arrays had intensities slightly higher
or lower than most of the arrays.
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Figure 3.16: Hierarchical Clustering of All Tissues Before Normalisation. We would
expect the biological replicates to cluster together. Here samples have clustered based
on tissue type. The samples that have clustered out of place (UN-muscle sample
101.1 and the UN-WAT sample 105.0) are also two of the samples that show a larger
variability in the pairwise plots in figure 3.20 and 3.22
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Figures 3.23 and 3.24 are plots of the arrays before normalisation. Figure 3.23

is a boxplot of the amplitude across and arrays and figure 3.24 is a density plot of

the intensity for each array. These plots show that there is variation between arrays,

therefore, normalisation is necessary.

Normalisation/Differential Expression

The three samples that had been shown as being poor data in the quality control

assessment were removed from subsequent analysis. In total, there were 22,226 genes

represented on the Illumina RatRef Chip. The data was filtered for genes expressed on

at least one array. This left 12,951 genes. Data was then transformed with a variance

stabilising transformation and normalised with a quantile normalisation (described

in more detail in Chapter 2). Figure 3.25 and 3.26 show a boxplot and density plot

of all samples after normalisation.

A pairwise comparison produced p-values and a list of differentially expressed

genes. This analysis revealed no significantly, differentially expressed genes amongst

the muscle and fat samples. This suggested that the larger variation among these

samples might be affecting the normalisation. Filtering and normalisation was re-

peated separately for samples from each tissue. Muscle was filtered to 10,644, fat

was filtered to 9,941, and liver was filtered to 10,887 genes. When the same transfor-

mation and normalisation was done to each data set, still no genes were revealed as

being differentially expressed in muscle and fat. For the liver samples, genes with a

p-value < 0.05 were considered to show significant differential expression between the

two groups. The comparison for liver revealed a list of 249 differentially expressed

genes, which is shown in table 3.3 with associated p-values and fold changes between

the two treatment groups. Appendix C Tables 1, 2, and 3 summarise the expression

values for all genes represented on the array for liver, muscle, and WAT.
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Boxplot of All Tissues Before Normalisation

Figure 3.23: Boxplot Before Normalisation. The box itself contains the middle 50%
of the data points. The line in the box indicates the median value of the data. If
the median line within the box is not equidistant from the hinges, then the data
is skewed. The ends of the vertical lines or ‘whiskers’ indicate the minimum and
maximum data values of the data from each array. The plot compares the amplitude
of all expression values on each array. This shows that the majority of the signal is
at lower expression levels. It also shows that there is some variability between each
array. This analysis was done in Lumi.
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Density Plot of All Tissues Before Normalisation

Figure 3.24: Histogram of Density of Log2 Intensities For All Arrays. This is a
histogram of each array showing the density of intensities (log2). This plot shows
that the majority of intensity values are low and that there is significant variation
between samples. This analysis was done in Lumi.
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Bloxplot of All Tissues After Filtering, VST, and Quantile Normalisation (n=12951)

Figure 3.25: Boxplot After Quantile Normalisation. This plot compares the ampli-
tude of all expression values on each array. This shows that the majority of the signal
is at lower expression levels and that there is no variability between the arrays. The
normalisation has effectively adjusted the expression values to remove the variability.
This analysis was done in Lumi.
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Density Plot of All Tissues After Filtering, VST, and Quantile Normalisation (n=12951)

Figure 3.26: Histogram of Density of Log2 Intensities For All Arrays After Quantile
Normalisation. This is a histogram of each array showing the density of intensi-
ties (log2). This plot shows that the majority of intensity values are low and that
there is no variation between samples. The normalisation has effectively adjusted the
expression values to remove the variability. This analysis was done in Lumi.
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Log Fold Adjusted Gene Accession Gene Symbol

Change p-value

1.1003 0.0315 NM 013122.1 Igfbp2

0.7059 0.0114 NM 012733.3 Rbp1

0.6239 0.0483 NM 013089.1 Gys2

0.577 0.038 NM 001008363.1 RGD1310991 - Zfand2a

0.4877 0.0278 NM 053907.1 Dnase1l3

0.4662 0.024 NM 030832.1 Fabp7

0.4596 0.0331 NM 001007732.1 MGC94010 - Serpinb9

0.4265 0.0252 NM 175756.1 Fcgr2b

0.3684 0.0319 NM 024400.1 Adamts1

0.3412 0.038 NM 017334.1 Crem

0.3406 0.038 XM 573570.1 Crlz1 predicted

0.3322 0.0492 NM 001001507.1 Oit3

0.3299 0.0259 XM 235156.3 Ptprb predicted

0.3254 0.0278 XM 579533.1 Ugcg

0.3248 0.0319 NM 199085.1 Serpinb6

0.3181 0.0252 XM 576256.1 LOC500859 - similar to 60S ribosomal pro-

tein L7a

0.3151 0.0278 NM 001007657.1 RGD1359127 - similar to RIKEN

0.3125 0.0252 NM 022396.1 Gng11

0.3065 0.0278 XM 579502.1 LOC497936- Tmem88

0.3027 0.0319 XM 221702.3 LOC304138 - Cyyr1

0.2884 0.0286 XM 235041.3 LOC314733 - similar to ribosomal protein

S19

0.2863 0.0395 XM 575053.1 Sh3glb1 predicted

0.2854 0.038 XM 223786.3 Zfp503 predicted

0.2798 0.0407 XM 235308.3 Col14a1 predicted

0.2789 0.0309 NM 138974.1 Gstp2

0.2774 0.0315 NM 022510.1 Rpl4

0.2716 0.0328 NM 057137.1 Ebp

0.2702 0.0112 XM 216482.3 LOC298370 - Txndc12

0.2696 0.0326 XM 578896.1 LOC367566 - similar to Y-linked testis-

specific protein

0.2684 0.0317 NM 199372.1 Eif4a1

0.2602 0.0326 NM 001004279.1 Ppid

0.2535 0.0418 XM 213058.2 LOC298785 - similar to ribosomal protein

S26
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Log Fold Adjusted Gene Accession Gene Symbol

Change p-value

0.2529 0.0319 NM 198765.1 BicD2

0.2526 0.0252 XM 217279.3 Scap predicted

0.2521 0.0395 XM 577114.1 LOC501709 - similar to 60S ribosomal pro-

tein L23a

0.2515 0.0252 NM 031552.1 Add3

0.2494 0.0492 XM 235687.3 LOC315324 - Kb40

0.2494 0.0252 NM 001009674.1 Itm2c

0.2483 0.033 NM 053525.1 Ddx52

0.2481 0.0326 XM 579342.1 Tacr1

0.2479 0.0423 XM 233462.3 Tie1

0.2433 0.0252 XM 343771.2 LOC363450 - Ftsj1

0.2425 0.0492 NM 031646.1 Ramp2

0.2417 0.0492 NM 173116.1 Sgpl1

0.2406 0.0417 NM 001004085.2 Crat

0.2382 0.0326 NM 001009620.1 MGC105601 - Tmem204

0.2355 0.0278 XM 215041.3 Rpl27a predicted

0.2348 0.0417 NM 031093.2 Rala

0.2325 0.0006 XM 212922.3 LOC294700 - similar to ribosomal protein

L21

0.2313 0.0405 XM 343002.2 Cebpz predicted

0.2313 0.033 XM 235689.3 LOC315329 - similar to expressed sequence

AW556797

0.2288 0.0259 XM 341612.2 Sema6a predicted

0.2277 0.0395 XM 224350.3 Fndc3 predicted

0.2257 0.0423 XM 217105.3 Ei24 predicted

0.2252 0.0282 NM 001009702.1 RGD1306106 - Rrp15

0.2251 0.0259 XM 213960.3 LOC289324 - Cnih4

0.2248 0.0328 NM 017178.1 Bmp2

0.2219 0.0315 XM 578657.1 LOC366887 - similar to ribosomal protein

L31

0.2214 0.0497 NM 017233.1 Hpd

0.2205 0.0259 XM 345933.2 LOC367077 - similar to 40S ribosomal pro-

tein S26

0.2205 0.0278 XM 232937.3 LOC313196 - similar to KIAA0368

0.2205 0.0457 XM 214553.3 Atp8b1 predicted

0.2155 0.038 XM 342911.2 LOC362593 - Gnl2
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Log Fold Adjusted Gene Accession Gene Symbol

Change p-value

0.2138 0.0233 NM 022605.1 Hpse

0.2124 0.0211 NM 001004245.1 Esam

0.2121 0.0457 XM 227556.3 LOC310760 - Cttnbp2nl

0.208 0.0315 NM 031745.2 Rsn

0.2067 0.0211 NM 017199.1 Ssr4

0.2062 0.0417 NM 013135.1 Rasa1

0.2057 0.0252 XM 221473.3 LOC498078 - similar to 60S ribosomal pro-

tein L7a

0.204 0.0469 XM 343850.1 LOC363531 - similar to 40S ribosomal pro-

tein S19

0.202 0.0424 XM 579528.1 B4galt6

0.2015 0.0315 XM 214191.3 Xpo4 predicted

0.2013 0.0319 NM 054004.1 Cand1

0.1992 0.0407 XM 580138.1 LOC500939

0.1982 0.0259 NM 012875.1 Rpl39

0.1952 0.0252 XM 216499.3 LOC298425 - RIKEN

0.1945 0.0211 XM 576096.1 LOC500714 - similar to ribosomal protein L6

0.1915 0.0282 XM 213403.3 LOC287541 - Ift20

0.1907 0.0226 XM 215053.3 LOC293454 - Ubfd1

0.1893 0.0395 XM 343490.2 LOC363151 - Ccdc12

0.1891 0.0252 XM 577309.1 LOC364108 - similar to ribosomal protein

S17

0.1887 0.0492 XM 573428.1 LOC498211-MAT-II

0.1883 0.0315 NM 053302.1 Admr

0.1882 0.0423 XM 575861.1 LOC366411 - similar to ribosomal protein

S24

0.1866 0.0259 NM 031085.2 Prkch

0.1859 0.0492 NM 133528.1 Prei3

0.1815 0.0278 NM 198787.1 Rutbc3

0.181 0.0312 NM 053720.1 Aatf

0.181 0.0315 XM 573168.1 LOC497974 - similar to novel protein

0.1802 0.0081 NM 001009696.1 RGD1307008 - Dcun1d5

0.18 0.029 NM 022005.1 Fxyd6

0.1739 0.0487 XM 228760.3 LOC317376 - Tcfe3

0.1734 0.0315 XM 574016.1 Serpinb6b predicted

0.1711 0.0314 NM 053345.1 Gtf2a2
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Log Fold Adjusted Gene Accession Gene Symbol

Change p-value

0.1706 0.0407 XM 576398.1 Tmem24 predicted

0.1683 0.0252 NM 021681.1 Epb4.1l1

0.1674 0.0416 NM 133297.1 Sep-15

0.1637 0.0417 XM 576285.1 LOC500885 - similar to 40S ribosomal pro-

tein S19

0.1586 0.0492 XM 213394.2 LOC287477 - Tmem93

0.1585 0.028 XM 233982.3 LOC313974 - Trib2

0.1581 0.034 NM 053927.1 Epb4.1l3

0.158 0.0417 XM 219373.3 LOC309009 - similar to cDNA sequence

BC025641

0.1577 0.0407 XM 341863.2 Gtf2h1 predicted

0.1552 0.0395 XM 343037.2 Ddx1

0.1539 0.0315 XM 227527.3 Wdr3 predicted

0.1524 0.0417 NM 012500.1 Apeh

0.1514 0.009 XM 215404.2 Bxdc1 predicted

0.1501 0.0315 XM 232531.3 Surb7 predicted

0.1501 0.0278 NM 012745.2 Klrd1

0.1501 0.0395 NM 138532.1 Nme7

0.1488 0.0435 NM 001008290.1 RGD1310861 - similar to RIKEN cDNA

1500011H22

0.1484 0.0492 XM 573294.1 LOC498088 - similar to hypothetical protein

A

0.1452 0.0492 NM 031735.1 Stk3

0.1451 0.0418 NM 021682.1 Negr1

0.1446 0.0278 NM 001005536.1 p49/STRAP

0.1429 0.0335 XM 579788.1 LOC498118 - RGD1564468

0.1426 0.0435 XM 232995.3 Rnf20 predicted

0.1419 0.0278 XM 573749.1 LOC498489 - RGD1559923

0.1416 0.0315 NM 022700.1 Arl3

0.1338 0.0287 XM 214983.3 RGD1310022 predicted

0.1294 0.0309 XM 216759.3 Med6 predicted

0.1279 0.0444 XM 225053.2 LOC290916 - similar to 60S ribosomal pro-

tein L23a

0.1251 0.0252 NM 001009689.1 Cdc42ep2

0.1228 0.0492 NM 001008357.1 Hcfc2

0.1223 0.0418 XM 341918.2 LOC361639 - RGD1307507
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Log Fold Adjusted Gene Accession Gene Symbol

Change p-value

0.1217 0.0259 XM 578086.1 LOC502599 - similar to 40S ribosomal pro-

tein S26

0.1215 0.0331 XM 218415.2 Gpr4 predicted

0.1209 0.0411 XM 573303.1 LOC498097 - Wdr53

0.1205 0.0328 XM 236438.3 LOC315843 - similar to WD repeat domain

11 protein

0.1202 0.0278 NM 145680.2 Gimap5

0.1195 0.0326 XM 215017.3 LOC293181 - Galntl4

0.1159 0.0252 XM 214874.3 LOC292724 - Ccdc97

0.1154 0.038 XM 222868.3 Olfml2b predicted

0.1146 0.0278 XM 574766.1 LOC499443 - Lims1

0.1126 0.0252 XM 342168.2 Cetn3

0.1034 0.0497 XM 219309.2 LOC293472 - similar to 60S ribosomal pro-

tein L13

0.1024 0.0278 XM 579982.1 LOC499580 - RGD1561695

0.097 0.0395 XM 574926.1 LOC499600 - RGD1560944

0.0923 0.0492 XM 236644.3 Smarcc1 predicted

0.0923 0.0492 XM 215902.3 RGD1311678 predicted

0.0921 0.0407 XM 573169.1 LOC497975 - Znhit3

0.083 0.0481 XM 218452.2 Lgtn predicted

-0.087 0.0331 XM 579952.1 LOC499365 - RGD1561823

-0.092 0.0315 XM 237146.2 LOC301388 - RGD1562317

-0.101 0.0417 XM 218346.1 LOC308444 - Axl

-0.102 0.0305 NM 145789.1 Il13ra1

-0.105 0.0416 XM 573373.1 LOC498160 - Zkscan1

-0.112 0.038 NM 138976.1 Mfn1

-0.116 0.0417 XM 230291.3 Fnbp4 predicted

-0.116 0.038 XM 221043.3 Tex2 predicted

-0.119 0.0319 NM 198757.2 Srr

-0.13 0.033 XM 341579.2 Npc1 predicted

-0.134 0.038 XM 212982.3 LOC296724 - RGD1565758

-0.137 0.0328 XM 580139.1 LOC500955 - RGD1561356

-0.137 0.0328 XM 226417.2 Thap11 predicted

-0.137 0.0494 XM 237326.2 LOC316550 - similar to Rab18

-0.138 0.0402 XM 215626.3 LOC295245 - Rag1ap1

-0.138 0.0379 XM 232647.3 LOC312946 - Tmem68
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Log Fold Adjusted Gene Accession Gene Symbol

Change p-value

-0.139 0.0278 XM 342238.2 RGD1310132 predicted

-0.141 0.0278 NM 139332.1 Tpcn1

-0.147 0.0379 NM 031030.1 Gak

-0.148 0.0278 NM 013177.1 Got2

-0.148 0.0492 XM 216255.3 Crbn predicted

-0.15 0.0278 XM 574939.1 LOC499612 - similar to NADH dehydroge-

nase (ubiquinone) 1, subcomplex unknown,

1

-0.153 0.0259 XM 342838.2 Mapk9

-0.155 0.038 XM 342838.2 Fcmd predicted

-0.156 0.0407 XM 575280.1 LOC499935 - RGD1562582

-0.158 0.0315 XM 576379.1 Atpi

-0.159 0.0395 XM 233196.3 Hook1 predicted

-0.161 0.0326 XM 218848.3 Stard5 predicted

-0.161 0.038 NM 133387.1 Tmlhe

-0.163 0.0252 NM 013173.1 Slc11a2

-0.166 0.0335 XM 220076.3 Atad1 predicted

-0.166 0.0226 NM 080787.1 Dgka

-0.167 0.0315 NM 001009290.1 Ndufc2

-0.171 0.0429 XM 220047.3 Tnks2 predicted

-0.174 0.0497 XM 343513.2 Aplp2

-0.174 0.0382 NM 020076.1 Haao

-0.179 0.0252 NM 031353.1 Vdac1

-0.18 0.0497 XM 222022.3 Trfr2 predicted

-0.181 0.0287 XM 575959.1 Tardbp predicted

-0.181 0.0481 NM 053357.2 Ctnnb1

-0.184 0.0423 NM 138883.1 Atp5o

-0.184 0.0417 XM 579951.1 LOC499357 - RGD1562275

-0.187 0.0492 XM 214276.2 LOC290555 - Spcs1

-0.188 0.0305 XM 216928.3 LOC299949 - Wdr67

-0.188 0.0417 XM 342268.2 Trim2 predicted

-0.189 0.0315 NM 001008304.1 Ptov1

-0.191 0.038 XM 573163.1 LOC497971 - withdrawn

-0.194 0.0392 NM 017033.1 Pgm1

-0.194 0.0326 XM 579608.1 LOC497802 - Manea

-0.196 0.0407 XM 578010.1 LOC502525 - similar to homolog of yeast

TIM14 isoform c
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Log Fold Adjusted Gene Accession Gene Symbol

Change p-value

-0.197 0.0483 NM 139081.1 Oaz1

-0.198 0.0497 XM 573972.1 LOC498687 - RGD1564910

-0.198 0.033 NM 017022.1 Itgb1

-0.2 0.0487 XM 224617.3 Capn7 predicted

-0.205 0.0372 XM 223745.3 LOC305633 - similar to Antxr2 protein

-0.205 0.0328 XM 235768.3 Tmprss6 predicted

-0.207 0.0252 NM 001009646.1 Qprt

-0.211 0.0319 XM 233808.3 Prkcn predicted

-0.212 0.0287 NM 172091.1 Gcgr

-0.214 0.0492 NM 172008.1 Canx

-0.214 0.038 XM 575138.1 Axot predicted

-0.215 0.0417 XM 216378.3 Ndufb6 predicted

-0.216 0.0417 XM 341854.2 LOC361571 - Aldh16a1

-0.216 0.0309 XM 344301.1 LOC364258

-0.217 0.0252 XM 342695.2 LOC362370

-0.22 0.0492 XM 579362.1 Nfia

-0.221 0.0319 XM 579711.1 LOC497803

-0.222 0.0326 XM 219895.3 RGD1305246 predicted; Fam108b1

-0.228 0.038 XM 214409.3 LOC290964

-0.23 0.0278 XM 228158.3 LOC309788

-0.235 0.0405 NM 199404.1 Man2b1

-0.24 0.033 XM 576497.1 LOC501085 - rSULT1C2

-0.249 0.0476 NM 173123.1 Cyp4f4

-0.253 0.0252 NM 053600.1 Fez2

-0.255 0.0407 XM 216044.3 Ndufa8 predicted

-0.257 0.0315 XM 213943.3 Mgst3 predicted

-0.263 0.0435 NM 178105.2 Gpm6a

-0.266 0.0114 XM 343935.2 RGD1307010 predicted; Glod4

-0.272 0.0497 XM 341824.2 Capns1

-0.278 0.0278 NM 031013.1 Abcc6

-0.29 0.0407 XM 345167.2 LOC365699 - similar to hypothetical protein

FLJ30596

-0.298 0.0114 XM 576040.1 LOC500662 - GST 8-8

-0.302 0.0278 XM 346854.2 Besh3

-0.32 0.0372 NM 013146.2 Cald1

-0.335 0.0315 XM 579586.1 LOC497846 - Magt1
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Log Fold Adjusted Gene Accession Gene Symbol

Change p-value

-0.337 0.0319 XM 575256.1 LOC499912

-0.35 0.0315 XM 343776.2 Pls3

-0.358 0.038 XM 576370.1 LOC500959 - triosephosphate isomerase

-0.359 0.0226 NM 001009636.1 RGD1308082 - Prelid1

-0.36 0.0328 XM 214551.3 Cidea predicted

-0.363 0.0435 NM 153318.1 Cyp4f6

-0.367 0.0417 NM 031144.2 Actb

-0.371 0.0031 BC088177 BC088177 - Qprt

-0.371 0.0392 NM 022272.1 Fbxl20

-0.377 0.0326 XM 341557.2 Dhtkd1 predicted

-0.38 0.0226 NM 130403.1 Ppp1r14a

-0.389 0.0278 XM 574498.1 Dgat2

-0.394 0.0326 XM 219925.3 Ankrd15 predicted

-0.413 0.0326 XM 231739.3 RGD1306512 predicted

-0.427 0.029 NM 012992.2 Npm1

-0.444 0.0252 NM 016991.2 Adra1b

-0.446 0.022 XM 230613.3 Hao1

-0.471 0.0417 XM 221747.3 Gbe1 predicted

-0.553 0.0418 XM 342965.2 Arhgef19 predicted

-0.662 0.038 XM 221358.3 LOC303861 - Cpn2

-0.875 0.0252 XM 575821.1 LOC500457

Table 3.3: Differentially Expressed Genes from Illumina Microarray. This table shows

the 249 genes that were differentially expressed on the Illumina Rat-Ref12 chip in

the livers of the 55 day old male offspring of mothers that had been undernourished

during pregnancy. The table shows the log fold change, the adjusted p-value, the

genbank accession ID, and the gene symbol.
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3.2.3 QRT-PCR for Microarray Verification

Quantitative RT-PCR analysis of selected genes was performed in order to confirm

the expression data derived from array analysis. Seven genes (Igfbp2, Fabp7, Zfand2a,

Dgat2, Gys2, Adra1b, and Rbp1 ) found to be differentially expressed were selected for

qRT-PCR on the pooled RNA samples for the biological replicates in each treatment

group. qRT-PCR was performed as described in Chapter 2. Cyclophilin was used as

an invariant control for normalisation.

Figure 3.28 summarises the data and illustrates that the differences in ∆∆Ct

values between the AD and UN RNA populations for each gene are consistent with

the expression changes determined by array analysis.

Previous analysis has provided evidence that the expression of the Pparα, GR,

and Aox genes is altered in the liver of offspring from normally nourished mothers

compared to mothers who had either a low protein diet or balanced undernutrition

during pregnancy [82, 84]. It has also been suggested, that Pepck (phosphoenolpyru-

vate carboxykinase) and 11β-hsd2 (11β-hydroxysteroid dehydrogenase type 2) may

also be genes influenced by diet [85, 86]. As these genes were not represented by any

of the oligonucleotides on the RatRef12 array, they were assessed by qRT-PCR in the

AD and UN RNA populations using cyclophilin as the normalisation control. The

qRT-PCR expression results of the five candidate genes are shown in figure 3.27 for

the 8 biological replicates in each treatment group. For Pparα and Pepck, there is no

evidence for any differences in expression levels between the two treatment groups.

However, GR, Aox, and 11β-hsd2 show 1.5 to 2–fold increases in expression in the

UN treatment group. As previously mentioned, some of these genes were represented

on the MEEBO chip, but without significant p-values. It is interesting to note that

the study done by Sedova et al. [87] used a diet high in sucrose and therefore also

low in protein, making it similar to the diet used by Lillycrop et al.. Sedova found

early indicators of the metabolic syndrome consistent with the findings of Lillycrop

et al., which suggests that sucrose may be involved in dietary programming.
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Gene Expression Validation by q  RT-PCR

Figure 3.27: Five previously published candidate genes from Lillycrop et al. [82] were
analysed by qRT-PCR. Each of the eight individual samples was run in triplicate (24
data points for each treatment group). The ∆∆CT values are shown for each gene
along with error bars for standard error. Due to the large number of data points the
error bars are very small and difficult to see.

Gene Expression Validation by q  RT-PCR

Figure 3.28: Seven genes were chosen from the 249 significantly differentially ex-
pressed genes on the Illumina microarray. The RNA from the 8 biological replicates
was pooled for each of the two treatment groups. qRT-PCR for the two samples was
run in triplicate with cyclophilin as a control. The ∆∆CT values are shown for each
gene along with error bars for standard error. The values have been converted into a
fold change for comparison to the array results shown in table 3.4.
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Gene Name Illumina Microarray QRT-PCR Meebo Microarray

Expression Expression Expression

(Fold Change) (Fold Change) (Fold Change)

ADRA1B 0.7 1.9 NS

DGAT2 0.8 0.5 NS

FABP7 1.4 1.7 0.887

GYS2 1.5 1.6 NS

IGFBP2 2.1 2.7 NS

Zfand2a 1.5 2.5 NS

RBP1 1.6 1.2 NS

Table 3.4: Microarray and QRT-PCR Data. Fold change for the QRT-PCR data and

the Illumina and MEEBO expression data is compared for each of the seven genes

from the Illumina array that were analysed by QRT-PCR. NS = not significant

3.3 Discussion

Animals at postnatal day 55 were chosen for the study because they had com-

pleted puberty, but had not begun to exhibit the features of the metabolic syndrome

phenotype observed later in adulthood and, as shown in the present study, as early

as day 110 postnatally [45, 57]. Our results presented show that while there are dif-

ferences in gene expression in hepatic tissue in day 55 males, there are no observed

differences in retroperitoneal white adipose or biceps femoris. This is an intriguing

finding, as both fat and skeletal muscle is adversely affected in the adult. This sug-

gests that there is a cascade of biological processes that amplifies over time to lead to

the phenotypic abnormalities. Previously Ozanne et al. [88] has shown, in a different

but related experimental model of maternal low protein intake, that the expression

of a limited number of genes in skeletal muscle is minimal early in life and accumu-

lates later in life. It would appear that major changes in gene expression in the liver

precede those in other metabolically relevant tissues.

The data for all three tissues is derived from 8 biological replicates in each treat-

ment group with technical replication on each array varying from 20–30 fold. This

means that for each gene represented on the array, there are between 160 and 240

measurements of expression level. This permits an accurate estimate of the variance
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that is used to derive the final p-value and provides confidence in the detection of

small gene expression changes. Thus the changes found in liver are based on many

measurements and are highly significant. This is further underscored by the absence

of any significant changes in gene expression between the two groups in muscle or

adipose tissue subjected to the same analysis. The qRT-PCR analysis of candidate

genes (Pparα and GR) showed very little difference in expression levels between the

two groups in the day 55 male offspring. This contrasts with the 10–fold, 3–fold, and

3–fold increase for Pparα, GR, and Aox, respectively, in the day 34 offspring born to

nutritionally restricted mothers as reported by Lillycrop et al. [82]. Four factors may

explain this difference. First, the restricted diet is different (50% protein restriction

only) whereas the diet in the study reported here is 30% of normal chow for all nu-

trients and may impact differently on gene expression. Second, in the Lillycrop et al.

study the animals were weaned on day 28 and spent only 6 days in the postweaning

period compared to 33 days in this present study. Third, the composition of the

postweaning diet in the present study is grain-based as opposed to a purified diet

containing 50% sucrose in the Lillycrop et al. study. Finally, the male and female

tissues were pooled in the Lillycrop et al. study and there may be gender differences

we have not explored. Similar to previous reports, 11β-hsd2 and Aox show increases

of between 1.5 to 2–fold in the offspring of undernourished mothers used in this study

[82].

Analysis of the gene categories and associated pathways associated with differen-

tially expressed genes (see Appendix C, Table 4) has revealed some relevant changes

that potentially impact on the metabolic phenotype. Table 3.5 summarises the rel-

evant categories to emerge from analysis of gene functions (some of which emerged

from DAVID and Ingenuity analyses) associated with the list of differentially ex-

pressed genes. Figures 3.29A and B summarise the interrelationships between path-

ways involved in glucose, fat, and energy metabolism and highlights differentially

regulated genes that influence these pathways.
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A

B

Figure 3.29: (A)Summarises the interrelationships between pathways involved in glu-
cose, fat, and energy metabolism and highlights differentially regulated genes that
influence these pathways. (B) A summary of the genes that are altered in signalling
through the IFG-1 and PI3K signalling pathways and their relevance to glucose and
fat metabolism. Normal arrows indicate no change in gene expression; dashed arrows
indicate down regulation; bold arrows indicate up-regulation.
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3.3.1 Glucose Metabolism

In utero, the foetus relies mainly on maternal glucose for its energy supply and

only in late gestation develops the capacity for glucose storage, mobilization, and

gluconeogenesis in preparation for postnatal life. Glucose and glycogen metabolism

appears to have developed inappropriately in the livers of UN animals [4, 89]. Many

of the changes in hepatic gene expression we detected are relatively modest and this

may reflect alterations in hepatic development. Burns et al. reported changes in the

balance of periportal to periarterial hepatocytes that have different metabolic profiles

in the offspring of low protein fed dams [90].

The livers of UN animals show changes in the anomalous expression of RNA for

several enzymes involved in glycogenesis, glycogenolysis, and glycolysis. There is a

54% increase in the expression of the glycogen synthase gene (Gys2 ); however, this

is counterbalanced by a marked decrease in expression of glucan branching enzyme

(Gbe1 ) that is essential for the formation and storage of glycogen. Furthermore,

there is a modest decrease in phosphoglucomutase (Pgm1 ) that converts the glucose-

1-phosphate resulting from glycogenolysis to glucose-6-phosphate destined for glycol-

ysis. There is also a deficit of triose phosphate isomerase, which could result in an

inefficient conversion of fructose 1-6 bisphosphate to glyceraldehyde-3 phosphate in

the glycolytic process. The reduced expression of triose phosphate isomerase would

therefore, affect the efficiency of glucose conversion to pyruvate and might indicate an

increased accumulation of dihydroxyacetone phosphate. This can readily be reduced

to glycerol-3-P that is the backbone for phosphatidates and signalling phospholipids.

Overproduction of these could disrupt intracellular function. The efficiency of the

TCA would be compromised by the reduction in dehydrogenase E1 (DHTKD1). This

enzyme catalyses the conversion of α-ketoglutarate to succinyl CoA- a key step in the

TCA. Its subsequent conversion to succinate is the only step in glucose catabolism

that produces high-energy phosphate (GTP) directly, without the need for oxidative

phosphorylation. The GTP can be used for nucleotide-specific metabolic reactions or

it can convert ADP to ATP. Production of oxaloacetate further on in the cycle would
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also be affected. This would slow the rate of formation of citric acid and the entry

into the TCA of acetyl-CoA from oxidative decarboxylation of pyruvate. Supplemen-

tation of oxaloacetate from metabolism of branched-chain amino acids would also be

reduced. This means that most of the oxaloacetate is required as an intermediate for

TCA function and less is available for gluconeogenesis. It is interesting to note, that

there is a reduction in the transcripts of other enzymes involved in the catabolism of

amino acids that supply intermediates to the TCA cycle. In the foetus, this impasse

may be circumvented to an extent by the presence of the glyoxalate cycle in which

acetate can be converted to either glucose or succinate. However, this pathway dis-

appears after birth and hence the inability for gluconeogenesis would be exacerbated

postnatally.

3.3.2 Insulin and IGF-1 Signalling

The insulin and IGF-1 receptors are closely related structurally and share many

post-receptor signalling mechanisms. The livers of UN animals show changes in ex-

pression of genes whose products are known to attenuate the PI3 kinase signalling

pathway that is common to both receptors. Both Igfbp2 and Rbp1 are known to

interact with components of the PI3Kinase/Akt signal

A primary function of IGF-1 is to drive postnatal cell proliferation and growth,

principally through the MAP kinase signal

3.3.3 Mitochondrial Activity

The array analysis indicates a number of changes in the expression of genes that

could affect the efficiency of electron transport and ATP generation in the mito-

chondrion in liver from UN animals. Transcripts of NADH dehydrogenase subunits

(Ndufc2, Ndufb6, and Ndufa8 ) of complex I of the electron transport chain are all

reduced as is quinolate phosphoribosyltransferase (Qprt) required for the synthesis

of NAD, the electron carrier. In addition, the ATP synthase (Atp5o) that generates

ATP from the electron gradient is reduced by a similar amount. Changes are also
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observed in peptidylprolyl isomerase D (Ppid) that controls the mitochondrial perme-

ability transition pore and Tim14, a component of the mitochondrial protein import

motor. Taken together these findings suggest a degree of mitochondrial dysfunction

in the livers of UN animals that could significantly affect the energy balance of the

tissue and may be the precursor of later adiposity. Since the liver acts as the initial

nutrient sensor, this defect could affect not only its own metabolism but also that of

other organs that respond to its systemic signals.

3.3.4 Fat

In this well-characterised model, it has been shown that undernourishment of

dams during pregnancy predisposes offspring to later adiposity and hyperinsulinaemia

when fed a normal diet [91] but only at an age later than we have undertaken gene

expression analysis. In the present study, even as early as day 110, male offspring

of UN dams are showing features of metabolic syndrome related to increased adi-

posity, hyperinsulinemia, and hyperleptinemia. The absence of any differences in fat

expression profiles between control and UN animals at day 55 may suggest that the

development of adiposity is secondary to early metabolic perturbations in postnatal

life. It is interesting to note that at day 35 UN rats show the onset of a sedentary phe-

notype (and hence reduced energy expenditure) before the presence of obesity [92].

This may reflect early changes in neurological gene expression modifying behaviour.

The elevated expression of RNA for fatty acid binding protein (FABP7) suggests

that in livers from UN animals there is an increase in the intracellular trafficking

of fatty acids. This is paralleled by increases in expression of Aox (from qRT-PCR

analysis), which catalyses the first step in the peroxisomal degradation of fatty acids,

and carnitine acyltransferase (CRAT) that shuttles fatty acids into the mitochondrial

matrix. It is interesting to note that the expression of the first enzyme in the biosyn-

thetic pathway of carnitine, trimethyllysine hydroxylase (Tmlhe) is down regulated

and this may reflect a homeostatic response to excess fatty acid trafficking. These

findings suggest that more energy is derived from β-oxidation of fatty acids in these
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animals. However, this can only be achieved if the NADH from β-oxidation regener-

ates NAD and forms ATP. The observed defects (especially in complex I) indicate a

disruption in this process. The provenance of these fatty acids is not clear, since there

were no significant differences between treatment groups in the circulating levels of

either triglycerides or frees fatty acids, although LDL levels are elevated by mater-

nal undernutrition. Other possible sources of fatty acids could be from increased

endogenous synthesis or from turnover of cellular components. There is no evidence

from the microarray analysis for an increase in enzymes for the latter; indeed the

modest decrease in levels of diacylglycerol acyltransferase (DFAT2) in UN animals

would indicate a blunting of triglyceride synthesis in liver.

The increased expression of SREBP cleavage activating protein (SCAP) suggests

that there may be higher levels of sterol synthesis taking place in livers of undernour-

ished animals. The formation of a transcriptionally active sterol response element

binding protein (SREPB) involves the proteolytic action of SCAP [32]. In support

of these observations, the level of circulating LDL cholesterol in the UN group is

significantly elevated. Interestingly a 60% increase in 11β-hsd2 transcripts was seen

in the livers of UN animals accompanied by a similar increase in the expression levels

of GR. 11β-hsd2 appears in late gestation/postnatal tissues in human fetal tissues

[93]. Elevated levels of this enzyme in the livers of UN animals would be a mechanism

to moderate the effects of high levels of circulating corticosterone that may arise in

response to nutritional deprivation/stress.

3.3.5 Ribosomal Proteins and Protein Turnover

An intriguing finding of the analysis is an increase (in the range 7-24%) in tran-

scripts in UN animals of 13 of 80 recognised ribosomal proteins (79 of which are

represented on the array by multiple oligonucleotides) that occur in the large and

small ribosomal subunits. Eight of the proteins are components of the mitochondrial

ribosome. Similar increases in expression are also seen in: brix (Bxdc1 ), which is

involved in ribosome biogenesis; NPG1, a nucleolar GTPase required for the mat-
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uration and nuclear export of pre-ribosomes; and Cebpz, a gene important in the

processing of rDNA involved in the 60s subunit [94]. These findings suggest a greater

degree of metabolic flux in ribosomes from UN animals; however it is difficult to

understand the significance of these observations given the fact that on the basis of

the current annotation only about 16% of the ribosomal proteins show changes in

expression levels. It is possible that the increased turnover of ribosomal proteins is

contributing to the higher levels of urea observed in the day 55 UN animals.

3.3.6 Effects on Gene Transcription

It is notable that a group of genes that influence transcription show upregulation

to varying extents. Some (such as the Gtf and Med factors) have a general effect on

the transcriptional apparatus. The most notable increase is in the Rpb1 gene known

to be expressed highly in the liver, particularly in hepatic stellate cells [95, 96].

In liver, Rpb1 has an important role in the production of retinoid derivatives that

activate the RAR and RXR retinoic acid receptors [97]. RXR can heterodimerise

with the PPAR proteins to form active nuclear receptors that target genes involved

in fat metabolism and energy homeostasis; for example Crat and Aox are shown to

be upregulated in the UN offspring. Thus elevated or abnormal Rbp1 expression may

have a major role in establishing the metabolic syndrome phenotype.

Two other genes show significant changes in gene expression that may impact

hepatic function. The first is Col14a1 (a member of the collagen gene family) that

was originally called undulin [98, 99]. This gene is expressed in hepatic stellate

cells that have a role in the formation of the hepatic extra cellular matrix [100] and

shows a 20% increase in gene expression. This may be a marker of some underlying

pathology as Col14a1 has been associated with the rearrangement of connective tissue

occurring in hepatic fibrosis [98]. It is of note that Rbp1 expression changes have

also been associated with hepatic fibrosis [96] and thus the gene may be involved in

the regulation of Col14a1. The second gene is Adra1b (adrenergic receptor alpha 1b

showing a 79% upregulation) that has been associated with carbohydrate metabolism
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in the liver [101] and disruption of glucose homeostasis when the gene is inactivated

[102, 103]. Given that the role of the receptor is to stimulate glycogenolysis and

the process of glycogen formation is impaired in UN animals, the significance of

increased expression is not clear. This may reflect an irreversible change in response

to the intrauterine nutritional state or a postnatal compensatory mechanism to the

altered metabolic profile set in utero.

3.4 Conclusions

Studies to date have primarily focused on a candidate gene approach in animals,

where the classical features of the metabolic syndrome in the programmed phenotype

are already evident. There is a relative paucity of data on gene expression, either by

candidate or an array-based approach, on key tissues related to the metabolic syn-

drome in animals at an age preceding development of the metabolic phenotype. The

gene expression changes in appropriate pathways in the livers of the male offspring

of maternally undernourished dams at day 55 would suggest that these animals may

be predisposed to a persistent and perturbed ability to coordinate fat and carbohy-

drate metabolism with a shift to a use of fatty acids as an energy source. We have

also shown that these animals proceed to develop a phenotype similar to that of the

metabolic syndrome, as early as postnatal day 110. Array analysis of tissues at the

day 110 time point was beyond the scope of the present trial. However, although

the present study cannot directly correlate the observed gene expression changes at

day 55 with the phenotype at day 110, it provides a clear evidence of disturbed hep-

atic function in a number of key genes related to lipid oxidation and mitochondrial

function at a pre-phenotypic age. There are parallels with the observations of Koves

et al. [89] and Sparks et al. [104], where diet induced obesity in adult life induces

oxidative stress associated with increased β-oxidation of fat metabolism, impaired

switching of carbohydrate substrates, depletion of TCA cycle intermediates and de-

creased expression of components of the electron transport chain. They propose that

mitochondrial dysfunction may be driving the pre-diabetic insulin resistant state.
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The observations in our rat model indicate that the liver is irreversibly programmed

to respond to a nutritionally restricted environment and that this persists into early

adulthood (day 55). At this age, similar changes are not observed in adipose tissue

or skeletal muscle, suggesting that the liver can meet the immediate energy require-

ments of these peripheral tissues and that it manifests metabolic abnormalities in

advance of the full metabolic syndrome phenotype. These data have uncovered po-

tential candidate genes and pathways that when perturbed lead to the development

of the metabolic syndrome in older animals and therefore, provide a focus for more

detailed gene-specific studies.

It is clear that developmental changes are occurring in these animals due to the

difference in maternal diet during pregnancy that is in turn affecting metabolic path-

ways later in life. However, it is yet to be established exactly what is the mechanism

of this developmental programming. Gluckman et al. suggests epigenetic means.

Epigenetic changes have been found in humans affected by the Dutch Hunger Winter

and have also been associated with specific aspects of metabolic disease [65]. The

details of the window in which these changes occur and whether they are primary

changes or simply a result of a cascade of events remain unclear. In Chapter 5, this

thesis will explore how methylation may be involved in the metabolic syndrome as a

result of developmental insults and will investigate the phenomenon with a prelimi-

nary study. Additional work is being done by collaborators at the Liggins Institute

and it is hoped that in the near future more answers will be available.
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Chapter 4

Leptin Reversal Study

4.1 Introduction

As previously described, adult offspring of rats subjected to undernutrition during

pregnancy develop symptoms of the metabolic syndrome. In Chapter 3, we inves-

tigated gene expression changes in the muscle, fat, and liver tissue of such male

offspring at 55 days old. At this age, the rats have not yet begun to exhibit the

metabolic syndrome phenotype.

Vickers et al. published two papers [57, 58] in which the same model of maternal

undernutrition was used to investigate the effects of neonatal leptin treatment on

the metabolic phenotype of adult offspring. Results for female offspring and male

offspring differed significantly and were published separately. This chapter will focus

on the results for the female study and all experiments in this chapter utilise those

samples. The postnatal (day 3-13) leptin treatment in the female offspring of un-

dernourished mothers resulted in a slowing of neonatal weight gain and normalised

caloric intake, locomotor activity, body weight, fat mass, fasting plasma glucose, in-

sulin, and leptin concentrations in programmed offspring. These data were taken

in adult life (day 170) and contrast data from saline-treated offspring of undernour-

ished mothers who only developed these features on a postweaning high fat diet.

Neonatal leptin had no demonstrable effects on the adult offspring of normally fed

mothers. These results suggest that developmental metabolic programming is poten-

tially reversible by an intervention late in the phase of developmental plasticity. The

108



complete normalisation of the programmed phenotype by neonatal leptin treatment

implies that leptin has effects that reverse the prenatal adaptations resulting from

relative fetal undernutrition.

This chapter investigates the molecular mechanism of leptin reversal in adult fe-

male rats. Female rats can breed as early as 30 days of age and are considered middle

age at approximately 270 days of age. In this study we used liver samples from female

rats that were 170 days old from the study described above. The samples were anal-

ysed using microarray gene expression assays. The results do not reveal molecular

evidence for a leptin reversal. However, they show that the interaction between a

combination of the three treatments (prenatal diet, leptin treatment and postnatal

diet) do have significant metabolic consequences. These changes in gene expression

affect pathways involved in the immune response, circadian rhythm, transport, and

metabolism. This chapter begins with a review of leptin, the leptin receptor, and

their role in energy balance, causes of obesity, and the genetics of obesity, reproduc-

tion, and puberty. In addition, the biochemical effects that leptin has on appetite,

behaviour, circadian rhythm, and immune response are considered. This background

information will be followed by a description of experimental design, data quality,

and a presentation and discussion of the results. The discussion aims to unravel the

complexity of the experiment, interpret the results, and suggest future avenues of

investigation.

4.1.1 Leptin

Leptin is an adipocyte specific protein that functions to sense and regulate body

energy stores in humans and in animals. It is largely synthesised and secreted in white

adipose tissue; however, low concentrations are also synthesised and secreted by the

hypothalamus, pituitary, skeletal muscle and bone, arterial endothelium, intestines,

foetus, testes, and placenta. The leptin in these tissues may play a role in the immune

system and reproduction [122]. Leptin is remarkably similar across species.

The initial view was that leptin was an anti-obesity hormone, preventing the
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storage of excess adipose tissue by feeding back to the hypothalamus to reduce food

intake and increase energy expenditure. However, obesity in humans is often ac-

companied by increased levels of leptin in a state of leptin resistance [57]. Ahima

et al. suggested that the physiological response to decreasing leptin concentration

with starvation may be the dominant role of leptin. His study showed that falling

leptin concentration is a critical signal that initiates the neuroendocrine response to

starvation, potentially increasing survival by limiting procreation, increasing stress

steroids, and decreasing thyroid thermogenesis [123]. Studies investigating leptin ex-

pression levels in the foetus and the placenta suggest that leptin may also have a

broader range of actions, particularly during growth and development [124].

Early studies investigating the role of leptin were done using the ob/ob and db/db

mouse models. Each of these models has a single distinct gene mutation. The ob

mutation is on mouse chromosome 6 and the db is on mouse chromosome 4. The

classic experiments involving parabiosis [125] of ob/ob mice with lean wild-type (WT)

mice resulted in suppression of feeding and weight loss in the ob/ob mice. In contrast,

the parabiosis of WT or ob/ob mice with db/db mice caused dramatic weight loss in

the WT and ob/ob mice, but the db/db mice continued to gain weight. This study

suggested that the ob locus encoded a circulating ‘satiety’ factor (discovered later to

be leptin [126]). The mutation in the ob/ob model, leads to a non-functional leptin

protein and mice with the ob/ob mutation became obese on a normal ad-libitum diet.

These mice have low levels of circulating leptin and reduced metabolic rates and body

temperature. Injection of exogenous leptin to ob/ob mice reduces hyperphagia and

weight gain while increasing circulating leptin concentrations, physical activity, and

energy expenditure. Humans that have a leptin deficiency due to a genetic mutation

exhibit a similar phenotype including congenital obesity and endocrine abnormalities

[127]. Leptin treatment in these people decreases energy intake and results in a

dramatic fat loss. However, very few human obesity cases are due to this genetic

mutation that reduces leptin production.
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4.1.2 Leptin Receptor

Leptin interacts directly with the leptin receptor (Ob-R or LEPR). Ob-R is en-

coded by the db gene and binds leptin. The Ob-R gene has been shown to have six

splice variants. The long form, OB-RB, has a long cytoplasmic region containing sev-

eral motifs required for signal transduction and it is essential for the weight-reducing

effects of leptin [122]. It is abundant in the hypothalamus, but it is also found

throughout the body. The parabiosis experiments suggested that the db/db mice

were defective in their ability to respond to the satiety factor, leptin, and subse-

quently obesity in the db/db mice has been linked to a defect of Ob-R [123]. Clément

et al. [128] reported an example of human obesity due to a homozygous mutation

in Ob-R that resulted in a truncated leptin receptor lacking the transmembrane and

intracellular domains. This mutation resulted in morbid obesity and infertility, sim-

ilar to that of the db-db mouse. This mutation is rare, and the affected offspring

were children of first cousins. Very few obesity cases are due to defects in Ob-R.

Considine et al. suggests obesity may more commonly be caused by defects in one

of the isoforms of Ob-R or in one of the specific pathways activated by the isoforms

[129].

4.1.3 Genetics of Obesity

Although genetic mutations in the leptin gene and leptin receptor gene are rare

causes of obesity, genome-wide association studies have led to the discovery of novel

genes in which differential expression levels have been linked to obesity. There are

a number of additional rare cases occurring in families with rare genetic mutations.

Particular polymorphisms seem to affect certain populations more than others. The

Trp64Arg variant in the Beta-3 adrenergic receptor gene has been the subject of 60

independent studies with varying results. There seems to be a significant effect in

Asian populations which does not seem to hold true for other populations [130].

Further investigation has shown that obesity is often related to expression changes

that affect pathways involved in leptin signalling and brain feedback mechanisms for

111



controlling diet and weight gain. These pathways that are essential for energy balance

may hold the explanation for the more common obesity cases. An example of this is

the Jak-Stat pathway. The leptin receptor is important for the activation of the Jak

(janus kinase) -Stat (signal tranducers and activators of transcription) pathway (see

figure 4.1). Mice that have a mutation in the Stat3 binding site of Ob-R have much the

same phenotype as db/db mice including hyperphagia and severe early onset obesity,

but retained fertility. This suggests that Stat3 is important for the regulation of

feeding behaviour, but is not required to regulate other functions of leptin including

reproduction and growth [131]. Two genes involved in negative-regulation of leptin-

Jak-Stat signalling are Socs3 (suppressor of cytokine signalling 3) and Ptn1 (protein

phosphatase nonreceptor type 1). Mice with reduced expression of either one of these

genes are lean and exhibit leptin sensitivity, but how their function might be related

to human obesity is still unknown [131].

4.1.4 Energy Balance: Interactions of Leptin and the Brain

The cause of obesity is often blamed on human decisions to engage in behaviours

including lack of exercise and increased food intake. It is interesting to investigate

the biochemistry of energy balance, appetite and satiety. The role of leptin in these

affects feedback to the brain and affects behaviour decisions toward food and even

exercise. Changes in pathways affecting energy balance and behaviour may underpin

the difficulty that obese individuals have in losing weight and keeping it off [132].

The control of energy balance is orchestrated by the hypothalamus via signalling

pathways, several of which are affected by changing leptin levels.

The arcuate nucleus (ARC) is an important site in the hypothalamus for regu-

lating leptin’s effect on energy balance [133]. Abundant expression of the long form

of the leptin receptor (LEPR-B) has been found in the ARC and other areas of

the hypothalamus including the ventromedial hypothalamus (VMH), the dorsome-

dial (DMH), and the paraventricular nucleus (PVN). Figure 4.2 shows a three-armed

interaction between the brain and peripheral tissues that are involved in the home-
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ostatic pathway. The three arms divide the afferent (blue), central (brown) and

efferent (white) pathways. The VMH (and the ARC) receives peripheral peptide

signals related to adiposity (leptin), metabolism (insulin), hunger (ghrelin) and sati-

ety (peptide Y Y3−36). The second arm consists of neurons that translate this signal

to the PVN and lateral hypothalamic area. These areas then integrate the signals

to alter caloric intake and energy expenditure. The third arm consists of signals

from the CNS (efferent signals) via the autonomic nervous system. The sympathetic

nervous system (SNS) promotes energy expenditure and the vagus nerve promotes

energy storage. Leptin is part of the afferent pathway (signalling the CNS) and the

SNS and vagus nerve are part of the efferent pathway, which receive these signals and

then send signals to the rest of the body. Insulin is part of both afferent and efferent

pathways [134]. Leptin conveys a signal of peripheral energy sufficiency to neurons

(afferent signal) expressing the leptin receptor. Leptin triggers a permissive signal to

the CNS for the initiation of high-energy processes, such as puberty and pregnancy

[134]. A drop in leptin is interpreted by the hypothalamus as a diminished energy

reserve and invokes the starvation response that is shown in figure 4.1. Inadequate

transport of leptin into the CNS could be a contributing factor to obesity. The effects

of insulin and leptin on the central nervous system parallel each other (i.e. mice with

a knocked out insulin receptor become hyperphagic, obese and infertile) [134].

Leptin has also been shown to have an important role in hypothalamus devel-

opment. Bouret et al. [135] found that leptin is important for the development of

hypothalamic circuits. The outgrowth of fibres projecting from the ARC is slower

in the absence of leptin and some of the projections never catch up. The connec-

tion between the arcuate nucleus and the parvocellular part of the PVN is one such

connection. Figure 4.3 shows a focused figure of the brain that includes all of the

areas where the leptin receptor expressing neurons are located and those areas that

are part of the associated signalling network. In particular, this figure shows the

arcuate nucleus, where leptin resistance is predominantly detected [136]. Leptin

stimulates POMC (pro-opiomelanocortin) and CARTPT (cocaine and amphetamine

related transcript prepropeptide) gene expression in neurons located in the ARC. A
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cascade of events leads to neurons that express MC4R (melanocortin receptor 4).

The signal transduction pathways involved in this process interact with various brain

centres to coordinate eating behaviour. The identification of human mutations oc-

curring in ligands and receptors of this pathway have revealed how this pathway is

involved in the regulation of food intake, energy expenditure, lipid and carbohydrate

metabolism, and reproductive, thyroid, and immune function [131]. In particular, it

has been shown that PI3k signalling is required for leptin’s effects on feeding. PI3k

signalling enables leptin to depolarise POMC neurons and in effect, suppress food

intake [137].

It is hypothesised each human has a different leptin ‘set-point’. The set-point is a

concentration of leptin, which conveys a message of energy sufficiency to the hypotha-

lamus. Leptin levels drop quickly during short-term fasting (12hours/overnight) and

can decline faster than body fat stores are depleted, but still activate the starvation

response. In the case of obesity, where this hypothetical set-point is dysfunctional,

leptin levels are increased, but do not trigger reduced food intake or lipolysis. If

energy intake declines again (as in the case of dieting), the starvation response will

be triggered again, resulting in a cycle of overeating [134].

This cycle can be exacerbated by the effects of leptin on the ‘hedonic pathway’.

The hedonic pathway regulates pleasurable and motivating responses to stimuli. In

figure 4.3, several components and regulators of the mesolimbic dopamine system

are shown in brown. This is the neural mechanism by which leptin can affect food

reward. The relationship between insulin, leptin, reward and obesity is summarised

in figure 4.4. Food intake is responsive to the hedonic pathway. Susceptibility to

addictive behaviour and pleasurable response increases after food deprivation and

can be measured by dopamine release. Obesity results in decreased density of D2

dopamine receptors [134]. Other neural pathways that input into the regulation of

food reward may also undermine leptin’s influence preventing it from deterring an

affected individual from consuming something palatable [136].

This section highlights the complexity involved in the regulation of energy balance

and the effects that errors in brain feedback mechanisms could potentially have on

114



Figure 4.1: This figure was adapted from Lustig et al. [134] and depicts the over-
lap between insulin and leptin signalling pathways (shown in black) in the ven-
tromedial hypthalamic neuron. Insulin stimulates the insulin receptor substrate 2-
phosphatidylinositol 3 kinas pathway, whereas leptin stimulates the Janus kinase 2-
signal transduction and transcription 3 pathway; however, both the insulin receptor
and the leptin receptor recruit the low-abundance-message second messenger insulin
receptor substrate 2. Lack of available insulin receptor substrate 2 for the leptin re-
ceptor following hyperinsulinemia could result in defective leptin signal transduction.
Alternatively, insulin induction of suppressor of cytodine signalling 3 could inactivate
the leptin receptor, through dephosphorylation of tyrosine 1138.

eating behaviour. A vast number of biochemical pathways are involved in maintaining

energy homeostasis.

4.1.5 Leptin and the Circadian Rhythm

Leptin has been shown to have an effect on the circadian rhythm. A nocturnal rise

in leptin occurs in ad-libitum fed rodents and can be prevented by fasting. Fasting

can shift the peak plasma leptin level from nocturnal to diurnal. Leptin levels also

peak at night in humans, and this pattern is thought to be mediated by insulin levels.

This leptin rhythm seems to be blunted with aging, and associated with an increase in

visceral adiposity and insulin resistance [138]. A study by Kaneko et al. [139] found
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Figure 4.2: This figure shows the homeostatic pathway of energy balance adapted
from Lustig et al.[134]. It shows the afferent(blue), central(brown) and efferent(white)
pathways. The hormones insulin, leptin, ghrelin, and peptide Y Y3−36 send afferent
signals relating to short-term energy metabolism and energy sufficiency to the ventro-
medial hypothalamus (VMH). The VMH sends anorexigenic and orexigenic signals
to the melanocortin 4 receptor in the paraventricular nucleus (PVN) and lateral hy-
pothalamic area (LHA). These signals lead to efferent signals via the locus coeruleus
and the nucleus tractus solitarius, which activates the sympathetic nervous system
and causes adipocytes to undergo lipolysis, or via the dorsal motor nucleus of the
vagus, which activates the vagus nerve and causes energy storage, both by increasing
pancreatic insulin secretion, and (in rodents) by increasing adipose-tissue sensitivity
to insulin.
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Figure 4.3: This figure was adapted from Myers et al. and shows the network of leptin
receptor (LRb) expressing neurons. Blue, yellow and brown bubbles indicate regions
containing LRb expressing neurons. Yellow bubbles are areas where little is known
about the projections of these LRb expressing neurons. The arrows show projection
patterns. Light green bubbles indicate areas where the LRb neurons project but do
not contain any. Components and regulators of the mesolimbic dopamine system are
shown in brown bubbles. ARC, arcuate nucleus; PVH, paraventricular hypothalamic
nucleus; VMH, ventromedial hypothalamic nucleus; DMH, dorsomedial hypothalamic
nucleus; LHA, lateral hypothalamic area; PMv, ventral premammilary nucleus; POA,
preoptic area; VTA, ventral tegmental area; PAG, periaqueductal gray; DR, dorsal
raphe; PB, parabrachial nucleus; NTS, nucleus of the solitary tract.[136]
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Figure 4.4: This figure was adapted from Lustig et al. [134] depicts the role of
hyperinsulinemia in the dysfunction of the energy balance pathway. Various factors
can lead to hyperinsulinemia, including vagus nerve mediated insulin hypersecretion
or hepatic and/or skeletal muscle insulin resistance. Hyperinsulinemia can interfere
with leptin signal transduction in the hypothalamus, promoting leptin resistance.
This interference can cause resting energy expenditure to decrease and appetite to
increase, promoting further weight gain. Hyperinsulinemia can also cause reduced
dopamine uptake, which can lead to increased reward associated with eating food,
again promoting further weight gain. Hyperinsulinemia can convert homeostatic and
hedonic pathways from negative-feedback to feed-forward mechanisms.
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that gene expression of core clock genes were down regulated in the caudal brainstem

nucleus of the solitary tract (NTS) in obese mice. This perturbation of clock genes

may have an effect on energy homeostasis as well as glucose and lipid metabolism.

From an evolutionary standpoint it is sensible that the circadian rhythm would be

involved in the regulation of hunger as historically finding food was easier and safer

during the day. If metabolic processes have adjusted to this cyclical hunger cycle,

one can imagine that a disturbance in a clock gene could have a cascade affect on

other processes involved in energy balance.

4.1.6 Leptin During Pregnancy, Lactation and Puberty

Hyperinsulinemia and insulin resistance are both symptoms of pregnancy and

puberty. Leptin levels are elevated during pregnancy and seem to be regulated by

factors other than body fat content, including sex hormones such as progesterone.

Leptin levels are regulated to insure the weight accrual necessary for pregnancy oc-

curs. Variable concentrations of immunoreactive leptin are also present in human milk

and the concentration is correlated with maternal adiposity [140]. It has not been

determined what effect this exposure to leptin in milk in human infants might have

on long-term infant growth, development and adiposity. Similarly, growth hormones

during puberty increase leptin levels to insure necessary weight gain [134].

4.1.7 Leptin Differences in the Sexes

In several species, a sexual dimorphism for leptin has been shown. In humans,

females have higher leptin levels than males. The absolute peak leptin concentrations

are 2 times higher in women than in men [138]. This may be attributed to the fact that

females have greater amounts of subcutaneous fat. Additionally, males tend to have

a higher percentage of fat-free mass and this will further lower leptin concentrations

relative to females. Differences can also be attributed to the stimulation of leptin by

oestrogen in females and suppression of leptin by testosterone in males. The gender

difference may be influenced by the amount of leptin released or removed per unit
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time, which may suggest that women are more resistant to leptin feedback than men.

This may explain the female’s greater susceptibility to eating disorders and body

weight regulation [123].

This sexual dimorphism was mentioned by Vickers et al. 2000 [45], ‘the pro-

grammed phenotype is expressed only in the presence of the high-fat postweaning

diet, whereas in males it was previously shown that programming could manifest

independently of nutrition’. It was also seen by Vickers in the study discussed in

this chapter, [57], and in a similar study of male rats at day 110 [58]. Neonatal

leptin treatment promoted obesity in AD male offspring, particularly when given a

postweaning HF diet. Whereas in UN males, leptin prevented diet-induced obesity

if males were fed a chow postweaning diet. This contrasted with the data in females

in which neonatal leptin treatment had no significant effect on body composition or

metabolism, regardless of the postweaning diet. Neonatal leptin treatment protected

UN females from becoming obese on both a HF and a standards chow diet [58].

Clegg et al. suggests male rats are more sensitive to the anorectic effects of insulin,

whereas females are more sensitive to changes in serum leptin levels [141]. This may

be indicative of altered leptin set-points rather than leptin resistance.

4.1.8 Overview

This background highlights many of the major pathways that may be affected

by a leptin treatment. It has provided some insight into the relationship between

the feedback mechanism to brain in relationship to food and energy balance. It

has highlighted the involvement of leptin in energy homeostasis, feeding behaviour,

fat storage, hunger and behaviour toward food. It has mentioned the difference

between leptin in males and females. This introduction gives a platform in which

to consider the complexity of the results. Many pathways may have been affected

by the treatments in this study and therefore additional studies would need to be

conducted to tease out the details. However, this study provides a vast amount of

food for thought and definitely reveals the importance of the hypothalamus.
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4.1.9 Initial Study

The aim of the leptin reversal study conducted by Vickers et al. [57] was to

establish whether neonatal leptin treatment can alleviate postnatal obesity and the

associated metabolic syndrome that occurs in the offspring of undernourished moth-

ers. Methods are described in that paper, but will also be summarised here. The

study design is illustrated in figure 4.5.

The study utilised the same model of undernourishment as the study in Chapter

3. Virgin Wistar rats (age 100 ±5 days) were time mated using a rat oestrous cycle

monitor to assess the stage of oestrous of the animals prior to introducing the male.

After confirmation of mating, rats were housed individually in standard rat cages with

free access to water. All rats were kept in the same room with constant temperature

maintained at 25 ◦C and a 12-h light: 12-h darkness cycle.

Animals were randomly assigned to one of two nutritional groups: a) undernu-

trition (30% of ad-libitum) of a standard diet throughout gestation (UN group), b)

standard diet ad-libitum throughout gestation (AD group). Food intake and mater-

nal weights were recorded daily until the end of pregnancy. After birth, pups were

weighed and litter size was adjusted to 8 pups per litter to assure adequate and stan-

dardised nutrition until weaning. A minimum of six litters per group were used. At

postnatal day 3 female AD and UN pups were randomised to receive either saline or

recombinant rat leptin (2.5 µ g/g· d) for 10 days by subcutaneous injection. Pups

from undernourished mothers were cross-fostered onto dams that had received AD

feeding throughout pregnancy. All animals were fed ad-libitum until weaning (day

22) and then animals were weight matched and put on either a standard rat chow diet

(CHOW group) or high-fat diet (45% kcal as fat; HF group). Weight matching was

done to ensure that the mean starting weight was similar for the two post natal diets.

In each litter of 8 pups, there were four males and four females. Pairs of females

were randomly placed on either the chow or HF diet. Mean weight of the cages were

checked to ensure that the offspring placed into the HF group were not statistically

different from those allocated to the chow diet. The animals were culled and tissue
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Figure 4.5: Design of Leptin Reversal Study. This figure summarises the study design.
During pregnancy rats were fed either ad libitum a standard chow diet (AD) or 30%
of a standard chow diet (UN). The female offspring were given either leptin (LEP)
or saline (SAL) injections from day 3-10, and then from weaning offspring were fed
either ad libitum a standard chow diet (CHOW) or a high fat chow diet (HF).

samples were collected at postnatal day 170. The results of the study are described

in detail by Vickers et al. [57], but are summarised here.

Phenotypic Assessment

Physiological measurements were taken as described in [57]. These values are

summarised in table 4.1. The values for insulin, leptin and c-peptide are shown in

figure 4.6 taken from Vickers et al..

The study demonstrates that all the measured metabolic consequences of mater-

nal undernutrition were reversed by a period of neonatal leptin treatment in female

rats. Neonatal leptin treatment resulted in reduced pup weight gain for both AD

and UN offspring. The high fat diet after weaning significantly increased weight gain

with a marked amplification of the weight gain in the UN pups. The leptin treatment

normalised the diet-induced weight gain in the UN animals to match the AD animals.

These results indicate that leptin induced a phenotype reversal and possibly a rever-

sal of epigenotype. The female infant rats that had not been prenatally nutritionally

programmed had no phenotypic effects, but those who had been nutritionally pro-

grammed did not develop the metabolic phenotype even when placed on a high fat
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diet after weaning. The findings indicate that, at least in the rat, there is an early

postnatal window during which the process can be reversed. This animal model re-

sembles the increased weight gain and metabolic abnormalities seen in humans born

small for gestational age (SGA), thus the mechanisms responsible for the effects in

rats may be similar in humans.

The results of this study indicate that developmental adaptations during fetal life

can be reversed by interventions in the neonatal period. The goal of this chapter is

to use the samples from Vickers et al. [57] to investigate the molecular mechanisms

that were affected by the prenatal diet, the leptin treatment and the postweaning

diet. We hypothesised that gene expression and methylation studies would provide

information on mechanisms and may enable us to pinpoint the postnatal age after

which leptin intervention may be ineffective.
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Figure 4.6: (A)Fasting plasma insulin concentrations at day 170 in AD and UN ani-
mals on either a chow (C) or high-fat (HF) diet after neonatal saline or leptin treat-
ment. Neonatal leptin treatment normalised fasting plasma insulin concentrations
in UN leptin-treated HF (UNLHF) animals compared with saline-treated animals
(P<0.05 for effect of programming and diet; programming x treatment, program-
ming x diet, and treatment x diet interactions, P<0.05) (B)Fasting plasma leptin
concentrations at day 170. Neonatal leptin treatment normalised fasting plasma lep-
tin concentrations in UNLHF animals compared with saline-treated animals (P<0.05
for effect of diet and treatment; programming x diet, programming x treatment,
treatment x diet, and programming x treatment x diet interactions, all P<0.05).
(C)Fasting plasma C-peptide concentrations at day 170. Neonatal leptin treatment
normalised fasting plasma C-peptide concentrations in UNLHF animals compared
with saline-treated animals (P<0.05 for effect of programming; P<0.0001 for effect
of diet; programming x treatment, programming x diet, and treatment x diet inter-
actions, P<0.05). Data were analysed by three-way factorial ANOVA, mean ± SEM;
n=8 per group. Result from Vickers et al. [57]

.
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Figure 4.7: Microarray Design. This study included eight separate treatment groups.
For each of these groups there were eight biological replicates. RNA extracted from
the liver of each of these replicates was hybridised on an Illumina Rat-Ref12 chip.
Each chip has 12 separate arrays; 6 chips were used in total.

4.2 Results

4.2.1 Illumina Microarray

On two separate visits to the Liggins Institute, RNA was extracted from eight bi-

ological replicates in each of eight treatment groups for both liver and skeletal muscle

tissue. Extracted RNA samples were shipped to the University of Cambridge on dry

ice along with the remnant phenol-interphase mix for subsequent DNA extraction.

Only the liver samples were hybridised to the Illumina chip.

Hybridisations

RNA extracted from liver was hybridised to Illumina microarrays as described in

Chapter 2. Extractions, amplifications, and hybridisations were randomised. The

microarray study design is shown in figure 4.7.

Data Quality Control

The Illumina system incorporates a number of internal controls for estimating

hybridisation quality. These controls are described in more detail in Chapter 2.

Figure 4.9 shows the details of the five graphs for the internal controls across all
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64 arrays. In figure 4.9A the low, medium and high intensities are shown across

all arrays. Ideally, arrays should have signal intensities in the same range. It is

expected that there be a linear increase of signal between the three intensities. In

figure 4.9B low stringency of the data is analysed by comparing the signal intensity

of two mismatches to the signal intensity of a perfect match. The perfect matches

should have a 3–4 fold higher signal as seen in this data. No signal intensity indicates

the hybridisation failed. Figure 4.9C shows the high stringency control of the data.

For high quality data it is expected that the biotin signal would be 3–4 fold lower

than the high stringency signal as seen here. Figure 4.9D shows the data for the

negative control. The background signal should be approximately 70. This value is

accounted for in the normalisation algorithms. The noise signal should be very low

for high quality data as seen in this data. Figure 4.9E compares the signal from the

housekeeping genes to the signal from all genes. As housekeeping genes are always

expressed they should have a much higher signal compared with all genes. The overall

quality of this data set was generally high.

To compare the samples in more detail the data was exported from BeadStudio

and imported into R Bioconductor. Here the raw data was plotted in several graphs

(pairwise, MA, density plot and box plot), then normalised and replotted to compare

pre- and post-normalisation. In addition, the arrays were clustered using hierarchical

clustering. The hierarchical clustering is shown in figure 4.8. The samples appear

to be distributed evenly, not clustering on biological replicate or similar treatments.

The sample for UNSALCHOW 28.0.0 appears to be an outlier.

Figures 4.10 to 4.17 show pairwise comparisons for each of the eight treatment

groups. A tight diagonal line is expected for replicates, as this indicates low variability

between samples. Figures 4.18 and 4.19 show plots of all samples before normalisa-

tion. These reveal that there is variation in intensity between arrays and therefore a

normalisation is necessary.
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Figure 4.8: This figure shows the hierarchical clustering for all 64 arrays before
normalisation. Arrays do not seem to cluster on any extraneous factor, nor does one of
the treatments cause enough difference for them to cluster together. UNSALCHOW
28.0.0 appears to be an outlier.

Normalisation/Differential Expression

Following the quality control assessment, all samples were confirmed to be of

good quality and the data was filtered for genes present on at least one array. The

original 22,517 genes were filtered down to 10,774, by this low stringency filtering

method. Data was then transformed with a variance stabilising transformation and

normalised with a quantile normalisation (as done in Chapter 3 and described in

Chapter 2). Figures 4.20 and 4.21 show a boxplot and density plot of all samples

after normalisation.

Due to the complexity of the study design, several methods of analysis were im-

plemented to find the most biologically relevant method appropriate for interpreting

the data. Initially, the FSPMA method was used (as described in Chapter 2). This

method utilises a mixed model ANOVA in R and can be rerun to look at the effects

of different treatments. FSPMA was run three times, once for each of the treatments

(maternal diet, leptin treatment, and postweaning diet). The lists of differentially

expressed genes were subjected to a FDR adjustment and genes with a p–value <
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Figure 4.9: Illumina Internal Controls. This figure shows the details of the internal
quality control tools for the Illumina platform. (A)Low, medium, and high intensi-
ties across arrays. Ideally, arrays should have signal intensities in the same range.
It is expected that there be a linear increase of signal between the three intensities.
(B)High stringency of the data. For high quality data it is expected that the biotin
signal would be 3–4 fold lower than the high stringency signal as shown for this data.
(C)Low stringency of the data by comparing the signal intensity of two mismatches
to the signal intensity of a perfect match. The perfect matches should have a 3–4
fold higher signal as shown for this data. No signal intensity indicates the hybridi-
sation failed. (D)Data for the negative control. The background signal should be
approximately 70. This value is accounted for in the normalisation algorithms. The
noise signal should be very low for high quality data. (E)Comparison of the signal
from the housekeeping genes to the signal from all genes. As housekeeping genes are
always expressed they should have a much higher signal compared with all genes.
This shows that this data was generally high quality.
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Pairwise plot with sample correlationPairwise Plot for Sample Correlation for ADSALCHOW Samples

Figure 4.10: Pairwise Comparison of ADSALCHOW Samples Before Normalisation.
This plot compares all eight ADSALCHOW biological replicates against each other.
These replicates should be very similar and should be tightly distributed on the x=y
axis, as these samples are. The correlations for these comparisons are ≥ 0.93.
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Pairwise plot with sample correlationPairwise Plot for Sample Correlation for UNSALCHOW Samples

Figure 4.11: Pairwise Comparison of UNSALCHOW Samples Before Normalisation.
This plot compares all eight UNSALCHOW biological replicates against each other.
These replicates should be very similar and should be tightly distributed on the x=y
axis, as these samples are. The comparisons show higher variability of sample 28.0.0.
All other comparisons have a correlation ≥0.94.
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Pairwise plot with sample correlationPairwise plot with sample correlationPairwise Plot with Sample Correlation for ADLEPCHOW Samples

Figure 4.12: Pairwise Comparison of ADLEPCHOW Samples Before Normalisation.
This plot compares all eight ADLEPCHOW biological replicates against each other.
These replicates should be very similar and should be tightly distributed on the x=y
axis, as these samples are. The correlations for these comparisons are ≥ 0.94.
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Pairwise plot with sample correlationPairwise Plot for Sample Correlation for UNLEPCHOW Samples

Figure 4.13: Pairwise Comparison of UNLEPCHOW Samples Before Normalisation.
This plot compares all eight UNLEPCHOW biological replicates against each other.
These replicates should be very similar and should be tightly distributed on the x=y
axis, as these samples are. The correlations for these comparisons are ≥ 0.94.
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Figure 4.14: Pairwise Comparison of ADSALHF Samples Before Normalisation. This
plot compares all eight ADSALHF biological replicates against each other. These
replicates should be very similar and should be tightly distributed on the x=y axis,
as these samples are. The correlations for these comparisons are ≥ 0.94.
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Figure 4.15: Pairwise Comparison of UNSALHF Samples Before Normalisation. This
plot compares all eight UNSALHF biological replicates against each other. These
replicates should be very similar and should be tightly distributed on the x=y axis,
as these samples are. The correlations for these comparisons ≥ 0.93.
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Pairwise plot with sample correlationPairwise Plot for Sample Correlation for ADLEPHF Samples

Figure 4.16: Pairwise Comparison of ADLEPHF Samples Before Normalisation. This
plot compares all eight ADLEPHF biological replicates against each other. These
replicates should be very similar and should be tightly distributed on the x=y axis,
as these samples are. The correlations for these comparisons ≥ 0.94.
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Pairwise plot with sample correlationPairwise Plot for Sample Correlation for UNLEPHF Samples

Figure 4.17: Pairwise Comparison of UNLEPHF Samples Before Normalisation. This
plot compares all eight UNLEPHF biological replicates against each other. These
replicates should be very similar and should be tightly distributed on the x=y axis,
as these samples are. The correlations for these comparisons ≥ 0.96.
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Boxplot Before Normalisation

Figure 4.18: Boxplot Before Normalisation. The box itself contains the middle 50%
of the data points. The line in the box indicates the median value of the data. If
the median line within the box is not equidistant from the hinges, then the data
is skewed. The ends of the vertical lines or ‘whiskers’ indicate the minimum and
maximum data values. The plot compares the amplitude of all expression values on
each array. This shows that the majority of the signal is at lower expression levels. It
also shows that there is some variability between each array. This analysis was done
in Lumi.
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Figure 4.19: Histogram of Density of Log2 Intensities For All Arrays. This is a
histogram of each array showing the density of intensities (log2). This plot shows
that the majority of intensity values are low and that there is significant variation
between samples. This analysis was done in Lumi.
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Boxplot After Filtering, VST, and Quantile Normalisation (n=10774)

Figure 4.20: Boxplot After Quantile Normalisation. This is a boxplot of the data
from each array. The plot compares the amplitude of all expression values on each
array. This shows that the majority of the signal is at lower expression levels. This
plot shows that there is no variability between the arrays. The normalisation has
effectively adjusted the expression values to remove the variability. This analysis was
done in Lumi.
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Density Plot After Filtering, VST, and Quantile Normalisation (n=10774)

Figure 4.21: Histogram of Density of Log2 Intensities For All Arrays After Quantile
Normalisation. This is a histogram of each array showing the density of intensi-
ties (log2). This plot shows that the majority of intensity values are low and that
there is no variation between samples. The normalisation has effectively adjusted the
expression values to remove the variability. This analysis was done in Lumi.
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Figure 4.22: This figure shows the results of three FSPMA analyses. FSPMA uses a
mixed model ANOVA to compute p–values based on a particular effect. The analysis
was run three times, once for each of the treatments (maternal diet, leptin treatment,
and postweaning diet). This Venn diagram shows the number of significant (p–
value<0.05) genes in each list and the overlap between each list.

0.05 were selected as statistically significant for further investigation. The lists of

genes affected by maternal diet, leptin treatment and postweaning diet had 1,089

genes, 555 genes and 1,414 genes respectively. There was some overlap between these

lists as shown on the venn diagram in figure 4.22, including 17 genes that appeared

on all three lists.

The second analysis involved pair-wise comparisons performed in Limma as utilised

in Chapter 3. To compare the 8 different treatment groups against each other resulted

in 28 separate comparisons. The number of genes for each of these comparisons is

shown in figure 4.23. Of these comparisons, 13 revealed one or more significantly

expressed genes. The combined list revealed a total of 160 significantly (p–value <

0.05) differentially expressed genes. Of the 160 genes, 55 had also been revealed by
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Figure 4.23: This figure shows the results of the pairwise comparisons between each
combination of treatment groups. The groups are shown at the top and the number
shown below the arrow connecting two treatment groups indicates the number of
genes that were significantly, differentially expressed for that comparison.

the FSPMA analysis

A final analysis was done in KDE. It was a simple one-way ANOVA with an FDR

multiple testing correction. This revealed 99 significant genes. Many of the genes

found in the other two analyses (especially FSPMA) revealed genes that had very

small expression differences, thus we added a filtering regime to the one-way ANOVA

in an effort to remove outliers and focus on genes with larger fold-changes. The

filtering removed individual outliers which were > 1.96 standard deviations from the

mean of the 8 biological replicates. Genes were excluded from ANOVA if they were

detected in fewer than 16 of the 64 samples. In this list, we found 79 of the 99 genes

from the first one-way ANOVA and 139/160 genes found in the pair-wise comparisons.

Using this method, 334 genes were found with a fold-change between the maximum
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and minimum values that was less than 25% after averaging the biological replicates

and 127 genes were found when the fold-change difference was less than 50% after

averaging the biological replicates. By eliminating outliers in this way, the error bars

were tightened and a less stringent FDR correction could be used. It also allowed us

to focus on genes with the largest fold-change differences. Gene lists for all analyses

can be found in Appendix C (FSPMA results, Tables 7-9; Pairwise results, Tables

10-22; one-way ANOVA results, Table 23).

Hierarchical Clustering

Hierarchical clustering was performed on the 127 genes with an ANOVA p-value

less than 5% and at least a 50% change in gene expression between the highest and

lowest values. The data was normalised to a median value of 0 to allow clustering. The

hierarchical clustering dendrogram is shown in figure 4.24. The hierarchical clustering

analysis separated genes into 10 clusters based on the expression patterns between

treatment groups. By plotting the expression values in a dendrogram (see figure

4.24), generalisations can be made about the expression patterns in each cluster. In

this figure, each row represents a gene and each column a treatment group. Cluster

0 (the one closest to the top) consists of three genes. These appear to have gene

expression induced by a HF diet in the offspring of AD mothers and repressed by a

HF diet in the offspring of UN mothers. There also may be some interaction with

leptin. Cluster 1 has 10 genes and is induced by a HF diet in the offspring of AD

mothers and is repressed by a HF diet in the offspring of UN mothers. Cluster 2 has

6 genes and is induced by the combination of leptin treatment and a postnatal chow

diet in the offspring of both AD and UN mothers. Clusters 3 and 4 have only 3 genes

and 2 genes respectively; therefore, they are difficult to interpret. Cluster 5 has 28

genes and the gene expression is induced by leptin. Leptin induction in this cluster

is reduced in the UNLEPHF group. Cluster 6 has 10 genes and gene expression is

induced by UN and repressed by AD with a possible leptin effect. Clusters 7 and 8

have only one gene each; they are also difficult to interpret. Cluster 9 has 13 genes

and gene expression is repressed by a HF diet in the offspring of AD mothers and
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the expression is induced by a HF diet in offspring of UN mothers. Cluster 10 has

49 genes and gene expression is repressed by leptin in general, however, the leptin

repression is less effective in the UNLEPHF treatment group and more effective in

the UNLEPCHOW treatment group. This can also be described as the interaction

of two effects: repression by leptin, and induction by a HF diet, specifically in the

offspring of UN mothers.

Pathway Analysis

Initially Pathway Analysis was performed on the FSPMA gene lists, as these are

larger and could potentially reveal trends based on the effect of an individual treat-

ment. Onto-Express [78] was used to find biological processes, molecular functions

and cellular components associated with each gene list. The results of this analysis

are shown in figures 4.25-4.27. These pie charts represent all the genes involved in

biological processes, molecular functions or cellular components. The gray area shows

the proportion of biological processes, molecular functions or cellular components not

represented in the gene list, while the coloured wedges represent the categories that

are most enriched in the gene list. A similar analysis was also done in DAVID, which

revealed the most enriched categories for the list of genes affected by maternal diet to

be related to protein binding, localisation and transport; those for the leptin treat-

ment to be immune response, nucleobase metabolism and transport; and those for

the postweaning diet to be related to cytoplasm, catalytic activity and metabolism

(cellular lipid, lipid, alcohol, sterol, and steroid metabolism specifically).

Once the other analyses had been done and the dendrogram for the one-way

ANOVA had been produced, a pathway analysis was performed on each of the clus-

ters to determine if they represented genes involved in related biological processes,

molecular functions or cellular components. Table 4.2 shows the key biological pro-

cesses and kegg pathways that were significantly enriched for each cluster based on

DAVID pathway analysis. During this process, it also became interesting to compare

the overlap between the lists produced in the three separate analyses. Table 4.3 shows

the 83 genes that overlapped between the FSPMA analysis and the filtered one-way
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Figure 4.24: This is a heatmap showing the results of hierarchical clustering of the
data normalised to a median value of 0. Each treatment group is represented in a
separate column as shown on the top. The ten clusters are shown with coloured
brackets on the left side.
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Maternal Diet

Leptin Treatment

Post-Weaning Diet

Figure 4.25: This pie chart shows the biological processes most enriched in each of
the gene lists produced with the FSPMA analysis. The circle represents all the genes
involved in biological processes. The gray area represents the biological processes
not represented in the gene list. The coloured wedges show the proportion of genes
involved in a particular biological process. This figure was made using Onto-Express
[78].
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Leptin Treatment

Post-Weaning Diet

Maternal Diet

Figure 4.26: This pie chart shows the molecular functions most enriched in each of
the gene lists produced with the FSPMA analysis. The circle represents all the genes
involved in molecular functions. The gray area represents the molecular functions
not represented in the gene list. The coloured wedges show the proportion of genes
involved in a particular molecular function. This figure was made using Onto-Express
[78].
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Maternal Diet

Leptin Treatment

Post-Weaning Diet

Figure 4.27: This pie chart shows the cellular components most enriched in each of
the gene lists produced with the FSPMA analysis. The circle represents all the genes
involved in cellular components. The gray area represents the cellular components
not represented in the gene list. The coloured wedges show the proportion of genes
involved in a particular cellular component. This figure was made using Onto-Express
[78].
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ANOVA analysis listed by cluster. This table has a column to indicate which of the

three FSPMA lists the gene was present in (M for maternal diet, L for leptin treat-

ment and/or D for postweaning diet). Another column shows which, if any, pair-wise

comparisons the gene was present in.
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Cluster Number of genes Biological Process/Kegg Pathway

Cluster0 4 Not found in pathway software

Cluster1 10 Antigen processing and presentation

immune response

Cluster2 6 Regulation of biological processes

Cluster3 3 Transport of lipid (1gene)

Cluster4 2 Not found in pathway software

Cluster5 28 Metabolic processes (carboxylic acid, organic acid, amino

acid etc), cholesterol biosynthetic process

kegg pathways: carbon fixation, biosynthesis of steroids

alanine and aspartate metabolism, arginine and proline

metabolism,

Cluster6 10 Lipid transport, transport, digestion, establishment of

localisation,response to drug

kegg pathway: PPAR signalling pathway

Cluster7 1 Proteolysis

kegg pathway: Metabolism of xenobiotics by

cytochrome P450

Cluster8 1 Not found in pathway software

Cluster9 13 Response to external stimulus, humoral immune response,

defence response, immunoglobulinn mediated immune

response

kegg pathway: complement and coagulation cascades

Cluster10 49 Metabolic processes (glucan,glycogen,polysaccharide,

and more)

kegg pathway: circadian rhythm

Table 4.2: This table lists the number of genes found in each of the hierarchical

clustering clusters and the main biological processes and kegg pathways that are

affected by the genes in the particular cluster found using DAVID [77].
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4.2.2 qRT-PCR for Microarray Validation

Quantitative RT-PCR analysis of selected genes was performed in order to confirm

the expression data derived from array analysis. Eight genes (Igfbp2, Rt1-149, Rt1-

ba, Rt1-m6-2, Orm1, Ca3, Gck, and Per2 ) found to be significantly, differentially

expressed on the Illumina microarray were selected for qRT-PCR validation. qRT-

PCR was performed as described in Chapter 2 on the pooled RNA samples of the

biological replicates in each treatment group. Cyclophilin was used as an invariant

control for normalisation. The individual CT values are shown for the cyclophilin

technical replicates in figure 4.28. All except one of the replicates vary less that

4% from the mean of all replicates. The microarray and qRT-PCR data for each

treatment group for each gene are shown in figures 4.29-4.32.

4.2.3 Comparison of Treatment Groups

The genes selected for qRT-PCR are also shown in figures 4.33-4.36. These graphs

aim to compare the effects of the leptin treatment across the x-axis and the post-

weaning diet along the y-axis.

Genes/Pathways Highlighted in Other Studies

Gluckman et al. [91] also used the liver tissue from this initial leptin reversal study

for molecular analysis, but utilising a candidate gene approach. They examined the

gene expression of 11β-hsd2, Pparα, Pepck, and GR. They found a significant effect

of leptin in UN animals that had been fed a high-fat postweaning diet for 11β-hsd2,

Pparα, and Pepck (results shown in figure 4.37A). We repeated these experiments

for comparison using the same primers and a similar protocol. We obtained different

results that showed no significant change between treatment groups (results shown

in figure 4.37B).

Figure 4.38 shows the array signals for the five genes from Gluckman et al. [91]

plotted with leptin treatment on the x-axis and the postweaning diet on the y-axis

to determine the effect of the treatment on the gene expression.
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Figure 4.28: This figure shows the 12 technical replicates run with primers for cy-
clophilin. This data served as the invariant control for the other qRT-PCR data
presented in this chapter. The lines represent 4% of the mean.

Comparison of Day 170 Female Saline Data to Day 55 Male Undernour-

ished Data

Although the samples used in this chapter and in Chapter 3 are very different

and were not chosen for comparison, a brief analysis was done out of interest. The

comparison was between the ASC and USC samples from this chapter and all the

AD and UN samples from Chapter 3. For review, the two studies are from different

cohorts that went through experimental protocols with slight variations. The two

groups are different sexes and the samples are from different time points.

Two separate analyses were done; a simple pairwise comparison between each

of the combinations of the 4 groups (AD-Day170, UN-Day170, AD-Day55 and UN-

Day55) and a three way ANOVA with interaction term. Figure 4.39 shows the num-

ber of genes significantly, differentially expressed in each of the pairwise comparisons.

The number in brackets shows the genes unique to that comparison. Although it is

impossible to say whether the genes are being up or downregulated due to sex differ-

ences or age differences, it does highlight the need to do a more detailed study looking

at different developmental windows (see Appendix C Tables 24-27 for genelists).
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Figure 4.29: This figure shows four of the genes (Igfbp2, Rt1-149, Rt1-ba, and Rt1-
M6-2 ) that were chosen from the list of significantly, differentially expressed genes
on the Illumina microarray. For each gene 8 biological replicates for each of the 8
treatment groups were hybridised and analysed. The data here is shown as a % of
ASC expression.
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Microarray Validation by qRT-PCR

Figure 4.30: This figure shows four of the genes (Igfbp2, Rt1-149, Rt1-ba, and Rt1-
M6-2 ) that were chosen from the list of significantly, differentially expressed genes
on the Illumina microarray. The RNA from the eight biological replicates was pooled
for each of the eight treatment groups. qRT-PCR for the eight samples was run in
triplicate with cyclophilin as an invariant control. The data have been normalised to
the ASC treatment group at 1.
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Microarray Expression Data
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Figure 4.31: This figure shows four of the genes (Orm1, Ca3, Gck, and Per2 )that
were chosen from the list of significantly, differentially expressed genes on the Illumina
microarray. For each gene 8 biological replicates for each of the 8 treatment groups
were hybridised and analysed. The data here is shown as a % of ASC expression.
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Microarray Validation by qRT-PCR
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Figure 4.32: that were chosen from the list of significantly, differentially expressed
genes on the Illumina microarray. The RNA from the eight biological replicates
was pooled for each of the eight treatment groups. qRT-PCR for the eight samples
was run in triplicate with cyclophilin as an invariant control. The data have been
normalised to the ASC treatment group at 1.
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Figure 4.33: The figure on the left shows the array signals for Gck and the figure on
the right for Per2. The x-axis represents the effect of the leptin treatment and the y-
axis represents the postweaning diet. The blue and red lines show the undernourished
maternal diet (UN) and the green and purple lines show the ad-libitum fed maternal
diet (AD).
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Figure 4.34: The figure on the left shows the array signals for Igfbp2 and the figure on
the right for Igfbp4. The x-axis represents the effect of the leptin treatment and the y-
axis represents the postweaning diet. The blue and red lines show the undernourished
maternal diet (UN) and the green and purple lines show the ad-libitum fed maternal
diet (AD).
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Figure 4.35: The figure on the left shows the array signals for Rt1-ba and the figure
on the right for Rt1-149. The x-axis represents the effect of the leptin treatment
and the y-axis represents the postweaning diet. The blue and red lines show the
undernourished maternal diet (UN) and the green and purple lines show the ad-
libitum fed maternal diet (AD).
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Figure 4.36: The figure on the left shows the array signals for Rt1-m6-2 and the figure
on the right for Ca3. The x-axis represents the effect of the leptin treatment and the y-
axis represents the postweaning diet. The blue and red lines show the undernourished
maternal diet (UN) and the green and purple lines show the ad-libitum fed maternal
diet (AD).
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Figure 4.37: (A)This figure was taken from Gluckman et al. [91] and shows RT-PCR
results for the mRNA expression of 11β-hsd2, Pparα, and Pepck for the same adult
day 170 female rats as used in this chapter. Data are means±SEM for n=8 per group;
values for gene expression are expressed relative to those of normally nourished (AD
maternal diet and CHOW postnatal diet) saline-treated offspring set as 100%. All
three genes were found to have a significant p< 0.05 effect of leptin treatment in
UN high-fat animals (+). (*) indicates data is significantly p<0.05 different from
ADSALCHOW. (B) We performed similar qRT-PCR experiments and found no sig-
nificant differences among treatment groups. In this case, data are means±SEM for
n=3 per group except PPARα, which is n=8.
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Figure 4.38: This figure shows the array signals for the five genes from Gluckman
et al. [91] plotted with leptin treatment on the x-axis and the postweaning diet on
the y-axis to determine the effect of the treatment on the gene expression. GR and
11β-HSD2 are the only plots to show interactions between the treatments.
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Figure 4.39: This figure shows the results of pairwise comparisons between the AD-
SALCHOW and UNSALCHOW data from this chapter with the AD and UN data
from Chapter 3. The number of genes that came up as differentially expressed for the
comparison (p<0.05) is shown in the colour of the arrow for that comparison. The
number shown in brackets is the number of genes unique to that comparison. The
effects of sex and time point cannot be separated.

Cluster Symbol Biofunction

Cluster 0 Clic2 regulation of cellular processes

Cluster 0 Hrasls3 role in adipogenesis [142]

Cluster 1 Igfbp2 impaired IGD binding to receptor

Cluster 1 RT1-149 histocompatability complex

Cluster 1 RT1-A3 histocompatability complex

Cluster 1 RT1-Ba histocompatability complex

Cluster 1 RT1-CE15 histocompatability complex

Cluster 1 RT1-M6-2 histocompatability complex

Cluster 1 Sds regulation of cell cycle

Cluster 1 Sparcl1 glycoprotein that binds calcium

Cluster 1 Tnfsf13 important for B cell development

Cluster 2 Cgref1 cell growth; response to stress

Cluster 2 Colq collagen-like tail subunit

Cluster 2 Hspb1 Heat shock 27kD protein induced by environmental

stress

Cluster 4 Csad involved in taurine biosynthesis

Cluster 5 Asl involved in urea cycle

Cluster 5 Cd63 cell growth; associated with tumour progression

Cluster 5 Csrp2 regulation of development and cell differentiation

Cluster 5 Cyp3a13 drug metabolism

Cluster 5 Dhcr7 cholesterol metabolism

Cluster 5 Ftl1 regulation of iron storage

Cluster 5 Got1 amino acid metabolism; involved in urea cycle
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Cluster 5 Hnrpab mRNA metabolism and transport

Cluster 5 LOC316130 M6prbp1 -receptor binding protein

Cluster 5 Me1 activity links glycolytic and TCA cycles

Cluster 5 Nnmt predicted methyltransferase activity; implicated in cancers

Cluster 5 Orm1 regulation of immune system; inflammatory re-

sponse

Cluster 5 Prkcdbp negative regulation of cell cycle; tumour suppres-

sor

Cluster 5 Rnf125 predicted T-cell activation

Cluster 5 Slc16a13 transport

Cluster 5 Slc22a5 transport; linked to metabolic decompensation

Cluster 5 Tmod1 actin binding; organisation of actin filaments

Cluster 5 Tor3a nucleotide binding

Cluster 5 Trpm6 predicted calcium ion and nucleotide binding

Cluster 6 Abcg5 nucleotide binding; transport of dietary cholesterol

Cluster 6 Afp metal ion binding

Cluster 6 Ctsh degradation of proteins in lysosome

Cluster 6 Fabp2 binds long-chain fatty acids; maintains energy

homeostasis by acting as lipid sensor

Cluster 6 Fabp7 expressed during development; involved in brain

development

Cluster 6 Hdc modulates numerous physiologic processes

Cluster 6 Serpina7 thyroid hormone transport protein

Cluster 6 Synj2 signal transduction

Cluster 9 C2 proteolysis

Cluster 9 Mlc1 predicted may be involved in transport; associated with neu-

rological disorders

Cluster 9 Sod2 protein binding; mitochondrial

Cluster 9 Ugt2b10 predicted metabolic processes

Cluster 10 Aadac lipid mobilisation (regulated diurnally)

Cluster 10 Acox2 involved in degradation of long chain Fas

Cluster 10 Ak3l1 mitochondrial nucleotide mobilisation

Cluster 10 Avpr1a receptor mediates cell contraction and prolifera-

tion, platelet aggregation, release of coagulation

factor and glycogenolysis

Cluster 10 Bche drug metabolism

Cluster 10 Bhlhb2 basic helix-loop-helix domain

Cluster 10 Btg1 regulates cell growth and differentiation
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Cluster 10 Ca3 involved in cellular response to stress

Cluster 10 Car14 predicted carbonic anhydrase

Cluster 10 Cyp2b3 cyt P450 complex

Cluster 10 Dclre1a predicted involved in blocking transcription, replication, and seg-

regation of DNA

Cluster 10 Enpp2 modulator of cell motility; may induce parturition; stim-

ulates tumour cell motility

Cluster 10 Gck important in glucose utilisation

Cluster 10 Gclc rate limiting step in glutathione synthesis

Cluster 10 Klf15 glucose and fat metabolism [143]

Cluster 10 Kmo required for synthesis of quinolinic acid

Cluster 10 LOC497901 Leap2-may have antimicrobial activity

Cluster 10 LOC500015 Samd9l

Cluster 10 LOC500080 similar to Slc13 member4 - may be involved in lifespan

determination [144]

Cluster 10 Olr59 sensory perception of smell

Cluster 10 Otc involved in the urea cycle

Cluster 10 Per2 regulation of circadian rhythm [145],[139] and [146]

Cluster 10 Polg2 predicted mitochondrial DNA polymerase gamma subunit

Cluster 10 Ppp1r3b regulates enzymes (PYGL) involved in glycogen

metabolism

Cluster 10 Ptprf regulates cell growth and differentiation

Cluster 10 Pygl important in carbohydrate metabolism [147]

Cluster 10 Rarb regulates gene expression and affects development

Cluster 10 Serpina3m protein metabolism

Cluster 10 Sez6 cell-cell recognition and neuronal membrane signalling

Cluster 10 Slc40a1 regulation of iron levels

Cluster 10 Stac3 predicted intracellular signalling

Cluster 10 Tdo2 tryptophan metabolism

Cluster 10 Thrsp may have a controlling role tumour lipid metabolism

Cluster 10 Xpnpep2 role in inflammatory process and response to injury

Table 4.4: This list includes most of the genes that were found in the filtered one-

way ANOVA and the FSPMA analysis. The list includes the cluster as in table 4.3

for cross reference. These are the functions as found in literature search or online

database information (genecards, NCBI or wikipedia).
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4.3 Discussion

By comparing the transcriptional profiles of liver RNA from 170 day old rats that

have been subjected to undernourishment during pregnancy, a leptin treatment and a

postnatal high fat diet; this study has highlighted many genes that have been altered

due to a combination of these treatments. Pathway analysis has revealed that many

of the genes are involved in biological functions that are relevant to metabolism and

may reveal primary or secondary effects of the treatments. An understanding of the

role of leptin, its signalling to the brain, and the evolution of diet in humans (as

discussed in Chapter 1) enables us to hypothesise the reasons for the phenotypes

that develop. This study has now provided molecular evidence to back up some of

these theories.

In this study, significant gene expression differences were dependent on the inter-

action between three treatments: maternal diet during pregnancy, leptin treatment

and postweaning diet. Initial analysis aimed to separate the three treatments and

consider, independently, the genes being influenced by each treatment. This analysis

resulted in very large gene lists that included a majority of genes with very small

expression changes. The large gene lists, however, were useful for pathway analy-

sis. Figures 4.25 (biological processes), 4.26 (molecular functions), and 4.27 (cellular

components) show the breakdown of the results of these analyses. These figures were

made using Onto-Express and analysis done in David (see Chapter 2) supported the

results. These analyses indicated that genes affected by maternal diet were involved

in pathways related to protein binding, localisation, transport, organ development

and apoptosis. The presence of organ development seems particularly logical given

the hypothesis that a restricted diet during pregnancy causes the foetus to focus

resources on brain development rather that organ development. The genes affected

by the leptin treatment were related to immune response, nucleobase metabolism

and transport. As mentioned in the introduction to this chapter, leptin has been

implicated as affecting immune response. Finally, the genes affected by the post-

weaning diet were related to cytoplasm, catalytic activity, signal transduction and
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metabolism (cellular lipid, lipid, alcohol, sterol and steroid metabolism specifically).

Pair-wise analysis of treatment groups against each other produced interesting results

that have proven challenging to interpret (see figure 4.23). Three of these comparisons

stood out as having greater than 50 significantly expressed genes and intriguingly all

three of these comparisons involved the UNLEPCHOW treatment group. This is the

group that was undernourished during pregnancy, received the leptin treatment and

was then put on a standard chow postnatal diet. Vickers et al. [57] has claimed that

female rats that are undernourished during pregnancy only show the programmed

phenotype if they are then subjected to the mismatch of the postnatal HF diet. This

treatment group did not show significant phenotypic differences from the control AD-

SALCHOW treatment group. It is also worth mentioning the three treatment groups

that showed the most significant differences to the UNLEPCHOW group. The most

differences (88 genes) were found in comparison to the UNSALHF treatment group,

which is the programmed phenotype of maternal undernourishment followed by the

mis-match of the postnatal HF diet. Interestingly, the fourth largest gene list (28

genes) occurred in the comparison of this programmed phenotype (UNLEPHF) and

the normal control treatment (ADSALCHOW). Phenotypically it seems to be the

same comparison, but there must be metabolic changes induced by the maternal

undernourishment given the larger number of differentially expressed genes in that

comparison. Without the HF diet insult, these metabolic changes did not affect

the phenotype. The second and third largest gene lists occurred in the comparison

against the ADLEPHF (65) and ADSALHF (55) treatment groups. These treatments

result in similar phenotypes although the leptin treated rats had slightly higher body

fat, locomotor activity, insulin, leptin, and C-peptide levels and slightly lower food

intake as would be expected with raised leptin levels, but these measurements were

not statistically significant. A large number (51) of the genes occur in at least 2 of

the three largest lists.

As described in the results, the gene lists from the different analyses were com-

pared and a table of overlapping genes was created. A close look at table 4.3 shows

the agreement of the ‘Treatments’ (this column indicates which gene list that the
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gene was significant for in the FSPMA analysis) and the ‘Pair-wise Comparisons’.

The lists were sorted by the clusters obtained from the hierarchical clustering of the

one-way ANOVA across all eight treatment groups. Table 4.2 lists each cluster and

the most enriched biological process/molecular function for each cluster. Table 4.4

then goes into more detail and provides the specific biological function or proposed

biological function for most of the 83 genes that overlapped in the different analyses.

The largest cluster and the one that seems to include the most intriguing genes is

cluster 10. This cluster has 49 genes and gene expression appears to be repressed

by leptin in general, however the leptin repression is less effective in the UNLEPHF

treatment group and more effective in the UNLEPCHOW treatment group. This can

also be described as the interaction of two effects: repression by leptin, and induction

by a HF diet specifically in the offspring of UN mothers. The rest of this discus-

sion will focus on the function of these genes and hypotheses on how they might be

affecting the observed phenotypes in this study.

4.3.1 Cluster 10

Cluster 10 is the cluster that drew the most interest and includes genes involved

in metabolic processes: sensory perception, stress response, regulation of circadian

rhythm, transport and signalling. All of these genes were shown to be significantly

affected by the postnatal high fat diet in the FSPMA analysis. Although, several were

also shown to be affected by the maternal diet and six were shown to be significantly

affected by all three treatments. The genes affected by all three treatments were Gck,

Per2, Klf15, Enpp2, Xpnpep2, and Slc40a1 ; four of which are well characterised and

are summarised here.

Gck (glucokinase) is a rate-limiting enzyme in glycolysis that regulates the con-

version of ATP and D-glucose to ADP and D-glucose 6-phosphate. The gene is found

to have reduced expression in patients with type-2 diabetes and in diabetic animals

[148]. Insulin stimulates Gck, which in turn activates glucose disposal in the liver.

Down regulation of Gck could, therefore, play a role in reduced insulin sensitivity.
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Bogdarina et al. [149] found that fasting causes reduced Gck expression, but that

re-feeding will result in an immediate insulin-induced increase in Gck. However, in

this study, animals that were exposed to maternal undernutrition during gestation

have reduced GCK expression in adulthood compared to control animals. This gene

has come up as being differentially expressed in all three treatment groups and fig-

ure 4.33 clearly reveals an effect of leptin in conjunction with the maternal UN diet,

which is in line with the reduced insulin sensitivity in the UN animals.

Per2 (period homolog 2) is one the core clock genes involved in regulation of the

circadian rhythm. The circadian rhythm is the 24-hour cycle by which biological

processes in the body are regulated. There are several core clock genes including

(Npas2, Bmal1, Per1, Rev-erbα, and Per2 ) [139]. Per1 was significantly, differentially

expressed due to the maternal diet and the leptin treatment in the FSPMA analysis,

however, it was not present as significant in the other two analyses. Changes in

the expression of the core clock genes have been tied to obesity. As mentioned at

the beginning of this chapter, leptin has been shown to affect the circadian rhythm.

Figure 4.33 shows an effect of leptin in both AD and UN fed animals.

Klf15 (Krupple-like Factor 15) is a gene that was significant in the FSPMA anal-

ysis as being affected by the postnatal diet and in the pair-wise analysis it came

up in the comparison of ASHFvsULC; which indicates it has been affected by all

treatments. Figure 4.40 shows the expression signals and emphasises the effect of

leptin and the postnatal diet. Gray et al. has shown that Klf15 plays a role in the

regulation of gluconeogenesis [143]. Klf15−/− mice are capable of gluconeogenesis

but are less efficient at using alanine as a source for the process.

Enpp2 is found in adipose tissue and Ferry et al. [150] conducted a detailed

study into its role in this tissue. They found it is strongly up-regulated during

adipocyte differentiation and it seems to be a consequence of the differentiation as

it is associated with the accumulation of triglycerides. The expression levels are

significantly increased in obese diabetic db/db mice and, therefore, Enpp2 may be

associated with diabetes or obesity. Although this study was done in adipocyte tissue

and our study involved liver tissue, it can be assumed that Enpp2 may also be related
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Figure 4.40: The figure on the left shows the array signals for KLF15 and the figure on
the right for Enpp2. The x-axis represents the effect of the leptin treatment and the y-
axis represents the postweaning diet. The blue and red lines show the undernourished
maternal diet (UN) and the green and purple lines show the ad-libitum fed maternal
diet (AD).

to obesity in liver tissue [150]. Figure 4.40 shows an effect of leptin and the postnatal

diet.

4.3.2 Genes Involved in the Immune Response

Several genes involved in the histocompatibility complex were found to be sig-

nificantly, differentially expressed. These genes (RT1-Ba, RT1-149, RT1-A3, RT1-

CE15, RT1-A1, RT1-M62, RT1-CE16, RT1-CE12, RT1-CE7, RT1-N2, RT1-CE13,

and Ca3 ) were down regulated in animals that had been treated with leptin. This

was the case for offspring of both AD and UN mothers. There was more down regu-

lation in those that had subsequently received a high fat postnatal diet. The animals

were 170 days of age so increased expression may be due to aging or to repair of liver

damage. However, it is intriguing that the data show the down regulation in the

treated animals indicating less inflammation and a lower immune response. Vila et

al. conducted a study of hepatic gene expression on a mouse model of senescence in

which the mice experience accelerated aging. They found that at 5 months (approxi-

mately 150 days) inflammation is taking place in the liver and HSP1 is upregulated.

This rat model also shows an increase in expression of HSPb1 in ULC and less so
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in ALC rats. Previous studies have shown that HSP1 decreases in expression with

aging; the increase in this mouse model would indicate a counter-anti-inflammatory

response [151]. It is possible, the decreased gene expression in the leptin treated

rats could be due to errors in signalling pathways that have suppressed the immune

system.

4.3.3 Relevant Genes in Other Clusters

IGFBP2 is another relevant gene that was significantly, differentially expressed

in all three analyses. The FSPMA analysis revealed it as being affected by the

postnatal diet, it was in cluster 1, and was significant in the pairwise comparison

of ALHFvsULC. A relative, Igfbp4, also showed up in the FSPMA analysis, but not

in the pairwise comparison. Both of these genes are expressed in mammary tissue.

Igfbps are involved in fetal and neonatal development and Igfbp2 is predominantly

expressed in the liver while Igfbp4 is only expressed in small amounts in the liver.

The expression of both Igfbp2 and Igfbp4 is known to increase in aging. IGFs are

involved in inhibition of insulin-like activity [152]. Figure 4.34 shows an obvious effect

of leptin and the maternal diet for Igfbp2, but no effects are seen in Igfbp4.

4.3.4 Candidate Genes

The qRT-PCR analysis of candidate genes 11β-hsd2, Pepck, Pparα, GR, and Aox

showed no significant expression difference between the treatment groups (see figure

4.37). This was in contrast with the results obtained by Gluckman et. al [65] for

expression changes in 11β-hsd2, Pparα, and Pepck. Gluckman used the same tissues

from the same animals so the difference in results cannot be explained. Figure 4.38

shows the qRT-PCR expression signals for comparison of the effect of each of the

treatments. This figure shows some small effect from the leptin treatment on the

expression of GR and 11β-hsd2.
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4.3.5 Adipose Tissue

In an unpublished study, (KA Lillycrop, GC Burdge, MH Vickers, MA Hanson,

and PD Gluckman) used the adipose tissue samples from the same animals used here

and conducted a candidate gene expression study using RT-PCR to determine mRNA

concentrations in Pparα, Pparγ2, Aox, Cpt-1 (carnitine:palmitoyl transferase), Lpl

(lipoprotein lipase), GR, 11β-hsd2, and leptin. These samples were normalised to

ribosomal 18S RNA using the ∆CT method. The results showed that maternal diet

and leptin treatment had independent effects on the gene expression and there was

no leptin reversal. Similar to their results we found an effect of the maternal diet and

postnatal diet on GR mRNA expression, but there was no effect on Pparα, Aox, or

11βhsd-2 (or Pepck). This was not statistically significant but the comparisons are

shown in figures 4.37 and 4.38.

The RNA had been extracted from muscle tissue for the same animals; however,

due to time constraints these samples were not used. It would be interesting to see

how the expression changes in muscle differ from fat and liver. In addition in future

studies it would be of interest to collect brain tissue as this is would give insight into

the origin of signalling errors.

4.4 Conclusions

The initial goal of this study was to uncover the molecular mechanism of the leptin

reversal; however, we did not uncover any evidence of the leptin reversal. This finding

was supported by the unpublished work done by Lillycrop et al.. Instead we found,

the interaction between the maternal diet, leptin treatment, and the postweaning

diet could have significant effects on gene expression in a number of metabolically

relevant genes. Many of the changes were supported by functional data found in

the literature. A comparative analysis of the results of this study and those of the

study in Chapter 3 revealed a large number of differentially expressed genes, however,

these were confounded due to the difference in sex of animals and time-point of

tissue collection. This has highlighted the need to perform a more detailed study
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incorporating different tissues taken at different time points to really understand the

changes that have occurred. In this study the effect of leptin was associated more

with the postweaning chow diet rather than the postweaning high-fat diet. This is

an unexpected result and difficult to explain. A simplified study design that looks at

the immediate effects of leptin may help unravel the details of the cascade of events

that lead to the metabolic syndrome.
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Chapter 5

Methylation Study

5.1 Introduction

The work presented in this chapter aimed to investigate whether epigenetic effects

through methylation at CpG dinucleotides in promoter sequences, are responsible for

gene expression and resulting phenotypic changes in the rat model. We wanted to

gain a general impression of the presence, scale, and significance of such methylation

change, by exploring a diverse range of genes that were highlighted in the previously

described genome-wide expression studies. This chapter includes experiments done

by a research student under the author’s guidance. Neil Graham was a part II student

in 2007-2008, that used DNA previously extracted from the AD/UN liver samples

described in Chapter 3, to look for methylation differences in differentially expressed

genes with the McrBC assay (see Chapter 2). Neil was able to follow up on 87 genes

highlighted in the microarray analysis.

A second research student, Chathika Weerasuriya, was a summer student in 2008,

that extracted DNA from the leptin liver samples described in Chapter 4 and pre-

ceded to treat them with bisulphite conversion and then, use PCR and sequencing to

determine if there were methylation changes. Due to the inability to get high quality

DNA from the leptin samples, the bisulphite conversion that summer was largely

unsuccessful and no results were produced.

This chapter begins with background information on epigenetics, specifically methy-
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lation and how it has been tied to the metabolic syndrome. This is followed by a

description and discussion of the results.

5.1.1 Epigenetics

The term epigenetics was first coined by Conrad Waddington [153], to unite the

fields of developmental biology and genetics. His definition was general and said

simply, ‘All those events which lead to the unfolding of the genetic program for

development’. Over the years, this term has taken on the more specific definition to

describe the changes in gene function that occur without a change in gene sequence.

It refers to modifications that regulate gene activity; the modifications can affect

the DNA itself or the proteins that package it (histones), but the DNA sequence

does not change [154]. Figure 5.1 illustrates the epigenetic mechanisms that can

cause changes in gene activity. One component of epigenetic regulation, imprinting,

allows the control of whether the maternal or paternal allele for a particular gene is

expressed. For instance, the epigenetic imprinting of IGF2 regulates fetal growth and

fetal size depending which of the parents’ alleles is silenced [155]. Methylation occurs

depending on the availability of methyl groups and can be affected by nutrition. As

discussed in this thesis, changes in gene expression can increase the risk of disease.

Changes in components of epigenetic regulation affect gene expression and in turn,

can lead to disease. Knowing the epigenotype related to a disease state could help to

target treatments for disease.

In mammals, there are two main developmental windows when epigenetic modi-

fications occur. During gametogenesis, complete demethylation occurs, followed by

remethylation before fertilisation. A second demethylation event occurs in early

embryogenesis, and then in early embryonic life, just after implantation, the methy-

lation is re-established. The imprinted genes are able to escape this second wave of

demethylation [157]. Other genes may also be able to escape this second wave of

demethylation. This may explain transgenerational effects of undernutrition, as ob-

served in offspring of those that were pregnant during the Dutch Hunger Winter, for
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Figure 5.1: Epigenetic Mechanisms. Epigenetic changes are referring to modifications
that regulate gene activity without changes in the DNA sequence. Two common
mechanisms for epigenetic changes are shown in this figure adapted from Qiu [156].
The modifications can affect the DNA itself (through methylation) or the proteins
that package it (histone modification).
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example. These events may represent critical windows of time when reprogramming

could occur.

Methylation

Methylation is essential for the development of mammals and it has been shown

that embryos that cannot maintain normal methylation die after gastrulation [158].

DNA methylation is the addition of a methyl group CH3 to the fifth carbon position

of the cytosine pyrimidine ring via a methyltransferase enzyme. There are three

major enzymes involved in the establishment and maintenance of DNA methylation

pattern: DNMT 3A and 3B are de novo methyltransferases, and DNMT1 is the

maintenance DNMT that ensures that methylation patterns are copied throughout

each cell division [159]. The majority of DNA methylation in mammals occurs in

5’-CpG-3’ dinucleotides, but other methylation patterns do exists. In fact, about

80% of all 5’-CpG -3’ dinucleotides in mammalian genomes is methylated, whereas

the majority of the 20% that remain unmethylated is within promoters or in the first

exons of genes. CpG dinucleotides, the site of almost all methylation in mammals,

are underrepresented in DNA. Clusters of CpGs called CpG islands, are often found

in association with genes, most often in the promoters and first exons, but also in

regions more toward the 3’ end [160].

CpG islands often function as strong promoters and have been proposed to func-

tion as replication origins. Even though they are generally not methylated, most

investigations into the role of DNA methylation in mammals have focused on CpG

islands, rather than on the regions in which the majority of methylation is found [161].

There is a growing understanding as to how the methylation signal is interpreted by

mammalian cells. The post-synthetic addition of methyl groups to the 5-position

of cytosines alters the appearance of the major groove of DNA to which the DNA

proteins bind. These epigenetic ‘markers’ on DNA can be copied after DNA synthe-

sis, resulting in heritable changes in chromatin structure. Methylation of CpG-rich

promoters is used by mammals to prevent transcriptional initiation and to ensure

the silencing of genes on the inactive X chromosome, imprinted genes, and parasitic
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DNAs [161]. Methylation has been shown to block gene transcription by two general

mechanisms. The first involves the modification of the cytosine bases. The methyla-

tion at a single site within the binding region for a transcription factor can strongly

inhibit the binding of the factor to the DNA recognition sequence [162]. The sec-

ond involves methyl-CpG-binding proteins (MBPs) that recognise methyl CpGs and

use transcriptional co-repressor molecules to silence transcription and to modify sur-

rounding chromatin. MBPs provide a link between DNA methylation and chromatin

remodelling and modification [163, 164]

Histone Modification

Histone modifications (particularly posttranslational modifications of amino-terminal

tail domains) are another important epigenetic mechanism for controlling gene ex-

pression [165]. Histone acetylation is associated with active gene transcription while

other histone modifications such as the methylation of histone H3 lysine 9 (H3K9)

are indicative of condensed and inactive chromatin [166]. Histone modification and

DNA methylation work together in a reciprocal relationship to control gene expres-

sion. Methylation of histone H3 lysine 9 can be triggered by DNA methylation [167].

DNA methylatransferases have been shown to interact with histone deacetylases, his-

tone methyltransferases, and methyl-cytosine-binding proteins in a complex network

[168, 169, 170].

5.1.2 Epigenetic Change, Developmental Programming, and

the Metabolic Syndrome

Epigenetic modifications offer the mechanism for the fixed genome to have a flex-

ible means to alter gene regulation that can be transferred through mitosis without

changing the DNA sequence. Epigenetics enables an organism to respond to the en-

vironment and change its gene expression, offering phenotypic plasticity with a fixed

genotype [171, 33]. Waterland and Michels proposed the term ‘Epigenetic Epidemi-

ology’ as the study of the associations between epigenetic variation and the risk of
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disease based on the increasing evidence that epigenetic mechanisms play a role in

DOHaD [172]. This is similar to genetic epidemiology, but rather than focusing on the

role of inherited genes in disease etiology, epigenetic epidemiology also considers epi-

genetic inheritance, developmental stochasticity, environment influences, and aging.

Recent epigenomic advances are accelerating the rate of discovery of human loci where

epigenetic regulation can be correlated with early environmental exposures. Linking

this to a growing understanding of the mechanisms by which epigenetic change leads

to metabolic syndrome is key to the future research in DOHaD.

Wolff et al. conducted the first study that demonstrated that the maternal diet

during pregnancy could trigger epigenetic changes in the offspring [173]. The study

was done on mice with the agouti gene (Avy). The agouti gene is an example of a gene

with metastable epialleles. Metastable epialleles are gene loci that can be modified by

an epigenetic component in a variable or reversible way. This will result in a range

of phenotypes from one genotype. The agouti gene encodes a signalling molecule

that promotes the production of yellow phaeomelanin rather than black eumelanin

pigment. If the degree of methylation varies, then it can produce a wide distribution in

coat colour (from yellow for unmethylated alleles to brown for methylated). Changing

the maternal dietary supplementation to include methyl-donor nutrients (i.e. folic

acid, vitamin B12, choline, and betaine) shifts the coat colour of the offspring toward

the brown phenotype. In addition to the change in coat colour, the hypomethylation

of the agouti gene promoter leads to obesity and in a particular strain of mouse it

leads to cancer [174]. Figure 5.2 shows mice that have differing levels of methylation

of the agouti gene based on the maternal diet they were exposed to during gestation.

Other studies revealed that, epigenetic changeability based on early nutrition is a

characteristic of metastable epialleles. In humans, population studies have shown

folate status is highly correlated with coronary artery disease [175]; however, this has

not yet been linked to a change in methylation of affected genes.

Additional studies in rodent models of intrauterine growth restriction have shown

that maternal diet during pregnancy leads to epigenetic changes in the offspring. A

study on protein-restricted rats found that the promoters of GR and PPARα were
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Figure 5.2: Diet and Methylation. This image, adapted from Waterland et al. [174],
shows mice that have been exposed to different maternal diets during gestation, which
has resulted in differing levels of methylation of the Agouti gene. This has caused
changes in the phenotype and has also made the mice prone to obesity and cancer.

hypomethylated in the offspring and were associated with increase gene expression

[176]. A study on hypertension used the offspring of protein restricted dams and found

decreased methylation in the promoter of the Agr1b gene and increased expression

[177]. These changes affected the regulation of blood pressure and were associated

with the development of hypertension in later life. These findings give evidence to

the hypothesis that maternal nutrition may affect the methylation in the offspring

and in turn, lead to disease later in life. Methylation changes in offspring of indi-

viduals exposed to the Dutch hunger winter has shown that maternal diet can have

long-term effects on the epigenome [178]. These individuals had decreased levels of

methylation of the IGF2 gene in adulthood. In addition to nutrition, other environ-

mental factors including maternal behaviour during pregnancy and early life of the

offspring can affect the establishment and/or maturation of epigenetic mechanisms,

causing persistent changes in gene expression [172].

5.1.3 Available Techniques for Methylation Analysis

Recent advances in genomics have led to the development of multiple new tech-

niques for DNA methylation profiling and the profiling of histone modifications.
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These techniques cover a range of resolution and throughput. A very recent re-

view, by Laird et al. [179], compares and contrasts these techniques. Measurement

of methylation can be made by determining the pattern of methylated target se-

quences along individual DNA molecules or by finding an average methylation level

at a single genomic locus across many DNA molecules. The uneven distribution of

methylation in CpG islands creates an extra complication. Simple PCR to look for

methylation changes is not possible, as methylation is erased during amplification.

This makes it necessary to perform some type of methylation dependent treatment

before the amplification process. The three approaches to the methylation treatment

are: endonuclease digestion, affinity enrichment, and bisulphite conversion. After

one of these approaches has been used to treat the DNA, a variety of techniques

are available (i.e. probe hybridisation and sequencing) to reveal the location of the

methylated cytosine residues.

Endonuclease Digestion

Restriction enzyme digestion utilises methylation sensitive restriction enzymes for

DNA methylation studies. These enzymes are inhibited by a 5-methyl-C in a CpG

region of a sequence. This reveals DNA methylation by the pattern of cutting that

is determined from the digestion. The most common are HpaII and SmaI. This is

largely because for each of these enzymes there is another enzyme (MspI and XmaI

respectively that is not inhibited by CpG methylation [179]. This is the method of

methylation detection that has been utilised for the data presented in this chapter.

Affinity Enrichment

Chromatin immunoprecipitation is a technique used to identify the location of

DNA-binding proteins and epigenetic marks in the genome. Genomic sequences that

are methylated or contain another mark of interest are enriched by binding solu-

ble DNA chromatin extracts to an antibody that recognises the mark. ChIP-chip

technology uses this technique followed in conjunction with microarray hybridisation

and is very useful for identifying histone modifications. Affinity purification is use-
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ful for identifying methylation patterns when a methyl-binding protein is used (i.e.

MECP2). Techniques that use this approach include MeDIP, mDIP, or mCIP.

Bisulphite Conversion

Sodium bisulphite conversion is a chemical treatment of DNA that turns an epi-

genetic difference into a genetic difference (unmethylated Cs are converted to Ts by

uracil). This enables the detection of DNA methylation using PCR or sequencing.

Bisulphite sequencing is the best method for producing base-pair resolution. The

Golden Gate BeadArray technology has been adapted to interrogate DNA methy-

lation using bisulphite converted DNA. Illumina has also developed the Infinium

platform, which is a more comprehensive approach to DNA methylation analysis.

5.1.4 Summary

The techniques mentioned above can be coupled with array based analysis or

sequencing approaches to obtain a high-throughput method for methylation interro-

gation. An alternative approach to sequencing or hybridisation, involves detection by

matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spec-

trometry. This requires gene-specific amplification and is best suited to a candidate

gene study. Sequenom has developed the EpiTYPER which enables automation for

a large number of samples. A number of factors will play into the choice of technique

used including number of samples, quality and quantity of DNA, desired coverage,

resolution, and cost. Figure 5.3 shows a variety of different techniques and plat-

forms available, the different enzymatic pre-treatment each requires, and the analysis

method used.

5.1.5 Study Design

In this thesis, endonuclease digestion has been utilised to look for methylation

changes highlighted in the gene expression profiling study. Genes were selected based

on the results of the MEEBO expression study and preliminary microarray expression
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Figure 5.3: Methylation Techniques. This figure from Laird et al. shows a majority of
the methylation techniques available. The chart shows which enzymatic pretreatment
and which analytical step is used for each of the available techniques.

results for the Illumina expression study, presented in Chapter 3. There were 87 genes

selected and analysed according to the pipeline shown in figure 5.4.

5.2 Results

Of the 87 genes analysed in the methylation assay, 12 were significantly differ-

entially expressed on the MEEBO microarray platform and 26 were significantly

differentially expressed in the final analysis of the data from the Illumina platform.

The full list of 87 genes is shown in table 5.1. The table reveals which chip the gene

was found on. Those genes found using the MEEBO chip are labelled ‘M’ and those

that were in the final Illumina analysis are labelled ‘I-FL’. The remaining genes, la-

belled ‘I’ that were found in the preliminary Illumina analysis, are not considered

significantly differentially expressed, but are included here, as a significant amount of

work did go into locating their CpG islands and determining the methylation status

of these genes. The sequence for each of the genes was obtained and promoters were

found. The region 5kb upstream of the promoter was analysed in search of CpG

islands using the EBI CpG island prediction software. In the instances where no

island was detected, the UCSC CpG searching tool was also used with a less strin-
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Design Primers
Use Primer3

Gene Analysis:
Define Promoter Region

Search for CpG Island

Found Not found

Look for Methylation 
Changes

 (McrBC Assay)

Transcription Factor Binding Site Analysis

CpG Island is:

Figure 5.4: Methylation Analysis Pipeline. This figure shows steps followed in this
chapter to assess the methylation status of the genes highlighted in the microarray
expression studies.
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gent search algorithm to provide negative confirmation. One CpG island or more

was identified in 56% of the promoter regions; flanking primers were designed using

Primer3 software. In cases where two islands were found, primers were designed for

both. The primers were then used in the McrBC assay. Separate pools of DNA for the

8 biological replicated from ad-libitum fed (AD) and undernourished (UN) rats were

digested by methylation sensitive restriction enzymes. The high frequency cutting

enzymes make it possible to assay a large proportion of CpG islands. The enzymes

used were: HpaII (cuts unmethylated alleles), McrBC (cuts methylated alleles), and

MspI (used as a negative control as it cuts independent of methylation). Digestions

of HpaII and McrBC give four possible results: full, null, incomplete, or composite

methylation. Before running the assay, the New England Biolabs NEBcutter tool

was used to confirm HpaII and MspI cutting sites. In addition, GC content was

confirmed by searching for the frequency of rare-cutter sites (NarI, NaeI, SacII, NotI,

BssHII, EagI, SmaI, MnlI, and MluI ). Products were separated by gel electrophore-

sis, and then the methylation status of the island was determined by the relative

band intensities. The findings and details of each gene are shown in table 5.1. In

addition, to the gene name and the chip the gene was found on, the table shows the

direction of the expression change, whether or not the gene has CpG islands, whether

or not primers were designed for methylation analysis, and whether a methylation

change was revealed by the McrBC assay. Finally, the promoter sequences of each

of the genes were analysed for possible transcription factor binding sites. The assay

succeeded for 18 genes and there was little or no apparent methylation difference

between the AD and UN samples. CpG islands were generally unmethylated in the

AD samples (61%). Of the 18 genes assayed, 5 were from the preliminary Illumina

expression analysis and their PCR results will not be included here. Figures 5.5 and

5.6 show the PCR images from the McrBC assay for the 13 genes that were shown as

differentially expressed in the MEEBO expression study or the Illumina expression

study (final list). Differential methylation was observed in 4 of the 18 successful as-

says (Mapk4, Tnfsf13, Zfand2a, and Atf4 ), all of which were demethylated. Two of

these genes were found as significantly differentially expressed in one of the microar-
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ray platforms. Mapk4 was differentially expressed on the MEEBO chip, and Zfand2a

was differentially expressed in the final analysis of the Illumina data. The other two

genes (Tnfsf13 and Atf4 ) came from the preliminary Illumina analysis and are not

considered significant.

Gene Chip Exp. CpG Primers Initial Meth.

Symbol Change islands Designed Meth. Change

Aass M ↓ 0 N/A Unk N/A

Adamts1 I-FL ↑ 2 yes Not No Change

Adn I ↑ 0 N/A Unk Not Examined

Adra1b I-FL ↓ 1 yes Unk PCR fail

Amd1 I ↑ 2 yes Not No Change

Arhgef19 pred I-FL ↓ 3 yes Mixed No Change

Arl6ip2 pred I ↓ 1 no Unk Not Examined

Atf4 I ↑ 1 yes Mixed Demethylation (isl1)

Besh3 I-FL ↓ 1 no Unk N/A

Bhlhb2 I ↓ 1 no Unk Not Examined

C4-2 I ↑ 0 N/A Unk Not Examined

Calm3 I ↓ 1 no Unk Not Examined

Cbx3 M ↑ 0 N/A Unk N/A

Cdo1 I ↑ 1 no Unk Not Examined

Ces3 I ↑ 0 N/A Unk Not Examined

Cidea pred I-FL ↓ 1 yes Not No Change

Cited2 I ↓ 1+ no Unk Not Examined

Cpa1 I ↑ 0 N/A Unk Not Examined

Crlz1 pred I-FL ↑ 2 yes Not No Change

Csng M ↑ 0 N/A Unk N/A

Cyp2c40 I ↓ 0 N/A Unk N/A

Dhtkd1 pred I-FL ↓ 1 yes Not No Change

Dnajb9 I ↓ 1 no Unk Not Examined

Dnase1l3 I-FL ↑ 2 yes Unk PCR fail

Eef2k I ↓ 1+ no Unk Not Examined

Eif4g2 pred I ↓ 1 no Unk Not Examined

Fabp7 I-FL ↑ 0 N/A Unk N/A

Fcgr2b I-FL ↑ 0 N/A Unk N/A

Fxyd6 I-FL ↑ 0 N/A Unk Not Examined

Galnt11 I ↑ 1 yes Not No Change

Gng11 I-FL ↑ 1 N/A Unk N/A
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Gene Chip Exp. CpG Primers Initial Meth.

Symbol Change islands Designed Meth. Change

Gstp2 I-FL ↑ 1 yes Not No Change

Igfbp2 I-FL ↑ 1 yes Mixed No Change

isg12(b) I ↑ 1 no Unk Not Examined

LOC299823 I ↑ 0 N/A Unk Not Examined

LOC301711 I ↓ 0 N/A Unk Not Examined

LOC303576 I ↑ 0 N/A Unk Not Examined

LOC303861 I-FL ↓ 0 N/A Unk N/A

LOC314964 I ↓ 1 no Unk Not Examined

LOC361061 I ↑ 0 N/A Unk Not Examined

LOC363151 I-FL ↑ 1 yes Unk PCR fail

LOC365214 I ↓ 0 N/A Unk Not Examined

LOC366485 I ↑ 1+ no Unk Not Examined

LOC366941 I ↑ 0 N/A Unk Not Examined

LOC498731 I ↑ 0 N/A Unk Not Examined

LOC500322 I ↑ 1+ no Unk Not Examined

Magel2 M ↑ 0 N/A Unk N/A

Mapk4 M ↓ 2 yes Mixed Demethylation (isl2)

MGC105601 I-FL ↑ 0 N/A Unk N/A

MGC94010 I-FL ↑ 0 N/A Unk N/A

Mgst1 I ↑ 0 N/A Unk Not Examined

Mx1 I ↑ 0 N/A Unk Not Examined

Mybph I ↑ 0 N/A Unk Not Examined

Myl2 M ↓ 0 N/A Unk N/A

Npm1 I-FL ↓ 2 yes Not No Change

Olfr802 M ↑ 0 N/A Unk N/A

Paip1 pred I ↓ 1 no Unk Not Examined

Pck1 I ↑ 0 N/A Unk Not Examined

Pde4d I ↓ 1 no Unk Not Examined

Pdia5 M ↓ 0 N/A Unk N/A

Phka1 I ↓ 1 no Unk Not Examined

Plekhb1 I ↑ 0 N/A Unk Not Examined

Plvap I ↑ 1 no Unk Not Examined

Pmp22 I ↑ 0 N/A Unk Not Examined

Ppap2a I ↑ 0 N/A Unk Not Examined

Psip1 M ↓ 1 yes Unk PCR fail
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Gene Chip Exp. CpG Primers Initial Meth.
Symbol Change islands Designed Meth. Change
Ptprb pred I-FL ↑ 0 N/A Unk N/A
Rabepk M ↑ 1 yes Unk PCR fail
Rbp1 I-FL ↑ 1 yes Unk PCR fail
RGD1306512 pred I-FL ↓ 1 yes Unk PCR fail
RGD1308082 I-FL ↓ 1 yes Not No Change
Zfand2a I-FL ↑ 1 yes Mixed Demethylation
RGD1311155 pred I ↑ 0 N/A Unk N/A
Rpl10l pred I ↓ 1 yes Mixed No Change
Rpl23a pred I ↑ 1+ no Unk Not Examined
Sara2 I ↓ 1 no Unk Not Examined
Serpinb6 I-FL ↑ 1 yes Not No Change
Sgpl1 I-FL ↑ 0 N/A Unk N/A
Slfn3 I ↑ 0 N/A Unk Not Examined
Tceal8 I ↓ 0 N/A Unk Not Examined
Tcf15 pred I ↓ 1 no Unk Not Examined
Thbs4 I ↓ 0 N/A Unk Not Examined
Tmpo I ↓ 1 no Unk Not Examined
Tnfsf13 I ↑ 1 yes Mixed Demethylation
Ubl3 pred I ↓ 1 no Unk Not Examined
Usf2 M ↑ 1 yes Unk PCR fail
XM 978865 M ↓ 1 yes Not No Change

Table 5.1: Table of Methylation. This table shows the 87 genes that were chosen from
the microarray study presented in Chapter 3. The promoter regions of the genes were
characterised, CpG islands were identified, primers were designed and the McrBC as-
say was performed. This table shows the results of each process of the pipeline for
each gene including: the chip it was found on (MEEBO ‘M’ or Illumina ‘I’) and
whether it made it to the final Illumina gene list ‘I-FL’, the direction of expression
change found in microarray, the number of CpG islands, whether primers were de-
signed for CpG Islands, whether the McrBC assay was performed and successful and
if this assay showed a methylation change.

Bisulphite Sequencing

Additional work attempting to use bisulphite sequencing for methylation analysis

was attempted using these DNA samples. After multiple attempts, bisulphite conver-

sion was finally successful, but problems with sequencing caused the termination of

this avenue of investigation. Primers designed for these assays are listed in Appendix

A.
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Adamts1 isl1 AD Adamts1 isl1 UN Arhgef19 isl1

Arhgef19 isl2 Cidea

Crlz Isl1 Crlz Isl2

Dhtkd1 Gstp2 AD Gstp2 UN

Igfbp2 Mapk4 Isl2 AD* Mapk4 Isl2 UN*

Figure 5.5: PCR results for 8 of the 13 genes that were significantly differentially
expressed in the microarray study and were successfully assayed using McrBC. Some
genes were assayed twice for different CpG islands. Those that show a methylation
change due to the nutrition treatment in utero are indicated with an *.

5.3 Discussion

This chapter aimed to investigate the methylation status of genes that were found

to be differentially expressed in the livers of day 55 rats exposed to maternal under-

nourishment during gestation (as presented in Chapter 3). This study was conducted

by a part II student during the preliminary stages of the analysis of the Illumina
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Npm1 Isl1 Npm1 Isl2

RGD1308082 Zfand2a*

Serpinb6 XM_978865

Figure 5.6: PCR results for 5 of the 13 genes that were significantly differentially
expressed in the microarray study and were successfully assayed using McrBC. Some
genes were assayed twice for different CpG islands. Those that show a methylation
change due to the nutrition treatment in utero are indicated with an *.

BeadArray data set. For this reason, many of the genes that were assayed for this

chapter did not show up in the final microarray statistical analysis. Of the 87 genes

analysed, only 26 were in the final list of differentially expressed genes presented in

Chapter 3. Of these 26, only one showed a change in methylation. This gene was

Zfand2a. Another 12 included in the methylation analysis were genes found to be

differentially expressed on the MEEBO microarray platform. Of these 12, one showed

a methylation change in the McrBC assay. That gene was Mapk4. The discussion

below will elaborate more on the function of Zfand2a and Mapk4 and their potential

role in the metabolic syndrome. Due to the timing of this study, many genes that did

show up in the final microarray analysis were not assayed. Therefore, this chapter

does not represent a thorough analysis of the methylation status of the genes impli-

cated in Chapter 3, but is a preliminary study and a test of the McrBC assay and

bisulphite sequencing as methods for future use.
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5.3.1 Zfand2a

Zfand2a was found to be upregulated by 40% on the Illumina microarray. This is

an arsenite inducible RNA associated protein that adapts proteosomes to counteract

stress-induced proteotoxicity [117]. This transcript is located on chromosome 12.

The CpG island search revealed one island spanning the transcription start site.

Separation of PCR products on an agarose revealed the presence of bands in the

HpaII AD digests, absent in the corresponding HpaII UN position, see figure 5.6.

Given that HpaII cuts DNA at unmethylated positions, this indicates the presence of

some methylated CpGs in the AD pool, and thus, failed digestion, permitting PCR

amplification of the fragment. Absence of visible bands in the HpaII UN position

thus suggests an increase in the proportion of unmethylated CpGs. It would appear

that a subtle change in the direction of demethylation has taken place.

An analysis to characterise likely sites for transcription factor binding was per-

formed. The CpG island spans the transcription start site and four potential binding

sites were found (CREB, E2F, c-Ets, and TATA). It is proposed, these sites, playing

a role in the binding of the basal transcription machinery, may be responsible for me-

diating the repressive effects on transcription of generalised promoter methylation.

Results of transcription factor binding site analysis are shown in Appendix C Figure

1. Upregulation of Zfand2a may indicate an alteration in oxidative stress due to the

effects of undernutrition. Sequence similarity also suggests Zfand2a may be involved

in nucleic acid interactions.

5.3.2 Mapk4

Mitogen-Activated Protein Kinase 4 (Mapk4 ) is located on chromosome 18 and

gene ontology entries suggest a role in the regulation of cell cycle processes and thus,

this gene product may be important in producing long-term pathogenic phenotypes

implicated in the metabolic syndrome. The CpG island prediction software revealed

two CpG islands. Primers flanking the first island (the long transcript) failed to

amplify efficiently. However, in island 2, following separation of PCR products on an
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agarose gel (see figure 5.5), the McrBC UN band is more intense than the correspond-

ing AD band. As McrBC digests methylated sites, this change indicates decreased

methylation due potentially to undernutrition in utero. This decreased methylation

would suggest increased expression of (Mapk4 ); however, the Illumina gene expres-

sion assay highlighted it as being downregulated. This result is paradoxical and

further investigation is necessary to clarify what is going on. Computational anal-

ysis to show likely transcription factor binding sites within the CpG island showing

potential differential methylation were performed. The nucleotides in the promoter

sequence comprising the CpG island in the short transcript were selected and TF

binding site analysis was performed on the reverse complement. One possible tran-

scription factor binding site (CREB) was found in the CpG island that could be

affecting the expression of downstream genes. Bisulphite sequencing or protein as-

says would enable verification. Results of transcription factor binding site analysis

are shown in Appendix C Figure 1.

5.4 Summary

A number of studies have investigated the methylation status of genes associ-

ated with metabolism that have previously been highlighted as candidate genes for

the metabolic syndrome. Fujiki et al. found the promoter of the Pparγ2 gene is

hypermethylated in pre-adipocytes, then it is progressively demethylated, as the dif-

ferentiation into adipocytes progresses and as mRNA expression increases [180]. In

addition, they found decreased Pparγ mRNA and increased methylation of the Pparγ

promoter in the visceral adipose tissue of a diabetic mouse model compared to the

wild-type mice. This suggests the methylation of the promoter region of PPARγ

influences the expression of the downstream gene.

A study by Plagemann et al., investigated the effects of prenatal and neonatal

overfeeding on methylation patterns in hypothalamic promoter regions of genes in-

volved in the regulation of food intake and body weight [181]. The study found

nutritional intake affects the methylation pattern and as a result, the ‘set-point’ is
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altered in the gene promoter of genes involved in body weight regulation. This ties

in closely with the introduction to Chapter 4.

In this study, that majority of genes showed no change in methylation status. As

the sites tested were all upstream of a CpG island, the results are consistent with

studies that show CpG islands are largely unmethylated and methylation changes

tend to occur in intergenic regions [182]. In addition, work on Pdx1 has shown that

histone modifications precede methylation changes. Progressive histone modifications

accompanied the gradual decrease in Pdx1 expression [183]. The increased histone

modifications occur as glucose homeostasis deteriorates and oxidative stress increases.

This suggests that the expression changes could be the result of a cascade of events

and that testing for methylation changes would not necessarily reveal the mechanism

for decreased expression.

A more detailed epigenetic investigation into the methylation changes and histone

modifications occurring in the tissues from Chapter 4, in addition, to an expression

study of the hypothalamus of rats similarly undernourished during pregnancy, would

be interesting to tie together the interaction of brain and peripheral organs along

with the interaction of methylation, histone modification, and expression changes.

The work in this chapter barely scratched the surface of interesting avenues of

exploration in the understanding of the involvement of methylation in developmental

programming and the later occurrence of the metabolic syndrome. This chapter was

intended to be a preliminary study to see if interesting methylation differences could

be uncovered in the genes highlighted in the gene profiling study from Chapter 3. The

methylation work done revealed that most genes showed no change in methylation

status. There are three possible explanations for this result. First, the McrBC assay

is not as sensitive as a sequencing based approach and therefore by using this assay

subtle changes in methylation status may be overlooked. The assay is not sensitive

enough to detect methylation differences among cell types. Liver cells may show a

heterogeneous pattern of methylation between cell types which would have been lost

when RNA was extracted. Second, this thesis has been investigating gene expression

profiles as a consequence of the change in maternal diet during pregnancy. The
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changes we may be observing could be due to a secondary change, which are a result

of methylation changes in upstream primary regulators. Third, we are looking at

animals that are 55 days old. While the majority of epigenetic modifications occur

early in life it is possible that a key change has occurred in a window after day

55. Subsequent studies should investigate methylation changes at a variety of time

points. It would also be beneficial to use another methylation technique to interrogate

more genes highlighted due to their gene expression profile or alternatively a genome-

wide methylation approach could be taken. A genome-wide approach might highlight

methylation changes in genes upstream of the genes found in this thesis, revealing a

cascade of changes in the affected pathways.
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Chapter 6

microRNA Expression Study

6.1 Introduction

The work presented in this chapter aimed to investigate the role of miRNAs in

gene expression regulation as a consequence of maternal undernutrition in the rat

model (see Chapter 3). We investigated miRNA expression changes in the liver

samples of 55 day old offspring of mothers that had been on a restricted diet or an

ad-libitum diet during pregnancy. This chapter begins with a review of microRNA

biogenesis and function. This background information is followed by a description of

experimental design, data quality and a presentation and discussion of the results.

6.1.1 microRNA

MicroRNAs (miRNAs) are small (18-25 nucleotide) noncoding RNAs that reg-

ulate gene expression in plants and animals by targeting mRNAs for cleavage or

translational repression. Recent studies have shown that miRNA regulation involves

a complex system of positive and negative post-transcriptional control that is only

just now being unravelled [184]. The miRNA target region (seed sequence) is located

at the 5’ end from bases 2 to 8. This region is important in identifying miRNAs. Com-

plex computational algorithms have been designed to predict miRNAs by looking for

these seed sequences. These algorithms predict that each miRNA can potentially

bind to 200 targets and estimate that miRNAs control the expression of one-third
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of human mRNAs. The official miRNA database (miRBase) currently lists over 600

human miRNAs [185]; however, computational prediction estimates there could be

over 1,000 [186]. Overall, miRNAs control the expression of hundreds or possibly

thousands of genes in a given cell type; therefore, they are likely to influence nearly

every genetic pathway [184]. Given this, it is not surprising that microRNA gene reg-

ulation has been shown to play a role in many biological functions including human

development, cellular differentiation, adaptation to environment, oncogenesis, host

cell interactions with pathogens, and has also been linked to human diseases such as

cancer, metabolic syndrome and aging [187, 184]. In addition, because of its tissue

specificity miRNAs are a potential target as biomarkers for human disease.

miRNA Biogenesis

The complex process of miRNA biogenesis in the human cell is shown in figure 6.1.

miRNA biogenesis involves two processing steps: the first takes place in the nucleus

and the next in the cytoplasm, where the final mature, single stranded miRNA is

produced. miRNA genes can be found in intergenic regions and in exons or introns

of other genes. These miRNA genes are transcribed by both RNA polymerase II

(most often) and III (occasionally) into primary transcripts (pri-miRNAs that are

100-1000s of nucleotides long) [188]. These pri-miRNAs contain Cap structures and

poly(A)-tails and can encode sequences for multiple miRNA genes. Two RNA type-

III endonucleases (Drosha and Dicer) coordinate the maturation of the miRNAs.

Drosha initiates the processing of the pri-miRNA by cleaving it at the stem loop.

It is then called pre-miRNA, and it is transported to the cytoplasm by Exportin-

5/Ran-GTP complex. There it is processed by Dicer into the short (≈22 nucleotide)

mature miRNA duplexes. These miRNA duplexes are then incorporated into the

miRNA-induced silencing complex (miRISC, also known as the miRNP complex),

where one strand is eliminated and one remains in the complex. There are occasions

where both sides of the miRNA-miRNA duplex are retained and associate with the

miRISC to target distinct subsets of mRNA for down-regulation [184]. miRNAs then

affect gene expression by annealing to the 3’-UTR (untranslated region) of target
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genes and cause mRNA degradation or repression of translation [189]. According to

the genomic region where a miRNA resides, miRNAs can be grouped into several

categories: intronic miRNAs in protein-coding genes; exonic miRNAs in non-coding

genes; intronic miRNAs in non-coding genes.

The Complexity of miRNA Transcription

Little detail is known on exactly how miRNAs are transcribed and what promoter

elements regulate their transcription. A few regulatory factors have been identified

that bind directly to miRNA promoter elements and control their expression. Specifi-

cally, the oncogene C-myc and the tumour-suppressor gene p53 are capable of positive

and negative control of miRNA transcription. In addition, subsets of miRNA genes

reside within CpG islands and are under epigenetic control. Transcription of miRNAs

miR-148a, miR-34b/c and let-7a-3 are dependent on their methylation status [184].

Recent studies estimate that 5-10% of mammalian miRNAs are epigenetically regu-

lated. In a study by Brueckner et al. [190], the let-7a-3 loci was hypomethylated in a

subset of patients with lung adenocarcinoma compared to patients with normal lung

tissue, suggesting that a lack of epigenetic control could contribute to the progres-

sion of cancer. Another layer of complexity is added with recent work indicating the

bidirectional transcription of miRNA genes. Drosophila mir-307 and the mammalian

mir-338 genes are both transcribed in the sense and anti-sense directions.

miRNAs and Methylation

In plants, small interfering RNAs have been known to direct methylation as a

mechanism of transcriptional control. Recent studies have provided evidence that

RNA-directed DNA methylation in mammals may also occur [191]. siRNAs and

miRNAs are considered to be closely related and many of the enzymes involved in

the RNA interference pathway (RNAi) are also processing pathways of siRNAs and

miRNAs[165]. Recent evidence also suggests that they affect histone modifications

[192]. Given that siRNAs and miRNAs are considered closely related miRNAs could

also be involved in controlling DNA methylation and histone modifications. A re-

202



Figure 6.1: miRNA biogenesis. miRNAs are transcribed by polymerase II or poly-
merase III to primary transcripts (pri-miRNA). Two RNA type-III endonucleases,
Drosha and DGCR8, process pri-miRNA by cutting it at the bottom of its stem loop.
It is then exported, as pre-miRNA, to the cytoplasm by export factor-5 (exportin-5).
The pre-miRNA is then processed by Dicer to generate an approximately 22 nu-
cleotide long miRNA duplex. One strand of the now mature miRNA is then perma-
nently incorporated into the RNA-induced silencing complex (RINC) and will bind
to the 3’-UTR of a target mRNA. This can lead to silencing of the transcript via
mRNA degradation or translational repression. This figure has been adapted from
Poy et al. [189]

.
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cent study showed that miR-165 and miR-166 were required for the methylation of

the PHABULOSA (PHB) gene in Arabidopsis. These two miRNAs react with the

newly processed PHB gene to change chromatin of the gene’s template [193]. These

results present the mechanism that would allow miRNAs to control gene expression

in addition to the RNAi pathway. Similar findings in mammalian cells have yet to

be shown. MiRNAs may also regulate chromatin structure by regulating key histone

modifiers. A study in mice has shown that miR-140 can target histone deacetylase

4 [194]. There is still a lot to understand about miRNAs and their role in gene ex-

pression. The mounting evidence points to miRNAs as key players in the epigenetic

control of gene expression and it is worth investigating whether this is a mechanism

involved in the programming of the metabolic syndrome.

microRNAs in the Metabolic Syndrome

MicroRNAs have important regulatory roles in a variety of biological processes

including several related to metabolic processes including adipocyte differentiation,

metabolic integration, insulin resistance and appetite regulation. These are high-

lighted in figure 6.2 [185]. A role in energy metabolism was first shown in a drosophila

study that implicated miR-14 in fat metabolism. Subsequently, miRNAs have been

shown to have functional roles in all organs directly related to the metabolism of glu-

cose (pancreatic islet, liver, skeletal muscle, adipose tissue, and brain). All of these

tissues have a unique miRNA expression pattern; therefore, miRNA may contribute

to specific tissue functions by regulating a set of unique target genes [189]. The

liver miRNA expression profile is dominated by a single sequence, miR-122. This

miRNA has been implicated in cholesterol and lipid metabolism, and in hepatitis C

virus replication. This miRNA is expressed in human and rodent liver tissue with

estimates of 50,000-80,000 copies per cell [195]. Recent findings have identified miR-

NAs as having a principal role in the production and secretion of insulin [185, 189].

miR-375 is specific to pancreatic islet cells and has been shown to play a key role in

blood glucose homeostasis through its regulation of β-cell function. miR-124a, let-7b

and miR-30d are also found in pancreatic islet cells. The two former are important
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Figure 6.2: This figures summarises the known roles of particular miRNAs in specific
metabolically related tissues (brain, liver, muscle, adipocyte, and pancreatic islet).
This figure was adapted from Heneghan et al. [185].
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ribo-regulators of blood glucose and the latter has been shown to influence insulin

transcription [185]. In addition, a number of miRNAs (including miR-103, miR-143,

and miR-132) have been found in adipose tissue that are involved in adipocyte differ-

entiation, proliferation and growth, and insulin resistance [185]. Studies in Drosophila

flies have revealed two miRNAs (miR-14 and miR-278) that regulate lipid metabolism

in body fat [185] and another (miR-1) is essential for proper muscle function [195].

miRNAs as Biomarkers

miRNA offers the opportunity to locate unique biomarkers of metabolic health

and disease because of its tissue specific expression and association with clinicopatho-

logic variables. The recent discovery of their presence in circulation makes them a

potentially non-invasive biomarker option. Reasons for their release into circulation

need to be investigated thoroughly, in addition to their exact roles in gene expression.

However, they would be an excellent tool for diagnosing metabolic syndrome [185].

6.1.2 Study Design

In this study, the same samples were used as in Chapter 3. These samples in-

cluded eight biological replicates from the AD nutritional group and eight biological

replicates from the UN nutritional group. The samples are rat samples, but due to

the unavailability of rat miRNA expression arrays the samples were cross-hybridised

to mouse arrays. The Illumina miRNA Profiling Assay is similar to the BeadArray in

that there are 12 arrays on each chip, and 2 chips were used for this study. Each array

incorporates the mouse microRNA panel which contains 419 sequences. As miRNAs

are conserved between species it was reasonable to use the mouse array to interro-

gate rat RNA samples. The experimental design is the same as that illustrated in

figure 3.14. Some samples were run a second time to try and achieve a better quality

hybridisations.
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6.2 Results

Total RNA was extracted from the rat livers using a protocol to ensure that small

RNAs were not filtered out (see Chapter 2). Eight biological replicates for each of

the two treatment groups (AD and UN) were hybridised to the Illumina MicroRNA

Profiling Assay using the Mouse microRNA Panel. Amplifications and hybridisations

were randomised and were performed by Kerry Cline at Cambridge Genomic Services

in the Department of Pathology. Cross hybridisations of rat samples to mouse chips

resulted in the detection of an average of 64% of the features across all arrays. This

result was not as good as anticipated, but was reproducible when samples were re-

hybridised. Samples 4.0, 101.0, 106.0, and 102.1 were re-amplified and hybridised

a second time due to initially questionable quality control results (these repeated

sample are called 4.0.2, 101.0.2, 106.0.2, and 102.1.0). The second hybridisations for

each of these samples were remarkably consistent (as seen most clearly in the MA

plots). Ultimately only 4.0 and 4.0.2 were removed as outliers for the final differential

expression analysis. This resulted in a total of 18 arrays in the analysis.

6.2.1 Data Quality Control

The Illumina system incorporates a number of internal controls for estimating

hybridisation quality. Figure 6.3 shows the details of the eight graphs for the inter-

nal controls across all 20 arrays. The results of the quality control assessment are

not as good as recommended by Illumina, but this is most likely due to the cross-

hybridisation of rat RNA to a mouse array. Figure 6.3A shows the data for the

negative controls. The background and noise signals should be low. This data shows

values less than 700 for the noise, which is slightly higher than ideal. Figure 6.3B

shows the PAP controls comparing the housekeeping genes with all miRNA expres-

sion. The housekeeping genes should be much higher than the other genes as they

are always expressed. Here the values are quite similar with large error bars. Figure

6.3C compares the mismatches versus the perfect matches. As expected the perfect

matches are greater than mismatches. Figure 6.3D is a contamination control. The
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positive represents the high signals and the negative represents background. Figure

6.3E shows the overall miRNA intensity. Figure 6.3F shows the high, medium and

low annealing controls. Figure 6.3G shows the perfect match versus mismatch ex-

tension controls. Figure 6.3H shows the hybridisation controls, the expression levels

should be high. Some of the controls (particularly the PAP controls) gave less than

ideal results, but overall the quality is acceptable. In addition to the Illumina Inter-

nal Controls, an R library, arrayQualityMetrics [196], was used to assess the quality

of the data before and after normalisation. This programme produces a quality con-

trol report and a number of figures for data visualisation (MA plots, density plots,

boxplots, and a heatmap). The report includes information on which samples appear

to be outliers. The different metrics the program utilises are meant to assess indi-

vidual array quality (MA plot), homogeneity between arrays (density and boxplots),

between array comparison (heatmap) and variance mean dependency (plot of stan-

dard deviation versus rank of the mean). The images from this analysis are shown in

figures 6.4-6.11. A visual inspection of these images shows that sample 4.0 and 4.0.2

appear to be outliers. The array quality metrics program marked sample 4.0 as an

outlier in two metrics (heatmap and MA plot).

6.2.2 Normalisation

Following the quality control assessment, this data was normalised in much the

same way as the mRNA expression data in Chapter 3. The data was filtered for genes

present on at least one array. Data was then transformed with a variance stabilising

transformation and normalised with a quantile normalisation (as described in Chapter

2). This was all done using the Lumi library in R. The arrayQualityMetrics library

in R was also used post-normalisation to assess the quality of the data. At this

stage, the programme suggested the removal of one outlier (sample AD 4.0). This

sample failed in all three of the programmes metrics. Sample 4.0.2 failed in 2 out of 3

metrics (MA plot and heatmap) and samples 106.1 and 102.0 failed in 1 out of 3 of the

metrics (boxplot/density plot). Due to this assessment and the visual inspection of all
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Figure 6.3: Illumina BeadStudio Internal Controls. This figure shows the inter-
nal quality control tools for the Illumina platform. (A)Negative Controls. Arrays
should have low expression values for the negative controls (background and noise).
(B)PAP Controls. This represents the housekeeping genes and miRNA and expression
values should be positive. (C)Internal Single Mismatch Controls. Perfect matches
should be greater than mismatches. (D)Contamination Controls. Positive = High
Signal; Negative=Background (E)miRNA Intensity. The expression should be higher
than background. (F)Annealing Controls. The Higher Tm MSO > Lower Tm MSO
(G)Extension Controls. Perfect Match < Mismatch (H)Array Hybridization Con-
trols. Expression levels should be high.
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Figure 6.4: Hierarchical Clustering of Raw miRNA Data. This plot shows the hi-
erarchical clustering of the raw miRNA data. The AD and UN samples have not
separated clearly, which is likely to be due to the high level of variation between
replicates. The two samples 4.0 and 4.0.2 which cluster far away from the rest were
determined to be outliers and were removed from the final analysis.
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Figure 6.5: MA Plot of Raw miRNA Data. This plot shows MA plots for eight of the
samples before normalisation. MA is defined as M = log2I1 − log2I2; A=1

2
(log2I1 +

log2I2). The mass of the distribution is expected to be concentrated along the M=0
axis, and there should be no trend in the mean of M as a function of A. You can see
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expected as smaller expression values are more common.
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Figure 6.6: MA Plot of Raw miRNA Data. This plot shows MA plots for eight of the
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plots samples 4.0 and 4.0.2 were removed from the analysis. Data was re-normalised

with data for the remaining 18 arrays before proceeding to the differential expression

analysis. Figures 6.12-6.16 show the normalised data. The Limma library in R was

used for pairwise comparison using a linear model to compute p-values and produce

a gene list. An FDR adjustment was computed and miRNA genes with a p-value <

0.05 were selected as statistically significant for further investigation.

6.2.3 Differential Expression

This study aimed to highlight miRNA that might be involved in the development

of the metabolic syndrome due to changes in nutrition during gestation. The results;

however, revealed no miRNAs that were significantly differentially expressed across

all eight biological replicates. Due to the cross hybridisation of rat RNA onto a

mouse miRNA array, only 64 % of the features were detected. Closer inspection of

the data revealed a significant amount of variation among these biological replicates.

In an effort to look at the data in more detail, two approaches to data analysis were

taken. The first involved a manual/candidate gene approach to look for the genes

implicated in pathways involved in the metabolic syndrome and determine if any of

them had potentially interesting expression profiles. The candidate miRNAs that

are used in this analysis were mentioned in the introduction to this chapter as being

metabolically relevant. Unfortunately, none of the miRNAs that were highlighted in

the literature had an interesting expression profile in this study. Overall, they all have

very small fold changes and very high p-values. As the candidate gene method did

not pull out any interesting results, a second method for analysing the data involved

filtering the data for those that were detected in at least 14 of the 18 samples. This

reduced the list from miRNAs to 213. Further filtering involved taking the p-value

before the FDR adjustment and selecting the samples with a p-value < 0.05. This

produced a filtered list of 44 miRNAs. Two of these miRNAs, mir-335-5p and 451,

have a two-fold change of increased expression. All 44 miRNAs are listed in table

6.1.
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Figure 6.12: Pairwise Comparison of AD Liver miRNA Samples After Normalisation.
This plot compares all seven AD liver biological replicates against each other after
normalisation and removal of outliers. These replicates should be very similar and
should be tightly distributed on the x=y axis, as these samples are. The correlation
for all comparisons ≥ 0.90.
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Figure 6.13: Pairwise Comparison of UN Liver miRNA Samples After Normalisation.
This plot compares all ten UN liver biological replicates and technical replicates
against each other after normalisation and removal of outliers. These replicates should
be very similar and should be tightly distributed on the x=y axis, as these samples
are. The correlation for all comparisons ≥ 0.93.
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Figure 6.14: Boxplot After Quantile Normalisation. This is a boxplot of the data
from each array. The plot compares the amplitude of all expression values on each
array. This shows that the majority of the signal is at lower expression levels. This
plot shows that there is no variability between the arrays. The normalisation has
effectively adjusted the expression values to remove the variability. This analysis was
done in Lumi.
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Figure 6.15: Density Plot Histogram of Density of Log2 Intensities for AD miRNA
Arrays After Quantile Normalisation. This is a histogram of each array showing the
density of intensities (log2). This plot shows that the majority of intensity values are
low and that there is no variation between samples. The normalisation has effectively
adjusted the expression values to remove the variability. This analysis was done in
Lumi.

222



Figure 6.16: Density Plot Histogram of Density of Log2 Intensities for UN miRNA
Arrays After Quantile Normalisation. This is a histogram of each array showing the
density of intensities (log2). This plot shows that the majority of intensity values are
low and that there is no variation between samples. The normalisation has effectively
adjusted the expression values to remove the variability. This analysis was done in
Lumi.
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TargetID logFC P-Value Detect

mmu-miR-335-5p 0.97 0.00 18

mmu-miR-451 0.91 0.00 18

mmu-miR-203 0.66 0.00 18

mmu-miR-499 0.65 0.01 18

mmu-miR-200a 0.56 0.04 18

mmu-miR-194 0.55 0.01 18

mmu-miR-126-5p 0.53 0.03 18

mmu-miR-29c 0.52 0.00 18

mmu-miR-16 0.51 0.01 18

mmu-miR-223 0.50 0.03 18

mmu-miR-100 0.42 0.02 18

mmu-miR-182 0.42 0.03 14

mmu-miR-20a 0.40 0.01 18

mmu-miR-130a 0.40 0.03 18

mmu-miR101b:9.1 0.40 0.01 18

mmu-miR-30b 0.40 0.03 18

mmu-miR-7a 0.38 0.03 18

mmu-miR-142-5p 0.37 0.02 18

mmu-miR-26a 0.35 0.01 18

mmu-miR-350 0.32 0.03 18

mmu-miR-546 0.31 0.04 18

mmu-miR-450a-5p 0.30 0.03 18

mmu-miR-146a 0.27 0.05 18

mmu-miR-540-3p 0.27 0.05 14

mmu-miR-22 0.26 0.02 18

mmu-miR-190b 0.21 0.00 15

mmu-miR-293 0.20 0.00 15

mmu-miR-26b 0.20 0.01 18

mmu-let-7g 0.17 0.02 18

mmu-let-7c -0.14 0.04 18

mmu-miR-693-5p -0.15 0.01 18

mmu-miR-469 -0.24 0.03 18

mmu-miR-23a -0.30 0.02 18

mmu-miR-150 -0.32 0.01 18

mmu-miR-682 -0.33 0.04 18

mmu-let-7d* -0.41 0.05 18

1=1
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TargetID logFC P-Value Detect
mmu-let-7e -0.42 0.02 18

mmu-miR-669c -0.42 0.02 18
mmu-miR-381 -0.44 0.02 18
mmu-miR-92a -0.48 0.01 18
mmu-miR-18a -0.54 0.01 18
mmu-miR-326 -0.57 0.03 18
mmu-miR-207 -0.64 0.02 18

solexa-103-3961 -0.77 0.01 18

Table 6.1: Table of miRNA Results. This table shows the 44 miRNAs that had a
p-value < 0.05 and were detected in 14/18 arrays.

6.3 Discussion

This chapter aimed to highlight miRNAs that have been significantly differentially

expressed in the livers of male day 55 rats that were exposed to maternal undernutri-

tion during gestation. The study involved the cross hybridisation of rat samples to

a mouse array that resulted in the hybridisation of 64% of the features. In this type

of experiment, a multiple testing correction is recommended to eliminate a majority

of potential false positives. However, in this study the multiple testing correction re-

sulted in no significantly, differentially expressed genes. Therefore, out of interest, a

less stringent analysis was done by removing the multiple testing correction, but still

ensuring the feature was detected in at least 14/18 arrays. This analysis revealed 44

miRNAs with a p-value < 0.05. This represents 10% of the total number of features

on the array, which is less than would be expected by chance. The fact that only

two of these showed a nearly 2-fold upregulation in the UN livers (miR-335-5p and

miR-451) and both were found to be either directly or indirectly associated with the

metabolic syndrome in very recent literature makes further investigation into their

involvement worthwhile. In addition, miR-let-7e was shown by Ingenuity Pathways

Analysis to target Mapk4, which was highlighted as being down regulated in Chapter

4 and demethylated in Chapter 5. These results are not consistent and follow up

studies are important to elucidate exactly what s going on.
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6.3.1 miR-335 Implicated in Lipid Metabolism

A literature search revealed that miR-335 has been associated with lipid metabolism

in the livers of genetically obese mice [197]. Nakanishi et al. conducted a study using

63 day old male ob/ob (leptin deficient) mice, db/db (leptin-receptor deficient) mice,

and KKAy (lethal agouti gene) mice. They used a miRNA microarray similar to the

one used here but on a different platform (HOKKADO System) to compare db/db

mice to wild-type (WT). They found miR-335 to be significantly increased in the

db/db mice. They used real-time PCR to check the expression levels of miR-335 in

multiple tissues in WT mice and found high expression in brain, lung, heart, and

white adipose tissue (WAT). This figure is shown in figure 6.17. They then used real-

time PCR to check the liver expression levels in ob/ob, db/db, and KKAy mice. All

of these mice had significantly elevated body weight, liver weight, hepatic triglyceride

concentration, and hepatic cholesterol concentration compared to the WT. The PCR

revealed significant increase of liver miR-335 in the three obesity/diabetic mouse

models. These results are shown in figure6.18. The authors also investigated miR335

expression in white adipose tissue and miR-335 involvement in adipose differentiation

and hypothesised that miR-335 may have a role in regulating lipid metabolism. Li

et al. [198] also found miR-335 to be upregulated (4-fold) in ob/ob mice compared

to WT on another miRNA microarray platform (CapitalBio Mammalian miRNA Ar-

ray). This study used male and female ≈ 90 day old mice. Another study using a

human breast cancer cell line implicated miR-335 as a metastasis suppressor due to

significant down regulation [199]. This publication revealed that miR-335 suppresses

metastasis and migration through targeting of Sox4, the progenitor cell transcription

factor and tenascin C, extracellular matrix component. How exactly miRNA-335

functions in the metabolic syndrome is yet to be determined.

miR-335 Gene Homology to Mest

A more thorough investigation into miR-335 revealed significant homology to

two transcripts. One is involved in the inner ear and the other, Mest (also Peg1
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or Zpeg1), has been linked to fat storage. Mest (mesoderm-specific transcript) is a

paternally expressed imprinted transcript that is important during development. It is

a member of the α/β fold hydrolase superfamily (along with lipases, acyltransferases,

and esterases) [200] and is localised in the endoplasmic reticulum. A microarray

study by Takahashi et al. [201] found that Mest is significantly expressed in the white-

adipose tissue of obese mice. Additional experiments revealed that the expression was

related to adipocyte size rather than diabetes or increased body weight. These results

suggest that Mest is involved in the formation of adipose tissue and the determination

of adipose cell size. Later work by Nikonova et al. [202], has led to the hypothesis

that MEST controls developmental adipose tissue expansion at the onset of a positive

energy balance by regulating adipocyte hypertrophy. The work showed that adipose

tissue expansion always accompanies increased Mest expression, but increased Mest

expression is not always associated with increased fat in the diet. This suggests that

Mest is not triggered by the diet itself, but rather other cues that indicate the need

for increased lipid storage. A more detailed investigation into the control of Mest in

relation to miR-335 and the combined effects on the metabolic syndrome may offer

more insight into the mechanisms of the metabolic syndrome

6.3.2 miR-451 Expression in Human Cancer Cells and Pos-

sible Association with Adipocyte Differentiation

Zhu et al. [203] conducted an miRNA expression study using multidrug resistant

human cancer cell lines and found that miR-451 along with miR-27a were found to

be upregulated in the human ovarian cancer cell line and the cervix carcinoma cell

line compared to the respective parental cell lines. These miRNAs were shown to be

involved in activating the expression of P-glycoprotein, the MDR1 gene that has been

implicated in cancer cell resistance to a broad range of chemotherapeutics. Zhu et al.

hypothesised that miR-27a and miR-451 may be potential targets for a therapeutic

strategy to control multidrug resistance in cancer cells. In a very recent publication

by Sang Yun Kim et al. [204], miR-27a was shown to be a negative regulator of
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Figure 6.17: This figure was adapted from Nakanishi et al. [197] and shows the
expression of miRNA-335 in a variety of tissues in WT mice. This shows that highest
expression was observed in brain, lung, heart, and white adipose tissue (WAT).

Figure 6.18: This figure was adapted from Nakanishi et al. [197] and shows the
expression of miRNA in the livers of ob/ob (leptin deficient), db/db (leptin-receptor
deficient), and KKAy (lethal agouti gene) mice compared to the WT. * = p-value
<0.05; ** = p-value<0.01

228



adipocyte differentiation by suppressing PPARγ expression. This study compared

expression of miRNAs in white adipose tissue of obese mice and lean mice. miR-27a

was downregulated in obese mice suggesting it might play a role in the suppression

of adipocyte differentiation through the control of PPARγ. As miR-27a was shown

to have a similar expression profile as miR-451 in human cancer cell lines, it would

be interesting to investigate whether it also plays a role in adipocyte differentiation

in white adipose tissue.

6.4 Summary

This study aimed to investigate the role of miRNA in metabolic syndrome by

comparing the expression profiles of livers of day 55 male rats exposed to maternal

undernutrition during gestation to those whose mothers had been fed normally. Two

of these miRNAs (miR-335 and miR-451) were up regulated by two-fold and were

found to be either directly or indirectly associated with the metabolic syndrome in

very recent literature. MiR-335 has been shown more than once, to be upregulated

in the livers of obese/diabetic mice. By association with miR-27a, miR-451 might be

involved in aspects of lipid metabolism in adipose tissue, but exactly what function

the upregulation found in this study might be associated with in the liver is unknown.

The next step in this investigation would be to use an alternative method to verify the

expression changes suggested by this miRNA study. Further work into the miRNA

expression in different tissues, at different time points would also be informative.
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Chapter 7

General Discussion and Future

Work

7.1 Conclusions

This thesis aimed to investigate the molecular mechanisms responsible for the de-

velopmental programming of the metabolic syndrome due to the exposure to maternal

nutritional insults. This was the first time that a global gene expression technique was

published in the DOHaD field [80]. Microarray technology was used to detect changes

in gene expression in target tissues, between offspring of control and undernourished

mothers, to obtain a broader picture of the cellular functions and genetic pathways

that may be implicated in the metabolic syndrome. Multiple studies have utilised

the candidate gene approach to look for gene expression changes and methylation dif-

ferences due to changes in maternal nutrition. However, a global approach makes it

possible to find novel genes that have not been implicated in the metabolic syndrome

previously. Preliminary analyses of methylation status and miRNA expression were

also performed in an effort to determine the mechanism of programming and the role

of miRNA in gene expression regulation, as related to the metabolic syndrome.
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7.1.1 Gene Expression Profiling Male 55 day old Rats Ex-

posed to Maternal Undernutrition in utero

The global gene expression approach was successful in revealing that at a young

age (day 55) and prior to the development of the metabolic syndrome phenotype,

the livers of male rats exposed to maternal undernutrition during gestation were al-

ready showing significant changes in metabolism compared to the control. The study

showed no differentially expressed genes in skeletal muscle and white adipose tissue,

which indicated the liver was being affected before changes in fat and muscle were oc-

curring. The hypothesis drawn from this was that the animals had been metabolically

programmed to favour fat as an energy source. This had resulted in mitochondrial

dysfunction, which initially affects hepatic function, but would potentially lead to

the development of the metabolic syndrome later in life. The phenotypic data was

compared to that of older male rats (day 110) that had developed the symptoms

of the metabolic syndrome. In a future study, an investigation into the expression

levels in the day 110 male rats would likely support this hypothesis and reveal more

information into the pathways being affected.

7.1.2 Gene Expression Profiling Female 170 day old Rats Ex-

posed to Maternal Undernutrition in utero, Postnatal

Leptin and postweaning High Fat Diet

In this thesis, a later time point (170 days) in female rats was investigated. Un-

fortunately, because of the difference in sex, a direct comparison could not be made

between the two studies; however, this second study involved a postnatal leptin treat-

ment and a postweaning high-fat diet. Phenotypic data from this study had indicated

that the postnatal leptin treatment resulted in a reversal of the metabolic syndrome

phenotype. Here, we aimed to find the molecular mechanism responsible for the re-

versal. Molecular evidence for a reversal of the developmental programming was not

revealed; however, it was clear that the interaction between treatments did result
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in significantly, differentially expressed genes. Intriguingly, the genes involved were

related to immune function, regulation of the circadian rhythm, and metabolism.

The interpretation was complex due to the interaction of the three treatments. A

follow up study would be useful to look into the highlighted genes in more detail,

and obtain a clearer picture of how the diet mismatch and the leptin treatment are

affecting the metabolism of these 170 day old female rats. In addition, a simplified

study design to observe immediate effects of leptin would help to separate the effects

of the post-natal diet.

7.1.3 Methylation Assay on Male 55 day old Rats Exposed

to Maternal Undernutrition in utero

In an effort to investigate the mechanism of fetal programming, a preliminary

study aimed to determine whether epigenetic mechanisms (specifically DNA methy-

lation) might be responsible for the observed transcriptional changes. This study was

conducted by a part II student during the preliminary stages of the analysis of the

Illumina BeadArray data set. For this reason, many of the genes that were anal-

ysed did not show up in the final analysis. Genes that were identified as significantly,

differentially expressed in the livers of 55 day old rats exposed to maternal undernour-

ishment during gestation were analysed to locate the promoter regions and to find

any nearby CpG islands. Primers were designed and methylation specific PCR was

used to look for methylation differences. Of the 87 genes analysed, only 26 were in the

final list of differentially expressed genes presented in Chapter 3. Of these 26, only

one showed a change in methylation. This gene was Zfand2a. Another 12 included

in the methylation analysis were genes that were found to be differentially expressed

on the MEEBO microarray platform. Of these 12, one showed a methylation change

in the McrBC assay. That gene was Mapk4. At least one potential transcription

factor binding site was found in the CpG islands of both of these genes. Further

investigation verifying the methylation differences and its effect on downstream gene

expression changes, would clarify the involvement in the metabolic syndrome. In
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addition, it would be of use to conduct a global methylation study on the day 55 or

day 170 samples or a similar study, to highlight methylation changes in other genes

that may be affecting the genes highlighted in this thesis, due to a cascade of events.

7.1.4 MiRNA Expression Profiling of Male 55 day old Rats

Exposed to Maternal Undernutrition in utero

The liver samples from this study were also used on a miRNA expression array to

highlight any miRNAs that might be involved in the differential regulation of gene

expression in the day 55 male offspring of undernourished mothers. Initially, this

study revealed no significant results. A closer look at the individual data points

revealed a large amount of variation between individuals that was over-shadowing

any potential differences between treatment groups. By using a less stringent sta-

tistical test (removing the multiple testing correction) and also, selecting for probes

that were detected on 14/18 arrays, 44 miRNAs were revealed as being differentially

expressed (p-value < 0.05). Two of these had a nearly 2-fold upregulation in the

UN livers. Both of these miRNAs were found to be either directly or indirectly as-

sociated with the metabolic syndrome in very recent literature. MiR-335 has been

shown, more than once to be upregulated in the livers of obese/diabetic mice and

has significant homology to a transcript that has been shown to be involved in lipid

storage (Mest). By association with miR-27a, miR-451 might be involved in aspects

of lipid metabolism in adipose tissue. However, the function of the miR-451 upreg-

ulation in the liver as found in this study is unknown. This data suggests, it would

be worthwhile to follow up on miR-335 and miR-451 to verify the expression changes

found in this study. In addition, if the variation between animals could be controlled,

a global miRNA study on a rat chip may reveal more candidate miRNAs that are

differentially expressed.
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7.2 Future Directions

These findings provide a number of interesting genes and pathways for further

studies and also highlight the need to conduct a thorough study in multiple tissues

at different time-points to pinpoint the window of developmental plasticity. Overall,

more investigation into the molecular mechanisms of the metabolic syndrome is nec-

essary to understand the pathways involved and to potentially reveal new treatments,

biomarkers, or preventive health advice. Studies designed to effectively highlight im-

portant developmental windows and studies in a variety of tissues (i.e. pancreas

and hypothalamus), in addition to those studied here, will also help to clarify our

understanding of the pathways involved.
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Appendix A

Primer Lists

Sequence Name Sequence 5′to3′

Tpi1 F Exp GCCCAGGAAGTACACGAGAA

Tpi1 R Exp CAGGCTACGCAGGAAGGTAG

Acad9 F Exp GGCCTCTCCAACACCATGTA

Acad9 R Exp GTGTTCCCCAGACGACAGTT

Slc37a4 F Exp GCTCCAGCAAAAATGAAAGC

Slc37a4 R Exp TGCAGCTAAACTACCCAGCA

GCK F Exp AGTATGACCGGATGGTGGAT

GCK R Exp CCGTGGAACAGAAGGTTCTC

HPRT F Exp CTCATGGACTGATTATGGACAGGAC

HPRT R Exp GCAGGTCAGCAAAGAACTTATAGCC

BETAACTIN F Exp GATTACTGCCCTGGCTCCTA

BETAACTIN R Exp TCATCGTACTCCTGCTTGCT

CA3 F Exp TTCTGAAGATAGGACGGGAG

CA3 R Exp ATGGGCTCTTTCAGTAGCAG

ORM1 F Exp TTTAACCTGACAGATGAGAACC

ORM1 R Exp GCACTTATCCTTTGTCCAGTC

PER2 exp F GATCCTGTACATCTCCAACCA

PER2 exp R CCTGAGTGAAAGAATCTAAGCC

Table A.1: Sequences of primers used for expression assays as described in chapter 3.
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Sequence Name Sequence 5′to3′

IGFBP2 exp F CCTCAAACAGTGCAAGATGTC

IGFBP2 exp R TGCTCGTTGTAGAAGAGATGG

IGFBP4 exp F CAGACCTCTGACAAGGATGAG

IGFBP4 exp R CCACAACCTTCATCTTGCTC

RT1-Ba exp F CTACCAACAAGGTTCCTGAG

RT1-Ba exp R TCGTTAGAAGGGATGAAGGTG

RT1-M6 2 exp F TTCTACCCTGCTGACATCAC

RT1-M6 2 exp R GTTGCTGGTTTCCATCTCAG

Ng22 exp F CACACTCCGTTATCACACTG

Ng22 exp R TGTAGGCATTACGGTTGAGG

RT1-149 exp F CTCCTTCATCCACTGATTCCA

RT1-149 exp R TGTCTTCATGCTTCACAATCTG

Table A.2: Sequences of primers used for expression assays as described in chapter 4.

Sequence Name Sequence 5′to3′

GR F EXP GGAGAATTATGACCACACTCAAC

GR R EXP GCAGTAGGTAAGGAGATTCTCAA

PPARa F EXP CTGGTCAAGCTCAGGACACA

PPARa R EXP AAACGGATTGCATTGTGTGA

PPARg F EXP TGCAGATTACAATGATGAC

PPARg R EXP TCGATATCACTGGAGATC

AOX F EXP CCAATCACGCAATAGTTCTGG

AOX R EXP CGCTGTATCGTATGGCGAT

11B-HSD2 F EXP TGGCCACTGTGTTGGATTT

11B-HSD2 R EXP ATCGGCCACTACCATGTTG

PPARa NEW F EXP CGGGTCATACTCGCAGGAAAG

PPARa NEW R EXP TGGCAGCAGTGGAAGAATCG

PEPCK F EXP AGCTGCATAATGGTCTGG

PEPCK R EXP GAACCTGGAGTTGAATGC

Cyclophilin F EXP TTCGGTCGCGTCTGCTTCGA

Cyclophilin R EXP GCCAGGACCTGTATGCTTCA

Table A.3: Sequences of primers used for expression assays as found in Lillycrop et

al. [82]. These assays are described in chapters 3 and 4.
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Sequence Name Sequence 5′to3′

Igfbp2 f m AGGGAGTGGTCTCCAAAAGG

Igfbp2 r m CCGCTGAGCTACGAGTTTCT

Serpinb6 f m GACTGAGTCGCCTTGTGGTC

Serpinb6 r m CAGGCACSCTGGACAAGAAA

LOC363151 f m CAGCCAACATGCAAACTGAG

LOC363151 r m CTCCTCCTCCAGCCTGACT

Gstp2 f m TGTTTTGTCCCCCAGAACTC

Gstp2 r m CCAAAAATGAACCCAGCACT

RGD1310991 f m TCAGCCTAGGCCAGAGATGT

RGD1310991 r m CAGCACTCCTGACCCTGTC

Adamts1 isl1 f m CACCGTCTGGAGGGTGAA

Adamts1 isl1 r m TTTCGGAGCTCTCAGTCTGC

Adamts1 isl2 f m CTGACCCCAAAGGGACTTCT

Adamts1 isl2 r m GGGCTCCAATGTGGCTATAA

Atf4 isl1 f m AACCTCTGGTGGCTCTTCC

Atf4 isl1 r m CAGGCTCTGCTGCCTCTAAT

Atf4 isl2 f m CATTTCTGCTTGCTCTGTGG

Atf4 isl2 r m TTGCACAAGATGGAGGCTTA

Galnt11 f m GACAACTCGGGCCTCACA

Galnt11 r m CTGGACCAACTACCAAACCTTC

Crlz1 isl1 f m TTCTCTGACCCCAGGACAAG

Crlz1 isl1 r m GGCTGAGACTAGCCTGGACA

Crlz1 isl2 f m CCGAGTGGAAGTTTGGTTGT

Crlz1 isl2 r m TGTTGGTGCTTGACCAATGT

Amd1 isl1 f m AAGCAGGCAAACCCTCCT

Amd1 isl1 r m CTTCGTACCATCCCAAGGTG

Amd1 isl2 f m ATTTTCCCGGCTATTTTCGT

Amd1 isl2 r m CTTCATCTGCAACCAAGCTG

Rbp1 f m TCTTTCTAGGCTGGGGAGGT

Rbp1 r m GCCCTCTAGTTGGCAGCA

Table A.4: Sequences of primers used for methylation assays described in chapter 5.
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Sequence Name Sequence 5′to3′

Tnfsf13 f m GACCACGACCAGCAGGAG

Tnfsf13 r m TGTGGGAGGGCTCAACATAC

Adra1b f m GACCAAGGCACCTCAGCTAC

Adra1b r m GGGTGTATGAACCCGGATG

Npm1 isl1 f m GGTAGGCCTCGCCTCACT

Npm1 isl1 r m ACTGACTGGAAGGGAGAGCTT

Npm1 isl2 f m TCCCTTCCAGTCAGTTACCG

Npm1 isl2 r m GCCTTCGAGCAAGTCAAATC

Cidea f m AGCCCCCAGAAGAGAAAAAC

Cidea r m AGGGGGACTATAGCCGTCTG

RGD1308082 f m GACCGACCGCAAAATAGAAA

RGD1308082 r m CTCACCCACTTCAGGGTCTC

Dhtkd1 f m CCATTCTTCCACGCGTCT

Dhtkd1 r m GAAGAGGCCCCTTTGGTC

Arhgef19 isl1 f m CATCTCCCATTTAGGGCTGA

Arhgef19 isl1 r m GTGCCTAGTGGGTCTTCCAC

Arhgef19 isl2 f m CATCCGAGACCCCTAAGTCA

Arhgef19 isl2 r m CCCGTGGAAAACTGGAGAC

Rpl10l f m TTTCTGCCAGCAAAGTCCTC

Rpl10l r m GTAGAGTGACCCGGAGGTTG

Usf2 isl1 f m CACCTTCCTGCAGCTCAAC

Usf2 isl1 r m CCCATGGACATGCTGGAC

Usf2 isl2 f m GCGCTGATTTTGGGACAA

Usf2 isl2 r m CCGAGGATCTGGGAAACAG

Rabepk f m TCCGCCACAGTCTTTTCTTC

Rabepk r m GGAGACCGAGCGAATTAGAA

Psip1 f m TCTTGGCGAAGATGAGGTCT

Psip1 r m AGCATCCCTGCCTCAGGT

Mapk4 isl1 f m AGCGGGCAGCTAGAGAAAA

Mapk4 isl1 r m ACGCAGGAGGTGCAGAAG

Table A.5: Sequences of primers used for methylation assays described in chapter 5

continued.
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Sequence Name Sequence 5′to3′

Mapk4 isl2 f m GGACAATATAAGCCACGCTGA

Mapk4 isl2 r m GACTGCATCGCCAGTGTCTA

XM 978865 f m AGCTGTGCTTGTAGGGGAAG

XM 978865 r m CAAGCACTCAGACCCCAGAT

Acad9 F Meth ACATTACATACAGCAATGCTTGG

Acad9 R Meth AAAGGTGGGAGCAGAGAACA

Tpi1 F Meth TGTCCCTAGGCCACCATCTA

Tpi1 R Meth TTGAAAAGGTGCCCTCAAAC

Slc37a4 F Meth GCAGGGAATATTTCTTTAGTTTTCTG

Slc37a4 R Meth GTAAGGCACCATGGCAAAAG

Table A.6: Sequences of primers used for methylation assays as described in chapter

5 continued.

Sequence Name Sequence 5′to3′

GR F METH CGTCTTGTTCCACCCACT

GR R METH CCTTGCAGTTGCCGACAG

PPARa F METH TGTGTCTCGTTCTGAACCG

PPARa R METH TCCACCCACCTCACTGTC

PPARg F METH CGACTGTGAGGAGCAAGG

PPARg R METH CCCAGGTCTCTTCTTCAG

Hexokinase F METH GAACCTGGACAGGTGTAGGAGAATC

Hexokinase R METH AGCACTAGTGTGTCCCACTGTCC

PPARg2 F METH GTCTCTGCTCTGGTAATTC

PPARg2 R METH AAGGCTTGTGGTCATTGAG

Table A.7: Sequences of primers designed for methylation assays as found in Lillycrop

et al. [82].
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Sequence Name Sequence 5′to3′

IGFBP2 F BISEQ TTGGTTTAGAAGGATTGAATTTTTT

IGFBP2 R BISEQ ACTTTACTCCCTTCAACCTAAAATC

ISL1 F BISEQ TGTTAGTTTTAGGAGATGTATTTTTTT

ISL1 R BISEQ AATTAAACAATTAATAAACAACCCACAA

EHMT2 F BISEQ GGGGGTAAAAATGTTTAAAAGGTT

EHMT2 R BISEQ ACAAACAACTAAAAAACCCAAAAC

MAPK4 F BISEQ GTGGAGTTTAGTTTTTTGGT

MAPK4 R BISEQ CTTTAAAAAAACCTCCAACCCTTAC

ATF4 F BISEQ TGGATTGATAGGATTGGATTAGGTA

ATF4 R BISEQ CTACCACAAAACAAACAAAAATAAC

TNFSF13 F BISEQ ATGTGTTTAGAAAGGGGTATGTTG

TNFSF13 R BISEQ TTCACTAACCCTCAAAAACCTTAAT

GCK1 F BISEQ GAATTTTATAGAAGAGTTTAGAATGTTTTGG

GCK1 R BISEQ CACACCTTATAATATCCATAACCATCTC

GCK2 F BISEQ GGGTGTTAGGGTAGTTAGAGGATTTG

GCK2 R BISEQ CCTAACTCCTAAAACCACCTATTAC

Crat biseq F TTTAGTAGGGAAATGAGTGTTGGTTT

Crat biseq R ATATCCAAATCTAACCAATATCCTTAAACA

Tpi biseq F TTAGTTATGTTTGTGAAATATTTGGGTT

Tpi biseq R AAACTCAAACATCCCACCTTAATAA

Table A.8: Sequences of primers designed for bisulphite sequencing assays as de-

scribed in chapter 5.
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Appendix B

Publications and Presentations

Publications

◦ T.J. Morris, M. Vickers, P. Gluckman, S. Gilmour and N. Affara (2009)

Transcriptional Profiling of Rats Subjected to Gestational Undernourishment: Impli-

cations for Developmental Variations in Metabolic Traits. PLoS ONE 4(9):e7271.

doi:10.1371/journal.pone.0007271

Presentations

◦ T. J. Morris, N. Affara, S. Gilmour, M. Vickers, and P. Gluckman.

Microarray Analysis to Investigate the Mechanisms of Metabolic Syndrome.

Poster presentation. 17th Annual International Conference on Intelligent Sys-

tems from Molecular Biology & 8th European Conference on Computational

Biology June 2009: Stockholm, Sweden.

◦ T. J. Morris, N. Affara, S. Gilmour, M. Vickers, and P. Gluckman.

A Global Approach to Epigenetic Change in an Undernourished Rat Model .

Poster presentation. 5th International Conference on Developmental Origins of

Health and Disease (Dohad) November 2007: Perth, Western Australia.

◦ T. J. Morris. A Gene Expression Study of Fetal Programming in Undernour-

ished Wistar Rats . Poster presentation. Sanger PhD Symposium April 2007:

Cambridge, UK.
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Appendix C

Supplementary Data

Supplementary Data including gene lists, tables, and trancription factor analysis

results as cited throughout this thesis are included on the accompanying DVD.
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