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Tyre curve estimation in slip-controlled braking 
 
Abstract 
Progress in reducing actuator delays in pneumatic brake systems is opening the 
door for advanced anti-lock braking algorithms to be used on heavy goods 
vehicles. However, these algorithms require knowledge of variables that are 
impractical to measure directly. This paper introduces a braking force observer 
and road surface identification algorithms to support a sliding mode slip 
controller for air-braked heavy vehicles. Both the force observer and slip 
controller are shown to operate robustly under a variety of conditions in quarter-
car simulations. A nonlinear least squares algorithm was found to be capable of 
regressing all parameters of the UMTRI tyre model when used ‘in-the-loop’ 
with the controller and the observer. A recursive least squares algorithm that is 
less computationally expensive than the nonlinear algorithm was also 
investigated, but only gave reasonable estimates of the UMTRI model 
parameters on high friction, smooth roads. 
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Introduction 
Commercial road vehicles are a vital part of the economy, moving seven times more 

freight in the UK in tonne kilometres than trains1. However, Heavy Goods 

Vehicles (HGV) require 40% more distance for braking than passenger cars on dry 

roads, contributing to their higher rate of involvement in fatal accidents than other 

vehicles.2-4 The mandatory use of anti-lock braking systems (ABS) on articulated 

vehicles in North America and Europe has helped improve heavy vehicle braking 

performance somewhat. However, current HGV ABS systems use inefficient, 

heuristic control approaches that work on cycles of predicting and superseding the 

limits of tyre-road adhesion, and then reducing the brake pressure to allow the wheel 

to rotate again.5  
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Part of the reason for the heuristic control approach to HGV ABS is the 

notoriously slow pneumatic actuators in their braking systems. This results in HGV 

ABS systems cycling at frequencies of 1–2 Hz, with the periodic locking and 

unlocking of the wheel substantially reducing the braking force (by comparison, 

passenger car ABS cycles at frequencies of 6–8 Hz).6, 7 It has been shown in 

Miller et al.8, 9 that actuation delays in heavy vehicles could be reduced by an order of 

magnitude (from over 40 ms to under 4 ms) by placing fast pneumatic valves 

featuring “binary-actuation” technology directly on brake chambers, instead of 

conventional valves located on a central controller (ECU). Such reductions in 

actuation delay and mechanical hysteresis would allow advanced braking control 

methods, such as slip control, to be used on pneumatically braked vehicles. Slip 

control seeks to optimise wheel slip continuously during braking, thereby maximizing 

deceleration while maintaining vehicle maneuverability. Preliminary estimations with 

a proof-of-concept control system and vehicle simulation predict reductions of up to 

35% in braking distance relative to conventional ABS.8  

In general, however, slip controllers tend to use the braking force between the 

tyre and the road as a control variable, and the vehicle speed must be known to 

evaluate the slip. In addition, knowledge of the slip-friction characteristics of the tyre-

road system is typically needed, so that the maximum-braking point on the slip-

friction curve can be identified and used as a controller set point. It is not practical to 

measure these variables directly, so they must be estimated.  

In this paper, a sliding mode slip controller is presented, along with the 

braking force estimation and road surface identification algorithms required to support 

the controller. Speed estimation is also an important topic. However, presenting an 

appropriate algorithm in adequate detail would require a lengthy discussion that is 
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considered out of the scope of this paper. Instead, examples of speed estimation 

algorithms can be found in [10-13]. 

The architecture of the combined control system that will be presented in this 

paper is shown in the block diagram of Figure 1. The tasks of estimating the braking 

force and the wheel slip curve are separated, to eliminate the need for a priori 

knowledge of a braking force model. The paper begins with a literature review, 

following which a braking simulation as well as the slip controller are introduced. A 

braking force observer and slip curve regression strategies are then presented. Slip 

curve regression is investigated in both the fully nonlinear, multi-variable cases, and 

in the more easily implemented recursive case, with the aim of identifying the 

maximum-braking point on the slip curve.  

Literature review 

Braking force estimation 
Several approaches have been taken towards tyre friction force estimation in the 

literature. Ray14 used a nonlinear Extended Kalman Filter (EKF) based on an 8 degree 

of freedom car model to estimate the tyre forces in the longitudinal and lateral 

directions. Extended Kalman filters with the states augmented by the unknown forces 

were also used by Shim et al.15, and Hong et al.16 

Unsal and Kachroo17 compared an EKF with a sliding mode observer to 

estimate vehicle velocity, using this estimated velocity with a nominal slip-friction 

curve to determine the braking force. The authors preferred the sliding observer 

because it was robust against errors in the assumed road friction.  

Drakunov et al.18 used a simple sliding mode observer to estimate only the 

longitudinal braking force of a vehicle. Similar observers were applied by Choi et 
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al.,19 and by Ribbens et al.,20, 21 but it was shown by Miller and Cebon22 that these 

observers would be susceptible to parametric errors such as brake gain variations. 

Tyre forces in both the lateral and longitudinal directions were estimated with a 

sliding mode observer by Cadiou et al.23 The estimator produced plausible force time 

histories, but the results showed significant scatter when plotted on slip-friction 

curves.  

Tyre curve identification 
Knowledge of the road friction level and the shape of the slip-friction curve allows the 

maximum-braking point to be identified. Sensors exist for identifying different 

surface types,24 but these sensors provide limited information about the necessary 

friction parameters, and tend to be impractical to use on ordinary road vehicles.25 

Estimating the entire slip-friction curve.    Ray14 decoupled friction estimation 

from tyre force estimation, allowing the vehicle states to be available for control 

immediately, and the tyre curve to be available for controller set points once it had 

been identified by a Baysian hypothesis selection algorithm. Rather than separating 

parameter and state estimation, Hodgson and Best26 used an adaptive identifying 

Kalman Filter (IKF) to estimate some of the parameters of the “magic formula” tyre 

model together with the vehicle dynamics states, and showed that an IKF would 

outperform an EKF when the vehicle’s tyres saturated.  

A nonlinear observer based on a Lyapunov approach was used by Yi et al.27 on 

a quarter-car vehicle to determine the friction internal state of a LuGre tyre model and 

the Coulomb friction of the road surface. Alvarez et al.28 extended this analysis by 

adding the longitudinal acceleration as a measured variable, arguing that this 

enhanced system observability.  
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The adaptive observer presented by Yi et al.27 was compared to second order 

and third order, fixed-gain sliding mode observers based on quarter car dynamics by 

Patel et al.29, 30. The adaptive observer gave the least accurate results on higher friction 

roads in simulations, but it is unclear to what extent the adaptive observer was tuned 

in relation to the sliding mode observers under those conditions. 

Identifying different parts of the tyre curve.    Tyre models in the literature 

tend to assume that the linear relationship between force and slip at low slips remains 

the same regardless of the surface being driven on. Contrary to this, Gustafsson25 

exploited the differences in tyre stiffness on different roads for surface identification 

by estimating the ‘slip slope’ at low slips with a Kalman filter. The approach was only 

suitable for normal driving, and required special calibration to estimate the absolute 

friction. Yi et al.31 similarly used a “reduced order observer/filtered regressor-based 

identifier” with vehicle test data to differentiate between dry and wet roads, based on 

a nonlinear mapping of the slip slope at low slips for different surfaces.  

Pasterkamp and Pacejka32 relied on neural networks to learn relations between 

several variables of the brush tyre model to estimate the road friction and side-slip 

angle. In contrast to Gustafsson, they observed a degradation in the quality of 

estimates of the road friction in simulations and vehicle tests for low slips and high 

friction values, because the tyre behaviour was independent of the road friction. 

Many algorithms presented in the literature focus on estimating only a subset 

of the total number of parameters needed to describe the tyre curve. Furthermore, the 

force estimation algorithms are predominantly presented for cars, whose tyre 

characteristics and dynamic behaviour differ significantly from those for trucks.33 The 
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work in this paper will present a sliding mode controller and force observer tuned for 

HGVs, as well as an algorithm to estimate the entire slip-curve. 

Braking simulation 

Vehicle and road 
A modified version of the validated ‘quarter-car’ braking simulation presented by 

Kienhofer et al.5 was used for control system design (see Figures 1 and 2), and will be 

introduced in this section. The model had four degrees of freedom: longitudinal 

motion of the vehicle, rotational motion of the wheel, and vertical motion of the 

sprung and unsprung masses. The longitudinal motion of the vehicle and the rotational 

motion of the wheel were described by,  

 
 0=+ xVx vmF &         (1) 

0=+− Bxbww TFrJ ω&         (2) 
 
where Fx is the longitudinal tyre force (braking force), which is derived from a tyre 

model that will be described shortly, mV is the total vehicle mass, vx is the longitudinal 

velocity of the vehicle, ωw is the rotational speed of the wheel, TB is the braking 

torque, rb is the radius through which the braking force acts, which is not necessarily 

equal to the rolling radius,34 and Jw is the polar moment of inertia of the wheel. 

It was assumed that: braking torque is proportional to the pressure in the brake 

chamber, Pc; disc brakes are used; there is one brake pad on either side of the disc; 

and that the emergency stop is short enough that brake fade could be neglected.33, 35 

Hence, 

 

cbrbrccB PrµqAT 2=          (3) 
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where Ac is the effective force-area of the chamber diaphragm, qc is the lever ratio in 

the calliper, µbr is the coefficient of friction between the brake disc and pads, and rbr is 

the effective radius of the brake pads on the disc. The combination of 2Acqcµbrrbr is 

called the ‘brake gain,’ G.   

Brake chamber charging and discharging dynamics were described using one-

dimensional flow theory and the thermodynamic relations for unsteady flow through 

an open system, as presented by Miller and Cebon.9 It was assumed that pulse-width 

modulated valves were used to control flow into and out of the chamber via a linear 

pressure controller, which is also detailed in Miller and Cebon.9  

The vertical dynamics of the vehicle were described by36 
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where m, c, and k denote mass, damping, and stiffness respectively; z is displacement, 

and the subscripts ‘t’, ‘ r ’, ‘ U’, and ‘S’ denote the tyre, road, unsprung, and sprung 

masses respectively. The vehicle model was subjected to road surface roughness with 

specified spectral content corresponding to the ISO classification 8608:1995,37 and 

quantified by the International Road Roughness Index (IRI).38 Values used for the 

vehicle parameters in the simulations are shown in Table 1. The values represent one 

wheel station on the trailer of an existing test vehicle39, 40 when lightly loaded. This 

test trailer features experimental equipment on its axles, and so the unsprung mass 

may be slightly higher than for an ordinary trailer. 

Tyre forces 
Truck tyres have unusually high ratios of peak to slide friction when compared to 

other motor vehicles, and the broad range of loads covered by the heavy truck tyre 
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causes large variations in the absolute peak and slide friction values.33 The semi-

empirical tyre model from the University of Michigan Transportation Research 

Institute (UMTRI) was used here to estimate braking forces.41 The model was used 

because it was derived based on data from full scale tests with truck tyres; it requires 

only four parameters to describe the entire slip-friction curve; and because it 

represents a wide variety of truck tyres accurately. 

Wheel slip, λ, is defined in the UMTRI tyre model as: 

 

x

wrx

v

rv ωλ −=         (5) 

 
where rr is the rolling radius of the wheel. Braking force is generated in the model by 
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where Fz is the vertical load on the tyre, Co is the longitudinal tyre stiffness, Lx is the 

fraction of the contact patch that is not sliding, and µ is the friction coefficient, which 

varies with speed according to 
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where µo, µf, and Vf are factors describing the peak friction, slide friction, and the 

shape at the peak of the slip curve respectively. The longitudinal tyre stiffness varies 

with normal load according to: 
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where C1 and C2 are constant coefficients that were set based on representative values 

given in Fancher.41 The fraction of the contact patch that is not sliding is given in the 

model by 

 
( )
λC

λFµ
L

o

z
x 2

1−=         (9) 

 
and is constrained to a maximum value of 1. When Lx = 1, at very low values of slip, 

there is no sliding in the contact patch. In this case, equation (6) can be rearranged as 

 

( )λ
λ

−
=

1
0C

Fx          (10) 

 
 

It can be seen in equation (7) that µ is related to the vehicle speed (see 

Figure 3 a)). As a result, the maximum tyre force occurs at an intermediate value of 

slip that rises towards 1 as the vehicle slows (see Figure 3 b)). The vertical force also 

affects the braking force. An increase in vertical force serves to increase the available 

braking force, but also to make the tyre longitudinally stiffer, as illustrated 

in Figure 3 c). 

Slip controller 
A variable structure, sliding mode approach was taken here for the slip controller in 

the braking simulation. Sliding mode controllers, being inherently nonlinear in nature, 

are particularly good for unstable plants with ‘strong’ nonlinearities, such as the wheel 

slip curve,42 and are more systematic to tune than traditional rule-based controllers. 

The full derivation of the controller, based on equations (2), (3), and (5),  can be 

found in Miller et al.,8 and a discussion about its robustness can be found in Miller.40 
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Both discussions are omitted here for brevity. The expression for the final controller 

is: 
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where Φs is a positive design constant, δs, is the boundary layer width, ds λλs −= , λd 

is the desired slip, and ks is the sliding gain.  

A preliminary demonstration of the performance of the sliding mode wheel 

slip controller described by equation (11) will be given in this section. It was assumed 

in the first instance that the wheel speed, vehicle speed, braking force, and vehicle 

acceleration could be measured. The controller gains ks, δs, and Φs were iteratively 

tuned by simulating multiple stops with different gains, and plotting the resultant 

stopping distance and air (energy) usage from each stop on ‘conflict plots.’ The gains 

that provided the best tradeoff between stopping the vehicle in the shortest distance 

and minimizing the air used during fill and dump cycles were chosen from the plots. 

The complete details of the tuning and tradeoffs are the subject of another work by the 

authors,8 and are omitted here for brevity.  

Figure 4 shows slip time histories of vehicle stops with sliding mode control 

on a perfectly smooth (IRI = 0 m/km), high friction surface (µo = 0.9, equivalent to dry 

asphalt). The parameters for the tyre curve were set based on representative values 

given in Fancher,41 which were derived from full-scale tests with truck tyres. The 

optimal slip point on this road is around 0.2 at the initial speed of 80 km/h, rising to 

0.4 as the vehicle slows, due to the velocity dependence of the tyre curves in the 

UMTRI model (equation 7). The pneumatic valves in the brake actuator were 

assumed to have two 9 mm orifices (one at the inlet and one at the outlet) with 
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actuation delays of 1 ms. In Figure 4, three slip set points were used: 0.3, 0.6, and 0.9. 

Since velocity appears in the denominator of equation (5), slip measurements diverge 

as the vehicle comes to a rest. Consequently, keeping in line with industry practice, 

the brakes were fully engaged (the pressure was set to a constant 6.5 bar) in the 

simulation once the vehicle speed dropped below 2 m/s, driving the slip to 1.  

Figure 4 illustrates that the slip controller is able to follow demand slips deep 

into the unstable region of the slip curve. Moreover, as the target slip point was raised, 

the deceleration of the vehicle reduced. This is due to the reduction of tyre force with 

increasing slip levels beyond the peak of the slip curve, as shown in Figure 3. 

Time histories for simulated stops on low friction (µo = 0.2, equivalent to ice), 

medium friction (µo = 0.4, equivalent to wet asphalt), and high friction (µo = 0.9) 

surfaces are shown in Figure 5. This time, the slip set points were set to the optimal 

slip value for each surface, which is dependent on speed. It can be seen that the 

controller is also robust to different levels of surface friction. 

Sliding mode force observer 
In the previous section, it was assumed that braking force could be measured. In this 

section, a braking force observer will be derived and demonstrated to support the 

sliding mode controller, as shown in Figure 1. Past studies on parameter and state 

estimation in emergency braking have predominantly focussed on cars. However, 

heavy vehicles have very different tyre characteristics and dynamic behaviour to 

cars,33 and so represent a significantly different estimation problem.  

Observer equations 
A sliding mode observer was chosen here to estimate the tyre tractive forces because, 

unlike Kalman filters, sliding mode observers have stability guarantees.42, 43 
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Moreover, the observers can handle strongly nonlinear systems and are robust to 

model mismatches.42, 44 In standard state space notation, the governing equations for 

the sliding mode observer can be written as 

 

( ) ( )yykyyLBxAx o ˆsgnˆˆˆ −+−++= u&                                (12) 

xy C=          (13) 
 
where L and ko are design gains, and ’^’ denotes an estimate. Equations (12) and (13) 

show that the sliding observer consists of a Luenberger observer with an appended 

switching term, which provides robustness by accounting for such non-idealities as 

modelling errors.42, 44  

The shape of tyre slip-friction curves can change drastically on different 

surfaces and as the tyres wear (this will be illustrated further in the section “Optimal 

slip point estimation.”) Consequently, it was decided to follow the method of Ray14 

(which was not based on a sliding mode observer) and treat the tyre force as an 

unknown parameter to be estimated, rather than assuming a tyre model in advance. 

The longitudinal force was described using a random walk model,14, 45 whereby 

random white noise was appended to the tyre force and its first derivative. It was 

assumed that the wheel speed, longitudinal acceleration, and brake chamber pressure 

could be measured, and that the vehicle mass was known (eg. from onboard weighing 

systems, which are commonly fitted to heavy vehicles).  Based on these assumptions, 

and combining equations (1)-(3) into (12) and (13), the state equations for the system 

are 
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where ws and wm represent vectors of random noise in the states and measurements 

respectively. From equations (14) and (15), it can be shown that a system with a 

single wheel is observable without the acceleration as an output, since the system’s 

observability matrix is of full rank. However, accelerometers are commonly available 

in commercial emergency braking systems, so it was of interest to explore whether the 

extra information from this sensor would improve the efficacy of the observer. 

Observer results 
The simulations in the section “Slip controller” were intended to illustrate the 

performance of the sliding mode controller under noise-free conditions, when all 

states and parameters are known. To evaluate the influence of sensor noise, band-

limited white noise with a sample time of 0.002 s (the cycling period of the voltage 

input boards on an existing test vehicle5, 40) was added to the wheel speed and 

acceleration signals. The amplitude of the noise was tuned to emulate measurements 

taken during braking tests with a full-scale vehicle.5 Accelerometer bias was omitted, 

since algorithms exist to estimate and correct for this online.46 

The observer gains, L and ko, were calculated in the first instance for a 

quarter-car (single wheel) vehicle model using the pole placement method detailed by 

Edwards and Spurgeon.42 The dependence of each state in equation (14) on wheel 

speed and longitudinal acceleration measurements in equation (15) (as described by 



 16 

the columns of L and ko) was then iteratively tuned by hand to improve the reliability 

of the estimator.  

Figure 6 shows the performance of the observer used ‘in-the-loop’ for a stop 

controlled by the sliding mode controller in equation (11). The road surface was 

perfectly smooth with high friction, changing to low friction after 2 s, and the target 

slip was set to the peak of the µ-slip curve throughout the stop. The change in friction 

can be identified by the wheel locking up at 2 s, since chamber pressure cannot be 

reduced fast enough to cope with the instantaneous change in friction. The wheel 

recovers to the demand slip after another 0.5 s. Figure 7 shows the observer’s 

performance on a rough (IRI = 20 m/km), high friction surface (µo = 0.9). Note the 

dynamic variation in the tyre force caused by vertical vibration of the vehicle in 

response to road roughness. In both cases, the observer accurately tracks the true tyre 

forces, responding quickly to changes in force levels. Further discussion about this 

observer can be found in Miller and Cebon,22 and Miller.40 The output of the observer 

will be used in the surface identification algorithm that will be described next (see 

Figure 1). 

Optimal slip point estimation 

Background 
Knowing the slip-friction characteristics of the tyre-road system facilitates selecting 

the maximum-braking point as a set point for the slip controller. However, a tyre of a 

given specification can have large variations in the parameters describing its slip-

friction curve on different surfaces, even when the nominal friction of the surfaces is 

the same. Figure 8 shows the experimental slip curves of 295/75|275/80 R22.5 tyres 

tested using the UMTRI Mobile Tire Tester, which tows a tyre over a road surface, 
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and the same tyres tested using the CALSPAN TIRF belt testing machines, as 

reported in Pottinger et al.47 and Anon.48 Although testing methods differed slightly 

between the two sets of data, the results highlight the uncertainty in the shape of the 

tyre curve for a given tyre.  

The effect of the four parameters describing the UMTRI tyre model (Co, µo, µf, 

and Vf) on the location of the peak of the slip curve is shown in Figure 9. The 

parameters were each changed over a range of values that could reasonably be seen in 

a truck tyre on different surfaces. Figure 9 emphasises that all four parameters have a 

measurable influence on the location of the optimal slip point.  

Surface identification algorithms use curve fitting techniques to regress a tyre 

model, given data points of braking force and wheel slip. However, many algorithms 

presented in the literature focus on estimating only the parameter describing the 

‘Coulomb friction’ level. Occasional exceptions, such as Alvarez et al.,28 estimate just 

a subset of the total number of parameters needed to describe the tyre curve. As 

Figures 8 and 9 show, the variability of the parameters for a tyre of a given 

specification may cause errors in the identification of the peak of the slip curve if only 

a subset of the parameters is estimated. This results in a loss of braking performance, 

since a slip value other than the optimal value may be used as the set point for the slip 

controller.  

It was decided to estimate all four parameters online at once, to establish the 

best possible surface identification performance achievable if calculation efficiency 

was not considered. Omissions of any of the parameters from an estimation algorithm 

would yield lower accuracy than the results that will be presented here. Following 

this, a second algorithm will be presented that is less computationally expensive, 

though also less accurate, and better lends itself to online implementation. 
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Nonlinear estimation 

Estimation algorithm.    Linear least squares regression techniques were preferred 

for the task of curve fitting, because this form of maximum likelihood estimator is 

suitable for multiple-variable regressions where the random effects are associated 

with the measurements of the response variable.49, 50 However, Vf appears nonlinearly 

in the tyre model (equation (7) for µ), and so linear least squared regression 

techniques could not be used for the estimator. Instead, a nonlinear least squares 

regression was performed using the LSQCURVEFIT command in Matlab and the 

objective function, J, given by 

 

( ) ( )( )∑ −=
=

N

k
xx kFkF

N
J

1

2ˆ
2

11
       (16) 

 
where N is the total number of data points being used for the evaluation; Fx was 

determined using the sliding observer from the section “Sliding mode force observer”; 

xF̂  was found using the assumed parameters and equations (5) to (10); and the true 

vehicle speed was assumed to be known. A Levenberg-Marquart algorithm was 

chosen in LSQCURVEFIT, because it is more robust than the typical Gauss-Newton 

approach, particularly when starting far off the final minimum.50  

A flow chart describing the full estimation algorithm is shown in Figure 10. 

Data points were collected at 500 Hz (the cycling frequency of the voltage input 

boards on an existing test vehicle5, 40) and the regression was performed every 0.2 s. It 

was found that the regression algorithm worked best when it had information from the 

nonlinear part of the slip curve, where curves for different surfaces are more distinct. 

But, when regulating the wheel slip to the peak of the curve, the algorithm had no 

information to infer the longitudinal stiffness, Co. Since only small changes in the tyre 
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stiffness were expected during a stop, the first 100 data points from a stop, when the 

slip is rising in the linear part of the µ-slip curve, were saved. These points were used 

throughout the stop along with the 100 sample points preceding each regression, 

which should add information from the peak of the tyre curve. Keeping the first 100 

data points from a stop was preferred over retaining the estimate of the longitudinal 

stiffness outputted by the algorithm at the beginning of the stop, because it is possible 

for that initial estimate of Co to be in error. 

To prevent LSQCURVEFIT from finding minima that did not describe 

physically realistic road surfaces, the solver was run with the following constraints, 

based on data collected from UMTRI41 

 

5.10 ≤≤ oµ ,    5.305.1 ≤≤
f

o

µ
µ

, 150 ≤≤ fV , 53x100 ≤≤ oC N 

 
In addition, the coefficients were initialised to those for a low friction (icy) surface 

and an unladen vehicle, which was considered the safest approach, because this is the 

situation when the wheels are most likely to lock up. However, the algorithm was 

found to be relatively insensitive to the initialization values. 

The optimal slip point was found using the MAX command in Matlab with the 

regressed tyre curve to find the maximum value of Fx on the curve. The result from 

the MAX command was used as the demand slip for the wheel slip controller. The 

optimal slip point was initialised to 0.2 for the first iteration of the surface 

identification algorithm, so that the controller would force the wheel slip to reach the 

nonlinear part of the curve on most surfaces (see Figure 9), aiding identification.  

When slowing a vehicle, a transition between two surfaces of very different 

friction properties can happen mid-stop. In these cases, the location of the optimal slip 
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point can change swiftly and drastically, and the first 100 data points from a stop, as 

well as several of the data points collected immediately before the regression, can no 

longer be used to identify the surface. Algorithms exist for detecting surface changes, 

such as the CUSUM algorithm presented in Gustafsson.25 However, these algorithms 

rely on error accumulation, slowing reaction times. An alternative algorithm was 

devised here that looked at changes in Fx, normalised by the static weight carried by 

the wheel, Fz. If a change of this ratio greater than 0.1 was detected between the mean 

from the current 100 data points and the mean from the previous 100 data points, the 

first 100 data points from the stop were discarded, and the last 30 data points 

preceding the current regression were kept for the remainder of the stop (see 

Figure 11). This approach gave information from deep in the nonlinear part of the slip 

curve when transitioning from a high friction surface to a low friction surface, and 

information from the linear part of the curve when transitioning from a low friction 

surface to a high friction surface. The choice of 30 data points was found through trial 

and error to provide a good balance between retaining useable information from the 

new surface and removing information from the old surface for various scenarios of 

the friction changing at different times within the sampling interval. The time range 

covered by the 30 data points is roughly the time taken for the wheel to lock up when 

transitioning from a low- to a high-friction surface, and is specific to the acquisition 

range and frequency used here. 

False positives were detected by the surface change algorithm during initial 

simulations on very rough roads. To mitigate this problem, an accelerometer was 

placed on the body of the vehicle with its axis oriented in the vertical direction. Only 

one accelerometer was used to minimise the number of sensors added, and the 

accelerometer was placed on the body because body-bounce motions cause more 
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significant changes in dynamic tyre forces over longer periods of time than wheel-hop 

motions.36 The change in load as predicted by the accelerometer was added to the 

nominal static wheel load over each wheel to approximate the dynamic tyre forces, as 

illustrated in Figure 12. 

Estimator performance.    The performance of the estimator used ‘in-the-loop’ 

(see Figure 1) on a simulated vehicle undergoing a slip-controlled stop using the 

sliding mode controller and tyre force observer is shown in Figure 13. The stop was 

performed on a high friction (µo = 0.9), smooth road (IRI = 0 m/km) that transitioned 

to a low friction (µo = 0.2), smooth road just after 2 s. The brake gain was assumed to 

be known (an estimator for the brake gain will be the subject of another paper), and 

the sensor noise described in the section “Sliding mode force observer” was included 

in the simulation.  

The slip is driven up the slip-friction curve to the preset demand of 0.2 at the 

start of the stop (point A in Figure 13 a)). Thereafter, the slip curve is accurately 

regressed (point B and Figure 13 b)), except at the highest levels of slip on the 

nonlinear part of the curve, over which no force-slip data is available. The vehicle hits 

the icy surface 2 s into the stop (point C and Figure 13 c)). The algorithm identifies 

the change in longitudinal force over the subsequent regression cycle, discards all data 

points except those at a slip of 1 and defaults to a demand slip value of 0.2 (point D). 

The slip curve is identified on the next cycle, before the chamber has time to dump its 

air, and the demand slip approaches the optimal slip for the duration of the stop.  

The performance of the estimator in a simulated stop with sliding mode slip 

control on a low friction (µo = 0.2), rough road (IRI = 20 m/km) that transitions to a 

high friction (µo = 0.9), rough road after 2 s is shown in Figure 14. The demand slip 
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overshoots the optimal demand slip during the first estimation cycle (point A in 

Figure 14 a)), due to the preset slip demand of 0.2, but quickly returns to the optimal 

slip point once the surface is identified (see point B and Figure 14 b)). After 2 s (point 

C and Figure 14 c)), the vehicle hits the high friction surface. The surface change is 

detected at the end of the estimation period, and the demand is set to the preset 

demand slip of 0.2 to bring the wheel slip near the optimal slip point during the next 

cycle (point D).  

Beyond this point, the demand slip is regulated near the optimal slip point, but 

the accuracy of the slip controller degrades slightly on the high friction, rough road. 

The roughness caused larger variations in longitudinal force on the high friction road, 

and as a result, the estimation algorithm chooses incorrect parameters for the slip 

curve at some points, as illustrated in Figure 14 d). Nonetheless, this example shows 

that the algorithm is reasonably robust to road roughness and sudden changes in 

surface friction. It should be noted that the change detection algorithm may not 

recognise a surface whose friction changes slowly, as with a gradual friction gradient. 

In this case, it may be better to supplement the estimator with a detector based on 

error-accumulation, such as the CUSUM algorithm mentioned earlier. 

The estimator took up to 200 ms to perform each regression on a computer 

with a 2.67 GHz processor. This may not be practical for real-time implementation 

using conventional ECUs. Although it is reasonable to expect onboard processors to 

reach speeds of 2.67 GHz in the near future, and that a made-for-purpose, optimised 

algorithm would run faster, it was of interest to see whether a more computationally 

efficient algorithm could be developed. 
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Recursive least squares estimation 

Estimation algorithm.    Full nonlinear least squares regressions are 

computationally expensive and do not lend themselves readily to online 

implementation using current onboard computer power. If Vf was known, however, 

equations (5) to (9) describing the UMTRI tyre model could be reformulated to use 

common recursive least squares regression techniques. In addition, the analysis here 

assumes that Co can be found using information retrieved from the linear part of the 

slip curve during normal driving, using algorithms such as those described 

in Gustaffson.25  

If the braking force equation is expanded as 
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then the unknown coefficients: µo and µf can be parameterised against the known 

variables as 
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Equations (19) to (21), as derived above, were used in the standard recursive least 

squares formulation, given by51  
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where n is a given time step, ke is the recursive gain, P is the covariance matrix, and φ  

is the forgetting factor. The recursive scheme was found to run best with a constant 

forgetting factor of 0.97, which was tuned offline, and without bounds on µo and µf. 

Estimator performance.    Results of using the recursive estimation algorithm in-

the-loop are shown for a simulated stop on a high friction (µo = 0.9), smooth road 

(IRI = 0 m/km) in Figure 15. The correct values of Co and Vf were fed to the algorithm 

in the simulation. After an initial transient response of approximately 0.75 s, the 

estimated optimal slip point tracks the true optimal slip point for most of the stop. 

Figure 15 b) and c) show that the recursive scheme provides reasonable estimates for 

the values of µo and µf, except at around 2 s into the stop, where a detrimental 

combination of sensor noise occurred. However, the algorithm could not be used on a 

low friction surface, despite having knowledge of the correct values of Co and Vf, 

because errors in the estimation frequently caused µo or µf to be estimated as zero. 

Moreover, the variables in the recursive algorithm could not be tuned to achieve a 

better compromise between accuracy and estimation speed. 

Despite the recursive least squares algorithm being inadequate for low friction 

surfaces, and hence unsuitable for emergency braking applications, its robustness was 

explored further for illustrative purposes. Figure 16 shows the performance of the 

recursive estimator on a high friction (µo = 0.9), rough road (IRI = 20 m/km). The 
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forgetting factor and the initialization of the covariance matrix on the estimator had to 

be ‘detuned’ slightly for it to converge under these conditions. The accuracy of the 

estimated optimal slip point degraded on the rough surface relative to the smooth 

surface. Furthermore, when looking at the estimates of µo and µf in Figure 16 b) 

and c), the algorithm can be seen to take around 2 s to converge, due to the new 

tuning. 

The simulated performance of the estimator on a high friction (µo = 0.9), 

smooth road (IRI = 0 m/km) with a 30% error in the assumed values of Vf and Co is 

shown in Figure 17. The errors resulted in µf being under-estimated and µo taking a 

long time to converge, as can be seen in Figure 17 b) and c). This caused the optimal 

slip point to be under-estimated as well, as shown in Figure 17 a).  

The recursive estimator cycled much faster in simulations than the full 

nonlinear algorithm. Each estimation cycle took less than 0.5 ms in Matlab when used 

in-the-loop on a computer with a 2.67 GHz processor, making the recursive scheme 

more feasible for real-time implementation using conventional ECUs. However, the 

recursive estimator was not robust to variations in the road surface and tended to 

converge relatively slowly. 

Conclusions 
(1) A sliding mode braking force observer was derived assuming a random walk 

model for the force and using measurements of longitudinal vehicle 

acceleration, wheel speed, and brake pressure. The sliding mode observer was 

robust to surface changes and road roughness in simulations.  

(2) A nonlinear least squares approach was used successfully to regress all four 

coefficients needed to describe slip curves with the UMTRI tyre model given 
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combinations of estimated force and wheel slip. The algorithm passed demand 

slip points to the slip controller that were close to the optimal slip point when 

used in-the-loop in simulations on roads of differing frictions and levels of 

road roughness. The algorithm was able to respond to sudden changes in 

surface friction characteristics within 0.2 s. 

(3) A computationally efficient, recursive least squares estimator was derived for 

tyre curve regression, assuming Co and Vf were known. While the resulting 

algorithm performed reasonably well on smooth, high friction surfaces, it was 

not robust to variations in the parameters, surface roughness, or the level of 

surface friction. 

(4) The full nonlinear algorithm estimated all parameters of the tyre curve, but is 

too computationally expensive, and may not be practical for real-time 

implementation using common ECUs in its current form. It is expected that a 

made-for-purpose, optimised nonlinear solver would run faster than Matlab’s 

LSQCURVEFIT. Consequently, future refinement is recommended to speed 

up the nonlinear scheme, such that it can be run on a vehicle’s ECU. 

(5) The algorithms were presented for a quarter-car model. As future work, a 

more complex, six-wheeled model of the experimental semi-trailer will be 

used to provide more information for the friction estimator. The optimal slip 

point could be estimated at each wheel individually with the current algorithm, 

averaging the estimates over all wheels, or the observed tyre forces from the 

more complex model could be fed into a common estimation algorithm. 

Additionally, the leading axles could provide preview information for the 

following axles, allowing the slip control strategy to be modified more quickly 

in the event of a sudden change in surface friction. 
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(6) Further future work includes incorporating velocity- and additional parameter 

estimation (eg. for the brake gain) into the algorithm in order to complete the 

block diagram shown in figure 1.  
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Tables 
 
Table 1. Vehicle Simulation Parameters (from Anon.,33 Cebon,36 Fancher,41 
measurements, and discussions with UMTRI and manufacturers) 

Parameter Value 
Jw 13 kg•m2 

mU 400 kg 
mS 1600 kg 
G 0.016 N•m/Pa 
rr 0.52 m 
kS 500 kN/m 
kt 1400 kN/m 
cS 15 kN•s/m 
ct 2 kN•s/m 
C1 10 
C2 13345 N 
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Figures 
 

 
 
 
Figure 1. Block diagram of the full braking control system (solid lines denote 
measured signals, dashed lines denote estimated signals). 
 
 
 

  
 
Figure 2. Quarter car vehicle model. 
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                  (a)        (b)      (c) 
Figure 3. Parametric analysis of the UMTRI tyre model. 

(a) Change in µ(λ) with vx and λ       

(b) Change in Fx(λ) with vx and λ     

(c) Change in Fx(λ) with Fz and λ 

 

 

 

 

 

 

 

 

 
                                (a)           (b) 
Figure 4. Sliding mode slip controlled stops on a smooth (IRI = 0 m/km), high 
friction (µo = 0.9) surface. Demanded slip set to 0.3, 0.6, and 0.9. 

(a) Slip time histories      

(b) Speed time histories 

IRI: International Road Roughness Index 
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                                (a)           (b) 
Figure 5. Sliding mode slip controlled stops on smooth (IRI = 0 m/km), high friction 
(µo = 0.9), medium friction (µo = 0.4), and low friction (µo = 0.2) surfaces. 

(a) Slip time histories 

(b) Chamber pressure time histories 

IRI: International Road Roughness Index 

 

 

 

 

    
                                (a)           (b) 
Figure 6. Simulated sliding mode observer performance on a single-wheeled model 
and a high friction, smooth road (µo = 0.9, IRI = 0 m/km), with a change to a low 
friction, smooth road (µo = 0.2, IRI = 0 m/km) after 2 s. 

(a) Slip time histories    

(b) Braking force time histories 

IRI: International Road Roughness Index 
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                                (a)           (b) 
Figure 7. Simulated sliding mode observer performance on a single-wheeled model 
and a high friction, rough road (µo = 0.9, IRI = 20 m/km). 

(a) Slip time histories    

(b) Braking force time histories 

IRI: International Road Roughness Index 

 

 
 
 
 

     
                                (a)           (b) 
Figure 8. Sample tyre curves for 295/75|275/80 R22.5 tyres tested using different 
methods (each line represents an individual test), collected by Pottinger et al.47 and 
Anon.48 

(a) UMTRI Mobile Tyre Tester    

(b) CALSPAN TIRF 

 

 

Stopping 
distance: 35.4 m  
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                                (a)                (b) 

 
                                (c)                (d) 
Figure 9. Influence of different parameters on the location of the optimal slip point 
(indicated by the circles). 

(a) µo = 0.1-1;    µf = µo / 2;    Vf = 12.5; Co = 1.6 x 105 N 

(b) µf = 0.1-0.9;    µo = 0.9;    Vf = 12.5;  Co = 1.6 x 105 N 

(c) Vf = 1-15;    µo = 0.9;    µf = µo / 2;   Co = 1.6 x 105 N 

(d) Co = 1.0 x 105 – 3.0 x 105 N;    µo = 0.9;    µf = µo / 2;     Vf = 12.5 

Increasing µo 

Increasing µf 

Increasing Vf Increasing Co 
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Figure 10. Flow chart for the nonlinear estimation algorithm. 
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Figure 11. Diagram describing the nonlinear estimation algorithm during a surface 
change. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 12. Approximating dynamic tyre forces using a body accelerometer on rough 
roads. 
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                                (a)           (b) 

 
                                (c)             (d) 
Figure 13. Simulated slip curve estimation using the nonlinear least squares algorithm 
on a single-wheel model and a high friction, smooth road (µo = 0.9, IRI = 0 m/km), 
with a change to a low friction, smooth road (µo = 0.2, IRI = 0 m/km) after 2 s. 

(a) Slip time histories      

(b) Slip curve estimated at 1 s into the stop 

(c) Slip curve estimated at 2.2 s into the stop   

(d) Slip curve estimated at 3.2 s into the stop 

IRI: International Road Roughness Index 
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                                (a)           (b) 

 
                                (c)           (d) 
Figure 14. Simulated slip curve estimation using the nonlinear least squares algorithm 
on a single-wheeled model and a low friction, rough road (µo = 0.2, IRI = 20 m/km), 
with a change to a high friction, rough road (µo = 0.9, IRI = 20 m/km) after 2 s. 

(a) Slip time histories      

(b) Slip curve estimated at 1 s into the stop 

(c) Slip curve estimated at 2.2 s into the stop   

(d) Slip curve estimated at 3.2 s into the stop 

IRI: International Road Roughness Index 
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                   (a)        (b)      (c) 
Figure 15. Simulated slip curve estimation using the recursive least squares algorithm 
on a single-wheeled model and a high friction, smooth road (µo = 0.9, IRI = 0 m/km) 

(a) Slip time histories             

(b) µo estimate time history 

(c) µf estimate time history 

IRI: International Road Roughness Index 

 

 
 
                   (a)        (b)      (c) 
Figure 16. Simulated slip curve estimation using the recursive least squares algorithm 
on a single-wheeled model and a high friction, rough road (µo = 0.9, IRI = 20 m/km). 

(a) Slip time histories            

(b) µo estimate time history 

(c) µf estimate time history 

IRI: International Road Roughness Index 

 
                   (a)        (b)      (c) 
Figure 17. Simulated slip curve estimation using the recursive least squares algorithm 
on a single-wheeled model and a high friction, smooth road (µo = 0.9, IRI = 0 m/km) 
with a 30% error in the assumed values for Co, and Vf. 

(a) Slip time histories              

(b) µo estimate time history 

Stopping 
distance: 
36.3 m  

Stopping 
distance: 
37.0 m  

Stopping 
distance: 
36.7 m  
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(c) µf estimate time history 

IRI: International Road Roughness Index 
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Notation 
ar unknown parameters in the recursive least squares algorithm 
ct damping coefficient for the tyre [N·s/m] 
cS damping coefficient for the sprung mass [N·s/m] 
k data point number [unitless] 
ke recursive least squares gain [unitless] 
ko sliding observer gain [unitless] 
ks sliding mode control gain [unitless] 
kt stiffness coefficient for the tyre [N/m] 
kS stiffness coefficient for the sprung mass [N/m] 
mS mass of the sprung body [kg] 
mU mass of the unsprung body [kg] 
mV vehicle mass [kg] 
n time step [unitless] 
qc lever ratio in the calliper [unitless] 
rb radius through which the braking force acts [m] 
rbr effective radius of the brake pads on the disc [m] 
rr rolling radius of the wheel [m] 
ss sliding mode control switching surface [unitless] 
u control system input 
vx longitudinal velocity [m/s]  
wm random noise in the measurements 
ws random noise in the states 
x control system states 
y control system outputs 
zr vertical position of the road [m] 
zS vertical position of the sprung mass [m] 
zU vertical position of the unsprung mass [m] 
A system matrix of the control system 
Ac effective force-area of the chamber diaphragm [m2] 
B control system input matrix 
C control system output matrix 
C1 constant coefficient [unitless] 
C2 constant coefficient [N] 
Co longitudinal tyre stiffness [N]  
Fx longitudinal (braking) force [N] 
Fz vertical load on the tyre [N] 
G brake gain [N·m/Pa] 
J least squares objective function 
Jw moment of inertia of the wheel [kg•m2] 
L Luenberger observer gain 
Lx fraction of the contact patch that is not sliding [unitless] 
N total number of data points [unitless] 
Pc pressure in the brake chamber [Pa] 
P covariance matrix 
TB braking torque at the wheel [N·m] 
Vf coefficient describing the shape at the peak of the slip curve [unitless] 
δs parameter describing width of the switching surface boundary layer [unitless] 
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θr observation matrix in the recursive least squares algorithm 
λ wheel slip [unitless] 
µ coefficient of friction between the tyre and the road [unitless] 
µbr coefficient of friction between the brake pads and the disc [unitless] 
µf coefficient of dynamic (sliding) friction [unitless] 
µo coefficient of peak friction [unitless]  
ωw rotational velocity of the wheel [rad/s] 
φ forgetting factor for the recursive least squares algorithm [unitless] 
Φs proportional gain in the sliding mode controller [unitless] 
 


