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Abstract

This thesis studies the absolute continuity of stationary measures. Given a finite set of
measurable maps S1,952,...,S, on a measurable set X and a probability vector p, p2,..., pn

we say that a probability measure v on X is stationary if

V=

n
pivosS; I
i=1
IfSy,...,S, are elements of PSLy(R) acting on X = P!(R), we get the notion of Furstenberg
measures. If Sy,...,S, are similarities, affine maps, or conformal maps then Vv is called a
self-similar, self-affine, or self-conformal measure respectively. This thesis is concerned with
Furstenberg measures and self-similar measures.

Two fundamental questions about stationary measures are what are their dimensions and
when are they absolutely continuous. This thesis deals with the second one of these.

There are several classes of stationary measures which are known to be absolutely
continuous for typical choices of parameters. For example Solomyak [54] showed that
for almost every A € (1/2,1) the Bernoulli convolution with parameter 4 is absolutely
continuous. This was extended by Shmerkin [51] who showed that the exceptional set has
Hausdorff dimension zero. However, despite much effort, there are relatively few known
explicit examples of stationary measures which are absolutely continuous.

In this thesis we find sufficient conditions for self-similar measures and Furstenberg
measures to be absolutely continuous. Using this we are able to give new examples.

The techniques we use are largely inspired by the techniques of Hochman [25] and Varju
[56] though we introduce several new ingredients the most important of which is “detail”

which is a quantitative way of measuring how smooth a measure is at a given scale.
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Chapter 1
Introduction

Stationary measures are important objects in fractal geometry. Given a finite collection of
measurable maps S, .. .,S, on a measurable space X and a probability vector (pi,...,p,) a

probability measure v on X is stationary if

V= i pivosS; I
i=1
If Sy,...,S, are elements of PSL,(R) acting on X = P!(R), we get the notion of Fursten-
berg measures. If Sy,...,S, are contracting similarities, contracting affine maps, or contract-
ing conformal maps then v is called a self-similar, self-affine, or self-conformal measure
respectively. In this thesis we will primarily be concerned with self-similar measures and
Furstenberg measures.

A related concept is an iterated function system.

Definition 1.0.1 (Iterated function system). Given some n € Z-, some complete metric
space X and some homeomorphisms S1,S53,...,5, : X — X and a probability vector p =
(P1,D2,---,pn) We say that F = ((S;)"_,,p) is an iterated function system.

If the homeomorphisms are contractions then we call the iterated function system a
contracting iterated function system. It is a result of Hutchinson [30] that each contracting
iterated function system has a unique attractor. In other words there exists a unique non-
empty compact set A C X satisfying A = U?_, S;(A). If the homeomorphisms in the iterated
function system are similarities then we call the attractor a self-similar set.

Furthermore Hutchinson [30] proved that for each contracting iterated function system
((Si)™_,p) there is a unique stationary measure on X generated by the S; and p;. Not all of

the stationary measures we will study in this thesis are of this form. In particular the action of
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an element g € PSLy(R) on P'(R) will never be a contraction and so Furstenberg measures
are not of this form.

Self-similar measures are important objects in the study of fractal geometry. The study of
special cases of self-similar measures goes back to the 1930s with Jessen and Wintner [31]

who first studied Bernoulli convolutions.

Definition 1.0.2 (Bernoulli convolution). Given some A € (0,1), we define the Bernoulli

convolution with parameter A to be the law of the random variable Y given by

Y =

n

Xu A",
=0

where each of the X, are i.i.d. random variables that have probability % of being 1 and
probability % of being —1. We denote this measure by u; .

This can be shown to be a self-similar measure on R by takingn =2, S; : x — x+1,
Sry:x—=x—1land py =pr = %

The systematic study of self-similar measures was introduced in 1981 by Hutchinson in
[30].

The study of Furstenberg measures goes back to Furstenberg [22]. Given a measure [l on
PSL,(R) we say that a measure v on P!(R) is a Furstenberg measure generated by u if v is

stationary under action by u. In other words we require
V=LUxV

where * denotes convolution under the natural action of PSL,(R) on P!(R). It is a theorem
of Furstenberg in [22] that if u is strongly irreducible (see Definition 1.3.8) and the group
generated by the support of 1 is not compact then there is a unique Furstenberg measure
generated by (. The main motivation for studying Furstenberg measures is their fundamental
role in the theory of random matrix products. See [7], [5]. Throughout this thesis we will
only be concerned with the case were u is supported on finitely many points.

The two most fundamental questions about stationary measures are what are their dimen-

sions and when are they absolutely continuous.

1.1 Dimension

We will now discuss previous results on the dimension of stationary measures.
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Definition 1.1.1. Given a measure v on some set X with metric d and some x € X we will
let B,(x) be the ball of radius r centred at x. If the limit

r—0 logr

exists for v almost every x € X then we say that v is exact dimensional with dimension given
by this limit.

In [19] Feng and Hu proved that self-similar and self-conformal measures are exact di-
mensional. In [4] Bardny and Kdenmiki prove that self-affine measures are exact dimensional.
The first published proof of the exact dimensionality of Furstenberg measures appeared in
[29, Theorem 3.4] though the result was well known to experts before this date. The proof
was based heavily on the proof used by Feng and Hu.

There are several other notions of the dimension of a measure. For example the lower
Hausdorff dimension of a Borel probability measure u is defined to be

inf{dimE : u(E) > 0}

where dim denotes Hausdorff dimension. However, for self-similar, self-affine, self-conformal,
and Furstenberg measures all commonly used notions of dimension coincide. This is also
true of self-similar sets. In particular in [18] Falconer proved that the Hausdorff and box
dimensions of self-similar sets are equal.

In general finding the dimension of a stationary measure is difficult but there is a simple
upper bound.

If v is a self-similar measure generated by the IFS F = ((S;)"_, , (pi)i,) and the S; are
similarities on R? with contraction ratio r; then we define the similarity dimension of F,
which we will denote by s-dim F' to be the unique s such that
n

ri=1.
=1

1

We also define the Lyapunov dimension of F to be

n

Z pilog p;
i—1 Pi logr;

We will often make the abuse of notation of referring to the similarity or Lyapunov
dimension of self-similar sets or measures to mean the similarity or Lyapunov dimension of

an iterated function system generating the self-similar set or measure. Since multiple iterated
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function systems can generate the same self-similar set or measure we will only do this when
the iterated function system is clear from context.

It is trivial to show that the dimension of a self-similar set is at most its similarity
dimension and the dimension of a self-similar measure is at most its Lyapunov dimension.
Similar upper bounds can be found for self-affine and self-similar measures (see for example
[19, Theorem 2.6]) though stating these results requires introducing complicated notation.

It is a result of Hutchinson [30] that when the images of the S; satisfy a certain separation

condition the dimension of a self-similar measure is equal to its Lyapunov dimension.

Definition 1.1.2 (Open set condition). We say that an iterated function system

F=((S)iz1» (Pi)i1)
on R? satisfies the open set condition if there is some non-empty open set U C R? such that
Usiv)cu
i=1

and for each i # j
S,'(U) ﬂSj(U) =0.

Moran [45] and Hutchinson [30] proved the following two theorems.

Theorem 1.1.3. Suppose that X is a self-similar set generated by an iterated function system
F which satisfies the open set condition. Then the dimension of X is equal to its similarity

dimension.

Theorem 1.1.4. Suppose that v is a self-similar measure generated by an iterated function
system F which satisfies the open set condition. Then the dimension of V is equal to its

Lyapunov dimension.

One way in which a self-similar measure can have dimension less that its Lyapunov

dimension is if it has exact overlaps.

Definition 1.1.5 (Exact overlaps). We say that an iterated function system

F=((S)—1,(pi)iz1)

has exact overlaps if there is some ay,...,a; and some by, ..., b, with

(al,...,ak) 75 (bl,...,bk)
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such that
Sa;Say -+ Sa, = Sp,Spy ---Sh

I

It is also clear that the dimension of a self-similar measure is at most the dimension of
the space in which it is defined. For self-similar measures on R it is widely conjectured that
these are the only ways in which the dimension can be less than the Lyapunov dimension.
Specifically we have the following.

Conjecture 1.1.6. Suppose that v is a self similar measure on R with no exact overlaps.
Then the dimension of v is the minimum of its Lyapunov dimension and 1.

This conjecture is known as the overlaps conjecture and goes back to at least Simon [53]
in 1996. This conjecture as stated is not true in R? for d > 2. For example in R? we may take
2
Spix— §x+ (1,0)

and
2
Syix> 35 (1,0)

and p; = pp, = 1/2. Tt is clear that the self-similar measure generated by this iterated function
system is the cross product of the Bernoulli convolution with parameter 2/3 and &. Clearly
this has dimension at most 1 but it’s Lyapunov dimension is log(1/2)/log(2/3) which is
greater than 1.

Important progress towards this conjecture was made by Hochman in [25]. To state his

result we need the following.

Definition 1.1.7. Let X be a random variable taking discrete values with probabilities

P1,P2,--.. Then we define the entropy of X to be

H(X):= =Y pilogpi.

Here and throughout this thesis the log of a positive real number means the natural
logarithm with base e.

Definition 1.1.8. Let F = ((S;);_,, (pi);_,) be an iterated function system and let x;, x5, ...
be i.i.d. random variables with P[x; = S;] = p;. Then we define

hF,k =H (x1x2 .. .xk) .

From this we can define random walk entropy.
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Definition 1.1.9 (Random Walk Entropy). Given an iterated function system F we define the

h — 1' i f 1 hF
F k L 7k

We also need some way of measuring the separation between products of the ;.

Definition 1.1.10. We define the k-step support of an iterated function system F' to be given
by
Vpk:={Sj08,0--08  ji,j2, -,k €{1,2,..,n} } .
We now define the following metric on the space of similarities on R¢.

Definition 1.1.11. We define the metric d on the space of similarities on R¢ as follows.

Given two similarities ¥ = rU +a and ¥’ = rU’ +d’ on R we let
d(y, ) = [logr—log#| + |U ~U'|| + [|a—d'|.

Definition 1.1.12. Let F be an iterated function system on R¢. We define the separation of
F after k steps to be
Apj i=1nf{d(u,v) 1 u,v € Ve, u # v}.

If F is an iterated function system generating a self-similar measure we say that F' satisfies

the exponential separation condition if
.. 1
liminf ——logA, r < oo.
n

There are several closely related conditions referred to as the exponential separation condition
in different contexts.

It is easy to show that the exponential separation condition holds for iterated function
systems with algebraic parameters. We can now state an important result of Hochman.
Theorem 1.1.13 (Hochman 2014 [25]). Suppose that v is a self-similar measure on R

n

generated by an iterated function system F = ((S;)'_, , (pi)i, ) which satisfies the exponential

separation condition and that the contraction ratio of S; is ri. Then the dimension of v is

e hrw
min 5 ﬁ .
i—1 Pilogr;

In particular this confirms the overlaps conjecture whenever the similarities in the IFS
have algebraic coefficients. A lot of the research on stationary measures in the last decade

builds on the ideas of Hochman in this paper.
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The transcendental case is more complicated however it has been solved in some special
cases. For example in [56] Varji proved that the Bernulli convolution with parameter A has
dimension 1 for all transcendental A € (1/2,1). In [47] Rapaport proved that the overlaps
conjecture holds whenever the contraction ratios of the similarities are algebraic. In [48]
Rapaport and Varju also obtained a result about the dimensions of a family of self-similar
measures on R generated by three similarities.

In [26] Hochman extends his result to self-similar measures on R? providing the similari-
ties do not preserve a proper affine subspace and their linearisations act on R? irreducibly.

Extending the work of Hochman to self-affine measures has proven difficult. In [46]
Rapaport was able to give the dimension of self-affine measures in R? providing the IFS
satisfies a number of requirements on its Lyapunov exponents and satisfies, amongst other
things, the strong open set condition which is a slightly stronger version of the open set
condition. In [3] Bardny, Hochman, and Rapaport proved results on the dimensions of
self-affine sets and measures which are similar to Theorem 1.1.3 and Theorem 1.1.4. In
particular their paper requires the IFS to satisfy the strong open set condition. Hochman and
Rapaport were able to extend Hochman’s result on self-similar measures to the self-affine
case in R? in [28].

There is no known result similar to Hochman’s work on self-similar measures for self-
conformal measures. For a survey on recent results on self conformal measures see [20].

We now turn our discussion to the dimension of Furstenberg measures. It is a classical
result that if u is a strongly irreducible probability measure on PSL;(R) with a finite expo-
nential moment and the group generated by the support of u is not compact then there exist
C, 8 > 0 such that if we let v be the Furstenberg measure generated by 1, let x € P!(R) and
let » > 0 then

V(B(x,r)) < Crd

where B(x,r) is the open ball in P! (R) with centre x and radius r. This means that under
these conditions Vv has positive dimension.

In [29], building on the work of Hochman in [25], Hochman and Solomyak show that
providing u satisfies the exponential separation condition, which we will define later, its

Furstenberg measure Vv satisfies

h
dimv:mjn{ﬂ,l}
2x
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where hgw 1s the random walk entropy and Y is the Lyapunov exponent (see definition 1.3.9).
In particular they show that if u satisfies the exponential separation condition and

hR_sz

X
then v has dimension 1. So far this has not been extended to the case without exponential

separation.

1.2 Absolute continuity

The absolute continuity of stationary measures has also been widely studied. An important
special case is the case of Bernoulli convolutions as defined in Definition 1.0.2.

Bernoulli convolutions were first introduced by Jessen and Wintner in [31]. When
A € (0,3), itis well known that y; is singular (see e.g. [34]). When A = 3 it is clear that 1,
is % of the Lebesgue measure on [—2,2]. This means the interesting case is when A € (%, 1).

Bernoulli convolutions have also been studied by Erd&s. In [15] Erdés showed that
L, is not absolutely continuous whenever A~! € (1,2) is a Pisot number. In his proof he
exploited the property of Pisot numbers that powers of Pisot numbers approximate integers
exponentially well. These are currently the only values of A € (3,1) for which p; is known
not to be absolutely continuous.

The typical behaviour for Bernoulli convolutions with parameters in (%, 1) is absolute
continuity. In [16] by a beautiful combinatorial argument, Erdés showed that there is some
¢ < 1 such that for almost all A € (¢, 1), we have that u; is absolutely continuous. Indeed
ErdGs showed that for every m > 0 there exists some a € (0,1) such that for almost all
A € (a,1) we have |1y (k)| < O, (k™™). Here fl) denotes the Fourier transform of the
Bernoulli convolution with parameter A.

Erd6s’s result was extended by Solomyak in [54] to show that we may take ¢ = %
Solomyak’s proof used the transversality method. This was later extended by Shmerkin in
[51] where he showed that the set of exceptional parameters has Hausdorff dimension 0.
Shmerkin’s proof relies on the fact that the convolution of a measure with power Fourier
decay and a measure with full dimension is absolutely continuous. These results have been
further extended by Shmerkin in [52] who showed that for every A € (4,1) apart from an
exceptional set of zero Hausdorff dimension p, is absolutely continuous with density in L?
for all finite g > 1.

There are relatively few known explicit examples of A for which u; is absolutely con-
tinuous. It can easily be shown that for example the Bernoulli convolution with parameter
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27t is absolutely continuous when & is a positive integer. This is because it may be written
as the convolution of the Bernoulli convolution with parameter % with another measure.
Generalising this in [23], Garsia showed that if A € (%, 1) has Mahler measure 2, then
is absolutely continuous. It is worth noting that the condition that A has Mahler measure 2
implies that A is not the root of any polynomial with coefficients 0, 1.

There has also been recent progress in this area by Varju in [56]. In his paper, he showed
that provided A is sufficiently close to 1 depending on the Mahler measure of A then u is
absolutely continuous. Varju’s uses inverse entropy techniques in his proof.

There are also almost sure results for broader classes of self-similar measures. For
example in [49] Saglietti, Shmerkin, and Solomyak show that self-similar measures on R are
absolutely continuous for almost all parameters in the super critical region - that is when the
Lyapunov dimension is greater than 1.

There has also been some progress on the absolute continuity of self-similar measures in
dimension 2. In [55] Solomyak and Spiewak show that for almost every choice of parameter
in a super critical region a self-similar measure on R? is absolutely continuous.

The absolute continuity of Furstenberg measures has also been studied. In [33] it was
conjectured that if u is supported on finitely many points then its Furstenberg measure Vv is
singular. This conjecture was disproved by Bérany, Pollicott, and Simon in [2] which gave a
probabilistic construction of measures u on PSL;(RR) supported on finitely many points with
absolutely continuous Furstenberg measures.

In [8] Bourgain gives examples of discrete measures pt on PSL,(R) such that the Fursten-
berg measure generated by u is absolutely continuous and examples generating Furstenberg
measures with n-times differentiable density functions. His approach was revisited by several
authors to give new examples including Boutonnet, loana and Golsefidy [9], Lequen [41],
and Kogler [38].

1.3 New results

We will now outline the new results that we obtain for this thesis. The first result is a sufficient
condition for self-similar measures to be absolutely continuous. Using this we are able to find
many new explicit examples of absolutely continuous self-similar measures. In the special
case of Bernoulli convolutions we show that the Bernoulli convolution with parameter A is
absolutely continuous providing it satisfies a simple condition in terms of the Mahler measure
of A, its Garsia entropy and A.

For our second result we provide a sufficient condition for a Furstenberg measure gener-

ated by a finitely supported measure to be absolutely continuous. Using this, we give a very
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broad class of examples of absolutely continuous Furstenberg measures including examples

generated by measures supported on two points.

1.3.1 Results on self-similar measures

First we will give our result in the special case of Bernoulli convolutions. To do this we need

to introduce Mahler measure.

Definition 1.3.1 (Mahler measure). Given some algebraic number o with conjugates
0, 03,...,0, whose minimal polynomial (over Z) has leading coefficient C, we define

the Mahler measure of «; to be
n
Mg, = |C|] [max{|o4[, 1}
i=1

We now state our result.

Theorem 1.3.2. Let A € (%, 1) be an algebraic number with Mahler measure M. Suppose

that A is not the root of any non-zero polynomial with coefficients 0, %1 and satisfies

1
logM;, —log2)(logM; )* < — (logM;, —log A ~1)?A2. (1.1)
27

Then the Bernoulli convolution with parameter A is absolutely continuous.

This is a corollary of a more general statement about a more general class of self-similar
measures. The requirement (1.1) is equivalent to M, < F(A) where F : (%, 1) — R is some

strictly increasing continuous function satisfying F (1) > 2 and
1
(log F (1) —log2) (logF (1)) = > (logF(A) —1ogx—1)3/12

forall A € (%, 1). Figure 1.1 displays the graph of F.

It is worth noting that F (1) — 23 2:2.054 as A — 1. The fact that F(A) > 2 is important
because the requirement that A is not the root of a polynomial with coefficients 0, +1 forces
M), > 2 as is explained in Remark 3.3.10.

Some parameters for Bernoulli convolutions which can be shown to be absolutely con-
tinuous using Theorem 1.3.2 are given in Table 3.1 which can be found in Section 3.4. The
smallest value of A that we were able to find for which the Bernoulli convolution with
parameter A can be shown to be absolutely continuous using this method is A ~ 0.78207

with minimal polynomial X8 —2X7 — X + 1. This is much smaller than the examples given
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T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0
A

Fig. 1.1 The graph of F

in [56], the smallest of which was A =1 — 10759, We also show that for all n > 8, there
is a root of the polynomial X" — 2X"~! — X + 1 which is in (%, 1) such that the Bernoulli
convolution with this parameter is absolutely continuous.

We now state the results of Theorem 1.3.2 for a more general class of self-similar
measures

Definition 1.3.3. We say that an iterated function system F = ((S;)}"_, (pi)?_,) has uniform
contraction ratio and uniform rotation if there is some A € (0, 1), some orthogonal trans-
formation U : RY — R? and some ay,as,...,a, € R? such that for each i = 1,2,...,n we
have

S;:x— AUx+aq;.

Similarly we say that the self-similar measure tr has uniform contraction ratio and uniform
rotation when F has uniform contraction ratio and uniform rotation.

This notion is important because of the following lemma.

Lemma 1.3.4. Let F = ((S;))"_,,(pi)!_,) be an iterated function system with uniform con-
traction ratio and uniform rotation. Let A € (0,1), let U be an orthogonal transformation

and let ay,...,a, € R? be vectors such that
Si:x— AUx+a;.

Let Xo,X1,Xo, ... be i.i.d. random variables such that P[Xy = a;| = p; fori=1,...,n and let

Y =Y A'UX;.
i=0
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Then the law of Y is UF.

Using this lemma it is easy to express the self-similar measure as the convolution of many
other measures. The purpose of doing this is explained in more detail in Section 1.4.1. In
order to state the main result we need the following definition.

Definition 1.3.5. Given an iterated function system F' let the splitting rate of F', which we
denote by MF, be defined by

—_

My :=limsup (Apg) *. (1.2)

k—boo
Here Ay is as in Definition 1.1.12.

Theorem 1.3.6. Let F be an iterated function system on R? with uniform contraction ratio
and uniform rotation. Suppose that F has random walk entropy hr, splitting rate M, and

uniform contraction ratio A. Suppose further that
2 1 ~1\342
(dlogMp — hp)(logMp)~ < ﬁ(logMF —logA ™" )’A”.

Then the self-similar measure Uf is absolutely continuous.

We give examples of self-similar measures which can be shown to be absolutely continu-

ous using this result in Section 3.4.

Remark 1.3.7. Notice that it is not a requirement in the theorem for the parameters in
F to be algebraic. In particular, the absolute continuity of Bernoulli convolutions would
follow even for transcendental parameters if a sufficiently good bound for the splitting rate
could be proved. In Theorem 1.3.2 we bound MF for algebraic parameters using the fact
that Mr < M, which we prove in Corollary 3.3.9. It would be interesting to bound Mf for
specific transcendental A. This seems to be beyond the reach of current methods. It would
also be interesting to see if the condition can be verified for almost all A € (%, 1), which

would allow us to recover the result of Solomyak in [54].

1.3.2 Results on Furstenberg measures

We now state our result on the absolute continuity of Furstenberg measures. To do this we
first need some definitions.

Definition 1.3.8. Let u be a probability measure on PSL,(R). We say that u is strongly
irreducible if there is no finite set S C P!(R) which is invariant when acted upon by the

support of .
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Given g € PSLy(R) we define ||g]|| to be the operator norm of a representative of g in

SL,(R). Note that this does not depend on the choice of representative.

Definition 1.3.9. Given a measure u on PSL,(R) we define the Lyapunov exponent of u to

be given by the almost sure limit

It is a result of Furstenberg and Kesten [21] that if i is strongly irreducible and its support
is not contained in a compact subgroup of PSL,(R) then this limit exists almost surely and is
positive.

Throughout this thesis we will also fix some left invariant Riemannian metric and let d

be its distance function. We then have the following definition.

Definition 1.3.10. Let u be a discrete measure on PSL;(R) supported on finitely many
points. Let

n
Sp == supp(u™).
i=1

Then we define the splitting rate of 1, which we will denote by M, by
) 1
My :=exp | limsup ——logd(x,y) | .
xayESn ax#y h

Note that all left invariant Riemannian metrics are equivalent and therefore M, does not
depend on our choice of Riemannian metric. We define P!(R) to be (R?\ {0})/ ~ where
x ~y if there is some A € R such that Ax =y. We then identify P!(R) with R/7Z in the

following way.

Definition 1.3.11. We define the bijective function ¢ by

¢ : P'(R) » R/nZ

()

We now define the following quantitative non-degeneracy condition.

Definition 1.3.12. Given some probability measure 1 on PSL,(RR) generating a Furstenberg

measure vV on P'(R) and given some o, > 0 we say that u is ay,t-non-degenerate if
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whenever a € R we have
v((])_]([a,a—i—t] +77Z)) < 0.

We now have everything needed to state the our new result on the absolute continuity of

Furstenberg measures.

Theorem 1.3.13. ForallR > 1, op € (0, %) and t > 0 there is some C > 0 such that the
following holds. Suppose that | is a probability measure on PSLy(R) which is strongly
irreducible, Qy,t- non-degenerate, and is such that ||-|| is at most R on the support of L.
Suppose further that the support of I is not contained in any compact subgroup of PSL,(R).
Suppose that My, < > and

h logM, ) \?
%>C(max{l,log OthW“ }) . (1.3)

Then the Furstenberg measure v on P'(R) generated by W is absolutely continuous.
The constant C may be computed by following the proof.

Remark 1.3.14. The condition M, < o is closely related to the exponential separation
condition in [29]. Indeed in [29] Hochman and Solomyak prove that if

1
limsup  ——logd(x,y) <o
x,yesupp(U*™*) xF£y

and h’)*C—W > 2 then the Furstenberg measure has dimension 1.

We will now discuss how this result compares to previously existing results.

As we mentioned above, Bourgain [8] gave examples of absolutely continuous Fursten-
berg measures generated by measures on PSL,(R) supported on finitely many points. His
approach was revisited by several authors including Boutonnet, loana and Golsefidy [9],
Lequen [41], and Kogler [38]. We quote the following result from [38].

Theorem 1.3.15. For every c1,cy > 0 and m € Z~ there is some positive & = €y(m,cy,c?)
such that the following holds. Suppose that € < & and let 1 be a symmetric probability
measure on PSLy(R) such that

W (Bgern (H)) < 2" (1.4)

for all proper closed connected subgroups H < PSLy(R) and all sufficiently large n. Suppose
further that
supp i C Be(1d). (1.5)
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Then the Furstenberg measure generated by U is absolutely continuous with m-times continu-

ously differentiable density function.

Here B¢ (+) denotes the e-neighbourhood of a set with respect to our left invariant Rie-
mannian metric.

The conditions of this theorem are not directly comparable to ours but they are related.
Condition (1.4) can be verified for H = {Id} if M;, <&~ and u**(Id) < " for all suffi-
ciently large . If that is the case then Agw > c»loge~!. When condition (1.5) holds we must
have ¥ < O(e). Informally speaking the conditions (1.4) and (1.5) correspond to M, < €1,
hrw > cplog el and y < O(€). In comparison condition (1.3) in Theorem 1.3.13 is satisfied

if My, <exp <exp (ce_l/z

)), hrw > ¢, and x < € for some suitably small ¢ > 0.

It is important to note however, that Theorem 1.3.15 gives higher regularity for the
Furstenberg measure than our result.

To demonstrate the applicability of our result we give several examples of measures
satisfying the conditions of Theorem 1.3.13. We will prove that these examples satisfy the

conditions of Theorem 1.3.13 in Section 4.6.

Definition 1.3.16 (Height). Let o be algebraic with algebraic conjugates o, 03, ..., 0.
Suppose that the minimal polynomial for o over Z[X] has positive leading coefficient ag.
Then we define the height of o by

i 1/d
() = (aoljlmax{l,|a,-|}> :

Note that the height of a rational number is the maximum of the absolute values of its
numerator and denominator. Also note that the height of an algebraic number is the dth root
of its Mahler measure.

We can apply some Euclidean structure to psl,(R). After doing this we have the follow-

ing.

Corollary 1.3.17. For every A > 0 there is some C > 0 such that the following is true. Let
r > 0 be sufficiently small (depending on A) and let | be a finitely supported symmetric
probability measure on PSLy(R). Suppose that all of the entries of the matrices in the support
of W are algebraic and that the support of L is not contained in any compact subgroup of
PSL;(R). Let M be the greatest of the heights of these entries and let k be the degree of the
number field generated by these entries.

Let U be a random variable taking values in psl,(R) such that ||U|| < r almost surely,

exp(U) has law p, and the smallest eigenvalue of the covariance matrix of U is at least Ar?.
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Suppose that for any virtually solvable group H < PSLy(R) we have u(H) < 1/2.
Suppose further that

r < C(logk+loglog(M +10)) 2.

Then the Furstenberg measure generated by L is absolutely continuous.

The above proposition is true no matter which Euclidean structure we apply to ps[, (R)
though the choice of Euclidean structure will affect the values of our constants.

In the above Proposition we can replace the requirement that u is symmetric with the
requirement |E[U]| < cr? for any ¢ > 0. We can also replace the requirement u(H) < 1/2
with u(H) <1 — ¢ for any € > 0. If we do this then we must allow C to also depend on ¢
and €.

Unlike examples based on the methods of Bourgain we do not require the support of (t to

be close to the identity. We may prove the following.

Corollary 1.3.18. For all r > 0 there exists some finitely supported measure (L on PSL;(R)
such that all of the elements in the support of lL are conjugate to a diagonal matrix with largest
entry at least r under conjugation by a rotation and the Furstenberg measure generated by [L
is absolutely continuous.

We also have the following family of examples supported on two elements.

Corollary 1.3.19. For all sufficiently large n € Z~q the following is true.
Let A € PSLy(R) be defined by

n’—1 _ 2n
| n2+1 n2+1
A= 2n n—1
n?+1 n?+1

and let B € PSLy(R) be defined by

3
N
«— 0 L .
n341

Let u = %SA + %53. Then the Furstenberg measure generated by [l is absolutely continuous.

1.4 Outline of the proofs

We now outline the proofs of our new results. First we outline the proof of our result on

self-similar measures.
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1.4.1 Result on self-similar measures

We now describe the outline of the proof of our result on self-similar measures. The proof
has much in common with the proof given by Varju in [56] but with some new ingredients.
The most important new ingredient is the use of a new method for giving a quantitative way
of measuring the smoothness of a measure at a given scale. Before defining this quantity we

need to introduce the following notation.

Definition 1.4.1. Given an integer d € Z~( and some y > 0 let ny(,d) be the density function

of the multivariate normal distribution with covariance matrix y/ and mean 0. Specifically let

i=1

_ 1 ¢
0 (x) := (2my) " exp (—2—y ZX?> :

Where the value of d is clear from context we usually just write 7)y.
We also use the following notation.

Definition 1.4.2. Given an integer d € Z~ and some y > 0 let n; be defined by

, 0
ny = a_yny

This notation is only used when the value of d is clear from context.

We then define the following.

Definition 1.4.3. Given a probability measure p on R and some r > 0 we define the detail
of 1 around scale r by
s(w) = r*Q(d) | ny |,

where Q(d) := 1T (%) (Zie)_d/2

The factor r>Q(d) was chosen to ensure that s,(1) € (0, 1]. The precise value of Q(d)
turns out not to matter because the factor of Q(d) in Theorem 1.4.5 ends up cancelling with
the factor of Q(d) in Proposition 1.4.9. The smaller the value of detail around a scale the
smoother the measure is at that scale.

Later we show that if the detail of a measure at scale r tends to O sufficiently quickly
as r — 0 then the measure is absolutely continuous. We also show that detail decreases
under convolution in a quantitative way and use this to show that the measure is absolutely

continuous.
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In place of n; », we could use another family of signed measures (V,),.p+ satisfying
v,(RY) = 0 and satisfying v, (A) = C,, , Vi, (2A/r1) for every 0 < r| < r, for some constant
C,, », depending only on r| and r, for every A € (R?). Given such a family, we can
understand something about the “smoothness” of u at scale r by looking at ||u * v,||;. It
turns out that taking v, =17 ; , 1s a good choice because it is easy to prove Lemma 1.4.4 and
Theorem 1.4.5.

First we show that provided s,(u) — 0 sufficiently quickly as r — O the measure u is
absolutely continuous. Specifically we prove the following.

Lemma 1.4.4. Suppose that 1 is a probability measure on R? and that there exists some
constant 3 > 1 such that for all sufficiently small r > 0 we have

sr(u) < (logr_l)_ﬁ .

Then U is absolutely continuous.

This is proven in Section 2.1.3. In order to bound the detail of the self-similar measure
at a given scale we first find a quantitative bound for the detail of the convolution of many
measures. Specifically we prove the following.

Theorem 1.4.5. Let n,d € Z~o, K > 1, r >0 and o, 00,...,0, € (0,1]. Let m = 102%.
Let Uy, Uy, ..., U, be probability measures on RY. Let o = min{ay, 0, ...,0,}. Suppose

that for all t € [2_%1”, K’”a_’"zmr] andi€ {1,2,...,n} we have

se(pi) < 0.

Then we have

~1
sr(ul*uz*---*un)gCI"(,doclaz...an

where

4 1

This is proven in Section 2.1.2. This bound is quantitatively significantly more powerful
than the bound given by Varju in [56]. This is discussed further in Remark 2.1.10. In order to
apply this theorem we need some way to express the self-similar measure as a convolution of
many measures each of which have at most some detail. To do this we use entropy. We have
already defined the entropy of a discrete measure. We define the entropy of an absolutely

continuous measure i on R? with density function f to be

H(w) = [ ~flogs.
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We define the entropy of an absolutely continuous random variable to be the entropy of its

law. The conflict of notation with the entropy of a discrete measure does not matter because it

will always be clear from the context whether a probability measure is discrete or continuous.
We also need the following.

Definition 1.4.6. Let F = ((S;)7_,, (pi)"_,) be an iterated function system with uniform con-
traction ratio and uniform rotation. Suppose that A € (0, 1), U is an orthogonal transformation

and ay,...,a, € R? are such that for each i = 1,2,...,n we have
S;:x—= AUx+a;.

Let Xo, X1, X5, ... be i.i.d. random variables such that P[Xy = a;] = p;. Let I C (0,00). Then

we define ,u{p to be the law of the random variable

Y AUx.
i€Z:AEl
Remark 1.4.7. We are only interested in the case where I C (0, 1] but allow I C (0,00) to
make various lemmas easier to state. We refer to the measures pl. as pieces. Clearly if
I, b, ... I are disjoint intervals contained in (0, 1], then there is some measure v such that
we have
;LF:V*‘uII,l*‘uII,Z*-n*u]{l‘.

Indeed, we can take v = /,LI(VO’H\(AU”'UI").

We continue our outline of the proof of the main theorem. We fix a scale r > 0 that
is suitably small, but otherwise arbitrary. We aim to find suitably many disjoint intervals
L,b,...,1, C (0,1] such that s,(u{!) is suitably small for j = 1,2,...,n for all ¢ in a suitable
neighbourhood of r.

If we can achieve this then we can apply Theorem 1.4.5 for the measures u;j in the role of
;. This gives us a bound on s,(ur ), which, if suitably good, implies the absolute continuity
of ur via Lemma 1.4.4.

In order to estimate s,(i) we first estimate another quantity, H(u * 1,), which also

measures the smoothness of the measure p. In Section 3.2 we prove the following result.

Lemma 1.4.8. Let F be an iterated function system on R? with uniform contraction ratio
and uniform rotation. Let hr be its random walk entropy, let MF be its splitting rate, and

let A be its contraction ratio. Then for any M > Mp there is some ¢ > 0 such that for all
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n € Z~o we have

<‘u}(,’1 My * 1M ) <u}f” ]*nM72n> < (dlogM — hp)n+c.

Under the conditions of Theorem 1.3.6, hr is only slightly smaller than dlogMF.
Later we see that H(p *m,) is a non-increasing quantity in #. In our context this means

approprlate scaling factor whose role becomes clear later.

’ is small for most values of z between 1 and M~". Here 2 is an

Given a scale s we can use the scaling identity

H(up 5 mp0,) = H(ph + 1) + dklog A

to find intervals I such that ‘sz %H (uk*mn,) M:

2‘ is small. We can then turn this into an
A
estimate for detail using the following proposition.

Proposition 1.4.9. Let 11 and v be compactly supported probability measures on R? let r,u

and v be positive real numbers such that r* = u+v. Then

sr(xv) <r’Q(d \/ H(p+mu) 5 H(V*1y).

This is proven in Section 3.1.

In Section 3.3, we complete the proof of Theorem 1.3.6 by giving the details of the above
argument to construct suitable intervals /; such that Proposition 1.4.9 can be applied for
the measures /.LF and then feed the resulting estimates on detail into Theorem 1.4.5 and
finally Lemma 1.4.4, as explained above. We then show that Theorem 1.3.2 follows from
Theorem 1.3.6. Finally in Section 3.4, we give examples of self-similar measures satisfying
the conditions of Theorems 1.3.2 and 1.3.6.

1.4.2 Result on Furstenberg measures

We will now give an overview of the proof of Theorem 1.3.13. We adapt the concept of detail
from our work on self-similar measures to work with measures on P!(R) or equivalently
R /77 instead of measures on R. The detail of a measure A around scale r, denoted by
sr(A), is a quantitative measure of how smooth a measure is at scale r. We will define this in

Definition 2.1.3. We then need the following result
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Lemma 1.4.10. Suppose that L is a probability measure on P'(R) and that there exists some
constant 3 > 1 such that for all sufficiently small r > 0 we have

sr(u) < (logr_l)fl3

Then U is absolutely continuous.

This follows from the same argument as Lemma 1.4.4.
We define the convolution of measures on P! (R) by our identification between ¢ and
R/nZ. In other words given measures A; and A, on P! (R) we define

ALy = (A4 o¢)*1 *lzoq)*l)o(]).

In Definition 2.1.16 we introduce a new quantity for measuring how smooth a measure is at
some scale r > 0 which we will call order k detail around scale r and denote by sﬁk) (). The

definition is chosen such that trivially we have
s (A Ag -5 ) < sp(A)se(Aa) (M) (1.6)

We can also bound detail in terms of order k detail using the following lemma.

Lemma 1.4.11. Let k be an integer greater than 1 and suppose that A is a probability
measure on R /7. Suppose that a,b > 0 and a € (0,1). Suppose that a < b and that for all

r € [a,b] we have

Then we have

Sai(A) < ak <%) K ka?b
Remark 1.4.12. Combining Lemma 1.4.11 with (1.6) we get a result that can be stated
informally as follows. Let A1, A;, ..., A, be measures on R/77Z. Assume that we have some
bound on s,(A;) for all integers i € [1,n] and all r in a suitably large range of scales around
some scale ry. Then we can get a vastly improved bound for s, (A Ay % --- % A4,).

This is essentially the same as Theorem 1.4.5. However Theorem 1.4.5 is not sufficient
for the proof of our result on Furstenberg measures. In what follows, we decompose the
Furstenberg measure v as the convex combination of measures that can be approximated by
the convolutions of measures. This allows us to estimate sgk)(v) for arbitrary scales using
(1.6) among other things. Unlike the setting of the previous section, we cannot estimate the
detail of the convolution factors at a sufficiently large range of scales and so cannot apply

Theorem 1.4.5.
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In fact, the decomposition we use to estimate sgk) (v) depends on the exact value of r. For

this reason the notion of order k detail is a key innovation of this section that is necessary for

the proof.

We now need tools for bounding the detail of a measure at a given scale. One of them is

the following.

Lemma 1.4.13. For every o > 0 there exists some C > 0 such that the following is true. Let
X1,Xa,...,X, be independent random variables taking values in R /%7 such that |X;| < F
almost surely for some > 0. Let # > 0 be defined by > = " VarX;. Letr € (7,7). Suppose
that

>C.

Y

S
NS

Then
ss (X1 +Xo+--+X,) < 0.

Here and through out this thesis when x € R/7Z we use |x| to denote minye,|y|. The
idea of the proof of Theorem 1.3.13 is to show that v o ¢! can be expressed as a convex
combination of measures each of which can be approximated by the law of the sum of many
small independent random variables with some control over the variances of these variables.
One difficulty with this is that the measures which v o ¢ ~! is a convex combination of are
only approximately the laws of sums of small independent random variables of the required

form. To deal with this we will need the following.

Lemma 1.4.14. There is some constant C > 0 such that the following is true. Let A| and A,
be probability measures on R/nZ and let r > 0. Let k € Z~. Then

s () =5 ()| < Cr Wi (M, a).

Here #,(-,-) denotes Wasserstein distance.

Now we need to explain how we express vo ¢! as a convex combination of measures
each of which are close to the law of a sum of small independent random variables. To do
this we will need a chart for some neighbourhood of the identity in PSL,(RR).

To do this we use the logarithm from PSL,(R) to its Lie algebra psl,(R) defined in some
open neighbourhood of the identity in PSL,(IR). We also fix some basis of psl,(R) and use
this to identify psl, (R) with R? and fix some Euclidean product and corresponding norm on
psh(R).

Now we consider the expression

x=nY...7b



1.4 Outline of the proofs 23

where T is a stopping time, 1, %3, ... are random variables taking values in PSL,(IR) which
are 1.1.d. samples from u, and b is a sample from v independent of the ;. Clearly x is a

sample from v. We then construct some c-algebra 2/ and write

x = grexp(u1)g2exp(uz)...gnexp(u,)b (1.7)

where all of the g; are </ -measurable random variables taking values in PSL,(R) and b is
an o/-measurable random variable taking values in P!(R). Furthermore the u; are random
variables taking values in psl,(R) in a small ball around the origin such that conditional on
o/ we can find a lower bound on their variance. We then Taylor expand to show that ¢ (x)
can be approximated in the required way after conditioning on .o#. We will do this by letting
0=T, <T, <---<T,=T be stopping times and constructing our random variables such
that

giexp(ui) =Yr_,+1---71;-

To explain this statement more precisely we first need to define the Cartan decomposition.

Definition 1.4.15 (Cartan decomposition). We can write each element g of PSL,(R) with
llg|| > 1 in the form
Ro, A R_p,

cosx —sinx
R, = .
sinx cosx

A 0
Ay =

in exactly one way with A > 1 and 6,6, € R/nZ. We will let b*(g) = ¢—'(6;) and
b (g)=9""(62+75).

where

is the rotation by x and

Remark 1.4.16. Note that in this notation we have that if ||g|| is large then providing
b € P(R) is not too close to b~ (g) we have that gb is close to b*(g). We will make this

more precise in Lemma 4.1.9.

We now let d denote the metric on P'(R) induced by ¢. In other words if x,y € P!(R)
then d(x,y) := |¢(x) — ¢ (y)|. Whenever we write d(-,-) it will be clear as to whether we are
applying it to elements of PSL;(RR) or elements of P! (R) and so clear if we are referring to
the distance function of our left invariant Riemannian metric on PSL;(R) or to our metric on
P'(R).
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By carrying out some calculations about the Cartan decomposition and applying Taylor’s

theorem we can prove the following.

Proposition 1.4.17. Let c,t > 0. Then there exists C,0 > 0 such that the following is true.
Let n € Zi~q, let ¥ > 0 and let u(l),u(z), e ,u(”) be independent random variables taking
values in psl,(R). Let g1,...,gn € PSLy(R) and let b € P'(R). Suppose that for each integer
i € [1,n] we have

lgill =€

and

u(i)“ < cHglgz...ginF.

Suppose that for each integer i € [1,n— 1] we have

d(b*(gi),b™(git1)) > 1

and also that
d(b,b™(gn)) > 1.

Suppose further that
Ig182- .. gnll*F < 8.
Let x be defined by
X = gleXp(u(])) .. .gnexp(u(”))b_ (1.8)

For each integer i € [1,n] let {; € psl,” be the derivative defined by

G =Du(¢(g182---8iexp(u)gi+18i+2---8nb))|u=0 (1.9)

and let S be defined by
S=0(g182...8n0) + ¥ Gi(u)).
i=1

Then we have
71 (9(x),8) <C"||g182.. . &nll* P

Informally this proposition states that under some conditions, when x is of the form (1.8)
then @ (x) is close to its first order Taylor expansion in the ul),

In (1.9) D, denotes the derivative of the map with respect to u.

We will later use this along with some results about the first derivatives of the exponential
at 0, Lemma 1.4.13, and (1.6) to get a bound on the order k detail of the expression x. We can

then get an upper bound on the order k detail of some sample x from v conditional on some
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o-algebra <. Due to the convexity of sgk) (+) we can then find an upper bound for sgk) (v) by

taking the expectation of this bound.

We will now outline some of the tools we will use to decompose x in the way described
in (1.7). Let 71,7, ... be i.i.d. samples from u and given n € Z~qg let g, = 17> ... 7. Let
b € PY(R), lett > 0 and define

T p i=min{n: H}/,,T}/,{,l YD) > HBH}
where b € R?\ {0} is a representative of b and -7 denotes the transpose. Note that this
definition does not depend on our choice of b. We will show that we can find some c-algebra
o/, some .o/ -measurable random variable «a taking values in PSL, (R) and some random
variable u taking values in a small ball around the origin in psl, (R) such that we may write
qr,, = aexp(u) and such that conditional on o/ we know that u has at least some variance.
First we need to define some analogue of variance for random values taking values in
PSL,(R). For this we will make use of log. Specifically given some fixed go € PSL,(R) and
some random variable g taking values in PSL,(IR) such that g, lgis always in the domain of
log we will define VAR, [g] by

VAR, [g] := Var[log(gglg)].

By the variance of a random variable taking values in psl, (R), or any other finite dimensional
Euclidean vector space, we mean the trace of its covariance matrix. Throughout the paper we
fix some Euclidean structure on psl,(R) and use this to define our covariance matrix. The
proof works with any choice of Euclidean structure.

We now define the quantity v(g;r) as follows.

Definition 1.4.18. Let g be a random variable taking values in PSL,(R) and let » > 0. We then
define v(g;r) to be the supremum of all v > 0 such that we can find some ¢-algebra .7 and
some .o/ - measurable random variable a taking values in PSL;(RR) such that |log(a~'g)| < r
almost surely and

E[VAR,[¢|/]] > vi*.

Proposition 1.4.19. There is some absolute constant ¢ > 0 such that the following is true. Let
W be a strongly irreducible probability measure on PSLy(IR) whose support is not contained
in a compact subgroup of PSLy(R) and let V be some probability measure on P' (R). Suppose
that My, < oo and that hgw /X is sufficiently large. Let M > M, be chosen large enough
that logM > hgrw. Suppose that t is sufficiently large (depending on 1 and M) and let

~ | logM
M= Tooy |
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Let 1,7, ... be i.id. samples form U, let g, == 1Y ...V, and let
g AT o
Ty i=inf{n: anvH >tV }-

Then there exists some 7\, ..., s > 0 such that for each i € [
_logM  hrw
Felt 2 ¢ o

Fip1 > 17,

and for each i € [ — 1]

and such that

m st ze (") (mn Lo )
% ) v(dw) > | — max < 1,lo .
i—Zl/Pl(R) (5,72) V{dw) ( 4 & hrw

The measure V for which we apply Proposition 1.4.19 comes from the following result in

renewal theory.

Theorem 1.4.20. Let i be a probability measure on PSLy(R) which is strongly irreducible
and has positive Lyapunov exponent. Then there is some probability measure ¥ on P'(R)
such that the following is true. Let V1,7, ... be i.i.d. samples from W and let q,, :== NV ... Y.
Given b € P/(R) and t > 0 let 7, := inf{n : ||q,{f9|| > tHISH} where b € R?\ {0} is a
representative of b. Then for all b € P'(R) the law of qg‘bb converges weakly to V as t — .

Furthermore this convergence is uniform in b.

In [36, Theorem 1] it is proven that Theorem 1.4.20 holds without the condition that it
is uniform in b in a much more general setting providing some conditions are satisfied. In
[24, Section 4] it is shown that the conditions of [36, Theorem 1] are satisfied in the setting
of Theorem 1.4.20. In Section 4.7, we will prove Theorem 1.4.20 by deducing uniform
convergence from (not necessarily uniform) convergence. A formula for V is given in [36,
Theorem 1] though this will not be needed for the purposes of this thesis.

We construct the decomposition (1.7) of a sample x from Vv in Section 4.5. See Proposition
4.5.1. The details are very technical so we only discuss in this outline how given a sufficiently
small scale 7 one can construct a stopping time 7, and a o-algebra .7 such that

NY... Y = gexp(u)
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for some .«7-measurable random variable g taking values in PSL,(R) and some random u
taking values in psl, (R) such that ||u|| < ||g||* 7 almost surely and after conditioning on .7
we have a good lower bound for %.

We fix a small 7 and some ¢ that is much smaller that 7 1. Let Fi, be one of the scales we
get when we apply Proposition 1.4.19 with the measure from Theorem 1.4.20 in the role of

V.
Fix an arbitrary b € P'(R). Let s = (7#/;,)'/?/t and let the stopping time S be defined by

S=inf{n:||(n...7)7" 6| > s|bll}.

By Theorem 1.4.20, there is a random variable w taking values in P!(R) such that w
has law V and

db-(nn---%),w)

is small with high probability.
Now let

T = inf{n . H(’}/S—i-IYS—i-Z---’yn)TWLH >t HWLH}

Note that by Proposition 1.4.19 there is some G-algebra . such that

Yoi1Yss2 - .- Yr = aexp(u)

where a is an ./-measurable random element of PSL,(R) and u is a random element of

psl,(R) with |lu|| <7, and a good lower bound on VarrT(”)

Now we define g = 7; ... ¥sa. Using the deﬁnitionl(())f w it is possible to show that |g|| is
approximately s -t = (7/7;,)"/2.

Note that the scale 7;, depends on the measure V so the convergence in Theorem 1.4.20 is
important. On the other hand it does not matter what this limit measure is.

The construction in Section 4.5 is significantly more elaborate. In particular, we will
make use of all the scales 71, ..., 7 provided by Proposition 1.4.19. Moreover, we will need
to apply it for a carefully chosen sequence of parameters in the role of 7.

Finally we discuss some ingredients of the proof of Proposition 1.4.19. We take the
entropy of an absolutely continuous random variable taking values in PSL,(R) to be the
differential entropy with respect to a certain normalisation of the Haar measure and denote

this by H(-). We will define this in Section 4.2.3. We will then prove the following theorem.
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Theorem 1.4.21. Let g,s| and s, be independent random variables taking values in PSL,(R)
such that s\ and s, have finite entropy. Define k by

k:=H(gs;)—H(s;) —H(gs2) +H(s2)

and let ¢ := %log %ne VARyq4[s1] — H(s1). Suppose that k > 0. Suppose further that s\ and s,
are supported on the ball of radius € centred at the origin for some sufficiently small € > 0.

Suppose also that VARq][s1] > A€? for some positive constant A. Then

E[VARys, [glgs2]] >

U-)Il\.)

(k —C— Cs) VARId[Sl]

where C is some positive constant depending only on A.

We apply this theorem when s and s, are smoothing functions at appropriate scales
with s, corresponding to a larger scale than si. The value k can be thought of as the
new information that can be gained by discretising at the scale corresponding to s; after
discretising at the scale corresponding to s,. When we apply this theorem we bound k in
the following way. We let g = 717 ... Y where the ¥ are i.i.d. samples from p. We let

$1,582,...,5, be a sequence of smoothing random variables corresponding to various scales
with s; corresponding to a larger scale than s; wheneveri > j. Fori=1,...,n—1 we let k;
be defined by

ki = H(gs;) —H(s;) —H(gsiy1) +H(gsit1)

and note that we have the following telescoping sum

n—1 —
Zi Z (gsi) —H(si) — H(gsi+1) + H(gsi+1)
= i=1

H(gs

1) —H(s1) = H(gsn) +H(sn).

Since when we apply this theorem s, will correspond to a scale much larger than s; we
are able to bound H(gs;) — H(s1) — H(gsn) + H(s,) for our careful choice of smoothing
functions in terms of hgw, My, and .

The value ¢ in the above theorem measures how close s is to being a spherical normal
distribution. For random variables taking values in R it is well known that the random
variable with the greatest differential entropy out of all random variables with a given variance
is the spherical normal distribution. In particular this means that if X is a continuous random
variable taking values in RY then H(X) < %log %ﬂe VarX with equality if and only if X is

a spherical normal distribution. A similar thing is true for random variables taking values
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in PSL,(R). In particular ¢ > O(¢€) and is small when s; is close to being the image of a
spherical normal distribution on psl, (R) under exp.

For the conclusion of Theorem 1.4.21 to be useful in proving Proposition 1.4.19 we need
g to almost surely be contained in some ball of radius O (W > centred on gs,. For
this reason we require s, to be compactly supported. To make our telescoping sum useful
we need s; and s, to be members of the same family of random variables. For this reason
we take s; and s, to be compactly supported approximations of the image of the spherical
normal distribution on psl, (R) under exp. To do this we will find bounds on the differential
entropy of various objects smoothed with these compactly supported approximations to the
normal distribution at different scales.

We then combine Theorems 1.4.21 and a bound for the entropy of the stopped random
walk along with some calculations about the entropy and variance of the smoothing functions
to prove Proposition 1.4.19.

1.5 Notation

We will use Landau’s O(-) notation. Given some positive quantity X we write O(X) to
mean some quantity whose absolute values is bounded above by CX some constant C. If
C is allowed to depend on some other parameters then these will be denoted by subscripts.
Similarly we write o(X) to mean some quantity whose absolute value is bounded above by
¢(X) where ¢(X) is some positive value which tends to 0 as X — oo. Again if ¢ is allowed to
depend on some other parameters then these will be denoted by subscripts. We also let @(X)
be some quantity which is bounded below by CX where C is some positive absolute constant.
If C is allowed to depend on some other parameters then these will be denoted by subscripts.

We write X <Y to mean that there is some constant C > 0 such that X < CY. Similarly
we write X 2 Y to mean that there is some constant C > 0 such that X > CY and X =Y to
mean X <Y and X 2 Y. If these constants are allowed to depend on some other parameters

then these are denoted in subscripts.

1.6 Structure of the thesis

In Chapter 2 we will introduce the concept of detail and prove some properties about it which
we will use to prove our main results. We will also recall some properties of entropy which
we will use in throughout the thesis. Chapter 3 we will concerned with the proof of Theorem
1.3.6. In Chapter 4 we will prove Theorem 1.3.13.






Chapter 2
Entropy and detail

In this chapter we will give some results on entropy which we will use to prove the main
results of the paper later on. We will also introduce a new quantity for measuring how smooth

a measure is at a given scale which we will call detail.

2.1 Detail around a scale

In this section we discuss the basic properties of detail around a scale. The main purpose of
this section is to prove Lemma 1.4.4 and Theorem 1.4.5 as well as to introduce order k detail
and prove some properties of it.

Recall that n; = a%ny, where 1), is the density function of the multivariate normal
distribution with mean 0 and covariance matrix y/. Recall that in Definition 1.4.3 we defined

the detail of measure u on R at scale r as

sr(p) :=r*0(d) [|p* ||, -

Detail is a quantitative measure of the smoothness of a measure at a given scale. The
detail of a measure at some scale r > 0 is close to 1 if, for example, the measure is supported
on a number of disjoint intervals of length much smaller than r, which are separated by a
distance much greater than r. The detail of a measure is small if, for example, the measure is
uniform on an interval of length significantly greater than r.

We now explain how we extend the concept of detail to measures taking values in P! (IR)
or equivalently R/z7Z. For this we need the following.
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Definition 2.1.1. Given some y > 0 let 7, be the density of the pushforward of the normal

distribution with mean 0 and variance y onto R/zZ. In other words given x € R/nZ let

ﬁy(x) = Z ny(”)-

uex

We will also use the following notation.

Definition 2.1.2. Given some y > 0 let ﬁ; be defined by

N d
ny = a_yny

We now define the following.

Definition 2.1.3. Given a probability measure A on R/7Z and some r > 0 we define the

soh) =Py 2 e ]

Similarly we define the detail of a probability measure on P'(R) to be the detail of the

detail of U around scale r by

pushforward measure under ¢ and we define the detail of a random variable to be the detail
of its law. Recall that Q(1) = \/% . The factor rz\/% exists to ensure that s,(u) € [0, 1].
The smaller the value of detail around a scale the smoother the measure is at that scale.

In Section 2.1.1, we prove that the detail of a probability measure does not increase
if we convolve it with another probability measure. In Section 2.1.2 we prove Theorem
1.4.5, which is a quantitative estimate on how detail decreases as we take convolutions of
measures. Section 2.1.3 is devoted to the proof of Lemma 1.4.4 which shows that a measure
is absolutely continuous provided its detail decays sufficiently fast as the scale goes to 0.

After this we introduce the concept of order k detail in Section 2.1.4 and use this to bound
detail in Section 2.1.5. In Section 2.1.6 we prove Lemma 1.4.14. Finally in Section 2.1.7 we

prove Lemma 1.4.13.

Remark 2.1.4. We motivate the definition of detail as follows. Earlier work on Bernoulli
convolutions, including [12], [25], [27], and [56] studied quantities like

H(“*Frl)_H(“*Frz)

where F, is a smoothing function associated to scale r (for example the law of the normal

distribution with standard deviation r or the law of a uniform random variable on [0, r]).
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Motivated by this and the work of Shmerkin [52], it is natural to study quantities like

5 F (], = [l ],

However it turns out to be more useful to study

[+ (B _Frz)Hp

at least when p = 1. Detail is an infinitesimal version of this quantity with Gaussian

smoothing.

2.1.1 No increase under convolution

Intuitively, convolution is a smoothing operation. This means we would not expect detail to

increase under convolution. We show this in the following proposition.

Proposition 2.1.5. Let 1 and v be probability measures on R? or R/nZ. Then we have
sr(i*v) < s.(1)

This is a corollary of the following Lemmas.

Lemma 2.1.6. Let i and v be probability measures. Then we have

lexvsemglly < [vmgll,

Furthermore

/ / 12 d\? 1
leentl < Il =5 5 (52) - = o 2

Lemma 2.1.7. Let A and A, be probability measures on R /ntZ. Then we have

1A= Az x| < A=l

. ~ I /2
e lly < limlly < lmlly =Sy 2z

Remark 2.1.8. It is worth noting that by (2.1) and the definition of detail (Definition 1.4.3)
we have that s,(u) € [0, 1]. This is the purpose of the choice of constants in Definition 1.4.3.

In particular
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Proof of Lemma 2.1.6. For the first part simply write the measure v 1)y as V1 = v, — V_
where V and V_ are (non-negative) measures concentrated on disjoint sets. Note that this

means
[vengll, = 14l + 191l

and so

[ vemg||, = [l vy —psv_]
< [l 9l el 91

= [lv=ngll,-

For the second part, we need to compute

/X o mldx

To do this, we work in polar coordinates. Let s = 4 /Z?Zl x%. Then we have

, 52 d —d)2 52
ny(x17x27'--7xd) = 2_))2_2__)/ (277:))) exp(—z—y)
Noting that the (d — 1)-dimensional surface measure of S@=1) s —12(751‘;/22) we get
2md/2 Vdy [ 2 g §2
'(x)| dx = —(—/ (———) 27y) 4258 Vexp(— =) ds
/"eRd ) T($)\ Js=o \20* 2y (27) p(=3,)

+/°° (i—i) (2my) 4254 ex (—f)ds>
vay \2y* 2y g P '

By differentiation it is easy to check that

2 2 2
S 5 _ 5=

/(——d sTle v ds = —sle .
y
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Hence
vdy (§2 d —d 5
_ /2 d—1 5
/s:O (2y2 Zy) (2my) 4/~ exp( 2y)ds
* 52 d 52
+/ ( ) 27y) 4258 exp(— =) ds
(53, ) em) p(=3,)
1 _ _
=2-5,(2m) 2(dy)? e~/
_ l(zn)fd/zdd/zefd/Z
y
which yields
1 2 [d\*?
/ d — . . . D
/xeRd‘ny(X)‘ Ty () (26)

Lemma 2.1.7 follows by the same argument. Proposition 2.1.5 follows easily from these
two Lemmas.

2.1.2 Quantitative decrease under convolution

In this subsection, we find a quantitative bound for the decrease of detail under convolution.
Specifically we prove Theorem 1.4.5. We begin with a result which differs from the n =2

case of Theorem 1.4.5 only in that the range of the parameter ¢ is slightly smaller.

Lemma 2.1.9. Let [y and Uy be probability measures onRY letr >0, oy, € (0,1] and
let K > 1. Suppose that for all t € [r/v/2,Ka, *a, r] and for all i € {1,2}, we have

se(pi) < o

Then
Sr(fr* o) < Cg g0 0,

where

Cr = 4 1 !
4= 00) ( +21<2)'

We apply this lemma in the case K — oo. This means the only important property of Cg 4
is its limit as K — oo. In the case d = 1 this limit is \/? ~ 1.93577. We deduce Theorem
1.4.5 from this by induction on » at the end of this subsection. Before proving Lemma 2.1.9
we point out that it is analogous to [56, Theorem 2].
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Remark 2.1.10. This result is similar to [56, Theorem 2] though more powerful. Varji’s

result states that if there is some o € (0, %) and some r > 0 such that for all s € [Oc3r, a3’ r}
we have

1 —H(u;s|2s),1 —H(v;s)2s) < o

then
1= H(u*v;r2r) < 108 (loga ")’ 2. 2.2)

Here H(u;r|2r) is a quantity which Varju refers to as the entropy of u between the scales
r and 2r. This quantity is always in [0, 1] and is closer to 1 the smoother the measure is
at scale r. Hence 1 — H(u;r|2r) is an analogue of s,(ut). This result is not as powerful as
Lemma 2.1.9 as it contains the factor of (log o )3 and has a significantly larger constant
term. Indeed the constant is 10® instead of a constant less than 2. Lemma 2.1.9 also has
the advantage of having a significantly shorter proof and working in higher dimensions.

However, note that [56, Theorem 2] does not follow logically from Lemma 2.1.9.

We now turn to the proof of Lemma 2.1.9. The most important part of this proof is the

following lemma.

Lemma 2.1.11. Let u; and u, be probability measures and let y > 0. Then
szl <2 [ [l sl e v
3

We deduce Lemma 2.1.9 from Lemma 2.1.11 by simply substituting in the definition of
detail. In order to prove Lemma 2.1.11 we need to be able to commute the y derivatives. In

order to do this we need the following well known result.

Lemma 2.1.12. Let y > 0. Then we have

1 d
AN = —n.
2 =M dy Ty
where /\ denotes the Laplacian
d 82
A=) —.
Z’ Bxiz

Proof. This is just a simple computation. Simply note that

3 Xi
a_xirly =——Ty
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and so

1 & 92 x> d d
15, 20t (-3

In (2.3) as in the rest of the thesis we take | - | to be the Euclidean norm. We can now
prove Lemma 2.1.11. Recall the notation n;, = a%ny.

Proof of Lemma 2.1.11. First note that

wil 9
wrven], < [ Ha—(u*v*n;) dut[|we vy,
y u 1

Taking w — oo and using (2.1) from Lemma 2.1.6 this gives

</oo i >|<v>a<i
. Jy || du H du

We can then use Lemma 2.1.12 and standard properties of the convolution of distributions to

du.

vad
.u ayny

1

move the derivatives around as follows. For all a > 0, we can write

0 0
(xvan,) == (LxveAn,)
u du
0
= (U*V*kNy_qg*x ANg)

)
2<u 55, - a)*(V*Ana)-

>—‘l\)l>—‘l\JI>—‘

Letting a = %u and applying Lemma 2.1.12 again ,this gives
a / / /
> (Wxv=n,) = (u*n%) * (v*n%> .
This yields

[ vmi]l,
/w O (weven)
u “1

et « (vemt )| an
|

du
1

du

IN

!/ !/
s 1“‘/*17%

=2 [ el vemi], av
2
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as required. 0
We can now prove Lemma 2.1.9.
Proof of Lemma 2.1.9. Using the definition of detail, applying Lemma 2.1.11 and using the
definition of detail again we have
s+ ) = r2Q(d) || 2 x|
<2r’Q(d /2 [ [z mi] ] v

2r? 5
= o) Jo ¥ s s s
Using our assumption on detail and the fact that detail is always at most 1, we get
1,-12

22 (Koot
sr(r * p) < @ﬁz v 205105261"
7

+ / v “dy
0(d) Jk2a; a5 'r2
272

< —/mvzalazdv
o(d) /g

2P 2
Q( )/I(2a Yoy 2 dv

2 2\ ! 2 B
“oane(3) *omWa'a'?)!
?) (1-1-2[1{2) o 0. ]

We now apply Lemma 2.1.9 inductively to prove Theorem 1.4.5.

Proof of Theorem 1.4.5. We prove this by induction. The case n = 1 is trivial. Suppose that

n > 1. Without loss of generality we may assume that
O<ouy<op<---<o, <1

and by Lemma 2.1.6 we may assume without loss of generality that o; < C,}ld for i =
1,2,...,n. Letn' = [%] and let m' = %. Define vy, Vs, ...,V and By, B, ..., By as
follows. Fori=1,2, ..., L%J, let

Vi = Woi—1* Hp;
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and
Bi = Ck a0i—10t;

and if n is odd, let v,; = u, and B,; = a,,. Note that
Vs Vyskeeox Vi = [ % Up % -+ % Uy 2.4)

and
Cid'BiBr.. . By =Crjancn... . 2.5)

Since n’ < n we just need to show that n’, (v,)f/: , and (ﬁ,):il satisfy the conditions of
the theorem in order to apply the inductive hypothesis. Note that f; = min{f, B2,...,B.}
We want to use Lemma 2.1.9 to show that s;(v;) < B; for all i = 1,2,...,n" and for all
te [Z_m?/r, K" [31_’"/2"1/ r} . The equations (2.4) and (2.5) mean that this is enough to get the
required bound on s, (1 * Uy * - - - * U, ) by the inductive hypothesis.

To apply Lemma 2.1.9 we need to show that if ¢ € [2_%/1’, Kmlﬁl_ 2" r] and g €

[25t,Ka2_i_%la2_iét} then g € [2*%,1(’”06;’”2’”;’]. Note that if 1 € [2*"17/r,K’"/[31’m/2m/r}
1 1

and g € {2_%t,Ka2i21052i2t} then

m +1

1
q>2"2t>2" 2 r
and
-3 =3 m'+1p—m'2" 1
g<Ka,> 0t <K" B o, r.
This means it is sufficient to show that

41

_m ’ A _m __pm
[2 2 r,Km+1[31 m2 o lr] C [2 K" oy m2 r].

m,-H

Note thatm'+1<mso2~ 2 r> 2~ 7r. Also we have

/ ) m' _ 7m/2ml —
Km+lﬁ m'2 o II’SKm((Xlz) o 11”]
1 1 1
1l +1
— KmOCI 1 m2’" r

_Am
<K"oy m2",.

as required. Hence we are done by induction. [
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Remark 2.1.13. It is worth noting that the only properties of m we have used are that m > 1
when n > 1 and that m > m’ + 1. A consequence of this is that it is possible to choose m such
that m ~ log, n. It turns out that this doesn’t make any difference to the bound in Theorem
1.3.6.

2.1.3 Sufficiency for absolute continuity

The main result of this subsection is to prove Lemma 1.4.4. This lemma shows that if
sy() — O sufficiently quickly as r — 0 then u is absolutely continuous. Lemma 1.4.4
follows easily from the following lemma.

Lemma 2.1.14. Let u be a probability measure on R? and let y > 0. Suppose that

Y /
il du < (2.6)
0+

then U is absolutely continuous.

Remark 2.1.15. We use the notation 0" to emphasise the fact that ||u * 1, ||, may not be
defined at u = 0.

First we deduce Lemma 1.4.4 from this.

Proof of Lemma 1.4.4. Note that the requirement s,(it) < (logr—") "B implies

r0(d) [[wempl, < (logr)=F.

By the conditions of Lemma 1.4.4 this is true for some 8 > 1 for all sufficiently small » > 0.
Hence there is some y € (0, 1) such that we have

y | o
/()+HH*771:H1d”§C’1/()+;(IOgM 1) ﬁdu

= / w B dw
logy~!

< oo,

Thus p is absolutely continuous by Lemma 2.1.14. [

We now prove Lemma 2.1.14.
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Proof of Lemma 2.1.14. The condition (2.6) implies that the sequence u * 1, is Cauchy as

u — 0in L!. This is because given some u > v > 0, we have that

=l < [ flwsnl ], aw

“ !/
< [ sl aw

— 0.

Since the space L! is complete, there is some absolutely continuous measure fi such that
W1, — fi with respect to L' as u — 0. We now just need to check that p = fi.

Suppose for contradiction that fi # u. The set of open subsets of R? is a m-system
generating % (R?). Therefore there is some open set U C R? such that

w(U) # ().
We assume for simplicity that
u(U) > a(U).

The opposite case is almost identical and we leave it to the reader. By regularity, there exists
some compact set K C U such that

u(K) > ().

Let &€ = min{dist(K,U°), u(K) — i(U)}. We now consider p * (1,|p,) where B is the ball
of radius € centred at 0. We have

(1) (U) = (1* (Muls,)) (U)
> {[Mul B [ 1(K)
> {1l [l (R(U) +€)
—aU)+e

as u — 0. This contradicts the requirement
(wxnu) (U) = f(U)

as u — 0. This shows that ¢ = fi and so, in particular, i is absolutely continuous. [
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2.1.4 Order £ detail

We can now define the order k detail around a scale.

Definition 2.1.16 (Order k detail around a scale). Given a probability measure A on R/nZ
and some k € Z~ we define the order k detail of A around scale r, which we will denote by
si(). by

ok _
* a_yk”y

y=kr?

1

We also define the order k detail of a measure on P! (R) to be the order k detail of the

pushforward measure under ¢ and define the order k detail of a random variable to be the

(1)

order k detail of its law. It is worth noting that s, () = s,(-). We will now prove some basic
properties of order k detail.

Lemma 2.1.17. Let A1, A, ..., A be probability measures on R /ntZ. Then we have
SO % Ao x5 ) < s5r(A)se(A2) - 5r(A).-

This is (1.6) from Section 1.4.2.

Proof. Note that by Lemma 2.1.12 and standard properties of convolution we have

ok 0%
a_ykny y=kr? B mnkrz
1 9% _ 1 9% _ 1 9% _
—\292M ) (292 ) **\ 292

[ J/
-~

k times

YY) =/
=MNakMNake- %1,
NS ~~ 7

k times

and therefore

ak

)Ll*)Lz**lk*a_ykﬁy :Al*ﬁ:'z*lz*ﬁ;z**lk*ﬁr{z

y=kr?

This means

< Avemlly - lA2mafly - A i) -

ok
Al*kz*---*lk* a—ykﬁy

— 2
y=kr=||4

The result follows. L]
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We also need the following corollary.

Corollary 2.1.18. Suppose that A is a probability measure on R /ntZ. Then

Proof. This is immediate by letting all but one of the measures in Lemma 2.1.17 be a delta

function. L]

There is no reason to assume that the bound in Corollary 2.1.18 is optimal for any k > 2.
Indeed it is fairly simple to show that it is not. However the trivial upper bound of 1 will still

prove useful.

2.1.5 Bounding detail using order k detail

The purpose of this subsection is to prove Lemma 1.4.11. For this we first need the following

result.

Lemma 2.1.19. Let k be an integer greater than 1 and suppose that A is a probability
measure on R/wZ. Suppose that a,b,c > 0 and a € (0,1). Suppose that a < b and that for

all r € a,b] we have
sth) (A) < o+ cr?k. (2.7)

Then for all r € [a, / k%],b\ / k%l] we have

(k—1) < L % —2k+2 2\ .2(k=1)
Sy (/l)_k—lwnth(b + kb c)r .

Proof. Recall that
ak
Ax =—T

Sgk)(l) = <E>§ Iyk

2

y=kr?

1

This means by (2.7) that when y = k7> we have

k k
e\ 2 e\ 2
< ar 5 +c >

k k
weN 2 weN 2
—ay W (F) THe(F)

ok
H’L*a—yk"y

1
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for all y € [ka?,kb?]. This means that for y € [ka?,kb?] we have

ok—1 ~
5,
2ol o2
akluukb21 y duk |
kb me\ 5 me\ 5
+/ oKk (—) +c<—> du
Haklnuukb21 y 2 2
kb2 \ e —(k-1)2 y kL meN—5 me\ 5
< (2 e K (T) k() 2.8
_(k—l) (2) T ) Teln (28)
where in (2.8) we bound a = 177u sz using the fact that order k — 1 detail is at most one,
u=kb2 111

k
we bound [ o kik (%)~ ® du by J57 ok (Ze) ? du and bound S ¢ (%) 72 du by

b? (me\—5 -
0 C(T) du. Noting that
o\ Kt
() <
and

we get

»

&k—l k+1 k—1

léa%k" (%) 2 <b 242 4 12 ) (752€> T

Substituting in the definition of order k detail gives

o

o™

k=1 k—1
(k=1) 7y _ 2(k—1) (7€) 2 "
)=y <2) )L*ayk_lny y=(k-1) |,
_1 2\ —k+1 _1
< 20k=1) (%) 2a((k—kl)_rl) i Kk g 2= <%> 2 <b_2k+2+kb2c>

and so we have

k
(k—1) < 2 1 —k+1 2(k—1)
sy (}L)_a“n’e (1+k—1 + (b +keb)r

forall r € [a\ / 17b\ / ] Noting that 1 + = 1) < z—ge gives the required result. [

We apply this inductively to prove Lemma 1.4.11.
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Proof of Lemma 1.4.11. Using Lemma 2.1.19 we will prove by induction for j = k,k —

1,...,1 thatforall r € [a\/g,b\/ﬂ we have

sV (1)

k—j
2 | oA
<ok (X)) M
J\7 J!

The case j = k follows by the conditions of the lemma. Suppose that for all r €

| _k_ _k_
[a j+],b T we have

—J
D gy < oK (2¢) 7 kU 2j2 2(4)
s ()L)_a—j+1(n> ey

Then by Lemma 2.1.19 for all » > 0 such that r € [a\/?,b\/ﬂ we have

k—j

(/) k 26)2 (—2' -2( k! —2'—2)) 2j
s7(A) <a-|— +(b Y+ b —=b ro/
)< J(ﬂ G
k=i
= ! . ! . .
b (2) (e ()
j\=m (+1)! (+1)!
k—j
k (2e\ 2 . k! LY
=o0-|— 1 b=r
J(n) AR TES T
k=i
k (2)\ ? k! Yy
=0~ (_e) +—b 2
J\m J!
as required. Lemma 1.4.11 follows easily from the j =1 case. [

2.1.6 Wasserstein distance bound

In this subsection we will bound the difference in order k detail between two measures in
terms of the Wasserstein distance between those two measures. Specifically we will prove

Lemma 1.4.14. First we need to define Wasserstein distance.

Definition 2.1.20 (Coupling). Given two measures probability measures A; and A, on a set X
we say that a coupling between A and A, is a measure y on X x X such that y(- x X) = A4, (+)
and (X x-) = A2(").

Definition 2.1.21 (Wasserstein distance). Given two probability measures A; and A, on
R /7tZ the Wasserstein distance between A; and A, which we will denote by #(41,4,), is
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given by

Wikt =inf [ bl y(dvdy)

where T is the set of couplings between A; and ;.

We can now prove Lemma 1.4.14.

Proof of Lemma 1.4.14. Let X and Y be random variables with laws A; and A, respectively.
Then we have

k _ 8k . ak .
()Ll_}tz)*8_ykny kz(V):E Fral kz(V_X) a_yk”y kz(V_Y) :
y=kr y=kr y=kr
In particular
ok _ ok _ ok _
(11—/12)*8—));{% kZ(V) <E aykny k2( X) a—ykny kZ(V—Y)
y=kr y=kr y=kr
We note that
ok 0 Y| gk+l
—1 X)— =T -Y)| < ——1] — d
G| O0-gn]  venls [CFaen) )

where

Y
[ laud
X

is understood to be the integral along the shortest path between x and y. This means that

Y Y ak . Y ak+1 p p
_ 7 < IR - _
( : 2) i aykny y=kr?||; B /R/”Z /X axgyk ny y=kr? (v u) ‘ ul !
Y ak+1
—FE i -
/X /R/R'Z axayk rly S (V M) dv \du]
8k+1
= || =—=—1 E|X —-Y]|.
H dxdyk M ykr? | |
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ak+1 ~ .
We now bound Tk ny‘ykr - To do this note that
okt ok+1
S < | 53"
dxadyk yy:kr2 . dxdyk yy:krz |

By using Lemma 2.1.12 in the same way as in the proof of Lemma 2.1.17 we get

ak+1 0
= = — * — * — Kook —
8x8ykny y—kr? ox y=r2 ayny y=r2 ayny y=r2 8yny y=r2
kt?rrnes
and so
K <[ L] -
ax&yk le k2 l =l ox N, | r’rZ I

Note that trivially there is some constant C > 0 such that

0
— =crl.
H axnﬂ 1 ’
From Lemma 2.1.6 we have
0 5 /2
_n — I
' 8y Y y=r2 ! Tte
meaning
ok+1 21 (ﬂe)'ﬁ
dxadyk by y=k ||, 2
Therefore
k k+1
2k 7r€>2 8 —1
r —= == <Cr
( 2 dxdyk Ty y=k? |||

Choosing a coupling for X and Y which minimizes E|X — Y| gives the required result. [

2.1.7 Small random variables bound

In this subsection we prove Lemma 1.4.13. Recall that this gives a bound for the detail of the
sum of many independent random variables each of which are contained in a small interval
containing 0 and have at least some variance. To prove this we will need the following

quantitative version of the central limit theorem.
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Theorem 2.1.22. Let X1,X>,...,X, be independent random variables taking values in R with
mean 0 and for each i € [1,n] let EX?] = 0? and E[|X;|*] = 1 < . Let ®* =Y, &7 and
let S=X1+---+X,. Then

"
1S, Ne2) S ,ll:—llz
i=1 @
Proof. A proof of this result may be found in [17]. 0
We are now ready to prove Lemma 1.4.13.

Proof of Lemma 1.4.13. We will prove this in the case where the X; take values in R. The
case where they take values R/nZ follows trivially from this case.

Fori=1,...,nlet X =X;—E[X;] and let S’ = }'!' , X/. Note that s,(S) = s.(S’). Let
E[|X!|*] = ®? and E[|X]|’] = ¥?. Note that VarX; = @? and so #* = Y"_; w?. Note that
almost surely |X/| < 27. This means that y;’ < waiz. Therefore by Theorem 2.1.22 we have

21 (S, n) < O(F).

We also compute

sr(Mp) = . 1

/
nr2+f2
n.-

2

,
o242

1

and so noting that 5,(-) = stV (+) we have by Lemma 1.4.14 that
sr(S) = 5+(S")
= 2
F r
<0\ - -
- <r> * r2 42

This gives the required result. 0

2.2 Entropy

In this subsection we will describe some of the properties of entropy used in this thesis.

We will describe entropy for both absolutely continuous and discrete measures on R¢ and
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PSL,(R). Recall that we define the entropy of a discrete random variable taking values with
probabilities p1, ps,... to be

—Y pilogp

and that we define the entropy of an absolutely continuous random variable taking values in

R¢ with density function f to be
/ —flogf.
R4

We now define entropy for continuous measures on PSL;(R).

Definition 2.2.1 (KL-divergence). Let A; be a probability measure on a measurable space
(E, &) and let A, be a measure on (E, ). Then we define the KL-divergence of Ay given A,
by
L (M, D) = / log ™ 42,
E _dl

It is worth noting that in all of the cases we have discussed so far the entropy of a
probability measure A can be expressed as — % .Z (A, a) where a is some measure such
that A << «. In the case of a discrete probability measure we have « is just the counting
measure and if A is an absolutely continuous random variable taking values in R? then we
take o to be the Lesbegue measure. This will be the case for all measurable spaces on which
we define some concept of entropy.

We now wish to define entropy for a continuous random variable taking values in PSL; (R).

To do this we need the Haar measure.

Definition 2.2.2 (Haar measure). Given a Lie group G with Borel o- algebra Z(G) we say
that a measure A on (G, #(G)) is a left invariant measure if for all g € G and all § € A(G)

we have

A(gS) = A(S).

Similarly we call it a right invariant measure if for all g € G and all S € #(G) we have
A(Sg) =A(S).

If A is Radon and left invariant then it is called a left Haar measure. Similarly if A is
Radon and right invariant then it is called a right Haar measure. If A is both a left Haar

measure and a right Haar measure then we call it a Haar measure.

It is well known that every Lie group has a non-zero left and right Haar measure and
that these are unique up to multiplication by a positive constant. In the special case of
G = PSL,(R) these coincide which makes our proof easier. To describe the Haar measure of

PSL,(R) we will use the Iwasawa decomposition.
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Definition 2.2.3 (Iwasawa decomposition). Each element of PSL,(IR) can be written uniquely

1 x y% 0 cos® —sin6
01 0 y_% sin@ cosH

withx € R,y € Rog and 0 € R/nZ. This is called the Iwasawa decomposition.

in the form

Lemma 2.2.4. There is a Haar measure for PSLy(R) which is given in the Iwasawa decom-
position by
1
— dxdyd®8.
y
Proof. This is proven in for example [40, Chapter III]. [
Definition 2.2.5. Let /2 denote the Haar measure on PSL,(R) normalized such that

dm
dmolog

(1d) =1

where m denotes the Lebesgue measure on psl, (R) under our identification of psl, (R) with
R3.
Definition 2.2.6. Let A be an absolutely continuous measure on PSL,(R). We then define

the entropy of A by
H(A):=—-XZL(A,m).

Similarly if g is a random variable taking values in PSL,(R) then we let H(g) denote the
entropy of its law.

We also define entropy for non-probability measures.

Definition 2.2.7. Suppose that A is a finite measure defined on a space for which we have
some concept of entropy and which is either absolutely continuous or discrete. Then we
define

H(A) = [[All HA/NIALL)-

We say that a finite discrete measure with masses pp, p2, ... has finite entropy if

Y pillog pi| < ee.

i=1
Similarly we say that a finite absolutely continuous measure on R¢ or PSL,(R) with density
function f with respect to the Lesbegue measure or our normalised version of the Haar

measure has finite entropy if
[ fliogfl <<
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Let h:[0,0) — R, x — —xlogx. Note that & is concave and sub-additive. From these

properties we can deduce the following two lemmas.

Lemma 2.2.8 (Entropy is concave). Let Aj,A;,... be finite measures with finite entropy
either all on R? or all on PSL,(R) which are either all absolutely continuous or all discrete.
Suppose that ¥° | ||Aill; < oo and both H (Y72 Ai) and Y.;2 yH (A;) tend to 0 as N — oo.
Then

H(i A) > iH()L,-).

i=1 i=1

Proof. First we wish to show that if A; and A, are finite measures with finite entropy then

H(M +A42) > H(A) +H(A). (2.9)

Let A; and A, have density functions f and g respectively. Note that we have

H()L] + 12)

f+g
= (Al + |12 /h(—)
(Al + 12200 [ A0+ 12211,

1Al ( ) ) 12, ( ¢(x) )
> (1A + A / h + h d
= Wb+ 1220 o v nan ) T i e i, ) &

=H(M)+H(A)

as required. Applying (2.9) inductively gives

N N
H (Z iti) > Y H(). (2.10)
i=1 i=1

Putting };2 5 A; in the role of Ay and noting that H (}.;- y A;) and Y7 y H (A;) tend to 0
as N — oo gives (2.10) as required. [

Lemma 2.2.9 (Entropy is almost convex). Let Ai,As,... be probability measures either all
on R? or all on PSL,(R) which are either all absolutely continuous or all discrete. Suppose
that all of the probability measures have finite entropy. Let p = (p1, p2, ... ) be a probability

vector. Then

o)

H(Y. pia) < Y. piH(3) + H(p).
i=1 i=1
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In particular if p; = 0 for all i > k for some k € Z~ then

k k
H (Z ui) <Y H(u;)+logk. (2.11)
i=1 j

i=1

Proof. First we prove (??). To begin with we deal with the case that the measures are all
absolutely continuous measures on R?. Let the density function of A; be f;. Using the fact

that ' | p;A; is a probability measure and the sub-additivity of 4 we get

H( L) = [ o\ Lo (2.12)
(Ere) = for(E )
=L L if) (2.13)
=2 /Rd(—piﬁ(x) log(fi(x)) — pifi(x)log p;) dx (2.14)
i=1
:;/IdeiH(ﬁ(x))dx+h(pi) (2.15)

pil (%) +H(p).

™

N
I
—_

The other cases follow by taking the density function to be with respect to appropriate
measures.

For (2.11) we simply apply (2.2.9) with p; = 0 for i > k. We note that this gives
H(p) < logk. ]

Lemma 2.2.10. Let u and v be probability measures on R. Suppose that | is a discrete
measure supported on finitely many points with separation at least 2R and that v is an
absolutely continuous measure with finite entropy whose support is contained in a ball of
radius R. Then

H(uxv)=H(u)+H(v).

Proof. Letn € Z~o, p1,P2,---,Pn € (0,1) and x1,x2,...,x, € RR? be chosen such that

u= Zpi5xi'
i=1

Let f be the density function of v. Note that the density function of u x v, which we

denote by g, can be expressed as
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pif(x—x;i) |xi —x| <R for some i,

0 otherwise.

We then compute

H(usv) = / x)log g(x) dx
1/ Br(x

L /BR
% o

i/ _pz lOg(pl)d
H(u)+H(v) O

if (x)log (pif(x)) dx

I
TN T
I

S

—pif
—pif (x)log (f(x)) dx

Lemma 2.2.11. Let d be the distance function of a left invariant metric and let r > 0.
Suppose that g is a discrete random variable taking values in PSLy(R) and that there are
X1,X2, .-, xn € PSLy(R) and a probability vector p = (p1, p2, ..., Pn) such that

Plg =x] = pi.

Suppose further that for every i # j we have d(x;,xj) > 2r. Let h be an absolutely continuous
random variable taking values in PSLy(R). Suppose that d(1d,h) < r almost surely. Suppose
further that h has finite entropy. Then

H(gh) = H(g)+H(h)

Proof. This follows by the same argument as Lemma 2.2.10. [






Chapter 3
Self-similar measures

This chapter will cover the proof of our sufficient condition for self-similar measures to be
absolutely continuous - Theorem 1.3.6. We have already introduced detail and entropy which

are the most important tools we will use. We now need to bound detail using entropy.

3.1 Bounding detail using entropy

The purpose of this section is to prove Proposition 1.4.9, which estimates the detail of a
convolution of measures in terms of the quantity %H (1 xmy) for both convolution factors in
the role of u.

The most important ingredient in proving Proposition 1.4.9 is the following proposition.

Proposition 3.1.1. Let u be a probability measure on R? with finite variance and let y > 0.

Then we have 1 5
3 [Vam 7 < 5o HGeny).

This proposition is the reason for the estimate in Proposition 1.4.9 to be an estimate on the
detail of a convolution of two measures rather than an estimate on the detail of one measure.
This is because we use Lemma 2.1.12 to estimate || v x ny||, in terms of ||V +n,[|; and
Ivvemll;.

To prove this proposition we use Fisher information.

I

Definition 3.1.2 (Fisher information). Let tt be an absolutely continuous probability measure
on R?. Let f be the density function of p. Suppose that f is smooth. Then we define the
Fisher information of | by

_ [ VP
J(1) == /Rd S
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Theorem 3.1.3 (de Bruijn’s identity). Let u be a probability measure on R with finite

variance and let y > 0. Then we have

d 1
a—yH(N *Ty) = 5 (1 *1y).
In particular, the derivative on the left exists for all y > O.

Proof. This is proven in for example [32, Theorem C.1]. [

Proof of Proposition 3.1.1. Let f be the density function of u * 7,. Note that we define

IVl = [, V)] dx
R4
where | - | denotes the Euclidean norm. Note that we have

ol = [ relar= [ FF i ax

and so by Jensen’s inequality

it = (LY ) < [ (WD) e sy,

The result now follows by Theorem 3.1.3. [l

We are now ready to prove Proposition 1.4.9.

Proof of Proposition 1.4.9. Lety = r? and let u,v > 0 be such that u +v = 7. First note that
by Lemma 2.1.12, we have

e vin)(x) =
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and so

1
s vaemg[, < SIVRs - IV Vsl

By Proposition 3.1.1, we then have

d d
| veny|], < \/EH(N*W)EH(V*W)

and so by the definition of detail

se(u*v) < r*Q(d \/ HxT) 5 H(V 1),

as required. [

3.2 Entropy of pieces

The purpose of this Section is to prove Lemma 1.4.8 which provides an estimate for the

(A5.1]

difference of the entropy of smoothed at two appropriate scales in terms of the Garsia
entropy of the iterated function system F'. We now recall the definition of ,LLII; from Definition
1.4.6. Let F = ((S,-)f':1 ) (p,-)Z:1> be an iterated function system such that there is some

orthogonal U and some A € (0,1) and ay,as,...,a, € RY such that
S;:x+—= AUx+a;.
Let I C (0,0). Then we define uZ to be the law of the random variable

Y AUX;

neZ:Anel

where the X; are i.i.d. random variables with P[X; = a;] = p;. The purpose of this subsection

is to prove the following.

Lemma 3.2.1. Let n € Z~, 1,R € Rwq. Let x1,...,x, € R? be such that |x; —xj| > 2R for
i # j. Let p= (p1,p2,---.,Pn) be a probability vector and let

n
sz X -
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Then
H(pn,2) > dlogr+ H(p) —c

for some constant ¢ depending only on d and the ratio R/r.

Here and throughout the thesis H(p) means — Y. ; p;log p; and in the case where p has
infinitely many components we take H(p) to be —Y7° | p;log p;. This lemma is unsurprising.
This is because if we had some other measure v supported on a ball of radius R centred at 0
then H(u+v) = H(v)-+H(p). The overlaps of some parts of the normal distributions means
that H(u xn,2) is slightly less than H(n,2) + H(p). We show that this difference is only
some constant. This is sufficient as H(1,2) = dlogr + c¢. We will leave the proof of Lemma

3.2.1 until later in the section.

Lemma 3.2.2. Let k € Zo. Then H(ul* ") > khp.

Proof of Lemma 3.2.2. Note that H (i "')) = hg.,, with h,, as in Definition 1.1.8 and i :=

liminfy.,.. LA and that hyy := H (zjf;(} QLiUiX,->. Note that we have hp.a1p < hra + hp.
This is because Z?;Lé’_l AU'X; is a function of Zf’;ol AU'X; and Z?;Lé’_l AU'X; and

at+b—-1 b—-1
H( ) )L’U’X,-) :H<Z 7L’U’X,->.

i=a i=0

Suppose for contradiction there is some k such that i < khp. Then we have ﬁhmk <
%hﬁk < hr for all a € Z~. This contradicts the definition of Af. [

Lemma 3.2.3. Suppose that X and Y are random variables with finite entropy either both

discrete or both absolutely continuous. Then
HX+Y)>H(X)

Proof. This is well known. See for example [32, Lemma 1.15]. L]

Corollary 3.2.4. Suppose that I} C I. Then

H(ul) < H(uk)

Proof. This follows immediately from Lemma 3.2.3 and the definition of ‘LLII;. [
This is sufficient to prove Lemma 1.4.8 as shown below.

Proof of Lemma 1.4.8. Note that provided n is sufficiently large we have Ap, > M™". In

other words ,upn’]] is supported on a number of points each of which are separated by a
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distance of at least M~". By Lemma 3.2.2 we also have that H (ugn’l]) > nhr. Hence by
Lemma 3.2.1, we have

H('ulgn’l} * Myg-21) > nhp —dnlogM —c.

We also have by Corollary 3.2.4 that H(,LLI(,M’I] x1M1) < H(up *1M1) < oo. This gives the
required result. O
To prove Lemma 3.2.1, we need to introduce the following.
Definition 3.2.5. Given a finite measure U it is convenient to define
u
G0 =l ().
Il

We are now ready to prove Lemma 3.2.1.

Proof of Lemma 3.2.1. Given k € Z>, define

Mk :=1Ny2[a (k-2R (k—1)R
Vi i

where A, :={x € R : [x| € [a,b)}.
We now wish to write u as the sum of k¢ measures each of which are supported on points

separated by at least Z(k\;;})R. Given m € Z¢, define

Bm = {xERd:x€m+[0,l)d},
and given j € (Z/kZ)" we define

éj = U Bm.

mcZ:m=j

Now given k € Z>; and j € (Z/kZ)* we define

Vik:i= Y, piby.
i:xiez—\/%l?j

Note that given any k € Z>, we have
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Note that if x; and x; are distinct points in the support of u then there cannot be any
m € Z4 such that Xj,Xj € %Bm as this would contradict the requirement |x; — x j| >2R. Ifin

addition, x; and x; are in the support of Vj; for some j € 7% and k € 7>, then the distance
2(k—1)R
RV

between x; and x; must be at least

By Lemma 2.2.9 we have

Y H(vi) > H(u)—dlogk
je(z/kz)?

= H(p) —dlogk.

Also by Lemma 2.2.10

- . Vi % 1
H(vix* i) = || vl [Tl H <M—H¥IJ\1>
K1

) un
— v. H + v n
vill, 173l <|| Hl) 1Vielly 172el 2 (anul>

= |7kl H(Vig) + || Vikll , H (k)

Therefore

H(uxmy)=H Y Vi
je(z/kz)?
> Y H(Vigxik) 3.1)
je(z/kz)?

> |7l H(p) + H (i) — d ||| logk,

where in (3.1) we apply Lemma 2.2.8.

We wish to apply Lemma 2.2.8 again to sum over k. To do this we simply need to show
that Y7 v H(u * i) and H (Y U * flx) both tend to zero as N — oo. In what follows,
c1,¢2,... are positive constants, which depend only on d and R/r. Note that we have

- _ 2
17klly < ere™e*
. . ~ . . 12 12
and that the density function of ) is either O or between %e"“k and 6756"6" . Also note
that

H(f) < H (W) < |7l H (1) + H (77%)
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and so
N ek
|H (u*7)| < cre” 5 (|logr| + H()).

This means Y7 H(u * i) — 0. By our estimates on the density functions of j; we also

have

< coe 1V (|log r| + 1)

and so H(Y7_y M * k) — 0.
We then apply Lemma 2.2.8 to get

H(p*n,z) = <Zu*m>

>ZH *nk

>H(p)+ Y H(i) —d Y |7l logk.
k=2

k=2

Recall that we have

- _ 2
173kl < cre™e2*

and so
H (([1Mell)r—s) < en

and

d Z |17kl logk < c12.
)

Applying Lemma 2.2.9 and (3.3), we have

dlogr+ciz=H(n,2) = (Z le)

< Y H (7)) +H (17l z (i) +c14.
k=2

o)

Substituting this estimate for }';° , H (fj) into (3.2) gives the required result.

(3.2)

(3.3)
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3.2.1 Proof of Lemma 1.3.4

In order for Lemma 1.4.8 to be useful it is necessary to show that if 11,1, ..., 1, are disjoint

intervals contained in (0, 1] then there exists some v such that yup = v ,ufpl * ,ufpz *. .. /,LIIV”. To

do this it suffices to prove Lemma 1.3.4. Indeed we can then take v = u}o’”\(ll Vi),

Proof of Lemma 1.3.4. For k in Z~ let Y; be defined by
k=1
Yo=Y AU'X
i=0

and let t be the law of Y. It is clear that y, satisfies
C 1
M1 =Y pitgoS; . (3.4)
i=1

Let u be the law of Y. Clearly we have that Y; — Y almost surely and so p; tends to
weakly. Taking the weak limit of both sides of (3.4) gives

n
=Y piuos;".
i=1
Therefore by the uniqueness of tr we get that 4 = ur as required. 0

3.3 Proof of the main theorem

We follow the strategy outlined in Section 1.4.1. To implement this we make the following
definition.

Definition 3.3.1. Given some r € (0, ;) and iterated function system F on R¢ we say that

an interval I C (0,00) is a-admissible at scale r if for all r with

te [exp (— (loglog r_l) 10) r,exXp ((loglog r_l) 10) r] ,

we have

<at 2.

y=t?

0
&_yH(H{V *1y)

Recall that /,L{p is as defined in Definition 1.4.6. This definition is designed in such a way

that if /; and I; is a pair of disjoint admissible intervals, then we can apply Theorem 1.4.9

UL _

for the measure ull; “1[:1 * ull;z to obtain estimates for s ( [,LII;1 Uh2) at a range of scales 7 in a
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suitable range around r. Moreover, these estimates are suitable so that we can apply Theorem
1.4.5 for ,ufpl Y% in the role of one of the measures. If we have many admissible intervals we
get an improved estimate for s,((r) via Theorem 1.4.5.

We formalize the result of these ideas in the following statement. The detail of its proof

is given in Section 3.3.1.

~1
Proposition 3.3.2. Let o, K > 0 and let d € Z~o. Suppose that o < . (1 + #) . Then
there exists some constant ¢ > 0 such that the following is true.
Let F be an iterated function system on R? with uniform contraction ratio and uniform

rotation. Suppose that r € (0,¢) and n € Z~ is even with

n <10 loglogr 11 (3.5)
log (% <1+2—}(2> Oc_l)
and that I}, 1, . . ., I, are disjoint a-admissible intervals at scale r contained in (0,1). Then
we have .
1 1 2
s(1r) < 7 0(d) (8 <1 + m) 0‘) : (3.6)

Our next goal is to find suitably many disjoint admissible intervals at a given scale r. This

is done using Lemma 1.4.8 in Section 3.3.2 where we prove the following statement.

Lemma 3.3.3. Suppose that F is an iterated function system with uniform rotation and
uniform contraction ratio A. Let M > MF, o € (0, %) and suppose that P > 1 and satisfies

dlogM — hr < 20A*(logM — PlogA™!). (3.7)
Then there exists some ¢ > 0 such that for every r > 0 sufficiently small there are at least

loglog - clogloglog ro!

logM
log (P—1)logA~!

disjoint a-admissible intervals at scale r all of which are contained in (0,1] .

It is worth pointing out that we always have hr < dlogMF and hr can be arbitrarily close
to this upper limit. This means that (3.7) can be satisfied for any given value of o and P
provided AF is sufficiently close to dlog MF and M is sufficiently close to MF.

In order to apply Lemma 1.4.4, we wish to show that s,(ur) < (log r‘l)fﬁ for some
B > 1 for all sufficiently small r. Since we may take K arbitrarily large in Proposition 3.3.2,

it suffices to show that there is some 3 > 1 such that for all sufficiently small » > 0, we can
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find at least ﬁ% disjoint admissible intervals. In Section 3.3.3 we use Lemma 3.3.3
and a careful choice of & and P to do this.
The condition (3.5) is unimportant because if we have more than this many admissible

intervals, then it turns out that taking n to be the greatest even number less than

loglogr!
1 1\ !
log (g (14—@) al)

gives a sufficiently strong bound on detail to prove absolute continuity.

10

3.3.1 Detail of the convolution of many admissible pieces
In this subsection, we prove Proposition 3.3.2.

Proof of Proposition 3.3.2. Throughout this proof, let ¢y, c3, ... denote constants depending
only on ¢, K and d. The idea is to use Theorem 1.4.5 and Proposition 1.4.9.
First note that by applying Proposition 1.4.9 withu =v = % we know that for all

te [\/Eexp <— (loglog r_l) 10) 7, \/Eexp <(log10g r_l) 10) r]

and fori=1,2,...,5 we have

| | ) |
st(Up ™" ) < rZQ(d)\/ p (u?‘” *ny)
<20(d)a.

We now wish to apply Theorem 1.4.5 for the measures [J?“Ulz" for i = 1,2,...5 with
=0 == 0,,=20(d)a. To do this we simply need to check that

[2_%}’, K’"(Xl_mzmr} C [\/iexp (— (loglog r_l) 10) r, \/iexp ((loglog r_l) lO) r]

where m = %. We note that

1
< ———logloglogr ™!
m_log(3/2) ogloglogr " + ¢
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and so for all sufficiently small r, we have
277r > 2exp (— (loglogr™) 10) r.

For the other side, note that

m log?2
Kmal—mz <exp (c2 (logloglogr—l) (loglog r—l) Tog(3/2) +C3) ‘

Noting that % < 10, for all sufficiently small » we have

Kmocfmzmr <exp ((loglog r’l) 10) r.
Therefore, the conditions of Theorem 1.4.5 are satisfied and so

5r (Mgt M 5= % )
<(2Q(d)a)’5( 4 (1+ ! >)gl
= 0(d) 2K?
1

o (3(1+5)a)

We conclude the proof by noting that by Proposition 2.1.5

sr(UF) < sp(uf s pf s ). O

3.3.2 Finding admissible intervals

In this subsection, we prove Lemma 3.3.3. The main ingredient in the proof of Lemma 3.3.3
is the following lemma.

Lemma 3.3.4. Let F be an iterated function system with uniform rotation and uniform
contraction ratio A. Let at,r > 0, n € Z>q and k € Z. Suppose that

d (1] 1.,
—H i < -A‘x
Jy (.uF ny) =5

for some y € (A2 A2K]. Then the interval

I — (rlnflff’b(}’) , rl 7]{717(}’) (38)
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is a-admissible at scale r. Here b = b(r) is an error term defined by

b:= Toga T (loglogr_l)10 +10.

We first prove Lemma 3.3.4 and then proceed with the proof of Lemma 3.3.3. To prove
this, we need a few more facts about entropy. It is well known that for any absolutely
continuous random variable X taking values in R? and any bijective linear map A : R — R?
we have

H(AX) =H(X)+log|detA|.

It follows that

H(u}’lk”w *12) = H(u}”kfi’” * My -2,2) +dllog A
and also 3 5
(%41 2 (AR 1]
P * =4 5o H * . (3.9)
ay (uuF ny) y:lz 8)1 (:uF ny) y:/l_%tz

We also have the following.

Proposition 3.3.5. Let X1, X, and X3 be independent absolutely continuous random variables
with finite entropy. Then,

HX +Xo+X3)+H(X)) <HX;+Xo)+H(X| +X3).
Proof. This is proven in [39, Theorem 3.1]. O
Corollary 3.3.6. Let i and v be measures on R¢ with finite variance and let y > 0. Then
iH(‘I,L>x<V>x<ny)§iH(u*ny). (3.10)
dy dy

Proof. Let € > 0. Then using Proposition 3.3.5 with X;,X; and X3 having laws u x 1y, e
and v respectively we get

H(p*venyxne) —H(uxvny) <H(Ux1y*0e) — H(Wx1ny).
The result follows by taking the limit € — 0. [

An immediate consequence of Corollary 3.3.6 is that the function y — %H (u=my) is

non-increasing and if I} C I, then

d d
a—yH(u,’; ¥ny) < a—yH(u{; £1y). (3.11)
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In particular this means that if /1 is oc-admissible at scale r for some o and r then so is /5.
This is important both for proving Lemma 3.3.4 and for showing that Lemma 3.3.3 follows

from Lemma 3.3.4. We are now ready to prove Lemma 3.3.4.

Proof of Lemma 3.3.4. To prove this, suppose that
te [exp (— (loglog r_l) 10) r,exXp ((loglog r_l) 10) r} .

, < ar~2, where I is defined in (3.8). Choose

We wish to show that (%H(u{p * ny)’

7 € (A¥1 A% such that

0 n -
ZHWY N en)|  <ar? (3.12)
dy y=>2
and choose k € Z such that
A F < p < AKF

We then have

a (/ln+12+1./112+1] ) a ( (An+lz+1 AIE+1} )
—H ’ < —H ’ 3.13
dy ('uF * Ty y=12 — dy Hr * Ty y=A2k+272 ( )
2k O A1
— A2 T (! 3.14
oy (" em)| (3.14)
<A %2 2072 (3.15)
<ot 2.

Where (3.13) follows from Corollary 3.3.6, (3.14) follows from (3.9) and (3.15) follows from
(3.12).
Note that (),”Jrk“ , lk“} C I hence by (3.11) we have

d

as required. [

We can use Lemma 3.3.4 and Lemma 1.4.8 to show that some specific intervals are

a-admissible at scale r. We prove the following.

Lemma 3.3.7. Suppose that F is an iterated function system with uniform contraction ratio
A and uniform rotation and that M > Mp. Let o € (0,1). Suppose further that there is some
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constant P > 1 such that
dlogM — hp < 20A*(logM — PlogA™!). (3.16)
Then for all sufficiently large n € Z~q and all r € (0, %) the interval

1= <rlk1,rlk2]
is o-admissible at scale r.
Here b = b(r) be defined by

b:= (loglogr’l)lo—HO,

1
logA—1
k1 is defined by

kiy:=—(P—1)n+b(r)
and kj is defined by
logM

ko = _nlogl_l —b(r).

Proof. Suppose for contradiction that this is not true. Recall that if I} C I and I} is o-
admissible at scale r then I; is oi-admissible at scale r. Therefore by Lemma 3.3.4 we have
that there cannot exist k € Z>o and y € (A%**2 1%] such that

SH@ ) < Tia
and
ki = —(P—1)n+b(r) > +n—k+b(r) (3.17)
and logM
2= poeg o) = —k—b(r) (3.18)
Note that (3.17) is equivalent to k > Pn — c and (3.18) is equivalent to k < l(l)zgffl n. In

. . 2 toeM :
particular, noting that A " log2™! " = M~ this means that we have

J (1] 1,,
—H ik >-Ao

for all y such that
ye (M—Zn’l2Pn} )
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In particular, provided n is sufficiently large, by integrating we get

H (uf"Vany) = H (" emy )
zH(u},""’” *mm> —H(u}”’” *nM_z,,) (3.19)
- M)Lz:: %H (Hzgln’l] *m) dy
> //IZP” 106/12dy
~ oy

=2naA’? (logM—Plogl_])

with (3.19) following from Lemma 3.2.3. This contradicts Lemma 1.4.8. U
We are now ready to prove Lemma 3.3.3.

Proof of Lemma 3.3.3. Throughout this proof E1,E>, ... denote error terms which may be
bounded by 0 < E; < ¢; (log log r‘l)ci for some positive constants cy,cp,... which depend
only on &, F, P and M. Let ¢’ take the role of ¢ in Lemma 3.3.7 and choose N large enough
that Lemma 3.3.7 holds for all n > N.

We wish to choose some jmax and some N =ng <ny <np <---<nj_ . such that if we
let

- logr—!
kgf) - loggl_l —(P—1)nj+ +b
and X
(jy  logr™ logM
ky = — i —b
2 logA-! logl—lnj
and

/= </l"5j),lk§j>]

then each of Iy, Iy, ...,1I; . are disjoint subsets of (0, 1]. Note that by Lemma 3.3.7, each of

jmax
the /; are oi-admissible at scale r. In order for the intervals to be disjoint it is sufficient to

have kgj) > kgjﬂ) for j=0,1,..., jmax — 1. This is equivalent to

logr~! logM logr~! p
— —b> —(P—1)n; b
logA—1 logl_lnj ~ logA—! ( e
which becomes
logM

> +Eq. 3.20
" E P T log A T T (3:20)
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Note that by the hypothesis of Lemma 3.3.3 we have logM > PlogA~! > (P—1)logA~!

logM
and so PD)loghT > 1.
We achieve (3.20) by taking nj;; = {—(P_ll(ﬁézl_, nj —|—E1-‘ . Note that this gives nj; <
%n j -+ E> which can be rewritten as
nj+1 logM 2> — 1 nj Tog M 2
PDlogi T | (P—1)log P Dloga—T — |
which gives '
logM J
< E3). 3.21
nj_((P—l)log}Ll) (no + E3) (3.21)

Noting that no = N = E4 we get

< logM jE
ni; .
7=\ (P=1)logr-1) 7

We also need to ensure that all of the intervals Iy, [;,...,I

./max

are contained in (0, 1]. For
this it is sufficient to show that

logr~! logM
_ n:
logA—! logA—1" /mx

—E¢>0.

By (3.21) it is sufficient to have

lOgM Jmax 1
P_Diogh 1) F1=logr

which can be achieved with

1
Jmax = Tog M loglogr~—! — clogloglogr~!

for some constant ¢ depending only on o, F' and M for all sufficiently small r as required. In
particular this gives

1
Jmax = Togh loglog - clogloglog !
o8 P logn T

as required. [
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3.3.3 Proof of the main theorem

We are now ready to prove Theorem 1.3.6.

Proof of Theorem 1.3.6. The idea is to use Proposition 3.3.2 and Lemma 3.3.3 to show that
the detail around a scale decreases fast enough for us to be able to apply Lemma 1.4.4.

Let M > MF and throughout this proof let ¢y, c3, ... denote constants that depend only
on M, F, P and a. Note that by Lemma 3.3.3 given any M > MF for all sufficiently small r
there are at least

logA loglog rl—e logloglog r!

disjoint admissible intervals contained in (0, 1] where

logM

A= P Dlogh

By Proposition 3.3.2, we have that

1 n/2
Sr(/JF) <c (8 (1 + W) OC) R

where 7 is the largest even number which is less than both @ log log ! — ¢y log log log r~!

—1
and 10 loglogr

1 L)

If
1 10
logA = -1
g log(% <1+#) a_l)
then 10
n> — —c3loglog log r!
log (% (1 + #) ocl)
and so

sr(ur) < crexp (=5 loglogr~! +c4logloglog r_l)

c4

=0 (log r_l)_s (loglog r_l)

By Lemma 1.4.4 it follows that ur is absolutely continuous.
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If instead
L 10
logA -1
g log (% (1—1—#) Ot_1>
then we get
nz logA loglogr~! —c3log log log r!.
This gives
1 @IOgIOgFI—Q log log log !
sr(ur) < c2 (8 <1 + m) oc)
~1
log (8(1+ 54 ) @) 1 |
B loglogr™—" +cglogloglogr™

2logA

7

= ¢, (log r’l)_[3 (loglogr™)

—1
log (8 (l—O—ZK%) Ol)
2logA
By Lemma 1.4.4 for ur to be absolutely continuous it is sufficient to have 8 > 1. For

1 L

Since we can choose K to be arbitrarily large and M to be arbitrarily close to MF it is

where f§ =

this it is sufficient to show that

sufficient to have

1.
TR A? (3.22)

where
log MF

(P—1)logA—1"

Also by choosing M sufficiently close to Mr our condition on P becomes

A=

dlogMp — hp < 2aA*(logMp — PlogA™!)
which may be written as

dlogMp — hy —2aA*logMp

P <
200A2log A1
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By choosing P arbitrarily close to this upper bound and taking the square root of both sides

(3.22) becomes
1 - 20A%log MF
V8o~ hrp—2ai?logh—!—(d—2ai?)logMp

which can be rewritten as

hp — 202 log A~ — (d — 20A?)logMy > V8o (2aA* log MF). (3.23)
SN2
We now substitute in o = 1—18 (%—ﬁf'“> (it is easy to check by differentiating (3.23)

that this is the optimal choice for ). The inequality becomes

1 /logMp —logA~1\? 1 /logMp —log A1\ >
hF——(Og P08 )1210g11—<d——<°g P08 >7Lz log My

9 log MF 9 log MF
2 [logMp —log A=\ (1 [logMp —log A1\ >

> o (08X T 08 - (28MF T 08 A2logMr | .
3 logMFp 9 logMp

Multiplying both sides by (logMF)2 gives
h (logMF)? — é (logMp — logl_])z/lzlogl_l
— (d (logMF)? — é (logMp — logl_1)2k2> log My
> % (logMF —logA 1) ((logMF —logl_])212> .
Rearranging reduces the inequality to
(dlogMp — hg)(logMp)? < % (logMp — logl_1)37t2

as required.

We now simply need to check that we have P > 1. Since we choose P arbitrarily close to
dlogMp—hp—20aA*logMp

207 Tog A ! it suffices to show that

dlogMF —hp — 2061210gMF

1.
200A%log A ! ”

With our choice of o this becomes

1 <10gMp —logA~!
9

2
dlogM — hp < ~ A2(logM —log A~ !
og F log My ) (log ogA™ ")
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which may be rewritten as
1
(dlogM — hy) (logMF)* < 9 (logMF —loglfl)zlz(logM— logA~h).

Clearly this is satisfied under the conditions of Theorem 1.3.6 provided M is sufficiently

close to M as required. 0

3.3.4 Proof of the result for Bernoulli convolutions

We also wish to explain how Theorem 1.3.2 follows from Theorem 1.3.6. First of all we use

the following lemma to bound MF.

Lemma 3.3.8. Let A be an algebraic number and denote by d the number of its algebraic
conjugates with modulus 1. Then there is some constant c; depending only on A such that
whenever p is a polynomial with degree n and coefficients —1,0 and 1 such that p(A) # 0
we have

lp(A)| > cln*dM)f”.

Proof. This is proven in [23, Lemma 1.51]. ]

Corollary 3.3.9. Let F be an iterated function system such that U is a Bernoulli convolution
with parameter A. Then
Mp < M,,.

Proof. If x and y are both in the support of Z?:_O] + A’ then clearly x —y = 2p(4) for some
polynomial p of degree at most n — 1 and coefficients —1,0, 1. Therefore, by Lemma 3.3.8
we have

Ap > c)bn*dM/{”.

The result follows. 0
Now we are ready to prove Theorem 1.3.2.

Proof of Theorem 1.3.2. To prove this simply note that letting F be the iterated function
system generating the Bernoulli convolution. We have by Corollary 3.3.9

Mp <M,

and by the requirement that A is never root of a non-zero polynomial with coefficients —1, 0,
1 we have

hr =log2.
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To see this note that /£ is defined to be the entropy of
k .
Y xa! (3.24)
i=1

where each of the X; are i.i.d. with probability % of being each of £1. The requirement that
A is never root of a non-zero polynomial with coefficients —1, 0, 1 ensures that each possible
choice of the values for the X; gives a different value for (3.24). Hence A = klog2 and so
hr =log?2. We are now done by applying Theorem 1.3.6. 0

Remark 3.3.10. We now explain how the requirement that A is not the root of a polynomial
with coefficients 0, %1 forces M; > 2. This is because Z?:_()] +A' is supported on 2" points
each of which are contained in the interval [—(1 —A)~!, (1 —A)~!]. Hence there must be
two points in the support with distance at most 2—nto(n), By Lemma 3.3.8 it follows that
M; > 2.

3.4 Examples

In this section, we give examples of self-similar measures satisfying the conditions of
Theorem 1.3.2 and Theorem 1.3.6.

3.4.1 Examples of absolutely continuous Bernoulli convolutions

In this subsection, we give explicit values of A for which the Bernoulli convolution with
parameter A satisfies the conditions of Theorem 1.3.2. We do this by a simple computer
search. We can ensure that A is not a root of a non-zero polynomial with coefficients 0, 41
by ensuring that it has a conjugate with absolute value greater than 2.

The computer search works by checking each integer polynomial with at most a given
degree, with all coefficients having at most a given absolute value, with leading coefficient
1 and with constant term +1. The program then finds the roots of the polynomial. If there
is one real root with modulus at least 2 and at least one real root in ( %, 1), the program
then checks that the polynomial is irreducible. If the polynomial is irreducible it then tests
each real root in (%, 1) to see if it satisfies equation (1.1). In Table 3.1 are the results for
polynomials of degree at most 11 and with coefficients of absolute value at most 3.

The smallest value of A which we were able to find for which the Bernoulli convolution
with parameter A can be shown to be absolutely continuous using this method is A ~ 0.78207

with minimal polynomial X3 —2X7 — X +1.
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We were also able to find an infinite family of A for which the results of this thesis show
that the Bernoulli convolution with parameter A is absolutely continuous. This family is

found using the following lemma.

Minimal polynomial Mahler measure A
XT—X0-2X°—X2+X+1 2.01043 0.87916
XT42Xx0-Xx—1 2.01516 0.93286
X8 —2X"T—X+1 2.00766 0.78207
X8 —X7—2x6 —x3 4+ X +1 2.02530 0.90705
x8+2x7 -1 2.00761 0.86058
X8 42X7 4+ X042 — X2 —X—1 2.01799 0.87735
X% —2x8—x%24+1 2.01137 0.84164
X% —2x8—Xx+1 2.00386 0.79953
X% 4+2x8 —Xx —1 2.00386 0.94956
X2 4+2x8 4+ X7 420 —x3—2x2-_X—1 2.04146 0.96868
X10_2x9 _x241 2.00575 0.85258
X0 _2x% —x+1 2.00194 0.81397
X10_2x% 4+ X8 —2X7 X+ X4 —X34+2X2-X+1 2.02576 0.91295
X0 _x% _2x8 — X7+ X042X>—X3—X2+1 2.01560 0.85694
X10_x% _2x8 — x5+ x44+X3-X2+1 2.01418 0.91102
XW0_x? —x8 _2X7T X3+ X*+X%2+1 2.01224 0.93921
XW0_x% - x8 X7 2X0 X 4+ X34+ X2+ X+1 2.01757 0.95395
X10_2x8 —3x7 —2X6 X3+ X3 +2X24+2X +1 2.00826 0.96846
X104 x% 2x8 4 X7+ X0 X+ X4—X34+X -1 2.01606 0.87581
X0 4ox% —x6_x54Xx4—1 2.03336 0.93639
X'042x% —x*—1 2.03066 0.94693
x'042x% -1 2.00194 0.88881
X1043x9 +3x8 +3X7 +2X0 —2Xx* —3Xx3 —3x2-2x —1 2.04716 0.98447
X" _2x0_x241 2.00290 0.86182
xU_ox0_x 41 2.00097 0.82615
XU _x10_2x9 x84 X7 42X04+ X5 —X*—2X3 - X2+ X+1 2.00073 0.87666
XU _x0_x9 2x8 x4+ X24+X+1 2.00498 0.95290
XUM_x0_x9_ x8_Xx7_2X0_X54+X+1 2.01424 0.83556
XU x0_ox9 4 x84 X7 —2XO0 4+ XS+ X4 —2X3 4+ X2+ X —1 2.00073 0.83139
XU x0_x942x8 4+ x4 —X24+Xx—1 2.00498 0.80600
X" 42x0_x 1 2.00097 0.95961
X" 42x104x2 1 2.00290 0.81038
X"M42x0 4 x942x8 — x5 —x*—x3-x2-1 2.03885 0.97258

Table 3.1 Examples of parameters of Bernoulli convolutions for which Theorem 1.3.2 applies

Lemma 3.4.1. Suppose that n > 5 is an integer and let
pX)=X"—2X""1_X+1.

2
Then p has exactly one root in the interval ((%) n-1 1), exactly one root in the interval
(2,24 22_”) and all of the remaining roots are contained in the interior of the unit disk.

Furthermore p is irreducible.
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Before proving this we need the following result.

Theorem 3.4.2 (Rouché’s theorem). Let f and g be holomorphic functions C — C and let
r > 0. Suppose that for all z € C such that |z| = r we have

8() < |f(2)]-
Then f and f + g have the same number of zeros with modulus less than r.
Proof. This is well known. For a proof see for example [43, Corollary 5.17]. [
We are now ready to prove Lemma 3.4.1.

Proof. First we use Rouché’s Theorem to prove that all but one of the roots of p is contained

in the unit disk. We apply Rouché’s Theorem in the form stated above with f(z) = —27" 1 41,

g(z)=7"—zand r= (%) =2 A trivial computation which is left to the reader shows that

when |z| = r we have | f(z)| > |g(z)|. Hence all but one of the roots of p are contained in the
ball of radius (%) ﬁ

The other roots can be found by using the intermediate value theorem. Trivial compu-
tations show that p(2) < 0 and p(2+4227") > 0. We can also easily compute that p(1) < 0

2
and it is easy to show that p ((%) vn=1 | > 0 whenever n > 5. Hence there is a root in the

interval ((3) v ,1). In-fact it must be in the interval ((3) v (%) Tl*z)

The fact that p has only one root in the interval ((%) V% , 1) follows from the fact that it
has only one root in the interval (0, 1). Indeed p’(0) < 0 and for x € (0, 1) we have p”(x) <0
hence p is strictly decreasing on (0, 1) and so has at most one root contained in (0, 1).

The fact that p is irreducible follows from the fact that it is a monic integer polynomial
with non-zero constant coefficient and all but one of its zero contained in the interior of the
unit disk. If p were not irreducible, then one of its factors would need to have all of its roots
contained in the interior of the unit disk. This would mean that the product of the roots of

this factor would not be an integer, which is a contradiction. O]

We now simply let A, be the root of X" —2X"~! — X + | contained in the interval
2
((%) VT | 1). To show that the Bernoulli convolution with parameter A, is absolutely

continuous using Theorem 1.3.2, it suffices to show that

1 2\ a4
(log(2+2%"") —log2)(log(2+2> )% < > (log(Z) —1og2m) 2 Vil
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The left hand side is decreasing in n and the right hand side is increasing in n and for n = 12
the left hand side is less than the right hand side so for n > 12 we know that pt; is absolutely
continuous. In Table 3.1 we show by computing A, and M forn =8,9,10 and 11 that in
fact u,, is absolutely continuous for n > 8.

Remark 3.4.3. It is worth noting that we have 4, — 1 and M; — 2 so all but finitely many
of these Bernoulli convolutions can be shown to be absolutely continuous by the results of
[56]. Using the results of [56] does however require a significantly higher value of n to work.
Indeed it requires n > 105,

3.4.2 Other examples in dimension one

In this subsection we briefly mention some other examples of iterated function systems in
dimension one that can be shown to be absolutely continuous by these methods.

Proposition 3.4.4. Let g be a prime number and fori=1,...,q—1let S; : x — q%qlx +1i. Let
F be the iterated function system on R' given by

F= ((Si)iql’(qil"”’qil))

Then we have M <logq, hr =log(q—1) and A = %1. Furthermore, if ¢ > 17 then Ug is

absolutely continuous.

i
Proof. We note that any point in the k- step iteration of 0 must be of the form u = Z;‘;Ol Xi (%)

i i
with x; € {1,...,¢— 1}. Suppose u = ¥*" ! x; (%1) andv=Y 1y (%1) are two such
points. We note that ¢*~'u,¢*~'v € Z. Therefore, if u # v then |u —v| > g~ *~1)_ This gives
Mr <logg.

We can also note if # = v, then looking at qk_1

k=1y mod g fori=1,...,k we see

u and g
that we must have (x1,x3,...,x) = (y1,Y2,---,Vk)- Therefore, F has no exact overlaps and
consequently iy =log(qg—1).

We also note that A = %1 follows immediately from the definition of F.

To show that ur is absolutely continuous using Theorem 1.3.6 it is sufficient to check

that (logq —log(q — 1))(logq)® < % (logCI—log (L))3 (q;l)z

qg—1 q

This is the same as showing that

(log (1 + q%)) < % (%)z (log(g— 1)) ("T_l)z. (3.25)
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The left had side of (3.25) is decreasing in g and the right hand side is increasing in g. The
inequality is satisfied for ¢ = 17 and so is satisfied for ¢ > 17. 0

3.4.3 Examples in dimension two

In this section we describe some examples of self-similar measures on R? which can be
shown to be absolutely continuous using the methods of this section and which cannot be
expressed as the product of self-similar measures on R. This is done by identifying R? with
C.

Proposition 3.4.5. Let p be a prime number such that p = 3 (mod 4). Let 1, denote the ideal
(p) in the ring Z[i]. Note that this is a prime ideal. Let ay,...,a,, be in different cosets of
Ip. Choose some o of the form ot = £ with a € Z[i]\I, and |at| < 1. Let A = || and let
U : R? — R? be a rotation around the origin by argo. Fori=1,...,m let

S; : R? — R?
x+—= AUx+aq;

and let F be the iterated function system on R? given by F = ((S,-)m (l e, %)) Then we

i=1>\m>

have Mg < log p and hr = logm.

Proof. Note that if we identify R? with C then we have
Si 1z 0z+a;.

To see that Mr < logp let x = Zf;ol xial and y = Zf:_(} yia! be two points in the k-step
support of F. Note that p*~!(x —y) € Z[i] and so if x # y then |x —y| > p~**1. To prove
hr = logm it suffices to show that F' has no exact overlaps. For this it suffices to show that if

XlyewosXiy V-, Vk € {ao,...,an} and
k . k .
Y xiat =) yiod (3.26)
i=0 i=0

then x; = y; fori = 1,...,k. We prove this by induction on i. For i = k simply multiply both
sides of (3.26) by p* and then work modulo the ideal I,. Doing this we deduce that x; and
Yk must be in the same coset of I, which in particular means that they must be equal. The

inductive step follows by the same argument. 0

Note that the above proposition combined with Theorem 1.3.6 makes it very easy to give

numerous examples of absolutely continuous iterated function systems in R? which are not
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products of absolutely continuous iterated function systems in R!. Some possible examples

are given in the following corollary.

Corollary 3.4.6. Let p be a prime number such that p = 3 (mod 4). Let 1, denote the ideal
(p) in the ring Z[i]. Let ay,...,an be in different cosets of I,. Choose some & of the form
o= 1%. Let A = |o| and let U : R?> — R? be a rotation around the origin by arg o. For
i=1,...,mletS;: R* = R? x> AUx+a; and let F be the iterated function system on R>
given by F = ((S)1,, (l, . %)) Suppose that

m

1 p 3 p—1 2
2logp —1 1 2 (logp—1
(2log p —logm)(log p) <27(0gp og 1) ( 5 )

then the self-similar measure U is absolutely continuous.

Proof. This follows immediately from Theorem 1.3.6 and Proposition 3.4.5. Note that in the
notation of Theorem 1.3.6 we have A > pr1. ]

Remark 3.4.7. It is worth noting that the case m = p? follows from the methods of Garsia
[23], so in this case the result of this section can again be seen as a strengthening of the
results of [23]. Tt is also worth noting that in the case m = p> — 1 the conditions of this
corollary are satisfied for all p with p =3 (mod 4) and p > 7.



Chapter 4
Furstenberg measures

The purpose of this chapter is to prove Theorem 1.3.13 which is a sufficient condition for
a Furstenberg measure to be absolutely continuous. Let y;, %, ... be i.i.d. samples from u
and let b be an independent sample from v. Recall from Section 1.4.2 that the strategy of
the proof is to show that at each scale r > 0 we choose some n,N € Z~( and construct a
o-algebra o7, some <7 -measurable random variables g;, g2, ..., g, taking values in PSL;(R)

and some random variables u,us, . . .,u, taking values in psl, (R) such that we may write

1% ... Wb =grexp(u;)grexp(uz)...gnexp(uy)b.

Furthermore we require the u; to be small and to have on average at least some variance after
conditioning on 7. We then condition on <7 and Taylor expand in the u; to get an expression
which is approximately the sum of n independent random variables.

This strategy has some similarities to the strategy used by [29] but has several key
differences. In their paper Hochman and Solomyak show that if g is a random variable taking
values in PSL,(IR) with at least some entropy with respect to some dyadic partition and x is a
random variable taking values in P! (R) then they can control how fast the entropy of gx with
respect to certain dyadic partitions in terms of how fast it grows for x. They then show that
if the dimension of the Furstenberg measure is less that hgy /2 then at sufficiently small
scales the Furstenberg measure can be smoothed in this way enough times to ensure that it
has dimension 1.

There are a number of key differences between the strategy used in this thesis and that
used in [29]. Firstly we are able to focus on just one scale more easily with our strategy
whereas the entropy increase theorem [29] requires control over the smoothness of the
measures at a wide range of scales simultaneously. Another key difference is that we do not

use dyadic partitions to measure entropy and instead we look at the differential entropy with
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respect to the Haar measure of the product of our random variable taking values in PSL,(R)

with a smoothing random variable. This gives us stronger quantitative control.

4.1 Taylor expansion bound

In this Section we will prove Proposition 1.4.17. We also do some computations on the
derivatives §; € psl,* from Proposition 1.4.17 which will later enable us to give bounds on
the order k detail of x from the proposition. First we will give more detail on our notation.

Given normed vector spaces V and W, some vector v € V, and a function f:V — W
which is differentiable at v we write D, f(v) for the linear map V — W which is the derivative
of f atv. Similarly if f is n times differentiable at v we write D} f(v) for the n-multi-linear
map V" — W which is the nth derivative of f at v.

Now given some normed vector space V, some vector v € V, and a function f : V — R /nZ
which is n times differentiable at v we can find some open set U C V' containing v such that
there exists some function f : U — R which is n times differentiable at v and such that for all

u € U we have
f(u) = F(w) +7Z.

In this case we take Df"(v) to be D" f(v). Clearly this does not depend on our choice of U
or f. Similarly given a sufficiently regular function f : R/xZ — V we take D, f(v) to be
D,f(v) where f: R — V is defined by

F(x) = flx+22).

As well as proving Proposition 1.4.17 we also derive some bounds on the size of various

first derivatives.
Definition 4.1.1. Given some b € P'(R) we let p;, € psl,* be defined by
Py = Dy (exp(u)b)]u=o

Proposition 4.1.2. For all t > 0 there is some & > 0 such that the following is true. Let
v € psl, (R) be a unit vector. Then there exists some ay,a; € R such that if

be P (R\G ' ((ar,a1 +1) U (az,a2 +1))

then
op(v)| > 6.
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Furthermore we may construct the ay and a, in such a way that they are measurable functions

of v.
Motivated by this we have the following definition.

Definition 4.1.3. Let 1z, v, a;, and a, be as in Proposition 4.1.2 and let € > 0. Then we define
U;(v) and U, ¢(v) by

Ur(v) := PY R\~ ' ((a1,a1 +1) U (az,a2 +1))
and
Ue(v) :=P'(R)\¢ (a1 —&,a1 +1+€)U(ar— €,a +1 +¢)).
We also have the following.

Definition 4.1.4. Let X be a random variable taking values in some vector space V. We say
that u € V is a first principal component of X if it is an eigenvector of its covariance matrix

with maximal eigenvalue.

Definition 4.1.5. Given a random variable X taking values in psl,(R), # > 0, and € > 0 we
let
Ui (X) = UyepUs(v)

and
Uz,s (X) = UvePUt,s (V)

where P is the set of first principal components of X. Similarly if u is a probability measure
which is the law of a random variable X then we define U; (i) := Uy(X) and U, ¢ (1) =
U e(X).

From this we may deduce the following.

Proposition 4.1.6. For all t > 0 there is some 6 > 0 such that the following is true. Suppose
that v is a random variable taking values in psl,(R) and that b € P'(R). Suppose that

beUl(v).

Then
Var pj(v) > 6 Varv.

Here by the variance of a random variable taking values in psl, (R) we mean the trace of

its covariance matrix. We will prove Propositions 4.1.2 and 4.1.6 in Section 4.1.3.
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4.1.1 Cartan decomposition

The purpose of this subsection is to prove the following proposition and a simple corollary of
it.

Proposition 4.1.7. Given anyt > 0 and € > 0 there exists some constants C,8 > 0 such that
the following is true. Suppose that n € Z~q, g1, -.,8n € PSLy(R), fori =1,...,n we have

lgill > C

andfori=1,...,.n—1
d(b™(gi),b" (git1)) > 1.

Suppose also that there are uy,uy, ... ,u,—1 € psl,(R) such that fori =1,2,...,n— 1 we have
||lui|| < 6.

Then if we let g’ = g1 exp(uy)grexp(uz)...gn we have

I8/ = ¢~ Vllgill - lgall- - lgall @.1)

and
d(b™(g'),b" (1)) <€ (4.2)

and
d(b™(g"),b" (gn)) <& (4.3)

Corollary 4.1.8. Given any t > 0 and € > 0 there exists some constants C,d > 0 such that
the following is true. Suppose thatn € Z~q, g1,...,8, € PSLy(R), b € P1(R), fori=1,...,n
we have

il = C

and for eachi=1,2,....n—1 we have

d(b~ (8i)7b+ (gi+1)) >t.

Suppose also that
d(b(gn),b) > 1.

Suppose also that there are uj,u, ..., u, € psl,(R) such that for i =1,2,...,n we have

Hu,|| < 6.
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Then if we let g’ = g1 exp(uy)grexp(uz)...gnexp(u,)b we have
d(b™(g),b"(g1)) <e.

We will prove Proposition 4.1.7 by induction and then deduce Corollary 4.1.8 from it.
First we need the following lemmas.

Lemma 4.1.9. Let € >0, C >0, g € PSLy(R), and b € P'(R). Suppose that

gl >C
and
d(b~(g),b) > €.
Then
d(b*(g),gb) SC ¢!
and

8ol Z ellgll - 1121l -
Proof. Without loss of generality suppose that

(r 0
£~ 1o a1
bZ(sinx>.

COSX

Our requirement that ||g|| > C becomes A > C and our requirement that d(b~(g),b) > €
becomes x > €. Note that b*(g) = (1,0)” and b~ (g) = (0,1). Trivially

b Asinx
89— A tcosx /)’

cotd(b*(g),gb) = A’ tanx.

and b is of the form

Therefore

In particular
d(b*(g),8b) SC 2",

Also
|gbl| > Asinx 2 £]|g]| - [|D]]. u
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We also have the following simple corollary.

Corollary 4.1.10. For every € > 0 there exists some C > 0 such that the following is true.
Let g € PSLy(R) and b € P'(R). Suppose that

lgll >C
and
d(b~(g),b) > €.
Then
d(b*(g),gb) <&
and

~1
lgbll =€ llgll-[b]]-
This corollary is trivial and left as an exercise to the reader.

Lemma 4.1.11. Let 1,82 € PSLy(R). Then

g1l - llg2llsind (b~ (g1),6™(82)) < llg1821l < llg1ll - [lg21] - (4.4)

Furthermore, for every A > 1 and t > 0 there exists some C > 0 with
c<o(a-1)"141h
such that if ||g1]|,||g2]| > C and d(b™ (g1),b" (g2)) >t then

lg1g2ll <Allgi] - l|g2 sind (6™ (g1),67 (g2)). 4.5)

Proof. The right hand side of (4.4) is a well known result about the operator norm. For the
left hand side without loss of generality suppose that

(M0
8171 o Al

_ [cosx —sinx) Ay 0 | [Aycosx —?Lz_lsinx
8§27 sinx cosx 0 ){1 Ap sinx l{lcosx '

and
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1) [ AiAxcosx
8182 0 lfllzsinx ’

This means [[g182[| > AiAzcosx = [|g1]| - [[g2[sin[9 (b7 (g1)) — ¢ (b7 (g2))| which proves
4.4).
For (4.5) note that

Note that

[ MAxcosx —;Ll?Lz_]sinx
5182 = /ll_litzsinx lllz_lcosx '

This means that

llg1g2ll < llg182ll, < (1 +3C72 (cosx)*1> A1 Az cosx.

This gives the required result. 0

Lemma 4.1.12. Given any € > 0 and any t > 0 there is some constant C > 0 such that the
following holds. Let g1,g> € PSLy(R) be such that ||g1||,||g2|| > C and d(b~(g1),b™ (g2)) >
t. Then

d(b+(g1),b+(g1g2)) <& (4.6)

and

d(b™(g2),b™ (8182)) <. 4.7)
Furthermore we have C < O ((min{e,t})_l).

Proof. Without loss of generality we assume that € < t. Choose C large enough to work
with %8 in the role of € in Corollary 4.1.10. Note that by Lemma 4.1.9 we may assume that

c<o ((min{&t})*l). Now choose any b € P!(R) such that
d<b7b7<g2)) > €

and
d(b,bi(glgz)) > €.

By Corollary 4.1.10 we know that

1
b.bT —
d(g2b,b7(g2)) < o€
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and so in particular
d(g2b,b™ (g1)) > €.

By Corollary 4.1.10 this means that

1
d(gi182b,b" (g1)) < Tof

We also have that

1
d(g182b,b" (g182)) < o0&

In particular this means that

d(b™(g1),b7(g182)) <.

This proves (4.6). (4.7) follows by taking the transpose. [

Lemma 4.1.13. Given any € > 0 there exists C,d > 0 such that the following is true. Suppose
that g € PSLy(R), b € P1(R), and u € psl,(R). Suppose further that ||g|| > C and ||u|| < §.

Then we have

C gl < llexp(u)gll < C|gll, (4.8)
d(b,exp(u)b) < €, 4.9)

and
d(b™(g),b" (exp(u)g)) < €. (4.10)

Proof. First note that (4.8) and (4.9) both follow from the fact that exp(-) is smooth and
P'(R) is compact. (4.10) follows from (4.8), (4.9) and applying Lemma 4.1.9 with some
element of P!(R) which is not close to 5~ (g) or b~ (exp(u)g) in the role of b. O

This is enough to prove Proposition 4.1.7 and Corollary 4.1.8.

Proof of Proposition 4.1.7. Without loss of generality assume that € < ¢. Let C; be as in
Corollary 4.1.10 with %8 in the role of €. Let C; and &, be C and 6 from Lemma 4.1.13
with %8 in the role of €.

We now take C = max{C; G5, (sin 57) _1} and 8§ = 5.

First we will deal with (4.2). Choose b such that

d(b7b7<gn)) > %8

and

d(b,b~(¢g)) > %e.
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Note that by Corollary 4.1.10 we know that

1
d(gnb>b+<gn)) < Eg'

By Lemma 4.1.13 we know that

1
d(exp(un—l)gnba gnb) < Ee

and so

_ 1
d(exp(un—1)8nb,b™ (gn-1)) > mg-

Repeating this process we are able to show that

1
/ =+ _

We also know that

1
/ + / _

Hence
d(b*(g"),b" (g1)) <e.

To prove (4.3) simply take the transpose of everything.
Now to prove (4.1). Let b be chosen as before and let u € b be a unit vector. Note that by
Corollary 4.1.10

-1
1gnuell = Cy " ligall - flul

and by Lemma 4.1.13 we know that

lexp(utn—1)gatdl| = €y C5 [lgnll - ull -

Repeating this gives the required result.

We also prove Corollary 4.1.8.

Proof of Corollary 4.1.8. This follows from applying Proposition 4.1.7 to

grexp(ur)gaexp(uz) .- - gn—1€xp(Un—1)gn

before applying Lemma 4.1.13 to exp(u, )b and then applying Lemma 4.1.9. [
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4.1.2 Proof of Proposition 1.4.17

In this subsection we will prove Proposition 1.4.17. To do this we will need to find an upper
bound on the size of various second derivatives and apply Taylor’s theorem. We will use the

following version of Taylor’s theorem.

Theorem 4.1.14. Let f : R" — R/7tZ be twice differentiable and let R{,R;,...,R, > 0. Let
2

U =[—R1,R1] X [-R2,Ry] X -+ X [=Ry,Ry]. For integers i,j € [1,n] let K; ; = sup a,f
U 1

dx;ox;

and let x € U. Then we have

In order to prove Proposition 1.4.17 we need the following proposition.

Proposition 4.1.15. Let t > 0. Then there exists some constants C,d > 0 such that the
following holds. Suppose that n € Z~q, g1,82---,8n € PSLy(R), b € P (R) and let

uM @ u e psl,(R)

be such that ||u")|| < 8. Suppose that for each integer i € [1,n] we have

lgill =€
and for integers i € [1,n— 1] we have
d(b™(gi),b" (gi+1)) > 1

and
d(b~(gn),b) >1t.

Let x be defined by
xX=g eXP(M(l))gzexp(u(z)) 3 -gnexp(u(”))b.
Then for any i, j € {1,2,3} and any integers k,{ € [1,n] with k < { we have

82

n -2
W‘P(x) <C"||g182---g¢ell "~
i oU;

We will prove this later in this subsection.
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Note that given some u € ps(, (R) and some i € {1,2,3} by u; we mean the ith component
of u with respect to our choice of basis for psl, (R) which we will fix throughout this thesis.
To prove this we need to understand the size of the second derivatives. For this we will need
the following lemmas.

Lemma 4.1.16. Lett > 0, let x € R/nZ, and let g € PSLy(R). Suppose that
d(b™(g),97' (x)) > 1. (4.11)

Lety = ¢ (g0~ (x)). Then
50 _
lel ™ < 52 < 0 (Ilel?)

and
9%y

0x?

Proof. Let g = RyA; R_¢g. First note that

<0 (llgl™)-

y=tan"' (A *tan(x — 0)) +¢. (4.12)
Recall that if v = tan~! u then ¥ = —1—_ This means that by the chain rule we have
du = u?+1
9y — ! A2 _
ox A~4tan?(x—0) + 1 cos?(x—0)
1

B A2cos?(x—0) +A2sin?(x—0)
Differentiating this again gives

9%y 2(A*+A?)cos(x—6)sin(x—0)
Ix (22cos?(x— )+ A 2sin’(x— 6))>

Noting that (4.11) forces cos(x — 6) > sinz gives the required result. [
We also need to bound the second derivatives of various expressions involving exp.

Lemma 4.1.17. There exists some constant C > 0 such that the following is true. Let
b € PY(R) and define w by

w:psl,(R) > R/nZ
u— ¢ (exp(u)b).
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Then whenever ||u|| < 1 we have
IDu(w)] <C

and
[Daw)|| < C.

Proof. This follows immediately from the fact that ||D(w)(u)|| and || D?(w)(u)|| are continu-

ous in b and u and compactness. 0

We will also need the following bound. Unfortunately this lemma doesn’t follow easily

from a compactness argument and needs to be done explicitly.

Lemma 4.1.18. For everyt > 0 there exist some constants C,8 > 0 such that the following
holds. Let g € PSLy(R), let b € P'(R) and let w be defined by

w:psl,(R) x psl,(R) — R/nZ
(x,y) = ¢ (exp(x)gexp(y)b).
Suppose that
d(b™(g),b) >1
and that ||x|| ,||y|| < 8. Then

’w(x,y _
s <clel .

8x,~8yj

Proof. Let v = ¢(exp(y)b). First note that by compactness we have

av

— | < 0(1).
5| <00

Now let v := ¢ (gexp(y)b). By Lemma 4.1.16 we have

av )
Zl<o(clel?).
Zl<o(clsl
Also note that by compactness
P <0(1)
ovox;| — '
Hence 2 2 5 5
w w v v -
= 55| 55| |30 | < 0 (Ilell 7).
dx;dy; dvdx;| |9V| |dy;

We are now done by Lemma 4.1.13. U
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This is enough to prove Proposition 4.1.15.

Proof of Proposition 4.1.15. First we will deal with the case where k = /. Let

a=g exp(u(l))g2 exp(u(z)) 8k exp(u(kfl))gk

and
b=gr1 exp(u(k+1))gk+2 exp(u(Hz)) . 8n exp(u("))gn+1
and let b = ¢ (exp(u®))b). We have
dy  dy ob
ou® b ou
and so - - -
9%y B 9%y db db dy 9%

=== +=—
8u§k)8u§k) db? 8u§k) 9u5~k) db 3u§k)3u§k)
By Proposition 4.1.7 we know that providing C is sufficiently large and 6 is sufficiently
small that

1
d(b~ (a),b) > Et
By Lemmas 4.1.16 and 4.1.17 this means that
9%y -2
| <0 (1e1)
i J

In particular by Proposition 4.1.7 there is some constant C depending only on # such that

9%y >
—— | <C'g182- - &l
(?ul(k)(?u;k)
as required.

Now we will deal with the case where k < ¢. Let

ar =g eXp(u(l))gz eXp(u(z)) 8k eXp(u(k_l))gk

and

(k+2))

ar = grprexp(u*!) gr 2 exp(u gerexp(u)g
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and

(—‘,—2))

b=gu exp(u(“ D )8+2 CXP(”( ---8n CXP(”(H) )8nt1-

Let b = ¢ (exp(u®)azexp(ul?))b). Again we have

9%y B 0%y db db dy 9%
N (

ou®9u® b 9,0 9, i b ouM guth”
i J i J
In a similar way to the case k = ¢ but using Lemma 4.1.18 instead of Lemma 4.1.17 we get

9%y

" -2
9u® 9,0 <C"[|g182--- &l
! J

as required. 0
From this we can now prove Proposition 1.4.17.

Proof of Proposition 1.4.17. By Theorem 4.1.14 and Proposition 4.1.15 we know that

|¢<x> —0(g182---gus1) —i@(u@)

< nzC”min{Hglgz...g,~||_2 i€ [l,n]}fz.

The result follows by replacing C with a slightly larger constant and noting that by Proposition
4.1.7

. _2 . -2
mm{Hglgz...giH 2l€[1,l’l]}:Hg1g2...gnH ) (]

4.1.3 Bounds on first derivatives

The purpose of this subsection is to prove Propositions 4.1.2 and 4.1.6. This bounds the size

of various first derivatives. First we need the following lemma.

Lemma 4.1.19. Let u € psl,(R)\{0} and given b € P'(R) define py, as in Proposition 4.1.2.
Then there are at most two points b € P' (R) such that

pp(u) =0.
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Proof. Let ¢ be defined by

¢ :R*\{0} = R/nZ
b ¢([b))

where [b] denotes the equivalent class of 5 in P! (R).
Given b € P!(R) let b € b be some choice of element in R?\{0}. Note that this means

9(exp(v)b) = ¢ (exp(v)b).

This means that p,(v) = 0 if and only if D(exp(u)b)|,—o(v) is in the kernel of D;($(b)).
Trivially the kernel of Dj(¢(b)) is just the space spanned by b. It also follows by the
definition of the matrix exponential that for any v € psl,(R) we have

D(exp(u)D)|,—o(v) = vb.
Hence p,(v) = 0 if and only if b is an eigenvector of v. Clearly for each v € psl,(R)\{0}

there are at most two b € P! (R) with this property. The result follows. [

Proof of Proposition 4.1.2. Given aj,a; € R let U(ay,ay) be defined by
Ular,az) = P'(R)\@ ™" (((ar,a1 +1) U (az,a2 +1))).

In other words U (ay,ay) is all of P'(R) except for two arcs of length ¢ starting at a; and ap
respectively. Given some v € psl,(R) let f(v) be given by

V) := max min v)|.
f< ) ul,ageRbEU(al,ag)‘ph( )|

Both the min and the max are achieved due to a trivial compactness argument. By Lemma
4.1.19 we know that f(v) > 0 whenever ||v|| = 1. Note that {p,(-) : b € P'(R) } is a bounded
set of linear maps and so is uniformly equicontinuous. This means that f is continuous. Since
the set of all v € ps[, (R) with ||v|| = 1 is compact this means that there is some & > 0 such
that f(v) > §. Finally note that trivially we can choose the a; and a, using this construction

in such a way that they are measurable as functions of v. [
We will now prove Proposition 4.1.6.

Proof of Proposition 4.1.6. By elementary linear algebra we can write X as

X =X1vi +Xovy + X3v3
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where X, X> and X3 are uncorrelated random variables taking values in R and vy, v,, and v3
are the eigenvectors of the covariance matrix of X with corresponding eigenvalues Var X,
VarX,, and VarX3;. Furthermore we may assume that VarX; > VarX; > VarX3 and so in
particular VarX; > %VarX . Without loss of generality we may assume that X, X3, X3, and X
have mean 0. We also note that since v is a principal component of X by Proposition 4.1.2
we have |pp(v)| > 6.

We then compute

Varpy(X) = E [|pp(X) ]
=E [XP|pp(vi) > + X315 (v2)|* + X5 |y (v3) ]
> E [X7|py(v1)I’]
> %SVarX
This gives the required result. 0

4.2 Disintegration argument

The purpose of this section is to prove Theorem 1.4.21. We define rigorously some notions
which we used informally in the introduction including regular conditional distribution, the
variance of random elements in PSL,(IR) and various notions of entropy. We also discuss
basic properties of these notions. After these preparations, which occupy most of the section,
the proof of Theorem 1.4.21 will be short.

Before we begin we outline the main steps of the proof of Theorem 1.4.21.

The first step is the following simple lemma.

Lemma 4.2.1. Let g, s1 and s, be random variables taking values in PSLy(R). Suppose
that s\ and s, are absolutely continuous with finite entropy and that gs| and gs» have finite
entropy. Define k by

k:=H(gs;)—H(s1)—H(gs2)+H(s2).

Then
E[H ((gs1/gs2))] > k+H (s1).

Here (gs;|gs2) denotes the regular conditional distribution which we will define in Section
4.2.1. We prove this lemma in Section 4.2.3.

Recall that s; and s, are smoothing random variables, and s, corresponds to a larger scale
than s;. The quantity k can be thought of as the difference between the information of g

discretized at the scales corresponding to s1 and s,.
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It is well known that among all random vectors of a given variance, the spherical normal
distribution has the largest (differential) entropy. This allows us to estimate the variance of a
random vector in terms of its entropy from below. Once the definitions are in place, we can

translate this to random elements of PSL;(R).

Lemma 4.2.2. Let € > 0 and suppose that g is a random variable taking values in PSL,(R)
such that gy l¢ takes values in the ball of radius € and centre 1d for some gg € PSL;(R).

Then providing € is sufficiently small we have

3 2me
H(g) < 5 log 2 VARy,[¢] + O(e).

We will prove this in Section 4.2.3. Combining the above two lemmas, we can get a lower
bound on VARgy, [gs1|gs2]. Here VAR.[-|-] denotes the conditional variance of a random
variable taking values in PSL,(R) which we will define in Definition 4.2.11. The last part of
the proof of Theorem 1.4.21 is the following.

Lemma 4.2.3. Let € > 0 be sufficiently small and let a and b be random variables and let </
be a o-algebra. Suppose that b is independent from a and <7 . Let gy be an <f -measurable
random variable. Suppose that g, Ya and b are almost surely contained in a ball of radius €
around 1d. Then

VAR, [ab| /] = VAR, [a|</] + VAR[b] + O(&?).

We prove this in Section 4.2.2.

4.2.1 Regular conditional distribution

In this section we will discuss some basic properties of regular conditional distributions.
For a more comprehensive text on regular conditional distributions see for example [37].
Some readers may be more familiar with the use of conditional measures as described in for

example [14, Chapter 5]. These two concepts are equivalent.

Definition 4.2.4 (Markov Kernel). Let (Q;, %% ) and (Q,, 9% ) be measurable spaces. We say
that a function x : Q| X 2% :— [0, 1] is a Markov Kernel on (Q, <) and (Q;,, <) if;

* For any A, € % the function @; — K (®;,A;) is <7 - measurable

* For any o € Q; the function A; — k(®;,A,) is a probability measure.
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Definition 4.2.5. Let (Q,.%,P) be a probability space, let (E, &) be a measurable space, and
letY : (Q, %) — (E,£) be arandom variable. Let &7 C .% be a o-algebra. Then we say that
a Markov kernel

Kyt QX E—0,1]

on (Q, <) and (E, &) is a regular conditional distribution for Y given 7 if
Ky.or (0,B) = P[Y € Bl

for all B € & and almost all @ € Q.

In other words we require
PAN{Y € B}] =E [Iaky,s(-,B)] forallA € & ,Bc&.

In the case where Y is as above and X is another random variable taking values in some
measurable space (E’,&’) then we let the regular conditional distribution of ¥ given X refer
to the regular conditional distribution of Y given ¢ (X). For this definition to be useful we

need the following theorem.

Theorem 4.2.6. Let (Q,.7 ,P) be a probability space, let (E, &) be a standard Borel space,
andletY : (Q,.%) — (E, &) be a random variable. Then given any c-algebra of C F there

exists a regular conditional distribution forY given <f .
Proof. This is [37, Theorem 8.37]. ]

Definition 4.2.7. Given some random variable Y and some o- algebra </ C .% (or random
variable X) we will write (Y |<) (or (Y|X)) to mean the regular conditional distribution of Y
given &7 (or given X).

We also let [Y|</] (or [Y|X]) denote random variables defined on a different probability
space to Y which have law (Y |.<7) (or (Y |X)).

One can easily check that if the regular conditional distribution exists then it is unique up

to equality almost everywhere.

4.2.2 Variance on PSL;(R)

We wish to define some analogue of variance for random variables taking values in PSL,(R).

We will do this using log.

Definition 4.2.8. Given some random variable X taking values in R¢ we define the variance
of X, which we denote by VarX, to be the trace of its covariance matrix. If X takes values in
psl,(R) we do this via our identification of psl,(R) with R3.
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Definition 4.2.9. Let g be a random variable taking values in PSL,(R) and let g9 € PSL,(R).
Suppose that g, lgis always in the domain of log. Then define the variance of g with respect

to go by
VAR, [g] := Varlog(g,'g).

We need the following lemma.

Lemma 4.2.10. Let € > 0 be sufficiently small and let g and h be independent random
variables taking values in PSLy(R). Suppose that the image of g is contained in a ball

of radius € around 1d and the image of h is contained in a ball of radius € around some
ho € PSLy(R). Then

VAR, [hg] = VAR, [h] + VARq[g] + O(€?).
Proof. Let X =log(h, ') and let Y = log(g). Then by Taylor’s theorem
log(exp(X)exp(Y)) =X +Y+E

where E is some random variable with |E| < O(£?) almost surely. Note that we also have
1X],]Y| < O(€). Therefore

VAR, [hg] =E[|X +Y +E|*] — [EX +Y + E]|?
=E[X +Y ")~ [E[X + Y]]’ +2E[(X +Y)-E] + E[|E[’
—2E[X +Y]-E[E] - [E[E]?
= Var[X +Y] +0(£3)
as required. 0

We also need to describe the variance of a regular conditional distribution.

Definition 4.2.11. Given some random variable g taking values in PSL,(R), some o-algebra
o/ and some ./ -measurable random variable g taking values in PSL,(R) we let VAR, [g] </

to be the o7 -measurable random variable given by
VAR [g|7] (@) = VAR () [(¢] ) (@)].

Similarly given a random variable /2 we let VAR, [g|h] = VAR, [g|o(h)].

Lemma 4.2.3 now follows easily from Lemma 4.2.10.
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Proof of Lemma 4.2.3. First note that we have [ab|</| = [a|.<7|[b|</] = [a| <7 |b. We are now
done by Lemma 4.2.10. U

4.2.3 Entropy

It is well known that the random variable with maximal entropy in R? out of all random
variables with a given variance is a spherical normal random variable. In particular this

means that the following is true.

Lemma 4.2.12. Out of all probability distributions on R? with given variance the one with
the greatest entropy is a spherical normal distribution. In particular if X is a random variable

taking values in R? then with variance r* then
d 2me
H ~1 .
00 < Soe (57

Proof. This is well known and follows trivially from [13, Example 12.2.8]. [

We now wish to prove a similar result for random variables taking values in PSL,(R).
First we need the following.

Lemma 4.2.13. Let A; be a probability measure on some measurable space E and let A, and
A3 be measures on E and let U C E. Suppose that the support of Ay is contained in U. Then,

‘Ji/f(ll,lz) %2(%1 ),3)‘ < sup

xeU

lo k2
gd/l

Proof. We have

L) = KL (D, D3| = ‘/ log—dll /log—d?tl

dA3

= log
U

dll dA

1
d/lz TN dh

log

A
d_ﬁa dl]

log 22
gd?tg, '

< sup
xeU

We can now prove Lemma 4.2.2.
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Proof of Lemma 4.2.2. This follows easily from Lemma 4.2.12 and Lemma 4.2.13.

Let U be the ball in PSL;(R) of centre Id and radius €. Due to properties of the Haar
measure we have H(g) = H(g, 'g) and by definition VAR, [¢] = VAR4[g, ' g]. This means
that it is sufficient to show that

_ 3 2Te _
H(gy 'g) < 5log =~ VARulgy 'g] +O(e).

Recall that - 7 mol is smooth and equal to 1 at Id. This means that providing € < 1 on U

we have _
dm

dmolog

=1+0(e).

In particular providing € is sufficiently small we have

sup log O(e).

<
dmolog

Clearly
%f(galg,molog) = Z(log(gg '8),m).

We have by definition that H (go ) = (go lg.ii) and by Lemma 4.2.13 we have
‘%’3 8o lg.molog) —# Z( (8o e, m | ). By Lemma 4.2.12 we know that

_ 3 2Tme _
H 2 (log(gy ' g),m) < S log == VARu[g; ' g]-

Therefore 3 )
B e _
H(gy'g) < 5 log =2~ VAR[g, 'e]+0(e)

as required. [

We will also adopt the following convention for defining the entropy on a product
space. Let (E1,&;) and (E>, &) be measurable spaces endowed with reference measures
m; and m, such that if A is a measure on (E;,&;) then we define the entropy of A by
H(A) := =2 % (Ai,m;). Then we take m| X m; to be the corresponding reference measure
for E| x E;. That is given some measure A on E| X E; we take the entropy of A to be defined
by H(A) = =% £ (A,m; x my). With this we can give the following definition.

Definition 4.2.14 (Conditional Entropy). Let X and X, be two random variables with finite
entropy. Then we define the entropy of X| given X, by

H(X1|X2) = H(X1,X) — H(X)).
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Next we will need the following simple facts about conditional entropy.

Definition 4.2.15. Given some random variable Y and a o-algebra & C .% we define
H((Y|<)) to be the random variable

H((Y|<)): o — H((Y]|#)(®,"))

where (Y|<7)(®,-) is the regular conditional distribution for ¥ given 7. Similarly given
some random variable X we let H((Y|X)) := H((Y|o(X))).

Lemma 4.2.16. Let X| and X, be two random variables with finite entropy and finite joint
entropy. Then
H(X1[X2) = E[H((X1|X2))]-

Proof. This is just the chain rule for conditional distributions. It follows from a simple
computation and a proof may be found in [57, Proposition 3]. [

Lemma 4.2.17. Let g be a random variable taking values in PSLy(R), let </ be a G-algebra,

and let a be a </ -measurable random variable taking values in PSLy(R). Then
H((agl</)) = H((g|))
almost surely. In particular if h € PSLy(R) is fixed then
H(hg) = H(g)-

Proof. For the first part note that [ag|./| = a[g|.</]| almost surely. Also note that by the left
invariance of the Haar measure

H(alg|#/]) = H([¢|#])-

The last part follows trivially by the first part. [
We now have all the tools required to prove Lemma 4.2.1.

Proof of Lemma 4.2.1. First note that we have

H(gs2|gs1) > H(gs2|g,s1) = H(s2)

and so
H(gs»,gs1) > H(gs1) +H(s2).



4.2 Disintegration argument 103

This means that

H(gs1|gs2) = H(gs2,8s1) — H(gs2)
H(gs1) —H(gs2) + H(s2)
k+H(S1).

v

Recalling that by Lemma 4.2.16 H(gs;|gs2) = E[H((gs1/gs2))] we get
E[H((gs1]gs2))] = k+H(s1)

as required. [

4.2.4 Proof of Theorem 1.4.21

We now have everything needed to prove Theorem 1.4.21.

Proof of Theorem 1.4.21. Note that by Lemma 4.2.1 we have
E[H((gs1]gs52))] = k+H(s1)

and so by Lemma 4.2.2 we have
3. 2
E 5 log gﬂieVARgS2 [gs1|gs2]| +0(e) > k+H(sy). (4.13)

Note that (gs;) " 'g = sy ! which is contained in a ball of radius & centred on the identity.

Therefore by Lemma 4.2.3 we have
VARgs, [g51]g52] < VARG, [g]gs2] + VARwls1] + O(€).

Putting this into (4.13) gives

3 2
E {ilog §7I6<VARgs2 g|gs2] + VAR [s1] + O(e™)) | +O(€) > k+H(s1)

which becomes

VARgsz [g |852]

3 2
H — —log — ‘AR .
VARg[s1 (k+H(sy) 3 0g37teV 1a[s1])

W N

E {log (1+ +0a(g))| +0(g) =
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Noting that for x > 0 we have x > log(1 + x) we get

E[VARg, glg52]] > 5 (£~ — 0a(€)) VAR

as required. [

4.3 Entropy gap for stopped random walk

The purpose of this section is to prove Proposition 1.4.19. This shows that for a stopped
random walk g there are many choices of 7 such that v(q¢; 7) is large.

Recall that v(gz; 7) is defined to be the supremum of all v > 0 such that we can find some
o-algebra &7 and some .27 - measurable random variable a taking values in PSL,(R) such
that |log(a~'g)| < r and

E[VAR, [g|<7]] > vi?.

We apply Theorem 1.4.21 with a careful choice of 51 and s,. We will take these to be
compactly supported approximations to the image of spherical normal random variables on

psl,(R) under exp. More precisely we have the following.

Definition 4.3.1. Given r >0 and a > 1 let 1,, be the random variable on R?® with density
function f : R® — R given by

Ce 27 if ||x|| <ar

0 otherwise
where C is a normalizing constant chosen to ensure that f integrates to 1.
We can then define the following family of smoothing functions.

Definition 4.3.2. Given r > 0 and a > 1 let s, , be the random variable on PSL,(R) given by

Sr’a = eXp(nna).

In this definition we use our identification of psl,(R) with R3.
After doing some computations on the entropy and variance of the 7,., we can prove the

following proposition by putting these estimates into Theorem 1.4.21.
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Proposition 4.3.3. There is some constant ¢ > 0 such that the following holds. Let g be a
random variable taking values in PSLy(R), let a > 1 and let r > 0. Define k by

k= H(gsw) - H(Sr,a) - H(gSZna) +H(52r,a>-

Then

[

a

V(g:2ar) = ca 2(k— O(e™ %) — 0a(r))).

This will be proven in Section 4.3.1.
To make this useful we will need a way to bound k from Proposition 4.3.3 from below
for appropriately chosen scales. We will do this by bounding

H(gsra) = H(sra) — H(g5217a) + H(5211.0)

for some carefully chosen n and r and then noting the identity

H(gsra) - H(Sra) - H(gSZ”r,a) +H(52”r,a)

n
Z gSZ’ 'ra H(s2i_1r,a) - H(gSZIr,a> +H(s2ir7a)'

We use this to find scales where we can apply Proposition 4.3.3. Specifically we will prove

the following.

Proposition 4.3.4. Let 1 be a discrete probability measure on PSLy(R) which is strongly
irreducible and such that its support is not contained in any compact subgroup of PSL;(R).
Suppose that My, < oo and hgwy /X is sufficiently large. Let Y1,7,... be i.i.d. samples from L.
Givenn € Zwg let g :=11¥>... Y. Lett > 1 and w € P'(R) define T = 1, by

t=inf{n € Zq: ||gow| >t[Iw|}

where w € R\ {0} is a representative of w. Let M > My,. Suppose that 0 <ry <1, < 1.
Suppose that r; < M~'98!/X_ Let a > 1. Then

hrw

H(qSr, a) > 7 logt 4+ H (Sa,r,) — OM u.aw(logt) (4.14)

and
H(q1Sry.a) < 2logt +op paw(logt). (4.15)
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In particular
H hrw
(qeSr.a) —H(Sr.a) —H(qeSrya) +H(Srya) > 7 —2 | logt+3logry — op,p,aw(logt).
(4.16)

This is proven in Section 4.3.2. This proposition is unsurprising. To motivate (4.14) note
that it is well known that with high probability T ~ log?/). We also know by the definition
of hrw that

H(quogt/xj) > hrw [logt/x | .

Providing ¢ is sufficiently large s, , is contained in a ball of centre Id and of radius
Om pu.a(M 108! /X). In particular providing  is sufficiently large this radius is less than half
the minimum distance between points in the image of g|j4//, | and so H (qUOgl /% JSrl,a) =
H(q|10g1/%]) + H(Sr.a)- Tt turns out we can prove something similar when |log#/x ] is
replaced by 7.

The bound (4.15) follows easily from the fact that the Haar measure of the image of
qcSry.q 18 at most Oy 4(12).

Finally (4.16) follows from combining (4.14) and (4.15) and noting that H(s,, ,) =
3logr, +O(1).

We then combine Propositions 4.3.3 and 4.3.4 to get the following.

Proposition 4.3.5. There is some constant ¢ > 0 such that the following is true. Suppose that
U is a strongly irreducible probability supported on finitely many points whose support is not
contained in any compact subgroup of PSL,(R). Suppose that M, < oo and that hgw / X is
sufficiently large. Let M > My,. Suppose that M is chosen large enough that hgyw < logM.
Let b € P'(R). Then for all sufficiently large (depending on M, 1 and w) t we have

hRW

¢ 10logyx 1 h loe M -1
/logM —v(qy, ,u)du > c(ﬂ) (max{l,log o8 }> logt.
t logx u ’ X X

We prove this in Section 4.3.3. Proposition 1.4.19 follows easily from this.

4.3.1 Smoothing random variables

In this subsection we give bounds on the variance and entropy of the s,., and use this to prove
Proposition 4.3.3.
Recall the definition of 1,., from Definition 4.3.1. First we have the following.
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Lemma 4.3.6. Let r > 0 and a > 1. Then
@(,,2) < Varn,, < 372,

The proof of this lemma is trivial and is left to the reader.

Lemma 4.3.7. There is some constant ¢ > 0 such that the following is true. Let r > 0 and
a>1. Then

S}

3 a
H(Nra) = 5 log2mer® + Oe™ 7).
The proof of Lemma 4.3.7 is a simple computation which we will do later.
Recall that given some gg € PSLy(R) and a random variable g taking values in PSL,(RR)

such that g, : g 1s in the domain of log we define
VARy, [g] := Var[logg, lg]

and that we define the entropy of an absolutely continuous random variable taking values
in PSL,(R) to be the differential entropy with respect to /m where i is the Haar measure

normalized so that _
dm

dmolog

(Id) = 1.
We deduce the following about s,.,.

Lemma 4.3.8. Let r > 0 and a > 1. Suppose that ar is sufficiently small. Then
O(r*) < VARygs,, < 3r°.

Proof. This follows immediately from substituting Lemma 4.3.6 into the definition of VAR.

]
Lemma 4.3.9. Let r > 0and a > 1. Then
3 2 el
H(srq) = 3 log2mer=+0(e™ %)+ O,4(r).
Proof. This follows immediately from Lemma 4.3.7 and Lemma 4.2.13. U

We also have the following fact.

Lemma 4.3.10. Let r > 0 and a > 1. Suppose that ar is sufficiently small. Then

[log(sra)ll < ar
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almost surely.
Proof. This is trivial from the definition of s,.,. O
We now have enough to prove Proposition 4.3.3.

Proof of Proposition 4.3.3. We apply Theorem 1.4.21 with s; = 5,4 and 52 = 57, ,. We also
take € = 3ar.
By Lemma 4.3.8 we know that

VARq[s1] > O(r%) > O,(£?)

and by Lemmas 4.3.9 and 4.3.8 we know that

=%

2
c= %loggﬂeVAR[sl] —H(s;) <O(e 7).

This means that

[}

a

E[VAR,[glgs2]] = 2 (k—O(e™ ) = Ou(r))(cr?)

W N

for some absolute constant ¢ > 0.
We know that

[log ((gs52) ") || = logs2 || < 2ar
and so by the definition of v(-;-) we have
v(g;2ar) > (2ar) "*E[VARys,[g|gs2]]

da 2 (k—0(e ) — 0u(r))

v

for some absolute constant ¢’ > 0. [
To finish the subsection we just need to prove Lemma 4.3.7.
Proof of Lemma 4.3.7. Recall that 1, , has density function f: R?® — R given by

[lx]2
Ce 22 if ||x|| <ar
£x) = I <

0 otherwise

where C is a normalizing constant chosen to ensure that f integrates to 1.
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First we will deal with the case where r = 1. Note that

x2 X2
/ ez dxg/ e Zdx=(2m)
x€R3:||x||<a R3

[S1[9%}

and
X2 &0 bt2
/ e 2 dx:/ Anue™ 7 du
XER3:||x||>a u=a
<0 ( Amae” 5 a’u)
u=a
a2
<0 (e_4) .
This means
x2 3 x2 3
/ e_de:(Zﬂ)2—/ e 2dx> (271')2—0(6'_
x€R3:||x||<a x€R3:||x||>a
Therefore
a2
c=02n*+o0 <e_4) .
Note that
H(Nia) = / _ce P 210g (Cefnxuz/z) i
7 lx[|<a
2
[ c (M _ 1ogc) 2 gy
x| <a 2
We have

Ix? xlP/2
/x€R3C (T —logC e dx

= (271')3/2C (% — logC>

[

3 o
= 510g27re+ o <e_4> .

8]

7

a 3 3
= (1 +0 (e_4)> (Eloge—l— 510g27r+0 (e_

)
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We also have

2
/ c (M _10gc> oIl 12 g
x€R3:||x||>a 2
0o 2
= / 4mu*C (% —logC) e dy
u=a

<0 (/ atem /3 du)
u=a
<0 (e_“2/4> .
This gives
3
H(11,4) > 5 log2me — (e /4.

From this we may immediately deduce that
3 2 —a*/4
H(Nra) > 510g27rer —O(e )

as required. The fact that H(n,,) < %log 2mer? follows immediately from Lemmas 4.2.12
and 4.3.6. [

4.3.2 Entropy gap

We now prove Proposition 4.3.4. This Proposition bounds the difference in entropy of g
smoothed at two different scales.
Before proving this we will need the following estimate.

Lemma 4.3.11. Let u be a probability measure on PSLy(R). Suppose that | is strongly
irreducible and that everything in its support has operator norm at most R for some R > 1.
Suppose that the support of PSLy(R) is not contained in any compact subgroup of PSL,(R).
Let 11,7,... be i.i.d. samples from U and let g, :== Ny ...Y,. Let € > 0. Then there is
some o, > 0 such that the following is true. Let b € P'(R) and let t > 0 be sufficiently large
depending on U, € and b. Let

T p i=min{n: Hq,{fo“ >t ||lA7H}

where b € R?\ {0} is a representative of b. Then

i

logt
T p— %‘ > elogt] <t %
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This follows easily from the following Theorem.

Theorem 4.3.12 (Theorem V.6.1 in [7]). Let u be a probability measure on PSLy(R).
Suppose that | is strongly irreducible. Let X be the Lyapunov exponent of l. Suppose that
X > 0 and that there exists some u > 0 such that

/ "osligll (dg) < oo, (4.17)

Let g1,82,... be i.id. samples from U and let g, = N> ... Y. Let € > 0. Then there exists
some & € (0, 1) such that for all w € R*\ {0} and all sufficiently large n we have

P Hloqung —nx—log||w||‘ > en} <o

and
P [|10qurﬂ| —nx‘ >en| <o

Proof. This is [7, Theorem V.6.1]. Note that in [7] the author uses a definition of the

Lyapunov exponent which is the exponential of the definition used in this thesis. 0
Lemma 4.3.11 follows from this as follows.

Proof of Lemma 4.3.11. First note that (4.17) is clearly satisfied as t is compactly supported.

Note in order to have

logt
‘T—E‘ > elogt
X

logt

TogR such that

there must be some n >

log||gnbl| —nx| > &n
for some € > 0 depending on €. We are now done by Theorem 4.3.12 and the sum of a
geometric series. [

We also need the following results about entropy.

Lemma 4.3.13. Let X and Y be discrete random variables defined on the same probability
space each having finitely many possible values. Suppose that K is an integer such that for

each y in the image of Y there are at most K elements x in the image of X such that
PX =xNY =y| > 0.

Then
H(X|Y) <logK.
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Proof. Note that (X|Y) is almost surely supported on at most K points. This means that
H((X|Y)) <logK

almost surely. The result now follows by Lemma 4.2.16. 0

Lemma 4.3.14. Given u > 0 let K,, denote the set
K,:={g € PSL,(R) : ||g|| < u}.

Then
(K, < 0(u?).

Here 1 is the Haar measure on PSL;(R) defined in 2.2.5.

The proof of Lemma 4.3.14 is a simple computation involving the Haar measure which
we will carry out later in this section.

We now have everything we need to prove Proposition 4.3.4.

Proof of Proposition 4.3.4. First we will deal with (4.14). Fix some € > 0 which is suffi-
ciently small depending on M and u. Let m = Vng’J and define 7 by

[(14+¢&)m] ift>[(1+¢)m]
T=<(1—-g)m] ifr<[(l1—¢€)m]

T otherwise.

Given some random variable X let (X ) denote its law. If we are also given some event A we
will let £ (X)|4 denote the (not necessarily probability) measure given by the push forward
of the restriction of IP to A under the random variable X. Note that ||.Z(X)[4]|, = P[A].

We have the following inequality.

H(qesra) = H(Z (qc) * £ (5r,.0))
> H(g(qf)h’:f *g(srua)) +H($<QT)‘1775€' *g(srl,a)) (4.18)
> H(L(qe) ot + L (sn,)) + P[% # HH(L (50,.) 4.19)

Here (4.18) follows from Lemma 2.2.8 and (4.19) follows from Lemmas 4.2.17 and 2.2.8.
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First we will bound H(-Z(q:)|z=#). To do this we introduce the random variable X which
is defined by

X= (ql(lfs)nﬂ’YL(lff)mJH’YL(I*E)mHZ""’Yf(1+8)”ﬂ)'
We know that ¢z is completely determined by X so
H(X|qz) = H(X) —H(qz). (4.20)
Let K be the number of points in the support of u. Clearly if

N(—e)m|+15 Y (1—&)m|+25 - - V[(14-€)m)

and 7 are fixed then for any possible value of gz there is at most one choice of g|(j_¢))
which would lead to this value of gz. Therefore for each y in the image of gz there are at
most

(2em +2)K (2em+2)

elements x in the image of X such that P[X =xN gz =y] > 0. By Lemma 4.3.13 this gives

- 2elogK
H(X|gz) <log ((2£m + 2)K(2£m+2)) - logt + oy (logt). 4.21)
We also know that
~ hRW
H(X)>H(qm) > hgw -m > 710gt —oy(logt). (4.22)
Combining equations (4.20), (4.21) and (4.22) gives
hrw — 2€logK
H(gz) > "B =208 1051 — o, (logt).

X

We note by Lemma 2.2.9 that
H(Z(qz)) <H(ZL(q7)|t=2) + H(ZL (qz)|c2z) + H(lr=z).

We wish to use this to bound H (% (gz)|c=z) from below. First note that trivially H (I;—z) <
log2 < o(logt). Note that by Lemma 4.3.11 we have that providing ¢ is sufficiently large
depending on € and u

Plt#17] < a™
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for some o € (0, 1) which depends only on € and u. We also know that conditional on 7 # T
there are at most K| (1T&)ml 4 gl(1—€)m] possible values for gz. This means that

H(Z(Qf)h-?éf—) < o"log <Kf(1+8)m1 +KL(1—£)mj> < ope(logt).

Therefore
S hrw —2€logK

H(Z(qz)|i=z) > logt — oy ¢(logt).

Recall that d is the distance function of some left invariant Riemannian metric and that
by the definition of M, given any N € Z-( and any two distinct x,y € PSL,(IR) such that for
each of them there is some n < N such that they are in the support of yt*" we have

d(x,y) > M)

In particular this means that if x and y are both in the image of gz then

d(xy) > M/;m(lJr&‘)Jroy(N)‘

Note also that trivially for all sufficiently small » we have d(exp(u),Id) < O(r) whenever
u € psl,(R) satisfies ||u|| < r. In particular since r; < M~™ this means that providing ¢ is

sufficiently large depending on M and a we have

d(sy, q,1d) < O(aM™™)

1+¢€)

almost surely. Therefore, providing € is small enough that M ;(1 < M and t is sufficiently

large depending on U, a, € and M we have

1
d(s q,1d) <= min d(x,y).
(5.0, 10) 2 x.yeSqz x#y (x.7)

In particular by Lemma 2.2.11 and Definition 2.2.7 we have
H(Z(q0)lr=1% 2L (s5,.a)) = H(ZL(qr)1=2) + Pt = TJH(Z (57, 0))-

Putting this into the estimate (4.19) for H(gzsy, 4) We get

hrw —2€logK

H(qfsrl ,(1) 2 logt+H(SSlaa) _Olu_/M’a/g(logt)
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Since € can be made arbitrarily small this becomes

h
H(qesr.a) > % logt +H(sy, a) — 0pp.a(logt)

as required.
Now to prove (4.15). Fix some € > 0 and let A be the event that

lgell < ',

First note that by Theorem 4.3.12 and Lemma 4.3.11 there is some 6 depending on u and €
such that for all sufficiently large (depending on u, € and b) t we have

PJAC] <179,

Note that when A occurs ||gzSy, o|| < Rt!T€ar). Therefore by Lemma 4.3.14 the image
of g¢Sy, 4 is contained in a set of /-measure at most Oy 4 (t2+2€) where 77 1s our normalised

Haar measure. Trivially by Jensen’s inequality this gives
H(ZL(qcSra)|a) < (242€)logt + oy pm.q(logt). (4.23)

Now we need to bound H(.Z(q¢Sr,.q)|4c). We will do this by bounding the Shannon
entropy H(-Z(qz)|4c). It is easy to see that the contribution to this from the case where
2logt

T is at most t“s% logK. By Theorem 4.3.12 the contribution from the case where

T = n for some n >

—ZI;g’ can be bounded above by a"'nlogK where o € (0,1) is some

constant depending only on (. From summing over 7 it is easy to see that
H(Z(qz)|sc) < op(logt).

This gives H(.Z(qzSry,a)|ac) < 0u,m.a(logt). Combining this with (4.23) and noting that &
is arbitrary gives (4.15).
Subtracting (4.15) from (4.14) gives

h
H(qesr.a) — H(quSra) > (% — 2) logt + H(sy, a) — op p.a(logt).

Noting that |H (s,, 1) — 3logra| < O4(1) < om puq(logt) gives (4.16) as required. O

We will now prove Lemma 4.3.14.
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Proof of Lemma 4.3.14. First let

1
1 x 20 cos O
My = “ ("
(O 1) (0 y 2> (sm@

Note that we have
and

meaning that
1

[ m—ryi= max{y?, |xly "%,y 3.

This means that we have

1
ty2

12 27 |
w(K,) <O /t 1/0 2 d0dsdy

2 _[yj

t2
3
=0 (r / y‘2dy>
-2

as required.

—sin0

cos 6

) |

4.3.3 Variance of a disintegration of a stopped random walk

In this subsection we will prove Proposition 4.3.5 and then use this to prove Proposition

1.4.19.

Proof of Proposition 4.3.5. Let T = 1, , and let a > 1 be a number we will choose later. Let

Ly gtz
rir=a M * andlet

h logMlogt

a 10logM” yxlog?2
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Note that

1 logM 1 logM hrw

t X /t% <oN< tx Jrior
4 - T2 '
Given u € [1,2) and an integer i € [1,N] let

ki(u) == H(qzmyi-1,,, 7a) —H(myi-1,y, o) — H(qeMiyy, o) +H (M1, 4)-

Note that by Proposition 4.3.3 there is some absolute constant ¢ > 0 such that we have

S}

a

v(ge;a2iury) > ca 2 (ki(u) — 0(e™ %) — 04(2'r1)). (4.24)

This means that

N N )

Y v(geia2iury) > ca Y ki(u) — O(Ne™ ¥ a=2) — 0a(N2Vry).
= =

Note that for u € [1,2) we have
hrw

a2Nury <t 0

and
logM

a21ur1 >t 1.

This means that

t_ll?)ggj\; 1 21 N a2
/_logM —v(qeiu)du > ca_z/ - Zki(u) du— O(Ne_Ta_z) — OQ(NZer). (4.25)
t logx U 1 I/tl.:1

Clearly for any fixed u € [1,2) we have

=

I
—_

ki(u) = H(quurl ,a) - H(murl ,a) - H(quZNurl ,a) +H(m2Nur1,a)'

1

This means that by Proposition 4.3.4 we have

N
h
Zki(u) > (% — 12) log? +3log2Nur, +op p,aw(logt)

h 3h
> (ﬂ —2- R;;’) log? + o a,w(logt). (4.26)
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a2
LetC be chosen such that the error term O(N e_Ta* 2 in (4.25) can be bounded above
by CNe™ % a‘2 Note that this is at most C, logM ~Ta2logt. Let ¢ be as in (4.24). We take

our value of a to be
100C logM
a=2/log o8 .
clog2 ]’lRW

Note that a depends only on u and M. This means

a2 hrw
CNe Ta2 < a_2 xclogt

Note also that N2Vr| < oy y(logt). Therefore putting (4.26) into (4.25) we get

_hrw
e 1 hrw 3hrw  hrw
et —V(gpu)du>ca 2| =L —2— — logt log?).
/[_1%(M uv(qf u)du > ca ( P’ P 100%) ogt + oy w(logr)

In particular providing h’;c—w > 10 we have

B hrw

/logM —v(qesu)du 2 a” ( P >logt—|—oM“W(logt)
t

X u

logM

Noting that a> < O(max {1 log
u, M, and w) t we have

}) we have that for all sufficiently large (depending on

logM

_ylogx -1
1 h logM
/ g —V(qziu)du 2 (ﬂ) (max{l,log o5 }) logt
¢ Togx u X hRW

as required.
O]

We wish to prove Proposition 1.4.19. First we need the followwing corollary of Proposi-
tion 4.3.5.

Corollary 4.3.15. Suppose that V is a probability measure on P'(R). Suppose that i is a
strongly irreducible measure on PSL,(R) with finite support and that the support of PSL,(R)
is not contained in any compact subgroup of PSL,(R). Suppose further that My, < oo and let
M > M,,. Suppose that M is chosen large enough that hgy <logM. Then for all sufficiently
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large (depending on 1, V, and M) t we have
hpw

t ~ 10logy 1
/P 1 / oo v(q,, ) du ¥ (db) 2

logM "
(hR;W) <max{1,10g o2 }) logt.
X X

Proof. Given u and M let
(t) := {b € P'(R) : 1 is large enough to satisfy Proposition 4.3.5 for this b,y and M}

By Proposition 4.3.5 we know that S(t)  P!(R). Therefore (S(¢)) , 1. In particular
A 1 .
-7 ’

providing ¢ is sufficiently large (depending on u and M) we have V(S(¢)) > 5. This, along
) is always non-negative, is enough to prove Corollary 4.3.15. [

with the fact that v(-;-) i

This is enough to prove Proposition 1.4.19

Proof of Proposition 1.4.19. Recall that i1 = {1106501‘” . Let
logM _ hgw
A c—t 2y ZOmX
Define ap,az,...,axyn+1 by
logM .
7 Al*l )

a .=t

logM _hpw . g0 .
10x . Furthermore, providing hgw / is

~x and Qmpy1 =t

Note that this means a; =t
sufficiently large we have
B <A<

In particular a; | > a;.
Let U,V be defined by

i
U :=|Jlazi-1,a2)
i=1
and )
m
V= Jlazi,azi11).
i=1
_logM _ hrw
Xt 10x

Note that U and V partition {t
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Let ¢ > 0 be the absolute constant in Corollary 4.3.15. By Corollary 4.3.15 providing 7 is
sufficiently large depending on pt and M we have

h logM \\ !
/ / v(qr,,;u) V(db)du > ¢ (ﬂ) (max { 1,log g }) logt.
vuv JPY(R X hgw

In particular either

1 /h loeM )\ !
//P1 v(qs, :u) V(db) du > 2c( ;W> (max{l,log hiw }) logt. (427
1 hRW IOgM -
-u) V(db) du > 1,1 log?.
//Pl q% ) V(db) du 2c< P’ )(max{ og - }) og

Without loss of generality assume that (4.27) holds. Fori = 1,2,...,mlet 7; € (azi_1,a2;)

or

be chosen such that

A 1 o
/Pl ® v(qq,,: %) V(db) > 5 sup /PI(R)v(th’b,u) (db).

UE(azi—1,a;)

In particular this means that

JFi)V ;u) vV(db) du.
/Pl( ) (qftb )V - 210gA/a2, /Pl quh ( ) u

Summing over i gives

N 1 N
IZ{/Pl qT”” )v(d _210gA//pl u qr’b’ ) V(db)du

hRW logM -
> 1.1 log?.
4logA ( )( { °% T }) 08!

Noting that logA < O(logt) we get that providing 7 is sufficiently large depending on p and

M that
loeM
Z/ v(qr,,;7i) V(db) > (hk;w) (ma {1 log o8 })
X hrw

for some absolute constant ¢’ > 0. Finally note that A > 3 means that Fix1 = t3f,-. O
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4.4 More results on regular conditional distributions

Before proving Theorem 1.3.13 we first need a few more results on regular conditional

distributions. First we need the following definition.

Definition 4.4.1. Let (Q,.7,P) be a probability space and let o7 C .% be a c-algebra. We
say that two - algebras ¢],%, C .% are conditionally independent given <7 if for any U € ¢
and V € % we have

PlUNV|e/| =PlU| PV ||

almost surely. Similarly we say that two random variables or a random variable and a
o-algebra are conditionally independent given 7 if the o-algebras generated by them are

conditionally independent given o7
Now we have these three lemmas.

Lemma 4.4.2. Let (Q,.7,P) be a probability space and let </ C .F be a 6-algebra. Let g
and x be random variables on (Q,.7 ,P) with g taking values in PSL;(R) and with x taking
values in X where X is either PSLy(R) or P'(R). Suppose that g and x are conditionally
independent given <7. Then

(gx|7) = (8|) * (x|-7)
almost surely.

Proof. This follows by essentially the same proof as the proof that the law of gx is the

convolution of the laws of g and of x and is left to the reader. [

Lemma 4.4.3. Let (Q,.7,P) be a probability space and let o C ¥ be a G-algebra. Let g
be a random variable taking values in some measurable space (X,&). Let 4 be a 6-algebra
such that

o CYCF

and g is independent of ¢ conditional on 7. Then

(8|9) = (|#)
Proof. This is immediate from the definitions of the objects involved. [

Lemma 4.4.4. Let (Q,.% ,P) be a probability space and let o C F be a 6-algebra. Let
g be a random variable taking values in some measurable space (X ,§). Suppose that g is

o/ -measurable. Then

(8le) = &
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almost surely.
Proof. This is immediate from the definitions of the objects involved. [

Lemma 4.4.5. Let (Q,.7,P) be a probability space and let o C ¥ be a G-algebra. Let g
be a random variable taking values in some measurable space (X,&). Let 4 be a 6-algebra
such that o/ C9 C % and g is ¢ measurable. Let A € </ and construct the c-algebra 4
by

o =0(A,{Geb:GCA}).

Then for almost all ® € Q we have

5 0, foeA
(gl ) (@,) = { o
(g|“)(@,-) otherwise.
Proof. Let
0(,) = Og ifoeA

(g|«)(®,-) otherwise.

We will show that Q satisfies the conditions of being a regular conditional distribution for g
given . Clearly Q is a Markov kernel. Now let D € o/ and let B € &. We simply need to
show that

PIDN{g € B}] = E[IpQ(-, B)]. (4.28)

First suppose that D C A. In this case the left hand side of (4.28) becomes E[Iplgcp] which
is trivially equal to the left hand side.

Now suppose that D C A¢. This means that D € .«7. In this case by the definition of
(g|97)(®,-) we know that (4.28) is satisfied.

The general case follows by summing.

4.5 Proof of the main theorem

In this section we will prove Theorem 1.3.13. Throughout this section we will let i be a
strongly irreducible finitely supported probability measure on PSL,(R) with the operator
norm being at most R on the support of tt. We will also assume that the support of u is
not contained in any compact subgroup of PSL;(R). Furthermore u will be o, ¢ - non-
degenerate for some o € (0,1/3) and ¢ > 0. We also adopt the convention of allowing the
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constants in O, o, ©, <, 2, and = to depend on @, ¢, and R without explicitly listing these
in subscripts.

We first construct a sample from the Furstenberg measure v using Proposition 1.4.17 and
Proposition 1.4.19 in such a way that we can bound its order k detail using Lemma 1.4.13,

Lemma 2.1.17, and Lemma 1.4.14.

Proposition 4.5.1. Let u be a finitely supported strongly irreducible probability measure on
PSL,(R) whose support is not contained in any compact subgroup of PSLy(R). Suppose that
M, < o and let ¥ be the Lyapunov exponent. Let R > 0 be chosen such that the operator
norm is at most R on the support of . Let v be the Furstenberg measure generated by .
Suppose that o € (0,1/3) and t > 0 are such that L is 0,t- non-degenerate.

Suppose that

h logM, )\ 2

"R (max{LlogM}) (4.29)
X hrw

is sufficiently large (depending on R, t and 0g). Suppose that C > 0.
Then for all sufficiently small (depending on |, R, C, t and o) ¥ > O there exists

n € Z~o, an increasing sequence of scales s1,s3,...,s, > 0, random variables g1,g>,...,8n

2.

taking values in PSLy(R), random variables u") | u' .,u\" taking values in psl,(R) and

a random variable b taking values in P'(R) such that
grexp(uM)grexp(u®) ... g exp(u™)b (4.30)

has law v and the following holds.
There is a 6-algebra </ on the probability space where g;, u), and b are defined, an

f -measurable event A, and an < -measurable random index set I C [1,n| NZ such that

AL (grexp(uM)...g exp(u)b|a) = 8q, * (exp(uM)]a7) - -- % O, * (exp(u™)|a?) *
5.

A2. We have C"s, < (logi~1)~10,
A3. P[A] > 1— (log#—1)~10,

Furthermore for all ® € A the following holds. For all i € I, we have
Ad. ||g182...gill* = si/F

AS, Hu@

<s;.

A6. gir18i+2---8nb € Ur/4(u(i)’<527)-
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Fori¢ I, we have u) =0 almost surely. If ® € A and we can enumerate [ as iy <ir < --- <y
then

A7. ||g182--.8i,|| > C and for all j € [ii — 1] we have Hg,'jgijJrl...ginH > C.

AS8. For all j € [ii] we have

d(b™(8i, 1118 1+2---8i;) b (8418142 ---8j;1)) > 1/8

with ij_1 replaced by 1 in the case j =1 and b* (gij+1gl-+2 . .gjo) replaced by gi. ., . ..gub

in the case j = i.
Furthermore for all ® € A we have

i -2
A9. Z,-H%W 2 }“‘TW (max{l,log%}) loglog#~!.

Si

Here U, /4 from Condition A6 is as in Definition 4.1.5. We now briefly discuss the role of
each of the conditions in the proof of Theorem 1.3.13. We let x denote the random element of
P'(R) given by (4.30). We prove Theorem 1.3.13 by applying Proposition 1.4.17 in the case
® € A and then using Lemmas 1.4.13, 1.4.14, and 2.1.17 to get an upper bound on the order
k detail of (x|.<7) for an appropriate choice of k. In the case ® ¢ A we use the trivial bound
sth) (x|.e7) < 1. Using the convexity of st (+) we bound st (x) by taking the expectation of
this. After this we complete the proof using Lemmas 1.4.10 and 1.4.11.

We need Conditions A1, A4, A5, A7, and A8 in order to be able to apply Proposition
1.4.17 in the case ® € A. We need Condition A2 to show that the contribution to the order
k detail introduced by the Wasserstein distance in Proposition 1.4.17 is small. We need
condition A3 to show that the contribution to s\~ (x) from the case where @ ¢ A is small. We
need Condition A6 in order to apply Proposition 4.1.2 which will enable us to control the
variance of the Ci(u(i)) in Proposition 1.4.17. Condition A9 is needed to ensure that we can
apply Lemma 1.4.13 enough times.

The details of how we deduce Theorem 1.3.13 from Proposition 4.5.1 will be given in
Section 4.5.5.

To show that our random variable (4.30) is a sample from v we will require the following

Lemma.

Lemma 4.5.2. Let 11, ,... be i.i.d. samples from W and let (F;);-, be a filtration for
Y1i,%,-... This means that the F; are c-algebras such that 7\ C %, C ... and Y; is ;-
measurable. Suppose further that Yy is independent from %#;. Let T be a stopping time for
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the filtration (F;)7,. Suppose that v is a W invariant probability measure on P'(R). Let b
be a sample from v which is independent from (.%;);_,. Then

Nny...yrb
has law v.

This lemma is trivial and the proof is left to the reader.

In the proof of Proposition 4.5.1, we construct a sample of v in the form
x = bofihiby fohoby . .. fuhnbpb (4.31)

where by, f1,hy,...,b, are products of consecutive elements of the sequence 71, 7>, ... of i.i.d.
sample from u defined using suitable stopping times, and b is a sample of v independent of
Y, %2,

By Lemma 4.5.2 x is indeed a sample from v.

In addition, we will also define a o-algebra ./ and .o/-measurable random variables
ap,ap,...,a, taking values in PSL(IR) such that, amongst other things that we will discuss
later, the following holds. The random elements b;, f; and b are .o/ -measurable for all values
of i. In addition, hy,...,h, are conditionally independent given .«#. By Lemmas 4.4.2 and
4.4.3 these imply that

(x| ) = By * S, * 84y % (a7 "y | ) 5 % (ay ' hn| ) % 8, % B,

We take our values in Proposition 4.5.1 to be g := bg f1a1, g2 := b1 fraz and so on, uli) =
log(a; 'h;) and b := b,b.

The rest of the section is organised as follows. We give the details of the construction
(4.31) in Section 4.5.1 and give some results about the construction. Sections 4.5.2, 4.5.3, and
4.5.4 contain the proofs of some of the properties claimed in Proposition 4.5.1. Conditions
Al and A7 will follow immediately from the construction of our sample and the results
of Section 4.4. Condition A2 will follow easily from our results on the construction. We
prove Condition A3 by showing that each of the Conditions A4, A5, A6, and A8 occur on
o/ -measurable events with probabilities at least 1 —o((log#~')~!?). Condition A9 will be
checked in Section 4.5.3.

Before we go on, we make a few remarks on the role of the elements b;, f;, and A; in our
construction. The A; will be defined in such a way that Proposition 1.4.19 can be applied to
them with appropriate choices of the parameter . Using the scales 7; in that proposition we

define a sequence of scales s; such that v(h;;s;) is large on average by the proposition. Using
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the definition of v(h;;s;), we can find a o-algebra .<7; and an .o7;-measurable random variable
a; taking values in PSL,(R) such that Hlog(a.’lhi) || <siand

E [Var [log(ai_lhi)|£/i}} > v(hi;si)/2.

The role of f; will be to set the norm of g;g>...g; to the correct size so that Condition A4
from Proposition 4.5.1 holds.

The role of b; is less intuitive. For technical reasons, before we define f;, we need to
know whether i — 1 belongs to the set of nice indices I in Proposition 4.5.1. By defining b;_{
first, we will be able to decide whether or not Conditions A8 and A6 in Proposition 4.5.1 are
likely to hold for i — 1 and this will allow us to make a decision on whether or not to put i — 1
inl.

4.5.1 Construction at a scale

In this section we give the detail of the construction outlined above. Fix a sufficiently small
7> 0. The construction depends on a number of parameters which we fix now.
We choose M such that M > M, and hgw < logM. To do this, we set

M = max{exphrw,2M, }.

We set

ko= [oxp(oglogr 1)

This value of K is chosen to ensure that for small # we have that RX is smaller than any
polynomial in #~! and larger than any polynomial in log(#~!) where R is the constant in
Proposition 4.5.1.

We set n = miin where m = “0(%01‘; J is the number of scales that appear in Proposition

1.4.19 and m is a number depending on 7 to be chosen below.

We also let € > 0 be some number depending only on U, R, t, and o which we will fix
later.

We set

f e Ol (4.32)

We will apply Proposition 1.4.19 for each of the values

f(wg’l%)j_l (4.33)
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in the role of 7 for j = 1,2,...,m. We choose m to be the largest possible value such that

hpw

m—1
il ol > RIOOK, (4.34)

We define the sequence t1,1,,...,t, by repeating each of the values in (4.33) 72 times. Recall

h .
that gy < logM and so % < ﬁ. This means that #; > ;1.

hgw !
When we apply Proposition 1.4.19 for 7 ( 100logM ) in the role of ¢. For each j we get a

sequence of scales 7,7, ...,7;. We define the sequence s, s7,...,s, in such a way that for
each j € [m] the elements 5541, . .. .S(j+1)m are these scales in increasing order.

Now let y;,7%,... be i.i.d. samples from y and let b be a sample from v which is
independent of the 7. In what follows we define a sequence of stopping times Ty < S| <
T'<SH<Dh<--- <8, <T,random variables f1, f>,..., fn, h1,h2,...,hy, bo,b1,b2, ... by,

ap,ap,...,a, taking values in PSLy(R) and random variables y;,y»,...,y, taking values in
P'(R). We also construct a filtration .%y C .#| C --- C .Z,.
Let

To:=min{n: ||y ...%| > R}

and letbg = Np... Y-
Let

Slzmin{n2T0—|—1:

T.T T b= (bn)t- K !
SIS B P
Y Y1+ Vi410” (Do) ‘ X{ tlﬁ\lbo!!}}

and let fi = Y5, +1...7s,. Note that this definition is chosen so that we can control ||bofi||.

Let %)= O'(b()).

Let k € [1,n] be an integer. Suppose that y; , T;, h;, a;, b;, and .%; are all defined for i < k
and S; and f; are defined for i < k. We define yi, Tk, gk, bk, Fk, ax, and if k <n—1 S, ; and
Jx+1 as follows.

We let V denote the measure from Theorem 1.4.20 with our choice of ©. We now define

the random variable yy.

Lemma 4.5.3. Providing 7 is sufficiently small (in terms of U, R, 0 and t) for each integer k €
[1,n] we can choose a random variable yy, taking values in P'(R) such that it is independent

of Fi_1 and is such that ykL has law V. Moreover, we may ensure that

P[d(yk,bi(fk)) < 8‘9}671] >1—¢. (4.35)
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We will prove this lemma later in the subsection. We choose y; such that it satisfies the
requirements of the lemma.

Next we define

Tk:min{nsz—l—l:

T.T T oL
Yo Ya—1---Vs+15k H > ’k}

and we set fy = Y5, 41... V1.-
We choose this definition so that we can apply Proposition 1.4.19. Note that by Lemma
4.1.11

1bofihy ... b1 fihull = |bofih .. b1 fill - |l sind (b7 (hi), b~ (bofih1 .. .bi—1f2))
= ||bofih - b1 fill - [l sind (b7 (hi), b~ (i)
~ [[bofily - b1 fill - |1l sind (B (hi), yx)
= ||bofil ... b fill || e |
~ ||bofihi - . b1 fell t-

We will define Sy in such a way that we can control ||bofih ...bg_1 fi||. This allows us to
control the size of this product which will ultimately enable us to ensure that condition A4 is
satisfied.

We now choose a o-algebra szf?( and a sz;( measurable random variable g, taking values
in PSL,(R) such that Hlog&,;lth < s; almost surely and

N 1
E [VAR@ [hk|£7k,yk} |)’k} > ESiV([hkb’k];Sk)- (4.36)

This is possible by the definition of v(+;-). See Definition 1.4.18. Note that by our use of

Proposition 1.4.19 in the construction of the s; for all j € [m] we have

jift ~1
y sk_zE[VAde [hk|szf;(,yk} |yk]z<h§6—w) <max{1,loglogM}) . (437

ke=(j—1)+1

We also require ), to be independent of .%;_; and of yg,11,¥n+2,.... Since hy is
independent of these this is trivially possible providing we take our underlying probability
space to be sufficiently large.

We now let by = Yp 11Yr42--- Y1 4K-

Now we need to decide if k is one of our “nice” indices. We let k € I if and only if the
following hold
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L. d(b™(fi),yx) <E&.

2. d(y,b"(a)) > 100e.

3. b (by) € Uyya s (logay ' hil ).
4. d(b=(ay),b" (b)) > /4.

Conditions (1) and (2) will be used to ensure that Condition A4 occurs with high probability.
Condition (3) will be used to show that Condition A6 occurs with high probability and
Condition (4) will be used to ensure that A8 occurs with high probability.
If k € I then we let a; = d; and <%, = <. Otherwise we let a; = hy and <7}, = o (hy). We
now let
Tk = 0 (Fk—1, Jis Yio> Ak e, b

Finally if k < n we let

Sk+1:min{ n>T,+K+1:

W Yot - Virk1b (bofiarby .. -fkakbk)LH >

max {RK, = VS } }
teV/Fllbofiarby ... frarby|

and let fri1 = Yn4k+1--- Vs, -
We need the following result.

Lemma 4.5.4. Providing 7 is sufficiently small (in terms of U, R, 0, and t) We have

logM |\ !
m= (max{l,log 08 }) loglogf”*1
hrw

logM logM Y\~
°8 (max { 1,log o8 }) loglog 7l
X hrw

and

I

n

Proof. Note that by our definition of m we have

xlogi™!
log 1000K logMlogR 1
log 100logM

hrw

m =

Our estimate for m now follows by a simple computation which is left to the reader. The

estimate for n follows by combining our estimate for m with the definition of . 0
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Lemma 4.5.5. We have

" BIVAR, [l A _ h logM )\ 2
Z [ aé[ d l]]z ;W (max{l,log o8 }) loglog?_]

i=1 Si

Proof. This follows easily from Lemma 4.5.4 and (4.37). L]

Lemma 4.5.6. For all integers i € [1,n— 1] we have
Siy1 > 1750 (4.38)

Furthermore providing 7 is sufficiently small (in terms of U, R, &, and t) we have

s1 > RPKe2 7 (4.39)
and
_ IOhRWK
sp <R % . (4.40)

Proof. First we will deal with (4.38). Recall from Proposition 1.4.19 that

_ logM _hRW
X 10y
Si € (ti iy )

and that when 711 i we have s; > ti3+1s,-. In particular this means that we have dealt with

the case 711 i. In the case 71|i by Proposition 1.4.19 we have

and
_ logM
X
SH‘l 2 tH.l .
We also have by (4.33) that
100logM
h
=1t "
This means that
_ hrw 100logM
3 10y hgw
L8 Sty
3 101;)CgM

=1,
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Note that by the requirements of Proposition 4.5.1 we may assume that the quantity in (4.29)
is at least 2. In particular this means that Agw > 2) and so noting that logM > hry we get
3_10logM  _logM
g © Sty

< Sitl

as required.
We will now deal with (4.39). Note that by Proposition 1.4.19

Substituting in our value for #; from (4.32) and (4.33) we get

c‘_‘

§1 2 F1
We also have by the fact that logM > hgwy > 2%
R2K 25 < R2OK iy

Since RX grows slower that any polynomial in 7! this is less that s; for all sufficiently small

r.
Finally (4.40) follows from the fact that by (4.34) we have

t, > RIOOK

and by Proposition 1.4.19 we have

]

To prove Lemma 4.5.3 we recall some results on the speed of convergence to the Fursten-

berg measure which will also be useful later.

Lemma 4.5.7. Let | be a probability measure on PSLy(R) which is strongly irreducible and
whose support is not contained in any compact subgroup of PSLy(R). Let y1,%,... be ii.d.
samples from W. If for some T >0

[exp(eiogligl)dn(e) <=
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then there exists 0 > 0 such that for each a € (0, 8] we have

- a 1/n
(d<'}/1'}’2---?:nx73/17’2---7ny))]) <1

d(x,y)

lim sup E
"% \ryeP! (R) xy

where d is the metric on P'(R) given by

ey — 0
SR

Proof. This is [7, Section VII Proposition 2.1]. OJ
From this we get the following corollaries.

Corollary 4.5.8. Let i be a probability measure on PSLy(R) which is strongly irreducible,
finitely supported, and whose support is not contained in any compact subgroup of PSL,(R).
Let y1,%,... be i.i.d. samples from . Then there exists some C,8 > 0 such that for all
n,m € Z with m > n we have

Pld(b"(ny.. %), 0" (1. .Ym)) > Cexp(—6n)| < Cexp(—bn).

Proof. First note that d and d are equivalent metrics.

Note that since u is finitely supported in has an exponential moment. By Lemma 4.5.7
we know that the is some a > 0 and A; € (0, 1) such that for all sufficiently large n € Z~¢
and all x,y € P!(R) we have

A7)\ .
E[( J(x,y) )]<’“'

We know that d(x,y) < 1. This means that for all x,y € P!(R)

E[(dn...5xn - 0)) "] <AL

By Markov’s inequality and the fact that d and d are equivalent we may deduce that there
is some A, € (0,1) such that for all sufficiently large n € Z~ and all x,y € P!(R) we have

Pld(- 1,71 %y) > A < Ay
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Let u be a uniform random variable on P! (IR). We now apply the above equation with u

in the role of x and %, ... %;»u in the role of y. This gives

PlA(V - Yt Y- Yutt) > A3] < A7 (4.41)

By Theorem 4.3.12 we know that there is some A3 € (0, 1) such that for all sufficiently
large n
Pliny. . mll <exp(ny/2)] <23

By Lemma 4.1.9 this means that there is some A4 € (0, 1) such that for all sufficiently
large n we have
Pld(Vi ... %, b (7. %)) > AJ] < A4

The result now follows by applying this to (4.41). [

Corollary 4.5.9. Let u be a probability measure on PSLy(R) which is strongly irreducible,
finitely supported , and whose support is not contained in any compact subgroup of PSLy(R).
Let y1,,... be i.i.d. samples from | and let b be a sample from v independent of the 7.
Then there exists some C,0 > 0 such that for all N € 7~ the probability that there exists
m,n € Z~q with n,m > N such that either

dbT(np... )b (NPY... %)) > Cexp(—3N)

or

dbT(Mp... 1) NP Ymb) > Cexp(—8N)

is at most Cexp(—O9N).

Proof. This follows immediately from Corollary 4.5.8 and the fact that a geometric series

convergences. [

Corollary 4.5.10. Let 1 be a probability measure on PSLy(R) which is strongly irreducible,
finitely supported, and whose support is not contained in any compact subgroup of PSLy(R).
Suppose further that I is 0,t - non-degenerate. Let s € (0,t) and let By > 0. Let Y1, 7, ...
be i.i.d. samples from W and let g, = 17Y> ...V, Then there exists some N € Z~q such that
for all a € R we have

P[Vn > N such that §(b" (q,)) € (a,a+s)+Z] > 1 — fy.

Proof. This follows easily from the definition of ¢, - non- degenerate and Corollary
4.5.9. [
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We also need the following result from [7].

Lemma 4.5.11. Let u be a probability measure on PSLy(R) which is strongly irreducible,
finitely supported, and whose support is not contained in any compact subgroup of PSL,(R).
Let v be the corresponding Furstenberg measure. Given x € P'(R) and r > 0 let B(x,r)
denote the (open) ball centre x and radius r in P! (R). Then there exist constants C,6 >0
such that

V(B(x,r)) < Cr. (4.42)

Proof. This is [7, Chapter VI, Corollary 4.2]. [
We are now ready to prove Lemma 4.5.3.

Proof of Lemma 4.5.3. First note that by Theorem 1.4.20 and the fact that RK — o0 as # — 0,
providing 7 is sufficiently small (in terms of p and R) for each integer k € [1,n] we can
choose a random variable y; taking values in P! (R) such that it is independent of .%;_1, such
that ykL has law V and such that

PO /b (bo) ) > €/2] < /2.
Now choose 8 > 0, N € Z- such that for all « € P!(R) we have
PEn>N:d(b"(np...1),a) > 8] < €/2.

Note that this is possible by Corollary 4.5.9 and Lemma 4.5.11.
From this it follows that providing 7 is sufficiently small (in terms of y and R) we have

Pld(b™(f{),b™(bo)") < 8] < /2.

Now apply Corollary 4.1.10 with min(§,€/2) in the role of €. Noting that || fi || > RK —

means that providing 7 is sufficiently small (in terms of y and R) we have
Pld(fi' b (bo) b~ (fi) ") > €/2] < €/2.
The result follows. [l

4.5.2 Checking the size of products

In this subsection we will check that Condition A4 from Proposition 4.5.1 holds.
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Definition 4.5.12. Let B be the .% -measurable event that for all integers i € [1,n] we have

d(b*(fi),b~ (bo frarby ... fi-rai1bi1)) > R5/? (4.43)

and
d(b*(a;),y;) > RK/? (4.44)

and
d(b™(a;),b™ (bofiarby ... fimrai—1bi1 f;)) > R5/? (4.45)

and
d(b’(boflalbl .. .f,-)7b’(f,-)) < E. (4.46)

Lemma 4.5.13. Let g1,8> € PSLy(R). Then

d(0"(8182).b(g1)) < O(|lg1] g2 (4.47)

and

d(b(8182),b (82)) < O(llg* 18211 ). (4.48)

Proof. First we will deal with (4.47). Given & > 0 let
W(h):={be P'(R):d(g:b,b"(g1)) <h}.

Note that by Lemma 4.1.16 we know that m(W (h)) < O(||g2|*h) where m denotes the
pushforward of the Lesbegue measure under ¢.

Choose c¢; > 0 to be some absolute constant small enough such that if we let h =
¢1 llg2]l > then we have m(W (h)) < %. Now choose b € P'(R) such that b ¢ W(h) and

d(b,b~(g182)) > 15-
Note that by Lemma 4.1.9

d(g1g2b,b™ (2122)) < O(|lg121l %) < O(lla1 ]l % lle2ll*)

and
d(g182b,b™(g1)) < O(llg1l>h~) < O(llg1] > llg2ll)-

This gives the required result. (4.48) follows from taking the transpose of everything. [

We also need to show that under B everything is of approximately the correct size.
Specifically we will prove the following.
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Lemma 4.5.14. If B occurs and 7 is sufficiently small depending on U, R, t and o then for

every integer i € [1,n] we have

max {RK, = Vi } = — Vi , (449
ti\/l_’ ||b0f1a1b1 .. -fi—lai—lbi—l H l‘i\/;‘ ||b0f1a1b1 .. ~fi—lai—1bi—1 H

A\
\bofiaiby ... ficiai_1bi—1 fi|| = \ 27 (4.50)

i

e s s;
R K\/;,S ||b()f1611b1...fiflaiflbiflfiain SRK\/E (4.51)
and
. S; S;

R ZK\/ ;l S bofiaiby ... fic1ai—1bi—1 fiaib;|| SRZK\/;’. (4.52)

Proof. We will prove this by induction. For i = 1 we know that (4.49) is satisfied by Lemma
4.5.6 and the fact that ||bg|| < RK*1,

Now suppose that (4.49) is satisfied for some given i. We will show that (4.50) also holds
for this i. Trivially from the definition of f; we have that

VB
iV |bofiarby ... fi1ai1bi |

>~ || fill sind (b~ (bo fiaiby . .. fi—1ai—1bi—1),b" (fi))

(4.53)

We also know by (4.43) that
d(b~(bofiarby ... fi1ai1biy),bT(fi)) > RK/2.

Combining this with (4.53) and applying Lemma 4.1.11 with A = 2 and r = R—%/2 gives
(4.50).

Now assume (4.50) holds for some given integer i € [1,n]. We show that (4.51) holds for
this i too. We know by the construction of A; that

t; 2 ||| sind (b (), yi). (4.54)

Note that Hlog a;lhiH — 0 as 7 — 0. In particular this means that providing 7 is suf-
ficiently small we can guarantee that ||a; lhiH < 2. We also know ||i;|| >t; > R10K, By

Lemma 4.5.13 this means that

d(b™(h),b" (a;)) < O(R™2K),
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In particular by (4.44) and (4.45) this means that

d(b* (hi).yi) 2 R°E

Y

and
d(b" (hi),b~ (bofrarby ... fio1ai_1bi—1f;)) 2 R™X.

Putting these as well as (4.54) into Lemma 4.1.11 gives

— S' S'
RS Wb i1t Sl S RS 3

(4.51) now follows from the fact that Hai_lhiH < 2.

Assuming that (4.51) holds for a given integer i € [1,n] we have that (4.52) follows
trivially for that i by the definition of b;.

Now suppose that (4.52) holds for some given integer i € [1,n]. We show that (4.49)
is satisfied for i + 1. This is immediate from Lemma 4.5.6. We are therefore done by

induction. 0
Finally we show that Condition A4 occurs.

Proposition 4.5.15. Suppose that B occurs. Then for all i € I we have

%)

i

\|bofiaiby ... fiai|| =

~t|

Proof. Suppose that i € I and B occurs. Note that by Lemma 4.5.14

S
Hb()flalbl “'fi_lal'—lbi—lfiH ~ \/tzzf
i

Note that by the construction of 4;
t; = ||hy|| sind (b (h;),yi). (4.55)
Note that by (4.46) and condition (1) of the definition of I we have
d(yi,b” (bofiarby ... fimrai—1bi—1fi)) < 2€. (4.56)
Note that by Lemma 4.5.13 we know that

d(bt(a;),b" (h)) < O(R™20K). (4.57)
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In particular providing 7 is sufficiently small we have
d(b*(a;),b* (b)) < €.
Combining this with condition (2) of the definition of / and (4.56) gives
d(b™ (h:),b™ (bofiarby ... fi-1ai-1bi-1 ;) > 50€.
In particular
sind(b™ (), b~ (bofiarby ... firai—1bi—1 f3)) = sind(b™ (hs),yi").

Note that by (4.45) and (4.57) providing 7 is sufficiently small we have

d(b™(hi),b™ (bofiarby ... fimrai—1bi1 ;) > 2R7K/2,

By applying Lemma 4.1.11 withA =2 and t = 2R K/2 we get

%)

i

\bofiaiby ... fihi|| =

~t|

The result now follows from the fact that ||af1hi“ <2.
l

Note that Proposition 4.5.15 is enough to prove that Condition A4 holds as long as we
ensure that B C A. This means that we just need to show that P[B] is high.

Lemma 4.5.16. The probability that B occurs is at least 1 — oy ((log#—1) 710,

Proof. Note that for the conditions (4.43), (4.44), and (4.45) in the definition of B using
Lemma 4.5.13 and Corollary 4.5.9 we can find some C, d > 0 such that for any fixed integer
i € [1,n] the probability of the condition not occurring is at most Cexp(—6K).

By Lemma 4.1.12, (4.43), and the fact that || f;|| > RX we may do the same with (4.46).

This means we can write then B as the union of O(n) events each with probability at
most Cexp(—9dK).

This means that

P[B¢] < O(nexp(—8K)).

We know by Lemma 4.5.4 that

n < 0y (loglogi™t).
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Combining this with the definition of K gives the required result. 0

4.5.3 Sum of variances

In this subsection we show that with high probability Condition A9 is satisfied. We do this
by showing that the sum is nearly a sum of independent random variables. To make this work

we need the following modified version of Cramer’s Theorem.

Lemma 4.5.17. Leta,b,c > 0 withc < aand let n € Z~y. Let X1, ...,X, be random variables

taking values in R and let my,...,m, > 0 be such that we have almost surely
E [Xi‘X] goos ,Xi—l] Z m;.

Suppose that ¥ | m; = an. Suppose also that we have almost surely X; € [0,b] for all inters
i € [1,n]. Then we have

PXi 4+ X, <nc] < (G)b (Z:i)l—i;')"‘

Proof. First note that by Jensen’s inequality for any A > 0 we have

Ele X, X ) < (1- %) + %e—“’. (4.58)

Therefore we have

Ble o < IT((1-5) + e ™)
i=1
< ((1 — %) + geilb)n. (4.59)

with (4.59) following from the AM-GM inequality. Applying Markov’s inequality for any
A >0 we have

P(Xl 44X, < I’lC) < e/'l,ncE[e_l(Xl_‘_.,._‘_Xn)]

< <e’“ ((1 . g) n %‘“))". (4.60)

We wish to substitute in the value of A which minimizes the right hand side of (4.60). It is
c(b—a)
a(b—c)

of A is at least 0 because ¢ < a. Note that with this value of A we get e™

easy to check by differentiation that this is A = —% log . It is easy to see that this value

Ab _ c(b—a)
a(b—c)

and
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a(b—c)
R =
(b—a)(b—c) c(b—a)

The result follows. O]

Remark 4.5.18. We could deduce a result similar to Lemma 4.5.17 from the Azuma—Hoeffding
inequality. In our application of this result a will be very small compared to b. In this regime
the Azuma—Hoeffding inequality is inefficient for several reasons the most important of
which is the inefficiency of Hoeffding’s Lemma in this regime. Indeed using Hoeffding’s
Lemma to bound the left hand side of (4.58) would lead to a bound of

212
exp (—lmﬁ— A—b> .

When we apply the lemma we end up with m; being very small, b = 1, and A ~ log2. Clearly
this bound is weak when this occurs. It turns out that the bound from Azuma-Hoeffding is
not strong enough to prove Theorem 1.3.13 in its current form but we could prove a similar
result with the left hand side of (1.3) replaced by

hrw hrw logMy, -
—— | | max  1,log .
logM X hrw

We wish to apply Lemma 4.5.17 with

X; = 572 VAR, [hi| o, yi|Lict.

Trivially the expression on the left of Condition A9 is X; + X7 + - - - + Xj,.
By Lemma 4.5.5 we know that

, h logMy, |\ >
sl._z]E [VAR@i[hi|£%i,yi]] 2 (ﬂ) (max{l,log el }) loglog7~!.
X hrw

B

1
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Also we have X; € [0, 1] because log(a; '4;) is contained in a ball of radius s; around 0. This
means that in order to apply Lemma 4.5.17 we just need to get a lower bound on E[X;|.%;_1]
in terms of E [VARy, [hi| .97, yi]]. Specifically we will prove the following.

Lemma 4.5.19. Given any 6 > 0 providing € is sufficiently small (depending on 8, &, and
W) and 7 is sufficiently small (depending on 6, o, U, and €) we have

E[X;|Zi1] > 5 (1 —300)s; *E[VARq [hi 7, yi]] = 6.

| =

Proof. Given some integer i € [1,n] let K; be the event that
« d(b™(fi).yi) <&
« d(y;,b"(a;)) > 100
and let L; be the event that
* d(b(a:),b" (bi)) >1/2
* bt (bi) € U,y s(loga;  hil o).

Note that the event i € I is K; N L;. We will prove the lemma by showing that IP[KlC | can be
made arbitrarily small and bounding P[L;|-%;_1, o, ,yi] from below.
First we wish to find an upper bound on P[K¢]. By the construction of y; we know that

Pld(b™ (fi),yi) < €|Fi—1] > 1 —€.
By definition we know that

hi =Y +1Ys42- - Vi

Let
hi = ,}i_fgob+(75k+1}’sk+2 oY)

We know that T, — Sy > K. Therefore by 4.5.9 there exist some Cy, ; > 0 such that providing
7 is sufficiently small (depending on €) we have

Pld(b™ (hi),hi) > €|Fi 1] < Crexp(—K&).

In particular providing 7 is sufficiently small (depending on €) this is at most €.
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Next note that by Lemma 4.5.11 and the fact that /; is independent of y; we have
Pd (i, yi) < 200e|.Z;i_1] < Cre%

for some C», 0, > 0.
Finally by Lemma 4.5.13 we know that providing 7 is sufficiently small d(b™ (h;),b" (4;)) <

Combining these estimates gives that providing 7 is sufficiently small (depending on €)
we have.
PKE|.Z; 1] < 2e +Cre®.

In particular providing € is sufficiently small and 7 is sufficiently small (depending on €) we

have
PKE|Fi1] < 6. (4.61)

We also know by Corollary 4.5.10 that for any By > o providing 7 is sufficiently small
PIL{ | i1, 1] < 3Po.
In particular this means that if we choose Py sufficiently close to &g we may guarantee that

P(Li| Fi1, i) > = (1 —30p). (4.62)

N —

Let X; = 5,2 VAR, (|, yi|I1, and let X; = 572 VAR, [hi| %, yi|Ic. Note that X; >
X; — X;. Also note that since log(di_lhi) is contained in a ball of radius s; around O we have
si’2 VAR, [h,-|;zf§,y,-] < 1. This means that by (4.61) we have
E[Xi|Fi-1] < 6.
We also have by (4.62) that

E[X;|Zi 1] > ~(1—300)s; 2E[VAR,[gi| ).

| =

This gives the required result. 0

We are now ready to prove that Condition A9 holds with high probability.
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Proposition 4.5.20. Providing

h logM, 1\ ~°
ﬂ(malx{Llog °g “})
X hrw

is sufficiently large (depending on o0, t, and R) and 7 is sufficiently small (depending on 0,
t, R, and ) then Condition A9 is satisfied with probability at least 1 — o, ((log#—1)~19).

Proof. We let
Var[u)|.o7]
— .

T=Y =

iel i

We will apply Lemma 4.5.17. As mentioned previously

Var[u®)| /] VARg,[hi|.<7, i)
5.2 - S~2

Lier.

We will call this quantity X; and apply Lemma 4.5.17 to X1 + X5 + - - + X,,.
Let 6 > 0 be as in Lemma 4.5.19. Note that by Lemma 4.5.19 we may take

— max{%(l —30)s; “E[VAR, [hi| 4, yi]] — 5,0} )

By Lemma 4.5.5 we have

l

h logMy |\ 2
( RW) (max{l,log o8 “}) loglogff’1
hrw

Combining this with our estimate for n form Lemma 4.5.4 we see that we can take

h logMy 1\~
az RW max § 1,log o2 u —9.
logM hrw

In particular providing we choose 0 sufficiently small (in terms of @) when 7 is sufficiently

[VAR;, h (hi|.<;, yil]

[\.)

small (depending on u, 0, and t) we may take

h logM,
az RV max < 1,log ——— 08P u
logM hrw
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We have b =1 and we take ¢ = %a. By Lemma 4.5.17 we get

. 1—a/2\ "
P[T < nc] < <2a/2 G_a) ) , (4.63)
2

1—x/2
) ' ) . Note that (4.63) can be written as

=

Let f(x) := log (2x/2 <11:

[T

logP[T < nc] <nf(a).
Also note that
flx) = %10g2+ (1—- %C)log(l —x)—(1— %)log(l —x/2)
meaning

1 1
£(0) zilog2—1+§ <0.

Note that we may also assume that a is small enough that f(x) < % £/(0) for all x € [0,d].
This means

nf(a)

AN

—na

logMyu |\
S - (hR;W) (max{l,log o8 “}) .
X hrw

In particular this means that there is some constant ¢; depending only on R, ¢y and ¢ such

that
h logM |\
logP | T < ¢ (ﬂ) (max{l,log o8 }) loglogf‘1
X hrw

h logM |\ °
< - (ﬂ) <max{1,log ©g }) loglog7 1.
X hrw

The result follows. L]

4.5.4 Proof of Proposition 4.5.1

In this sub-section we will prove Proposition 4.5.1 by checking that our construction satisfies
the remaining conditions.
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Proof of Proposition 4.5.1. First note that Condition A1 holds by the construction and the
results of Section 4.4.

Condition A2 follows from Lemma 4.5.4 and Lemma 4.5.6.

We will prove Condition A3 by showing that each of the Conditions A4, A5, A6, A7,AS,
and A9 hold on <7-measurable events with probability at least 1 — oy ((log#~1)~19).

We checked that this applies to Condition A4 in Section 4.5.2. Condition A5 follows
immediately from construction.

Condition A7 follows from Condition A4 and Lemma 4.5.6.

Note that by Conditions (4) and (3) from the definition of / for Conditions A6 and A8 to

hold it is sufficient that for each integer i € [1,n] we have

d(b™(2:),b (8182 --81)) < %t

and

1
d(b™(gi),8igit1---&nb) < Et'

By Lemma 4.5.13 and Corollary 4.5.9 there is some 0 > 0 depending on u such that for each
fixed i these have probability at least

1 — Op(exp(—6K)).

Putting in our estimates for K and »n in terms of 7 gives the required result.
Finally note that we checked Condition A9 in Section 4.5.3. [

4.5.5 Proof of the main theorem

To prove Theorem 1.3.13 we will first prove the following proposition.

Proposition 4.5.21. Let u be a finitely supported strongly irreducible probability measure
on PSLy(R) whose support is not contained in any compact subgroup of PSLy(R). Suppose
M, < . Let x denote the Lyapunov exponent of . Let R > 0 be chosen such that the
operator norm is at most R on the support of L. Let v be the Furstenberg measure generated
by u. Suppose that ay € (0,1/3), t > 0 are such that | is 0,t- non-degenerate. Suppose

that 5
h logM, B
R (max{l,log 02 Pu })
X hrw
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is sufficiently large (depending on R, t and o). Then there exists some constant C (depending
only on R, t and ) such that

sg;) (v) < (log 7_1)75

Jor all sufficiently small (depending only on U, R, t and o) 7 > 0 and all
1 ~—1 ~—1
ke Eloglogr Joglog7 " | NZ. (4.64)

Proof. Let C; and 6, be the C and 8 from Proposition 1.4.17 with %t in the role of ¢ and
the implied constant (which depends only on R, ¢ and ¢) in the = from Condition A4 of
Proposition 4.5.1 in the role of c.

We now apply Proposition 4.5.1 with C in the role of C. Suppose that # > 0 is chosen to
be small enough to apply this and also so that 7 < 8. Let g1, 82, - ..,8n u'V),u® ... .u b
and I be as in Proposition 4.5.1 and let {; € psl,™ be the derivative given by

G=Dyu(0(g1...giexp(u)git1 - gnb))|u=0-

We enumerate [ as i} < ip < --- < i3. We now define g1,82,...,£; and b by letting
81:=81---8i,» 82 = 8i,+1---8i, and so on with &, :=g;.  11...g;;. We also define b=
Qizi1 - 8nb.

We apply Proposition 1.4.17 with our previous choices for ¢ and ¢ and with 7 in the role
of n, b in the role of b and g1, &>, ..., s in the role of g1, g2 ... gi.

From this, noting that 77 < n, we get that if @ € A then

n

" ((P([xlﬁf]w(glgz .gnb)+ Y g,.([u(ﬂw])) <Cllgi1g2- .8 |* 7

i=1

where x = gy exp(ul")) ... g, exp(u)b. By Conditions A2 and A4 this means that

VZ (¢<[x|%]>,¢(g1gz...gnb>+f§i<[u<w]>> < F(logi ), (4.65)
i=1

We now let

5= G(u?er),

We bound s&k) (S) for appropriate choices of r and k.
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Suppose that A occurs and let V; = ¢ ([u?)|.7]). We know by Condition A8, Lemma
4.1.16 and Lemma 4.1.13 that whenever i € /

161 S llgrga- gl
Combining this with Conditions A4 and A5 and the fact that if i ¢ I then ul) =0 gives
Vil S 7 (4.66)

almost surely.
We also know by Conditions A4, A6, and A8, Proposition 4.1.6, Lemma 4.1.16, and the
chain rule that whenever i € [

Var ()
VarV; 2 e

i
In particular, combining this with Condition A9, we have that
n

logMy, \\ >
Z arV; 2 ;W (max{l log o8 “}) leoglogf1

hrw

Let ¢ be the implied constant from the < in (4.66). Suppose that
1 ~—1 ~—1
ke Eloglogr JoglogF™ " | NZ.
Partition [1,n| NZ into k sets Jy,Ja, ..., Ji such that for each j € [k]

Z VarV; > — ZVarV —clr
ieJ;

Trivially this is possible because VarV; < c%?z for all i. In particular this means that providing

logMy )\ 2
hR;W (max{l log o8 “})
X hrw

is sufficiently large (in terms of R, 0, and ¢) we have

logM, \ 2
ZV V>7(max{1,log o8 “}) 7.

ieJ; hRW
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Now let C, be the C from Lemma 1.4.13 with 107 in the role of . By Lemma 1.4.13 we

know that providing
h logM, )\ 2
R (max{l,log o8 “})
X hrw

is sufficiently large (in terms of R, 0, and ¢) we have

Se\Co (Z v,~) <107

ieJ;
and so by Lemma 2.1.17 we have

sh(8) < 1075,

C]sz‘

Combining this with (4.65) and Lemma 1.4.14 we get that whenever ® € A we have
k — - —
skt (xl/) <1074 0((logF) 7).
Combining this with Condition A3 and the fact that 5log(10) > 10 we deduce that

k -
sgl)cﬁ(v) <o ((logr) 5)
as required. 0
We can now prove the main theorem.

Proof of Theorem 1.3.13. We use Proposition 4.5.21 along with Lemma 1.4.11 to show that
for all sufficiently small r we have

sp(v) < (logr—1)72.
We will then complete the proof using Lemma 1.4.10.

Let C be as in Proposition 4.5.21 and given some sufficiently small » > 0 let k =
L%loglogr_lj, let a = r/v/k, let b = rexp (klogk) and let o = (logr—!)"2. We apply
Lemma 1.4.11 with this choice of a, b and k.

Suppose that s € [a,b] and let 7 = s/C. To apply Proposition 4.5.21 we just need to check
that .

ke Eloglog;’_l,loglog;’_1

providing r > 0 is sufficiently small. This is a trivial computation and is left to the reader.
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From Proposition 4.5.21 we may deduce that
sgk)(v) < (log 17_1)_5
In particular providing r is sufficiently small we have

sgk)(v) < (logr)™*.
This means that by Lemma 1.4.11 we have

k—1

2

2
s(v) < (logr 1) %k (;) + k! ka’h 2

Note that log 2—; < % and so

k—1

2e\ 2 3 2e
k(== <k ~log ~loglogr!
(71') < exp(4 Ogﬂ: Og ogr )

< o((logr™")?).
Also

k!-ka’b~? < exp(klogk)a*b—>
< exp(—klogk)
<o((logrH72).
Putting this together gives s,(v) < o((logr~1)~2). This is sufficient to apply Lemma 1.4.10

which completes the proof.
]

4.6 Examples

In this section we will give examples of measures pt on PSL,(R) which satisfy the conditions
of Theorem 1.3.13.

4.6.1 Heights and separation

In this subsection we will review some techniques for bounding M, using heights. First we

need the following definition.
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Definition 4.6.1 (Height). Let o be algebraic with algebraic conjugates o, a,..., 0.
Suppose that the minimal polynomial for o over Z[X] has positive leading coefficient ag.
Then we define the height of o by

1/d
n
%”(ocl):: (aOHmax{l,\a,-|}> .
i=1
We wish to use this to bound the size of polynomials of algebraic numbers. To do this we

need the following way of measuring the complexity of a polynomial.

Definition 4.6.2. Given some polynomial P € Z[X},X>,...,X,| we define the length of P,
which we denote by .Z(P), to be the sum of the absolute values of the coefficients of P.

We also need the following basic fact about heights.

Lemma 4.6.3. Let o # 0 be an algebraic number. Then
Ao ) =H(a).

Proof. This follows easily from the definition and is proven in [44, Section 14]. [

Lemma 4.6.4. Given P € Z[X1,X>,...,Xy] of degree at most Ly > 0in Xy, ..., L, > 0in X,

and algebraic numbers £1,&,, ..., &, we have
H(P(&1,6,.,60) < L(P) A (&) ..o (&)™

Proof. This is [44, Proposition 14.7]. ]

To make the above lemma useful for bounding the absolute value of expressions we need
the following.

Lemma 4.6.5. Suppose that a € C\{0} is algebraic and that its minimal polynomial has
degree d. Then
() < |a| < (a)l.

Proof. The fact that || < 7 ()¢ is immediate from the definition of height. The other side
of the inequality follows from Lemma 4.6.3. U

Proposition 4.6.6. Suppose that 1 is a measure on PSLy(R) supported on a finite set
of points. For each element in the support of L choose a representative in SLy(R). Let
S C SLy(R) be the set of these representatives.
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Suppose that all of the entries of the elements of S are algebraic. Let (§1,&,...,&) be
the set of these entries. Let K = Q[&1,&, . .., & | be the number field generated by the &; and
let

C=max{(&§): i€ k]}.
Then
My < 4lK:Q| ~8[K-Q]

Proof. Leta € §" and b € §". We find an upper bound for d(a,b) where d is the distance

function of our left-invariant Riemannian metric introduced in the introduction. We have that
d(a,b) =d(1d,a”'b) > © (min{||I—a~'b|,,||[I+a 'b|,}).

For i € [|S]] and j,k € {1,2} let {; jx be the (j,k)-th entry of the i-th element of S.
Let L; be the sum of the number of times the i-th element of S appears in our word for a
and the number of times it appears in our word for b. Note that the components of a~!
are components of a possibly with a sign change. We know that each each component of
I+a 'bis of the form P({y 1 1, -, Cls|,2,2) where P is some polynomial of degree at most
L;in §; j x. We also know that the L; sum to m +n.

It is easy to see by induction that .Z(P) < 2"*" 1. In particular .Z(P) < 21 By
Lemma 4.6.4 this means that if « is a coefficient of I a5 then

%(a) < 2m+n+lC4(m+n) '

We know that o € K and so in particular the degree of its minimal polynomial is at most
[K : Q]. This means that if @ # 0 then

|| > 2~ (mntDIKQ) c—4(mtn)[K:Q)
In particular this means that if a # b then
d(a,b)>® (2—<m+"+1>[Kr@]c—4<m+n)[1<:@1)

and so
M, < 4[K:Ql -8[K:Q] []
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4.6.2 Bounding the random walk entropy using the Strong Tits alterna-
tive

In this subsection we will combine Breulliard’s strong Tits alternative [11] with the results of
Kesten [35] in order to obtain an estimate on the random walk entropy. The main result of

this section will be the following.

Proposition 4.6.7. There is some ¢ > 0 such that the following is true. Let I be a finitely
supported probability measure on PSLy(R) and let hgy be its random walk entropy. Let
K > 0 and suppose that for every virtually solvable subgroup H < PSL;(R) we have

u(H) <1-K.
Suppose further that n(1d) > K. Then
hpw > cK.

A similar result which further requires u to be symmetric is discussed in [50, Chapter 7].
In [50] much of the proof of their result is done by citing unpublished lecture notes so we
give a full proof of Proposition 4.6.7 here.

PSL,(R) acts on the closed complex half plane H = {z € C : Imz > 0} by Mdbius
transformations. It is well known that the virtually solvable subgroups of PSL,(R) are
precisely those which either have a common fixed point in H or for which there exists a pair
of points in H such that each element in the subgroup either fixes both points or maps them
both to each other.

To prove Proposition 4.6.7 we introduce the following. We let G be a countable group
and let i be a finite measure on G. We let 7, ¢ : [*(G) — [*(G) be the operator defined by
Tuc(f)(g) = [ f(gh)du(h). Itis clear that T, ; is a bounded linear operator and that when

U is symmetric 7}, ¢ is self-adjoint. To prove Proposition 4.6.7 we need the following results.

Lemma 4.6.8. The operator T, is linear in [. In other words
Ty 20, = A Ty, + l2TH2'

This lemma is trivial and its proof is left to the reader.

Lemma 4.6.9. Let U be a finitely supported probability measure on some group G. Let hgy
be the random walk entropy of 1. Then

hRW Z —210g HT‘quH .
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This lemma is proven by Avez in [1, Theorem IV.5].

Lemma 4.6.10. There is some € > 0 such that the following is true. Suppose that a,b,c €
PSL,(R) generate a non-virtually solvable subgroup. Let G be the group generated by a, b,
and c. Let
Y N s
4 4 4 4

Then
ol <1-¢.

Lemma 4.6.11. Let A be a finite non-negative measure on PSLy(R) with finite support. Let
T be the total mass of A. Let K > 0 and suppose that for every virtually solvable subgroup
H < PSLy(R) we have

AH)<T-K. (4.67)

Then there exists some n € Z>q such that for each integer i € [1,n] there exists a;,b;,c; €
PSLy(R) and k; > 0 such that

ey (s ols o1
A=A +;kz(35ai+35bi+35a)

for some non-negative measure A" and for each integer i € [1,n] the set {a;,b;,c;} generates

a non-virtually solvable group. Furthermore the sum of the k; is at least K.

Proposition 4.6.7 follows immediately by combining these lemmas. The rest of this
subsection will be concerned with proving Lemma 4.6.10 and Lemma 4.6.11.
First we will prove Lemma 4.6.10. A proof of a similar result for symmetric measures

may be found in [10]. The key ingredient is the following result of Breuillard.

Theorem 4.6.12. There exists some N € Z~q such that if F is a finite symmetric subset of
PSL,(R) containing 1d, either FN contains two elements which freely generate a non-abelian
free group, or the group generated by F is virtually solvable (i.e. contains a finite index

solvable subgroup).

Proof. This is a special case of [11, Theorem 1.1]. U]
We also need the following result of Kesten and a corollary of it.

Theorem 4.6.13. Let G be a countable group. Suppose that a,b € G freely generate a free

group. Let A < G be the subgroup generated by a and b. Let L be the measure on A given by

w=-(6,+08,1+06+08,1).

I
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Then [y = ¥

Proof. This follows from [35, Theorem 3] and the fact that the spectral radius of a self-adjoint

operator is its norm. 0
Corollary 4.6.14. Let G be a countable group. Suppose that a,b € G freely generate a free
group. Let A < G be the subgroup generated by a and b. Let [l be the measure on G given by

u= (6(1—{—6‘171—{-51,—{—5[771).

I

Then [Ty | = 4.

Proof. Let H C G be chosen such that each left coset of A in G can be written uniquely as
hA for some h € H. This means that

*(G) = P (nA).

heH

We also note that for any i € H the map T}, ¢ maps I°(hA) to I?(hA) and its action on [%(hA)
is isomorphic to the action of 7|, 4 on I2(A). This means that HTM-,GH = HTMA,A H The result
now follows by Theorem 4.6.13. [

One difficulty we need to overcome is that Theorems 4.6.12 and 4.6.13 require symmetric
sets and measures but symmetry is not a requirement of Proposition 4.6.7. We will do this by

bounding H TMGTJ GH First we need the following two simple lemmas.

Lemma 4.6.15. Let G be a countable group and let Uy, 4 be measures on G. Then

Ty, .6T,,6 = Tuyspp G- (4.68)

Lemma 4.6.16. Let G be a group, let n € Z~q, and let (p;);_, be a probability vector. Let
81,82,---,8n € G and let | be defined by

n
w=7y pig
i=1
and let [I be defined by
n
H= Zpigl_ !

Then
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These lemmas are trivial and their proofs are left to the reader.

We are now ready to prove Lemma 4.6.10.

Proof of Lemma 4.6.10. We will prove this by bounding H <Tu-,GTJ,G)N H where N is as in

Theorem 4.6.12. Note that this is equal to H TuﬁHzN.
Let 1 be as in Lemma 4.6.16. Note that we may write

1
Mokl = n+E(5[d+5“+5a” +0p+ 01+ 6.+ 0,1)
where 7 is some positive measure of total mass 1%.
By applying Theorem 4.6.12 with F = {Id,a,a!,b,b~!,c,c™'} we know that there is
some f,g € FN which freely generate a free group. We write

(W f) N:n/+16—N(6f+6f_1 +5g+5g—1)

where 1’ is some positive measure with total mass 1 — 1%'
By Theorem 4.6.13 and Lemma 4.6.8 we know that

2vV3
'T1(5+6 +8,+8 S—\/_~
16NV \9¢ —1 i+ d—l)7G 16N
Therefore \/_
4 3
Twearon] <1- 76w 1= 5)
and therefore LN
4 . V3
T, <|1l-—(1——-— 1.
el < (1- - 5)) < -

Finally we need to prove Lemma 4.6.11.

Proof of Lemma 4.6.11. We prove this by induction on the number of elements in the support
of A. If A is the zero measure then the statement is trivial so we have our base case. If K =0
then the statement is trivial so assume K > 0. Let a € suppA be chosen such that A (a) is
minimal amongst all non-identity elements in the support of A.

Now choose some b € supp A such that a and b do not share a common fixed point. This
is possible by (4.67) and the fact that K > 0.

If a and b generate a non virtually solvable group then we may write

_ LF LY Lo+l 4t
A_QL+/l(a)(36a+35a+35;,)+/l(a)<35a+36,,+35h>
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where A’ is a non-negative measure with smaller support that A. We then apply the inductive
hypothesis to A" with max{K —2A(a),0} in the role of K and T — 21 (a) in the role of T'.

If a and b generate a virtually solvable group then there must be two distinct points
21,82 € PSLy(R) such that the set {g;,g»} is stationary under both a and b. If this is the case
then choose some ¢ € suppA such that {g;,g>} is not stationary under c. This is possible by
(4.67). Note that a,b and ¢ generate a non virtually solvable group. Write

_ s 1s 1
z_x+3/1(a)<35a+33b+35€).

We then apply the inductive hypothesis to A’ with max{K — 34 (a),0} in the role of K and
T —3A(a) in the role of T. O

4.6.3 Symmetric and nearly symmetric examples

The purpose of this subsection is to prove Corollary 1.3.17. We will do this using Theorem
1.3.13. First we need the following proposition.

Proposition 4.6.17. For all og,c,A > O there exists t > 0 such that for all sufficiently small
(depending on q, ¢, and A) r > 0 the following is true.

Suppose that | is a compactly supported probability measure on PSLy(R) and that U
is a random variable taking values in psl,(R) such that exp(U) has law W. Suppose that
|U|| < r almost surely and that |E[U]|| < cr?. Suppose that the smallest eigenvalue of the

covariance matrix of U is at least Ar*. Then L is O, t - non-degenerate.
This is enough to prove Corollary 1.3.17.

Proof of Corollary 1.3.17. Note that by Proposition 4.6.17 there is some ¢ > 0 such that
providing r is sufficiently small u is %, t - non-degenerate. Note that we can make r
arbitrarily small be choosing our C to be arbitrarily large.

Note that by Proposition 4.6.7

hgrw > O(T).
Note that by Proposition 4.6.6
M, < 4 M
Note that trivially
x <O(r).

The result now follows from Theorem 1.3.13. L]
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In order to prove Proposition 4.6.17 we first need the following result and a corollary of
it.
Theorem 4.6.18. For all y € (1,00) there is some L > 0 such that the following is true.
Suppose that X1,X3,...,X, are random variables taking values in R and suppose that for
each integer i € [1,n|
E[X;|X1,X2,...,Xi—1] =0,

E[X?X,Xs,..., X 1] =1,
and
1Xi| <y
almost surely. Then
plo() [Xl X4+ X, <t} < Ln~logn
‘ Vn

where
D(r):

=7 ).

is the c.d.f. of the standard normal distribution.

exp(—x?/2)dx

Proof. This is a special case of [6, Theorem 2]. O

Corollary 4.6.19. For all €,y > 0 there exists 6 > 0 and N € Z~ such that the following is
true. Let n > N and let X1, ...,X, be as in Theorem 4.6.18 with this value of y. Then for all

a € R we have

X X0+ X
p|Art ot " €la,a+8]| <e.

Vn

Proof. This follows immediately from Theorem 4.6.18. [

We will now prove Proposition 4.6.17.

Proof of Proposition 4.6.17. To prove Proposition 4.6.17 we will show that there is some n
such that for all by € P!(R) the measure pu*" * 8, has mass at most 0 on any interval of
length at most 7. To do this, given an n-step random walk on P'(R) generated by u we will
construct an n-step random walk on R. Specifically we have the following.

We let n € Z- be some value we will choose later. Let by € P! (R) and let y1,%,..., T
be i.i.d. samples from u. Let b; := ¥;%—1 ... 1bo. Let U; := log¥; and define the real valued
random variables X1, X5, ..., X, by

~1/2

Xi = (Var [pbifl (U)]) pbifl(Ui>
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where p;, € psl,™ is defined to be D, (exp(u)b)|,—o as in Definition 4.1.1. We let ¥1,Y>,...,Y,
be defined by
Y, = X; — E[X]]
andlet S=Y|+Y,+---+Y,.
Clearly E[Y;|Y1,Y2,...,Y;—1] =0 and E[Yi2|Y1,Y2, ...,Y;_1] = 1. This enables us to apply
Theorem 4.6.18. We now need to show that understanding S gives us some information about
the distribution of b,,.

Now let c¢1,c3,... denote positive constants which depend only on oy, ¢, and A. We
define f: R — R by

frix— /Ox (Var [py, | (U)Dfl/zdu.

This definition is chosen such that f(¢(b;)) — f(¢(b;—1)) is approximated X;. In-fact we
have

~1/2

Dy f(¢(exp(u)bi—1))|u=o = (Var [pp, ,(U)]) " pp, ,(U))

and so X; = D, f(¢ (exp(u)b;—1))|u=0(U;). This means that to bound
1f(0(bi)) = f(9(bi-1)) — Xil

it is sufficient to bound || D2 f (¢ (exp(u)b;—1))|| for |Jul| < 1.
By compactness the norms of the first and second derivatives of the exponential function
are bounded on the unit ball. Note that for all u € R

' < Varp,-i(,y(U) < err? (4.69)

and so
e rt < f <er™ (4.70)

Also note that Varp,-1(,)(U) can be written as

Varp¢_| (u) (U) = VTZV
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where X is the covariance matrix of U and v € R depends smoothly on « and depends on

nothing else. In particular

du

iVarpq,_l(u)(U)‘ = ‘v/(u)TZv(u) —|—v(u)TZv’(u){
< C3r2.

Note that

1 d -1/2
1) = 2 (Varpg-1 (1))

=3/2( d
= (Varpq,_l(x)(U)) EVarpq)_](u)(U)

and so in particular
" (x)] < car™ ! 4.71)

In particular this means that whenever ||u|| < 1 we have
D% (9 (exp(u)bi—1))|| < esr"
Also note that there is some M with ¢ -1 <M< c(,r_1 such that for all x € R
fx+m) =f(x)+M.

Note that by (4.71) and Taylor’s Theorem

|f(9(bi)) — f(¢(bi-1)) — Xi| < c7r.
Note that by (4.69) and the conditions of the proposition
|X; — Y| = |E[X;]| < csr.

Therefore
1f(0(bi)) — f(@(bi—1)) —Yi| < cor.

In particular

£ (9(bn)) — F(¢(bo)) — S| < cronr. (4.72)

We now let n = (K r‘zw where K is some positive constant depending on oy, A, and ¢
which we will choose later. Choose N € Z~( and T > 0 such that by applying Theorem
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4.6.18 we may ensure that whenever n > N and a € R we have

<%

P[ie[a,a—i—T]} <%

v

Note that

and so

Therefore whenever n > N and a € R
P[S € [a,a+T /) +MZ] < % +enk.
Substituting in our value for n gives
P [S € la,a+cinVKr ] +MZ] < % +e1iK.
From (4.72) we may deduce that

P [£(9(bn) € [a,a+ (e VK — ersK)r!] + MZ] < % +enk.

By taking K = min { o C—ZZ} we get
1

€11’ 2¢
P [f(9 (b)) € [a,a+crar ']+ MZ] < a.
By (4.70) this means that
Pl (by) € [a,a+ci15]+7Z] < o

providing n > N. Noting that n — o as r — 0 completes the proof. [

4.6.4 Examples with rotational symmetry

One way in which we can ensure that the Furstenberg measure satisfies our ¢,?- non-
degeneracy condition is to ensure that it has some kind of rotational symmetry. In particular

we can prove the following corollary of Theorem 1.3.13.
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Corollary 4.6.20. For every a,b € Z~q with a > 4 and K > 0 there exists some C > 0 and
€ > 0 such that the following is true.

Suppose that x > C. Suppose that A|,A,, ... A, € PSLy(R) have operator norms at most
1 + 1/x and have entries whose Mahler measures are at most exp(exp(€+/x)). Suppose
further that the degree of the number field generated by the entries of the A; is at most
exp(e )

Let R € PSLy(R) be a rotation by mt/a and let | be defined by

1 a—1

b
Hi=— Z Z 6R"A-R*i'
ab (==
Suppose further that for every virtually solvable H < PSLy(R) we have u(H) < 1—K.
Then the Furstenberg measure generated by L is absolutely continuous.

Proof. We wish to apply Theorem 1.3.13 to s + %51(1-

Note that this measure is clearly é, 2- non-degenerate. Also note that we may assume
that C > 1 and so take R = 2 in Theorem 1.3.13. Clearly y < )_1(

Note that by Proposition 4.6.7 we have hgy > O(K).

Note that by Proposition 4.6.6 we know that M, < exp(Aexp(ex)) where A is some
constant depending only on a and b. The result now follows by Theorem 1.3.13. [

4.6.5 Examples supported on large elements

The purpose of this subsection is to prove Corollary 1.3.18. First we will need the following
lemma.

Lemma 4.6.21 (The Ping-Pong Lemma). Suppose that G is a group which acts on a set X.
Let n € 7 and suppose that we can find g1,82,...,8, € G and pairwise disjoint non-empty
sets
+ A+ + A= A —
AT AS LA ATAS LA

n

cX

such that for all integers i € [1,n] and all x € X\A; we have gix € Alf Then g1,82,---,8n

freely generate a free semi-group.

This lemma is well known and we will not prove it. From this we may deduce the
following.

Lemma 4.6.22. For every € > 0 there is some C < O(e~") such that the following is true. Let
n € Zo. Suppose that 01,0,,...,0, € R/%Z and that for every i # j we have |6; — 0| > €
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and |0; — 0; + /2| > €. Let A1, Ay, ... Ay, be real numbers which are at least C. Then the set

Ai 0O ,
{Rei (O ﬂ,l.l) R_g :i€ [l,n]ﬂZ}

freely generates a free semi-group.

Proof. This follows immediately by applying Lemma 4.6.21 with G = PSL,(R), X = P!(R),
A =071((6,—€/2,6,+€/2)),and A; = ¢ ((6;—€/2,6;+¢/2))* along with Lemma
4.1.9. O

Lemma 4.6.23. For all n € Z there exists some 6,, € (ﬁ, %) such that sin 6,, and cos 6, are
rational and have height at most 4n”> + 1.

Proof. Choose 6, such that

Gng, —
oAn2 41
and
Cosen:“”z_—l.
4n? +1

We are now ready to prove Corollary 1.3.18.

Proof of Corollary 1.3.18. Given some r > 0 and some n € Z define fBy,...,B,_1 > 0 by
letting By = Og.+1-+ Where 0. is as in Lemma 4.6.23. We then define o, 1,. .., n—1 > 0 by
letting

n—1 )
Oy = Z & Bi
i=0

where the éi(k) are the binary expansion of k. In other words k = Z?;Ol i(k)Zi with ﬁi(k) €{0,1}.
Clearly
O=a <o <---<0pn_q.

Furthermore o1 > o; + € where € = # We also have that

2 2 2
(in_1<§+§+g+...
108
32 7
T
< ——€
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We now let C be the C from Lemma 4.6.22 with this value of € and we choose some prime
number p such that p > C?, p < O(8*"), and X* — p is irreducible in the field Q[sin ,cos £].
Now fori=0,1,...,2" —Tand j=0,1,...,4 we let g; ; be defined by

gi,j =Rz

5

((rwﬂm—a )R |
w0 el eyt R

By Lemma 4.6.22 we know that the g; ; freely generate a free semi-group. Now for i =
0,1,...,2"—1and j=0,1,...,4 we let §; ; be defined by

"..:_ . (’_r+\/ﬁ-‘_\/ﬁ >R in .
) +0; 0 ((r_*_\/l—)"_\/ﬁ)—l —5 =0

Clearly the g; ; are Galois conjugates of the g; ; and so also freely generate a free semi-group.

We now let u be defined by
2"—1 4 1

H= Z Z 5.76@‘,/"

i=0 j=0
We wish to use Theorem 1.3.13 to show that the Furstenberg measure generated by u is
absolutely continuous providing # is sufficiently large in terms of r.

Let v be the Furstenberg measure generated by . By the construction of (t we know that
v is invariant under rotation by 7 /5. In particular this means that it is %, -
We also know that for each i, j we have Hgiin = (r—k \/ﬂ — /P < r+ 1. This means that
X < r+1 and that we may take R = r+ 1. Since the g; ; freely generate a free semi-group
we know that hgw = log (5-2") > @(n). Finally we need to bound M,,.

To bound the M, we will apply Proposition 4.6.6. We know by Lemma 4.6.23 that
the heights of the entries in the f3; are at most O(8%"). We also know that the height of
[r+/P| — /P is at most O,(,/p) which is at most O,(8"). By Lemma 4.6.4 this means
that the height of entries in the g7 ; is at most O,(2%" - 84"2”) which is at most Or(85"2). Itis
easy to show that [Q [sinZ,cos %] : Q} = 4. This means that by Proposition 4.6.6 we have

non-degenerate.

M, <0, (88‘4'5”2) < exp(0,(n)).
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Therefore
hrw My, - n 2y} 2
— 1,loglog—— e logl O,
P’ (max{ ,log oghRW}) < (og ogexp(O,(n )))
S n
~ Oy((logn)?)

—> 0o,

This means that by Theorem 1.3.13 the Furstenberg measure is absolutely continuous provid-

ing n is sufficiently large in terms of r. [

4.6.6 Examples with two generators
In this subsection we will prove Corollary 1.3.19.

Proof of Corollary 1.3.19. First we will show that there is some o € (O, %) and # > 0 such
that u is g, ¢ - non-degenerate for all sufficiently large n.

First note that A is a rotation by 6, where 6, = 1 + 0(%) Also note that for all x € P! (RR)
we have d(x,Bx) < O(n™3).

We now let A : R — R, x + x+ 6, and choose B : R — R such that B(x) € ¢(B¢ ! (x))
and for all x € R we have |x — B(x)| < O(n~3). We then let fi = %5/& + %53.

By Theorem 2.1.22 (a simple bound on the Wasserstein distance between a sum of
independent random variables and a normal distribution) we know that for any x € R we have

1
VZ1 ([L*”z % Oy, N (x + znzen,n293)> <o(n™h.

Noting that n262 — 1 we can see that there is some o € (0, 1) and # > 0 such that  is o,
t - non-degenerate for all sufficiently large n.

We will apply Theorem 1.3.13 to %u + %61(1. Note that this generates the same Furstenberg
measure as (L and so in particular it is ¢, ¢ - non-degenerate.

Note that by Proposition 4.6.7 there is some € > 0 such that for all n we have hgy > €.

Note that by Proposition 4.6.6 we have M < 4(n® +1)8. Clearly we may take R = 2.
Also note that y < n3.

This means that to prove the proposition it is sufficient to prove that

4 3 18 -2
en’ <loglog %)

tends to oo as n — oo. This is trivially true. 0
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4.7 Appendix

4.7.1 Proof of Theorem 1.4.20

We extend the result of Kesten [36, Theorem 1] to show that the convergence is uniform in

the vector v.

Theorem 4.7.1. Suppose that [ is a strongly irreducible measure on PSLy(R) with compact
support. Suppose that the support of Il is not contained within any compact subgroup of
PSL,(R). Then there exists some probability measure measure V on P'(R) such that the
following is true. Let 1,%,... be i.d.d. samples from W and let g, := 17> ... Y, Then given
any € > 0 and v € P! (R) there exists some T > 0 such that given any t > T we can find some
random variable x with law V such that

]P’[d(qgvv,x) >g] < €.
Recall that 7; , is the stopping time given by
— mi T
Ty =min{n: ||g,v|| > |v]}.

Proof. In [36, Theorem 1] it is proven that this holds in a much more general setting
providing some conditions are satisfied. In [24, Section 4] it is shown that the conditions of
[36, Theorem 1] are satisfied in this setting. L]

We deduce uniform convergence from this fact. To do this we show that if v,w € P!(RR)
are close then with high probability 7, = 7, and g7 v is close to g7 w.

Lemma 4.7.2. Suppose that L is a strongly irreducible measure on PSLy(R) with compact
support. Suppose that ¥ > 0. Then given any c1,cy > 0O there exists T such that for any t > T

and any unit vector b € R?
P[3n : logt <log Hq,{bH <logt+ci]| Se/x+co.

Proof. This follows immediately from [42, Proposition 4.8]. 0

Lemma 4.7.3. Let | be a finitely supported measure on PSLy(R) which is strongly irre-
ducible and such that > 0. Let 7 ,, be as in Theorem 1.4.20. Then there exists some § > 0
depending on W such that given any r > 0 for all sufficiently large (depending on r and L) t
the following is true. Suppose that v,w € P (R) and d(v,w) < r. Then

Pt = Tr0] > 1—0u(r?).
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Proof. Let A be the event that

d(v,0™(qy)) > V7

and
d(w,b™(qy)) > V/r

for all n > logz/logR. By Corollary 4.5.9 and Lemma 4.5.11 we know that providing ¢ is

sufficiently large in terms of ¢ and r there is some & > 0 such that
PlA] > 1—0,(r%).

By Lemma 4.1.11 we know that there is some constant C > 0 such that on the event A

[log gy v|| —log||gnw]|| < Cr'/?

for all n > logt/log R. Now let B be the event that there exists n such that
|log||q2v|| —1| < 10Cr!/2.

By Lemma 4.7.2 we know that providing ¢ is sufficiently large in terms of y and r P[B] <
Oy (r'/?). We also know that {1, , = 7,,,} D A\B. Therefore

Pty =tw >1- 0”(1,6)

as required. 0

Proof of Theorem 1.4.20. Given € > 0 we wish to show that we can find some 7 (depending
on u and &) such that whenever ¢ > T and v € P!(R) we can find some random variable x
with law V such that

Pld(x, qgﬁvv) >e€)] <e.

First let € > 0. Choose k € Z~ and let vy, va,...,v; € P'(R) be equally spaced. Let T
be the greatest of the T from Theorem 4.7.1 with llos in the role of € and v{,Vvy,..., Vi in the
role of v and let x1,x,...,x be the x. Let 75 be the T from Lemma 4.7.3 with r = 7. Let
T =max{T1,T»}. Thus whenever ¢t > T and i € [k]

E £
P d(xi,qgvl‘v,-) > 7o) < 1o
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Now let# > T and let v € P'(R). Suppose without loss of generality that vy is the closest
of the v; to v. In particular d(v;,w) < %. By Lemma 4.7.3 this means that

Pty = Ty > 1—O(k™?) (4.73)

for some 6 > 0 depending only on L.
We know by for example Lemma 4.1.16 that providing

d(b1(gh),v) > 100k~

we have
d(qlviqlv) < oc(||a2] 7).

In particular by Corollary 4.5.9 and Lemma 4.5.11 we know that
P ld(g], vi,qh, v) < Oulr?)| > 1-0(?).

Combining this with (4.73) we know that providing ¢ is sufficiently large depending on k
and U
P [d(quvlvl,qiwv) > Ok(fz)} < 0(k™%).

In particular this means that providing ¢ is sufficiently large depending on k and

1 1
P [d(xl 5 V) > o+ ok(ﬂ)l <gEt O(k™9%)

and so if we choose k large enough (depending on ut and €) and then choose ¢ large enough
(depending on U, k, and €) then

P [d(xl,qg_vv) > 8} <€

as required.
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