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Tyre curve estimation in slip-controlled braking

Abstract

Progress in reducing actuator delays in pneumadikebsystems is opening the
door for advanced anti-lock braking algorithms éoused on heavy goods
vehicles. However, these algorithms require knogeedf variables that are
impractical to measure directly. This paper introgiia braking force observer
and road surface identification algorithms to suppcsliding mode slip
controller for air-braked heavy vehicles. Both thece observer and slip
controller are shown to operate robustly underrgetyaof conditions in quarter-
car simulations. A nonlinear least squares algoritas found to be capable of
regressing all parameters of the UMTRI tyre modeémused ‘in-the-loop’
with the controller and the observer. A recurseask squares algorithm that is
less computationally expensive than the nonlinEgorahm was also
investigated, but only gave reasonable estimatdseo MTRI model
parameters on high friction, smooth roads.
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Introduction
Commercial road vehicles are a vital part of theneeny, moving seven times more

freight in the UK in tonne kilometres than trdindowever, Heavy Goods

Vehicles (HGV) require 40% more distance for brgkiiman passenger cars on dry
roads, contributing to their higher rate of invatvent in fatal accidents than other
vehicles>™ The mandatory use of anti-lock braking systems$A8n articulated
vehicles in North America and Europe has helpedavg heavy vehicle braking
performance somewhatiowever, current HGV ABS systems use inefficient,
heuristic control approaches that work on cyclegretlicting and superseding the
limits of tyre-road adhesion, and then reducinglifeke pressure to allow the wheel

to rotate again.



Part of the reason for the heuristic control appihda HGV ABS is the
notoriously slow pneumatic actuators in their bngksystems. This results in HGV
ABS systems cycling at frequencies of 1-2 Hz, i periodic locking and
unlocking of the wheel substantially reducing thaking force (by comparison,
passenger car ABS cycles at frequencies of 6-8 H#t)has been shown in

Miller et al®®

that actuation delays in heavy vehicles coulddokiced by an order of
magnitude (from over 40 ms to under 4 ms) by plaéast pneumatic valves
featuring “binary-actuation” technology directly brake chambers, instead of
conventional valves located on a central contrdf#2U). Such reductions in
actuation delay and mechanical hysteresis woutadidvanced braking control
methods, such as slip control, to be used on pnicetig braked vehicles. Slip
control seeks to optimise wheel slip continuouslyirty braking, thereby maximizing
deceleration while maintaining vehicle maneuvergbiPreliminary estimations with
a proof-of-concept control system and vehicle satiah predict reductions of up to
35% in braking distance relative to conventionalS5B

In general, however, slip controllers tend to unseliraking force between the
tyre and the road as a control variable, and ticleespeed must be known to
evaluate the slip. In addition, knowledge of thp-fiiction characteristics of the tyre-
road system is typically needed, so that the masirbuaking point on the slip-
friction curve can be identified and used as arodiet set point. It is not practical to
measure these variables directly, so they musstimated.

In this paper, a sliding mode slip controller isggnted, along with the
braking force estimation and road surface iderdifan algorithms required to support

the controller. Speed estimation is also an impbitiapic. However, presenting an

appropriate algorithm in adequate detail would nexja lengthy discussion that is



considered out of the scope of this paper. Instesainples of speed estimation
algorithms can be found in [10-13].

The architecture of the combined control systemhiibe presented in this
paper is shown in the block diagram of Figure le Tdsks of estimating the braking
force and the wheel slip curve are separatedjnarelte the need fa priori
knowledge of a braking force model. The paper beugiith a literature review,
following which a braking simulation as well as #ig controller are introduced. A
braking force observer and slip curve regressimtegjies are then presented. Slip
curve regression is investigated in both the fatplinear, multi-variable cases, and
in the more easily implemented recursive case, thighaim of identifying the

maximume-braking point on the slip curve.

Literaturereview

Braking force estimation
Several approaches have been taken towards tgterrforce estimation in the

literature. Ra}/ used a nonlinear Extended Kalman Filter (EKF) Hasean 8 degree
of freedom car model to estimate the tyre forcebenlongitudinal and lateral
directions. Extended Kalman filters with the staaagmented by the unknown forces
were also used by Shim et'aland Hong et &

Unsal and Kachrdd compared an EKF with a sliding mode observer to
estimate vehicle velocity, using this estimatedegy with a nominal slip-friction
curve to determine the braking force. The authoetepred the sliding observer
because it was robust against errors in the assuvaedriction.

Drakunov et af® used a simple sliding mode observer to estimatetbr

longitudinal braking force of a vehicle. Similarsgsvers were applied by Choi et



al.}® and by Ribbens et &, ?*but it was shown by Miller and CelfGrihat these
observers would be susceptible to parametric esuch as brake gain variations.
Tyre forces in both the lateral and longitudinaikedtions were estimated with a
sliding mode observer by Cadiou ef&The estimator produced plausible force time
histories, but the results showed significant scatthen plotted on slip-friction

curves.

Tyre curve identification
Knowledge of the road friction level and the shapthe slip-friction curve allows the

maximume-braking point to be identified. Sensorsefar identifying different
surface type$! but these sensors provide limited information lioe necessary

friction parameters, and tend to be impracticalge on ordinary road vehicl&s.

Estimating the entire slip-friction curve.Ray** decoupled friction estimation

from tyre force estimation, allowing the vehiclatsts to be available for control
immediately, and the tyre curve to be availablectmmtroller set points once it had
been identified by a Baysian hypothesis selectigarahm. Rather than separating
parameter and state estimation, Hodgson andBestd an adaptive identifying
Kalman Filter (IKF) to estimate some of the paramebdf the “magic formula” tyre
model together with the vehicle dynamics stated,slmowed that an IKF would
outperform an EKF when the vehicle’s tyres satutate

A nonlinear observer based on a Lyapunov approashused by Yi et &f.on
a quarter-car vehicle to determine the frictioingal state of a LuGre tyre model and
the Coulomb friction of the road surface. Alvarézalé® extended this analysis by
adding the longitudinal acceleration as a measvaedble, arguing that this

enhanced system observability.



The adaptive observer presented by Yi éf alas compared to second order
and third order, fixed-gain sliding mode obsenigased on quarter car dynamics by
Patel et af’ *° The adaptive observer gave the least accuraiééises higher friction
roads in simulations, but it is unclear to whakeexthe adaptive observer was tuned

in relation to the sliding mode observers undeséhconditions.

Identifying different parts of the tyre curveTyre models in the literature

tend to assume that the linear relationship betvie®e and slip at low slips remains
the same regardless of the surface being drive€ontrary to this, Gustafsstn
exploited the differences in tyre stiffness oneliéint roads for surface identification
by estimating the ‘slip slope’ at low slips withKalman filter. The approach was only
suitable for normal driving, and required specalllration to estimate the absolute

friction. Yi et al*

similarly used a “reduced order observer/filteregressor-based
identifier” with vehicle test data to differentidbetween dry and wet roads, based on
a nonlinear mapping of the slip slope at low sfgosdifferent surfaces.

Pasterkamp and Pacejkaelied on neural networks to learn relations betwe
several variables of the brush tyre model to eg#rttee road friction and side-slip
angle. In contrast to Gustafsson, they observesheadation in the quality of
estimates of the road friction in simulations aetiicle tests for low slips and high
friction values, because the tyre behaviour waspeddent of the road friction.

Many algorithms presented in the literature focagstimating only a subset
of the total number of parameters needed to desthidtyre curve. Furthermore, the

force estimation algorithms are predominantly pnése for cars, whose tyre

characteristics and dynamic behaviour differ sigaiitly from those for truck® The



work in this paper will present a sliding mode cotier and force observer tuned for

HGVs, as well as an algorithm to estimate the erdiip-curve.

Braking ssimulation

Vehicle and road
A modified version of the validated ‘quarter-caraking simulation presented by

Kienhofer et aP was used for control system design (see Figusesl12), and will be
introduced in this section. The model had four degrof freedom: longitudinal
motion of the vehicle, rotational motion of the weheand vertical motion of the
sprung and unsprung masses. The longitudinal mofitime vehicle and the rotational

motion of the wheel were described by,

F.+myv, =0 1)
JWCUW - erX +TB = O (2)

whereFy is the longitudinal tyre force (braking force), iainis derived from a tyre
model that will be described shortlyy, is the total vehicle masg, is the longitudinal
velocity of the vehiclep,, is the rotational speed of the wheRljs the braking
torque,ry is the radius through which the braking force aetsich is not necessarily
equal to the rolling radiu¥,andJ, is the polar moment of inertia of the wheel.

It was assumed that: braking torque is proportibm#the pressure in the brake
chamberpP; disc brakes are used; there is one brake padiaer side of the disc;
and that the emergency stop is short enough taielfade could be neglect&td®

Hence,

TB = 2'Achlubrrbr Pc (3)



whereA. is the effective force-area of the chamber diapim;ag is the lever ratio in
the calliperuy, is the coefficient of friction between the brakecdand pads, andg; is
the effective radius of the brake pads on the dise.combination of Qg lbr IS
called the ‘brake gain(.

Brake chamber charging and discharging dynamics @escribed using one-
dimensional flow theory and the thermodynamic refet for unsteady flow through
an open system, as presented by Miller and C&litomas assumed that pulse-width
modulated valves were used to control flow into antlof the chamber via a linear
pressure controller, which is also detailed in dfikind Cebof.

The vertical dynamics of the vehicle were describgd

mg O 25+ Cs —Cg zs+ ks —Ks || Zs|_ 0 (@)
o mlellE Sl Gt

wherem, ¢, andk denote mass, damping, and stiffness respectizéydisplacement,
and the subscripts$’; ‘r’, *U’, and ‘S denote the tyre, road, unsprung, and sprung
masses respectively. The vehicle model was suljécteoad surface roughness with
specified spectral content corresponding to the ¢@6sification 8608:1995,and
quantified by the International Road Roughnessr{til).*® Values used for the
vehicle parameters in the simulations are showfaisle 1. The values represent one

wheel station on the trailer of an existing testivie® *°

when lightly loaded. This
test trailer features experimental equipment omtss, and so the unsprung mass

may be slightly higher than for an ordinary trailer

Tyre forces
Truck tyres have unusually high ratios of peakligedfriction when compared to

other motor vehicles, and the broad range of leagsred by the heavy truck tyre



causes large variations in the absolute peak #ahel fsiction values® The semi-
empirical tyre model from the University of Michigd ransportation Research
Institute (UMTRI) was used here to estimate brakorges?' The model was used
because it was derived based on data from fuledesks with truck tyres; it requires
only four parameters to describe the entire sligt#n curve; and because it
represents a wide variety of truck tyres accurately

Wheel slip4, is defined in the UMTRI tyre model as:

_VTha,
\%

A ()

X

wherer, is the rolling radius of the wheel. Braking foisegenerated in the model by

_(F)a-4),
X 4C,A

1, (1-L,) (6)
whereF; is the vertical load on the tyr&, is the longitudinal tyre stiffneskyis the
fraction of the contact patch that is not slidiagdu is the friction coefficient, which
varies with speed according to
_Vym @yl
Vi

,u:,uf"'(,uo_,uf)e (7
whereu,, 1, andVs are factors describing the peak friction, slidetion, and the
shape at the peak of the slip curve respectivdig. [bngitudinal tyre stiffness varies
with normal load according to:

F 2

Co=CiF, —=— (8)

2
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whereC; andC; are constant coefficients that were set base@pmesentative values
given in Fanchet The fraction of the contact patch that is not sligiis given in the
model by
L = #F,(1-2) 9)
2C. 4
and is constrained to a maximum value of 1. When 1, at very low values of slip,

there is no sliding in the contact patch. In tlase; equation (6) can be rearranged as

(10)

It can be seen in equation (7) thas related to the vehicle speed (see
Figure 3 a)). As a result, the maximum tyre forcews at an intermediate value of
slip that rises towards 1 as the vehicle slows Esgere 3 b)). The vertical force also
affects the braking force. An increase in verticate serves to increase the available
braking force, but also to make the tyre longitadlynstiffer, as illustrated
in Figure 3 c).
Slip controller
A variable structure, sliding mode approach wasnakere for the slip controller in
the braking simulation. Sliding mode controllersjny inherently nonlinear in nature,
are particularly good for unstable plants withdsig’ nonlinearities, such as the wheel
slip curve*? and are more systematic to tune than traditianlatHbased controllers.
The full derivation of the controller, based on atjons (2), (3), and (5), can be

found in Miller et al2 and a discussion about its robustness can be fouMdler.*
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Both discussions are omitted here for brevity. @kpression for the final controller

is:

r

Pc = r‘rerx _(1_/1)VXJW — ks Ss _q)sss (11)
Gr |s,|+ 9,

whereds is a positive design constasy, is the boundary layer widtls, =1-1,, 44

is the desired slip, arldis the sliding gain.

A preliminary demonstration of the performancetd sliding mode wheel
slip controller described by equation (11) willdpgen in this section. It was assumed
in the first instance that the wheel speed, velspked, braking force, and vehicle
acceleration could be measured. The controllersdaids, and®s were iteratively
tuned by simulating multiple stops with differemimgs, and plotting the resultant
stopping distance and air (energy) usage from seghon ‘conflict plots.” The gains
that provided the best tradeoff between stoppiegvghicle in the shortest distance
and minimizing the air used during fill and dumgleg were chosen from the plots.
The complete details of the tuning and tradeofésthe subject of another work by the
authors® and are omitted here for brevity.

Figure 4 shows slip time histories of vehicle stofih sliding mode control
on a perfectly smooth (IRl = 0 m/km), high frictisarface .= 0.9, equivalent to dry
asphalt). The parameters for the tyre curve werbased on representative values
given in Fanchet* which were derived from full-scale tests with &kuygres. The
optimal slip point on this road is around 0.2 & ithitial speed of 80 km/h, rising to
0.4 as the vehicle slows, due to the velocity ddpane of the tyre curves in the
UMTRI model (equation 7). The pneumatic valveshiea brake actuator were

assumed to have two 9 mm orifices (one at the aidtone at the outlet) with

12



actuation delays of 1 ms. In Figure 4, three gipp®ints were used: 0.3, 0.6, and 0.9.
Since velocity appears in the denominator of equath), slip measurements diverge
as the vehicle comes to a rest. Consequently, kgépiline with industry practice,

the brakes were fully engaged (the pressure wase setonstant 6.5 bar) in the
simulation once the vehicle speed dropped belows? dniving the slip to 1.

Figure 4 illustrates that the slip controller ideato follow demand slips deep
into the unstable region of the slip curve. Moreoas the target slip point was raised,
the deceleration of the vehicle reduced. This estduthe reduction of tyre force with
increasing slip levels beyond the peak of thedlifve, as shown in Figure 3.

Time histories for simulated stops on low fricti@g = 0.2, equivalent to ice),
medium friction fi, = 0.4, equivalent to wet asphalt), and high frict{a, = 0.9)
surfaces are shown in Figure 5. This time, thes@ippoints were set to the optimal
slip value for each surface, which is dependergpeed. It can be seen that the

controller is also robust to different levels offage friction.

Sliding mode for ce obser ver
In the previous section, it was assumed that bgakarce could be measured. In this

section, a braking force observer will be derivad demonstrated to support the
sliding mode controller, as shown in Figure 1. Bastlies on parameter and state
estimation in emergency braking have predomindontiyssed on cars. However,
heavy vehicles have very different tyre charadiessand dynamic behaviour to

cars® and so represent a significantly different estiaraproblem.

Observer equations
A sliding mode observer was chosen here to estithatgyre tractive forces because,

unlike Kalman filters, sliding mode observers hatability guarantee®: 43

13



Moreover, the observers can handle strongly noatisgstems and are robust to
model mismatche®: **In standard state space notation, the governingtims for

the sliding mode observer can be written as

x=AX+Bu+L(y-9)+k,sgnly -9) (12)
y =Cx (13)

whereL andk, are design gains, and "' denotes an estimateattans (12) and (13)
show that the sliding observer consists of a Lueggreobserver with an appended
switching term, which provides robustness by actiagrfor such non-idealities as
modelling errorg? *

The shape of tyre slip-friction curves can changesiically on different
surfaces and as the tyres wear (this will be tatet further in the section “Optimal
slip point estimation.”) Consequently, it was detido follow the method of R&Y
(which was not based on a sliding mode observet)@at the tyre force as an
unknown parameter to be estimated, rather thanrasgua tyre model in advance.
The longitudinal force was described using a randaik model** **whereby
random white noise was appended to the tyre fandeta first derivative. It was
assumed that the wheel speed, longitudinal actiglerand brake chamber pressure
could be measured, and that the vehicle mass wagrk(eg. from onboard weighing
systems, which are commonly fitted to heavy vekicldBased on these assumptions,

and combining equations (1)-(3) into (12) and (113, state equations for the system

are

14
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x=|F |=|0 0 1|F |+ 0 P +w, (14)
F.] |0 0 OfF 0
. 1 o,
V.| |0 -—— 0
y{ } m, Fo |+ Wy (15)
“wl 11 0o off,

wherews andwy, represent vectors of random noise in the statésraasurements
respectively. From equations (14) and (15), itlbarshown that a system with a
single wheel is observable without the accelera®an output, since the system’s
observability matrix is of full rank. However, atemmeters are commonly available
in commercial emergency braking systems, so itafasterest to explore whether the

extra information from this sensor would improve #fficacy of the observer.

Observer results
The simulations in the section “Slip controller” igantended to illustrate the

performance of the sliding mode controller undas@dree conditions, when all
states and parameters are known. To evaluateftbenoe of sensor noise, band-
limited white noise with a sample time of 0.002tee(cycling period of the voltage
input boards on an existing test vehictd was added to the wheel speed and
acceleration signals. The amplitude of the noise twaed to emulate measurements
taken during braking tests with a full-scale velifchccelerometer bias was omitted,
since algorithms exist to estimate and correcttis online?®

The observer gaing, andk,, were calculated in the first instance for a
quarter-car (single wheel) vehicle model usinggbke placement method detailed by
Edwards and Spurge8hThe dependence of each state in equation (14)heehw

speed and longitudinal acceleration measurememguation (15) (as described by

15



the columns ot andk,) was then iteratively tuned by hand to improvergi@bility
of the estimator.

Figure 6 shows the performance of the observer lis¢ke-loop’ for a stop
controlled by the sliding mode controller in eqoat{11). The road surface was
perfectly smooth with high friction, changing tandriction after 2 s, and the target
slip was set to the peak of theslip curve throughout the stop. The change irtiéic
can be identified by the wheel locking up at 2isges chamber pressure cannot be
reduced fast enough to cope with the instantanelsaisge in friction. The wheel
recovers to the demand slip after another 0.5gurgi7 shows the observer’'s
performance on a rough (IRl = 20 m/km), high foctisurfacei, = 0.9). Note the
dynamic variation in the tyre force caused by waitvibration of the vehicle in
response to road roughness. In both cases, thevebsecurately tracks the true tyre
forces, responding quickly to changes in force leveurther discussion about this
observer can be found in Miller and Celf6and Miller® The output of the observer
will be used in the surface identification algonittthat will be described next (see

Figure 1).

Optimal slip point estimation

Background
Knowing the slip-friction characteristics of thedyroad system facilitates selecting

the maximum-braking point as a set point for the sbntroller. However, a tyre of a
given specification can have large variations mparameters describing its slip-

friction curve on different surfaces, even whennbeninal friction of the surfaces is
the same. Figure 8 shows the experimental slipesuo¥ 295/75|275/80 R22.5 tyres

tested using the UMTRI Mobile Tire Tester, whiclvéoa tyre over a road surface,

16



and the same tyres tested using the CALSPAN TIRRdming machines, as
reported in Pottinger et &f.and Anon®® Although testing methods differed slightly
between the two sets of data, the results hightlglhtuncertainty in the shape of the
tyre curve for a given tyre.

The effect of the four parameters describing theTBVtyre model Co, o, i,
andV;) on the location of the peak of the slip curvehswn in Figure 9. The
parameters were each changed over a range of whktesould reasonably be seen in
a truck tyre on different surfaces. Figure 9 emgdeasthat all four parameters have a
measurable influence on the location of the optistipl point.

Surface identification algorithms use curve fittieghniques to regress a tyre
model, given data points of braking force and wiséipl However, many algorithms
presented in the literature focus on estimating timt parameter describing the
‘Coulomb friction’ level. Occasional exceptionschlas Alvarez et af® estimate just
a subset of the total number of parameters needéescribe the tyre curve. As
Figures 8 and 9 show, the variability of the parersefor a tyre of a given
specification may cause errors in the identifioatid the peak of the slip curve if only
a subset of the parameters is estimated. Thistsasuh loss of braking performance,
since a slip value other than the optimal value beysed as the set point for the slip
controller.

It was decided to estimate all four parametershendit once, to establish the
best possible surface identification performandeea@ble if calculation efficiency
was not considered. Omissions of any of the parammétom an estimation algorithm
would yield lower accuracy than the results thdt e presented here. Following
this, a second algorithm will be presented th&ss computationally expensive,

though also less accurate, and better lends itselfiline implementation.
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Nonlinear estimation

Estimation algorithm. Linear least squares regression techniques weferpre

for the task of curve fitting, because this forrmmximum likelihood estimator is
suitable for multiple-variable regressions where idindom effects are associated
with the measurements of the response varfdbiéHowever,V; appears nonlinearly
in the tyre model (equation (7) fay, and so linear least squared regression
techniques could not be used for the estimatoteéas a nonlinear least squares
regression was performed using the LSQCURVEFIT candrin Matlab and the

objective function,), given by

32 (F. (k) - Fu ) 16)

I\)ll—‘

=1
N «
whereN is the total number of data points being usedHerevaluationE, was

determined using the sliding observer from theisecsSliding mode force observer”;
Ifx was found using the assumed parameters and egsi@ipto (10); and the true

vehicle speed was assumed to be known. A Leventarguart algorithm was
chosen in LSQCURVEFIT, because it is more robuas tine typical Gauss-Newton
approach, particularly when starting far off theafi minimum>°

A flow chart describing the full estimation algtwit is shown in Figure 10.
Data points were collected at 500 Hz (the cyclimgjfiency of the voltage input
boards on an existing test vehicf®) and the regression was performed every 0.2 s. It
was found that the regression algorithm worked W& it had information from the
nonlinear part of the slip curve, where curvesdiffierent surfaces are more distinct.
But, when regulating the wheel slip to the peathefcurve, the algorithm had no

information to infer the longitudinal stiffnesS,. Since only small changes in the tyre

18



stiffness were expected during a stop, the firétdéta points from a stop, when the
slip is rising in the linear part of theslip curve, were saved. These points were used
throughout the stop along with the 100 sample sginéceding each regression,
which should add information from the peak of tyretcurve. Keeping the first 100
data points from a stop was preferred over retgittie estimate of the longitudinal
stiffness outputted by the algorithm at the begigrof the stop, because it is possible
for that initial estimate o€, to be in error.

To prevent LSQCURVEFIT from finding minima that didt describe
physically realistic road surfaces, the solver waswith the following constraints,

based on data collected from UMTRI

0<p <15, 10552 <35  0<v, <15 0<C,<3x1ON
H;

In addition, the coefficients were initialised twse for a low friction (icy) surface
and an unladen vehicle, which was considered testsapproach, because this is the
situation when the wheels are most likely to lopk lHowever, the algorithm was
found to be relatively insensitive to the initi@ton values.

The optimal slip point was found using the MAX coammd in Matlab with the
regressed tyre curve to find the maximum valuE,adn the curve. The result from
the MAX command was used as the demand slip fowtheel slip controller. The
optimal slip point was initialised to 0.2 for thest iteration of the surface
identification algorithm, so that the controller wd force the wheel slip to reach the
nonlinear part of the curve on most surfaces (sg@€ 9), aiding identification.

When slowing a vehicle, a transition between twdages of very different

friction properties can happen mid-stop. In thesses, the location of the optimal slip
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point can change swiftly and drastically, and iin& fLO0O data points from a stop, as
well as several of the data points collected immaiedly before the regression, can no
longer be used to identify the surface. Algorithersst for detecting surface changes,
such as the CUSUM algorithm presented in GustafSsdpwever, these algorithms
rely on error accumulation, slowing reaction tim&s.alternative algorithm was
devised here that looked at changeB,mormalised by the static weight carried by
the wheelF,. If a change of this ratio greater than 0.1 wasated between the mean
from the current 100 data points and the mean franprevious 100 data points, the
first 100 data points from the stop were discar@ed, the last 30 data points
preceding the current regression were kept for¢h®ainder of the stop (see

Figure 11). This approach gave information frompdieethe nonlinear part of the slip
curve when transitioning from a high friction swéeto a low friction surface, and
information from the linear part of the curve wheansitioning from a low friction
surface to a high friction surface. The choice @ata points was found through trial
and error to provide a good balance between regunseable information from the
new surface and removing information from the aldace for various scenarios of
the friction changing at different times within te@mpling interval. The time range
covered by the 30 data points is roughly the tiaken for the wheel to lock up when
transitioning from a low- to a high-friction suracand is specific to the acquisition
range and frequency used here.

False positives were detected by the surface chaliggeithm during initial
simulations on very rough roads. To mitigate thisbem, an accelerometer was
placed on the body of the vehicle with its axigoted in the vertical direction. Only
one accelerometer was used to minimise the nunflsansors added, and the

accelerometer was placed on the body because mdyb motions cause more
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significant changes in dynamic tyre forces ovegkmperiods of time than wheel-hop
motions®® The change in load as predicted by the accelemmets added to the
nominal static wheel load over each wheel to apprate the dynamic tyre forces, as
illustrated in Figure 12.

Estimator performance. The performance of the estimator used ‘in-the-loop’

(see Figure 1) on a simulated vehicle undergoislipacontrolled stop using the
sliding mode controller and tyre force observeshiswn in Figure 13. The stop was
performed on a high frictioni§ = 0.9), smooth road (IRl = 0 m/km) that transigdn
to a low friction fi, = 0.2), smooth road just after 2 s. The brake geais assumed to
be known (an estimator for the brake gain will e subject of another paper), and
the sensor noise described in the section “Slidioge force observer” was included
in the simulation.

The slip is driven up the slip-friction curve teetpreset demand of 0.2 at the
start of the stop (point A in Figure 13 a)). Thédter the slip curve is accurately
regressed (point B and Figure 13 b)), except ahitjeest levels of slip on the
nonlinear part of the curve, over which no forag-dlata is available. The vehicle hits
the icy surface 2 s into the stop (point C and FediB c)). The algorithm identifies
the change in longitudinal force over the subsetjregression cycle, discards all data
points except those at a slip of 1 and defaulessdemand slip value of 0.2 (point D).
The slip curve is identified on the next cycle,drefthe chamber has time to dump its
air, and the demand slip approaches the optinafalithe duration of the stop.

The performance of the estimator in a simulated atibh sliding mode slip
control on a low frictiong, = 0.2), rough road (IRl = 20 m/km) that transisdo a

high friction («, = 0.9), rough road after 2 s is shown in FigureTl#e demand slip
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overshoots the optimal demand slip during the &stimation cycle (point A in
Figure 14 a)), due to the preset slip demand qftiuRquickly returns to the optimal
slip point once the surface is identified (see pBimnd Figure 14 b)). After 2 s (point
C and Figure 14 c)), the vehicle hits the hightimic surface. The surface change is
detected at the end of the estimation period, edlémand is set to the preset
demand slip of 0.2 to bring the wheel slip neardpgmal slip point during the next
cycle (point D).

Beyond this point, the demand slip is regulated tie@optimal slip point, but
the accuracy of the slip controller degrades diygb the high friction, rough road.
The roughness caused larger variations in longialdorce on the high friction road,
and as a result, the estimation algorithm choasasiiect parameters for the slip
curve at some points, as illustrated in Figure lANdnetheless, this example shows
that the algorithm is reasonably robust to roadjhmess and sudden changes in
surface friction. It should be noted that the cleadgtection algorithm may not
recognise a surface whose friction changes sloagyyith a gradual friction gradient.
In this case, it may be better to supplement thiemator with a detector based on
error-accumulation, such as the CUSUM algorithm toeed earlier.

The estimator took up to 200 ms to perform eachessgon on a computer
with a 2.67 GHz processor. This may not be prakctoraeal-time implementation
using conventional ECUs. Although it is reasondblexpect onboard processors to
reach speeds of 2.67 GHz in the near future, aatcatmade-for-purpose, optimised
algorithm would run faster, it was of interest && svhether a more computationally

efficient algorithm could be developed.
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Recursive least squares estimation

Estimation algorithm. Full nonlinear least squares regressions are

computationally expensive and do not lend themseleadily to online
implementation using current onboard computer poWf&f was known, however,
equations (5) to (9) describing the UMTRI tyre miozcteuld be reformulated to use
common recursive least squares regression tectmitjuaddition, the analysis here
assumes thal, can be found using information retrieved from lihear part of the
slip curve during normal driving, using algorithsisch as those described

in Gustaffsorf>

If the braking force equation is expanded as

vy 2y, -ay,)

"otl-ufe M (RPA-2)

Lﬁ2+ﬂf(o_ﬂfk

(17)

VWt
Fx:[#f+( O_:uf)e v ]Fz_

4C,

then the unknown coefficientg; andy; can be parameterised against the known

variables as
y=0e, (18)
where,
a (19)
vy~ v . T
B o) A () e () s O
L 4AGC, 41C, 4)C,
& :|-/Jf Ho ~ Hi 'uf2 H; (,Uo_luf) (/Jo —H; )2] (22)

Equations (19) to (21), as derived above, were us#te standard recursive least

squares formulation, given By
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8, (n)=4 (n-1)+k.(n)y(n)-0, (n)a, (n-1)] (22)

O ‘23)

P(n)= - (24)

wheren is a given time stexe is the recursive gai® is the covariance matrix, arfd
is the forgetting factor. The recursive scheme fwasad to run best with a constant

forgetting factor of 0.97, which was tuned offlirmend without bounds i, ands.

Estimator performance. Results of using the recursive estimation algorithm

the-loop are shown for a simulated stop on a hiighidn (o= 0.9), smooth road
(IRI'=0 m/km) in Figure 15. The correct valuesGyfandV; were fed to the algorithm
in the simulation. After an initial transient resse of approximately 0.75 s, the
estimated optimal slip point tracks the true optisiig point for most of the stop.
Figure 15 b) and c) show that the recursive schenmédes reasonable estimates for
the values ofi, andus, except at around 2 s into the stop, where ardenial
combination of sensor noise occurred. Howeveratgerithm could not be used on a
low friction surface, despite having knowledgelwd torrect values &, andVs,
because errors in the estimation frequently causedu; to be estimated as zero.
Moreover, the variables in the recursive algorittonld not be tuned to achieve a
better compromise between accuracy and estimagpieads

Despite the recursive least squares algorithm besdequate for low friction
surfaces, and hence unsuitable for emergency lgagplications, its robustness was
explored further for illustrative purposes. Figa&shows the performance of the

recursive estimator on a high frictiom, & 0.9), rough road (IRl = 20 m/km). The
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forgetting factor and the initialization of the @iance matrix on the estimator had to
be ‘detuned’ slightly for it to converge under tbe®nditions. The accuracy of the
estimated optimal slip point degraded on the roaigiface relative to the smooth
surface. Furthermore, when looking at the estimat@sandy; in Figure 16 b)

and c), the algorithm can be seen to take aroumntbZonverge, due to the new
tuning.

The simulated performance of the estimator on h frigtion (u,= 0.9),
smooth road (IRl = 0 m/km) with a 30% error in gesumed values & andC, is
shown in Figure 17. The errors resultedsbeing under-estimated apgitaking a
long time to converge, as can be seen in Figut@) Bhd c). This caused the optimal
slip point to be under-estimated as well, as shiowkigure 17 a).

The recursive estimator cycled much faster in satiohs than the full
nonlinear algorithm. Each estimation cycle toolksl#gn 0.5 ms in Matlab when used
in-the-loop on a computer with a 2.67 GHz process@aking the recursive scheme
more feasible for real-time implementation usingwantional ECUs. However, the
recursive estimator was not robust to variationth@road surface and tended to

converge relatively slowly.

Conclusions
(1) A sliding mode braking force observer was deriveslianing a random walk

model for the force and using measurements of tadgial vehicle
acceleration, wheel speed, and brake pressureslitivegy mode observer was
robust to surface changes and road roughness ulagions.

(2) A nonlinear least squares approach was used sfaibe$s regress all four

coefficients needed to describe slip curves withWMTRI tyre model given
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3)

(4)

()

combinations of estimated force and wheel slip. dlgerithm passed demand
slip points to the slip controller that were cloesehe optimal slip point when
used in-the-loop in simulations on roads of difigririctions and levels of
road roughness. The algorithm was able to respmsddden changes in
surface friction characteristics within 0.2 s.

A computationally efficient, recursive least squaestimator was derived for
tyre curve regression, assumi@gandV; were known. While the resulting
algorithm performed reasonably well on smooth, Hrgtiion surfaces, it was
not robust to variations in the parameters, surfaoghness, or the level of
surface friction.

The full nonlinear algorithm estimated all parameiaf the tyre curve, but is
too computationally expensive, and may not be praicfor real-time
implementation using common ECUSs in its currentrfolt is expected that a
made-for-purpose, optimised nonlinear solver wauldfaster than Matlab’s
LSQCURVEFIT. Consequently, future refinement isoramended to speed
up the nonlinear scheme, such that it can be rusm\ahicle’'s ECU.

The algorithms were presented for a quarter-careinés future work, a
more complex, six-wheeled model of the experimeseati-trailer will be
used to provide more information for the frictiastisnator. The optimal slip
point could be estimated at each wheel individuaily the current algorithm,
averaging the estimates over all wheels, or thervks tyre forces from the
more complex model could be fed into a common edton algorithm.
Additionally, the leading axles could provide pmwiinformation for the
following axles, allowing the slip control stratetpybe modified more quickly

in the event of a sudden change in surface friction
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(6) Further future work includes incorporating veloeigynd additional parameter
estimation (eg. for the brake gain) into the alponi in order to complete the

block diagram shown in figure 1.

Acknowledgements

The authors would like to thank the members of@henbridge Vehicle Dynamics
Consortium (CVDC), and the Gates Cambridge Trustifeir parts in funding this work. At
the time of writing, the CVDC had the following iastrial members: Anthony Best
Dynamics; Camcon; Denby Transport; Firestone Intald®roducts; Goodyear Tyres;
Haldex; SIMPACK; Mektronika Systems; MIRA; Poclaitydraulics; SDC Trailers; Tinsley
Bridge; Tridec BV; Volvo Trucks; and Wincanton.

References

1. Anon. Delivering the economyhe Independent / RAM Business InformatloK,
April 18, 2007.

2. Dunn A and Hoover RClass 8 truck tractor braking performance improveime
study, report 1, straight line stopping performaace high coefficient of
friction surface. Transportation Research Center/iNational Highway
Traffic Safety Administration, East Liberty, OH, @0

3. Jermakian JS. Crash avoidance potential oflrge truck technologies. Insurance
Institute for Highway Safety, Arlington, VA, 2010.

4. Anon. Traffic safety facts, 2007. National HigiyTraffic and Safety
Administration, US Department of TransportationQ20

5. Kienhofer F and Cebon D. An investigation of ABfategies for articulated
vehicles.Proc. of the 8th international symposium on heaalyicte weights
and dimensiondMisty Hill, South Africa, 2004.

6. Anon.Bosch automotive handbodX! edn. Stuttgart: Robert Bosch GmbH, 2000.

7. Emereole OCAntilock performance comparison between hydrautid a
electromechanical brake systerisssertation, University of Melbourne,
Australia, 2003.

8. Miller J, Kienhofer F and Cebon D. The desigd aaaluation of an alternative
heavy vehicle braking syste®th International Symposium on Advanced
Vehicle Contrgl Kobe, Japan, 2008.

9. Miller J and Cebon D. Modelling and performanta pneumatic brake actuator.
Proc. of the IMECHE Part C: J of Mech Eng S2012; 226: 20742092.

10. Best MC, Newton AP and Tuplin S. The identifyextended Kalman filter:
parametric system identification of a vehicle hamglimodelIMECHE Part K
—J. of Multi-Body Dyn2007; 21: 84#98.

11. Best MC, Gordon TJ and Dixon PJ. An extendexptade Kalman filter for real-
time state estimation of vehicle handling dynamit=h. Sys. Dyr2000; 34:
57-75.

12. Bevly DM and Parkinson B. Cascaded Kalmanr§lfer accurate estimation of
multiple biases, dead-reckoning navigation, antshalte feedback control of
ground vehiclesEEE Trans. on Ctl. Sys. Tec007; 15: 199208.

27



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Kimbrough S and Datla K. An effective meansifoplementing wheelslip
control without a ground speed sensdéeh. Sys. Dyrl996; 25: 324339.

Ray LR. Nonlinear tire force estimation anddr@réction identification:
simulation and experimentdutomatical997; 33: 18191833.

Shim T, Chang S and Lee S. Investigation dirgl-surface design on the
performance of sliding mode controller in antildaiaking systemdEEE
Trans. on Veh. TecR008; 57: 744759.

Hong D et al. Development of a vehicle stapdibntrol system using brake-by-
wire actuatorsASME J. of Dyn. Sys., Meas., and 2@08; 130: 49.

Unsal C and Kachroo P. Sliding mode measurefeedback control for antilock
braking systemdEEE Trans. on Ctl. Sys. TectR99; 7: 273281.

Drakunov S et al. ABS control using optimumrekavia sliding modedEEE
Trans. on Ctl. Sys. Tech995; 3: 7935.

Choi SB, Cho MS and Wereley NM. Wheel-slip cohof a passenger vehicle
using an electrorheological valve pressure modulfECHE Part D — J. of
Auto. Eng2006; 220: 519529.

Ribbens WB and Fredricks R. A sliding mode oleebased ABS for aircraft and
land vehicles. SAE paper 2003-01-0252, 2003.

Ribbens WB, Ribbens JA and Fredricks R. Slidimagle observer-based ABS
offers advantages for HD truck applicatioRsoc. of the SAE 2007
commercial vehicle engineering congress & exhihitkD07; 2007-01-4243:
1-8.

Miller JI and Cebon D. A high performance pnatimbraking system for heavy
vehiclesVeh. Sys. Dyr2010; 48: 373392.

Cadiou JC, El Hadire A and Chikhi F. Non-lineae forces estimation based on
vehicle dynamics observation in a finite tinldECHE Part D — J. of Auto.
Eng.2004; 218: 13791392.

Yoda S et al. Road surface recognition sensioglan optical spatial filteProc.
of the intelligent vehicles '95 symposiubetroit, MI, 1995, pp.253257.

Gustafsson F. Slip-based tire-road frictiomnestion. Automatica.1997; 33:
10871099.

Hodgson G and Best MC. A parameter identifari{alman filter observer for
vehicle handling dynamic$MECHE Part D — J. of Auto. En@006; 220:
1063-1072.

Yi J et al. Emergency braking control with dserver-based dynamic tire/road
friction model and wheel angular velocity measuretyidéeh. Sys. Dyr2003;
39: 8197.

Alvarez L et al. Dynamic friction model-bas@&@oad friction estimation and
emergency braking contrdA\SME J. of Dyn. Sys., Meas., and €005; 127:
22-32.

Patel N, Edwards C and Spurgeon SK. Tyre-roatiidn estimation — a
comparative studyMECHE Part D — J. of Auto. En@008; 222: 23372351.

Patel N, Edwards C and Spurgeon SK. Optimd&ibhgaand estimation of tyre
friction in automotive vehicles using sliding modegl. Journal Sys. Sci.
2007; 38: 904912.

Yi K, Hedrick K and Lee SC. Estimation of tm@ad friction using observer based
identifiers.Veh. Sys. Dyrll999; 31: 233261.

Pasterkamp WR and Pacejka HB. The tyre assosé estimate friction/eh.
Sys. Dynl1997; 27: 409422.

28



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Anon. Mechanics of heavy duty truck systemgs®unotes. Course on mechanics
of heavy duty truck systems, University of Michighransportation Research
Institute, 2007.

Pacejka HBTire and Vehicle Dynamic€™ Ed. SAE International, Elsevier,
Oxford, UK, 2006.

Fancher PS et al. A factbook of the mechamagberties of the components for
single-unit and articulated heavy trucks. Universit Michigan
Transportation Research Institute, Ann Arbor, MI8&.

Cebon DHandbook of vehicle-road interactioBwets & Zeitlinger, B. V., Lisse,
Netherlands, 1999.

ISO 8608:1995. Mechanical vibration — road acefprofiles — reporting of
measured data.

Sayers M and Gillespie T. Guidelines for conihgcand calibrating road
roughness measurements. University of Michigan §partation Research
Institute, Ann Arbor, MI, 1986.

Cheng C et al. High-speed optimal steeringtohetor-semitrailereh. Sys. Dyn.
2011; 49: 564593.

Miller J,Advanced braking systems for heavy vehid¢® Thesis in Eng.,
University of Cambridge, UK, 2010.

Fancher PS. Generic data for representing titeekharacteristics in simulations
of braking and braking-in-a-turn maneuvers. Uniitgrsf Michigan
Transportation Research Institute, Ann Arbor, MI93.

Edwards C and Spurgeon SHiding mode control: theory and applications
Taylor & Francis, London, 1998.

Misawa EA and Hedrick JK. Nonlinear observeesstate-of-the-art survey.
ASME Trans1989; 111: 344352.

Slotine JJE, Hedrick JK and Misawa EA. On slidbbservers for nonlinear
systemsASME J. of Dyn. Sys., Meas., and C887; 109: 245252,

El-Diasty M and Pagiatakis S. Calibration atmtisastic modelling of inertial
navigation sensor error3. of Global Pos. Sy2008; 7: 176182.

Bevly DM and Parkinson B. Cascaded Kalmanr§lfer accurate estimation of
multiple biases, dead-reckoning navigation, anbshaite feedback control of
ground vehiclesEEE Trans. on Ctl. Sys. Tec007; 15: 199208.

Pottinger MG et al. Force and moment propediessmall sample of tire
specifications: drive, steer, and trailer with extan from new to naturally
worn-out to retreaded considered. SAE paper 9821/R153.

Anon. Truck tire characterization. SAE CoopemResearch Report, CRP-11,
SAE, Warrendale, PA, 1995.

Wonnacott TH and Wonnacott Rdtroductory statistics3® Ed., Wiley & Sons,
New York, NY, 1997.

Cox MG, Forbes AB and Harris PM. Software supfor metrology — best
practice guide no. 4 — discrete modelling. Ver, Céntre for Mathematics
and Scientific Computing, National Physical Laborgt Teddington, UK,
2002.

Kiencke U and Nielsen Automotive control system® Ed. SAE International,
Springer-Verlag, Heidelberg, Germany, 2000.

29



Tables

Table 1. Vehicle Simulation Parameters (from AnéhGebon®® Fanchef*
measurements, and discussions with UMTRI and maturis)

Parameter Value
I 13 kgent
my 400 kg
Me 1600 kg
G 0.016 Nem/Pa
re 0.52m
ks 500 kN/m
ke 1400kN/m
Cs 15 kNes/m
Ct 2 KNes/m
C 10
C, 13345 N
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(a) Slip time histories
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IRI: International Road Roughness I ndex
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on a single-wheel model and a high friction, smao#d f,, = 0.9, IRl = 0 m/km),
with a change to a low friction, smooth road € 0.2, IRl = 0 m/km) after 2 s.

(@) Slip time histories

(b) Slip curve estimated at 1 s into the stop
(c) Slip curve estimated at 2.2 s into the stop
(d) Slip curve estimated at 3.2 s into the stop

IRI: International Road Roughness | ndex
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Figure 14. Simulated slip curve estimation using the nonlifeast squares algorithm
on a single-wheeled model and a low friction, rouggd (i, = 0.2, IRl = 20 m/km),
with a change to a high friction, rough road € 0.9, IRl = 20 m/km) after 2 s.

(@) Slip time histories

(b) Slip curve estimated at 1 s into the stop
(c) Slip curve estimated at 2.2 s into the stop
(d) Slip curve estimated at 3.2 s into the stop
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Figure 15. Simulated slip curve estimation using the rec@$dast squares algorithm
on a single-wheeled model and a high friction, stineoad (i, = 0.9, IRl = 0 m/km)

(a) Slip time histories
(b) uo estimate time history
(c) us estimate time history
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Figure 16. Simulated slip curve estimation using the rec@$dast squares algorithm
on a single-wheeled model and a high friction, totmad [, = 0.9, IRl = 20 m/km).

(a) Slip time histories
(b) uoestimate time history
(c) us estimate time history
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Figure 17. Simulated slip curve estimation using the rec@$dast squares algorithm
on a single-wheeled model and a high friction, stineoad (i, = 0.9, IRl = 0 m/km)
with a 30% error in the assumed valuesGgrandV;

(a) Slip time histories
(b) uo estimate time history
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(c) us estimate time history
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Notation

ar unknown parameters in the recursive least squdgesithm
Ct damping coefficient for the tyre [N-s/m]

Cs damping coefficient for the sprung mass [N-s/m]

k data point number [unitless]

Ke recursive least squares gain [unitless]

Ko sliding observer gain [unitless]

Ks sliding mode control gain [unitless]

Ke stiffness coefficient for the tyre [N/m]

Ks stiffness coefficient for the sprung mass [N/m]
Mg mass of the sprung body [kg]

my mass of the unsprung body [kg]

my  vehicle mass [kg]

n time step [unitless]

Oc lever ratio in the calliper [unitless]

o radius through which the braking force acts [m]
Fbr effective radius of the brake pads on the disc [m]
re rolling radius of the wheel [m]

Ss sliding mode control switching surface [unitless]
u control system input

Vi longitudinal velocity [m/s]

W random noise in the measurements
Ws random noise in the states

X control system states

y control system outputs

Z vertical position of the road [m]
Zs vertical position of the sprung mass [m]

Z vertical position of the unsprung mass [m]

A system matrix of the control system

A effective force-area of the chamber diaphragrf] [m
B control system input matrix

C control system output matrix

C constant coefficient [unitless]

C constant coefficient [N]

Co longitudinal tyre stiffness [N]

Fx longitudinal (braking) force [N]

F, vertical load on the tyre [N]

G brake gain [N-m/Pa]

J least squares objective function

Jw moment of inertia of the wheel [kgén

L Luenberger observer gain

Lx fraction of the contact patch that is not slidjagitless]
N total number of data points [unitless]

Pc pressure in the brake chamber [Pa]

P covariance matrix

Tg braking torque at the wheel [N-m]
\ coefficient describing the shape at the peak ®ftlp curve [unitless]
Os parameter describing width of the switching surfacendary layer [unitless]
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observation matrix in the recursive least squatgsrithm

wheel slip [unitless]

coefficient of friction between the tyre and tioad [unitless]
coefficient of friction between the brake pads #meldisc [unitless]
coefficient of dynamic (sliding) friction [unitle$

coefficient of peak friction [unitless]

rotational velocity of the wheel [rad/s]

forgetting factor for the recursive least squatgsr@hm [unitless]
proportional gain in the sliding mode controllenitless]

43



