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Abstract

This thesis studies the absolute continuity of stationary measures. Given a finite set of
measurable maps S1,S2, . . . ,Sn on a measurable set X and a probability vector p1, p2, . . . , pn

we say that a probability measure ν on X is stationary if

ν =
n

∑
i=1

piν ◦S−1
i .

If S1, . . . ,Sn are elements of PSL2(R) acting on X = P1(R), we get the notion of Furstenberg
measures. If S1, . . . ,Sn are similarities, affine maps, or conformal maps then ν is called a
self-similar, self-affine, or self-conformal measure respectively. This thesis is concerned with
Furstenberg measures and self-similar measures.

Two fundamental questions about stationary measures are what are their dimensions and
when are they absolutely continuous. This thesis deals with the second one of these.

There are several classes of stationary measures which are known to be absolutely
continuous for typical choices of parameters. For example Solomyak [54] showed that
for almost every λ ∈ (1/2,1) the Bernoulli convolution with parameter λ is absolutely
continuous. This was extended by Shmerkin [51] who showed that the exceptional set has
Hausdorff dimension zero. However, despite much effort, there are relatively few known
explicit examples of stationary measures which are absolutely continuous.

In this thesis we find sufficient conditions for self-similar measures and Furstenberg
measures to be absolutely continuous. Using this we are able to give new examples.

The techniques we use are largely inspired by the techniques of Hochman [25] and Varjú
[56] though we introduce several new ingredients the most important of which is “detail”
which is a quantitative way of measuring how smooth a measure is at a given scale.
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Chapter 1

Introduction

Stationary measures are important objects in fractal geometry. Given a finite collection of
measurable maps S1, . . . ,Sn on a measurable space X and a probability vector (p1, . . . , pn) a
probability measure ν on X is stationary if

ν =
n

∑
i=1

piν ◦S−1
i .

If S1, . . . ,Sn are elements of PSL2(R) acting on X = P1(R), we get the notion of Fursten-
berg measures. If S1, . . . ,Sn are contracting similarities, contracting affine maps, or contract-
ing conformal maps then ν is called a self-similar, self-affine, or self-conformal measure
respectively. In this thesis we will primarily be concerned with self-similar measures and
Furstenberg measures.

A related concept is an iterated function system.

Definition 1.0.1 (Iterated function system). Given some n ∈ Z>0, some complete metric
space X and some homeomorphisms S1,S2, . . . ,Sn : X → X and a probability vector p =

(p1, p2, . . . , pn) we say that F = ((Si)
n
i=1,p) is an iterated function system.

If the homeomorphisms are contractions then we call the iterated function system a
contracting iterated function system. It is a result of Hutchinson [30] that each contracting
iterated function system has a unique attractor. In other words there exists a unique non-
empty compact set Λ ⊂ X satisfying Λ = ∪n

i=1Si(Λ). If the homeomorphisms in the iterated
function system are similarities then we call the attractor a self-similar set.

Furthermore Hutchinson [30] proved that for each contracting iterated function system
((Si)

n
i=1,p) there is a unique stationary measure on X generated by the Si and pi. Not all of

the stationary measures we will study in this thesis are of this form. In particular the action of
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an element g ∈ PSL2(R) on P1(R) will never be a contraction and so Furstenberg measures
are not of this form.

Self-similar measures are important objects in the study of fractal geometry. The study of
special cases of self-similar measures goes back to the 1930s with Jessen and Wintner [31]
who first studied Bernoulli convolutions.

Definition 1.0.2 (Bernoulli convolution). Given some λ ∈ (0,1), we define the Bernoulli
convolution with parameter λ to be the law of the random variable Y given by

Y =
∞

∑
n=0

Xnλ
n,

where each of the Xn are i.i.d. random variables that have probability 1
2 of being 1 and

probability 1
2 of being −1. We denote this measure by µλ .

This can be shown to be a self-similar measure on R by taking n = 2, S1 : x 7→ x+ 1,
S2 : x 7→ x−1 and p1 = p2 =

1
2 .

The systematic study of self-similar measures was introduced in 1981 by Hutchinson in
[30].

The study of Furstenberg measures goes back to Furstenberg [22]. Given a measure µ on
PSL2(R) we say that a measure ν on P1(R) is a Furstenberg measure generated by µ if ν is
stationary under action by µ . In other words we require

ν = µ ∗ν

where ∗ denotes convolution under the natural action of PSL2(R) on P1(R). It is a theorem
of Furstenberg in [22] that if µ is strongly irreducible (see Definition 1.3.8) and the group
generated by the support of µ is not compact then there is a unique Furstenberg measure
generated by µ . The main motivation for studying Furstenberg measures is their fundamental
role in the theory of random matrix products. See [7], [5]. Throughout this thesis we will
only be concerned with the case were µ is supported on finitely many points.

The two most fundamental questions about stationary measures are what are their dimen-
sions and when are they absolutely continuous.

1.1 Dimension

We will now discuss previous results on the dimension of stationary measures.
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Definition 1.1.1. Given a measure ν on some set X with metric d and some x ∈ X we will
let Br(x) be the ball of radius r centred at x. If the limit

lim
r→0

logν(Br(x))
logr

exists for ν almost every x ∈ X then we say that ν is exact dimensional with dimension given
by this limit.

In [19] Feng and Hu proved that self-similar and self-conformal measures are exact di-
mensional. In [4] Bárány and Käenmäki prove that self-affine measures are exact dimensional.
The first published proof of the exact dimensionality of Furstenberg measures appeared in
[29, Theorem 3.4] though the result was well known to experts before this date. The proof
was based heavily on the proof used by Feng and Hu.

There are several other notions of the dimension of a measure. For example the lower
Hausdorff dimension of a Borel probability measure µ is defined to be

inf{dimE : µ(E)> 0}

where dim denotes Hausdorff dimension. However, for self-similar, self-affine, self-conformal,
and Furstenberg measures all commonly used notions of dimension coincide. This is also
true of self-similar sets. In particular in [18] Falconer proved that the Hausdorff and box
dimensions of self-similar sets are equal.

In general finding the dimension of a stationary measure is difficult but there is a simple
upper bound.

If ν is a self-similar measure generated by the IFS F = ((Si)
n
i=1 ,(pi)

n
i=1) and the Si are

similarities on Rd with contraction ratio ri then we define the similarity dimension of F ,
which we will denote by s-dim F to be the unique s such that

n

∑
i=1

rs
i = 1.

We also define the Lyapunov dimension of F to be

n

∑
i=1

pi log pi

pi logri
.

We will often make the abuse of notation of referring to the similarity or Lyapunov
dimension of self-similar sets or measures to mean the similarity or Lyapunov dimension of
an iterated function system generating the self-similar set or measure. Since multiple iterated
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function systems can generate the same self-similar set or measure we will only do this when
the iterated function system is clear from context.

It is trivial to show that the dimension of a self-similar set is at most its similarity
dimension and the dimension of a self-similar measure is at most its Lyapunov dimension.
Similar upper bounds can be found for self-affine and self-similar measures (see for example
[19, Theorem 2.6]) though stating these results requires introducing complicated notation.

It is a result of Hutchinson [30] that when the images of the Si satisfy a certain separation
condition the dimension of a self-similar measure is equal to its Lyapunov dimension.

Definition 1.1.2 (Open set condition). We say that an iterated function system

F = ((Si)
n
i=1 ,(pi)

n
i=1)

on Rd satisfies the open set condition if there is some non-empty open set U ⊂ Rd such that

n⋃
i=1

Si(U)⊂U

and for each i ̸= j
Si(U)∩S j(U) = /0.

Moran [45] and Hutchinson [30] proved the following two theorems.

Theorem 1.1.3. Suppose that X is a self-similar set generated by an iterated function system
F which satisfies the open set condition. Then the dimension of X is equal to its similarity
dimension.

Theorem 1.1.4. Suppose that ν is a self-similar measure generated by an iterated function
system F which satisfies the open set condition. Then the dimension of ν is equal to its
Lyapunov dimension.

One way in which a self-similar measure can have dimension less that its Lyapunov
dimension is if it has exact overlaps.

Definition 1.1.5 (Exact overlaps). We say that an iterated function system

F = ((Si)
n
i=1 ,(pi)

n
i=1)

has exact overlaps if there is some a1, . . . ,ak and some b1, . . . ,bk with

(a1, . . . ,ak) ̸= (b1, . . . ,bk)
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such that
Sa1Sa2 . . .Sak = Sb1Sb2 . . .Sbk .

It is also clear that the dimension of a self-similar measure is at most the dimension of
the space in which it is defined. For self-similar measures on R it is widely conjectured that
these are the only ways in which the dimension can be less than the Lyapunov dimension.
Specifically we have the following.

Conjecture 1.1.6. Suppose that ν is a self similar measure on R with no exact overlaps.
Then the dimension of ν is the minimum of its Lyapunov dimension and 1.

This conjecture is known as the overlaps conjecture and goes back to at least Simon [53]
in 1996. This conjecture as stated is not true in Rd for d ≥ 2. For example in R2 we may take

S1 : x 7→ 2
3

x+(1,0)

and
S2 : x 7→ 2

3
x− (1,0)

and p1 = p2 = 1/2. It is clear that the self-similar measure generated by this iterated function
system is the cross product of the Bernoulli convolution with parameter 2/3 and δ0. Clearly
this has dimension at most 1 but it’s Lyapunov dimension is log(1/2)/ log(2/3) which is
greater than 1.

Important progress towards this conjecture was made by Hochman in [25]. To state his
result we need the following.

Definition 1.1.7. Let X be a random variable taking discrete values with probabilities
p1, p2, . . . . Then we define the entropy of X to be

H(X) :=−∑ pi log pi.

Here and throughout this thesis the log of a positive real number means the natural
logarithm with base e.

Definition 1.1.8. Let F = ((Si)
n
i=1 ,(pi)

n
i=1) be an iterated function system and let x1,x2, . . .

be i.i.d. random variables with P[xi = Si] = pi. Then we define

hF,k := H (x1x2 . . .xk) .

From this we can define random walk entropy.



6 Introduction

Definition 1.1.9 (Random Walk Entropy). Given an iterated function system F we define the
random walk entropy of F to be

hF := liminf
k→∞

1
k

hF,k.

We also need some way of measuring the separation between products of the Si.

Definition 1.1.10. We define the k-step support of an iterated function system F to be given
by

VF,k :=
{

S j1 ◦S j2 ◦ · · · ◦S jk : j1, j2, . . . , jk ∈ {1,2, ...,n}
}
.

We now define the following metric on the space of similarities on Rd .

Definition 1.1.11. We define the metric d on the space of similarities on Rd as follows.
Given two similarities ψ = rU +a and ψ ′ = rU ′+a′ on Rd we let

d(ψ,ψ ′) = | logr− logr′|+
∥∥U −U ′∥∥+∥∥a−a′

∥∥ .
Definition 1.1.12. Let F be an iterated function system on Rd . We define the separation of
F after k steps to be

∆F,k := inf{d(u,v) : u,v ∈VF,k,u ̸= v}.

If F is an iterated function system generating a self-similar measure we say that F satisfies
the exponential separation condition if

liminf−1
n

log∆n,F < ∞.

There are several closely related conditions referred to as the exponential separation condition
in different contexts.

It is easy to show that the exponential separation condition holds for iterated function
systems with algebraic parameters. We can now state an important result of Hochman.

Theorem 1.1.13 (Hochman 2014 [25]). Suppose that ν is a self-similar measure on R
generated by an iterated function system F =((Si)

n
i=1 ,(pi)

n
i=1) which satisfies the exponential

separation condition and that the contraction ratio of Si is ri. Then the dimension of ν is

min
{

1,
hRW

−∑
n
i=1 pi logri

}
.

In particular this confirms the overlaps conjecture whenever the similarities in the IFS
have algebraic coefficients. A lot of the research on stationary measures in the last decade
builds on the ideas of Hochman in this paper.
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The transcendental case is more complicated however it has been solved in some special
cases. For example in [56] Varjú proved that the Bernulli convolution with parameter λ has
dimension 1 for all transcendental λ ∈ (1/2,1). In [47] Rapaport proved that the overlaps
conjecture holds whenever the contraction ratios of the similarities are algebraic. In [48]
Rapaport and Varjú also obtained a result about the dimensions of a family of self-similar
measures on R generated by three similarities.

In [26] Hochman extends his result to self-similar measures on Rd providing the similari-
ties do not preserve a proper affine subspace and their linearisations act on Rd irreducibly.

Extending the work of Hochman to self-affine measures has proven difficult. In [46]
Rapaport was able to give the dimension of self-affine measures in Rd providing the IFS
satisfies a number of requirements on its Lyapunov exponents and satisfies, amongst other
things, the strong open set condition which is a slightly stronger version of the open set
condition. In [3] Bárány, Hochman, and Rapaport proved results on the dimensions of
self-affine sets and measures which are similar to Theorem 1.1.3 and Theorem 1.1.4. In
particular their paper requires the IFS to satisfy the strong open set condition. Hochman and
Rapaport were able to extend Hochman’s result on self-similar measures to the self-affine
case in R2 in [28].

There is no known result similar to Hochman’s work on self-similar measures for self-
conformal measures. For a survey on recent results on self conformal measures see [20].

We now turn our discussion to the dimension of Furstenberg measures. It is a classical
result that if µ is a strongly irreducible probability measure on PSL2(R) with a finite expo-
nential moment and the group generated by the support of µ is not compact then there exist
C,δ > 0 such that if we let ν be the Furstenberg measure generated by µ , let x ∈ P1(R) and
let r > 0 then

ν(B(x,r))≤Crδ

where B(x,r) is the open ball in P1(R) with centre x and radius r. This means that under
these conditions ν has positive dimension.

In [29], building on the work of Hochman in [25], Hochman and Solomyak show that
providing µ satisfies the exponential separation condition, which we will define later, its
Furstenberg measure ν satisfies

dimν = min
{

hRW

2χ
,1
}
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where hRW is the random walk entropy and χ is the Lyapunov exponent (see definition 1.3.9).
In particular they show that if µ satisfies the exponential separation condition and

hRW

χ
≥ 2

then ν has dimension 1. So far this has not been extended to the case without exponential
separation.

1.2 Absolute continuity

The absolute continuity of stationary measures has also been widely studied. An important
special case is the case of Bernoulli convolutions as defined in Definition 1.0.2.

Bernoulli convolutions were first introduced by Jessen and Wintner in [31]. When
λ ∈

(
0, 1

2

)
, it is well known that µλ is singular (see e.g. [34]). When λ = 1

2 it is clear that µλ

is 1
4 of the Lebesgue measure on [−2,2]. This means the interesting case is when λ ∈

(1
2 ,1
)
.

Bernoulli convolutions have also been studied by Erdős. In [15] Erdős showed that
µλ is not absolutely continuous whenever λ−1 ∈ (1,2) is a Pisot number. In his proof he
exploited the property of Pisot numbers that powers of Pisot numbers approximate integers
exponentially well. These are currently the only values of λ ∈

(1
2 ,1
)

for which µλ is known
not to be absolutely continuous.

The typical behaviour for Bernoulli convolutions with parameters in
(1

2 ,1
)

is absolute
continuity. In [16] by a beautiful combinatorial argument, Erdős showed that there is some
c < 1 such that for almost all λ ∈ (c,1), we have that µλ is absolutely continuous. Indeed
Erdős showed that for every m > 0 there exists some a ∈ (0,1) such that for almost all
λ ∈ (a,1) we have |µ̂λ (k)| ≤ Oλ (k−m). Here µ̂λ denotes the Fourier transform of the
Bernoulli convolution with parameter λ .

Erdős’s result was extended by Solomyak in [54] to show that we may take c = 1
2 .

Solomyak’s proof used the transversality method. This was later extended by Shmerkin in
[51] where he showed that the set of exceptional parameters has Hausdorff dimension 0.
Shmerkin’s proof relies on the fact that the convolution of a measure with power Fourier
decay and a measure with full dimension is absolutely continuous. These results have been
further extended by Shmerkin in [52] who showed that for every λ ∈

(1
2 ,1
)

apart from an
exceptional set of zero Hausdorff dimension µλ is absolutely continuous with density in Lq

for all finite q ≥ 1.
There are relatively few known explicit examples of λ for which µλ is absolutely con-

tinuous. It can easily be shown that for example the Bernoulli convolution with parameter
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2−
1
k is absolutely continuous when k is a positive integer. This is because it may be written

as the convolution of the Bernoulli convolution with parameter 1
2 with another measure.

Generalising this in [23], Garsia showed that if λ ∈ (1
2 ,1) has Mahler measure 2, then µλ

is absolutely continuous. It is worth noting that the condition that λ has Mahler measure 2
implies that λ is not the root of any polynomial with coefficients 0,±1.

There has also been recent progress in this area by Varjú in [56]. In his paper, he showed
that provided λ is sufficiently close to 1 depending on the Mahler measure of λ then µλ is
absolutely continuous. Varju’s uses inverse entropy techniques in his proof.

There are also almost sure results for broader classes of self-similar measures. For
example in [49] Saglietti, Shmerkin, and Solomyak show that self-similar measures on R are
absolutely continuous for almost all parameters in the super critical region - that is when the
Lyapunov dimension is greater than 1.

There has also been some progress on the absolute continuity of self-similar measures in
dimension 2. In [55] Solomyak and Śpiewak show that for almost every choice of parameter
in a super critical region a self-similar measure on R2 is absolutely continuous.

The absolute continuity of Furstenberg measures has also been studied. In [33] it was
conjectured that if µ is supported on finitely many points then its Furstenberg measure ν is
singular. This conjecture was disproved by Bárány, Pollicott, and Simon in [2] which gave a
probabilistic construction of measures µ on PSL2(R) supported on finitely many points with
absolutely continuous Furstenberg measures.

In [8] Bourgain gives examples of discrete measures µ on PSL2(R) such that the Fursten-
berg measure generated by µ is absolutely continuous and examples generating Furstenberg
measures with n-times differentiable density functions. His approach was revisited by several
authors to give new examples including Boutonnet, Ioana and Golsefidy [9], Lequen [41],
and Kogler [38].

1.3 New results

We will now outline the new results that we obtain for this thesis. The first result is a sufficient
condition for self-similar measures to be absolutely continuous. Using this we are able to find
many new explicit examples of absolutely continuous self-similar measures. In the special
case of Bernoulli convolutions we show that the Bernoulli convolution with parameter λ is
absolutely continuous providing it satisfies a simple condition in terms of the Mahler measure
of λ , its Garsia entropy and λ .

For our second result we provide a sufficient condition for a Furstenberg measure gener-
ated by a finitely supported measure to be absolutely continuous. Using this, we give a very
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broad class of examples of absolutely continuous Furstenberg measures including examples
generated by measures supported on two points.

1.3.1 Results on self-similar measures

First we will give our result in the special case of Bernoulli convolutions. To do this we need
to introduce Mahler measure.

Definition 1.3.1 (Mahler measure). Given some algebraic number α1 with conjugates
α2,α3, . . . ,αn whose minimal polynomial (over Z) has leading coefficient C, we define
the Mahler measure of α1 to be

Mα1 = |C|
n

∏
i=1

max{|αi|,1}.

We now state our result.

Theorem 1.3.2. Let λ ∈
(1

2 ,1
)

be an algebraic number with Mahler measure Mλ . Suppose
that λ is not the root of any non-zero polynomial with coefficients 0,±1 and satisfies

(logMλ − log2)(logMλ )
2 <

1
27

(logMλ − logλ
−1)3

λ
2. (1.1)

Then the Bernoulli convolution with parameter λ is absolutely continuous.

This is a corollary of a more general statement about a more general class of self-similar
measures. The requirement (1.1) is equivalent to Mλ < F(λ ) where F : (1

2 ,1)→ R is some
strictly increasing continuous function satisfying F(λ )> 2 and

(logF(λ )− log2)(logF(λ ))2 =
1
27
(
logF(λ )− logλ

−1)3
λ

2

for all λ ∈ (1
2 ,1). Figure 1.1 displays the graph of F .

It is worth noting that F(λ )→ 2
27
26 ≈ 2.054 as λ → 1. The fact that F(λ )> 2 is important

because the requirement that λ is not the root of a polynomial with coefficients 0,±1 forces
Mλ ≥ 2 as is explained in Remark 3.3.10.

Some parameters for Bernoulli convolutions which can be shown to be absolutely con-
tinuous using Theorem 1.3.2 are given in Table 3.1 which can be found in Section 3.4. The
smallest value of λ that we were able to find for which the Bernoulli convolution with
parameter λ can be shown to be absolutely continuous using this method is λ ≈ 0.78207
with minimal polynomial X8 −2X7 −X +1. This is much smaller than the examples given
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Fig. 1.1 The graph of F

in [56], the smallest of which was λ = 1− 10−50. We also show that for all n ≥ 8, there
is a root of the polynomial Xn −2Xn−1 −X +1 which is in

(1
2 ,1
)

such that the Bernoulli
convolution with this parameter is absolutely continuous.

We now state the results of Theorem 1.3.2 for a more general class of self-similar
measures

Definition 1.3.3. We say that an iterated function system F = ((Si)
n
i=1,(pi)

n
i=1) has uniform

contraction ratio and uniform rotation if there is some λ ∈ (0,1), some orthogonal trans-
formation U : Rd → Rd and some a1,a2, . . . ,an ∈ Rd such that for each i = 1,2, . . . ,n we
have

Si : x 7→ λUx+ai.

Similarly we say that the self-similar measure µF has uniform contraction ratio and uniform
rotation when F has uniform contraction ratio and uniform rotation.

This notion is important because of the following lemma.

Lemma 1.3.4. Let F = ((Si)
n
i=1,(pi)

n
i=1) be an iterated function system with uniform con-

traction ratio and uniform rotation. Let λ ∈ (0,1), let U be an orthogonal transformation
and let a1, . . . ,an ∈ Rd be vectors such that

Si : x 7→ λUx+ai.

Let X0,X1,X2, . . . be i.i.d. random variables such that P[X0 = ai] = pi for i = 1, . . . ,n and let

Y =
∞

∑
i=0

λ
iU iXi.
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Then the law of Y is µF .

Using this lemma it is easy to express the self-similar measure as the convolution of many
other measures. The purpose of doing this is explained in more detail in Section 1.4.1. In
order to state the main result we need the following definition.

Definition 1.3.5. Given an iterated function system F let the splitting rate of F , which we
denote by MF , be defined by

MF := limsup
k→∞

(
∆F,k

)− 1
k . (1.2)

Here ∆F,k is as in Definition 1.1.12.

Theorem 1.3.6. Let F be an iterated function system on Rd with uniform contraction ratio
and uniform rotation. Suppose that F has random walk entropy hF , splitting rate MF , and
uniform contraction ratio λ . Suppose further that

(d logMF −hF)(logMF)
2 <

1
27

(logMF − logλ
−1)3

λ
2.

Then the self-similar measure µF is absolutely continuous.

We give examples of self-similar measures which can be shown to be absolutely continu-
ous using this result in Section 3.4.

Remark 1.3.7. Notice that it is not a requirement in the theorem for the parameters in
F to be algebraic. In particular, the absolute continuity of Bernoulli convolutions would
follow even for transcendental parameters if a sufficiently good bound for the splitting rate
could be proved. In Theorem 1.3.2 we bound MF for algebraic parameters using the fact
that MF ≤ Mλ which we prove in Corollary 3.3.9. It would be interesting to bound MF for
specific transcendental λ . This seems to be beyond the reach of current methods. It would
also be interesting to see if the condition can be verified for almost all λ ∈ (1

2 ,1), which
would allow us to recover the result of Solomyak in [54].

1.3.2 Results on Furstenberg measures

We now state our result on the absolute continuity of Furstenberg measures. To do this we
first need some definitions.

Definition 1.3.8. Let µ be a probability measure on PSL2(R). We say that µ is strongly
irreducible if there is no finite set S ⊂ P1(R) which is invariant when acted upon by the
support of µ .
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Given g ∈ PSL2(R) we define ∥g∥ to be the operator norm of a representative of g in
SL2(R). Note that this does not depend on the choice of representative.

Definition 1.3.9. Given a measure µ on PSL2(R) we define the Lyapunov exponent of µ to
be given by the almost sure limit

χ := lim
n→∞

1
n

log∥γ1γ2 . . .γn∥

where γ1,γ2, . . . are i.i.d. samples from µ .

It is a result of Furstenberg and Kesten [21] that if µ is strongly irreducible and its support
is not contained in a compact subgroup of PSL2(R) then this limit exists almost surely and is
positive.

Throughout this thesis we will also fix some left invariant Riemannian metric and let d
be its distance function. We then have the following definition.

Definition 1.3.10. Let µ be a discrete measure on PSL2(R) supported on finitely many
points. Let

Sn :=
n⋃

i=1

supp(µ∗i).

Then we define the splitting rate of µ , which we will denote by Mµ , by

Mµ := exp

(
limsup

x,y∈Sn,x ̸=y
−1

n
logd(x,y)

)
.

Note that all left invariant Riemannian metrics are equivalent and therefore Mµ does not
depend on our choice of Riemannian metric. We define P1(R) to be (R2 \{0})/∼ where
x ∼ y if there is some λ ∈ R such that λx = y. We then identify P1(R) with R/πZ in the
following way.

Definition 1.3.11. We define the bijective function φ by

φ : P1(R)→ R/πZ[(
cosx
sinx

)]
7→ x.

We now define the following quantitative non-degeneracy condition.

Definition 1.3.12. Given some probability measure µ on PSL2(R) generating a Furstenberg
measure ν on P1(R) and given some α0, t > 0 we say that µ is α0, t-non-degenerate if
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whenever a ∈ R we have
ν(φ−1([a,a+ t]+πZ))≤ α0.

We now have everything needed to state the our new result on the absolute continuity of
Furstenberg measures.

Theorem 1.3.13. For all R > 1, α0 ∈ (0, 1
3) and t > 0 there is some C > 0 such that the

following holds. Suppose that µ is a probability measure on PSL2(R) which is strongly
irreducible, α0, t- non-degenerate, and is such that ∥·∥ is at most R on the support of µ .
Suppose further that the support of µ is not contained in any compact subgroup of PSL2(R).
Suppose that Mµ < ∞ and

hRW

χ
>C

(
max

{
1, log

logMµ

hRW

})2

. (1.3)

Then the Furstenberg measure ν on P1(R) generated by µ is absolutely continuous.

The constant C may be computed by following the proof.

Remark 1.3.14. The condition Mµ < ∞ is closely related to the exponential separation
condition in [29]. Indeed in [29] Hochman and Solomyak prove that if

limsup
x,y∈supp(µ∗n),x ̸=y

−1
n

logd(x,y)< ∞

and hRW
χ

≥ 2 then the Furstenberg measure has dimension 1.

We will now discuss how this result compares to previously existing results.
As we mentioned above, Bourgain [8] gave examples of absolutely continuous Fursten-

berg measures generated by measures on PSL2(R) supported on finitely many points. His
approach was revisited by several authors including Boutonnet, Ioana and Golsefidy [9],
Lequen [41], and Kogler [38]. We quote the following result from [38].

Theorem 1.3.15. For every c1,c2 > 0 and m ∈ Z>0 there is some positive ε0 = ε0(m,c1,c2)

such that the following holds. Suppose that ε ≤ ε0 and let µ be a symmetric probability
measure on PSL2(R) such that

µ
∗n (Bεc1n(H))≤ ε

c2n (1.4)

for all proper closed connected subgroups H < PSL2(R) and all sufficiently large n. Suppose
further that

supp µ ⊂ Bε(Id). (1.5)
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Then the Furstenberg measure generated by µ is absolutely continuous with m-times continu-
ously differentiable density function.

Here Bε(·) denotes the ε-neighbourhood of a set with respect to our left invariant Rie-
mannian metric.

The conditions of this theorem are not directly comparable to ours but they are related.
Condition (1.4) can be verified for H = {Id} if Mµ ≤ ε−c1 and µ∗n(Id)≤ εc2n for all suffi-
ciently large n. If that is the case then hRW ≥ c2 logε−1. When condition (1.5) holds we must
have χ ≤ O(ε). Informally speaking the conditions (1.4) and (1.5) correspond to Mµ ≤ ε−c1 ,
hRW ≥ c2 logε−1, and χ ≤O(ε). In comparison condition (1.3) in Theorem 1.3.13 is satisfied
if Mµ ≤ exp

(
exp
(

cε−1/2
))

, hRW ≥ c, and χ ≤ ε for some suitably small c > 0.
It is important to note however, that Theorem 1.3.15 gives higher regularity for the

Furstenberg measure than our result.
To demonstrate the applicability of our result we give several examples of measures

satisfying the conditions of Theorem 1.3.13. We will prove that these examples satisfy the
conditions of Theorem 1.3.13 in Section 4.6.

Definition 1.3.16 (Height). Let α1 be algebraic with algebraic conjugates α2,α3, . . . ,αd .
Suppose that the minimal polynomial for α1 over Z[X ] has positive leading coefficient a0.
Then we define the height of α1 by

H (α1) :=

(
a0

n

∏
i=1

max{1, |αi|}

)1/d

.

Note that the height of a rational number is the maximum of the absolute values of its
numerator and denominator. Also note that the height of an algebraic number is the dth root
of its Mahler measure.

We can apply some Euclidean structure to psl2(R). After doing this we have the follow-
ing.

Corollary 1.3.17. For every A > 0 there is some C > 0 such that the following is true. Let
r > 0 be sufficiently small (depending on A) and let µ be a finitely supported symmetric
probability measure on PSL2(R). Suppose that all of the entries of the matrices in the support
of µ are algebraic and that the support of µ is not contained in any compact subgroup of
PSL2(R). Let M be the greatest of the heights of these entries and let k be the degree of the
number field generated by these entries.

Let U be a random variable taking values in psl2(R) such that ∥U∥ ≤ r almost surely,
exp(U) has law µ , and the smallest eigenvalue of the covariance matrix of U is at least Ar2.
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Suppose that for any virtually solvable group H < PSL2(R) we have µ(H)≤ 1/2.
Suppose further that

r ≤C (logk+ log log(M+10))−2 .

Then the Furstenberg measure generated by µ is absolutely continuous.

The above proposition is true no matter which Euclidean structure we apply to psl2(R)
though the choice of Euclidean structure will affect the values of our constants.

In the above Proposition we can replace the requirement that µ is symmetric with the
requirement |E[U ]|< cr2 for any c > 0. We can also replace the requirement µ(H)≤ 1/2
with µ(H)≤ 1− ε for any ε > 0. If we do this then we must allow C to also depend on c
and ε .

Unlike examples based on the methods of Bourgain we do not require the support of µ to
be close to the identity. We may prove the following.

Corollary 1.3.18. For all r > 0 there exists some finitely supported measure µ on PSL2(R)
such that all of the elements in the support of µ are conjugate to a diagonal matrix with largest
entry at least r under conjugation by a rotation and the Furstenberg measure generated by µ

is absolutely continuous.

We also have the following family of examples supported on two elements.

Corollary 1.3.19. For all sufficiently large n ∈ Z>0 the following is true.
Let A ∈ PSL2(R) be defined by

A :=

(
n2−1
n2+1 − 2n

n2+1
2n

n2+1
n2−1
n2+1

)

and let B ∈ PSL2(R) be defined by

B :=

(
n3+1

n3 0
0 n3

n3+1

)
.

Let µ = 1
2δA +

1
2δB. Then the Furstenberg measure generated by µ is absolutely continuous.

1.4 Outline of the proofs

We now outline the proofs of our new results. First we outline the proof of our result on
self-similar measures.
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1.4.1 Result on self-similar measures

We now describe the outline of the proof of our result on self-similar measures. The proof
has much in common with the proof given by Varjú in [56] but with some new ingredients.
The most important new ingredient is the use of a new method for giving a quantitative way
of measuring the smoothness of a measure at a given scale. Before defining this quantity we
need to introduce the following notation.

Definition 1.4.1. Given an integer d ∈ Z>0 and some y > 0 let η
(d)
y be the density function

of the multivariate normal distribution with covariance matrix yI and mean 0. Specifically let

η
(d)
y (x) := (2πy)−d/2 exp

(
− 1

2y

d

∑
i=1

x2
i

)
.

Where the value of d is clear from context we usually just write ηy.

We also use the following notation.

Definition 1.4.2. Given an integer d ∈ Z>0 and some y > 0 let η ′
y be defined by

η
′
y :=

∂

∂y
ηy.

This notation is only used when the value of d is clear from context.

We then define the following.

Definition 1.4.3. Given a probability measure µ on Rd and some r > 0 we define the detail
of µ around scale r by

sr(µ) := r2Q(d)
∥∥µ ∗η

′
r2

∥∥
1

where Q(d) := 1
2Γ
(d

2

)( d
2e

)−d/2

The factor r2Q(d) was chosen to ensure that sr(µ) ∈ (0,1]. The precise value of Q(d)
turns out not to matter because the factor of Q(d) in Theorem 1.4.5 ends up cancelling with
the factor of Q(d) in Proposition 1.4.9. The smaller the value of detail around a scale the
smoother the measure is at that scale.

Later we show that if the detail of a measure at scale r tends to 0 sufficiently quickly
as r → 0 then the measure is absolutely continuous. We also show that detail decreases
under convolution in a quantitative way and use this to show that the measure is absolutely
continuous.
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In place of η ′
r2 , we could use another family of signed measures (νr)r∈R+ satisfying

νr(Rd) = 0 and satisfying νr1(A) =Cr1,r2νr2(r2A/r1) for every 0 < r1 < r2 for some constant
Cr1,r2 depending only on r1 and r2 for every A ∈ B(Rd). Given such a family, we can
understand something about the “smoothness” of µ at scale r by looking at ∥µ ∗νr∥1. It
turns out that taking νr = η ′

r2 is a good choice because it is easy to prove Lemma 1.4.4 and
Theorem 1.4.5.

First we show that provided sr(µ)→ 0 sufficiently quickly as r → 0 the measure µ is
absolutely continuous. Specifically we prove the following.

Lemma 1.4.4. Suppose that µ is a probability measure on Rd and that there exists some
constant β > 1 such that for all sufficiently small r > 0 we have

sr(µ)<
(
logr−1)−β

.

Then µ is absolutely continuous.

This is proven in Section 2.1.3. In order to bound the detail of the self-similar measure
at a given scale we first find a quantitative bound for the detail of the convolution of many
measures. Specifically we prove the following.

Theorem 1.4.5. Let n,d ∈ Z>0, K > 1, r > 0 and α1,α2, . . . ,αn ∈ (0,1]. Let m = logn
log(3/2) .

Let µ1,µ2, . . . ,µn be probability measures on Rd . Let α = min{α1,α2, . . . ,αn}. Suppose
that for all t ∈

[
2−

m
2 r,Kmα−m2m

r
]

and i ∈ {1,2, . . . ,n} we have

st(µi)≤ αi.

Then we have
sr(µ1 ∗µ2 ∗ · · · ∗µn)≤Cn−1

K,d α1α2 . . .αn

where

CK,d =
4

Q(d)

(
1+

1
2K2

)
.

This is proven in Section 2.1.2. This bound is quantitatively significantly more powerful
than the bound given by Varjú in [56]. This is discussed further in Remark 2.1.10. In order to
apply this theorem we need some way to express the self-similar measure as a convolution of
many measures each of which have at most some detail. To do this we use entropy. We have
already defined the entropy of a discrete measure. We define the entropy of an absolutely
continuous measure µ on Rd with density function f to be

H(µ) :=
∫
Rd

− f log f .
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We define the entropy of an absolutely continuous random variable to be the entropy of its
law. The conflict of notation with the entropy of a discrete measure does not matter because it
will always be clear from the context whether a probability measure is discrete or continuous.

We also need the following.

Definition 1.4.6. Let F = ((Si)
n
i=1,(pi)

n
i=1) be an iterated function system with uniform con-

traction ratio and uniform rotation. Suppose that λ ∈ (0,1), U is an orthogonal transformation
and a1, . . . ,an ∈ Rd are such that for each i = 1,2, . . . ,n we have

Si : x 7→ λUx+ai.

Let X0,X1,X2, . . . be i.i.d. random variables such that P[X0 = ai] = pi. Let I ⊂ (0,∞). Then
we define µ I

F to be the law of the random variable

∑
i∈Z:λ i∈I

λ
iU iXi.

Remark 1.4.7. We are only interested in the case where I ⊂ (0,1] but allow I ⊂ (0,∞) to
make various lemmas easier to state. We refer to the measures µ I

F as pieces. Clearly if
I1, I2, . . . , Ik are disjoint intervals contained in (0,1], then there is some measure ν such that
we have

µF = ν ∗µ
I1
F ∗µ

I2
F ∗ · · · ∗µ

Ik
F .

Indeed, we can take ν = µ
(0,1]\(I1∪···∪Ik)
F .

We continue our outline of the proof of the main theorem. We fix a scale r > 0 that
is suitably small, but otherwise arbitrary. We aim to find suitably many disjoint intervals
I1, I2, . . . , In ⊂ (0,1] such that st(µ

I j
F ) is suitably small for j = 1,2, . . . ,n for all t in a suitable

neighbourhood of r.
If we can achieve this then we can apply Theorem 1.4.5 for the measures µ

I j
F in the role of

µ j. This gives us a bound on sr(µF), which, if suitably good, implies the absolute continuity
of µF via Lemma 1.4.4.

In order to estimate sr(µ) we first estimate another quantity, H(µ ∗ηu), which also
measures the smoothness of the measure µ . In Section 3.2 we prove the following result.

Lemma 1.4.8. Let F be an iterated function system on Rd with uniform contraction ratio
and uniform rotation. Let hF be its random walk entropy, let MF be its splitting rate, and
let λ be its contraction ratio. Then for any M > MF there is some c > 0 such that for all
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n ∈ Z>0 we have

H
(

µ
(λ n,1]
F ∗η1

)
−H

(
µ
(λ n,1]
F ∗ηM−2n

)
< (d logM−hF)n+ c.

Under the conditions of Theorem 1.3.6, hF is only slightly smaller than d logMF .
Later we see that H(µ ∗ηu) is a non-increasing quantity in u. In our context this means∣∣∣t2 ∂

∂uH(µ
(λ k,1]
F ∗ηu)

∣∣∣
u=t2

∣∣∣ is small for most values of t between 1 and M−n. Here t2 is an
appropriate scaling factor whose role becomes clear later.

Given a scale s we can use the scaling identity

H(µλ kI
F ∗ηλ 2ku) = H(µ I

F ∗ηu)+dk logλ

to find intervals I such that
∣∣∣s2 ∂

∂uH(µ I
F ∗ηu)

∣∣∣
u=s2

∣∣∣ is small. We can then turn this into an
estimate for detail using the following proposition.

Proposition 1.4.9. Let µ and ν be compactly supported probability measures on Rd let r,u
and v be positive real numbers such that r2 = u+ v. Then

sr(µ ∗ν)≤ r2Q(d)

√
∂

∂u
H(µ ∗ηu)

∂

∂v
H(ν ∗ηv).

This is proven in Section 3.1.
In Section 3.3, we complete the proof of Theorem 1.3.6 by giving the details of the above

argument to construct suitable intervals I j such that Proposition 1.4.9 can be applied for
the measures µ

I j
F and then feed the resulting estimates on detail into Theorem 1.4.5 and

finally Lemma 1.4.4, as explained above. We then show that Theorem 1.3.2 follows from
Theorem 1.3.6. Finally in Section 3.4, we give examples of self-similar measures satisfying
the conditions of Theorems 1.3.2 and 1.3.6.

1.4.2 Result on Furstenberg measures

We will now give an overview of the proof of Theorem 1.3.13. We adapt the concept of detail
from our work on self-similar measures to work with measures on P1(R) or equivalently
R/πZ instead of measures on R. The detail of a measure λ around scale r, denoted by
sr(λ ), is a quantitative measure of how smooth a measure is at scale r. We will define this in
Definition 2.1.3. We then need the following result
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Lemma 1.4.10. Suppose that µ is a probability measure on P1(R) and that there exists some
constant β > 1 such that for all sufficiently small r > 0 we have

sr(µ)<
(
logr−1)−β

.

Then µ is absolutely continuous.

This follows from the same argument as Lemma 1.4.4.
We define the convolution of measures on P1(R) by our identification between φ and

R/πZ. In other words given measures λ1 and λ2 on P1(R) we define

λ1 ∗λ2 := (λ1 ◦φ
−1 ∗λ2 ◦φ

−1)◦φ .

In Definition 2.1.16 we introduce a new quantity for measuring how smooth a measure is at
some scale r > 0 which we will call order k detail around scale r and denote by s(k)r (·). The
definition is chosen such that trivially we have

s(k)r (λ1 ∗λ2 ∗ · · · ∗λk)≤ sr(λ1)sr(λ2) . . .sr(λk). (1.6)

We can also bound detail in terms of order k detail using the following lemma.

Lemma 1.4.11. Let k be an integer greater than 1 and suppose that λ is a probability
measure on R/πZ. Suppose that a,b > 0 and α ∈ (0,1). Suppose that a < b and that for all
r ∈ [a,b] we have

s(k)r (λ )≤ α.

Then we have

sa
√

k(λ )≤ αk
(

2e
π

) k−1
2

+ k! · ka2b−2.

Remark 1.4.12. Combining Lemma 1.4.11 with (1.6) we get a result that can be stated
informally as follows. Let λ1,λ2, . . . ,λn be measures on R/πZ. Assume that we have some
bound on sr(λi) for all integers i ∈ [1,n] and all r in a suitably large range of scales around
some scale r0. Then we can get a vastly improved bound for sr0(λ1 ∗λ2 ∗ · · · ∗λn).

This is essentially the same as Theorem 1.4.5. However Theorem 1.4.5 is not sufficient
for the proof of our result on Furstenberg measures. In what follows, we decompose the
Furstenberg measure ν as the convex combination of measures that can be approximated by
the convolutions of measures. This allows us to estimate s(k)r (ν) for arbitrary scales using
(1.6) among other things. Unlike the setting of the previous section, we cannot estimate the
detail of the convolution factors at a sufficiently large range of scales and so cannot apply
Theorem 1.4.5.
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In fact, the decomposition we use to estimate s(k)r (ν) depends on the exact value of r. For
this reason the notion of order k detail is a key innovation of this section that is necessary for
the proof.

We now need tools for bounding the detail of a measure at a given scale. One of them is
the following.

Lemma 1.4.13. For every α > 0 there exists some C > 0 such that the following is true. Let
X1,X2, . . . ,Xn be independent random variables taking values in R/πZ such that |Xi| < r̃
almost surely for some r̃ > 0. Let r̂ > 0 be defined by r̂2 = ∑

n
i=1 VarXi. Let r ∈ (r̃, r̂). Suppose

that
r̂
r
,
r
r̃
≥C.

Then
sr(X1 +X2 + · · ·+Xn)≤ α.

Here and through out this thesis when x ∈ R/πZ we use |x| to denote miny∈x |y|. The
idea of the proof of Theorem 1.3.13 is to show that ν ◦φ−1 can be expressed as a convex
combination of measures each of which can be approximated by the law of the sum of many
small independent random variables with some control over the variances of these variables.
One difficulty with this is that the measures which ν ◦φ−1 is a convex combination of are
only approximately the laws of sums of small independent random variables of the required
form. To deal with this we will need the following.

Lemma 1.4.14. There is some constant C > 0 such that the following is true. Let λ1 and λ2

be probability measures on R/πZ and let r > 0. Let k ∈ Z>0. Then∣∣∣s(k)r (λ1)− s(k)r (λ2)
∣∣∣≤Cr−1W1(λ1,λ2).

Here W1(·, ·) denotes Wasserstein distance.
Now we need to explain how we express ν ◦φ−1 as a convex combination of measures

each of which are close to the law of a sum of small independent random variables. To do
this we will need a chart for some neighbourhood of the identity in PSL2(R).

To do this we use the logarithm from PSL2(R) to its Lie algebra psl2(R) defined in some
open neighbourhood of the identity in PSL2(R). We also fix some basis of psl2(R) and use
this to identify psl2(R) with R3 and fix some Euclidean product and corresponding norm on
psl2(R).

Now we consider the expression

x = γ1γ2 . . .γT b
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where T is a stopping time, γ1,γ2, . . . are random variables taking values in PSL2(R) which
are i.i.d. samples from µ , and b is a sample from ν independent of the γi. Clearly x is a
sample from ν . We then construct some σ -algebra A and write

x = g1 exp(u1)g2 exp(u2) . . .gn exp(un)b (1.7)

where all of the gi are A -measurable random variables taking values in PSL2(R) and b is
an A -measurable random variable taking values in P1(R). Furthermore the ui are random
variables taking values in psl2(R) in a small ball around the origin such that conditional on
A we can find a lower bound on their variance. We then Taylor expand to show that φ(x)
can be approximated in the required way after conditioning on A . We will do this by letting
0 = T1 < T2 < · · ·< Tn = T be stopping times and constructing our random variables such
that

gi exp(ui) = γTi−1+1 . . .γTi.

To explain this statement more precisely we first need to define the Cartan decomposition.

Definition 1.4.15 (Cartan decomposition). We can write each element g of PSL2(R) with
∥g∥> 1 in the form

Rθ1Aλ R−θ2

where

Rx :=

(
cosx −sinx
sinx cosx

)
is the rotation by x and

Aλ :=

(
λ 0
0 λ−1

)
in exactly one way with λ ≥ 1 and θ1,θ2 ∈ R/πZ. We will let b+(g) = φ−1(θ1) and
b−(g) = φ−1(θ2 +

π

2 ).

Remark 1.4.16. Note that in this notation we have that if ∥g∥ is large then providing
b ∈ P1(R) is not too close to b−(g) we have that gb is close to b+(g). We will make this
more precise in Lemma 4.1.9.

We now let d denote the metric on P1(R) induced by φ . In other words if x,y ∈ P1(R)
then d(x,y) := |φ(x)−φ(y)|. Whenever we write d(·, ·) it will be clear as to whether we are
applying it to elements of PSL2(R) or elements of P1(R) and so clear if we are referring to
the distance function of our left invariant Riemannian metric on PSL2(R) or to our metric on
P1(R).



24 Introduction

By carrying out some calculations about the Cartan decomposition and applying Taylor’s
theorem we can prove the following.

Proposition 1.4.17. Let c, t > 0. Then there exists C,δ > 0 such that the following is true.
Let n ∈ Z>0, let r̃ > 0 and let u(1),u(2), . . . ,u(n) be independent random variables taking
values in psl2(R). Let g1, . . . ,gn ∈ PSL2(R) and let b ∈ P1(R). Suppose that for each integer
i ∈ [1,n] we have

∥gi∥ ≥C

and ∥∥∥u(i)
∥∥∥≤ c∥g1g2 . . .gi∥2 r̃.

Suppose that for each integer i ∈ [1,n−1] we have

d(b+(gi),b−(gi+1))> t

and also that
d(b,b−(gn))> t.

Suppose further that
∥g1g2 . . .gn∥2 r̃ < δ .

Let x be defined by
x = g1 exp(u(1)) . . .gn exp(u(n))b. (1.8)

For each integer i ∈ [1,n] let ζi ∈ psl2
∗ be the derivative defined by

ζi = Du(φ(g1g2 . . .gi exp(u)gi+1gi+2 . . .gnb))|u=0 (1.9)

and let S be defined by

S = φ(g1g2 . . .gnb)+
n

∑
i=1

ζi(u(i)).

Then we have
W1 (φ(x),S)≤Cn ∥g1g2 . . .gn∥2 r̃2.

Informally this proposition states that under some conditions, when x is of the form (1.8)
then φ(x) is close to its first order Taylor expansion in the u(i).

In (1.9) Du denotes the derivative of the map with respect to u.
We will later use this along with some results about the first derivatives of the exponential

at 0, Lemma 1.4.13, and (1.6) to get a bound on the order k detail of the expression x. We can
then get an upper bound on the order k detail of some sample x from ν conditional on some
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σ -algebra A . Due to the convexity of s(k)r (·) we can then find an upper bound for s(k)r (ν) by
taking the expectation of this bound.

We will now outline some of the tools we will use to decompose x in the way described
in (1.7). Let γ1,γ2, . . . be i.i.d. samples from µ and given n ∈ Z>0 let qn = γ1γ2 . . .γn. Let
b ∈ P1(R), let t > 0 and define

τt,b := min{n :
∥∥γ

T
n γ

T
n−1 . . .γ

T
1 b̂
∥∥≥ t

∥∥b̂
∥∥}

where b̂ ∈ R2 \ {0} is a representative of b and ·T denotes the transpose. Note that this
definition does not depend on our choice of b̂. We will show that we can find some σ -algebra

ˆA , some ˆA -measurable random variable a taking values in PSL2(R) and some random
variable u taking values in a small ball around the origin in psl2(R) such that we may write
qτt,b = aexp(u) and such that conditional on ˆA we know that u has at least some variance.

First we need to define some analogue of variance for random values taking values in
PSL2(R). For this we will make use of log. Specifically given some fixed g0 ∈ PSL2(R) and
some random variable g taking values in PSL2(R) such that g−1

0 g is always in the domain of
log we will define VARg0[g] by

VARg0 [g] := Var[log(g−1
0 g)].

By the variance of a random variable taking values in psl2(R), or any other finite dimensional
Euclidean vector space, we mean the trace of its covariance matrix. Throughout the paper we
fix some Euclidean structure on psl2(R) and use this to define our covariance matrix. The
proof works with any choice of Euclidean structure.

We now define the quantity v(g;r) as follows.

Definition 1.4.18. Let g be a random variable taking values in PSL2(R) and let r > 0. We then
define v(g;r) to be the supremum of all v ≥ 0 such that we can find some σ -algebra A and
some A - measurable random variable a taking values in PSL2(R) such that | log(a−1g)| ≤ r
almost surely and

E [VARa [g|A ]]≥ vr2.

Proposition 1.4.19. There is some absolute constant c > 0 such that the following is true. Let
µ be a strongly irreducible probability measure on PSL2(R) whose support is not contained
in a compact subgroup of PSL2(R) and let ν̂ be some probability measure on P1(R). Suppose
that Mµ < ∞ and that hRW/χ is sufficiently large. Let M > Mµ be chosen large enough
that logM ≥ hRW . Suppose that t is sufficiently large (depending on µ and M) and let
m̂ =

⌊
logM
100χ

⌋
.
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Let γ1,γ2, . . . be i.i.d. samples form µ , let qn := γ1γ2 . . .γn and let

τt,v := inf{n :
∥∥qT

n v̂
∥∥≥ t ∥v̂∥}.

Then there exists some r̃1, r̃2, . . . , r̃m̂ > 0 such that for each i ∈ [m̂]

r̃i ∈
(

t−
logM

χ , t−
hRW
10χ

)
and for each i ∈ [m̂−1]

r̃i+1 ≥ t3r̃i

and such that

m̂

∑
i=1

∫
P1(R)

v(qτt,w; r̃i) ν̂(dw)≥ c
(

hRW

χ

)(
max

{
1, log

logM
hRW

})−1

.

The measure ν̂ for which we apply Proposition 1.4.19 comes from the following result in
renewal theory.

Theorem 1.4.20. Let µ be a probability measure on PSL2(R) which is strongly irreducible
and has positive Lyapunov exponent. Then there is some probability measure ν̂ on P1(R)
such that the following is true. Let γ1,γ2, . . . be i.i.d. samples from µ and let qn := γ1γ2 . . .γn.
Given b ∈ P1(R) and t > 0 let τt,b := inf{n :

∥∥qT
n b̂
∥∥ ≥ t

∥∥b̂
∥∥} where b̂ ∈ R2 \ {0} is a

representative of b. Then for all b ∈ P1(R) the law of qT
τt,b

b converges weakly to ν̂ as t → ∞.
Furthermore this convergence is uniform in b.

In [36, Theorem 1] it is proven that Theorem 1.4.20 holds without the condition that it
is uniform in b in a much more general setting providing some conditions are satisfied. In
[24, Section 4] it is shown that the conditions of [36, Theorem 1] are satisfied in the setting
of Theorem 1.4.20. In Section 4.7, we will prove Theorem 1.4.20 by deducing uniform
convergence from (not necessarily uniform) convergence. A formula for ν̂ is given in [36,
Theorem 1] though this will not be needed for the purposes of this thesis.

We construct the decomposition (1.7) of a sample x from ν in Section 4.5. See Proposition
4.5.1. The details are very technical so we only discuss in this outline how given a sufficiently
small scale r̃ one can construct a stopping time τ , and a σ -algebra A such that

γ1γ2 . . .γτ = gexp(u)
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for some A -measurable random variable g taking values in PSL2(R) and some random u
taking values in psl2(R) such that ∥u∥ ≤ ∥g∥2 r̃ almost surely and after conditioning on A

we have a good lower bound for Var(u)
∥g∥4r̃2 .

We fix a small r̃ and some t that is much smaller that r̃−1. Let r̃i0 be one of the scales we
get when we apply Proposition 1.4.19 with the measure from Theorem 1.4.20 in the role of
ν̂ .

Fix an arbitrary b ∈ P1(R). Let s = (r̃/r̃i0)
1/2/t and let the stopping time S be defined by

S = inf{n :
∥∥(γ1 . . .γn)

T b
∥∥≥ s∥b∥}.

By Theorem 1.4.20, there is a random variable w taking values in P1(R) such that w⊥

has law ν̂ and
d(b−(γ1γ2 . . .γS),w)

is small with high probability.
Now let

T = inf{n :
∥∥∥(γS+1γS+2 . . .γn)

T w⊥
∥∥∥≥ t

∥∥∥w⊥
∥∥∥}.

Note that by Proposition 1.4.19 there is some σ -algebra ˜A such that

γS+1γS+2 . . .γT = aexp(u)

where a is an ˜A -measurable random element of PSL2(R) and u is a random element of
psl2(R) with ∥u∥ ≤ r̃i0 and a good lower bound on Var(u)

r̃2
i0

.

Now we define g = γ1 . . .γSa. Using the definition of w it is possible to show that ∥g∥ is
approximately s · t = (r̃/r̃i0)

1/2.
Note that the scale r̃i0 depends on the measure ν̂ so the convergence in Theorem 1.4.20 is

important. On the other hand it does not matter what this limit measure is.
The construction in Section 4.5 is significantly more elaborate. In particular, we will

make use of all the scales r̃1, . . . , r̃m̂ provided by Proposition 1.4.19. Moreover, we will need
to apply it for a carefully chosen sequence of parameters in the role of t.

Finally we discuss some ingredients of the proof of Proposition 1.4.19. We take the
entropy of an absolutely continuous random variable taking values in PSL2(R) to be the
differential entropy with respect to a certain normalisation of the Haar measure and denote
this by H(·). We will define this in Section 4.2.3. We will then prove the following theorem.
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Theorem 1.4.21. Let g,s1 and s2 be independent random variables taking values in PSL2(R)
such that s1 and s2 have finite entropy. Define k by

k := H(gs1)−H(s1)−H(gs2)+H(s2)

and let c := 3
2 log 2

3πeVARId[s1]−H(s1). Suppose that k > 0. Suppose further that s1 and s2

are supported on the ball of radius ε centred at the origin for some sufficiently small ε > 0.
Suppose also that VARId[s1]≥ Aε2 for some positive constant A. Then

E [VARgs2 [g|gs2]]≥
2
3
(k− c−Cε)VARId[s1]

where C is some positive constant depending only on A.

We apply this theorem when s1 and s2 are smoothing functions at appropriate scales
with s2 corresponding to a larger scale than s1. The value k can be thought of as the
new information that can be gained by discretising at the scale corresponding to s1 after
discretising at the scale corresponding to s2. When we apply this theorem we bound k in
the following way. We let g = γ1γ2 . . .γτ where the γi are i.i.d. samples from µ . We let
s1,s2, . . . ,sn be a sequence of smoothing random variables corresponding to various scales
with si corresponding to a larger scale than s j whenever i > j. For i = 1, . . . ,n−1 we let ki

be defined by
ki = H(gsi)−H(si)−H(gsi+1)+H(gsi+1)

and note that we have the following telescoping sum

n−1

∑
i=1

ki =
n−1

∑
i=1

H(gsi)−H(si)−H(gsi+1)+H(gsi+1)

= H(gs1)−H(s1)−H(gsn)+H(sn).

Since when we apply this theorem sn will correspond to a scale much larger than s1 we
are able to bound H(gs1)−H(s1)−H(gsn)+H(sn) for our careful choice of smoothing
functions in terms of hRW , Mµ and χ .

The value c in the above theorem measures how close s1 is to being a spherical normal
distribution. For random variables taking values in Rd it is well known that the random
variable with the greatest differential entropy out of all random variables with a given variance
is the spherical normal distribution. In particular this means that if X is a continuous random
variable taking values in Rd then H(X)≤ d

2 log 2
d πeVarX with equality if and only if X is

a spherical normal distribution. A similar thing is true for random variables taking values
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in PSL2(R). In particular c ≥ O(ε) and is small when s1 is close to being the image of a
spherical normal distribution on psl2(R) under exp.

For the conclusion of Theorem 1.4.21 to be useful in proving Proposition 1.4.19 we need
g to almost surely be contained in some ball of radius O

(√
VARId[s1]

)
centred on gs2. For

this reason we require s2 to be compactly supported. To make our telescoping sum useful
we need s1 and s2 to be members of the same family of random variables. For this reason
we take s1 and s2 to be compactly supported approximations of the image of the spherical
normal distribution on psl2(R) under exp. To do this we will find bounds on the differential
entropy of various objects smoothed with these compactly supported approximations to the
normal distribution at different scales.

We then combine Theorems 1.4.21 and a bound for the entropy of the stopped random
walk along with some calculations about the entropy and variance of the smoothing functions
to prove Proposition 1.4.19.

1.5 Notation

We will use Landau’s O(·) notation. Given some positive quantity X we write O(X) to
mean some quantity whose absolute values is bounded above by CX some constant C. If
C is allowed to depend on some other parameters then these will be denoted by subscripts.
Similarly we write o(X) to mean some quantity whose absolute value is bounded above by
c(X) where c(X) is some positive value which tends to 0 as X → ∞. Again if c is allowed to
depend on some other parameters then these will be denoted by subscripts. We also let Θ(X)

be some quantity which is bounded below by CX where C is some positive absolute constant.
If C is allowed to depend on some other parameters then these will be denoted by subscripts.

We write X ≲ Y to mean that there is some constant C > 0 such that X ≤CY . Similarly
we write X ≳ Y to mean that there is some constant C > 0 such that X ≥CY and X ∼= Y to
mean X ≲ Y and X ≳ Y . If these constants are allowed to depend on some other parameters
then these are denoted in subscripts.

1.6 Structure of the thesis

In Chapter 2 we will introduce the concept of detail and prove some properties about it which
we will use to prove our main results. We will also recall some properties of entropy which
we will use in throughout the thesis. Chapter 3 we will concerned with the proof of Theorem
1.3.6. In Chapter 4 we will prove Theorem 1.3.13.
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Entropy and detail

In this chapter we will give some results on entropy which we will use to prove the main
results of the paper later on. We will also introduce a new quantity for measuring how smooth
a measure is at a given scale which we will call detail.

2.1 Detail around a scale

In this section we discuss the basic properties of detail around a scale. The main purpose of
this section is to prove Lemma 1.4.4 and Theorem 1.4.5 as well as to introduce order k detail
and prove some properties of it.

Recall that η ′
y := ∂

∂yηy, where ηy is the density function of the multivariate normal
distribution with mean 0 and covariance matrix yI. Recall that in Definition 1.4.3 we defined
the detail of measure µ on Rd at scale r as

sr(µ) := r2Q(d)
∥∥µ ∗η

′
r2

∥∥
1 .

Detail is a quantitative measure of the smoothness of a measure at a given scale. The
detail of a measure at some scale r > 0 is close to 1 if, for example, the measure is supported
on a number of disjoint intervals of length much smaller than r, which are separated by a
distance much greater than r. The detail of a measure is small if, for example, the measure is
uniform on an interval of length significantly greater than r.

We now explain how we extend the concept of detail to measures taking values in P1(R)
or equivalently R/πZ. For this we need the following.
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Definition 2.1.1. Given some y > 0 let η̃y be the density of the pushforward of the normal
distribution with mean 0 and variance y onto R/πZ. In other words given x ∈ R/πZ let

η̃y(x) := ∑
u∈x

ηy(u).

We will also use the following notation.

Definition 2.1.2. Given some y > 0 let η̃ ′
y be defined by

η̃
′
y :=

∂

∂y
η̃y.

We now define the following.

Definition 2.1.3. Given a probability measure λ on R/πZ and some r > 0 we define the
detail of µ around scale r by

sr(λ ) := r2
√

πe
2

∥∥µ ∗ η̃
′
r2

∥∥
1 .

Similarly we define the detail of a probability measure on P1(R) to be the detail of the
pushforward measure under φ and we define the detail of a random variable to be the detail
of its law. Recall that Q(1) =

√
πe
2 . The factor r2

√
πe
2 exists to ensure that sr(µ) ∈ [0,1].

The smaller the value of detail around a scale the smoother the measure is at that scale.
In Section 2.1.1, we prove that the detail of a probability measure does not increase

if we convolve it with another probability measure. In Section 2.1.2 we prove Theorem
1.4.5, which is a quantitative estimate on how detail decreases as we take convolutions of
measures. Section 2.1.3 is devoted to the proof of Lemma 1.4.4 which shows that a measure
is absolutely continuous provided its detail decays sufficiently fast as the scale goes to 0.

After this we introduce the concept of order k detail in Section 2.1.4 and use this to bound
detail in Section 2.1.5. In Section 2.1.6 we prove Lemma 1.4.14. Finally in Section 2.1.7 we
prove Lemma 1.4.13.

Remark 2.1.4. We motivate the definition of detail as follows. Earlier work on Bernoulli
convolutions, including [12], [25], [27], and [56] studied quantities like

H(µ ∗Fr1)−H(µ ∗Fr2)

where Fr is a smoothing function associated to scale r (for example the law of the normal
distribution with standard deviation r or the law of a uniform random variable on [0,r]).
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Motivated by this and the work of Shmerkin [52], it is natural to study quantities like

∥µ ∗Fr1∥p −∥µ ∗Fr2∥p .

However it turns out to be more useful to study

∥µ ∗ (Fr1 −Fr2)∥p

at least when p = 1. Detail is an infinitesimal version of this quantity with Gaussian
smoothing.

2.1.1 No increase under convolution

Intuitively, convolution is a smoothing operation. This means we would not expect detail to
increase under convolution. We show this in the following proposition.

Proposition 2.1.5. Let µ and ν be probability measures on Rd or R/πZ. Then we have

sr(µ ∗ν)≤ sr(µ)

This is a corollary of the following Lemmas.

Lemma 2.1.6. Let µ and ν be probability measures. Then we have∥∥µ ∗ν ∗η
′
y
∥∥

1 ≤
∥∥ν ∗η

′
y
∥∥

1 .

Furthermore ∥∥µ ∗η
′
y
∥∥

1 ≤
∥∥η

′
y
∥∥

1 =
1
y
· 2

Γ
(d

2

) ( d
2e

)d/2

=
1

yQ(d)
. (2.1)

Lemma 2.1.7. Let λ1 and λ2 be probability measures on R/πZ. Then we have∥∥λ1 ∗λ2 ∗ η̃
′
y
∥∥

1 ≤
∥∥λ1 ∗ η̃

′
y
∥∥

1 .

In particular ∥∥λ1 ∗ η̃
′
y
∥∥

1 ≤
∥∥η̃

′
y
∥∥

1 ≤
∥∥η

′
y
∥∥

1 =
1
y

√
2

πe
.

Remark 2.1.8. It is worth noting that by (2.1) and the definition of detail (Definition 1.4.3)
we have that sr(µ) ∈ [0,1]. This is the purpose of the choice of constants in Definition 1.4.3.
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Proof of Lemma 2.1.6. For the first part simply write the measure ν ∗η ′
y as ν ∗η ′

y = ν̃+− ν̃−

where ν̃+ and ν̃− are (non-negative) measures concentrated on disjoint sets. Note that this
means ∥∥ν ∗η

′
y
∥∥

1 = ∥ν̃+∥1 +∥ν̃−∥1

and so ∥∥µ ∗ν ∗η
′
y
∥∥

1 = ∥µ ∗ ν̃+−µ ∗ ν̃−∥1

≤ ∥µ∥1 ∥ν̃+∥1 +∥µ∥1 ∥ν̃−∥1

=
∥∥ν ∗η

′
y
∥∥

1 .

For the second part, we need to compute∫
x∈Rd

∣∣η ′
y
∣∣ dx.

To do this, we work in polar coordinates. Let s =
√

∑
d
i=1 x2

i . Then we have

η
′
y(x1,x2, . . . ,xd) =

(
s2

2y2 −
d
2y

)
(2πy)−d/2 exp(− s2

2y
).

Noting that the (d −1)-dimensional surface measure of S(d−1) is 2πd/2

Γ(d/2) we get

∫
x∈Rd

∣∣η ′
y(x)

∣∣ dx =
2πd/2

Γ
(d

2

) (−∫ √
dy

s=0

(
s2

2y2 −
d
2y

)
(2πy)−d/2sd−1 exp(− s2

2y
)ds

+
∫

∞

√
dy

(
s2

2y2 −
d
2y

)
(2πy)−d/2sd−1 exp(− s2

2y
)ds
)
.

By differentiation it is easy to check that

∫ (s2

y
−d
)

sd−1e−
s2
2y ds =−sde−

s2
2y .
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Hence

−
∫ √

dy

s=0

(
s2

2y2 −
d
2y

)
(2πy)−d/2sd−1 exp(− s2

2y
)ds

+
∫

∞

√
dy

(
s2

2y2 −
d
2y

)
(2πy)−d/2sd−1 exp(− s2

2y
)ds

= 2 · 1
2y

(2πy)−d/2(dy)d/2e−d/2

=
1
y
(2π)−d/2dd/2e−d/2

which yields ∫
x∈Rd

∣∣η ′
y(x)

∣∣ dx =
1
y
· 2

Γ
(d

2

) ( d
2e

)d/2

.

Lemma 2.1.7 follows by the same argument. Proposition 2.1.5 follows easily from these
two Lemmas.

2.1.2 Quantitative decrease under convolution

In this subsection, we find a quantitative bound for the decrease of detail under convolution.
Specifically we prove Theorem 1.4.5. We begin with a result which differs from the n = 2
case of Theorem 1.4.5 only in that the range of the parameter t is slightly smaller.

Lemma 2.1.9. Let µ1 and µ2 be probability measures on Rd , let r > 0, α1,α2 ∈ (0,1] and

let K > 1. Suppose that for all t ∈ [r/
√

2,Kα
− 1

2
1 α

− 1
2

2 r] and for all i ∈ {1,2}, we have

st(µi)≤ αi.

Then
sr(µ1 ∗µ2)≤CK,dα1α2,

where

CK,d =
4

Q(d)

(
1+

1
2K2

)
.

We apply this lemma in the case K → ∞. This means the only important property of CK,d

is its limit as K → ∞. In the case d = 1 this limit is 8√
2eπ

≈ 1.93577. We deduce Theorem
1.4.5 from this by induction on n at the end of this subsection. Before proving Lemma 2.1.9
we point out that it is analogous to [56, Theorem 2].
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Remark 2.1.10. This result is similar to [56, Theorem 2] though more powerful. Varjú’s
result states that if there is some α ∈ (0, 1

2) and some r > 0 such that for all s ∈
[
α3r,α−3r

]
we have

1−H(µ;s|2s),1−H(ν ;s|2s)≤ α

then
1−H(µ ∗ν ;r|2r)≤ 108 (logα

−1)3
α

2. (2.2)

Here H(µ;r|2r) is a quantity which Varjú refers to as the entropy of µ between the scales
r and 2r. This quantity is always in [0,1] and is closer to 1 the smoother the measure is
at scale r. Hence 1−H(µ;r|2r) is an analogue of sr(µ). This result is not as powerful as
Lemma 2.1.9 as it contains the factor of

(
logα−1)3 and has a significantly larger constant

term. Indeed the constant is 108 instead of a constant less than 2. Lemma 2.1.9 also has
the advantage of having a significantly shorter proof and working in higher dimensions.
However, note that [56, Theorem 2] does not follow logically from Lemma 2.1.9.

We now turn to the proof of Lemma 2.1.9. The most important part of this proof is the
following lemma.

Lemma 2.1.11. Let µ1 and µ2 be probability measures and let y > 0. Then

∥∥µ1 ∗µ2 ∗η
′
y
∥∥

1 ≤ 2
∫

∞

y
2

∥∥µ1 ∗η
′
v
∥∥

1

∥∥µ2 ∗η
′
v
∥∥

1 dv.

We deduce Lemma 2.1.9 from Lemma 2.1.11 by simply substituting in the definition of
detail. In order to prove Lemma 2.1.11 we need to be able to commute the y derivatives. In
order to do this we need the following well known result.

Lemma 2.1.12. Let y > 0. Then we have

1
2
△ηy =

∂

∂y
ηy

where △ denotes the Laplacian

△=
d

∑
i=1

∂ 2

∂x2
i
.

Proof. This is just a simple computation. Simply note that

∂

∂xi
ηy =−xi

y
ηy
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and so
1
2

d

∑
i=1

∂ 2

∂x2
i

ηy =
1
2

(
|x|2

y2 − d
y

)
ηy =

∂

∂y
ηy. (2.3)

In (2.3) as in the rest of the thesis we take | · | to be the Euclidean norm. We can now
prove Lemma 2.1.11. Recall the notation η ′

y =
∂

∂yηy.

Proof of Lemma 2.1.11. First note that

∥∥µ ∗ν ∗η
′
y
∥∥

1 ≤
∫ w

y

∥∥∥∥ ∂

∂u

(
µ ∗ν ∗η

′
u
)∥∥∥∥

1
du+

∥∥µ ∗ν ∗η
′
w
∥∥

1 .

Taking w → ∞ and using (2.1) from Lemma 2.1.6 this gives∥∥∥∥µ ∗ν ∗ ∂

∂y
ηy

∥∥∥∥
1
≤
∫

∞

y

∥∥∥∥ ∂

∂u

(
µ ∗ν ∗ ∂

∂u
ηu

)∥∥∥∥
1

du.

We can then use Lemma 2.1.12 and standard properties of the convolution of distributions to
move the derivatives around as follows. For all a > 0, we can write

∂

∂u

(
µ ∗ν ∗η

′
u
)
=

1
2
· ∂

∂u
(µ ∗ν ∗△ηu)

=
1
2
· ∂

∂u
(µ ∗ν ∗ηu−a ∗△ηa)

=
1
2

(
µ ∗ ∂

∂u
ηu−a

)
∗ (ν ∗△ηa) .

Letting a = 1
2u and applying Lemma 2.1.12 again ,this gives

∂

∂u

(
µ ∗ν ∗η

′
u
)
=
(

µ ∗η
′
u
2

)
∗
(

ν ∗η
′
u
2

)
.

This yields ∥∥µ ∗ν ∗η
′
y
∥∥

1

≤
∫

∞

y

∥∥∥∥ ∂

∂u

(
µ ∗ν ∗η

′
u
)∥∥∥∥

1
du

=
∫

∞

y

∥∥∥(µ ∗η
′
u
2

)
∗
(

ν ∗η
′
u
2

)∥∥∥
1

du

≤
∫

∞

y

∥∥∥µ ∗η
′
u
2

∥∥∥
1

∥∥∥ν ∗η
′
u
2

∥∥∥
1

du

= 2
∫

∞

y
2

∥∥µ ∗η
′
v
∥∥

1

∥∥ν ∗η
′
v
∥∥

1 dv
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as required.

We can now prove Lemma 2.1.9.

Proof of Lemma 2.1.9. Using the definition of detail, applying Lemma 2.1.11 and using the
definition of detail again we have

sr(µ1 ∗µ2) = r2Q(d)
∥∥µ1 ∗µ2 ∗η

′
y
∥∥

1

≤ 2r2Q(d)
∫

∞

r2
2

∥∥µ1 ∗η
′
v
∥∥

1

∥∥µ2 ∗η
′
v
∥∥

1 dv

=
2r2

Q(d)

∫
∞

r2
2

v−2s√v(µ1)s√v(µ2)dv.

Using our assumption on detail and the fact that detail is always at most 1, we get

sr(µ1 ∗µ2)≤
2r2

Q(d)

∫ K2α
−1
1 α

−1
2 r2

r2
2

v−2
α1α2 dv

+
2r2

Q(d)

∫
∞

K2α
−1
1 α

−1
2 r2

v−2 dv

≤ 2r2

Q(d)

∫
∞

r2
2

v−2
α1α2 dv

+
2r2

Q(d)

∫
∞

K2α
−1
1 α

−1
2 r2

v−2 dv

=
2r2

Q(d)
α1α2

(
r2

2

)−1

+
2r2

Q(d)

(
K2

α
−1
1 α

−1
2 r2)−1

=
4

Q(d)

(
1+

1
2K2

)
α1α2.

We now apply Lemma 2.1.9 inductively to prove Theorem 1.4.5.

Proof of Theorem 1.4.5. We prove this by induction. The case n = 1 is trivial. Suppose that
n > 1. Without loss of generality we may assume that

0 < α1 ≤ α2 ≤ ·· · ≤ αn ≤ 1

and by Lemma 2.1.6 we may assume without loss of generality that αi < C−1
K,d for i =

1,2, . . . ,n. Let n′ =
⌈n

2

⌉
and let m′ = logn′

log(3/2) . Define ν1,ν2, ...,νn′ and β1,β2, ...,βn′ as
follows. For i = 1,2, ...,

⌊n
2

⌋
, let

νi = µ2i−1 ∗µ2i
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and
βi =CK,dα2i−1α2i

and if n is odd, let νn′ = µn and βn′ = αn. Note that

ν1 ∗ν2 ∗ · · · ∗νn′ = µ1 ∗µ2 ∗ · · · ∗µn (2.4)

and
Cn′−1

K,d β1β2 . . .βn′ =Cn−1
K,d α1α2 . . .αn. (2.5)

Since n′ < n we just need to show that n′, (νi)
n′
i=1 and (βi)

n′
i=1 satisfy the conditions of

the theorem in order to apply the inductive hypothesis. Note that β1 = min{β1,β2, . . . ,βn′}.
We want to use Lemma 2.1.9 to show that st(νi) ≤ βi for all i = 1,2, . . . ,n′ and for all

t ∈
[
2−

m′
2 r,Km′

β
−m′2m′

1 r
]
. The equations (2.4) and (2.5) mean that this is enough to get the

required bound on sr(µ1 ∗µ2 ∗ · · · ∗µn) by the inductive hypothesis.

To apply Lemma 2.1.9 we need to show that if t ∈
[
2−

m′
2 r,Km′

β
−m′2m′

1 r
]

and q ∈[
2−

1
2 t,Kα

− 1
2

2i−1α
− 1

2
2i t
]

then q ∈
[
2−

m
2 r,Kmα

−m2m

1 r
]
. Note that if t ∈

[
2−

m′
2 r,Km′

β
−m′2m′

1 r
]

and q ∈
[

2−
1
2 t,Kα

− 1
2

2i−1α
− 1

2
2i t
]

then

q ≥ 2−
1
2 t ≥ 2−

m′+1
2 r

and
q ≤ Kα

− 1
2

2i−1α
− 1

2
2i t ≤ Km′+1

β
−m′2m′

1 α
−1
1 r.

This means it is sufficient to show that[
2−

m′+1
2 r,Km′+1

β
−m′2m′

1 α
−1
1 r
]
⊂
[
2−

m
2 r,Km

α
−m2m

1 r
]
.

Note that m′+1 ≤ m so 2−
m′+1

2 r ≥ 2−
m
2 r. Also we have

Km′+1
β
−m′2m′

1 α
−1
1 r ≤ Km (

α
2
1
)−m′2m′

α
−1
1 r]

= Km
α
−1−m′2m′+1

1 r

≤ Km
α
−m2m

1 r

as required. Hence we are done by induction.
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Remark 2.1.13. It is worth noting that the only properties of m we have used are that m ≥ 1
when n > 1 and that m ≥ m′+1. A consequence of this is that it is possible to choose m such
that m ∼ log2 n. It turns out that this doesn’t make any difference to the bound in Theorem
1.3.6.

2.1.3 Sufficiency for absolute continuity

The main result of this subsection is to prove Lemma 1.4.4. This lemma shows that if
sr(µ) → 0 sufficiently quickly as r → 0 then µ is absolutely continuous. Lemma 1.4.4
follows easily from the following lemma.

Lemma 2.1.14. Let µ be a probability measure on Rd and let y > 0. Suppose that∫ y

0+

∥∥µ ∗η
′
u
∥∥

1 du < ∞ (2.6)

then µ is absolutely continuous.

Remark 2.1.15. We use the notation 0+ to emphasise the fact that ∥µ ∗η ′
u∥1 may not be

defined at u = 0.

First we deduce Lemma 1.4.4 from this.

Proof of Lemma 1.4.4. Note that the requirement sr(µ)< (logr−1)−β implies

r2Q(d)
∥∥µ ∗η

′
r2

∥∥
1 < (logr−1)−β .

By the conditions of Lemma 1.4.4 this is true for some β > 1 for all sufficiently small r > 0.
Hence there is some y ∈ (0,1) such that we have∫ y

0+

∥∥µ ∗η
′
u
∥∥

1 du ≤ c1

∫ y

0+

1
u

(
logu−1)−β

du

= c1

∫
∞

logy−1
w−β dw

< ∞.

Thus µ is absolutely continuous by Lemma 2.1.14.

We now prove Lemma 2.1.14.
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Proof of Lemma 2.1.14. The condition (2.6) implies that the sequence µ ∗ηu is Cauchy as
u → 0 in L1. This is because given some u > v > 0, we have that

∥µ ∗ηu −µ ∗ηv∥1 ≤
∫ u

v

∥∥µ ∗η
′
w
∥∥

1 dw

≤
∫ u

0+

∥∥µ ∗η
′
w
∥∥

1 dw

→ 0.

Since the space L1 is complete, there is some absolutely continuous measure µ̃ such that
µ ∗ηu → µ̃ with respect to L1 as u → 0. We now just need to check that µ = µ̃ .

Suppose for contradiction that µ̃ ̸= µ . The set of open subsets of Rd is a π-system
generating B(Rd). Therefore there is some open set U ⊂ Rd such that

µ(U) ̸= µ̃(U).

We assume for simplicity that

µ(U)> µ̃(U).

The opposite case is almost identical and we leave it to the reader. By regularity, there exists
some compact set K ⊂U such that

µ(K)> µ̃(U).

Let ε = min{dist(K,UC),µ(K)− µ̃(U)}. We now consider µ ∗ (ηu|Bε
) where Bε is the ball

of radius ε centred at 0. We have

(µ ∗ηu)(U)≥ (µ ∗ (ηu|Bε
))(U)

≥ ∥ηu|Bε
∥1 µ(K)

≥ ∥ηu|Bε
∥1 (µ̃(U)+ ε)

→ µ̃(U)+ ε

as u → 0. This contradicts the requirement

(µ ∗ηu)(U)→ µ̃(U)

as u → 0. This shows that µ = µ̃ and so, in particular, µ is absolutely continuous.
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2.1.4 Order k detail

We can now define the order k detail around a scale.

Definition 2.1.16 (Order k detail around a scale). Given a probability measure λ on R/πZ
and some k ∈ Z>0 we define the order k detail of λ around scale r, which we will denote by
s(k)r (λ ), by

s(k)r (λ ) := r2k
(

πe
2

)k/2
∥∥∥∥∥λ ∗ ∂ k

∂yk η̃y

∣∣∣∣
y=kr2

∥∥∥∥∥
1

.

We also define the order k detail of a measure on P1(R) to be the order k detail of the
pushforward measure under φ and define the order k detail of a random variable to be the
order k detail of its law. It is worth noting that s(1)r (·) = sr(·). We will now prove some basic
properties of order k detail.

Lemma 2.1.17. Let λ1,λ2, . . . ,λk be probability measures on R/πZ. Then we have

s(k)r (λ1 ∗λ2 ∗ · · · ∗λk)≤ sr(λ1)sr(λ2) . . .sr(λk).

This is (1.6) from Section 1.4.2.

Proof. Note that by Lemma 2.1.12 and standard properties of convolution we have

∂ k

∂yk η̃y

∣∣∣∣
y=kr2

= 2−k ∂ 2k

∂x2k η̃kr2

=

(
1
2

∂ 2

∂x2 η̃r2

)
∗
(

1
2

∂ 2

∂x2 η̃r2

)
∗ · · · ∗

(
1
2

∂ 2

∂x2 η̃r2

)
︸ ︷︷ ︸

k times

= η̃
′
r2 ∗ η̃

′
r2 ∗ · · · ∗ η̃

′
r2︸ ︷︷ ︸

k times

and therefore

λ1 ∗λ2 ∗ · · · ∗λk ∗
∂ k

∂yk η̃y

∣∣∣∣
y=kr2

= λ1 ∗ η̃
′
r2 ∗λ2 ∗ η̃

′
r2 ∗ · · · ∗λk ∗ η̃

′
r2.

This means∥∥∥∥∥λ1 ∗λ2 ∗ · · · ∗λk ∗
∂ k

∂yk η̃y

∣∣∣∣
y=kr2

∥∥∥∥∥
1

≤
∥∥λ1 ∗ η̃

′
r2

∥∥
1 ·
∥∥λ2 ∗ η̃

′
r2

∥∥
1 · · · · ·

∥∥λk ∗ η̃
′
r2

∥∥
1 .

The result follows.
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We also need the following corollary.

Corollary 2.1.18. Suppose that λ is a probability measure on R/πZ. Then

s(k)r (λ )≤ 1.

Proof. This is immediate by letting all but one of the measures in Lemma 2.1.17 be a delta
function.

There is no reason to assume that the bound in Corollary 2.1.18 is optimal for any k ≥ 2.
Indeed it is fairly simple to show that it is not. However the trivial upper bound of 1 will still
prove useful.

2.1.5 Bounding detail using order k detail

The purpose of this subsection is to prove Lemma 1.4.11. For this we first need the following
result.

Lemma 2.1.19. Let k be an integer greater than 1 and suppose that λ is a probability
measure on R/πZ. Suppose that a,b,c > 0 and α ∈ (0,1). Suppose that a < b and that for
all r ∈ [a,b] we have

s(k)r (λ )≤ α + cr2k. (2.7)

Then for all r ∈
[
a
√

k
k−1 ,b

√
k

k−1

]
we have

s(k−1)
r (λ )≤ k

k−1

√
2e
π

α +
(

b−2k+2 + kb2c
)

r2(k−1).

Proof. Recall that

s(k)r (λ ) = r2k
(

πe
2

) k
2

∥∥∥∥∥λ ∗ ∂ k

∂yk η̃y

∣∣∣∣
y=kr2

∥∥∥∥∥
1

.

This means by (2.7) that when y = kr2 we have∥∥∥∥λ ∗ ∂ k

∂yk η̃y

∥∥∥∥
1
≤ αr−2k

(
πe
2

)− k
2
+ c
(

πe
2

)− k
2

= αy−kkk
(

πe
2

)− k
2
+ c
(

πe
2

)− k
2
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for all y ∈ [ka2,kb2]. This means that for y ∈ [ka2,kb2] we have∥∥∥∥λ ∗ ∂ k−1

∂yk−1 η̃y

∥∥∥∥
1

≤
∥∥∥∥λ ∗ ∂ k−1

∂uk−1 η̃u

∣∣∣∣
u=kb2

∥∥∥∥
1
+
∫ kb2

y

∥∥∥∥λ ∗ ∂ k

∂uk η̃u

∥∥∥∥
1

du

≤
∥∥∥∥ ∂ k−1

∂uk−1 η̃u

∣∣∣∣
u=kb2

∥∥∥∥
1
+
∫ kb2

y
αu−kkk

(
πe
2

)− k
2
+ c
(

πe
2

)− k
2

du

≤
(

kb2

k−1

)−k+1(
πe
2

)−(k−1)/2
+α

y−k+1

k−1
kk
(

πe
2

)− k
2
+ kb2c

(
πe
2

)− k
2

(2.8)

where in (2.8) we bound
∥∥∥ ∂ k−1

∂uk−1 η̃u

∣∣∣
u=kb2

∥∥∥
1

using the fact that order k−1 detail is at most one,

we bound
∫ kb2

y αu−kkk (πe
2

)− k
2 du by

∫
∞

y αu−kkk (πe
2

)− k
2 du and bound

∫ kb2

y c
(

πe
2

)− k
2 du by∫ kb2

0 c
(

πe
2

)− k
2 du. Noting that (

k
k−1

)−k+1

< 1

and (
πe
2

)− 1
2
< 1

we get ∥∥∥∥λ ∗ ∂ k−1

∂yk−1 ηy

∥∥∥∥
1
≤ α

y−k+1

k−1
kk
(

πe
2

)− k
2
+
(

b−2k+2 + kb2c
)(

πe
2

)− k−1
2
.

Substituting in the definition of order k detail gives

s(k−1)
r (λ ) = r2(k−1)

(
πe
2

) k−1
2

∥∥∥∥∥λ ∗ ∂ k−1

∂yk−1 η̃y

∣∣∣∣
y=(k−1)r2

∥∥∥∥∥
1

≤ r2(k−1)
(

πe
2

)− 1
2

α
((k−1)r2)−k+1

k−1
kk + r2(k−1)

(
πe
2

)− 1
2
(

b−2k+2 + kb2c
)

and so we have

s(k−1)
r (λ )≤ α

√
2

πe

(
1+

1
k−1

)k

+(b−k+1 + kcb)r2(k−1)

for all r ∈
[
a
√

k
k−1 ,b

√
k

k−1

]
. Noting that

(
1+ 1

k−1

)k ≤ k
k−1e gives the required result.

We apply this inductively to prove Lemma 1.4.11.
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Proof of Lemma 1.4.11. Using Lemma 2.1.19 we will prove by induction for j = k,k −
1, . . . ,1 that for all r ∈

[
a
√

k
j ,b
√

k
j

]
we have

s( j)
r (λ )

≤ α
k
j

(
2e
π

) k− j
2

+
k!
j!

b−2 jr2 j.

The case j = k follows by the conditions of the lemma. Suppose that for all r ∈[
a
√

k
j+1 ,b

√
k

j+1

]
we have

s( j+1)
r (λ )≤ α

k
j+1

(
2e
π

) k− j−1
2

+
k!

( j+1)!
b−2 j−2r2( j+1).

Then by Lemma 2.1.19 for all r > 0 such that r ∈
[
a
√

k
j ,b
√

k
j

]
we have

s( j)
r (λ )≤ α

k
j

(
2e
π

) k− j
2

+

(
b−2 j + jb2

(
k!

( j+1)!
b−2 j−2

))
r2 j

≤ α
k
j

(
2e
π

) k− j
2

+

(
k!

( j+1)!
b−2 j + jb2

(
k!

( j+1)!
b−2 j−2

))
r2 j

= α
k
j

(
2e
π

) k− j
2

+( j+1)
k!

( j+1)!
b−2 jr2 j

= α
k
j

(
2e
π

) k− j
2

+
k!
j!

b−2 jr2 j

as required. Lemma 1.4.11 follows easily from the j = 1 case.

2.1.6 Wasserstein distance bound

In this subsection we will bound the difference in order k detail between two measures in
terms of the Wasserstein distance between those two measures. Specifically we will prove
Lemma 1.4.14. First we need to define Wasserstein distance.

Definition 2.1.20 (Coupling). Given two measures probability measures λ1 and λ2 on a set X
we say that a coupling between λ1 and λ2 is a measure γ on X ×X such that γ(·×X) = λ1(·)
and γ(X ×·) = λ2(·).

Definition 2.1.21 (Wasserstein distance). Given two probability measures λ1 and λ2 on
R/πZ the Wasserstein distance between λ1 and λ2, which we will denote by W1(λ1,λ2), is



46 Entropy and detail

given by

W1(λ1,λ2) := inf
γ∈Γ

∫
R/πZ2

|x− y|γ(dx,dy)

where Γ is the set of couplings between λ1 and λ2.

We can now prove Lemma 1.4.14.

Proof of Lemma 1.4.14. Let X and Y be random variables with laws λ1 and λ2 respectively.
Then we have

(λ1 −λ2)∗
∂ k

∂yk η̃y

∣∣∣∣
y=kr2

(v) = E

[
∂ k

∂yk η̃y

∣∣∣∣
y=kr2

(v−X)− ∂ k

∂yk η̃y

∣∣∣∣
y=kr2

(v−Y )

]
.

In particular∣∣∣∣∣(λ1 −λ2)∗
∂ k

∂yk η̃y

∣∣∣∣
y=kr2

(v)

∣∣∣∣∣≤ E

∣∣∣∣∣ ∂ k

∂yk η̃y

∣∣∣∣
y=kr2

(v−X)− ∂ k

∂yk η̃y

∣∣∣∣
y=kr2

(v−Y )

∣∣∣∣∣ .
We note that∣∣∣∣∣ ∂ k

∂yk η̃y

∣∣∣∣
y=kr2

(v−X)− ∂

∂y
η̃y

∣∣∣∣
y=kr2

(v−Y )

∣∣∣∣∣≤
∫ Y

X

∣∣∣∣∣ ∂ k+1

∂x∂yk η̃y

∣∣∣∣
y=kr2

(v−u)

∣∣∣∣∣ |du|

where ∫ y

x
· |du|

is understood to be the integral along the shortest path between x and y. This means that∥∥∥∥∥(λ1 −λ2)∗
∂ k

∂yk η̃y

∣∣∣∣
y=kr2

∥∥∥∥∥
1

≤
∫
R/πZ

E

[∫ Y

X

∣∣∣∣∣ ∂ k+1

∂x∂yk η̃y

∣∣∣∣
y=kr2

(v−u)

∣∣∣∣∣ |du|

]
dv

= E

[∫ Y

X

∫
R/πZ

∣∣∣∣∣ ∂ k+1

∂x∂yk η̃y

∣∣∣∣
y=kr2

(v−u)

∣∣∣∣∣ dv |du|

]

=

∥∥∥∥∥ ∂ k+1

∂x∂yk η̃y

∣∣∣∣
y=kr2

∥∥∥∥∥
1

E|X −Y |.
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We now bound
∥∥∥∥ ∂ k+1

∂x∂yk η̃y

∣∣∣
y=kr2

∥∥∥∥
1
. To do this note that

∥∥∥∥∥ ∂ k+1

∂x∂yk η̃y

∣∣∣∣
y=kr2

∥∥∥∥∥
1

≤

∥∥∥∥∥ ∂ k+1

∂x∂yk ηy

∣∣∣∣
y=kr2

∥∥∥∥∥
1

.

By using Lemma 2.1.12 in the same way as in the proof of Lemma 2.1.17 we get

∂ k+1

∂x∂yk ηy

∣∣∣∣
y=kr2

=
∂

∂x
ηy

∣∣∣∣
y=r2

∗ ∂

∂y
ηy

∣∣∣∣
y=r2

∗ ∂

∂y
ηy

∣∣∣∣
y=r2

∗ · · · ∗ ∂

∂y
ηy

∣∣∣∣
y=r2︸ ︷︷ ︸

k times

and so ∥∥∥∥∥ ∂ k+1

∂x∂yk ηy

∣∣∣∣
y=kr2

∥∥∥∥∥
1

≤
∥∥∥∥ ∂

∂x
ηr2

∥∥∥∥
1
·
∥∥η

′
r2

∥∥k
1 .

Note that trivially there is some constant C > 0 such that∥∥∥∥ ∂

∂x
ηr2

∥∥∥∥
1
=Cr−1.

From Lemma 2.1.6 we have ∥∥∥∥∥ ∂

∂y
ηy

∣∣∣∣
y=r2

∥∥∥∥∥
1

= r−2

√
2

πe

meaning ∥∥∥∥∥ ∂ k+1

∂x∂yk ηy

∣∣∣∣
y=kr2

∥∥∥∥∥
1

≤Cr−2k−1
(

πe
2

)− k
2
.

Therefore

r2k
(

πe
2

) k
2

∥∥∥∥∥ ∂ k+1

∂x∂yk ηy

∣∣∣∣
y=kr2

∥∥∥∥∥
1

≤Cr−1.

Choosing a coupling for X and Y which minimizes E|X −Y | gives the required result.

2.1.7 Small random variables bound

In this subsection we prove Lemma 1.4.13. Recall that this gives a bound for the detail of the
sum of many independent random variables each of which are contained in a small interval
containing 0 and have at least some variance. To prove this we will need the following
quantitative version of the central limit theorem.
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Theorem 2.1.22. Let X1,X2, . . . ,Xn be independent random variables taking values in R with
mean 0 and for each i ∈ [1,n] let E[X2

i ] = ω2
i and E[|Xi|3] = γ3

i < ∞. Let ω2 = ∑
n
i=1 ω2

i and
let S = X1 + · · ·+Xn. Then

W1(S,ηω2)≲
∑

n
i=1 γ3

i

∑
n
i=1 ω2

i
.

Proof. A proof of this result may be found in [17].

We are now ready to prove Lemma 1.4.13.

Proof of Lemma 1.4.13. We will prove this in the case where the Xi take values in R. The
case where they take values R/πZ follows trivially from this case.

For i = 1, . . . ,n let X ′
i = Xi −E[Xi] and let S′ = ∑

n
i=1 X ′

i . Note that sr(S) = sr(S′). Let
E[|X ′

i |2] = ω2
i and E[|X ′

i |3] = γ3
i . Note that VarXi = ω2

i and so r̂2 = ∑
n
i=1 ω2

i . Note that
almost surely |X ′

i | ≤ 2r̃. This means that γ3
i ≤ 2r̃ω2

i . Therefore by Theorem 2.1.22 we have

W1
(
S′,ηr̂2

)
≤ O(r̃).

We also compute

sr(ηr̂2) =

∥∥∥η ′
r2+r̂2

∥∥∥
1∥∥∥η ′

r2

∥∥∥
1

=
r2

r2 + r̂2

and so noting that sr(·) = s(1)r (·) we have by Lemma 1.4.14 that

sr(S) = sr(S′)

≤ O
(

r̃
r

)
+

r2

r2 + r̂2 .

This gives the required result.

2.2 Entropy

In this subsection we will describe some of the properties of entropy used in this thesis.
We will describe entropy for both absolutely continuous and discrete measures on Rd and
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PSL2(R). Recall that we define the entropy of a discrete random variable taking values with
probabilities p1, p2, . . . to be

−∑ pi log pi

and that we define the entropy of an absolutely continuous random variable taking values in
Rd with density function f to be ∫

Rd
− f log f .

We now define entropy for continuous measures on PSL2(R).

Definition 2.2.1 (KL-divergence). Let λ1 be a probability measure on a measurable space
(E,ξ ) and let λ2 be a measure on (E,ξ ). Then we define the KL-divergence of λ1 given λ2

by

K L (λ1,λ2) :=
∫

E
log

dλ1

dλ2
dλ1.

It is worth noting that in all of the cases we have discussed so far the entropy of a
probability measure λ can be expressed as −K L (λ ,α) where α is some measure such
that λ << α . In the case of a discrete probability measure we have α is just the counting
measure and if λ is an absolutely continuous random variable taking values in Rd then we
take α to be the Lesbegue measure. This will be the case for all measurable spaces on which
we define some concept of entropy.

We now wish to define entropy for a continuous random variable taking values in PSL2(R).
To do this we need the Haar measure.

Definition 2.2.2 (Haar measure). Given a Lie group G with Borel σ - algebra B(G) we say
that a measure λ on (G,B(G)) is a left invariant measure if for all g ∈ G and all S ∈ B(G)

we have
λ (gS) = λ (S).

Similarly we call it a right invariant measure if for all g ∈ G and all S ∈ B(G) we have

λ (Sg) = λ (S).

If λ is Radon and left invariant then it is called a left Haar measure. Similarly if λ is
Radon and right invariant then it is called a right Haar measure. If λ is both a left Haar
measure and a right Haar measure then we call it a Haar measure.

It is well known that every Lie group has a non-zero left and right Haar measure and
that these are unique up to multiplication by a positive constant. In the special case of
G = PSL2(R) these coincide which makes our proof easier. To describe the Haar measure of
PSL2(R) we will use the Iwasawa decomposition.
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Definition 2.2.3 (Iwasawa decomposition). Each element of PSL2(R) can be written uniquely
in the form (

1 x
0 1

)(
y

1
2 0

0 y−
1
2

)(
cosθ −sinθ

sinθ cosθ

)
with x ∈ R, y ∈ R>0 and θ ∈ R/πZ. This is called the Iwasawa decomposition.

Lemma 2.2.4. There is a Haar measure for PSL2(R) which is given in the Iwasawa decom-
position by

1
y2 dxdydθ .

Proof. This is proven in for example [40, Chapter III].

Definition 2.2.5. Let m̃ denote the Haar measure on PSL2(R) normalized such that

dm̃
dm◦ log

(Id) = 1

where m denotes the Lebesgue measure on psl2(R) under our identification of psl2(R) with
R3.

Definition 2.2.6. Let λ be an absolutely continuous measure on PSL2(R). We then define
the entropy of λ by

H(λ ) :=−K L (λ , m̃).

Similarly if g is a random variable taking values in PSL2(R) then we let H(g) denote the
entropy of its law.

We also define entropy for non-probability measures.

Definition 2.2.7. Suppose that λ is a finite measure defined on a space for which we have
some concept of entropy and which is either absolutely continuous or discrete. Then we
define

H(λ ) = ∥λ∥1 H(λ/∥λ∥1).

We say that a finite discrete measure with masses p1, p2, . . . has finite entropy if

∞

∑
i=1

pi| log pi|< ∞.

Similarly we say that a finite absolutely continuous measure on Rd or PSL2(R) with density
function f with respect to the Lesbegue measure or our normalised version of the Haar
measure has finite entropy if ∫

f | log f |< ∞.
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Let h : [0,∞)→ R,x 7→ −x logx. Note that h is concave and sub-additive. From these
properties we can deduce the following two lemmas.

Lemma 2.2.8 (Entropy is concave). Let λ1,λ2, . . . be finite measures with finite entropy
either all on Rd or all on PSL2(R) which are either all absolutely continuous or all discrete.
Suppose that ∑

∞
i=1 ∥λi∥1 < ∞ and both H (∑∞

i=N λi) and ∑
∞
i=N H (λi) tend to 0 as N → ∞.

Then

H(
∞

∑
i=1

λi)≥
∞

∑
i=1

H(λi).

Proof. First we wish to show that if λ1 and λ2 are finite measures with finite entropy then

H(λ1 +λ2)≥ H(λ1)+H(λ2). (2.9)

Let λ1 and λ2 have density functions f and g respectively. Note that we have

H(λ1 +λ2)

= (∥λ1∥1 +∥λ2∥1)
∫
Rd

h
(

f +g
∥λ1∥1 +∥λ2∥1

)
≥ (∥λ1∥1 +∥λ2∥1)

∫
Rd

∥λ1∥1
∥λ1∥1 +∥λ2∥1

h
(

f (x)
∥λ1∥1

)
+

∥λ2∥1
∥λ1∥1 +∥λ2∥1

h
(

g(x)
∥λ2∥1

)
dx

= H(λ1)+H(λ2)

as required. Applying (2.9) inductively gives

H

(
N

∑
i=1

λi

)
≥

N

∑
i=1

H (λi) . (2.10)

Putting ∑
∞
i=N λi in the role of λN and noting that H (∑∞

i=N λi) and ∑
∞
i=N H (λi) tend to 0

as N → ∞ gives (2.10) as required.

Lemma 2.2.9 (Entropy is almost convex). Let λ1,λ2, . . . be probability measures either all
on Rd or all on PSL2(R) which are either all absolutely continuous or all discrete. Suppose
that all of the probability measures have finite entropy. Let p = (p1, p2, . . .) be a probability
vector. Then

H(
∞

∑
i=1

piλi)≤
∞

∑
i=1

piH(λi)+H(p).
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In particular if pi = 0 for all i > k for some k ∈ Z>0 then

H

(
k

∑
i=1

µi

)
≤

k

∑
i=1

H(µi)+ logk. (2.11)

Proof. First we prove (??). To begin with we deal with the case that the measures are all
absolutely continuous measures on Rd . Let the density function of λi be fi. Using the fact
that ∑

∞
i=1 piλi is a probability measure and the sub-additivity of h we get

H

(
∞

∑
i=1

piλi

)
=
∫
Rd

h

(
∞

∑
i=1

pi fi

)
(2.12)

≤
∞

∑
i=1

∫
Rd

h(pi fi) (2.13)

=
∞

∑
i=1

∫
Rd

(−pi fi(x) log( fi(x))− pi fi(x) log pi) dx (2.14)

=
∞

∑
i=1

∫
Rd

piH( fi(x))dx+h(pi) (2.15)

=
∞

∑
i=1

piH(λi)+H(p).

The other cases follow by taking the density function to be with respect to appropriate
measures.

For (2.11) we simply apply (2.2.9) with pi = 0 for i > k. We note that this gives
H(p)≤ logk.

Lemma 2.2.10. Let µ and ν be probability measures on Rd . Suppose that µ is a discrete
measure supported on finitely many points with separation at least 2R and that ν is an
absolutely continuous measure with finite entropy whose support is contained in a ball of
radius R. Then

H(µ ∗ν) = H(µ)+H(ν).

Proof. Let n ∈ Z>0, p1, p2, . . . , pn ∈ (0,1) and x1,x2, . . . ,xn ∈ Rd be chosen such that

µ =
n

∑
i=1

piδxi.

Let f be the density function of ν . Note that the density function of µ ∗ν , which we
denote by g, can be expressed as
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g(x) =

pi f (x− xi) |xi − x|< R for some i,

0 otherwise.
.

We then compute

H(µ ∗ν) =
n

∑
i=1

∫
BR(xi)

−g(x) log g(x)dx

=
n

∑
i=1

∫
BR(0)

−pi f (x) log(pi f (x)) dx

=
n

∑
i=1

∫
BR(0)

−pi f (x) log( f (x)) dx

+
n

∑
i=1

∫
BR(0)

−pi f (x) log(pi) dx

= H(µ)+H(ν)

Lemma 2.2.11. Let d be the distance function of a left invariant metric and let r > 0.
Suppose that g is a discrete random variable taking values in PSL2(R) and that there are
x1,x2, . . . ,xn ∈ PSL2(R) and a probability vector p = (p1, p2, . . . , pn) such that

P [g = xi] = pi.

Suppose further that for every i ̸= j we have d(xi,x j)> 2r. Let h be an absolutely continuous
random variable taking values in PSL2(R). Suppose that d(Id,h)≤ r almost surely. Suppose
further that h has finite entropy. Then

H(gh) = H(g)+H(h)

Proof. This follows by the same argument as Lemma 2.2.10.





Chapter 3

Self-similar measures

This chapter will cover the proof of our sufficient condition for self-similar measures to be
absolutely continuous - Theorem 1.3.6. We have already introduced detail and entropy which
are the most important tools we will use. We now need to bound detail using entropy.

3.1 Bounding detail using entropy

The purpose of this section is to prove Proposition 1.4.9, which estimates the detail of a
convolution of measures in terms of the quantity ∂

∂uH(µ ∗ηu) for both convolution factors in
the role of µ .

The most important ingredient in proving Proposition 1.4.9 is the following proposition.

Proposition 3.1.1. Let µ be a probability measure on Rd with finite variance and let y > 0.
Then we have

1
2

∥∥∇µ ∗ηy
∥∥2

1 ≤
∂

∂y
H(µ ∗ηy).

This proposition is the reason for the estimate in Proposition 1.4.9 to be an estimate on the
detail of a convolution of two measures rather than an estimate on the detail of one measure.
This is because we use Lemma 2.1.12 to estimate

∥∥µ ∗ν ∗η ′
y
∥∥

1 in terms of ∥∇µ ∗ηu∥1 and
∥∇ν ∗ηv∥1.

To prove this proposition we use Fisher information.

Definition 3.1.2 (Fisher information). Let µ be an absolutely continuous probability measure
on Rd . Let f be the density function of µ . Suppose that f is smooth. Then we define the
Fisher information of µ by

J(µ) :=
∫
Rd

|∇ f (x)|2

f (x)
dx.



56 Self-similar measures

Theorem 3.1.3 (de Bruijn’s identity). Let µ be a probability measure on Rd with finite
variance and let y > 0. Then we have

∂

∂y
H(µ ∗ηy) =

1
2

J(µ ∗ηy).

In particular, the derivative on the left exists for all y > 0.

Proof. This is proven in for example [32, Theorem C.1].

Proof of Proposition 3.1.1. Let f be the density function of µ ∗ηy. Note that we define

∥∇ f∥1 :=
∫
Rd

|∇ f (x)|dx

where | · | denotes the Euclidean norm. Note that we have

∥∇ f∥1 =
∫
Rd

|∇ f (x)|dx =
∫
Rd

|∇ f (x)|
f (x)

f (x)dx

and so by Jensen’s inequality

∥∇ f∥2
1 =

(∫
Rd

|∇ f (x)|
f (x)

f (x)dx
)2

≤
∫
Rd

(
|∇ f (x)|

f (x)

)2

f (x)dx = J(µ ∗ηy).

The result now follows by Theorem 3.1.3.

We are now ready to prove Proposition 1.4.9.

Proof of Proposition 1.4.9. Let y = r2 and let u,v > 0 be such that u+v = r2. First note that
by Lemma 2.1.12, we have

µ ∗ν ∗η
′
y(x) =

1
2

d

∑
i=1

∂ 2

∂x2
i

µ ∗ν ∗ηy(x)

=
1
2

d

∑
i=1

∂

∂xi
µ ∗ηu ∗

∂

∂xi
ν ∗ηv(x)

=
1
2

∫
Rd

d

∑
i=1

(
∂

∂xi
µ ∗ηu(x−a)

)(
∂

∂xi
ν ∗ηv(a)

)
da.

In particular, by Cauchy-Schwartz

∣∣µ ∗ν ∗η
′
y(x)

∣∣≤ 1
2

∫
Rd

|∇µ ∗ηu(x−a)| · |∇ν ∗ηv(a)| da
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and so ∥∥µ ∗ν ∗η
′
y
∥∥

1 ≤
1
2
∥∇µ ∗ηu∥1 · ∥∇ν ∗ηv∥1 .

By Proposition 3.1.1, we then have

∥∥µ ∗ν ∗η
′
y
∥∥

1 ≤
√

∂

∂u
H(µ ∗ηu)

∂

∂v
H(ν ∗ηv)

and so by the definition of detail

sr(µ ∗ν)≤ r2Q(d)

√
∂

∂u
H(µ ∗ηu)

∂

∂v
H(ν ∗ηv),

as required.

3.2 Entropy of pieces

The purpose of this Section is to prove Lemma 1.4.8 which provides an estimate for the
difference of the entropy of µ

(λ k,1]
F smoothed at two appropriate scales in terms of the Garsia

entropy of the iterated function system F . We now recall the definition of µ I
F from Definition

1.4.6. Let F =
(
(Si)

n
i=1,(pi)

n
p=1

)
be an iterated function system such that there is some

orthogonal U and some λ ∈ (0,1) and a1,a2, . . . ,an ∈ Rd such that

Si : x 7→ λUx+ai.

Let I ⊂ (0,∞). Then we define µ I
F to be the law of the random variable

∑
n∈Z:λ n∈I

λ
nUnXi

where the Xi are i.i.d. random variables with P[Xi = ai] = pi. The purpose of this subsection
is to prove the following.

Lemma 3.2.1. Let n ∈ Z>0, r,R ∈ R>0. Let x1, . . . ,xn ∈ Rd be such that |xi − x j| ≥ 2R for
i ̸= j. Let p = (p1, p2, . . . , pn) be a probability vector and let

µ =
n

∑
i=1

piδxi.
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Then
H(µ ∗ηr2)≥ d logr+H(p)− c

for some constant c depending only on d and the ratio R/r.

Here and throughout the thesis H(p) means −∑
n
i=1 pi log pi and in the case where p has

infinitely many components we take H(p) to be −∑
∞
i=1 pi log pi. This lemma is unsurprising.

This is because if we had some other measure ν supported on a ball of radius R centred at 0
then H(µ ∗ν) = H(ν)+H(p). The overlaps of some parts of the normal distributions means
that H(µ ∗ηr2) is slightly less than H(ηr2)+H(p). We show that this difference is only
some constant. This is sufficient as H(ηr2) = d logr+ c. We will leave the proof of Lemma
3.2.1 until later in the section.

Lemma 3.2.2. Let k ∈ Z>0. Then H(µ
(λ k,1]
F )≥ khF .

Proof of Lemma 3.2.2. Note that H(µ
(λ n,1]
F ) = hF,n with hF,n as in Definition 1.1.8 and hF :=

liminfk→∞
1
k hF,k and that hF,k := H

(
∑

k−1
i=0 λ iU iXi

)
. Note that we have hF,a+b ≤ hF,a +hF,b.

This is because ∑
a+b−1
i=0 λ iU iXi is a function of ∑

a−1
i=0 λ iU iXi and ∑

a+b−1
i=a λ iU iXi and

H

(
a+b−1

∑
i=a

λ
iU iXi

)
= H

(
b−1

∑
i=0

λ
iU iXi

)
.

Suppose for contradiction there is some k such that hF,k < khF . Then we have 1
ak hF,ak ≤

1
k hF,k < hF for all a ∈ Z>0. This contradicts the definition of hF .

Lemma 3.2.3. Suppose that X and Y are random variables with finite entropy either both
discrete or both absolutely continuous. Then

H(X +Y )≥ H(X)

Proof. This is well known. See for example [32, Lemma 1.15].

Corollary 3.2.4. Suppose that I1 ⊂ I2. Then

H(µ I1
F )≤ H(µ I2

F )

Proof. This follows immediately from Lemma 3.2.3 and the definition of µ I
F .

This is sufficient to prove Lemma 1.4.8 as shown below.

Proof of Lemma 1.4.8. Note that provided n is sufficiently large we have ∆F,n ≥ M−n. In
other words µ

(λ n,1]
F is supported on a number of points each of which are separated by a
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distance of at least M−n. By Lemma 3.2.2 we also have that H(µ
(λ n,1]
F ) ≥ nhF . Hence by

Lemma 3.2.1, we have

H(µ
(λ n,1]
F ∗ηM−2n)≥ nhF −dn logM− c.

We also have by Corollary 3.2.4 that H(µ
(λ n,1]
F ∗η1) ≤ H(µF ∗η1) < ∞. This gives the

required result.

To prove Lemma 3.2.1, we need to introduce the following.

Definition 3.2.5. Given a finite measure µ it is convenient to define

H(µ) := ∥µ∥1 H
(

µ

∥µ∥1

)
.

We are now ready to prove Lemma 3.2.1.

Proof of Lemma 3.2.1. Given k ∈ Z≥2 define

η̃k := ηr2 |A (k−2)R√
d

,
(k−1)R√

d

where Aa,b := {x ∈ Rd : |x| ∈ [a,b)}.
We now wish to write µ as the sum of kd measures each of which are supported on points

separated by at least 2(k−1)R√
d

. Given m ∈ Zd , define

Bm :=
{

x ∈ Rd : x ∈ m+[0,1)d
}
,

and given j ∈ (Z/kZ)d we define

B̃j :=
⋃

m∈Zd :m≡j

Bm.

Now given k ∈ Z≥2 and j ∈ (Z/kZ)d we define

νj,k := ∑
i:xi∈ 2R√

d
B̃j

piδxi.

Note that given any k ∈ Z≥2 we have

µ = ∑
j∈(Z/kZ)d

νj,k.



60 Self-similar measures

Note that if xi and x j are distinct points in the support of µ then there cannot be any
m ∈ Zd such that xi,x j ∈ 2R√

d
Bm as this would contradict the requirement |xi −x j|> 2R. If in

addition, xi and x j are in the support of νj,k for some j ∈ Zd and k ∈ Z≥2 then the distance
between xi and x j must be at least 2(k−1)R√

d
.

By Lemma 2.2.9 we have

∑
j∈(Z/kZ)d

H(νj,k)≥ H(µ)−d logk

= H(p)−d logk.

Also by Lemma 2.2.10

H(νj,k ∗ η̃k) =
∥∥νj,k

∥∥
1 ∥η̃k∥1 H

(
νj,k ∗ η̃k∥∥νj,k
∥∥

1 ∥η̃k∥1

)

=
∥∥νj,k

∥∥
1 ∥η̃k∥1 H

(
νj,k∥∥νj,k
∥∥

1

)
+
∥∥νj,k

∥∥
1 ∥η̃k∥1 H

(
η̃k

∥η̃k∥1

)
= ∥η̃k∥1 H(νj,k)+

∥∥νj,k
∥∥

1 H(η̃k).

Therefore

H(µ ∗ η̃k) = H

 ∑
j∈(Z/kZ)d

νj,k ∗ η̃k


≥ ∑

j∈(Z/kZ)d

H
(
νj,k ∗ η̃k

)
(3.1)

≥ ∥η̃k∥1 H(p)+H(η̃k)−d ∥η̃k∥1 logk,

where in (3.1) we apply Lemma 2.2.8.
We wish to apply Lemma 2.2.8 again to sum over k. To do this we simply need to show

that ∑
∞
k=N H(µ ∗ η̃k) and H(∑∞

k=N µ ∗ η̃k) both tend to zero as N → ∞. In what follows,
c1,c2, . . . are positive constants, which depend only on d and R/r. Note that we have

∥η̃k∥1 ≤ c1e−c2k2

and that the density function of η̃k is either 0 or between c3
r e−c4k2

and c5
r e−c6k2

. Also note
that

H(η̃k)≤ H(µ ∗ η̃k)≤ ∥η̃k∥1 H(µ)+H(η̃k)
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and so
|H(µ ∗ η̃k)| ≤ c7e−c8k2

(| logr|+H(µ)) .

This means ∑
∞
k=N H(µ ∗ η̃k)→ 0. By our estimates on the density functions of η̃k we also

have ∣∣∣∣∣H(
∞

∑
k=N

η̃k)

∣∣∣∣∣≤ c9e−c10N2
(| logr|+1)

and so H(∑∞
k=N µ ∗ η̃k)→ 0.

We then apply Lemma 2.2.8 to get

H(µ ∗ηr2) = H

(
∞

∑
k=2

µ ∗ η̃k

)

≥
∞

∑
k=2

H (µ ∗ η̃k)

≥ H(p)+
∞

∑
k=2

H(η̃k)−d
∞

∑
k=2

∥η̃k∥1 logk. (3.2)

Recall that we have
∥η̃k∥1 ≤ c1e−c2k2

and so
H
(
(∥η̃k∥1)

∞

k=2

)
≤ c11 (3.3)

and

d
∞

∑
k=2

∥η̃k∥1 logk ≤ c12.

Applying Lemma 2.2.9 and (3.3), we have

d logr+ c13 = H(ηr2) = H

(
∞

∑
k=2

η̃k

)

≤
∞

∑
k=2

H (η̃k)+H
(
(∥η̃k∥1)

∞

k=2

)
≤

∞

∑
k=2

H (η̃k)+ c14.

Substituting this estimate for ∑
∞
k=2 H (η̃k) into (3.2) gives the required result.
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3.2.1 Proof of Lemma 1.3.4

In order for Lemma 1.4.8 to be useful it is necessary to show that if I1, I2, . . . , In are disjoint
intervals contained in (0,1] then there exists some ν such that µF = ν ∗µ

I1
F ∗µ

I2
F ∗ . . .µ In

F . To
do this it suffices to prove Lemma 1.3.4. Indeed we can then take ν = µ

(0,1]\(I1∪I2∪···∪In)
F .

Proof of Lemma 1.3.4. For k in Z>0 let Yk be defined by

Yk :=
k−1

∑
i=0

λ
iU iXi

and let µk be the law of Yk. It is clear that µk satisfies

µk+1 =
n

∑
i=1

piµk ◦S−1
i . (3.4)

Let µ be the law of Y . Clearly we have that Yk → Y almost surely and so µk tends to µ

weakly. Taking the weak limit of both sides of (3.4) gives

µ =
n

∑
i=1

piµ ◦S−1
i .

Therefore by the uniqueness of µF we get that µ = µF as required.

3.3 Proof of the main theorem

We follow the strategy outlined in Section 1.4.1. To implement this we make the following
definition.

Definition 3.3.1. Given some r ∈
(
0, 1

10

)
and iterated function system F on Rd we say that

an interval I ⊂ (0,∞) is α-admissible at scale r if for all t with

t ∈
[
exp
(
−
(
log logr−1)10

)
r,exp

((
log logr−1)10

)
r
]
,

we have
∂

∂y
H(µ I

F ∗ηy)

∣∣∣∣
y=t2

≤ αt−2.

Recall that µ I
F is as defined in Definition 1.4.6. This definition is designed in such a way

that if I1 and I2 is a pair of disjoint admissible intervals, then we can apply Theorem 1.4.9
for the measure µ

I1∪I2
F = µ

I1
F ∗µ

I2
F to obtain estimates for st(µ

I1∪I2
F ) at a range of scales t in a
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suitable range around r. Moreover, these estimates are suitable so that we can apply Theorem
1.4.5 for µ

I1∪I2
F in the role of one of the measures. If we have many admissible intervals we

get an improved estimate for sr(µF) via Theorem 1.4.5.
We formalize the result of these ideas in the following statement. The detail of its proof

is given in Section 3.3.1.

Proposition 3.3.2. Let α,K > 0 and let d ∈ Z>0. Suppose that α < 1
8

(
1+ 1

2K2

)−1
. Then

there exists some constant c > 0 such that the following is true.
Let F be an iterated function system on Rd with uniform contraction ratio and uniform

rotation. Suppose that r ∈ (0,c) and n ∈ Z>0 is even with

n ≤ 10
loglogr−1

log
(

1
8

(
1+ 1

2K2

)−1
α−1

) (3.5)

and that I1, I2, . . . , In are disjoint α-admissible intervals at scale r contained in (0,1). Then
we have

sr(µF)≤
1
4

Q(d)
(

8
(

1+
1

2K2

)
α

) n
2

. (3.6)

Our next goal is to find suitably many disjoint admissible intervals at a given scale r. This
is done using Lemma 1.4.8 in Section 3.3.2 where we prove the following statement.

Lemma 3.3.3. Suppose that F is an iterated function system with uniform rotation and
uniform contraction ratio λ . Let M > MF , α ∈ (0, 1

8) and suppose that P > 1 and satisfies

d logM−hF < 2αλ
2(logM−P logλ

−1). (3.7)

Then there exists some c > 0 such that for every r > 0 sufficiently small there are at least

1

log logM
(P−1) logλ−1

log logr−1 − c log loglogr−1

disjoint α-admissible intervals at scale r all of which are contained in (0,1] .

It is worth pointing out that we always have hF ≤ d logMF and hF can be arbitrarily close
to this upper limit. This means that (3.7) can be satisfied for any given value of α and P
provided hF is sufficiently close to d logMF and M is sufficiently close to MF .

In order to apply Lemma 1.4.4, we wish to show that sr(µF) ≤
(
logr−1)−β for some

β > 1 for all sufficiently small r. Since we may take K arbitrarily large in Proposition 3.3.2,
it suffices to show that there is some β > 1 such that for all sufficiently small r > 0, we can



64 Self-similar measures

find at least β
2loglogr−1

log1/(8α) disjoint admissible intervals. In Section 3.3.3 we use Lemma 3.3.3
and a careful choice of α and P to do this.

The condition (3.5) is unimportant because if we have more than this many admissible
intervals, then it turns out that taking n to be the greatest even number less than

10
loglogr−1

log
(

1
8

(
1+ 1

2K2

)−1
α−1

)
gives a sufficiently strong bound on detail to prove absolute continuity.

3.3.1 Detail of the convolution of many admissible pieces

In this subsection, we prove Proposition 3.3.2.

Proof of Proposition 3.3.2. Throughout this proof, let c1,c2, ... denote constants depending
only on α,K and d. The idea is to use Theorem 1.4.5 and Proposition 1.4.9.

First note that by applying Proposition 1.4.9 with u = v = t2

2 we know that for all

t ∈
[√

2exp
(
−
(
log logr−1)10

)
r,
√

2exp
((

log logr−1)10
)

r
]

and for i = 1,2, ..., n
2 we have

st(µ
I2i−1
F ∗µ

I2i
F )≤ t2Q(d)

√
∂

∂y
H
(

µ
I2i−1
F ∗ηy

)∣∣∣∣
y= t2

2

∂

∂y
H
(

µ
I2i
F ∗ηy

)∣∣∣∣
y= t2

2

≤ 2Q(d)α.

We now wish to apply Theorem 1.4.5 for the measures µ
I2i−1∪I2i
F for i = 1,2, . . . n

2 with
α1 = α2 = · · ·= αn/2 = 2Q(d)α . To do this we simply need to check that[

2−
m
2 r,Km

α
−m2m

1 r
]
⊂
[√

2exp
(
−
(
log logr−1)10

)
r,
√

2exp
((

log logr−1)10
)

r
]

where m = log(n/2)
log(3/2) . We note that

m ≤ 1
log(3/2)

log loglogr−1 + c1
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and so for all sufficiently small r, we have

2−
m
2 r ≥

√
2exp

(
−
(
log logr−1)10

)
r.

For the other side, note that

Km
α
−m2m

1 ≤ exp
(

c2
(
log loglogr−1)(log logr−1) log2

log(3/2) + c3

)
.

Noting that log2
log(3/2) < 10, for all sufficiently small r we have

Km
α
−m2m

1 r ≤ exp
((

log logr−1)10
)

r.

Therefore, the conditions of Theorem 1.4.5 are satisfied and so

sr(µ
I1
F ∗µ

I2
F ∗ · · · ∗µ

In
F )

≤ (2Q(d)α)
n
2

(
4

Q(d)

(
1+

1
2K2

)) n
2−1

≤ 1
4

Q(d)
(

8
(

1+
1

2K2

)
α

) n
2

.

We conclude the proof by noting that by Proposition 2.1.5

sr(µF)≤ sr(µ
I1
F ∗µ

I2
F ∗ · · · ∗µ

In
F ).

3.3.2 Finding admissible intervals

In this subsection, we prove Lemma 3.3.3. The main ingredient in the proof of Lemma 3.3.3
is the following lemma.

Lemma 3.3.4. Let F be an iterated function system with uniform rotation and uniform
contraction ratio λ . Let α,r > 0, n ∈ Z≥0 and k ∈ Z. Suppose that

∂

∂y
H(µ

(λ n,1]
F ∗ηy)≤

1
y

λ
2
α

for some y ∈
(
λ 2k+2,λ 2k]. Then the interval

I =
(

rλ
n−k+b(r),rλ

−k−b(r)
]

(3.8)
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is α-admissible at scale r. Here b = b(r) is an error term defined by

b :=
1

logλ−1

(
log logr−1)10

+10.

We first prove Lemma 3.3.4 and then proceed with the proof of Lemma 3.3.3. To prove
this, we need a few more facts about entropy. It is well known that for any absolutely
continuous random variable X taking values in Rd and any bijective linear map A : Rd → Rd

we have
H(AX) = H(X)+ log |detA|.

It follows that
H(µ

(λ k,λ ℓ]
F ∗ηt2) = H(µ

(λ k−ℓ,1]
F ∗ηλ−2ℓt2)+dℓ logλ

and also
∂

∂y
H(µ

(λ k,λ ℓ]
F ∗ηy)

∣∣∣∣
y=t2

= λ
−2ℓ ∂

∂y
H(µ

(λ k−ℓ,1]
F ∗ηy)

∣∣∣∣
y=λ−2ℓt2

. (3.9)

We also have the following.

Proposition 3.3.5. Let X1, X2 and X3 be independent absolutely continuous random variables
with finite entropy. Then,

H(X1 +X2 +X3)+H(X1)≤ H(X1 +X2)+H(X1 +X3).

Proof. This is proven in [39, Theorem 3.1].

Corollary 3.3.6. Let µ and ν be measures on Rd with finite variance and let y > 0. Then

∂

∂y
H(µ ∗ν ∗ηy)≤

∂

∂y
H(µ ∗ηy). (3.10)

Proof. Let ε > 0. Then using Proposition 3.3.5 with X1,X2 and X3 having laws µ ∗ηy, ηε

and ν respectively we get

H(µ ∗ν ∗ηy ∗ηε)−H(µ ∗ν ∗ηy)≤ H(µ ∗ηy ∗ηε)−H(µ ∗ηy).

The result follows by taking the limit ε → 0.

An immediate consequence of Corollary 3.3.6 is that the function y 7→ ∂

∂yH(µ ∗ηy) is
non-increasing and if I1 ⊂ I2 then

∂

∂y
H(µ I2

F ∗ηy)≤
∂

∂y
H(µ I1

F ∗ηy). (3.11)
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In particular this means that if I1 is α-admissible at scale r for some α and r then so is I2.
This is important both for proving Lemma 3.3.4 and for showing that Lemma 3.3.3 follows
from Lemma 3.3.4. We are now ready to prove Lemma 3.3.4.

Proof of Lemma 3.3.4. To prove this, suppose that

t ∈
[
exp
(
−
(
log logr−1)10

)
r,exp

((
log logr−1)10

)
r
]
.

We wish to show that ∂

∂yH(µ I
F ∗ηy)

∣∣∣
y=t2

≤ αt−2, where I is defined in (3.8). Choose

t̃ ∈ (λ k+1,λ k] such that
∂

∂y
H(µ

(λ n,1]
F ∗ηy)

∣∣∣∣
y=t̃2

≤ αλ
2t̃−2 (3.12)

and choose k̃ ∈ Z such that
λ

k̃+1t̃ ≤ t ≤ λ
k̃t̃.

We then have

∂

∂y
H
(

µ
(λ n+k̃+1,λ k̃+1]
F ∗ηy

)∣∣∣∣
y=t2

≤ ∂

∂y
H
(

µ
(λ n+k̃+1,λ k̃+1]
F ∗ηy

)∣∣∣∣
y=λ 2k̃+2t̃2

(3.13)

= λ
−2k̃−2 ∂

∂y
H
(

µ
(λ n,1]
F ∗ηy

)∣∣∣∣
y=t̃2

(3.14)

≤ λ
−2k̃−2 ·λ 2

α t̃−2 (3.15)

≤ αt−2.

Where (3.13) follows from Corollary 3.3.6, (3.14) follows from (3.9) and (3.15) follows from
(3.12).

Note that
(

λ n+k̃+1,λ k̃+1
]
⊂ I hence by (3.11) we have

∂

∂y
H
(
µ

I
F ∗ηy

)∣∣∣∣
y=t2

≤ αt2

as required.

We can use Lemma 3.3.4 and Lemma 1.4.8 to show that some specific intervals are
α-admissible at scale r. We prove the following.

Lemma 3.3.7. Suppose that F is an iterated function system with uniform contraction ratio
λ and uniform rotation and that M > MF . Let α ∈ (0,1). Suppose further that there is some
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constant P > 1 such that

d logM−hF < 2αλ
2(logM−P logλ

−1). (3.16)

Then for all sufficiently large n ∈ Z>0 and all r ∈ (0, 1
4) the interval

I =
(

rλ
k1,rλ

k2
]

is α-admissible at scale r.
Here b = b(r) be defined by

b :=
1

logλ−1

(
log logr−1)10

+10,

k1 is defined by
k1 :=−(P−1)n+b(r)

and k2 is defined by

k2 :=−n
logM

logλ−1 −b(r).

Proof. Suppose for contradiction that this is not true. Recall that if I1 ⊂ I2 and I1 is α-
admissible at scale r then I2 is α-admissible at scale r. Therefore by Lemma 3.3.4 we have
that there cannot exist k ∈ Z≥0 and y ∈

(
λ 2k+2,λ 2k] such that

∂

∂y
H(µ

(λ n,1]
F ∗ηy)≤

1
y

λ
2
α.

and
k1 =−(P−1)n+b(r)≥+n− k+b(r) (3.17)

and
k2 =− logM

logλ−1 n−b(r)≥−k−b(r). (3.18)

Note that (3.17) is equivalent to k ≥ Pn− c and (3.18) is equivalent to k ≤ logM
logλ−1 n. In

particular, noting that λ
2 logM

logλ−1 n
= M−2n, this means that we have

∂

∂y
H(µ

(λ n,1]
F ∗ηy)>

1
y

λ
2
α

for all y such that
y ∈
(
M−2n,λ 2Pn] .
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In particular, provided n is sufficiently large, by integrating we get

H
(

µ
(λ n,1]
F ∗η1

)
−H

(
µ
(λ n,1]
F ∗ηM−2n

)
≥ H

(
µ
(λ n,1]
F ∗ηλ 2Pn

)
−H

(
µ
(λ n,1]
F ∗ηM−2n

)
(3.19)

=
∫

λ 2Pn

M−2n

∂

∂y
H
(

µ
(λ n,1]
F ∗ηy

)
dy

≥
∫

λ 2Pn

M−2n

1
y

αλ
2 dy

= 2nαλ
2 (logM−P logλ

−1)
with (3.19) following from Lemma 3.2.3. This contradicts Lemma 1.4.8.

We are now ready to prove Lemma 3.3.3.

Proof of Lemma 3.3.3. Throughout this proof E1,E2, . . . denote error terms which may be
bounded by 0 ≤ Ei ≤ ci

(
log logr−1)ci for some positive constants c1,c2, . . . which depend

only on α , F , P and M. Let c′ take the role of c in Lemma 3.3.7 and choose N large enough
that Lemma 3.3.7 holds for all n ≥ N.

We wish to choose some jmax and some N = n0 < n1 < n2 < · · ·< n jmax such that if we
let

k( j)
1 =

logr−1

logλ−1 − (P−1)n j + c′+b

and

k( j)
2 =

logr−1

logλ−1 −
logM

logλ−1 n j −b

and

I j =

(
λ

k( j)
1 ,λ k( j)

2

]
then each of I0, I1, . . . , I jmax are disjoint subsets of (0,1]. Note that by Lemma 3.3.7, each of
the I j are α-admissible at scale r. In order for the intervals to be disjoint it is sufficient to
have k( j)

2 ≥ k( j+1)
1 for j = 0,1, . . . , jmax −1. This is equivalent to

logr−1

logλ−1 −
logM

logλ−1 n j −b ≥ logr−1

logλ−1 − (P−1)n j+1 + c′+b

which becomes
n j+1 ≥

logM
(P−1) logλ−1 n j +E1. (3.20)
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Note that by the hypothesis of Lemma 3.3.3 we have logM ≥ P logλ−1 > (P−1) logλ−1

and so logM
(P−1) logλ−1 > 1.

We achieve (3.20) by taking n j+1 =
⌈

logM
(P−1) logλ−1 n j +E1

⌉
. Note that this gives n j+1 ≤

logM
(P−1) logλ−1 n j +E2 which can be rewritten as

n j+1 +
1

logM
(P−1) logλ−1 −1

E2 ≤
logM

(P−1) logλ−1

n j +
1

logM
(P−1) logλ−1 −1

E2


which gives

n j ≤
(

logM
(P−1) logλ−1

) j

(n0 +E3). (3.21)

Noting that n0 = N = E4 we get

n j ≤
(

logM
(P−1) logλ−1

) j

E5.

We also need to ensure that all of the intervals I0, I1, . . . , I jmax are contained in (0,1]. For
this it is sufficient to show that

logr−1

logλ−1 −
logM

logλ−1 n jmax −E6 ≥ 0.

By (3.21) it is sufficient to have(
logM

(P−1) logλ−1

) jmax

E7 ≤ logr−1

which can be achieved with

jmax =

 1

log logM
(P−1) logλ−1

log logr−1 − c log loglogr−1


for some constant c depending only on α , F and M for all sufficiently small r as required. In
particular this gives

jmax ≥
1

log logM
(P−1) logλ−1

log logr−1 − c log loglogr−1

as required.
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3.3.3 Proof of the main theorem

We are now ready to prove Theorem 1.3.6.

Proof of Theorem 1.3.6. The idea is to use Proposition 3.3.2 and Lemma 3.3.3 to show that
the detail around a scale decreases fast enough for us to be able to apply Lemma 1.4.4.

Let M > MF and throughout this proof let c1,c2, . . . denote constants that depend only
on M, F , P and α . Note that by Lemma 3.3.3 given any M > MF for all sufficiently small r
there are at least

1
logA

log logr−1 − c1 log loglogr−1

disjoint admissible intervals contained in (0,1] where

A =
logM

(P−1) logλ−1

By Proposition 3.3.2, we have that

sr(µF)≤ c2

(
8
(

1+
1

2K2

)
α

)n/2

,

where n is the largest even number which is less than both 1
logA log log r−1−c1 log log log r−1

and 10 log logr−1

log
(

1
8

(
1+ 1

2K2

)−1
α−1

) .

If
1

logA
≥ 10

log
(

1
8

(
1+ 1

2K2

)−1
α−1

)
then

n ≥ 10

log
(

1
8

(
1+ 1

2K2

)−1
α−1

) − c3 log log log r−1

and so

sr(µF)≤ c2 exp
(
−5loglogr−1 + c4 log loglogr−1)

= c2
(
logr−1)−5 (

log logr−1)c4 .

By Lemma 1.4.4 it follows that µF is absolutely continuous.
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If instead
1

logA
<

10

log
(

1
8

(
1+ 1

2K2

)−1
α−1

)
then we get

n ≥ 1
logA

log logr−1 − c3 log log log r−1.

This gives

sr(µF)≤ c2

(
8
(

1+
1

2K2

)
α

) 1
2logA log logr−1−c5 log log log r−1

= c2 exp

−
log
(

8
(

1+ 1
2K2

)
α

)−1

2logA
log logr−1 + c6 log loglogr−1


= c2

(
logr−1)−β (

log logr−1)c7

where β =
log
(

8
(

1+ 1
2K2

)
α

)−1

2logA .
By Lemma 1.4.4 for µF to be absolutely continuous it is sufficient to have β > 1. For

this it is sufficient to show that (
8
(

1+
1

2K2

)
α

)−1

> A2.

Since we can choose K to be arbitrarily large and M to be arbitrarily close to MF it is
sufficient to have

1
8α

> Ã2 (3.22)

where
Ã =

logMF

(P−1) logλ−1 .

Also by choosing M sufficiently close to MF our condition on P becomes

d logMF −hF < 2αλ
2(logMF −P logλ

−1)

which may be written as

P <
d logMF −hF −2αλ 2 logMF

2αλ 2 logλ−1 .
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By choosing P arbitrarily close to this upper bound and taking the square root of both sides
(3.22) becomes

1√
8α

>
2αλ 2 logMF

hF −2αλ 2 logλ−1 − (d −2αλ 2) logMF

which can be rewritten as

hF −2αλ
2 logλ

−1 − (d −2αλ
2) logMF >

√
8α(2αλ

2 logMF). (3.23)

We now substitute in α = 1
18

(
logMF−logλ−1

logMF

)2
(it is easy to check by differentiating (3.23)

that this is the optimal choice for α). The inequality becomes

hF − 1
9

(
logMF − logλ−1

logMF

)2

λ
2 logλ

−1 −

(
d − 1

9

(
logMF − logλ−1

logMF

)2

λ
2

)
logMF

>
2
3

(
logMF − logλ−1

logMF

)(
1
9

(
logMF − logλ−1

logMF

)2

λ
2 logMF

)
.

Multiplying both sides by (logMF)
2 gives

hF (logMF)
2 − 1

9
(
logMF − logλ

−1)2
λ

2 logλ
−1

−
(

d (logMF)
2 − 1

9
(
logMF − logλ

−1)2
λ

2
)

logMF

>
2

27
(
logMF − logλ

−1)((logMF − logλ
−1)2

λ
2
)
.

Rearranging reduces the inequality to

(d logMF −hF)(logMF)
2 <

1
27
(
logMF − logλ

−1)3
λ

2

as required.
We now simply need to check that we have P > 1. Since we choose P arbitrarily close to

d logMF−hF−2αλ 2 logMF
2αλ 2 logλ−1 it suffices to show that

d logMF −hF −2αλ 2 logMF

2αλ 2 logλ−1 > 1.

With our choice of α this becomes

d logM−hF <
1
9

(
logMF − logλ−1

logMF

)2

λ
2(logM− logλ

−1)
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which may be rewritten as

(d logM−hF)(logMF)
2 <

1
9
(
logMF − logλ

−1)2
λ

2(logM− logλ
−1).

Clearly this is satisfied under the conditions of Theorem 1.3.6 provided M is sufficiently
close to MF as required.

3.3.4 Proof of the result for Bernoulli convolutions

We also wish to explain how Theorem 1.3.2 follows from Theorem 1.3.6. First of all we use
the following lemma to bound MF .

Lemma 3.3.8. Let λ be an algebraic number and denote by d the number of its algebraic
conjugates with modulus 1. Then there is some constant cλ depending only on λ such that
whenever p is a polynomial with degree n and coefficients −1,0 and 1 such that p(λ ) ̸= 0
we have

|p(λ )|> cλ n−dM−n
λ

.

Proof. This is proven in [23, Lemma 1.51].

Corollary 3.3.9. Let F be an iterated function system such that µF is a Bernoulli convolution
with parameter λ . Then

MF ≤ Mλ .

Proof. If x and y are both in the support of ∑
n−1
i=0 ±λ i then clearly x− y = 2p(λ ) for some

polynomial p of degree at most n−1 and coefficients −1,0,1. Therefore, by Lemma 3.3.8
we have

∆n > cλ n−dM−n
λ

.

The result follows.

Now we are ready to prove Theorem 1.3.2.

Proof of Theorem 1.3.2. To prove this simply note that letting F be the iterated function
system generating the Bernoulli convolution. We have by Corollary 3.3.9

MF ≤ Mλ

and by the requirement that λ is never root of a non-zero polynomial with coefficients −1, 0,
1 we have

hF = log2.
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To see this note that hF,k is defined to be the entropy of

k

∑
i=1

Xiλ
i−1 (3.24)

where each of the Xi are i.i.d. with probability 1
2 of being each of ±1. The requirement that

λ is never root of a non-zero polynomial with coefficients −1, 0, 1 ensures that each possible
choice of the values for the Xi gives a different value for (3.24). Hence hF,k = k log2 and so
hF = log2. We are now done by applying Theorem 1.3.6.

Remark 3.3.10. We now explain how the requirement that λ is not the root of a polynomial
with coefficients 0,±1 forces Mλ ≥ 2. This is because ∑

n−1
i=0 ±λ i is supported on 2n points

each of which are contained in the interval [−(1−λ )−1,(1−λ )−1]. Hence there must be
two points in the support with distance at most 2−n+o(n). By Lemma 3.3.8 it follows that
Mλ ≥ 2.

3.4 Examples

In this section, we give examples of self-similar measures satisfying the conditions of
Theorem 1.3.2 and Theorem 1.3.6.

3.4.1 Examples of absolutely continuous Bernoulli convolutions

In this subsection, we give explicit values of λ for which the Bernoulli convolution with
parameter λ satisfies the conditions of Theorem 1.3.2. We do this by a simple computer
search. We can ensure that λ is not a root of a non-zero polynomial with coefficients 0,±1
by ensuring that it has a conjugate with absolute value greater than 2.

The computer search works by checking each integer polynomial with at most a given
degree, with all coefficients having at most a given absolute value, with leading coefficient
1 and with constant term ±1. The program then finds the roots of the polynomial. If there
is one real root with modulus at least 2 and at least one real root in (1

2 ,1), the program
then checks that the polynomial is irreducible. If the polynomial is irreducible it then tests
each real root in (1

2 ,1) to see if it satisfies equation (1.1). In Table 3.1 are the results for
polynomials of degree at most 11 and with coefficients of absolute value at most 3.

The smallest value of λ which we were able to find for which the Bernoulli convolution
with parameter λ can be shown to be absolutely continuous using this method is λ ≈ 0.78207
with minimal polynomial X8 −2X7 −X +1.
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We were also able to find an infinite family of λ for which the results of this thesis show
that the Bernoulli convolution with parameter λ is absolutely continuous. This family is
found using the following lemma.

Minimal polynomial Mahler measure λ

X7 −X6 −2X5 −X2 +X +1 2.01043 0.87916
X7 +2X6 −X −1 2.01516 0.93286
X8 −2X7 −X +1 2.00766 0.78207

X8 −X7 −2X6 −X3 +X +1 2.02530 0.90705
X8 +2X7 −1 2.00761 0.86058

X8 +2X7 +X6 +2X5 −X2 −X −1 2.01799 0.87735
X9 −2X8 −X2 +1 2.01137 0.84164
X9 −2X8 −X +1 2.00386 0.79953
X9 +2X8 −X −1 2.00386 0.94956

X9 +2X8 +X7 +2X6 −X3 −2X2 −X −1 2.04146 0.96868
X10 −2X9 −X2 +1 2.00575 0.85258
X10 −2X9 −X +1 2.00194 0.81397

X10 −2X9 +X8 −2X7 −X5 +X4 −X3 +2X2 −X +1 2.02576 0.91295
X10 −X9 −2X8 −X7 +X6 +2X5 −X3 −X2 +1 2.01560 0.85694

X10 −X9 −2X8 −X5 +X4 +X3 −X2 +1 2.01418 0.91102
X10 −X9 −X8 −2X7 −X5 +X4 +X2 +1 2.01224 0.93921

X10 −X9 −X8 −X7 −2X6 −X5 +X3 +X2 +X +1 2.01757 0.95395
X10 −2X8 −3X7 −2X6 −X5 +X3 +2X2 +2X +1 2.00826 0.96846
X10 +X9 −2X8 +X7 +X6 −X5 +X4 −X3 +X −1 2.01606 0.87581

X10 +2X9 −X6 −X5 +X4 −1 2.03336 0.93639
X10 +2X9 −X4 −1 2.03066 0.94693

X10 +2X9 −1 2.00194 0.88881
X10 +3X9 +3X8 +3X7 +2X6 −2X4 −3X3 −3X2 −2X −1 2.04716 0.98447

X11 −2X10 −X2 +1 2.00290 0.86182
X11 −2X10 −X +1 2.00097 0.82615

X11 −X10 −2X9 −X8 +X7 +2X6 +X5 −X4 −2X3 −X2 +X +1 2.00073 0.87666
X11 −X10 −X9 −2X8 −X4 +X2 +X +1 2.00498 0.95290

X11 −X10 −X9 −X8 −X7 −2X6 −X5 +X +1 2.01424 0.83556
X11 +X10 −2X9 +X8 +X7 −2X6 +X5 +X4 −2X3 +X2 +X −1 2.00073 0.83139

X11 +X10 −X9 +2X8 +X4 −X2 +X −1 2.00498 0.80600
X11 +2X10 −X −1 2.00097 0.95961
X11 +2X10 +X2 −1 2.00290 0.81038

X11 +2X10 +X9 +2X8 −X5 −X4 −X3 −X2 −1 2.03885 0.97258

Table 3.1 Examples of parameters of Bernoulli convolutions for which Theorem 1.3.2 applies

Lemma 3.4.1. Suppose that n ≥ 5 is an integer and let

p(X) = Xn −2Xn−1 −X +1.

Then p has exactly one root in the interval (
(1

2

) 2√
n−1 ,1), exactly one root in the interval

(2,2+ 22−n) and all of the remaining roots are contained in the interior of the unit disk.
Furthermore p is irreducible.
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Before proving this we need the following result.

Theorem 3.4.2 (Rouché’s theorem). Let f and g be holomorphic functions C→ C and let
r > 0. Suppose that for all z ∈ C such that |z|= r we have

|g(z)|< | f (z)|.

Then f and f +g have the same number of zeros with modulus less than r.

Proof. This is well known. For a proof see for example [43, Corollary 5.17].

We are now ready to prove Lemma 3.4.1.

Proof. First we use Rouché’s Theorem to prove that all but one of the roots of p is contained
in the unit disk. We apply Rouché’s Theorem in the form stated above with f (z)=−2zn−1+1,

g(z) = zn − z and r =
(1

2

) 1
2n−2 . A trivial computation which is left to the reader shows that

when |z|= r we have | f (z)|> |g(z)|. Hence all but one of the roots of p are contained in the

ball of radius
(1

2

) 1
2n−2 .

The other roots can be found by using the intermediate value theorem. Trivial compu-
tations show that p(2)< 0 and p(2+22−n)> 0. We can also easily compute that p(1)< 0

and it is easy to show that p
((1

2

) 2√
n−1

)
> 0 whenever n ≥ 5. Hence there is a root in the

interval (
(1

2

) 2√
n−1 ,1). In-fact it must be in the interval (

(1
2

) 2√
n−1 ,

(1
2

) 1
2n−2 ).

The fact that p has only one root in the interval (
(1

2

) 2√
n−1 ,1) follows from the fact that it

has only one root in the interval (0,1). Indeed p′(0)< 0 and for x ∈ (0,1) we have p′′(x)< 0
hence p is strictly decreasing on (0,1) and so has at most one root contained in (0,1).

The fact that p is irreducible follows from the fact that it is a monic integer polynomial
with non-zero constant coefficient and all but one of its zero contained in the interior of the
unit disk. If p were not irreducible, then one of its factors would need to have all of its roots
contained in the interior of the unit disk. This would mean that the product of the roots of
this factor would not be an integer, which is a contradiction.

We now simply let λn be the root of Xn − 2Xn−1 − X + 1 contained in the interval((1
2

) 2√
n−1 ,1

)
. To show that the Bernoulli convolution with parameter λn is absolutely

continuous using Theorem 1.3.2, it suffices to show that

(log(2+22−n)− log2)(log(2+22−n))2 <
1

27

(
log(2)− log2

2√
n−1

)3

2−
4√
n−1 .
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The left hand side is decreasing in n and the right hand side is increasing in n and for n = 12
the left hand side is less than the right hand side so for n ≥ 12 we know that µλn is absolutely
continuous. In Table 3.1 we show by computing λn and Mλn for n = 8,9,10 and 11 that in
fact µλn is absolutely continuous for n ≥ 8.

Remark 3.4.3. It is worth noting that we have λn → 1 and Mλn → 2 so all but finitely many
of these Bernoulli convolutions can be shown to be absolutely continuous by the results of
[56]. Using the results of [56] does however require a significantly higher value of n to work.
Indeed it requires n ≥ 1065.

3.4.2 Other examples in dimension one

In this subsection we briefly mention some other examples of iterated function systems in
dimension one that can be shown to be absolutely continuous by these methods.

Proposition 3.4.4. Let q be a prime number and for i = 1, . . . ,q−1 let Si : x 7→ q−1
q x+ i. Let

F be the iterated function system on R1 given by

F =

(
(Si)

q
i=1,

(
1

q−1
, . . . ,

1
q−1

))
.

Then we have MF ≤ logq, hF = log(q−1) and λ = q−1
q . Furthermore, if q ≥ 17 then µF is

absolutely continuous.

Proof. We note that any point in the k- step iteration of 0 must be of the form u=∑
k−1
i=0 xi

(
q−1

q

)i

with xi ∈ {1, . . . ,q−1}. Suppose u = ∑
k−1
i=0 xi

(
q−1

q

)i
and v = ∑

k−1
i=0 yi

(
q−1

q

)i
are two such

points. We note that qk−1u,qk−1v ∈ Z. Therefore, if u ̸= v then |u− v| ≥ q−(k−1). This gives
MF ≤ logq.

We can also note if u = v, then looking at qk−1u and qk−1v mod qi for i = 1, . . . ,k we see
that we must have (x1,x2, . . . ,xk) = (y1,y2, . . . ,yk). Therefore, F has no exact overlaps and
consequently hF = log(q−1).

We also note that λ = q−1
q follows immediately from the definition of F .

To show that µF is absolutely continuous using Theorem 1.3.6 it is sufficient to check
that

(logq− log(q−1))(logq)2 <
1

27

(
logq− log

(
q

q−1

))3(q−1
q

)2

.

This is the same as showing that(
log
(

1+
1

q−1

))
<

1
27

(
log(q−1)

logq

)2

(log(q−1))
(

q−1
q

)2

. (3.25)
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The left had side of (3.25) is decreasing in q and the right hand side is increasing in q. The
inequality is satisfied for q = 17 and so is satisfied for q ≥ 17.

3.4.3 Examples in dimension two

In this section we describe some examples of self-similar measures on R2 which can be
shown to be absolutely continuous using the methods of this section and which cannot be
expressed as the product of self-similar measures on R. This is done by identifying R2 with
C.

Proposition 3.4.5. Let p be a prime number such that p ≡ 3(mod 4). Let Ip denote the ideal
(p) in the ring Z[i]. Note that this is a prime ideal. Let a1, . . . ,am be in different cosets of
Ip. Choose some α of the form α = a

p with a ∈ Z[i]\Ip and |α| < 1. Let λ = |α| and let
U : R2 → R2 be a rotation around the origin by argα . For i = 1, . . . ,m let

Si : R2 → R2

x 7→ λUx+ai

and let F be the iterated function system on R2 given by F =
(
(Si)

m
i=1 ,

( 1
m , . . . ,

1
m

))
. Then we

have MF ≤ log p and hF = logm.

Proof. Note that if we identify R2 with C then we have

Si : z 7→ αz+ai.

To see that MF ≤ log p let x = ∑
k−1
i=0 xiα

i and y = ∑
k−1
i=0 yiα

i be two points in the k-step
support of F . Note that pk−1(x− y) ∈ Z[i] and so if x ̸= y then |x− y| ≥ p−k+1. To prove
hF = logm it suffices to show that F has no exact overlaps. For this it suffices to show that if
x1, . . . ,xk,y1, . . . ,yk ∈ {a0, . . . ,am} and

k

∑
i=0

xiα
i =

k

∑
i=0

yiα
i (3.26)

then xi = yi for i = 1, . . . ,k. We prove this by induction on i. For i = k simply multiply both
sides of (3.26) by pk and then work modulo the ideal Ip. Doing this we deduce that xk and
yk must be in the same coset of Ip which in particular means that they must be equal. The
inductive step follows by the same argument.

Note that the above proposition combined with Theorem 1.3.6 makes it very easy to give
numerous examples of absolutely continuous iterated function systems in R2 which are not
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products of absolutely continuous iterated function systems in R1. Some possible examples
are given in the following corollary.

Corollary 3.4.6. Let p be a prime number such that p ≡ 3(mod 4). Let Ip denote the ideal
(p) in the ring Z[i]. Let a1, . . . ,am be in different cosets of Ip. Choose some α of the form
α = p−1+i

p . Let λ = |α| and let U : R2 → R2 be a rotation around the origin by argα . For
i = 1, . . . ,m let Si : R2 → R2, x 7→ λUx+ai and let F be the iterated function system on R2

given by F =
(
(Si)

m
i=1 ,

( 1
m , . . . ,

1
m

))
. Suppose that

(2log p− logm)(log p)2 <
1

27

(
log p− log

p
p−1

)3( p−1
p

)2

then the self-similar measure µF is absolutely continuous.

Proof. This follows immediately from Theorem 1.3.6 and Proposition 3.4.5. Note that in the
notation of Theorem 1.3.6 we have λ ≥ p−1

p .

Remark 3.4.7. It is worth noting that the case m = p2 follows from the methods of Garsia
[23], so in this case the result of this section can again be seen as a strengthening of the
results of [23]. It is also worth noting that in the case m = p2 − 1 the conditions of this
corollary are satisfied for all p with p ≡ 3(mod 4) and p ≥ 7.



Chapter 4

Furstenberg measures

The purpose of this chapter is to prove Theorem 1.3.13 which is a sufficient condition for
a Furstenberg measure to be absolutely continuous. Let γ1,γ2, . . . be i.i.d. samples from µ

and let b be an independent sample from ν . Recall from Section 1.4.2 that the strategy of
the proof is to show that at each scale r > 0 we choose some n,N ∈ Z>0 and construct a
σ -algebra A , some A -measurable random variables g1,g2, . . . ,gn taking values in PSL2(R)
and some random variables u1,u2, . . . ,un taking values in psl2(R) such that we may write

γ1γ2 . . .γNb = g1 exp(u1)g2 exp(u2) . . .gn exp(un)b.

Furthermore we require the ui to be small and to have on average at least some variance after
conditioning on A . We then condition on A and Taylor expand in the ui to get an expression
which is approximately the sum of n independent random variables.

This strategy has some similarities to the strategy used by [29] but has several key
differences. In their paper Hochman and Solomyak show that if g is a random variable taking
values in PSL2(R) with at least some entropy with respect to some dyadic partition and x is a
random variable taking values in P1(R) then they can control how fast the entropy of gx with
respect to certain dyadic partitions in terms of how fast it grows for x. They then show that
if the dimension of the Furstenberg measure is less that hRW/2χ then at sufficiently small
scales the Furstenberg measure can be smoothed in this way enough times to ensure that it
has dimension 1.

There are a number of key differences between the strategy used in this thesis and that
used in [29]. Firstly we are able to focus on just one scale more easily with our strategy
whereas the entropy increase theorem [29] requires control over the smoothness of the
measures at a wide range of scales simultaneously. Another key difference is that we do not
use dyadic partitions to measure entropy and instead we look at the differential entropy with
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respect to the Haar measure of the product of our random variable taking values in PSL2(R)
with a smoothing random variable. This gives us stronger quantitative control.

4.1 Taylor expansion bound

In this Section we will prove Proposition 1.4.17. We also do some computations on the
derivatives ζi ∈ psl2

∗ from Proposition 1.4.17 which will later enable us to give bounds on
the order k detail of x from the proposition. First we will give more detail on our notation.

Given normed vector spaces V and W , some vector v ∈ V , and a function f : V → W
which is differentiable at v we write Dv f (v) for the linear map V →W which is the derivative
of f at v. Similarly if f is n times differentiable at v we write Dn

v f (v) for the n-multi-linear
map V n →W which is the nth derivative of f at v.

Now given some normed vector space V , some vector v∈V , and a function f :V →R/πZ
which is n times differentiable at v we can find some open set U ⊂V containing v such that
there exists some function f̃ : U →R which is n times differentiable at v and such that for all
u ∈U we have

f (u) = f̃ (u)+πZ.

In this case we take D f n
v (v) to be Dn

v f̃ (v). Clearly this does not depend on our choice of U
or f̃ . Similarly given a sufficiently regular function f : R/πZ→ V we take Dv f (v) to be
Dv f̃ (v) where f̃ : R→V is defined by

f̃ (x) = f (x+πZ).

As well as proving Proposition 1.4.17 we also derive some bounds on the size of various
first derivatives.

Definition 4.1.1. Given some b ∈ P1(R) we let ρb ∈ psl2
∗ be defined by

ρb = Duφ(exp(u)b)|u=0

Proposition 4.1.2. For all t > 0 there is some δ > 0 such that the following is true. Let
v ∈ psl2(R) be a unit vector. Then there exists some a1,a2 ∈ R such that if

b ∈ P1(R)\φ
−1((a1,a1 + t)∪ (a2,a2 + t))

then
|ρb(v)| ≥ δ .
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Furthermore we may construct the a1 and a2 in such a way that they are measurable functions
of v.

Motivated by this we have the following definition.

Definition 4.1.3. Let t, v, a1, and a2 be as in Proposition 4.1.2 and let ε > 0. Then we define
Ut(v) and Ut,ε(v) by

Ut(v) := P1(R)\φ
−1((a1,a1 + t)∪ (a2,a2 + t))

and
Ut,ε(v) := P1(R)\φ

−1((a1 − ε,a1 + t + ε)∪ (a2 − ε,a2 + t + ε)).

We also have the following.

Definition 4.1.4. Let X be a random variable taking values in some vector space V . We say
that u ∈V is a first principal component of X if it is an eigenvector of its covariance matrix
with maximal eigenvalue.

Definition 4.1.5. Given a random variable X taking values in psl2(R), t > 0, and ε > 0 we
let

Ut(X) = ∪v∈PUt(v)

and
Ut,ε(X) = ∪v∈PUt,ε(v)

where P is the set of first principal components of X . Similarly if µ is a probability measure
which is the law of a random variable X then we define Ut(µ) := Ut(X) and Ut,ε(µ) :=
Ut,ε(X).

From this we may deduce the following.

Proposition 4.1.6. For all t > 0 there is some δ > 0 such that the following is true. Suppose
that v is a random variable taking values in psl2(R) and that b ∈ P1(R). Suppose that

b ∈Ut(v).

Then
Varρb(v)≥ δ Varv.

Here by the variance of a random variable taking values in psl2(R) we mean the trace of
its covariance matrix. We will prove Propositions 4.1.2 and 4.1.6 in Section 4.1.3.
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4.1.1 Cartan decomposition

The purpose of this subsection is to prove the following proposition and a simple corollary of
it.

Proposition 4.1.7. Given any t > 0 and ε > 0 there exists some constants C,δ > 0 such that
the following is true. Suppose that n ∈ Z>0, g1, . . . ,gn ∈ PSL2(R), for i = 1, . . . ,n we have

∥gi∥ ≥C

and for i = 1, . . . ,n−1
d(b−(gi),b+(gi+1))> t.

Suppose also that there are u1,u2, . . . ,un−1 ∈ psl2(R) such that for i = 1,2, . . . ,n−1 we have

∥ui∥< δ .

Then if we let g′ = g1 exp(u1)g2 exp(u2) . . .gn we have∥∥g′
∥∥≥C−(n−1) ∥g1∥ · ∥g2∥ · · · · · ∥gn∥ (4.1)

and
d(b+(g′),b+(g1))< ε (4.2)

and
d(b−(g′),b−(gn))< ε. (4.3)

Corollary 4.1.8. Given any t > 0 and ε > 0 there exists some constants C,δ > 0 such that
the following is true. Suppose that n ∈Z>0, g1, . . . ,gn ∈ PSL2(R), b ∈ P1(R), for i = 1, . . . ,n
we have

∥gi∥ ≥C

and for each i = 1,2, . . . ,n−1 we have

d(b−(gi),b+(gi+1))> t.

Suppose also that
d(b−(gn),b)> t.

Suppose also that there are u1,u2, . . . ,un ∈ psl2(R) such that for i = 1,2, . . . ,n we have

∥ui∥< δ .



4.1 Taylor expansion bound 85

Then if we let g′ = g1 exp(u1)g2 exp(u2) . . .gn exp(un)b we have

d(b+(g′),b+(g1))< ε.

We will prove Proposition 4.1.7 by induction and then deduce Corollary 4.1.8 from it.
First we need the following lemmas.

Lemma 4.1.9. Let ε > 0, C > 0, g ∈ PSL2(R), and b ∈ P1(R). Suppose that

∥g∥ ≥C

and
d(b−(g),b)≥ ε.

Then
d(b+(g),gb)≲C−2

ε
−1

and
∥gb∥≳ ε ∥g∥ · ∥b∥ .

Proof. Without loss of generality suppose that

g =

(
λ 0
0 λ−1

)

and b is of the form

b =

(
sinx
cosx

)
.

Our requirement that ∥g∥ ≥ C becomes λ ≥ C and our requirement that d(b−(g),b) ≥ ε

becomes x ≥ ε . Note that b+(g) = (1,0)T and b−(g) = (0,1)T . Trivially

gb =

(
λ sinx

λ−1 cosx

)
.

Therefore
cotd(b+(g),gb) = λ

2 tanx.

In particular
d(b+(g),gb)≲C−2

ε
−1.

Also
∥gb∥ ≥ λ sinx ≳ ε ∥g∥ · ∥b∥ .
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We also have the following simple corollary.

Corollary 4.1.10. For every ε > 0 there exists some C > 0 such that the following is true.
Let g ∈ PSL2(R) and b ∈ P1(R). Suppose that

∥g∥ ≥C

and
d(b−(g),b)≥ ε.

Then
d(b+(g),gb)≤ ε

and
∥gb∥ ≥C−1 ∥g∥ · ∥b∥ .

This corollary is trivial and left as an exercise to the reader.

Lemma 4.1.11. Let g1,g2 ∈ PSL2(R). Then

∥g1∥ · ∥g2∥sind(b−(g1),b+(g2))≤ ∥g1g2∥ ≤ ∥g1∥ · ∥g2∥ . (4.4)

Furthermore, for every A > 1 and t > 0 there exists some C > 0 with

C ≤ O((A−1)−1t−1)

such that if ∥g1∥ ,∥g2∥ ≥C and d(b−(g1),b+(g2))≥ t then

∥g1g2∥ ≤ A∥g1∥ · ∥g2∥sind(b−(g1),b+(g2)). (4.5)

Proof. The right hand side of (4.4) is a well known result about the operator norm. For the
left hand side without loss of generality suppose that

g1 =

(
λ1 0
0 λ

−1
1

)

and

g2 =

(
cosx −sinx
sinx cosx

)(
λ2 0
0 λ

−1
2

)
=

(
λ2 cosx −λ

−1
2 sinx

λ2 sinx λ
−1
2 cosx

)
.
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Note that

g1g2

(
1
0

)
=

(
λ1λ2 cosx

λ
−1
1 λ2 sinx

)
.

This means ∥g1g2∥ ≥ λ1λ2 cosx = ∥g1∥ · ∥g2∥sin |φ(b−(g1))− φ(b+(g2))| which proves
(4.4).

For (4.5) note that

g1g2 =

(
λ1λ2 cosx −λ1λ

−1
2 sinx

λ
−1
1 λ2 sinx λ1λ

−1
2 cosx

)
.

This means that

∥g1g2∥ ≤ ∥g1g2∥2 ≤
(

1+3C−2 (cosx)−1
)

λ1λ2 cosx.

This gives the required result.

Lemma 4.1.12. Given any ε > 0 and any t > 0 there is some constant C > 0 such that the
following holds. Let g1,g2 ∈ PSL2(R) be such that ∥g1∥ ,∥g2∥ ≥C and d(b−(g1),b+(g2))≥
t. Then

d(b+(g1),b+(g1g2))< ε (4.6)

and
d(b−(g2),b−(g1g2))< ε. (4.7)

Furthermore we have C ≤ O
(
(min{ε, t})−1

)
.

Proof. Without loss of generality we assume that ε < t. Choose C large enough to work
with 1

10ε in the role of ε in Corollary 4.1.10. Note that by Lemma 4.1.9 we may assume that

C ≤ O
(
(min{ε, t})−1

)
. Now choose any b ∈ P1(R) such that

d(b,b−(g2))> ε

and
d(b,b−(g1g2))> ε.

By Corollary 4.1.10 we know that

d(g2b,b+(g2))<
1

10
ε
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and so in particular
d(g2b,b−(g1))> ε.

By Corollary 4.1.10 this means that

d(g1g2b,b+(g1))<
1

10
ε.

We also have that
d(g1g2b,b+(g1g2))<

1
10

ε.

In particular this means that

d(b+(g1),b+(g1g2))< ε.

This proves (4.6). (4.7) follows by taking the transpose.

Lemma 4.1.13. Given any ε > 0 there exists C,δ > 0 such that the following is true. Suppose
that g ∈ PSL2(R), b ∈ P1(R), and u ∈ psl2(R). Suppose further that ∥g∥ ≥C and ∥u∥< δ .
Then we have

C−1 ∥g∥ ≤ ∥exp(u)g∥ ≤C∥g∥ , (4.8)

d(b,exp(u)b)< ε, (4.9)

and
d(b+(g),b+(exp(u)g))< ε. (4.10)

Proof. First note that (4.8) and (4.9) both follow from the fact that exp(·) is smooth and
P1(R) is compact. (4.10) follows from (4.8), (4.9) and applying Lemma 4.1.9 with some
element of P1(R) which is not close to b−(g) or b−(exp(u)g) in the role of b.

This is enough to prove Proposition 4.1.7 and Corollary 4.1.8.

Proof of Proposition 4.1.7. Without loss of generality assume that ε < t. Let C1 be as in
Corollary 4.1.10 with 1

10ε in the role of ε . Let C2 and δ2 be C and δ from Lemma 4.1.13
with 1

10ε in the role of ε .

We now take C = max{C1C2,
(
sin 1

10t
)−1} and δ = δ2.

First we will deal with (4.2). Choose b such that

d(b,b−(gn))>
1

10
ε

and
d(b,b−(g′))>

1
10

ε.
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Note that by Corollary 4.1.10 we know that

d(gnb,b+(gn))<
1

10
ε.

By Lemma 4.1.13 we know that

d(exp(un−1)gnb,gnb)<
1

10
ε

and so
d(exp(un−1)gnb,b−(gn−1))>

1
10

ε.

Repeating this process we are able to show that

d(g′b,b+(g1))<
1
10

ε.

We also know that
d(g′b,b+(g′))<

1
10

ε.

Hence
d(b+(g′),b+(g1))< ε.

To prove (4.3) simply take the transpose of everything.
Now to prove (4.1). Let b be chosen as before and let u ∈ b be a unit vector. Note that by

Corollary 4.1.10
∥gnu∥ ≥C−1

1 ∥gn∥ · ∥u∥

and by Lemma 4.1.13 we know that

∥exp(un−1)gnu∥ ≥C−1
1 C−1

2 ∥gn∥ · ∥u∥ .

Repeating this gives the required result.

We also prove Corollary 4.1.8.

Proof of Corollary 4.1.8. This follows from applying Proposition 4.1.7 to

g1 exp(u1)g2 exp(u2) . . .gn−1 exp(un−1)gn

before applying Lemma 4.1.13 to exp(un)b and then applying Lemma 4.1.9.
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4.1.2 Proof of Proposition 1.4.17

In this subsection we will prove Proposition 1.4.17. To do this we will need to find an upper
bound on the size of various second derivatives and apply Taylor’s theorem. We will use the
following version of Taylor’s theorem.

Theorem 4.1.14. Let f : Rn → R/πZ be twice differentiable and let R1,R2, . . . ,Rn > 0. Let
U = [−R1,R1]× [−R2,R2]×·· ·× [−Rn,Rn]. For integers i, j ∈ [1,n] let Ki, j = sup

U

∣∣∣ ∂ 2 f
∂xi∂x j

∣∣∣
and let x ∈U. Then we have∣∣∣∣∣ f (x)− f (0)−

n

∑
i=1

xi
∂ f
∂xi

∣∣∣∣
x=0

∣∣∣∣∣≤ 1
2

n

∑
i, j=1

xiKi, jx j.

In order to prove Proposition 1.4.17 we need the following proposition.

Proposition 4.1.15. Let t > 0. Then there exists some constants C,δ > 0 such that the
following holds. Suppose that n ∈ Z>0, g1,g2 . . . ,gn ∈ PSL2(R), b ∈ P1(R) and let

u(1),u(2), . . . ,u(n) ∈ psl2(R)

be such that
∥∥∥u(i)

∥∥∥≤ δ . Suppose that for each integer i ∈ [1,n] we have

∥gi∥ ≥C

and for integers i ∈ [1,n−1] we have

d(b−(gi),b+(gi+1))> t

and
d(b−(gn),b)> t.

Let x be defined by

x = g1 exp(u(1))g2 exp(u(2)) . . .gn exp(u(n))b.

Then for any i, j ∈ {1,2,3} and any integers k, ℓ ∈ [1,n] with k ≤ ℓ we have∣∣∣∣∣∣ ∂ 2

∂u(k)i ∂u(ℓ)j

φ(x)

∣∣∣∣∣∣<Cn ∥g1g2 . . .gℓ∥−2 .

We will prove this later in this subsection.
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Note that given some u ∈ psl2(R) and some i ∈ {1,2,3} by ui we mean the ith component
of u with respect to our choice of basis for psl2(R) which we will fix throughout this thesis.
To prove this we need to understand the size of the second derivatives. For this we will need
the following lemmas.

Lemma 4.1.16. Let t > 0, let x ∈ R/πZ, and let g ∈ PSL2(R). Suppose that

d(b−(g),φ−1(x))> t. (4.11)

Let y = φ(gφ−1(x)). Then

∥g∥−2 ≤ ∂y
∂x

≤ Ot

(
∥g∥−2

)
and ∣∣∣∣∂ 2y

∂x2

∣∣∣∣≤ Ot

(
∥g∥−2

)
.

Proof. Let g = Rφ Aλ R−θ . First note that

y = tan−1 (
λ
−2 tan(x−θ)

)
+φ . (4.12)

Recall that if v = tan−1 u then dv
du = 1

u2+1 . This means that by the chain rule we have

∂y
∂x

=

(
1

λ−4 tan2(x−θ)+1

)
·λ−2 ·

(
1

cos2(x−θ)

)
=

1
λ 2 cos2(x−θ)+λ−2 sin2(x−θ)

.

Differentiating this again gives

∂ 2y
∂x2 =

2(λ 2 +λ−2)cos(x−θ)sin(x−θ)(
λ 2 cos2(x−θ)+λ−2 sin2(x−θ)

)2 .

Noting that (4.11) forces cos(x−θ)≥ sin t gives the required result.

We also need to bound the second derivatives of various expressions involving exp.

Lemma 4.1.17. There exists some constant C > 0 such that the following is true. Let
b ∈ P1(R) and define w by

w : psl2(R)→ R/πZ

u 7→ φ (exp(u)b) .
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Then whenever ∥u∥ ≤ 1 we have
∥Du(w)∥ ≤C

and ∥∥D2
u(w)

∥∥≤C.

Proof. This follows immediately from the fact that ∥D(w)(u)∥ and
∥∥D2(w)(u)

∥∥ are continu-
ous in b and u and compactness.

We will also need the following bound. Unfortunately this lemma doesn’t follow easily
from a compactness argument and needs to be done explicitly.

Lemma 4.1.18. For every t > 0 there exist some constants C,δ > 0 such that the following
holds. Let g ∈ PSL2(R), let b ∈ P1(R) and let w be defined by

w : psl2(R)×psl2(R)→ R/πZ

(x,y) 7→ φ (exp(x)gexp(y)b) .

Suppose that
d(b−(g),b)> t

and that ∥x∥ ,∥y∥ ≤ δ . Then ∣∣∣∣∂ 2w(x,y)
∂xi∂y j

∣∣∣∣≤C∥g∥−2 .

Proof. Let v̂ = φ(exp(y)b). First note that by compactness we have∣∣∣∣ ∂ v̂
∂y j

∣∣∣∣≤ O(1).

Now let ṽ := φ(gexp(y)b). By Lemma 4.1.16 we have∣∣∣∣∂ ṽ
∂ v̂

∣∣∣∣≤ Ot

(
C∥g∥−2

)
.

Also note that by compactness ∣∣∣∣ ∂ 2w
∂ ṽ∂xi

∣∣∣∣≤ O(1).

Hence ∣∣∣∣ ∂ 2w
∂xi∂y j

∣∣∣∣= ∣∣∣∣ ∂ 2w
∂ ṽ∂xi

∣∣∣∣ · ∣∣∣∣∂ ṽ
∂ v̂

∣∣∣∣ · ∣∣∣∣ ∂ v̂
∂y j

∣∣∣∣≤ Ot

(
∥g∥−2

)
.

We are now done by Lemma 4.1.13.
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This is enough to prove Proposition 4.1.15.

Proof of Proposition 4.1.15. First we will deal with the case where k = ℓ. Let

a = g1 exp(u(1))g2 exp(u(2)) . . .gk−1 exp(u(k−1))gk

and
b = gk+1 exp(u(k+1))gk+2 exp(u(k+2)) . . .gn exp(u(n))gn+1

and let b̃ = φ(exp(u(k))b). We have

∂y

∂u(k)i

=
∂y
∂ b̃

∂ b̃

∂u(k)i

and so
∂ 2y

∂u(k)i ∂u(k)j

=
∂ 2y
∂ b̃2

∂ b̃

∂u(k)i

∂ b̃

∂u(k)j

+
∂y
∂ b̃

∂ 2b̃

∂u(k)i ∂u(k)j

.

By Proposition 4.1.7 we know that providing C is sufficiently large and δ is sufficiently
small that

d(b−(a),b)>
1
2

t

By Lemmas 4.1.16 and 4.1.17 this means that∣∣∣∣∣∣ ∂ 2y

∂u(k)i ∂u(k)j

∣∣∣∣∣∣≤ Ot

(
∥a∥−2

)
.

In particular by Proposition 4.1.7 there is some constant C depending only on t such that∣∣∣∣∣∣ ∂ 2y

∂u(k)i ∂u(k)j

∣∣∣∣∣∣<Cn ∥g1g2 . . .gk∥−2

as required.
Now we will deal with the case where k < ℓ. Let

a1 = g1 exp(u(1))g2 exp(u(2)) . . .gk−1 exp(u(k−1))gk

and
a2 = gk+1 exp(u(k+1))gk+2 exp(u(k+2)) . . .gℓ−1 exp(u(ℓ−1))gℓ
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and
b = gℓ+1 exp(u(ℓ+1))gℓ+2 exp(u(ℓ+2)) . . .gn exp(u(n))gn+1.

Let b̃ = φ(exp(u(k))a2 exp(u(ℓ))b). Again we have

∂ 2y

∂u(k)i ∂u(k)j

=
∂ 2y
∂ b̃2

∂ b̃

∂u(k)i

∂ b̃

∂u(k)j

+
∂y
∂ b̃

∂ 2b̃

∂u(k)i ∂u(k)j

.

In a similar way to the case k = ℓ but using Lemma 4.1.18 instead of Lemma 4.1.17 we get∣∣∣∣∣∣ ∂ 2y

∂u(k)i ∂u(ℓ)j

∣∣∣∣∣∣<Cn ∥g1g2 . . .gℓ∥−2

as required.

From this we can now prove Proposition 1.4.17.

Proof of Proposition 1.4.17. By Theorem 4.1.14 and Proposition 4.1.15 we know that∣∣∣∣∣φ(x)−φ(g1g2 . . .gn+1)−
n

∑
i=1

ζi(u(i))

∣∣∣∣∣
≤ n2Cn min

{
∥g1g2 . . .gi∥−2 : i ∈ [1,n]

}
r̃2.

The result follows by replacing C with a slightly larger constant and noting that by Proposition
4.1.7

min
{
∥g1g2 . . .gi∥−2 : i ∈ [1,n]

}
= ∥g1g2 . . .gn∥−2 .

4.1.3 Bounds on first derivatives

The purpose of this subsection is to prove Propositions 4.1.2 and 4.1.6. This bounds the size
of various first derivatives. First we need the following lemma.

Lemma 4.1.19. Let u ∈ psl2(R)\{0} and given b ∈ P1(R) define ρb as in Proposition 4.1.2.
Then there are at most two points b ∈ P1(R) such that

ρb(u) = 0.
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Proof. Let φ̃ be defined by

φ̃ : R2\{0}→ R/πZ

b̃ 7→ φ([b̃])

where [b̃] denotes the equivalent class of b̃ in P1(R).
Given b ∈ P1(R) let b̃ ∈ b be some choice of element in R2\{0}. Note that this means

φ(exp(v)b) = φ̃(exp(v)b̃).

This means that ρb(v) = 0 if and only if D(exp(u)b̃)|u=0(v) is in the kernel of Db̃(φ̃(b̃)).
Trivially the kernel of Db̃(φ̃(b̃)) is just the space spanned by b̃. It also follows by the
definition of the matrix exponential that for any v ∈ psl2(R) we have

D(exp(u)b̃)|u=0(v) = vb̃.

Hence ρb(v) = 0 if and only if b̃ is an eigenvector of v. Clearly for each v ∈ psl2(R)\{0}
there are at most two b ∈ P1(R) with this property. The result follows.

Proof of Proposition 4.1.2. Given a1,a2 ∈ R let U(a1,a2) be defined by

U(a1,a2) = P1(R)\φ
−1(((a1,a1 + t)∪ (a2,a2 + t))).

In other words U(a1,a2) is all of P1(R) except for two arcs of length t starting at a1 and a2

respectively. Given some v ∈ psl2(R) let f (v) be given by

f (v) := max
a1,a2∈R

min
b∈U(a1,a2)

|ρb(v)|.

Both the min and the max are achieved due to a trivial compactness argument. By Lemma
4.1.19 we know that f (v)> 0 whenever ∥v∥= 1. Note that

{
ρb(·) : b ∈ P1(R)

}
is a bounded

set of linear maps and so is uniformly equicontinuous. This means that f is continuous. Since
the set of all v ∈ psl2(R) with ∥v∥= 1 is compact this means that there is some δ > 0 such
that f (v)≥ δ . Finally note that trivially we can choose the a1 and a2 using this construction
in such a way that they are measurable as functions of v.

We will now prove Proposition 4.1.6.

Proof of Proposition 4.1.6. By elementary linear algebra we can write X as

X = X1v1 +X2v2 +X3v3
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where X1, X2 and X3 are uncorrelated random variables taking values in R and v1, v2, and v3

are the eigenvectors of the covariance matrix of X with corresponding eigenvalues VarX1,
VarX2, and VarX3. Furthermore we may assume that VarX1 ≥ VarX2 ≥ VarX3 and so in
particular VarX1 ≥ 1

3 VarX . Without loss of generality we may assume that X1, X2, X3, and X
have mean 0. We also note that since v1 is a principal component of X by Proposition 4.1.2
we have |ρb(v1)| ≥ δ .

We then compute

Varρb(X) = E
[
|ρb(X)|2

]
= E

[
X2

1 |ρb(v1)|2 +X2
2 |ρb(v2)|2 +X2

3 |ρb(v3)|2
]

≥ E
[
X2

1 |ρb(v1)|2
]

≥ 1
3

δ VarX .

This gives the required result.

4.2 Disintegration argument

The purpose of this section is to prove Theorem 1.4.21. We define rigorously some notions
which we used informally in the introduction including regular conditional distribution, the
variance of random elements in PSL2(R) and various notions of entropy. We also discuss
basic properties of these notions. After these preparations, which occupy most of the section,
the proof of Theorem 1.4.21 will be short.

Before we begin we outline the main steps of the proof of Theorem 1.4.21.
The first step is the following simple lemma.

Lemma 4.2.1. Let g, s1 and s2 be random variables taking values in PSL2(R). Suppose
that s1 and s2 are absolutely continuous with finite entropy and that gs1 and gs2 have finite
entropy. Define k by

k := H(gs1)−H(s1)−H(gs2)+H(s2).

Then
E[H((gs1|gs2))]≥ k+H(s1).

Here (gs1|gs2) denotes the regular conditional distribution which we will define in Section
4.2.1. We prove this lemma in Section 4.2.3.

Recall that s1 and s2 are smoothing random variables, and s2 corresponds to a larger scale
than s1. The quantity k can be thought of as the difference between the information of g
discretized at the scales corresponding to s1 and s2.
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It is well known that among all random vectors of a given variance, the spherical normal
distribution has the largest (differential) entropy. This allows us to estimate the variance of a
random vector in terms of its entropy from below. Once the definitions are in place, we can
translate this to random elements of PSL2(R).

Lemma 4.2.2. Let ε > 0 and suppose that g is a random variable taking values in PSL2(R)
such that g−1

0 g takes values in the ball of radius ε and centre Id for some g0 ∈ PSL2(R).
Then providing ε is sufficiently small we have

H(g)≤ 3
2

log
2πe

3
VARg0[g]+O(ε).

We will prove this in Section 4.2.3. Combining the above two lemmas, we can get a lower
bound on VARgs2[gs1|gs2]. Here VAR·[·|·] denotes the conditional variance of a random
variable taking values in PSL2(R) which we will define in Definition 4.2.11. The last part of
the proof of Theorem 1.4.21 is the following.

Lemma 4.2.3. Let ε > 0 be sufficiently small and let a and b be random variables and let A

be a σ -algebra. Suppose that b is independent from a and A . Let g0 be an A -measurable
random variable. Suppose that g−1

0 a and b are almost surely contained in a ball of radius ε

around Id. Then

VARg0[ab|A ] = VARg0[a|A ]+VARId[b]+O(ε3).

We prove this in Section 4.2.2.

4.2.1 Regular conditional distribution

In this section we will discuss some basic properties of regular conditional distributions.
For a more comprehensive text on regular conditional distributions see for example [37].
Some readers may be more familiar with the use of conditional measures as described in for
example [14, Chapter 5]. These two concepts are equivalent.

Definition 4.2.4 (Markov Kernel). Let (Ω1,A1) and (Ω2,A2) be measurable spaces. We say
that a function κ : Ω1 ×A2 :→ [0,1] is a Markov Kernel on (Ω1,A1) and (Ω2,A2) if;

• For any A2 ∈ A2 the function ω1 7→ κ(ω1,A2) is A1 - measurable

• For any ω1 ∈ Ω1 the function A2 7→ κ(ω1,A2) is a probability measure.



98 Furstenberg measures

Definition 4.2.5. Let (Ω,F ,P) be a probability space, let (E,ξ ) be a measurable space, and
let Y : (Ω,F )→ (E,ξ ) be a random variable. Let A ⊂ F be a σ -algebra. Then we say that
a Markov kernel

κY,A : Ω×ξ → [0,1]

on (Ω,A ) and (E,ξ ) is a regular conditional distribution for Y given A if

κY,A (ω,B) = P[Y ∈ B|A ]

for all B ∈ ξ and almost all ω ∈ Ω.
In other words we require

P [A∩{Y ∈ B}] = E
[
IAκY,A (·,B)

]
for all A ∈ A ,B ∈ ξ .

In the case where Y is as above and X is another random variable taking values in some
measurable space (E ′,ξ ′) then we let the regular conditional distribution of Y given X refer
to the regular conditional distribution of Y given σ(X). For this definition to be useful we
need the following theorem.

Theorem 4.2.6. Let (Ω,F ,P) be a probability space, let (E,ξ ) be a standard Borel space,
and let Y : (Ω,F )→ (E,ξ ) be a random variable. Then given any σ -algebra A ⊂ F there
exists a regular conditional distribution for Y given A .

Proof. This is [37, Theorem 8.37].

Definition 4.2.7. Given some random variable Y and some σ - algebra A ⊂ F (or random
variable X) we will write (Y |A ) (or (Y |X)) to mean the regular conditional distribution of Y
given A (or given X).

We also let [Y |A ] (or [Y |X ]) denote random variables defined on a different probability
space to Y which have law (Y |A ) (or (Y |X)).

One can easily check that if the regular conditional distribution exists then it is unique up
to equality almost everywhere.

4.2.2 Variance on PSL2(R)

We wish to define some analogue of variance for random variables taking values in PSL2(R).
We will do this using log.

Definition 4.2.8. Given some random variable X taking values in Rd we define the variance
of X , which we denote by VarX , to be the trace of its covariance matrix. If X takes values in
psl2(R) we do this via our identification of psl2(R) with R3.
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Definition 4.2.9. Let g be a random variable taking values in PSL2(R) and let g0 ∈ PSL2(R).
Suppose that g−1

0 g is always in the domain of log. Then define the variance of g with respect
to g0 by

VARg0[g] := Var log(g−1
0 g).

We need the following lemma.

Lemma 4.2.10. Let ε > 0 be sufficiently small and let g and h be independent random
variables taking values in PSL2(R). Suppose that the image of g is contained in a ball
of radius ε around Id and the image of h is contained in a ball of radius ε around some
h0 ∈ PSL2(R). Then

VARh0[hg] = VARh0[h]+VARId[g]+O(ε3).

Proof. Let X = log(h−1
0 h) and let Y = log(g). Then by Taylor’s theorem

log(exp(X)exp(Y )) = X +Y +E

where E is some random variable with |E| ≤ O(ε2) almost surely. Note that we also have
|X |, |Y | ≤ O(ε). Therefore

VARh0[hg] = E[|X +Y +E|2]−|E[X +Y +E]|2

= E[|X +Y |2]−|E[X +Y ]|2 +2E[(X +Y ) ·E]+E[|E|2]
−2E[X +Y ] ·E[E]−|E[E]|2

= Var[X +Y ]+O(ε3)

as required.

We also need to describe the variance of a regular conditional distribution.

Definition 4.2.11. Given some random variable g taking values in PSL2(R), some σ -algebra
A and some A -measurable random variable g0 taking values in PSL2(R) we let VARg0[g|A ]

to be the A -measurable random variable given by

VARg0[g|A ](ω) = VARg0(ω)[(g|A )(ω)].

Similarly given a random variable h we let VARg0[g|h] = VARg0[g|σ(h)].

Lemma 4.2.3 now follows easily from Lemma 4.2.10.
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Proof of Lemma 4.2.3. First note that we have [ab|A ] = [a|A ][b|A ] = [a|A ]b. We are now
done by Lemma 4.2.10.

4.2.3 Entropy

It is well known that the random variable with maximal entropy in Rd out of all random
variables with a given variance is a spherical normal random variable. In particular this
means that the following is true.

Lemma 4.2.12. Out of all probability distributions on Rd with given variance the one with
the greatest entropy is a spherical normal distribution. In particular if X is a random variable
taking values in Rd then with variance r2 then

H(X)≤ d
2

log
(

2πe
d

r2
)
.

Proof. This is well known and follows trivially from [13, Example 12.2.8].

We now wish to prove a similar result for random variables taking values in PSL2(R).
First we need the following.

Lemma 4.2.13. Let λ1 be a probability measure on some measurable space E and let λ2 and
λ3 be measures on E and let U ⊂ E. Suppose that the support of λ1 is contained in U. Then,

|K L (λ1,λ2)−K L (λ1,λ3)| ≤ sup
x∈U

∣∣∣∣log
dλ2

dλ3

∣∣∣∣ .
Proof. We have

|K L (λ1,λ2)−K L (λ1,λ3)|=
∣∣∣∣∫U

log
dλ1

dλ2
dλ1 −

∫
U

log
dλ1

dλ3
dλ1

∣∣∣∣
≤
∫

U

∣∣∣∣log
dλ1

dλ2
− log

dλ1

dλ3

∣∣∣∣ dλ1

=
∫

U

∣∣∣∣log
dλ2

dλ3

∣∣∣∣ dλ1

≤ sup
x∈U

∣∣∣∣log
dλ2

dλ3

∣∣∣∣ .

We can now prove Lemma 4.2.2.
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Proof of Lemma 4.2.2. This follows easily from Lemma 4.2.12 and Lemma 4.2.13.
Let U be the ball in PSL2(R) of centre Id and radius ε . Due to properties of the Haar

measure we have H(g) = H(g−1
0 g) and by definition VARg0[g] = VARId[g−1

0 g]. This means
that it is sufficient to show that

H(g−1
0 g)≤ 3

2
log

2πe
3

VARId[g−1
0 g]+O(ε).

Recall that dm̃
dm◦log is smooth and equal to 1 at Id. This means that providing ε < 1 on U

we have
dm̃

dm◦ log
= 1+O(ε).

In particular providing ε is sufficiently small we have

sup
U

∣∣∣∣log
dm̃

dm◦ log

∣∣∣∣< O(ε).

Clearly
K L (g−1

0 g,m◦ log) = K L (log(g−1
0 g),m).

We have by definition that H(g−1
0 g) = K L (g−1

0 g, m̃) and by Lemma 4.2.13 we have∣∣K L (g−1
0 g,m◦ log)−K L (g−1

0 g, m̃)
∣∣≤ O(ε). By Lemma 4.2.12 we know that

K L (log(g−1
0 g),m)≤ 3

2
log

2πe
3

VARId[g−1
0 g].

Therefore
H(g−1

0 g)≤ 3
2

log
2πe

3
VAR[g−1

0 g]+O(ε)

as required.

We will also adopt the following convention for defining the entropy on a product
space. Let (E1,ξ1) and (E2,ξ2) be measurable spaces endowed with reference measures
m1 and m2 such that if λ is a measure on (Ei,ξi) then we define the entropy of λ by
H(λ ) :=−K L (λi,mi). Then we take m1 ×m2 to be the corresponding reference measure
for E1×E2. That is given some measure λ on E1×E2 we take the entropy of λ to be defined
by H(λ ) =−K L (λ ,m1 ×m2). With this we can give the following definition.

Definition 4.2.14 (Conditional Entropy). Let X1 and X2 be two random variables with finite
entropy. Then we define the entropy of X1 given X2 by

H(X1|X2) = H(X1,X2)−H(X1).
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Next we will need the following simple facts about conditional entropy.

Definition 4.2.15. Given some random variable Y and a σ -algebra A ⊂ F we define
H((Y |A )) to be the random variable

H((Y |A )) : ω 7→ H((Y |A )(ω, ·))

where (Y |A )(ω, ·) is the regular conditional distribution for Y given A . Similarly given
some random variable X we let H((Y |X)) := H((Y |σ(X))).

Lemma 4.2.16. Let X1 and X2 be two random variables with finite entropy and finite joint
entropy. Then

H(X1|X2) = E[H((X1|X2))].

Proof. This is just the chain rule for conditional distributions. It follows from a simple
computation and a proof may be found in [57, Proposition 3].

Lemma 4.2.17. Let g be a random variable taking values in PSL2(R), let A be a σ -algebra,
and let a be a A -measurable random variable taking values in PSL2(R). Then

H((ag|A )) = H((g|A ))

almost surely. In particular if h ∈ PSL2(R) is fixed then

H(hg) = H(g).

Proof. For the first part note that [ag|A ] = a[g|A ] almost surely. Also note that by the left
invariance of the Haar measure

H(a[g|A ]) = H([g|A ]).

The last part follows trivially by the first part.

We now have all the tools required to prove Lemma 4.2.1.

Proof of Lemma 4.2.1. First note that we have

H(gs2|gs1)≥ H(gs2|g,s1) = H(s2)

and so
H(gs2,gs1)≥ H(gs1)+H(s2).
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This means that

H(gs1|gs2) = H(gs2,gs1)−H(gs2)

≥ H(gs1)−H(gs2)+H(s2)

= k+H(s1).

Recalling that by Lemma 4.2.16 H(gs1|gs2) = E[H((gs1|gs2))] we get

E[H((gs1|gs2))]≥ k+H(s1)

as required.

4.2.4 Proof of Theorem 1.4.21

We now have everything needed to prove Theorem 1.4.21.

Proof of Theorem 1.4.21. Note that by Lemma 4.2.1 we have

E[H((gs1|gs2))]≥ k+H(s1)

and so by Lemma 4.2.2 we have

E
[

3
2

log
2
3

πeVARgs2[gs1|gs2]

]
+O(ε)≥ k+H(s1). (4.13)

Note that (gs2)
−1g = s−1

2 which is contained in a ball of radius ε centred on the identity.
Therefore by Lemma 4.2.3 we have

VARgs2[gs1|gs2]≤ VARgs2 [g|gs2]+VARId[s1]+O(ε3).

Putting this into (4.13) gives

E
[

3
2

log
2
3

πe(VARgs2 [g|gs2]+VARId[s1]+O(ε3))

]
+O(ε)≥ k+H(s1)

which becomes

E
[

log (1+
VARgs2 [g|gs2]

VARId[s1]
+OA(ε))

]
+O(ε)≥ 2

3
(k+H(s1)−

3
2

log
2
3

πeVARId[s1]).
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Noting that for x ≥ 0 we have x ≥ log(1+ x) we get

E[VARgs2 [g|gs2]]≥
2
3
(k− c−OA(ε))VARId[s1]

as required.

4.3 Entropy gap for stopped random walk

The purpose of this section is to prove Proposition 1.4.19. This shows that for a stopped
random walk qτ there are many choices of r̃ such that v(qτ ; r̃) is large.

Recall that v(qτ ; r̃) is defined to be the supremum of all v ≥ 0 such that we can find some
σ -algebra A and some A - measurable random variable a taking values in PSL2(R) such
that | log(a−1g)| ≤ r and

E [VARa [g|A ]]≥ vr2.

We apply Theorem 1.4.21 with a careful choice of s1 and s2. We will take these to be
compactly supported approximations to the image of spherical normal random variables on
psl2(R) under exp. More precisely we have the following.

Definition 4.3.1. Given r > 0 and a ≥ 1 let ηr,a be the random variable on R3 with density
function f : R3 → R given by

f (x) =

Ce−
∥x∥2

2r2 if ∥x∥ ≤ ar

0 otherwise

where C is a normalizing constant chosen to ensure that f integrates to 1.

We can then define the following family of smoothing functions.

Definition 4.3.2. Given r > 0 and a ≥ 1 let sr,a be the random variable on PSL2(R) given by

sr,a = exp(ηr,a).

In this definition we use our identification of psl2(R) with R3.
After doing some computations on the entropy and variance of the ηr,a we can prove the

following proposition by putting these estimates into Theorem 1.4.21.
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Proposition 4.3.3. There is some constant c > 0 such that the following holds. Let g be a
random variable taking values in PSL2(R), let a ≥ 1 and let r > 0. Define k by

k = H(gsr,a)−H(sr,a)−H(gs2r,a)+H(s2r,a).

Then
v(g;2ar)≥ ca−2(k−O(e−

a2
4 )−Oa(r))).

This will be proven in Section 4.3.1.
To make this useful we will need a way to bound k from Proposition 4.3.3 from below

for appropriately chosen scales. We will do this by bounding

H(gsr,a)−H(sr,a)−H(gs2nr,a)+H(s2nr,a)

for some carefully chosen n and r and then noting the identity

H(gsr,a)−H(sr,a)−H(gs2nr,a)+H(s2nr,a)

=
n

∑
i=1

H(gs2i−1r,a)−H(s2i−1r,a)−H(gs2ir,a)+H(s2ir,a).

We use this to find scales where we can apply Proposition 4.3.3. Specifically we will prove
the following.

Proposition 4.3.4. Let µ be a discrete probability measure on PSL2(R) which is strongly
irreducible and such that its support is not contained in any compact subgroup of PSL2(R).
Suppose that Mµ < ∞ and hRW/χ is sufficiently large. Let γ1,γ2, . . . be i.i.d. samples from µ .
Given n ∈ Z>0 let qn := γ1γ2 . . .γn. Let t > 1 and w ∈ P1(R) define τ = τt,w by

τ = inf{n ∈ Z>0 :
∥∥qT

n ŵ
∥∥≥ t ∥ŵ∥}

where ŵ ∈ R2 \ {0} is a representative of w. Let M > Mµ . Suppose that 0 < r1 < r2 < 1.
Suppose that r1 < M− log t/χ . Let a ≥ 1. Then

H(qτsr1,a)≥
hRW

χ
log t +H(sa,r1)−oM,µ,a,w(log t) (4.14)

and
H(qτsr2,a)≤ 2log t +oM,µ,a,w(log t). (4.15)
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In particular

H(qτsr1,a)−H(sr1,a)−H(qτsr2,a)+H(sr2,a)≥
(

hRW

χ
−2
)

log t +3logr2−oM,µ,a,w(log t).

(4.16)

This is proven in Section 4.3.2. This proposition is unsurprising. To motivate (4.14) note
that it is well known that with high probability τ ≈ log t/χ . We also know by the definition
of hRW that

H(q⌊log t/χ⌋)≥ hRW ⌊log t/χ⌋ .

Providing t is sufficiently large sr1,a is contained in a ball of centre Id and of radius
OM,µ,a(M− log t/χ). In particular providing t is sufficiently large this radius is less than half
the minimum distance between points in the image of q⌊log t/χ⌋ and so H(q⌊log t/χ⌋sr1,a) =

H(q⌊log t/χ⌋) +H(sr1,a). It turns out we can prove something similar when ⌊log t/χ⌋ is
replaced by τ .

The bound (4.15) follows easily from the fact that the Haar measure of the image of
qτsr2,a is at most Oµ,a(t2).

Finally (4.16) follows from combining (4.14) and (4.15) and noting that H(sr2,a) =

3logr2 +O(1).
We then combine Propositions 4.3.3 and 4.3.4 to get the following.

Proposition 4.3.5. There is some constant c > 0 such that the following is true. Suppose that
µ is a strongly irreducible probability supported on finitely many points whose support is not
contained in any compact subgroup of PSL2(R). Suppose that Mµ < ∞ and that hRW/χ is
sufficiently large. Let M > Mµ . Suppose that M is chosen large enough that hRW ≤ logM.
Let b ∈ P1(R). Then for all sufficiently large (depending on M, µ and w) t we have

∫ t
− hRW

10log χ

t
− logM

log χ

1
u

v(qτt,b;u)du ≥ c
(

hRW

χ

)(
max

{
1, log

logM
χ

})−1

log t.

We prove this in Section 4.3.3. Proposition 1.4.19 follows easily from this.

4.3.1 Smoothing random variables

In this subsection we give bounds on the variance and entropy of the sr,a and use this to prove
Proposition 4.3.3.

Recall the definition of ηr,a from Definition 4.3.1. First we have the following.
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Lemma 4.3.6. Let r > 0 and a ≥ 1. Then

Θ(r2)≤ Varηr,a ≤ 3r2.

The proof of this lemma is trivial and is left to the reader.

Lemma 4.3.7. There is some constant c > 0 such that the following is true. Let r > 0 and
a ≥ 1. Then

H(ηr,a) =
3
2

log2πer2 +O(e−
a2
4 ).

The proof of Lemma 4.3.7 is a simple computation which we will do later.
Recall that given some g0 ∈ PSL2(R) and a random variable g taking values in PSL2(R)

such that g−1
0 g is in the domain of log we define

VARg0[g] := Var[logg−1
0 g]

and that we define the entropy of an absolutely continuous random variable taking values
in PSL2(R) to be the differential entropy with respect to m̃ where m̃ is the Haar measure
normalized so that

dm̃
dm◦ log

(Id) = 1.

We deduce the following about sr,a.

Lemma 4.3.8. Let r > 0 and a ≥ 1. Suppose that ar is sufficiently small. Then

Θ(r2)≤ VARId sr,a ≤ 3r2.

Proof. This follows immediately from substituting Lemma 4.3.6 into the definition of VAR.

Lemma 4.3.9. Let r > 0 and a ≥ 1. Then

H(sr,a) =
3
2

log2πer2 +O(e−
a2
4 )+Oa(r).

Proof. This follows immediately from Lemma 4.3.7 and Lemma 4.2.13.

We also have the following fact.

Lemma 4.3.10. Let r > 0 and a ≥ 1. Suppose that ar is sufficiently small. Then

∥log(sr,a)∥ ≤ ar
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almost surely.

Proof. This is trivial from the definition of sr,a.

We now have enough to prove Proposition 4.3.3.

Proof of Proposition 4.3.3. We apply Theorem 1.4.21 with s1 = sr,a and s2 = s2r,a. We also
take ε = 3ar.

By Lemma 4.3.8 we know that

VARId[s1]≥ Θ(r2)≥ Θa(ε
2)

and by Lemmas 4.3.9 and 4.3.8 we know that

c =
3
2

log
2
3

πeVAR[s1]−H(s1)≤ O(e−
a2
4 ).

This means that

E[VARgs2[g|gs2]]≥
2
3
(k−O(e−

a2
4 )−Oa(r))(cr2)

for some absolute constant c > 0.
We know that ∥∥log

(
(gs2)

−1g
)∥∥= ∥logs2∥ ≤ 2ar

and so by the definition of v(·; ·) we have

v(g;2ar)≥ (2ar)−2E[VARgs2[g|gs2]]

≥ c′a−2(k−O(e−
a2
4 )−Oa(r))

for some absolute constant c′ > 0.

To finish the subsection we just need to prove Lemma 4.3.7.

Proof of Lemma 4.3.7. Recall that ηa,r has density function f : R3 → R given by

f (x) =

Ce−
∥x∥2

2r2 if ∥x∥ ≤ ar

0 otherwise

where C is a normalizing constant chosen to ensure that f integrates to 1.
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First we will deal with the case where r = 1. Note that∫
x∈R3:∥x∥≤a

e−
x2
2 dx ≤

∫
R3

e−
x2
2 dx = (2π)

3
2

and ∫
x∈R3:∥x∥≥a

e−
x2
2 dx =

∫
∞

u=a
4πu2e−

u2
2 du

≤ O
(∫

∞

u=a
4πa2e−

au
3 du

)
≤ O

(
e−

a2
4

)
.

This means∫
x∈R3:∥x∥≤a

e−
x2
2 dx = (2π)

3
2 −

∫
x∈R3:∥x∥≥a

e−
x2
2 dx ≥ (2π)

3
2 −O

(
e−

a2
4

)
.

Therefore

C = (2π)−3/2 +O
(

e−
a2
4

)
.

Note that

H(η1,a) =
∫
∥x∥≤a

−Ce−∥x∥2/2 log
(

Ce−∥x∥2/2
)

dx

=
∫
∥x∥≤a

C

(
∥x∥2

2
− logC

)
e−∥x∥2/2 dx.

We have

∫
x∈R3

C

(
∥x∥2

2
− logC

)
e−∥x∥2/2 dx

= (2π)3/2C
(

3
2
− logC

)
=

(
1+O

(
e−

a2
4

))(
3
2

loge+
3
2

log2π +O
(

e−
a2
4

))
=

3
2

log2πe+O
(

e−
a2
4

)
.
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We also have

∫
x∈R3:∥x∥≥a

C

(
∥x∥2

2
− logC

)
e−∥x∥2/2 dx

=
∫

∞

u=a
4πu2C

(
u2

2
− logC

)
e−u2/2 du

≤ O
(∫

∞

u=a
a4e−au/3 du

)
≤ O

(
e−a2/4

)
.

This gives

H(η1,a)≥
3
2

log2πe−O(e−a2/4).

From this we may immediately deduce that

H(ηr,a)≥
3
2

log2πer2 −O(e−a2/4)

as required. The fact that H(ηr,a)≤ 3
2 log2πer2 follows immediately from Lemmas 4.2.12

and 4.3.6.

4.3.2 Entropy gap

We now prove Proposition 4.3.4. This Proposition bounds the difference in entropy of qτ

smoothed at two different scales.
Before proving this we will need the following estimate.

Lemma 4.3.11. Let µ be a probability measure on PSL2(R). Suppose that µ is strongly
irreducible and that everything in its support has operator norm at most R for some R > 1.
Suppose that the support of PSL2(R) is not contained in any compact subgroup of PSL2(R).
Let γ1,γ2, . . . be i.i.d. samples from µ and let qn := γ1γ2 . . .γn. Let ε > 0. Then there is
some α > 0 such that the following is true. Let b ∈ P1(R) and let t > 0 be sufficiently large
depending on µ , ε and b. Let

τt,b := min{n :
∥∥qT

n b̂
∥∥≥ t

∥∥b̂
∥∥}

where b̂ ∈ R2 \{0} is a representative of b. Then

P
[∣∣∣∣τt,b −

log t
χ

∣∣∣∣> ε log t
]
< t−α .
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This follows easily from the following Theorem.

Theorem 4.3.12 (Theorem V.6.1 in [7]). Let µ be a probability measure on PSL2(R).
Suppose that µ is strongly irreducible. Let χ be the Lyapunov exponent of µ . Suppose that
χ > 0 and that there exists some u > 0 such that∫

eulog∥g∥
µ(dg)< ∞. (4.17)

Let g1,g2, . . . be i.i.d. samples from µ and let qn = γ1γ2 . . .γn. Let ε > 0. Then there exists
some α ∈ (0,1) such that for all w ∈ R2 \{0} and all sufficiently large n we have

P
[∣∣log

∥∥qT
n w
∥∥−nχ − log∥w∥

∣∣> εn
]
< α

n

and
P
[∣∣log

∥∥qT
n
∥∥−nχ

∣∣> εn
]
< α

n.

Proof. This is [7, Theorem V.6.1]. Note that in [7] the author uses a definition of the
Lyapunov exponent which is the exponential of the definition used in this thesis.

Lemma 4.3.11 follows from this as follows.

Proof of Lemma 4.3.11. First note that (4.17) is clearly satisfied as µ is compactly supported.
Note in order to have ∣∣∣∣τ − log t

χ

∣∣∣∣> ε log t

there must be some n ≥ log t
logR such that

|log∥qnb∥−nχ|> ε̃n

for some ε̃ > 0 depending on ε . We are now done by Theorem 4.3.12 and the sum of a
geometric series.

We also need the following results about entropy.

Lemma 4.3.13. Let X and Y be discrete random variables defined on the same probability
space each having finitely many possible values. Suppose that K is an integer such that for
each y in the image of Y there are at most K elements x in the image of X such that

P [X = x∩Y = y]> 0.

Then
H(X |Y )≤ logK.
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Proof. Note that (X |Y ) is almost surely supported on at most K points. This means that

H((X |Y ))≤ logK

almost surely. The result now follows by Lemma 4.2.16.

Lemma 4.3.14. Given u > 0 let Ku denote the set

Ku := {g ∈ PSL2(R) : ∥g∥ ≤ u}.

Then
m̃(Ku)≤ O(u2).

Here m̃ is the Haar measure on PSL2(R) defined in 2.2.5.

The proof of Lemma 4.3.14 is a simple computation involving the Haar measure which
we will carry out later in this section.

We now have everything we need to prove Proposition 4.3.4.

Proof of Proposition 4.3.4. First we will deal with (4.14). Fix some ε > 0 which is suffi-
ciently small depending on M and µ . Let m =

⌊
log t

χ

⌋
and define τ̃ by

τ̃ =


⌈(1+ ε)m⌉ if τ > ⌈(1+ ε)m⌉

⌊(1− ε)m⌋ if τ < ⌊(1− ε)m⌋

τ otherwise.

Given some random variable X let L (X) denote its law. If we are also given some event A we
will let L (X)|A denote the (not necessarily probability) measure given by the push forward
of the restriction of P to A under the random variable X . Note that ∥L (X)|A∥1 = P[A].

We have the following inequality.

H(qτsr1,a) = H(L (qτ)∗L (sr1,a))

≥ H(L (qτ)|τ=τ̃ ∗L (sr1,a))+H(L (qτ)|τ ̸=τ̃ ∗L (sr1,a)) (4.18)

≥ H(L (qτ)|τ=τ̃ ∗L (sr1,a))+P[τ ̸= τ̃]H(L (sr1,a)) (4.19)

Here (4.18) follows from Lemma 2.2.8 and (4.19) follows from Lemmas 4.2.17 and 2.2.8.
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First we will bound H(L (qτ)|τ=τ̃). To do this we introduce the random variable X̃ which
is defined by

X̃ =
(
q⌊(1−ε)m⌋,γ⌊(1−ε)m⌋+1,γ⌊(1−ε)m⌋+2, . . . ,γ⌈(1+ε)m⌉

)
.

We know that qτ̃ is completely determined by X̃ so

H(X̃ |qτ̃) = H(X̃)−H(qτ̃). (4.20)

Let K be the number of points in the support of µ . Clearly if

γ⌊(1−ε)m⌋+1,γ⌊(1−ε)m⌋+2, . . . ,γ⌈(1+ε)m⌉

and τ̃ are fixed then for any possible value of qτ̃ there is at most one choice of q⌊(1−ε)m⌋
which would lead to this value of qτ̃ . Therefore for each y in the image of qτ̃ there are at
most

(2εm+2)K(2εm+2)

elements x in the image of X̃ such that P[X̃ = x∩qτ̃ = y]> 0. By Lemma 4.3.13 this gives

H(X̃ |qτ̃)≤ log
(
(2εm+2)K(2εm+2)

)
≤ 2ε logK

χ
log t +oµ(log t). (4.21)

We also know that

H(X̃)≥ H(qm)≥ hRW ·m ≥ hRW

χ
log t −oµ(log t). (4.22)

Combining equations (4.20), (4.21) and (4.22) gives

H(qτ̃)≥
hRW −2ε logK

χ
log t −oµ(log t).

We note by Lemma 2.2.9 that

H(L (qτ̃))≤ H(L (qτ̃)|τ=τ̃)+H(L (qτ̃)|τ ̸=τ̃)+H(Iτ=τ̃).

We wish to use this to bound H(L (qτ̃)|τ=τ̃) from below. First note that trivially H(Iτ=τ̃)≤
log2 ≤ o(log t). Note that by Lemma 4.3.11 we have that providing t is sufficiently large
depending on ε and µ

P [τ ̸= τ̃]≤ α
m
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for some α ∈ (0,1) which depends only on ε and µ . We also know that conditional on τ ̸= τ̃

there are at most K⌈(1+ε)m⌉+K⌊(1−ε)m⌋ possible values for qτ̃ . This means that

H(L (qτ̃)|τ ̸=τ̃)≤ α
m log

(
K⌈(1+ε)m⌉+K⌊(1−ε)m⌋

)
≤ oµ,ε(log t).

Therefore
H(L (qτ̃)|τ=τ̃)≥

hRW −2ε logK
χ

log t −oµ,ε(log t).

Recall that d is the distance function of some left invariant Riemannian metric and that
by the definition of Mµ given any N ∈ Z>0 and any two distinct x,y ∈ PSL2(R) such that for
each of them there is some n ≤ N such that they are in the support of µ∗n we have

d(x,y)≥ M−N+oµ (N)
µ

In particular this means that if x and y are both in the image of qτ̃ then

d(x,y)≥ M−m(1+ε)+oµ (N)
µ .

Note also that trivially for all sufficiently small r we have d(exp(u), Id)≤ O(r) whenever
u ∈ psl2(R) satisfies ∥u∥ ≤ r. In particular since r1 < M−m this means that providing t is
sufficiently large depending on M and a we have

d(sr1,a, Id)≤ O(aM−m)

almost surely. Therefore, providing ε is small enough that M(1+ε)
µ < M and t is sufficiently

large depending on µ , a, ε and M we have

d(sr1,a, Id)<
1
2

min
x,y∈ℑqτ̃ ,x ̸=y

d(x,y).

In particular by Lemma 2.2.11 and Definition 2.2.7 we have

H(L (qτ)|τ=τ̃ ∗L (sr1,a)) = H(L (qτ)|τ=τ̃)+P[τ = τ̃]H(L (sr1,a)).

Putting this into the estimate (4.19) for H(qτsr1,a) we get

H(qτsr1,a)≥
hRW −2ε logK

χ
log t +H(ss1,a)−oµ,M,a,ε(log t).
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Since ε can be made arbitrarily small this becomes

H(qτsr1,a)≥
hRW

χ
log t +H(sr1,a)−oµ,M,a(log t)

as required.
Now to prove (4.15). Fix some ε > 0 and let A be the event that

∥qτ∥< t1+ε .

First note that by Theorem 4.3.12 and Lemma 4.3.11 there is some δ depending on µ and ε

such that for all sufficiently large (depending on µ , ε and b) t we have

P[AC]< t−δ .

Note that when A occurs ∥qτsr2,a∥ ≤ Rt1+εar2. Therefore by Lemma 4.3.14 the image
of qτsr2,a is contained in a set of m̃-measure at most Oµ,a(t2+2ε) where m̃ is our normalised
Haar measure. Trivially by Jensen’s inequality this gives

H(L (qτsr2,a)|A)≤ (2+2ε) log t +oµ,M,a(log t). (4.23)

Now we need to bound H(L (qτsr2,a)|AC). We will do this by bounding the Shannon
entropy H(L (qτ)|AC). It is easy to see that the contribution to this from the case where
τ < 2log t

χ
is at most t−δ 2log t

χ
logK. By Theorem 4.3.12 the contribution from the case where

τ = n for some n ≥ 2log t
χ

can be bounded above by αnn logK where α ∈ (0,1) is some
constant depending only on µ . From summing over n it is easy to see that

H(L (qτ)|AC)≤ oµ(log t).

This gives H(L (qτsr2,a)|AC)< oµ,M,a(log t). Combining this with (4.23) and noting that ε

is arbitrary gives (4.15).
Subtracting (4.15) from (4.14) gives

H(qτsr1,a)−H(qτsr2,a)≥
(

hRW

χ
−2
)

log t +H(sr1,a)−oM,µ,a(log t).

Noting that |H(sr2,1)−3logr2| ≤ Oa(1)≤ oM,µ,a(log t) gives (4.16) as required.

We will now prove Lemma 4.3.14.
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Proof of Lemma 4.3.14. First let

Mx,y,θ :=

(
1 x
0 1

)(
y

1
2 0

0 y−
1
2

)(
cosθ −sinθ

sinθ cosθ

)
.

Note that we have

Mx,y,θ

(
cosθ

−sinθ

)
=

(
y

1
2

0

)
and

Mx,y,θ

(
sinθ

cosθ

)
=

(
xy−

1
2

y−
1
2

)
meaning that ∥∥Mx,y,θ

∥∥≥ max{y
1
2 , |x|y−

1
2 ,y−

1
2}.

This means that we have

m̃(Kt)≤ O

∫ t2

t−2

∫ ty
1
2

−ty
1
2

∫ 2π

0

1
y2 dθ dxdy


= O

(
t
∫ t2

t−2
y−

3
2 dy

)

≤ O
(

t
∫

∞

t−2
y−

3
2 dy
)

= O(t2)

as required.

4.3.3 Variance of a disintegration of a stopped random walk

In this subsection we will prove Proposition 4.3.5 and then use this to prove Proposition
1.4.19.

Proof of Proposition 4.3.5. Let τ = τt,b and let a ≥ 1 be a number we will choose later. Let

r1 = a−1M− log t
χ and let

N =

⌊
(1− hRW

10logM
)
logM log t

χ log2

⌋
−1.
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Note that
1
4

t
logM

χ /t
hRW
10χ ≤ 2N ≤ 1

2
t

logM
χ /t

hRW
10χ .

Given u ∈ [1,2) and an integer i ∈ [1,N] let

ki(u) := H(qτm2i−1ur1,a)−H(m2i−1ur1,a)−H(qτm2iur1,a)+H(m2iur1,a).

Note that by Proposition 4.3.3 there is some absolute constant c > 0 such that we have

v(qτ ;a2iur1)≥ ca−2(ki(u)−O(e−
a2
4 )−Oa(2ir1)). (4.24)

This means that

N

∑
i=1

v(qτ ;a2iur1)≥ ca−2
N

∑
i=1

ki(u)−O(Ne−
a2
4 a−2)−Oa(N2Nr1).

Note that for u ∈ [1,2) we have

a2Nur1 ≤ t−
hRW
10χ

and
a21ur1 ≥ t−

logM
χ .

This means that

∫ t
− logM

log χ

t
− logM

log χ

1
u

v(qτ ;u)du ≥ ca−2
∫ 2

1

1
u

N

∑
i=1

ki(u)du−O(Ne−
a2
4 a−2)−Oa(N2Nr1). (4.25)

Clearly for any fixed u ∈ [1,2) we have

N

∑
i=1

ki(u) = H(qτmur1,a)−H(mur1,a)−H(qτm2Nur1,a)+H(m2Nur1,a).

This means that by Proposition 4.3.4 we have

N

∑
i=1

ki(u)≥
(

hRW

χ
−12

)
log t +3log2Nur1 +oM,µ,a,w(log t)

≥
(

hRW

χ
−2− 3hRW

10χ

)
log t +oM,µ,a,w(log t). (4.26)
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Let C be chosen such that the error term O(Ne−
a2
4 a−2) in (4.25) can be bounded above

by CNe−
a2
4 a−2. Note that this is at most C logM

χ log2e−
a2
4 a−2 log t. Let c be as in (4.24). We take

our value of a to be

a = 2

√
log
(

100C
c log2

logM
hRW

)
.

Note that a depends only on µ and M. This means

CNe−
a2
4 a−2 ≤ a−2 hRW

100χ
c log t.

Note also that N2Nr1 ≤ oµ,M(log t). Therefore putting (4.26) into (4.25) we get

∫ t
− hRW

10χ

t−
logM

χ

1
u

v(qτ ;u)du ≥ ca−2
(

hRW

χ
−2− 3hRW

χ
− hRW

100χ

)
log t +oM,µ,w(log t).

In particular providing hRW
χ

> 10 we have

∫ t
− hRW

10χ

t−
logM

χ

1
u

v(qτ ;u)du ≳ a−2
(

hRW

χ

)
log t +oM,µ,w(log t).

Noting that a2 ≤ O(max
{

1, log logM
hRW

}
) we have that for all sufficiently large (depending on

µ , M, and w) t we have

∫ t
−γ

logM
log χ

t
− logM

log χ

1
u

v(qτ ;u)du ≳

(
hRW

χ

)(
max

{
1, log

logM
hRW

})−1

log t

as required.

We wish to prove Proposition 1.4.19. First we need the followwing corollary of Proposi-
tion 4.3.5.

Corollary 4.3.15. Suppose that ν̂ is a probability measure on P1(R). Suppose that µ is a
strongly irreducible measure on PSL2(R) with finite support and that the support of PSL2(R)
is not contained in any compact subgroup of PSL2(R). Suppose further that Mµ < ∞ and let
M > Mµ . Suppose that M is chosen large enough that hRW ≤ logM. Then for all sufficiently
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large (depending on µ , ν̂ , and M) t we have

∫
P1(R)

∫ t
− hRW

10log χ

t
− logM

log χ

1
u

v(qτt,b;u)du ν̂(db)≳(
hRW

χ

)(
max

{
1, log

logM
χ

})−1

log t.

Proof. Given µ and M let

S(t) := {b ∈ P1(R) : t is large enough to satisfy Proposition 4.3.5 for this b,µ and M}.

By Proposition 4.3.5 we know that S(t) ↗ P1(R). Therefore ν̂(S(t)) ↗ 1. In particular
providing t is sufficiently large (depending on µ and M) we have ν̂(S(t))≥ 1

2 . This, along
with the fact that v(·; ·) is always non-negative, is enough to prove Corollary 4.3.15.

This is enough to prove Proposition 1.4.19.

Proof of Proposition 1.4.19. Recall that m̂ =
⌊

logM
100χ

⌋
. Let

A := t
logM
2m̂χ

− hRW
20m̂χ .

Define a1,a2, . . . ,a2m̂+1 by

ai := t−
logM

χ Ai−1.

Note that this means a1 = t−
logM

χ and a2m̂+1 = t−
hRW
10χ . Furthermore, providing hRW/χ is

sufficiently large we have
t3 ≤ A ≤ t50.

In particular ai+1 ≥ t3ai.
Let U,V be defined by

U :=
m̂⋃

i=1

[a2i−1,a2i)

and

V :=
m̂⋃

i=1

[a2i,a2i+1).

Note that U and V partition
[

t−
logM

χ , t−
hRW
10χ

]
.
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Let c > 0 be the absolute constant in Corollary 4.3.15. By Corollary 4.3.15 providing t is
sufficiently large depending on µ and M we have

∫
U∪V

∫
P1(R)

1
u

v(qτt,b;u) ν̂(db)du ≥ c
(

hRW

χ

)(
max

{
1, log

logM
hRW

})−1

log t.

In particular either

∫
U

∫
P1(R)

1
u

v(qτt,b;u) ν̂(db)du ≥ 1
2

c
(

hRW

χ

)(
max

{
1, log

logM
hRW

})−1

log t. (4.27)

or ∫
V

∫
P1(R)

1
u

v(qτt,b ;u) ν̂(db)du ≥ 1
2

c
(

hRW

χ

)(
max

{
1, log

logM
hRW

})−1

log t.

Without loss of generality assume that (4.27) holds. For i = 1,2, . . . , m̂ let r̃i ∈ (a2i−1,a2i)

be chosen such that∫
P1(R)

v(qτt,b; r̃i) ν̂(db)≥ 1
2

sup
u∈(a2i−1,a2i)

∫
P1(R)

v(qτt,b;u) ν̂(db).

In particular this means that∫
P1(R)

v(qτt,b ; r̃i) ν̂(db)≥ 1
2logA

∫ a2i

a2i−1

∫
P1(R)

1
u

v(qτt,b;u) ν̂(db)du.

Summing over i gives

m̂

∑
i=1

∫
P1(R)

v(qτt,b; r̃i) ν̂(db)≥ 1
2logA

∫
U

∫
P1(R)

1
u

v(qτt,b ;u) ν̂(db)du

≥ 1
4logA

c
(

hRW

χ

)(
max

{
1, log

logM
hRW

})−1

log t.

Noting that logA ≤ O(log t) we get that providing t is sufficiently large depending on µ and
M that

m̂

∑
i=1

∫
P1(R)

v(qτt,b; r̃i) ν̂(db)≥ c′
(

hRW

χ

)(
max

{
1, log

logM
hRW

})−1

for some absolute constant c′ > 0. Finally note that A ≥ t3 means that r̃i+1 ≥ t3r̃i.



4.4 More results on regular conditional distributions 121

4.4 More results on regular conditional distributions

Before proving Theorem 1.3.13 we first need a few more results on regular conditional
distributions. First we need the following definition.

Definition 4.4.1. Let (Ω,F ,P) be a probability space and let A ⊂ F be a σ -algebra. We
say that two σ - algebras G1,G2 ⊂F are conditionally independent given A if for any U ∈ G1

and V ∈ G2 we have
P[U ∩V |A ] = P[U |A ]P[V |A ]

almost surely. Similarly we say that two random variables or a random variable and a
σ -algebra are conditionally independent given A if the σ -algebras generated by them are
conditionally independent given A .

Now we have these three lemmas.

Lemma 4.4.2. Let (Ω,F ,P) be a probability space and let A ⊂ F be a σ -algebra. Let g
and x be random variables on (Ω,F ,P) with g taking values in PSL2(R) and with x taking
values in X where X is either PSL2(R) or P1(R). Suppose that g and x are conditionally
independent given A . Then

(gx|A ) = (g|A )∗ (x|A )

almost surely.

Proof. This follows by essentially the same proof as the proof that the law of gx is the
convolution of the laws of g and of x and is left to the reader.

Lemma 4.4.3. Let (Ω,F ,P) be a probability space and let A ⊂ F be a σ -algebra. Let g
be a random variable taking values in some measurable space (X ,ξ ). Let G be a σ -algebra
such that

A ⊂ G ⊂ F

and g is independent of G conditional on A . Then

(g|G ) = (g|A )

Proof. This is immediate from the definitions of the objects involved.

Lemma 4.4.4. Let (Ω,F ,P) be a probability space and let A ⊂ F be a σ -algebra. Let
g be a random variable taking values in some measurable space (X ,ξ ). Suppose that g is
A -measurable. Then

(g|A ) = δg
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almost surely.

Proof. This is immediate from the definitions of the objects involved.

Lemma 4.4.5. Let (Ω,F ,P) be a probability space and let A ⊂ F be a σ -algebra. Let g
be a random variable taking values in some measurable space (X ,ξ ). Let G be a σ -algebra
such that A ⊂ G ⊂ F and g is G measurable. Let A ∈ A and construct the σ -algebra ˆA

by
ˆA = σ(A ,{G ∈ G : G ⊂ A}).

Then for almost all ω ∈ Ω we have

(g| ˆA )(ω, ·) =

δg if ω ∈ A

(g|A )(ω, ·) otherwise.

Proof. Let

Q(ω, ·) :=

δg if ω ∈ A

(g|A )(ω, ·) otherwise.

We will show that Q satisfies the conditions of being a regular conditional distribution for g
given ˆA . Clearly Q is a Markov kernel. Now let D ∈ ˆA and let B ∈ ξ . We simply need to
show that

P[D∩{g ∈ B}] = E[IDQ(·,B)]. (4.28)

First suppose that D ⊂ A. In this case the left hand side of (4.28) becomes E[IDIg∈B] which
is trivially equal to the left hand side.

Now suppose that D ⊂ AC. This means that D ∈ A . In this case by the definition of
(g|A )(ω, ·) we know that (4.28) is satisfied.

The general case follows by summing.

4.5 Proof of the main theorem

In this section we will prove Theorem 1.3.13. Throughout this section we will let µ be a
strongly irreducible finitely supported probability measure on PSL2(R) with the operator
norm being at most R on the support of µ . We will also assume that the support of µ is
not contained in any compact subgroup of PSL2(R). Furthermore µ will be α0, t - non-
degenerate for some α0 ∈ (0,1/3) and t > 0. We also adopt the convention of allowing the
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constants in O, o, Θ, ≲, ≳, and ∼= to depend on α0, t, and R without explicitly listing these
in subscripts.

We first construct a sample from the Furstenberg measure ν using Proposition 1.4.17 and
Proposition 1.4.19 in such a way that we can bound its order k detail using Lemma 1.4.13,
Lemma 2.1.17, and Lemma 1.4.14.

Proposition 4.5.1. Let µ be a finitely supported strongly irreducible probability measure on
PSL2(R) whose support is not contained in any compact subgroup of PSL2(R). Suppose that
Mµ < ∞ and let χ be the Lyapunov exponent. Let R > 0 be chosen such that the operator
norm is at most R on the support of µ . Let ν be the Furstenberg measure generated by µ .
Suppose that α0 ∈ (0,1/3) and t > 0 are such that µ is α0, t- non-degenerate.

Suppose that
hRW

χ

(
max

{
1, log

logMµ

hRW

})−2

(4.29)

is sufficiently large (depending on R, t and α0). Suppose that C > 0.
Then for all sufficiently small (depending on µ , R, C, t and α0) r̃ > 0 there exists

n ∈ Z>0, an increasing sequence of scales s1,s2, . . . ,sn > 0, random variables g1,g2, . . . ,gn

taking values in PSL2(R), random variables u(1),u(2), . . . ,u(n) taking values in psl2(R) and
a random variable b taking values in P1(R) such that

g1 exp(u(1))g2 exp(u(2)) . . .gn exp(u(n))b (4.30)

has law ν and the following holds.
There is a σ -algebra A on the probability space where gi, u(i), and b are defined, an

A -measurable event A, and an A -measurable random index set I ⊂ [1,n]∩Z such that

A1. (g1 exp(u(1)) . . .gn exp(u(n))b|A ) = δg1 ∗(exp(u(1))|A )∗· · ·∗δgn ∗(exp(u(n))|A )∗
δb.

A2. We have Cnsn ≤ (log r̃−1)−10.

A3. P[A]≥ 1− (log r̃−1)−10.

Furthermore for all ω ∈ A the following holds. For all i ∈ I, we have

A4. ∥g1g2 . . .gi∥2 ∼= si/r̃.

A5.
∥∥∥u(i)

∥∥∥≤ si.

A6. gi+1gi+2 . . .gnb ∈Ut/4(u(i)|A ).
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For i /∈ I, we have u(i) = 0 almost surely. If ω ∈A and we can enumerate I as i1 < i2 < · · ·< iñ
then

A7. ∥g1g2 . . .gi1∥ ≥C and for all j ∈ [ñ−1] we have
∥∥gi jgi j+1 . . .gi j+1

∥∥≥C.

A8. For all j ∈ [ñ] we have

d(b−(gi j−1+1gi j−1+2 . . .gi j),b
+(gi j+1gi j+2 . . .g j j+1))> t/8

with i j−1 replaced by 1 in the case j = 1 and b+(gi j+1gi+2 . . .g j j+1) replaced by giñ+1 . . .gnb
in the case j = ñ.

Furthermore for all ω ∈ A we have

A9. ∑i∈I
VAR[u(i)|A ](ω)

s2
i

≳ hRW
χ

(
max

{
1, log logMµ

hRW

})−2
log log r̃−1.

Here Ut/4 from Condition A6 is as in Definition 4.1.5. We now briefly discuss the role of
each of the conditions in the proof of Theorem 1.3.13. We let x denote the random element of
P1(R) given by (4.30). We prove Theorem 1.3.13 by applying Proposition 1.4.17 in the case
ω ∈ A and then using Lemmas 1.4.13, 1.4.14, and 2.1.17 to get an upper bound on the order
k detail of (x|A ) for an appropriate choice of k. In the case ω /∈ A we use the trivial bound
s(k)r (x|A )≤ 1. Using the convexity of s(k)r (·) we bound s(k)r (x) by taking the expectation of
this. After this we complete the proof using Lemmas 1.4.10 and 1.4.11.

We need Conditions A1, A4, A5, A7, and A8 in order to be able to apply Proposition
1.4.17 in the case ω ∈ A. We need Condition A2 to show that the contribution to the order
k detail introduced by the Wasserstein distance in Proposition 1.4.17 is small. We need
condition A3 to show that the contribution to s(k)r (x) from the case where ω /∈ A is small. We
need Condition A6 in order to apply Proposition 4.1.2 which will enable us to control the
variance of the ζi(u(i)) in Proposition 1.4.17. Condition A9 is needed to ensure that we can
apply Lemma 1.4.13 enough times.

The details of how we deduce Theorem 1.3.13 from Proposition 4.5.1 will be given in
Section 4.5.5.

To show that our random variable (4.30) is a sample from ν we will require the following
Lemma.

Lemma 4.5.2. Let γ1,γ2, . . . be i.i.d. samples from µ and let (Fi)
∞

i=1 be a filtration for
γ1,γ2, . . . . This means that the Fi are σ -algebras such that F1 ⊂ F2 ⊂ . . . and γi is Fi-
measurable. Suppose further that γi+1 is independent from Fi. Let T be a stopping time for
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the filtration (Fi)
∞

i=1. Suppose that ν is a µ invariant probability measure on P1(R). Let b
be a sample from ν which is independent from (Fi)

∞

i=1. Then

γ1γ2 . . .γT b

has law ν .

This lemma is trivial and the proof is left to the reader.
In the proof of Proposition 4.5.1, we construct a sample of ν in the form

x = b0 f1h1b1 f2h2b2 . . . fnhnbnb̂ (4.31)

where b0, f1,h1, . . . ,bn are products of consecutive elements of the sequence γ1,γ2, . . . of i.i.d.
sample from µ defined using suitable stopping times, and b̂ is a sample of ν independent of
γ1,γ2, . . . .

By Lemma 4.5.2 x is indeed a sample from ν .
In addition, we will also define a σ -algebra A and A -measurable random variables

a1,a2, . . . ,an taking values in PSL2(R) such that, amongst other things that we will discuss
later, the following holds. The random elements bi, fi and b are A -measurable for all values
of i. In addition, h1, . . . ,hn are conditionally independent given A . By Lemmas 4.4.2 and
4.4.3 these imply that

(x|A ) = δb0 ∗δ f1 ∗δa1 ∗ (a
−1
1 h1|A )∗ · · · ∗ (a−1

n hn|A )∗δbn ∗δb.

We take our values in Proposition 4.5.1 to be g1 := b0 f1a1, g2 := b1 f2a2 and so on, u(i) :=
log(a−1

i hi) and b := bnb̂.
The rest of the section is organised as follows. We give the details of the construction

(4.31) in Section 4.5.1 and give some results about the construction. Sections 4.5.2, 4.5.3, and
4.5.4 contain the proofs of some of the properties claimed in Proposition 4.5.1. Conditions
A1 and A7 will follow immediately from the construction of our sample and the results
of Section 4.4. Condition A2 will follow easily from our results on the construction. We
prove Condition A3 by showing that each of the Conditions A4, A5, A6, and A8 occur on
A -measurable events with probabilities at least 1−o((log r̃−1)−10). Condition A9 will be
checked in Section 4.5.3.

Before we go on, we make a few remarks on the role of the elements bi, fi, and hi in our
construction. The hi will be defined in such a way that Proposition 1.4.19 can be applied to
them with appropriate choices of the parameter t. Using the scales r̃ j in that proposition we
define a sequence of scales si such that v(hi;si) is large on average by the proposition. Using
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the definition of v(hi;si), we can find a σ -algebra Ai and an Ai-measurable random variable
ai taking values in PSL2(R) such that

∥∥log(a−1
i hi)

∥∥≤ si and

E
[
Var
[
log(a−1

i hi)|Ai
]]

≥ v(hi;si)/2.

The role of fi will be to set the norm of g1g2 . . .gi to the correct size so that Condition A4
from Proposition 4.5.1 holds.

The role of bi is less intuitive. For technical reasons, before we define fi, we need to
know whether i−1 belongs to the set of nice indices I in Proposition 4.5.1. By defining bi−1

first, we will be able to decide whether or not Conditions A8 and A6 in Proposition 4.5.1 are
likely to hold for i−1 and this will allow us to make a decision on whether or not to put i−1
in I.

4.5.1 Construction at a scale

In this section we give the detail of the construction outlined above. Fix a sufficiently small
r̃ > 0. The construction depends on a number of parameters which we fix now.

We choose M such that M > Mµ and hRW ≤ logM. To do this, we set

M = max{exphRW ,2Mµ}.

We set
K :=

⌊
exp(

√
log log r̃−1)

⌋
.

This value of K is chosen to ensure that for small r̃ we have that RK is smaller than any
polynomial in r̃−1 and larger than any polynomial in log(r̃−1) where R is the constant in
Proposition 4.5.1.

We set n = mm̂ where m̂ =
⌊

logM
100χ

⌋
is the number of scales that appear in Proposition

1.4.19 and m is a number depending on r̃ to be chosen below.
We also let ε > 0 be some number depending only on µ , R, t, and α0 which we will fix

later.
We set

t̂ := r̃−
χ

10logM . (4.32)

We will apply Proposition 1.4.19 for each of the values

t̂
(

hRW
100logM

) j−1

(4.33)
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in the role of t for j = 1,2, . . . ,m. We choose m to be the largest possible value such that

t̂
(

hRW
100logM

)m−1

≥ R100K. (4.34)

We define the sequence t1, t2, . . . , tn by repeating each of the values in (4.33) m̂ times. Recall
that hRW ≤ logM and so hRW

100logM ≤ 1
100 . This means that ti ≥ ti+1.

When we apply Proposition 1.4.19 for t̂
(

hRW
100logM

) j−1

in the role of t. For each j we get a
sequence of scales r̃1, r̃2, . . . , r̃m̂. We define the sequence s1,s2, . . . ,sn in such a way that for
each j ∈ [m] the elements s jm̂+1, . . . ,s( j+1)m̂ are these scales in increasing order.

Now let γ1,γ2, . . . be i.i.d. samples from µ and let b̂ be a sample from ν which is
independent of the γi. In what follows we define a sequence of stopping times T0 < S1 <

T1 < S2 < T2 < · · ·< Sn < Tn, random variables f1, f2, . . . , fn, h1,h2, . . . ,hn, b0,b1,b2, . . . ,bn,
a1,a2, . . . ,an taking values in PSL2(R) and random variables y1,y2, . . . ,yn taking values in
P1(R). We also construct a filtration F0 ⊂ F1 ⊂ ·· · ⊂ Fn.

Let
T0 := min{n : ∥γ1 . . .γn∥ ≥ RK}

and let b0 = γ1γ2 . . .γT0 .
Let

S1 = min
{

n ≥ T0 +1 :
∥∥∥γ

T
n γ

T
n−1 . . .γ

T
T0+1b−(b0)

⊥
∥∥∥≥ max

{
RK,

√
s1

t1
√

r̃∥b0∥

}}
and let f1 = γT0+1 . . .γS1 . Note that this definition is chosen so that we can control ∥b0 f1∥.

Let F0 = σ(b0).
Let k ∈ [1,n] be an integer. Suppose that yi , Ti, hi, ai, bi, and Fi are all defined for i < k

and Si and fi are defined for i ≤ k. We define yk, Tk, gk, bk, Fk, ak, and if k ≤ n−1 Sk+1 and
fk+1 as follows.

We let ν̂ denote the measure from Theorem 1.4.20 with our choice of µ . We now define
the random variable yk.

Lemma 4.5.3. Providing r̃ is sufficiently small (in terms of µ , R, α0 and t) for each integer k ∈
[1,n] we can choose a random variable yk taking values in P1(R) such that it is independent
of Fk−1 and is such that y⊥k has law ν̂ . Moreover, we may ensure that

P[d(yk,b−( fk))< ε|Fk−1]> 1− ε. (4.35)
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We will prove this lemma later in the subsection. We choose yk such that it satisfies the
requirements of the lemma.

Next we define

Tk = min
{

n ≥ Sk +1 :
∥∥∥γ

T
n γ

T
n−1 . . .γ

T
Sk+1y⊥k

∥∥∥≥ tk
}

and we set hk = γSk+1 . . .γTk .
We choose this definition so that we can apply Proposition 1.4.19. Note that by Lemma

4.1.11

∥b0 f1h1 . . .bk−1 fkhk∥ ≈ ∥b0 f1h1 . . .bk−1 fk∥ · ∥hk∥sind(b+(hk),b−(b0 f1h1 . . .bk−1 fk))

≈ ∥b0 f1h1 . . .bk−1 fk∥ · ∥hk∥sind(b+(hk),b−( fk))

≈ ∥b0 f1h1 . . .bk−1 fk∥ · ∥hk∥sind(b+(hk),yk)

= ∥b0 f1h1 . . .bk−1 fk∥
∥∥hT

k yk
∥∥

≈ ∥b0 f1h1 . . .bk−1 fk∥ tk.

We will define Sk in such a way that we can control ∥b0 f1h1 . . .bk−1 fk∥. This allows us to
control the size of this product which will ultimately enable us to ensure that condition A4 is
satisfied.

We now choose a σ -algebra ˆAk and a ˆAk measurable random variable âk taking values
in PSL2(R) such that

∥∥log â−1
k hk

∥∥≤ si almost surely and

E
[
VARâk

[
hk| ˆAk,yk

]
|yk

]
≥ 1

2
s2

kv([hk|yk];sk). (4.36)

This is possible by the definition of v(·; ·). See Definition 1.4.18. Note that by our use of
Proposition 1.4.19 in the construction of the si for all j ∈ [m] we have

jm̂

∑
k=( j−1)m̂+1

s−2
k E

[
VARâk

[
hk| ˆAk,yk

]
|yk

]
≳

(
hRW

χ

)(
max

{
1, log

logM
hRW

})−1

. (4.37)

We also require ˆAk to be independent of Fk−1 and of γTk+1,γTk+2, . . . . Since hk is
independent of these this is trivially possible providing we take our underlying probability
space to be sufficiently large.

We now let bk = γTk+1γTk+2 . . .γTk+K .
Now we need to decide if k is one of our “nice” indices. We let k ∈ I if and only if the

following hold
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1. d(b−( fk),yk)< ε .

2. d(yk,b+(âk))> 100ε .

3. b+(bk) ∈Ut/4,t/8(log â−1
k hk| ˆAk).

4. d(b−(âk),b+(bk))> t/4.

Conditions (1) and (2) will be used to ensure that Condition A4 occurs with high probability.
Condition (3) will be used to show that Condition A6 occurs with high probability and
Condition (4) will be used to ensure that A8 occurs with high probability.

If k ∈ I then we let ak = âk and Ak = ˆAk. Otherwise we let ak = hk and Ak = σ(hk). We
now let

Fk = σ(Fk−1, fk,yk,ak,Ak,bk).

Finally if k < n we let

Sk+1 = min{ n ≥ Tk +K +1 :
∥∥∥γ

T
n γ

T
n−1 . . .γ

T
Tk+K+1b−(b0 f1a1b1 . . . fkakbk)

⊥
∥∥∥≥

max
{

RK,

√
sk

tk
√

r̃∥b0 f1a1b1 . . . fkakbk∥

}
}

and let fk+1 = γTk+K+1 . . .γSk+1 .
We need the following result.

Lemma 4.5.4. Providing r̃ is sufficiently small (in terms of µ , R, α0, and t) We have

m ∼=
(

max
{

1, log
logM
hRW

})−1

log log r̃−1

and

n ∼=
logM

χ

(
max

{
1, log

logM
hRW

})−1

log log r̃−1.

Proof. Note that by our definition of m we have

m =

 log χ log r̃−1

1000K logM logR

log 100logM
hRW

+1.

Our estimate for m now follows by a simple computation which is left to the reader. The
estimate for n follows by combining our estimate for m with the definition of m̂.
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Lemma 4.5.5. We have

n

∑
i=1

E[VARâi[hi|Âi]]

s2
i

≳
hRW

χ

(
max

{
1, log

logM
hRW

})−2

log log r̃−1

Proof. This follows easily from Lemma 4.5.4 and (4.37).

Lemma 4.5.6. For all integers i ∈ [1,n−1] we have

si+1 ≥ t3
i+1si. (4.38)

Furthermore providing r̃ is sufficiently small (in terms of µ , R, α0, and t) we have

s1 ≥ R20Kt2
i r̃ (4.39)

and
sn ≤ R− 10hRW

χ
K
. (4.40)

Proof. First we will deal with (4.38). Recall from Proposition 1.4.19 that

si ∈
(

t
− logM

χ

i , t
− hRW

10χ

i

)
and that when m̂ ∤ i we have si+1 ≥ t3

i+1si. In particular this means that we have dealt with
the case m̂ ∤ i. In the case m̂|i by Proposition 1.4.19 we have

si ≤ t
− hRW

10χ

i

and

si+1 ≥ t
− logM

χ

i+1 .

We also have by (4.33) that

ti = t
100logM

hRW
i+1 .

This means that

t3
i+1si ≤ t

3− hRW
10χ

· 100logM
hRW

i+1

= t
3− 10logM

χ

i+1 .
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Note that by the requirements of Proposition 4.5.1 we may assume that the quantity in (4.29)
is at least 2. In particular this means that hRW ≥ 2χ and so noting that logM ≥ hRW we get

t
3− 10logM

χ

i+1 ≤ t
− logM

χ

i+1

≤ si+1

as required.
We will now deal with (4.39). Note that by Proposition 1.4.19

s1 ≥ t
− logM

χ

1 .

Substituting in our value for t1 from (4.32) and (4.33) we get

s1 ≥ r̃
1

10 .

We also have by the fact that logM ≥ hRW ≥ 2χ

R20Kt2
1 r̃ ≤ R20K r̃

8
10 .

Since RK grows slower that any polynomial in r̃−1 this is less that s1 for all sufficiently small
r̃.

Finally (4.40) follows from the fact that by (4.34) we have

tn ≥ R100K

and by Proposition 1.4.19 we have

sn ≤ t
− hRW

10χ

n .

To prove Lemma 4.5.3 we recall some results on the speed of convergence to the Fursten-
berg measure which will also be useful later.

Lemma 4.5.7. Let µ be a probability measure on PSL2(R) which is strongly irreducible and
whose support is not contained in any compact subgroup of PSL2(R). Let γ1,γ2, . . . be i.i.d.
samples from µ . If for some τ > 0∫

exp(τ log∥g∥)dµ(g)< ∞
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then there exists δ > 0 such that for each a ∈ (0,δ ] we have

lim
n→∞

(
sup

x,y∈P1(R),x ̸=y
E

[(
d̃(γ1γ2 . . .γnx,γ1γ2 . . .γny)

d̃(x,y)

)a
])1/n

< 1

where d̃ is the metric on P1(R) given by

d̃(x,y) =
∥x× y∥
∥x∥ · ∥y∥

.

Proof. This is [7, Section VII Proposition 2.1].

From this we get the following corollaries.

Corollary 4.5.8. Let µ be a probability measure on PSL2(R) which is strongly irreducible,
finitely supported, and whose support is not contained in any compact subgroup of PSL2(R).
Let γ1,γ2, . . . be i.i.d. samples from µ . Then there exists some C,δ > 0 such that for all
n,m ∈ Z with m ≥ n we have

P
[
d(b+(γ1γ2 . . .γn),b+(γ1γ2 . . .γm))>C exp(−δn)

]
<C exp(−δn).

Proof. First note that d and d̃ are equivalent metrics.
Note that since µ is finitely supported in has an exponential moment. By Lemma 4.5.7

we know that the is some a > 0 and λ1 ∈ (0,1) such that for all sufficiently large n ∈ Z>0

and all x,y ∈ P1(R) we have

E

[(
d̃(γ1 . . .γnx,γ1 . . .γny)

d̃(x,y)

)a
]
< λ

n
1 .

We know that d̃(x,y)≤ 1. This means that for all x,y ∈ P1(R)

E
[(

d̃(γ1 . . .γnx,γ1 . . .γny)
)a]

< λ
n
1 .

By Markov’s inequality and the fact that d and d̃ are equivalent we may deduce that there
is some λ2 ∈ (0,1) such that for all sufficiently large n ∈ Z>0 and all x,y ∈ P1(R) we have

P [d(γ1 . . .γnx,γ1 . . .γny)> λ
n
2 ]< λ

n
2 .
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Let u be a uniform random variable on P1(R). We now apply the above equation with u
in the role of x and γn+1 . . .γmu in the role of y. This gives

P [d(γ1 . . .γnu,γ1 . . .γmu)> λ
n
2 ]< λ

n
2 . (4.41)

By Theorem 4.3.12 we know that there is some λ3 ∈ (0,1) such that for all sufficiently
large n

P[∥γ1γ2 . . .γn∥< exp(nχ/2)]< λ
n
3 .

By Lemma 4.1.9 this means that there is some λ4 ∈ (0,1) such that for all sufficiently
large n we have

P[d(γ1 . . .γnu,b+(γ1 . . .γn))> λ
n
4 ]< λ

n
4 .

The result now follows by applying this to (4.41).

Corollary 4.5.9. Let µ be a probability measure on PSL2(R) which is strongly irreducible,
finitely supported , and whose support is not contained in any compact subgroup of PSL2(R).
Let γ1,γ2, . . . be i.i.d. samples from µ and let b be a sample from ν independent of the γi.
Then there exists some C,δ > 0 such that for all N ∈ Z>0 the probability that there exists
m,n ∈ Z>0 with n,m ≥ N such that either

d(b+(γ1γ2 . . .γn),b+(γ1γ2 . . .γm))>C exp(−δN)

or
d(b+(γ1γ2 . . .γn),γ1γ2 . . .γmb)>C exp(−δN)

is at most C exp(−δN).

Proof. This follows immediately from Corollary 4.5.8 and the fact that a geometric series
convergences.

Corollary 4.5.10. Let µ be a probability measure on PSL2(R) which is strongly irreducible,
finitely supported, and whose support is not contained in any compact subgroup of PSL2(R).
Suppose further that µ is α0, t - non-degenerate. Let s ∈ (0, t) and let β0 > α0. Let γ1,γ2, . . .

be i.i.d. samples from µ and let qn = γ1γ2 . . .γn. Then there exists some N ∈ Z>0 such that
for all a ∈ R we have

P[∀n ≥ N such that φ(b+(qn)) ∈ (a,a+ s)+πZ]> 1−β0.

Proof. This follows easily from the definition of α0, t - non- degenerate and Corollary
4.5.9.
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We also need the following result from [7].

Lemma 4.5.11. Let µ be a probability measure on PSL2(R) which is strongly irreducible,
finitely supported, and whose support is not contained in any compact subgroup of PSL2(R).
Let ν be the corresponding Furstenberg measure. Given x ∈ P1(R) and r > 0 let B(x,r)
denote the (open) ball centre x and radius r in P1(R). Then there exist constants C,δ > 0
such that

ν(B(x,r))≤Crδ . (4.42)

Proof. This is [7, Chapter VI, Corollary 4.2].

We are now ready to prove Lemma 4.5.3.

Proof of Lemma 4.5.3. First note that by Theorem 1.4.20 and the fact that RK → ∞ as r̃ → 0,
providing r̃ is sufficiently small (in terms of µ and R) for each integer k ∈ [1,n] we can
choose a random variable yk taking values in P1(R) such that it is independent of Fk−1, such
that y⊥k has law ν̂ and such that

P[d(y⊥k , f T
k b−(b0)

⊥)> ε/2]< ε/2.

Now choose δ > 0, N ∈ Z>0 such that for all a ∈ P1(R) we have

P[∃n ≥ N : d(b+(γ1γ2 . . .γn),a)> δ ]< ε/2.

Note that this is possible by Corollary 4.5.9 and Lemma 4.5.11.
From this it follows that providing r̃ is sufficiently small (in terms of µ and R) we have

P[d(b−( f T
k ),b−(b0)

⊥)< δ ]< ε/2.

Now apply Corollary 4.1.10 with min(δ ,ε/2) in the role of ε . Noting that ∥ fk∥≥RK →∞

means that providing r̃ is sufficiently small (in terms of µ and R) we have

P[d( f T
k b−(b0)

⊥,b−( fk)
⊥)> ε/2]< ε/2.

The result follows.

4.5.2 Checking the size of products

In this subsection we will check that Condition A4 from Proposition 4.5.1 holds.
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Definition 4.5.12. Let B be the F̂ -measurable event that for all integers i ∈ [1,n] we have

d(b+( fi),b−(b0 f1a1b1 . . . fi−1ai−1bi−1))> R−K/2 (4.43)

and
d(b+(ai),y⊥i )> R−K/2 (4.44)

and
d(b+(ai),b−(b0 f1a1b1 . . . fi−1ai−1bi−1 fi))> R−K/2 (4.45)

and
d(b−(b0 f1a1b1 . . . fi),b−( fi))< ε. (4.46)

Lemma 4.5.13. Let g1,g2 ∈ PSL2(R). Then

d(b+(g1g2),b+(g1))≤ O(∥g1∥−2 ∥g2∥2) (4.47)

and

d(b−(g1g2),b−(g2))≤ O(∥g1∥2 ∥g2∥−2). (4.48)

Proof. First we will deal with (4.47). Given h > 0 let

W (h) :=
{

b ∈ P1(R) : d(g2b,b−(g1))< h
}
.

Note that by Lemma 4.1.16 we know that m(W (h)) < O(∥g2∥2 h) where m denotes the
pushforward of the Lesbegue measure under φ .

Choose c1 > 0 to be some absolute constant small enough such that if we let h =

c1 ∥g2∥−2 then we have m(W (h)) < 1
10 . Now choose b ∈ P1(R) such that b /∈ W (h) and

d(b,b−(g1g2))>
1
10 .

Note that by Lemma 4.1.9

d(g1g2b,b+(g1g2))≤ O(∥g1g2∥−2)≤ O(∥g1∥−2 ∥g2∥2)

and
d(g1g2b,b+(g1))≤ O(∥g1∥−2 h−1)≤ O(∥g1∥−2 ∥g2∥2).

This gives the required result. (4.48) follows from taking the transpose of everything.

We also need to show that under B everything is of approximately the correct size.
Specifically we will prove the following.
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Lemma 4.5.14. If B occurs and r̃ is sufficiently small depending on µ , R, t and α0 then for
every integer i ∈ [1,n] we have

max
{

RK,

√
si

ti
√

r̃∥b0 f1a1b1 . . . fi−1ai−1bi−1∥

}
=

√
si

ti
√

r̃∥b0 f1a1b1 . . . fi−1ai−1bi−1∥
, (4.49)

∥b0 f1a1b1 . . . fi−1ai−1bi−1 fi∥ ∼=
√

si

t2
i r̃
, (4.50)

R−K
√

si

r̃
≲ ∥b0 f1a1b1 . . . fi−1ai−1bi−1 fiai∥≲ RK

√
si

r̃
(4.51)

and

R−2K
√

si

r̃
≲ ∥b0 f1a1b1 . . . fi−1ai−1bi−1 fiaibi∥≲ R2K

√
si

r̃
. (4.52)

Proof. We will prove this by induction. For i = 1 we know that (4.49) is satisfied by Lemma
4.5.6 and the fact that ∥b0∥ ≤ RK+1.

Now suppose that (4.49) is satisfied for some given i. We will show that (4.50) also holds
for this i. Trivially from the definition of fi we have that

√
si

ti
√

r̃∥b0 f1a1b1 . . . fi−1ai−1bi−1∥
∼= ∥ fi∥sind(b−(b0 f1a1b1 . . . fi−1ai−1bi−1),b+( fi))

(4.53)

We also know by (4.43) that

d(b−(b0 f1a1b1 . . . fi−1ai−1bi−1),b+( fi))> R−K/2.

Combining this with (4.53) and applying Lemma 4.1.11 with A = 2 and t = R−K/2 gives
(4.50).

Now assume (4.50) holds for some given integer i ∈ [1,n]. We show that (4.51) holds for
this i too. We know by the construction of hi that

ti ∼= ∥hi∥sind(b+(hi),y⊥i ). (4.54)

Note that
∥∥loga−1

i hi
∥∥→ 0 as r̃ → 0. In particular this means that providing r̃ is suf-

ficiently small we can guarantee that
∥∥a−1

i hi
∥∥ ≤ 2. We also know ∥hi∥ ≥ ti ≥ R100K . By

Lemma 4.5.13 this means that

d(b+(hi),b+(ai))≤ O(R−200K).
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In particular by (4.44) and (4.45) this means that

d(b+(hi),y⊥i )≳ R−K

and
d(b+(hi),b−(b0 f1a1b1 . . . fi−1ai−1bi−1 fi))≳ R−K.

Putting these as well as (4.54) into Lemma 4.1.11 gives

R−K
√

si

r̃
≲ ∥b0 f1a1b1 . . . fi−1ai−1bi−1 fihi∥≲ RK

√
si

r̃
.

(4.51) now follows from the fact that
∥∥a−1

i hi
∥∥≤ 2.

Assuming that (4.51) holds for a given integer i ∈ [1,n] we have that (4.52) follows
trivially for that i by the definition of bi.

Now suppose that (4.52) holds for some given integer i ∈ [1,n]. We show that (4.49)
is satisfied for i+ 1. This is immediate from Lemma 4.5.6. We are therefore done by
induction.

Finally we show that Condition A4 occurs.

Proposition 4.5.15. Suppose that B occurs. Then for all i ∈ I we have

∥b0 f1a1b1 . . . fiai∥ ∼=
√

si

r̃
.

Proof. Suppose that i ∈ I and B occurs. Note that by Lemma 4.5.14

∥b0 f1a1b1 . . . fi−1ai−1bi−1 fi∥ ∼=
√

si

t2
i r̃
.

Note that by the construction of hi

ti ∼= ∥hi∥sind(b+(hi),y⊥i ). (4.55)

Note that by (4.46) and condition (1) of the definition of I we have

d(yi,b−(b0 f1a1b1 . . . fi−1ai−1bi−1 fi))< 2ε. (4.56)

Note that by Lemma 4.5.13 we know that

d(b+(ai),b+(hi))< O(R−200K). (4.57)
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In particular providing r̃ is sufficiently small we have

d(b+(ai),b+(hi))< ε.

Combining this with condition (2) of the definition of I and (4.56) gives

d(b+(hi),b−(b0 f1a1b1 . . . fi−1ai−1bi−1 fi))> 50ε.

In particular

sind(b+(hi),b−(b0 f1a1b1 . . . fi−1ai−1bi−1 fi))∼= sind(b+(hi),y⊥i ).

Note that by (4.45) and (4.57) providing r̃ is sufficiently small we have

d(b+(hi),b−(b0 f1a1b1 . . . fi−1ai−1bi−1 fi))> 2R−K/2.

By applying Lemma 4.1.11 with A = 2 and t = 2R−K/2 we get

∥b0 f1a1b1 . . . fihi∥ ∼=
√

si

r̃
.

The result now follows from the fact that
∥∥a−1

i hi
∥∥≤ 2.

Note that Proposition 4.5.15 is enough to prove that Condition A4 holds as long as we
ensure that B ⊂ A. This means that we just need to show that P[B] is high.

Lemma 4.5.16. The probability that B occurs is at least 1−oµ((log r̃−1)−10.

Proof. Note that for the conditions (4.43), (4.44), and (4.45) in the definition of B using
Lemma 4.5.13 and Corollary 4.5.9 we can find some C,δ > 0 such that for any fixed integer
i ∈ [1,n] the probability of the condition not occurring is at most C exp(−δK).

By Lemma 4.1.12, (4.43), and the fact that ∥ fi∥ ≥ RK we may do the same with (4.46).
This means we can write then BC as the union of O(n) events each with probability at

most C exp(−δK).
This means that

P[BC]≤ O(nexp(−δK)).

We know by Lemma 4.5.4 that

n ≤ Oµ(log log r̃−1).
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Combining this with the definition of K gives the required result.

4.5.3 Sum of variances

In this subsection we show that with high probability Condition A9 is satisfied. We do this
by showing that the sum is nearly a sum of independent random variables. To make this work
we need the following modified version of Cramer’s Theorem.

Lemma 4.5.17. Let a,b,c> 0 with c≤ a and let n∈Z>0. Let X1, . . . ,Xn be random variables
taking values in R and let m1, . . . ,mn ≥ 0 be such that we have almost surely

E [Xi|X1, . . . ,Xi−1]≥ mi.

Suppose that ∑
n
i=1 mi = an. Suppose also that we have almost surely Xi ∈ [0,b] for all inters

i ∈ [1,n]. Then we have

P[X1 + · · ·+Xn ≤ nc]≤

((a
c

) c
b
(

b−a
b− c

)1− c
b
)n

.

Proof. First note that by Jensen’s inequality for any λ ≥ 0 we have

E[e−λXi|X1, . . . ,Xi−1]≤
(

1− mi

b

)
+

mi

b
e−λb. (4.58)

Therefore we have

E[e−λ (X1+···+Xn)]≤
n

∏
i=1

((
1− mi

b

)
+

mi

b
e−λb

)
≤
((

1− a
b

)
+

a
b

e−λb
)n

. (4.59)

with (4.59) following from the AM-GM inequality. Applying Markov’s inequality for any
λ ≥ 0 we have

P(X1 + · · ·+Xn ≤ nc)≤ eλncE[e−λ (X1+···+Xn)]

≤
(

eλc
((

1− a
b

)
+

a
b

e−λb
))n

. (4.60)

We wish to substitute in the value of λ which minimizes the right hand side of (4.60). It is
easy to check by differentiation that this is λ =−1

b log c(b−a)
a(b−c) . It is easy to see that this value

of λ is at least 0 because c ≤ a. Note that with this value of λ we get e−λb = c(b−a)
a(b−c) and
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eλc =
(

c(b−a)
a(b−c)

)−c/b
. Hence

(
1− a

b

)
+

a
b

e−λb =
(

1− a
b

)
+

a
b

c(b−a)
a(b− c)

=
(b−a)(b− c)

b(b− c)
+

c(b−a)
b(b− c)

=
b−a
b− c

.

The result follows.

Remark 4.5.18. We could deduce a result similar to Lemma 4.5.17 from the Azuma–Hoeffding
inequality. In our application of this result a will be very small compared to b. In this regime
the Azuma–Hoeffding inequality is inefficient for several reasons the most important of
which is the inefficiency of Hoeffding’s Lemma in this regime. Indeed using Hoeffding’s
Lemma to bound the left hand side of (4.58) would lead to a bound of

exp
(
−λmi +

λ 2b2

8

)
.

When we apply the lemma we end up with mi being very small, b = 1, and λ ≈ log2. Clearly
this bound is weak when this occurs. It turns out that the bound from Azuma-Hoeffding is
not strong enough to prove Theorem 1.3.13 in its current form but we could prove a similar
result with the left hand side of (1.3) replaced by(

hRW

logM

)(
hRW

χ

)(
max

{
1, log

logMµ

hRW

})−3

.

We wish to apply Lemma 4.5.17 with

Xi = s−2
i VARâi[hi| ˆAi,yi]Ii∈I.

Trivially the expression on the left of Condition A9 is X1 +X2 + · · ·+Xn.
By Lemma 4.5.5 we know that

n

∑
i=1

s−2
i E

[
VARâi[hi| ˆAi,yi]

]
≳

(
hRW

χ

)(
max

{
1, log

logMµ

hRW

})−2

log log r̃−1.
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Also we have Xi ∈ [0,1] because log(â−1
i hi) is contained in a ball of radius si around 0. This

means that in order to apply Lemma 4.5.17 we just need to get a lower bound on E[Xi|Fi−1]

in terms of E [VARâi[hi|Ai,yi]]. Specifically we will prove the following.

Lemma 4.5.19. Given any δ > 0 providing ε is sufficiently small (depending on δ , α0, and
µ) and r̃ is sufficiently small (depending on δ , α0, µ , and ε) we have

E[Xi|Fi−1]≥
1
2
(1−3α0)s−2

i E[VARâi[hi| ˆAi,yi]]−δ .

Proof. Given some integer i ∈ [1,n] let Ki be the event that

• d(b−( fi),yi)< ε

• d(yi,b+(âi))> 100ε

and let Li be the event that

• d(b−(âi),b+(bi))> t/2

• b+(bi) ∈Ut/4,t/8(log â−1
i hi|Ai).

Note that the event i ∈ I is Ki ∩Li. We will prove the lemma by showing that P[KC
i ] can be

made arbitrarily small and bounding P[Li|Fi−1, ˆAi,yi] from below.
First we wish to find an upper bound on P[KC

i ]. By the construction of yi we know that

P[d(b−( fi),yi)< ε|Fi−1]> 1− ε.

By definition we know that

hi = γSk+1γSk+2 . . .γTk .

Let
h̃i := lim

n→∞
b+(γSk+1γSk+2 . . .γn).

We know that Tk−Sk ≥ K. Therefore by 4.5.9 there exist some C1,δ1 > 0 such that providing
r̃ is sufficiently small (depending on ε) we have

P[d(b+(hi), h̃i)> ε|Fi−1]<C1 exp(−Kδ1).

In particular providing r̃ is sufficiently small (depending on ε) this is at most ε .
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Next note that by Lemma 4.5.11 and the fact that h̃i is independent of yi we have

P[d(h̃i,yi)< 200ε|Fi−1]<C2ε
δ2

for some C2,δ2 > 0.
Finally by Lemma 4.5.13 we know that providing r̃ is sufficiently small d(b+(hi),b+(âi))<

ε .
Combining these estimates gives that providing r̃ is sufficiently small (depending on ε)

we have.
P[KC

i |Fi−1]< 2ε +C2ε
δ2.

In particular providing ε is sufficiently small and r̃ is sufficiently small (depending on ε) we
have

P[KC
i |Fi−1]≤ δ . (4.61)

We also know by Corollary 4.5.10 that for any β0 > α0 providing r̃ is sufficiently small

P[LC
i |Fi−1, ˆAi,yi]≤ 3β0.

In particular this means that if we choose β0 sufficiently close to α0 we may guarantee that

P[Li|Fi−1, ˆAi,yi]≥
1
2
(1−3α0). (4.62)

Let X̃i = s−2
i VARâi[hi| ˆAi,yi]ILi and let X̂i = s−2

i VARâi[hi| ˆAi,yi]IKC
i

. Note that Xi ≥
X̃i − X̂i. Also note that since log(â−1

i hi) is contained in a ball of radius si around 0 we have
s−2

i VARâi[hi| ˆAi,yi]≤ 1. This means that by (4.61) we have

E[X̂i|Fi−1]≤ δ .

We also have by (4.62) that

E[X̃i|Fi−1]≥
1
2
(1−3α0)s−2

i E[VARâi[gi|Ai]].

This gives the required result.

We are now ready to prove that Condition A9 holds with high probability.
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Proposition 4.5.20. Providing

hRW

χ

(
max

{
1, log

logMµ

hRW

})−2

is sufficiently large (depending on α0, t, and R) and r̃ is sufficiently small (depending on α0,
t, R, and µ) then Condition A9 is satisfied with probability at least 1−oµ((log r̃−1)−10).

Proof. We let

T = ∑
i∈I

Var[u(i)|A ]

s2
i

.

We will apply Lemma 4.5.17. As mentioned previously

Var[u(i)|A ]

s2
i

=
VARâi[hi| ˆAi,yi]

s2
i

Ii∈I.

We will call this quantity Xi and apply Lemma 4.5.17 to X1 +X2 + · · ·+Xn.
Let δ > 0 be as in Lemma 4.5.19. Note that by Lemma 4.5.19 we may take

mi = max
{

1
2
(1−3α0)s−2

i E[VARâi[hi| ˆAi,yi]]−δ ,0
}
.

By Lemma 4.5.5 we have

n

∑
i=1

mi ≥
1
2
(1−3α0)s−2

i

n

∑
i=1

E[VARâi[hi| ˆAi,yi]]

s2
i

≳

(
hRW

χ

)(
max

{
1, log

logMµ

hRW

})−2

log log r̃−1.

Combining this with our estimate for n form Lemma 4.5.4 we see that we can take

a ≳

(
hRW

logM

)(
max

{
1, log

logMµ

hRW

})−1

−δ .

In particular providing we choose δ sufficiently small (in terms of µ) when r̃ is sufficiently
small (depending on µ , α0, and t) we may take

a ≳

(
hRW

logM

)(
max

{
1, log

logMµ

hRW

})−1

.
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We have b = 1 and we take c = 1
2a. By Lemma 4.5.17 we get

P[T ≤ nc]≤

(
2a/2

(
1−a
1− a

2

)1−a/2
)n

. (4.63)

Let f (x) := log
(

2x/2
(

1−x
1− x

2

)1−x/2
)

. Note that (4.63) can be written as

logP[T ≤ nc]≤ n f (a).

Also note that

f (x) =
x
2

log2+(1− x
2
) log(1− x)− (1− x

2
) log(1− x/2)

meaning

f ′(0) =
1
2

log2−1+
1
2
< 0.

Note that we may also assume that a is small enough that f ′(x) < 1
2 f ′(0) for all x ∈ [0,a].

This means

n f (a)≲−na

≲−
(

hRW

χ

)(
max

{
1, log

logMµ

hRW

})−2

.

In particular this means that there is some constant c1 depending only on R,α0 and t such
that

logP

[
T ≤ c1

(
hRW

χ

)(
max

{
1, log

logM
hRW

})−2

log log r̃−1

]

≲−
(

hRW

χ

)(
max

{
1, log

logM
hRW

})−2

log log r̃−1.

The result follows.

4.5.4 Proof of Proposition 4.5.1

In this sub-section we will prove Proposition 4.5.1 by checking that our construction satisfies
the remaining conditions.
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Proof of Proposition 4.5.1. First note that Condition A1 holds by the construction and the
results of Section 4.4.

Condition A2 follows from Lemma 4.5.4 and Lemma 4.5.6.
We will prove Condition A3 by showing that each of the Conditions A4, A5, A6, A7,A8,

and A9 hold on A -measurable events with probability at least 1−oµ((log r̃−1)−10).
We checked that this applies to Condition A4 in Section 4.5.2. Condition A5 follows

immediately from construction.
Condition A7 follows from Condition A4 and Lemma 4.5.6.
Note that by Conditions (4) and (3) from the definition of I for Conditions A6 and A8 to

hold it is sufficient that for each integer i ∈ [1,n] we have

d(b−(gi),b−(g1g2 . . .gi))<
1
10

t

and
d(b+(gi),gigi+1 . . .gnb)<

1
10

t.

By Lemma 4.5.13 and Corollary 4.5.9 there is some δ > 0 depending on µ such that for each
fixed i these have probability at least

1−Oµ(exp(−δK)).

Putting in our estimates for K and n in terms of r̃ gives the required result.
Finally note that we checked Condition A9 in Section 4.5.3.

4.5.5 Proof of the main theorem

To prove Theorem 1.3.13 we will first prove the following proposition.

Proposition 4.5.21. Let µ be a finitely supported strongly irreducible probability measure
on PSL2(R) whose support is not contained in any compact subgroup of PSL2(R). Suppose
Mµ < ∞. Let χ denote the Lyapunov exponent of µ . Let R > 0 be chosen such that the
operator norm is at most R on the support of µ . Let ν be the Furstenberg measure generated
by µ . Suppose that α0 ∈ (0,1/3), t > 0 are such that µ is α0, t- non-degenerate. Suppose
that

hRW

χ

(
max

{
1, log

logMµ

hRW

})−2
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is sufficiently large (depending on R, t and α0). Then there exists some constant C (depending
only on R, t and α0) such that

s(k)Cr̃ (ν)<
(
log r̃−1)−5

for all sufficiently small (depending only on µ , R, t and α0) r̃ > 0 and all

k ∈
[

1
2

loglog r̃−1, log log r̃−1
]
∩Z. (4.64)

Proof. Let C1 and δ1 be the C and δ from Proposition 1.4.17 with 1
10t in the role of t and

the implied constant (which depends only on R, t and α0) in the ∼= from Condition A4 of
Proposition 4.5.1 in the role of c.

We now apply Proposition 4.5.1 with C1 in the role of C. Suppose that r̃ > 0 is chosen to
be small enough to apply this and also so that r̃ < δ1. Let g1,g2, . . . ,gn, u(1),u(2), . . . ,u(n), b
and I be as in Proposition 4.5.1 and let ζi ∈ psl2

∗ be the derivative given by

ζi = Du(φ(g1 . . .gi exp(u)gi+1 . . .gnb))|u=0.

We enumerate I as i1 < i2 < · · · < iñ. We now define g̃1, g̃2, . . . , g̃ñ and b̃ by letting
g̃1 := g1 . . .gi1 , g̃2 := gi1+1 . . .gi2 and so on with g̃n := giñ−1+1 . . .giñ . We also define b̃ :=
giñ+1 . . .gnb.

We apply Proposition 1.4.17 with our previous choices for t and c and with ñ in the role
of n, b̃ in the role of b and g̃1, g̃2, . . . , g̃ñ in the role of g1,g2 . . .gñ.

From this, noting that ñ ≤ n, we get that if ω ∈ A then

W1

(
φ([x|A ]),φ(g1g2 . . .gnb)+

n

∑
i=1

ζi([u(i)|A ])

)
<Cn

1 ∥g1g2 . . .giñ∥
2 r̃2

where x = g1 exp(u(1)) . . .gn exp(u(n))b. By Conditions A2 and A4 this means that

W1

(
φ([x|A ]),φ(g1g2 . . .gnb)+

n

∑
i=1

ζi([u(i)|A ])

)
≲ r̃
(
log r̃−1)−10

. (4.65)

We now let

S =
n

∑
i=1

ζi([u(i)|A ]).

We bound s(k)r (S) for appropriate choices of r and k.
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Suppose that A occurs and let Vi = ζ ([u(i)|A ]). We know by Condition A8, Lemma
4.1.16 and Lemma 4.1.13 that whenever i ∈ I

∥ζi∥≲ ∥g1g2 . . .gi∥−2 .

Combining this with Conditions A4 and A5 and the fact that if i /∈ I then u(i) = 0 gives

|Vi|≲ r̃ (4.66)

almost surely.
We also know by Conditions A4, A6, and A8, Proposition 4.1.6, Lemma 4.1.16, and the

chain rule that whenever i ∈ I

VarVi ≳
Varu(i)

s2
i

.

In particular, combining this with Condition A9, we have that

n

∑
i=1

VarVi ≳
hRW

χ

(
max

{
1, log

logMµ

hRW

})−2

r̃2 log log r̃−1.

Let c1 be the implied constant from the ≲ in (4.66). Suppose that

k ∈
[

1
2

loglog r̃−1, log log r̃−1
]
∩Z.

Partition [1,n]∩Z into k sets J1,J2, . . . ,Jk such that for each j ∈ [k]

∑
i∈J j

VarVi ≥
1
k

n

∑
i=1

VarVi − c2
1r̃2.

Trivially this is possible because VarVi ≤ c2
1r̃2 for all i. In particular this means that providing

hRW

χ

(
max

{
1, log

logMµ

hRW

})−2

is sufficiently large (in terms of R, α0, and t) we have

∑
i∈J j

VarVi ≳
hRW

χ

(
max

{
1, log

logMµ

hRW

})−2

r̃2.
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Now let C2 be the C from Lemma 1.4.13 with 10−5 in the role of α . By Lemma 1.4.13 we
know that providing

hRW

χ

(
max

{
1, log

logMµ

hRW

})−2

is sufficiently large (in terms of R, α0, and t) we have

sc1C2r̃

(
∑
i∈J j

Vi

)
≤ 10−5

and so by Lemma 2.1.17 we have

s(k)c1C2r̃(S)≤ 10−5k.

Combining this with (4.65) and Lemma 1.4.14 we get that whenever ω ∈ A we have

s(k)c1C2r̃(x|A )≤ 10−5k +O((log r̃)−10).

Combining this with Condition A3 and the fact that 5 log(10)> 10 we deduce that

s(k)c1C2r̃(ν)< o
(
(log r̃)−5

)
as required.

We can now prove the main theorem.

Proof of Theorem 1.3.13. We use Proposition 4.5.21 along with Lemma 1.4.11 to show that
for all sufficiently small r we have

sr(ν)< (logr−1)−2.

We will then complete the proof using Lemma 1.4.10.
Let C be as in Proposition 4.5.21 and given some sufficiently small r > 0 let k =⌊3

4 log logr−1⌋, let a = r/
√

k, let b = r exp(k logk) and let α = (logr−1)−2. We apply
Lemma 1.4.11 with this choice of a, b and k.

Suppose that s ∈ [a,b] and let r̃ = s/C. To apply Proposition 4.5.21 we just need to check
that

k ∈
[

1
2

loglog r̃−1, log log r̃−1
]

providing r > 0 is sufficiently small. This is a trivial computation and is left to the reader.
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From Proposition 4.5.21 we may deduce that

s(k)s (ν)≤
(
log r̃−1)−5

.

In particular providing r is sufficiently small we have

s(k)s (ν)≤ (logr)−4 .

This means that by Lemma 1.4.11 we have

sr(ν)≤ (logr−1)−4k
(

2e
π

) k−1
2

+ k! · ka2b−2

Note that log 2e
π
< 2

3 and so

k
(

2e
π

) k−1
2

≤ k exp
(

3
4

log
2e
π

log logr−1
)

≤ o((logr−1)2).

Also

k! · ka2b−2 < exp(k logk)a2b−2

< exp(−k logk)

< o((logr−1)−2).

Putting this together gives sr(ν)≤ o((logr−1)−2). This is sufficient to apply Lemma 1.4.10
which completes the proof.

4.6 Examples

In this section we will give examples of measures µ on PSL2(R) which satisfy the conditions
of Theorem 1.3.13.

4.6.1 Heights and separation

In this subsection we will review some techniques for bounding Mµ using heights. First we
need the following definition.
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Definition 4.6.1 (Height). Let α1 be algebraic with algebraic conjugates α2,α3, . . . ,αd .
Suppose that the minimal polynomial for α1 over Z[X ] has positive leading coefficient a0.
Then we define the height of α1 by

H (α1) :=

(
a0

n

∏
i=1

max{1, |αi|}

)1/d

.

We wish to use this to bound the size of polynomials of algebraic numbers. To do this we
need the following way of measuring the complexity of a polynomial.

Definition 4.6.2. Given some polynomial P ∈ Z[X1,X2, . . . ,Xn] we define the length of P,
which we denote by L (P), to be the sum of the absolute values of the coefficients of P.

We also need the following basic fact about heights.

Lemma 4.6.3. Let α ̸= 0 be an algebraic number. Then

H (α−1) = H (α).

Proof. This follows easily from the definition and is proven in [44, Section 14].

Lemma 4.6.4. Given P ∈ Z[X1,X2, . . . ,Xn] of degree at most L1 ≥ 0 in X1, . . . , Ln ≥ 0 in Xn

and algebraic numbers ξ1,ξ2, . . . ,ξn we have

H (P(ξ1,ξ2, . . . ,ξn))≤ L (P)H (ξ1)
L1 . . .H (ξn)

Ln

Proof. This is [44, Proposition 14.7].

To make the above lemma useful for bounding the absolute value of expressions we need
the following.

Lemma 4.6.5. Suppose that α ∈ C\{0} is algebraic and that its minimal polynomial has
degree d. Then

H (α)−d ≤ |α| ≤ H (α)d.

Proof. The fact that |α| ≤H (α)d is immediate from the definition of height. The other side
of the inequality follows from Lemma 4.6.3.

Proposition 4.6.6. Suppose that µ is a measure on PSL2(R) supported on a finite set
of points. For each element in the support of µ choose a representative in SL2(R). Let
S ⊂ SL2(R) be the set of these representatives.



4.6 Examples 151

Suppose that all of the entries of the elements of S are algebraic. Let (ξ1,ξ2, . . . ,ξk) be
the set of these entries. Let K =Q[ξ1,ξ2, . . . ,ξk] be the number field generated by the ξi and
let

C = max{H (ξi) : i ∈ [k]}.

Then
Mµ ≤ 4[K:Q]C8[K:Q].

Proof. Let a ∈ Sm and b ∈ Sn. We find an upper bound for d(a,b) where d is the distance
function of our left-invariant Riemannian metric introduced in the introduction. We have that

d(a,b) = d(Id,a−1b)≥ Θ
(
min

{∥∥I −a−1b
∥∥

2 ,
∥∥I +a−1b

∥∥
2

})
.

For i ∈ [|S|] and j,k ∈ {1,2} let ζi, j,k be the ( j,k)-th entry of the i-th element of S.
Let Li be the sum of the number of times the i-th element of S appears in our word for a
and the number of times it appears in our word for b. Note that the components of a−1

are components of a possibly with a sign change. We know that each each component of
I ±a−1b is of the form P(ζ1,1,1, . . . ,ζ|S|,2,2) where P is some polynomial of degree at most
Li in ζi, j,k. We also know that the Li sum to m+n.

It is easy to see by induction that L (P)≤ 2m+n +1. In particular L (P)≤ 2m+n+1. By
Lemma 4.6.4 this means that if α is a coefficient of I ±a−1b then

H (α)≤ 2m+n+1C4(m+n).

We know that α ∈ K and so in particular the degree of its minimal polynomial is at most
[K : Q]. This means that if α ̸= 0 then

|α| ≥ 2−(m+n+1)[K:Q]C−4(m+n)[K:Q].

In particular this means that if a ̸= b then

d(a,b)≥ Θ

(
2−(m+n+1)[K:Q]C−4(m+n)[K:Q]

)
and so

Mµ ≤ 4[K:Q]C8[K:Q].
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4.6.2 Bounding the random walk entropy using the Strong Tits alterna-
tive

In this subsection we will combine Breulliard’s strong Tits alternative [11] with the results of
Kesten [35] in order to obtain an estimate on the random walk entropy. The main result of
this section will be the following.

Proposition 4.6.7. There is some c > 0 such that the following is true. Let µ be a finitely
supported probability measure on PSL2(R) and let hRW be its random walk entropy. Let
K > 0 and suppose that for every virtually solvable subgroup H < PSL2(R) we have

µ(H)< 1−K.

Suppose further that µ(Id)> K. Then

hRW > cK.

A similar result which further requires µ to be symmetric is discussed in [50, Chapter 7].
In [50] much of the proof of their result is done by citing unpublished lecture notes so we
give a full proof of Proposition 4.6.7 here.

PSL2(R) acts on the closed complex half plane H = {z ∈ C : Imz ≥ 0} by Möbius
transformations. It is well known that the virtually solvable subgroups of PSL2(R) are
precisely those which either have a common fixed point in H or for which there exists a pair
of points in H such that each element in the subgroup either fixes both points or maps them
both to each other.

To prove Proposition 4.6.7 we introduce the following. We let G be a countable group
and let µ be a finite measure on G. We let Tµ,G : l2(G)→ l2(G) be the operator defined by
Tµ,G( f )(g) =

∫
G f (gh)dµ(h). It is clear that Tµ,G is a bounded linear operator and that when

µ is symmetric Tµ,G is self-adjoint. To prove Proposition 4.6.7 we need the following results.

Lemma 4.6.8. The operator Tµ is linear in µ . In other words

Tλ1µ1+λ2µ2 = λ1Tµ1 +λ2Tµ2.

This lemma is trivial and its proof is left to the reader.

Lemma 4.6.9. Let µ be a finitely supported probability measure on some group G. Let hRW

be the random walk entropy of µ . Then

hRW ≥−2log
∥∥Tµ,G

∥∥ .
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This lemma is proven by Avez in [1, Theorem IV.5].

Lemma 4.6.10. There is some ε > 0 such that the following is true. Suppose that a,b,c ∈
PSL2(R) generate a non-virtually solvable subgroup. Let G be the group generated by a, b,
and c. Let

µ =
1
4

δa +
1
4

δb +
1
4

δc +
1
4

δId.

Then ∥∥Tµ,G
∥∥< 1− ε.

Lemma 4.6.11. Let λ be a finite non-negative measure on PSL2(R) with finite support. Let
T be the total mass of λ . Let K ≥ 0 and suppose that for every virtually solvable subgroup
H < PSL2(R) we have

λ (H)< T −K. (4.67)

Then there exists some n ∈ Z≥0 such that for each integer i ∈ [1,n] there exists ai,bi,ci ∈
PSL2(R) and ki > 0 such that

λ = λ
′+

n

∑
i=1

ki

(
1
3

δai +
1
3

δbi +
1
3

δci

)
for some non-negative measure λ ′ and for each integer i ∈ [1,n] the set {ai,bi,ci} generates
a non-virtually solvable group. Furthermore the sum of the ki is at least K.

Proposition 4.6.7 follows immediately by combining these lemmas. The rest of this
subsection will be concerned with proving Lemma 4.6.10 and Lemma 4.6.11.

First we will prove Lemma 4.6.10. A proof of a similar result for symmetric measures
may be found in [10]. The key ingredient is the following result of Breuillard.

Theorem 4.6.12. There exists some N ∈ Z>0 such that if F is a finite symmetric subset of
PSL2(R) containing Id, either FN contains two elements which freely generate a non-abelian
free group, or the group generated by F is virtually solvable (i.e. contains a finite index
solvable subgroup).

Proof. This is a special case of [11, Theorem 1.1].

We also need the following result of Kesten and a corollary of it.

Theorem 4.6.13. Let G be a countable group. Suppose that a,b ∈ G freely generate a free
group. Let A < G be the subgroup generated by a and b. Let µ be the measure on A given by

µ =
1
4
(δa +δa−1 +δb +δb−1) .
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Then
∥∥Tµ,A

∥∥= √
3

2 .

Proof. This follows from [35, Theorem 3] and the fact that the spectral radius of a self-adjoint
operator is its norm.

Corollary 4.6.14. Let G be a countable group. Suppose that a,b ∈ G freely generate a free
group. Let A < G be the subgroup generated by a and b. Let µ be the measure on G given by

µ =
1
4
(δa +δa−1 +δb +δb−1) .

Then
∥∥Tµ,G

∥∥= √
3

2 .

Proof. Let H ⊂ G be chosen such that each left coset of A in G can be written uniquely as
hA for some h ∈ H. This means that

l2(G)∼=
⊕
h∈H

l2(hA).

We also note that for any h ∈ H the map Tµ,G maps l2(hA) to l2(hA) and its action on l2(hA)
is isomorphic to the action of Tµ|A,A on l2(A). This means that

∥∥Tµ,G
∥∥= ∥∥Tµ|A,A

∥∥. The result
now follows by Theorem 4.6.13.

One difficulty we need to overcome is that Theorems 4.6.12 and 4.6.13 require symmetric
sets and measures but symmetry is not a requirement of Proposition 4.6.7. We will do this by
bounding

∥∥∥Tµ,GT †
µ,G

∥∥∥. First we need the following two simple lemmas.

Lemma 4.6.15. Let G be a countable group and let µ1,µ2 be measures on G. Then

Tµ1,GTµ2,G = Tµ1∗µ2,G. (4.68)

Lemma 4.6.16. Let G be a group, let n ∈ Z>0, and let (pi)
n
i=1 be a probability vector. Let

g1,g2, . . . ,gn ∈ G and let µ be defined by

µ =
n

∑
i=1

pigi

and let µ̂ be defined by

µ̂ =
n

∑
i=1

pig−1
i .

Then
T †

µ,G = Tµ̂,G.
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These lemmas are trivial and their proofs are left to the reader.
We are now ready to prove Lemma 4.6.10.

Proof of Lemma 4.6.10. We will prove this by bounding
∥∥∥(Tµ,GT †

µ,G)
N
∥∥∥ where N is as in

Theorem 4.6.12. Note that this is equal to
∥∥Tµ,G

∥∥2N .
Let µ̂ be as in Lemma 4.6.16. Note that we may write

µ ∗ µ̂ = η +
1

16
(δId +δa +δa−1 +δb +δb−1 +δc +δc−1)

where η is some positive measure of total mass 9
16 .

By applying Theorem 4.6.12 with F = {Id,a,a−1,b,b−1,c,c−1} we know that there is
some f ,g ∈ FN which freely generate a free group. We write

(µ ∗ µ̂)∗N = η
′+

1
16N (δ f +δ f−1 +δg +δg−1)

where η ′ is some positive measure with total mass 1− 4
16N .

By Theorem 4.6.13 and Lemma 4.6.8 we know that∥∥∥∥T 1
16N (δc+δc−1+δd+δd−1),G

∥∥∥∥≤ 2
√

3
16N .

Therefore ∥∥∥T(µ∗µ̂)∗N ,G

∥∥∥≤ 1− 4
16N (1−

√
3

2
)

and therefore ∥∥Tµ,G
∥∥≤(1− 4

16N (1−
√

3
2

)

)1/2N

< 1.

Finally we need to prove Lemma 4.6.11.

Proof of Lemma 4.6.11. We prove this by induction on the number of elements in the support
of λ . If λ is the zero measure then the statement is trivial so we have our base case. If K = 0
then the statement is trivial so assume K > 0 . Let a ∈ suppλ be chosen such that λ (a) is
minimal amongst all non-identity elements in the support of λ .

Now choose some b ∈ suppλ such that a and b do not share a common fixed point. This
is possible by (4.67) and the fact that K > 0.

If a and b generate a non virtually solvable group then we may write

λ = λ
′+λ (a)

(
1
3

δa +
1
3

δa +
1
3

δb

)
+λ (a)

(
1
3

δa +
1
3

δb +
1
3

δb

)
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where λ ′ is a non-negative measure with smaller support that λ . We then apply the inductive
hypothesis to λ ′ with max{K −2λ (a),0} in the role of K and T −2λ (a) in the role of T .

If a and b generate a virtually solvable group then there must be two distinct points
g1,g2 ∈ PSL2(R) such that the set {g1,g2} is stationary under both a and b. If this is the case
then choose some c ∈ suppλ such that {g1,g2} is not stationary under c. This is possible by
(4.67). Note that a,b and c generate a non virtually solvable group. Write

λ = λ
′+3λ (a)

(
1
3

δa +
1
3

δb +
1
3

δc

)
.

We then apply the inductive hypothesis to λ ′ with max{K −3λ (a),0} in the role of K and
T −3λ (a) in the role of T .

4.6.3 Symmetric and nearly symmetric examples

The purpose of this subsection is to prove Corollary 1.3.17. We will do this using Theorem
1.3.13. First we need the following proposition.

Proposition 4.6.17. For all α0,c,A > 0 there exists t > 0 such that for all sufficiently small
(depending on α0, c, and A) r > 0 the following is true.

Suppose that µ is a compactly supported probability measure on PSL2(R) and that U
is a random variable taking values in psl2(R) such that exp(U) has law µ . Suppose that
∥U∥ ≤ r almost surely and that ∥E[U ]∥ ≤ cr2. Suppose that the smallest eigenvalue of the
covariance matrix of U is at least Ar2. Then µ is α0, t - non-degenerate.

This is enough to prove Corollary 1.3.17.

Proof of Corollary 1.3.17. Note that by Proposition 4.6.17 there is some t > 0 such that
providing r is sufficiently small µ is 1

4 , t - non-degenerate. Note that we can make r
arbitrarily small be choosing our C to be arbitrarily large.

Note that by Proposition 4.6.7
hRW ≥ Θ(T ).

Note that by Proposition 4.6.6
Mµ ≤ 4kM8k.

Note that trivially
χ ≤ O(r).

The result now follows from Theorem 1.3.13.
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In order to prove Proposition 4.6.17 we first need the following result and a corollary of
it.

Theorem 4.6.18. For all γ ∈ (1,∞) there is some L > 0 such that the following is true.
Suppose that X1,X2, . . . ,Xn are random variables taking values in R and suppose that for
each integer i ∈ [1,n]

E[Xi|X1,X2, . . . ,Xi−1] = 0,

E[X2
i |X1,X2, . . . ,Xi−1] = 1,

and
|Xi| ≤ γ

almost surely. Then

sup
t

∣∣∣∣Φ(t)−P
[

X1 +X2 + · · ·+Xn√
n

< t
]∣∣∣∣≤ Ln−1/2 logn

where
Φ(t) :=

1√
2π

∫ t

−∞

exp(−x2/2)dx

is the c.d.f. of the standard normal distribution.

Proof. This is a special case of [6, Theorem 2].

Corollary 4.6.19. For all ε,γ > 0 there exists δ > 0 and N ∈ Z>0 such that the following is
true. Let n ≥ N and let X1, . . . ,Xn be as in Theorem 4.6.18 with this value of γ . Then for all
a ∈ R we have

P
[

X1 +X2 + · · ·+Xn√
n

∈ [a,a+δ ]

]
≤ ε.

Proof. This follows immediately from Theorem 4.6.18.

We will now prove Proposition 4.6.17.

Proof of Proposition 4.6.17. To prove Proposition 4.6.17 we will show that there is some n
such that for all b0 ∈ P1(R) the measure µ∗n ∗ δb0 has mass at most α0 on any interval of
length at most t. To do this, given an n-step random walk on P1(R) generated by µ we will
construct an n-step random walk on R. Specifically we have the following.

We let n ∈ Z>0 be some value we will choose later. Let b0 ∈ P1(R) and let γ1,γ2, . . . ,γn

be i.i.d. samples from µ . Let bi := γiγi−1 . . .γ1b0. Let Ui := logγi and define the real valued
random variables X1,X2, . . . ,Xn by

Xi :=
(
Var
[
ρbi−1(U)

])−1/2
ρbi−1(Ui)
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where ρb ∈ psl2
∗ is defined to be Du(exp(u)b)|u=0 as in Definition 4.1.1. We let Y1,Y2, . . . ,Yn

be defined by
Yi = Xi −E[Xi]

and let S = Y1 +Y2 + · · ·+Yn.
Clearly E[Yi|Y1,Y2, . . . ,Yi−1] = 0 and E[Y 2

i |Y1,Y2, . . . ,Yi−1] = 1. This enables us to apply
Theorem 4.6.18. We now need to show that understanding S gives us some information about
the distribution of bn.

Now let c1,c2, . . . denote positive constants which depend only on α0, c, and A. We
define f : R→ R by

f : x 7→
∫ x

0

(
Var
[
ρbi−1(U)

])−1/2 du.

This definition is chosen such that f (φ(bi))− f (φ(bi−1)) is approximated Xi. In-fact we
have

Du f (φ(exp(u)bi−1))|u=0 =
(
Var
[
ρbi−1(U)

])−1/2
ρbi−1(Ui)

and so Xi = Du f (φ(exp(u)bi−1))|u=0(Ui). This means that to bound

| f (φ(bi))− f (φ(bi−1))−Xi|

it is sufficient to bound
∥∥D2

u f (φ(exp(u)bi−1))
∥∥ for ∥u∥ ≤ 1.

By compactness the norms of the first and second derivatives of the exponential function
are bounded on the unit ball. Note that for all u ∈ R

c−1
1 r2 ≤ Varρφ−1(u)(U)≤ c1r2 (4.69)

and so
c−1

2 r−1 ≤ f ′ ≤ c2r−1. (4.70)

Also note that Varρφ−1(u)(U) can be written as

Varρφ−1(u)(U) = vT
Σv
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where Σ is the covariance matrix of U and v ∈ R3 depends smoothly on u and depends on
nothing else. In particular∣∣∣∣ d

du
Varρφ−1(u)(U)

∣∣∣∣= ∣∣v′(u)T
Σv(u)+ v(u)T

Σv′(u)
∣∣

≤ c3r2.

Note that

f ′′(x) =
d
dx

(
Varρφ−1(x)(U)

)−1/2

=
(

Varρφ−1(x)(U)
)−3/2

(
d

du
Varρφ−1(u)(U)

)
and so in particular

| f ′′(x)| ≤ c4r−1. (4.71)

In particular this means that whenever ∥u∥ ≤ 1 we have∥∥D2
u f (φ(exp(u)bi−1))

∥∥≤ c5r−1.

Also note that there is some M with c−1
6 r−1 ≤ M ≤ c6r−1 such that for all x ∈ R

f (x+π) = f (x)+M.

Note that by (4.71) and Taylor’s Theorem

| f (φ(bi))− f (φ(bi−1))−Xi| ≤ c7r.

Note that by (4.69) and the conditions of the proposition

|Xi −Yi|= |E[Xi]| ≤ c8r.

Therefore
| f (φ(bi))− f (φ(bi−1))−Yi| ≤ c9r.

In particular
| f (φ(bn))− f (φ(b0))−S| ≤ c10nr. (4.72)

We now let n =
⌈
Kr−2⌉ where K is some positive constant depending on α0, A, and c

which we will choose later. Choose N ∈ Z>0 and T > 0 such that by applying Theorem
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4.6.18 we may ensure that whenever n ≥ N and a ∈ R we have

P
[

S√
n
∈ [a,a+T ]

]
≤ α0

2
.

Note that
E[S2] = n

and so

P
[
|S| ≥ M

2

]
≤ 4n

M2 ≤ c11K.

Therefore whenever n ≥ N and a ∈ R

P
[
S ∈ [a,a+T

√
n]+MZ

]
≤ α0

2
+ c11K.

Substituting in our value for n gives

P
[
S ∈ [a,a+ c12

√
Kr−1]+MZ

]
≤ α0

2
+ c11K.

From (4.72) we may deduce that

P
[

f (φ(bn)) ∈ [a,a+(c12
√

K − c13K)r−1]+MZ
]
≤ α0

2
+ c11K.

By taking K = min
{

α0
2c11

,
c2

12
2c2

13

}
we get

P
[

f (φ(bn)) ∈ [a,a+ c14r−1]+MZ
]
≤ α0.

By (4.70) this means that

P [φ(bn) ∈ [a,a+ c15]+πZ]≤ α0

providing n ≥ N. Noting that n → ∞ as r → 0 completes the proof.

4.6.4 Examples with rotational symmetry

One way in which we can ensure that the Furstenberg measure satisfies our α0, t- non-
degeneracy condition is to ensure that it has some kind of rotational symmetry. In particular
we can prove the following corollary of Theorem 1.3.13.
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Corollary 4.6.20. For every a,b ∈ Z>0 with a ≥ 4 and K > 0 there exists some C > 0 and
ε > 0 such that the following is true.

Suppose that x >C. Suppose that A1,A2, . . . ,Ab ∈ PSL2(R) have operator norms at most
1+ 1/x and have entries whose Mahler measures are at most exp(exp(ε

√
x)). Suppose

further that the degree of the number field generated by the entries of the Ai is at most
exp(ε

√
x).

Let R ∈ PSL2(R) be a rotation by π/a and let µ be defined by

µ :=
1

ab

a−1

∑
i=0

b

∑
j=1

δRiA jR−i.

Suppose further that for every virtually solvable H < PSL2(R) we have µ(H)≤ 1−K.
Then the Furstenberg measure generated by µ is absolutely continuous.

Proof. We wish to apply Theorem 1.3.13 to 1
2 µ + 1

2δId.
Note that this measure is clearly 1

a , π

a - non-degenerate. Also note that we may assume
that C ≥ 1 and so take R = 2 in Theorem 1.3.13. Clearly χ < 1

x .
Note that by Proposition 4.6.7 we have hRW ≥ Θ(K).
Note that by Proposition 4.6.6 we know that Mµ ≤ exp(Aexp(εx)) where A is some

constant depending only on a and b. The result now follows by Theorem 1.3.13.

4.6.5 Examples supported on large elements

The purpose of this subsection is to prove Corollary 1.3.18. First we will need the following
lemma.

Lemma 4.6.21 (The Ping-Pong Lemma). Suppose that G is a group which acts on a set X.
Let n ∈ Z and suppose that we can find g1,g2, . . . ,gn ∈ G and pairwise disjoint non-empty
sets

A+
1 ,A

+
2 , . . . ,A

+
n ,A

−
1 ,A

−
2 . . . ,A−

n ⊂ X

such that for all integers i ∈ [1,n] and all x ∈ X\A−
i we have gix ∈ A+

i . Then g1,g2, . . . ,gn

freely generate a free semi-group.

This lemma is well known and we will not prove it. From this we may deduce the
following.

Lemma 4.6.22. For every ε > 0 there is some C ≤ O(ε−1) such that the following is true. Let
n ∈ Z>0. Suppose that θ1,θ2, . . . ,θn ∈ R/πZ and that for every i ̸= j we have |θi −θ j| ≥ ε
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and |θi −θ j +π/2| ≥ ε . Let λ1,λ2, . . .λn be real numbers which are at least C. Then the set{
Rθi

(
λi 0
0 λ

−1
i

)
R−θi : i ∈ [1,n]∩Z

}

freely generates a free semi-group.

Proof. This follows immediately by applying Lemma 4.6.21 with G = PSL2(R), X = P1(R),
A+

i = φ−1((θi − ε/2,θi + ε/2)), and A−
i = φ−1((θi − ε/2,θi + ε/2))⊥ along with Lemma

4.1.9.

Lemma 4.6.23. For all n ∈ Z there exists some θn ∈
( 1

2n ,
2
n

)
such that sinθn and cosθn are

rational and have height at most 4n2 +1.

Proof. Choose θn such that

sinθn =
4n

4n2 +1
and

cosθn =
4n2 −1
4n2 +1

.

We are now ready to prove Corollary 1.3.18.

Proof of Corollary 1.3.18. Given some r > 0 and some n ∈ Z define β0, . . . ,βn−1 > 0 by
letting βk = θ8n+1−k where θ· is as in Lemma 4.6.23. We then define α0,α1, . . . ,α2n−1 ≥ 0 by
letting

αk =
n−1

∑
i=0

ξ
(k)
i βi

where the ξ
(k)
i are the binary expansion of k. In other words k=∑

n−1
i=0 ξ

(k)
i 2i with ξ

(k)
i ∈{0,1}.

Clearly
0 = α0 < α1 < · · ·< α2n−1.

Furthermore αi+1 > αi + ε where ε = 1
2·8n+1 . We also have that

α2n−1 <
2
82 +

2
83 +

2
84 + . . .

=
1
32

· 8
7

<
π

10
− ε.
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We now let C be the C from Lemma 4.6.22 with this value of ε and we choose some prime
number p such that p ≥C2, p ≤ O(82n), and X2− p is irreducible in the field Q[sin π

5 ,cos π

5 ].
Now for i = 0,1, . . . ,2n −1 and j = 0,1, . . . ,4 we let gi, j be defined by

gi, j := R jπ
5 +αi

(⌈
r+

√
p
⌉
+
√

p 0
0 (

⌈
r+

√
p
⌉
+
√

p)−1

)
R− jπ

5 −αi
.

By Lemma 4.6.22 we know that the gi, j freely generate a free semi-group. Now for i =
0,1, . . . ,2n −1 and j = 0,1, . . . ,4 we let ĝi, j be defined by

ĝi, j := R jπ
5 +αi

(⌈
r+

√
p
⌉
−√

p 0
0 (

⌈
r+

√
p
⌉
−√

p)−1

)
R− jπ

5 −αi
.

Clearly the ĝi, j are Galois conjugates of the gi, j and so also freely generate a free semi-group.
We now let µ be defined by

µ =
2n−1

∑
i=0

4

∑
j=0

1
5 ·2n δĝi, j .

We wish to use Theorem 1.3.13 to show that the Furstenberg measure generated by µ is
absolutely continuous providing n is sufficiently large in terms of r.

Let ν be the Furstenberg measure generated by µ . By the construction of µ we know that
ν is invariant under rotation by π/5. In particular this means that it is 1

5 , π

5 - non-degenerate.
We also know that for each i, j we have

∥∥ĝi, j
∥∥= ⌈r+√

p
⌉
−√

p ≤ r+1. This means that
χ ≤ r+1 and that we may take R = r+1. Since the ĝi, j freely generate a free semi-group
we know that hRW = log(5 ·2n)≥ Θ(n). Finally we need to bound Mµ .

To bound the Mµ we will apply Proposition 4.6.6. We know by Lemma 4.6.23 that
the heights of the entries in the βi are at most O(82n). We also know that the height of⌈
r+

√
p
⌉
−√

p is at most Or(
√

p) which is at most Or(8n). By Lemma 4.6.4 this means
that the height of entries in the ˆgi, j is at most Or(22n ·84n2+n) which is at most Or(85n2

). It is
easy to show that

[
Q[sin π

5 ,cos π

5 ] : Q
]
= 4. This means that by Proposition 4.6.6 we have

Mµ ≤ Or

(
88·4·5n2

)
≤ exp(Or(n2)).
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Therefore

hRW

χ

(
max

{
1, log log

Mµ

hRW

})−2

≳
n

r+1
(
log logexp(Or(n2))

)−2

≥ n
Or((logn)2)

→ ∞.

This means that by Theorem 1.3.13 the Furstenberg measure is absolutely continuous provid-
ing n is sufficiently large in terms of r.

4.6.6 Examples with two generators

In this subsection we will prove Corollary 1.3.19.

Proof of Corollary 1.3.19. First we will show that there is some α0 ∈
(
0, 1

3

)
and t > 0 such

that µ is α0, t - non-degenerate for all sufficiently large n.
First note that A is a rotation by θn where θn =

1
n +O( 1

n2 ). Also note that for all x ∈ P1(R)
we have d(x,Bx)≤ O(n−3).

We now let Ã : R→ R,x 7→ x+θn and choose B̃ : R→ R such that B̃(x) ∈ φ(Bφ−1(x))
and for all x ∈ R we have |x− B̃(x)| ≤ O(n−3). We then let µ̃ = 1

2δÃ +
1
2δB̃.

By Theorem 2.1.22 (a simple bound on the Wasserstein distance between a sum of
independent random variables and a normal distribution) we know that for any x ∈R we have

W1

(
µ̃
∗n2

∗δx,N(x+
1
2

n2
θn,n2

θ
2
n )

)
< O(n−1).

Noting that n2θ 2
n → 1 we can see that there is some α0 ∈

(
0, 1

3

)
and t > 0 such that µ is α0,

t - non-degenerate for all sufficiently large n.
We will apply Theorem 1.3.13 to 1

2 µ+ 1
2δId. Note that this generates the same Furstenberg

measure as µ and so in particular it is α0, t - non-degenerate.
Note that by Proposition 4.6.7 there is some ε > 0 such that for all n we have hRW ≥ ε .
Note that by Proposition 4.6.6 we have Mµ̃ ≤ 4(n3 +1)8. Clearly we may take R = 2.

Also note that χ ≤ n−3.
This means that to prove the proposition it is sufficient to prove that

εn3
(

log log
4(n3 +1)8

ε

)−2

tends to ∞ as n → ∞. This is trivially true.
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4.7 Appendix

4.7.1 Proof of Theorem 1.4.20

We extend the result of Kesten [36, Theorem 1] to show that the convergence is uniform in
the vector v.

Theorem 4.7.1. Suppose that µ is a strongly irreducible measure on PSL2(R) with compact
support. Suppose that the support of µ is not contained within any compact subgroup of
PSL2(R). Then there exists some probability measure measure ν̂ on P1(R) such that the
following is true. Let γ1,γ2, . . . be i.d.d. samples from µ and let qn := γ1γ2 . . .γn. Then given
any ε > 0 and v ∈ P1(R) there exists some T > 0 such that given any t > T we can find some
random variable x with law ν̂ such that

P[d(qT
τt,v

v,x)> ε]< ε.

Recall that τt,v is the stopping time given by

τt,v = min{n :
∥∥qT

n v
∥∥≥ t ∥v∥}.

Proof. In [36, Theorem 1] it is proven that this holds in a much more general setting
providing some conditions are satisfied. In [24, Section 4] it is shown that the conditions of
[36, Theorem 1] are satisfied in this setting.

We deduce uniform convergence from this fact. To do this we show that if v,w ∈ P1(R)
are close then with high probability τt,v = τt,w and qT

τt,v
v is close to qT

τt,v
w.

Lemma 4.7.2. Suppose that µ is a strongly irreducible measure on PSL2(R) with compact
support. Suppose that χ > 0. Then given any c1,c2 > 0 there exists T such that for any t > T
and any unit vector b ∈ R2

P[∃n : log t ≤ log
∥∥qT

n b
∥∥≤ log t + c1]≲ c1/χ + c2.

Proof. This follows immediately from [42, Proposition 4.8].

Lemma 4.7.3. Let µ be a finitely supported measure on PSL2(R) which is strongly irre-
ducible and such that χ > 0. Let τt,v be as in Theorem 1.4.20. Then there exists some δ > 0
depending on µ such that given any r > 0 for all sufficiently large (depending on r and µ) t
the following is true. Suppose that v,w ∈ P1(R) and d(v,w)< r. Then

P[τt,v = τt,w]≥ 1−Oµ(rδ ).
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Proof. Let A be the event that
d(v,b−(qT

n ))>
√

r

and
d(w,b−(qT

n ))>
√

r

for all n ≥ log t/ logR. By Corollary 4.5.9 and Lemma 4.5.11 we know that providing t is
sufficiently large in terms of µ and r there is some δ > 0 such that

P[A]≥ 1−Oµ(rδ ).

By Lemma 4.1.11 we know that there is some constant C > 0 such that on the event A

| log
∥∥qT

n v
∥∥− log

∥∥qT
n w
∥∥ |<Cr1/2

for all n ≥ log t/ logR. Now let B be the event that there exists n such that

| log
∥∥qT

n v
∥∥− t|< 10Cr1/2.

By Lemma 4.7.2 we know that providing t is sufficiently large in terms of µ and r P[B]≤
Oµ(r1/2). We also know that {τt,v = τt,w} ⊃ A\B. Therefore

P[τt,v = τt,w]≥ 1−Oµ(rδ )

as required.

Proof of Theorem 1.4.20. Given ε > 0 we wish to show that we can find some T (depending
on µ and ε) such that whenever t > T and v ∈ P1(R) we can find some random variable x
with law ν̂ such that

P[d(x,qT
τt,v

v)> ε)]< ε.

First let ε > 0. Choose k ∈ Z>0 and let v1,v2, . . . ,vk ∈ P1(R) be equally spaced. Let T1

be the greatest of the T from Theorem 4.7.1 with 1
10ε in the role of ε and v1,v2, . . . ,vk in the

role of v and let x1,x2, . . . ,xk be the x. Let T2 be the T from Lemma 4.7.3 with r = π

k . Let
T = max{T1,T2}. Thus whenever t > T and i ∈ [k]

P
[
d(xi,qT

τt,vi
vi)>

ε

10

]
<

ε

10
.
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Now let t > T and let v ∈ P1(R). Suppose without loss of generality that v1 is the closest
of the vi to v. In particular d(v1,w)< π

k . By Lemma 4.7.3 this means that

P[τt,v1 = τt,v]≥ 1−O(k−δ ) (4.73)

for some δ > 0 depending only on µ .
We know by for example Lemma 4.1.16 that providing

d(b−1(qT
n ),v1)> 100k−1

we have
d(qT

n v1,qT
n v)< Ok(

∥∥qT
n
∥∥−2

).

In particular by Corollary 4.5.9 and Lemma 4.5.11 we know that

P
[
d(qT

τt,v1
v1,qT

τt,v1
v)< Ok(t−2)

]
≥ 1−O(k−δ ).

Combining this with (4.73) we know that providing t is sufficiently large depending on k
and µ

P
[
d(qT

τt,v1
v1,qT

τt,v
v)> Ok(t−2)

]
< O(k−δ ).

In particular this means that providing t is sufficiently large depending on k and µ

P
[

d(x1,qT
τt,v

v)>
1

10
ε +Ok(t−2)

]
<

1
10

ε +O(k−δ )

and so if we choose k large enough (depending on µ and ε) and then choose t large enough
(depending on µ , k, and ε) then

P
[
d(x1,qT

τt,v
v)> ε

]
< ε

as required.
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