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Atherosclerotic Plaque Inflammation Imaging Using 

Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) 

 

James H F Rudd 
 

 

Inflammation is important in both the pathogenesis and outcome of atherosclerosis. 

Plaques containing numerous inflammatory cells, particularly macrophages, have a 

high risk of rupture, whereas those with fewer inflammatory cells are at lower risk. 

The current ‘gold standard’ technique for imaging atherosclerosis is x-ray contrast 

angiography, which provides high-resolution definition of the site and severity of 

luminal stenoses, but no information about plaque inflammation.  

 

Quantification of plaque inflammation is desirable both to predict risk of plaque 

rupture and to monitor the effects of atheroma-modifying therapies. This is important 

since recent studies strongly suggest that HMG Co-A reductase inhibitors promote 

plaque stability by decreasing plaque macrophage content and activity without 

substantially reducing plaque size and therefore angiographic appearance. FDG is a 

glucose analogue that is taken up by cells in proportion to their metabolic activity. 

 

In this work, the central hypothesis was that plaque inflammation could be visualised 

and quantified non-invasively using FDG-PET.  

 

Initially, THP-1 monocytes and buffy-coat macrophages were stimulated with cellular 

activators, and the effect on deoxyglucose uptake was observed. It was demonstrated 

that both types of cell accumulated deoxyglucose in proportion to their metabolic 

activity. Next, FDG uptake was assessed in endarterectomy specimens from patients 

with symptomatic carotid disease. Autoradiography of excised plaques confirmed 

accumulation of deoxyglucose in macrophage-rich areas. 

 

Subsequently, co-registered FDG-PET imaging was performed in patients with 

transient ischaemic attack. FDG accumulated within carotid plaques, with 
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significantly more FDG being taken up into symptomatic plaques than contralateral 

asymptomatic lesions.  

 

Finally, a rabbit model of atherosclerosis was established to investigate two related 

questions: firstly, whether an animal PET scanner (MicroPet) might detect atheroma, 

and secondly whether FDG-PET could image and perhaps quantify both atheroma 

progression and regression. Aortic atheroma was identified by FDG-PET, but full 

quantification was not possible, because the microPet system is currently unable to 

perform studies with attenuation correction. 

 

In summary, it has been shown, both in vitro and in vivo, that inflammation within 

atherosclerotic plaques can be successfully imaged by FDG-PET. In addition, pilot 

data from an experimental study of atherosclerosis in rabbits suggested that serial 

imaging with this technique might be useful for monitoring the effects of anti-

atheroma drugs. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 ATHEROSCLEROSIS 

 

1.1.1 The epidemiology of atherosclerosis 

 

Atherosclerosis, with its complications, is the leading cause of mortality and morbidity in 

the developed world. In the United States alone, a snapshot of the population would 

reveal that 60 million adults suffer from atherosclerotic cardiovascular disease, which 

accounts for 42% of all deaths annually, at a cost to the nation of 128 billion dollars. 

Vascular disease (including cardiovascular and cerebrovascular disease) is also the 

leading cause of mortality in the United Kingdom, leading to nearly 260,000 deaths per 

annum (Office of National Statistics, 1997).  Fortunately, despite this catastrophic burden 

of disease, much evidence has emerged over the last decade suggesting that the 

progression of atherosclerosis can be slowed or even reversed with appropriate lifestyle 

and drug interventions.  

 

 The origin of the current epidemic of atherosclerotic cardiovascular disease can be traced 

back to the time of industrialisation in the 1700’s. The three factors largely responsible 

for this were an increase in the use of tobacco products, reduced physical activity and the 

adoption of a diet high in fat, calories and cholesterol. This rising tide of cardiovascular 

disease continued into the 20th century, but began to recede when data from the 

Framingham study identified a number of modifiable risk factors including cigarette 

smoking, hypertension and hypercholesterolaemia (Wong et al., 1991). 

 

The number of deaths per 100,000 population attributable to cardiovascular disease 

peaked in the western world in 1964-5, since which time there has been a gradual decline 

in death rates (NHLBI, 1998). The age-adjusted coronary heart disease mortality in the 

US has dropped by more than 40% and cerebrovascular disease mortality by more than 
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50%, with the greatest reductions being seen among whites and males. This reduction has 

occurred despite a quadrupling of the proportion of the population aged over 65 years, 

and has been due to a number of factors, particularly efforts by the US and the British 

governments, both of whom launched major health promotion campaigns aimed at 

reducing the prevalence of risk factors defined by the Framingham study (Wilson et al., 

1987). Indeed, there has been a substantial change in the prevalence of cardiovascular 

risk factors in the population as a whole over the last thirty years. The war is not won 

however, and the decline in the death rate from cardiovascular disease slowed in the 

1990’s. This is likely to be due to a large increase in the prevalence of both obesity and 

type 2 diabetes mellitus, as well as a resurgence of cigarette smoking in some sections of 

society (Cooper et al., 2000). Female death rates from cardiovascular disease overtook 

male in 1984, and have shown a smaller decline over the last thirty years (McGovern et 

al., 1996). The consequences of atherosclerosis are also beginning to be felt in less well-

developed regions of the globe (Knopp, 1999), with atherosclerotic cardiovascular 

disease set to replace infection as the leading cause of death in the third world in the near 

future. 
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1.1.2 The pathophysiology of atherosclerosis 

 

Traditionally, atherosclerosis has been viewed as a degenerative disease, affecting 

predominantly older people, slowly progressing over many years, and eventually leading 

to symptoms through mechanical effects on blood flow. The perceived insidious and 

relentless nature of its development has meant that a somewhat pessimistic view of the 

potential to modify its progression by medical therapy has held sway. There has been 

little emphasis on the diagnosis and treatment of high-risk asymptomatic patients. 

Disease management has instead been dominated by interventional re-vascularisation 

approaches, targeting the largest and most visible or symptomatic lesions with 

angioplasty, bypass surgery or endarterctomy. 

 

Recently, for three reasons, this defeatist view of the pathogenesis and progression of 

atherosclerosis has begun to change. Firstly, because careful descriptive studies of the 

underlying pathology of atherosclerosis have revealed that atherosclerotic plaques differ 

in their cellular composition, and that the cell types predominating in the plaque can 

determine the risk of fatal clinical events. Secondly, recent cellular and molecular 

biological research has emphasised the importance of inflammatory cells and 

inflammatory mediators in the pathogenesis of atherosclerosis. The third, and most 

important reason is because several large-scale clinical trials have reported that drugs, in 

particular HMG-CoA reductase inhibitors (statins), are able to reduce the number of 

clinical events in patients with established atherosclerosis, and to do so without 

necessarily affecting the size of atherosclerotic plaques. These three strands of evidence 

have shown that, rather than being an irreversibly progressive disease, atherosclerosis is a 

dynamic, inflammatory process that may be amenable to medical therapy. Understanding 

the cellular and molecular interactions that determine the development and progression of 

atherosclerosis brings with it opportunities to develop novel therapeutic agents targeting 

key molecular and cellular interactions in its aetiology. In addition, the recognition that 

the clinical consequences of atherosclerosis depend almost entirely on plaque 

composition argues for a new approach to diagnosis, with less emphasis placed on the 
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degree of lumen narrowing, and more attention focused on the cellular composition of the 

plaque. 
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1.1.2.1 The structure of the healthy artery 

 

The normal artery consists of three histologically distinct layers. Innermost and lining the 

lumen is the tunica intima, which comprises a single layer of endothelial cells in close 

proximity to the internal elastic lamina. The tunica media surrounds the internal elastic 

lamina and its composition varies depending on the type of artery. The tunica media of 

the smallest arterial vessels, arterioles, comprises a single layer of vascular smooth 

muscle cells (VSMCs). Small arteries have a similar structure but with a thicker layer of 

medial VSMCs. Arterioles and small arteries are termed resistance vessels, because they 

contribute significantly to vascular resistance and hence directly affect blood pressure. At 

the opposite end of the spectrum are large elastic or conduit arteries, named for the high 

proportion of elastin in the tunica media. The tunica media of all arteries is contained 

within a connective tissue layer, rich in blood vessels and nerves, known as the tunica 

adventitia. In healthy arteries, the vessel lumen diameter can be altered by contraction 

and relaxation of the medial VSMCs, in response to a variety of systemic and locally 

released signals. 
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1.1.2.2 The pathology of the atherosclerotic artery 

 

Atherosclerosis is primarily a disease affecting the intimal layer of elastic arteries. For 

reasons that remain largely unknown, some arterial beds appear more prone than others. 

Coronary, carotid, cerebral, renal arteries and the aorta are most often affected. The 

arteries supplying the lower limb are also vulnerable to disease. Interestingly, the internal 

mammary and radial arteries are almost always spared, making them invaluable vessels 

for coronary bypass surgery. 

 

Atherosclerotic lesions develop slowly over many years, passing through several stages. 

Histologically, the earliest sign is a subendothelial accumulation of lipid-laden 

macrophage foam cells and associated T- lymphocytes known as a fatty streak. Fatty 

streaks are asymptomatic and non-stenotic. Post-mortem examinations have shown that 

they are present in the aorta at the end of the first decade of life, in the coronary arteries 

by the second and begin to appear in the cerebral circulation by the third decade. With 

time, the lesion progresses and the core of the early plaque becomes necrotic, containing 

cellular debris, crystalline cholesterol and inflammatory cells, particularly macrophage 

foam cells. This necrotic core becomes bounded on its luminal aspect by an 

endothelialised fibrous cap, consisting of vascular smooth muscle cells embedded in an 

extensive collagenous extracellular matrix. Inflammatory cells are also present in the 

fibrous cap, concentrated particularly in the ‘shoulder’ regions, where T cells, mast cells 

and especially macrophages have a tendency to accumulate (Kaartinen et al., 1994; 

Kaartinen et al., 1998). Advanced lesions become increasingly complex, showing 

evidence of calcification, ulceration, new vessel formation and fibrous cap rupture or 

erosion. 

 

Thus, the composition of atherosclerotic plaques is variable and complex, and it is the 

interaction between the various cell types within a plaque that determines the 

progression, complications and outcome of the disease. Carotid artery atherosclerosis is 

the form of the disease most relevant to this thesis, and it is discussed later in this Chapter 

in Section 1.3. 
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1.1.3 Theories of atherogenesis 

 

Over the years, several theories have been advanced to explain atherogenesis. None of 

these is able to account for all aspects of the disease. The most recent, which views 

atherosclerosis as a consequence of inflammation in the vessel wall, is however, 

supported by the results of large-scale clinical trials. 

 

1.1.3.1 Lipid hypothesis 

 

This theory, proposed initially in 1913 (Anitcschkow, 1913), held that the development 

of atherosclerosis was the result of the gradual accumulation of lipid in the arterial wall, 

with its presence at that site being responsible for the generation of the characteristic 

tissue changes of atheroma. In animal models, hyperlipidaemia, as a result of either a 

high fat diet or genetic modification, reliably leads to the development of atherosclerotic 

lesions in many species. The lipid hypothesis is supported by the wealth of evidence that 

links elevated serum lipids with the risk of development of atherosclerotic lesions in 

humans (Berliner et al., 1995). 

 

1.1.3.2 Thrombogenic hypothesis 

 

This theory (Rokitansky, 1855) hypothesises that atherosclerotic lesions grow by the 

gradual incorporation of luminal thrombus into the arterial wall. It is supported by the 

finding of fibrin (Bini et al., 1989) and platelet-derived proteins in both developing and 

mature atherosclerotic plaques (Wilcox et al., 1988). In addition, thrombus contains large 

amounts of platelet-derived growth factor, a potent VSMC mitogen. However, this theory 

is difficult to prove because plaque infiltration by immature blood vessels is common in 

advanced lesions, and consequently haemorrhage and thrombosis occur frequently. 

Therefore, thrombus may appear as a result of atherosclerosis rather than be a causative 

factor. 
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The initiating factor for atherosclerosis formation in both of the above theories can be 

considered to be endothelial dysfunction. In the lipid hypothesis, a defective endothelial 

cell barrier permits the gradual seepage of lipid into the arterial intima, allowing plaque 

formation to begin. In the thrombogenic theory, a dysfunctional endothelium allows local 

platelet aggregation and clot formation which might subsequently become incorporated 

into the arterial wall. The idea that endothelial dysfunction is central to the origin of 

atherosclerosis has dominated recent thinking on the subject. 

 

1.1.3.3 The response to injury hypothesis 

 

This was initially proposed by Virchow (Virchow, 1858), who believed that the 

degenerative changes associated with atherosclerosis were due to a healing response of 

the arterial intima as a results of a prior mechanical injury. The theory was subsequently 

revised as shown below. 

 

1.1.3.4 The modified response to injury hypothesis 

 

One hundred and fifteen years after it was first proposed, Ross and Glomset published a 

modified version of the response to injury hypothesis (Ross et al., 1973). They noted 

histological similarities between advanced native atherosclerotic plaques and those 

created in monkeys’ aortas by balloon injury of the endothelium. It was suggested that 

atherosclerosis was the result of excessive vascular smooth muscle cell proliferation in 

response to a prior endothelial injury. This idea was later revised, and subsequent 

versions of the theory implied that endothelial dysfunction from any cause, not 

necessarily mechanical injury, was crucial for the development of atherosclerosis (Ross, 

1986; Ross, 1993). These injurious agents are what are today regarded as risk factors for 

atherosclerosis, and include hypertension, hyperlipidaemia and cigarette smoking. 
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1.1.3.5 Atherosclerosis as an inflammatory disease 

 

In his final review of the pathogenesis of atherosclerosis (Ross, 1999), Ross emphasised 

the importance of endothelial dysfunction, but also highlighted the role played by 

inflammation at every step of both the disease and its complications. The key parts 

played in this process by endothelial, inflammatory and vascular smooth muscle cells are 

discussed below. 
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1.2 CELLULAR ROLES IN ATHEROSCLEROSIS 

 

1.2.1 The endothelium 

 

1.2.1.1 The role of nitric oxide 

 

The endothelium plays a central role in maintaining vascular health, by virtue of its anti-

inflammatory and anticoagulant properties. Most of these characteristics are mediated by 

the molecule nitric oxide (NO). NO was discovered in the 1980s, having been isolated 

from lipopolysaccharide-primed macrophages (Palmer et al., 1987). It is synthesized by 

endothelial cells under the control of the enzyme endothelial nitric oxide synthase 

(eNOS), and has a number of anti-atherogenic properties. Firstly, it acts as a powerful 

inhibitor of platelet aggregation on endothelial cells (Radomski et al., 1987). Secondly, it 

can reduce inflammatory cell recruitment into the intima by reducing the expression of 

genes involved in this process, such as those encoding intercellular adhesion molecule-1 

(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), P-selectin and monocyte 

chemoattractant protein-1 (MCP-1) (Tsao et al., 1997; Gauthier et al., 1995; Tsao et al., 

1996). There is some evidence that NO may also reduce lipid entry into the arterial intima 

(Cardona-Sanclemente et al., 1995). NO is also a potent anti-inflammatory molecule, and, 

depending on concentration, may be either a scavenger or a producer of potentially 

destructive oxygen free radicals, such as peroxynitrite (Hobbs et al., 1999; Anggard, 

1994; Bhagat et al., 1996). 

 

One of the earliest detectable manifestations of atherosclerosis is a decrease in the 

bioavailability of NO in response to pharmacological or haemodynamic stimuli (Ross, 

1999). This may occur for two reasons: either there may be decreased manufacture of NO 

because of endothelial cell dysfunction, or there may be increased NO breakdown. There 

is evidence that both mechanisms might be important in different situations (Li et al., 

2000). Many atherosclerosis risk factors can lead to impaired endothelial function and 

reduced NO bioavailability. For example, hyperlipidaemic patients have normal forearm 

blood at rest, but a blunted response to NO-dependent vasodilatation. This abnormality is 



 11 

reversed when patients are treated with lipid-lowering medication (Stroes et al., 1995). 

Patients with diabetes mellitus also have impaired endothelial function, occurring 

primarily as a result of impaired NO production. There is, however, some evidence to 

suggest that increased oxidative stress leading to enhanced NO breakdown may also be a 

factor (Williams et al., 1996). Similarly, other risk factors for atherosclerosis, such as 

hypertension and cigarette smoking, are associated with reduced NO bioavailability 

(Panza et al., 1995; Heitzer et al., 1996). In cigarette smokers, endothelial impairment is 

thought to be due to enhanced NO degradation by oxygen-derived free radical agents 

such as the superoxide ion. There are also other consequences of an increased reactivity 

between NO and superoxide species. The product of their interaction, peroxynitrite 

(ONOO¯), is a powerful oxidising agent, and can reach high concentrations in 

atherosclerotic lesions where it can cause cellular oxidative injury. 

 

Another consequence of endothelial cell dysfunction that occurs in early atherosclerosis 

is the expression of surface-bound selectins and adhesion molecules, including P-selectin, 

ICAM-1 and VCAM-1. These molecules attract and capture circulating inflammatory 

cells, and facilitate their migration into the subendothelial space (Ross, 1999). Healthy 

endothelial cells do not express these molecules, but their appearance may be induced by 

abnormal arterial shear stress, subendothelial oxidised lipid and, in diabetic patients, 

advanced glycosylation products in the arterial wall (Ross, 1993). The importance of 

selectins and adhesion molecules in the development of atherosclerosis is demonstrated 

by experiments using mice which lack their expression. These animals develop smaller 

lesions, with lower lipid content and fewer inflammatory cells than control mice when 

fed a lipid-rich diet (Nakashima et al., 1994). Animal models have reinforced the 

importance of inflammatory cell recruitment in the pathogenesis of atherosclerosis, but 

since inflammatory cells are never seen in the intima in the absence of lipid, it seems 

likely that subendothelial lipid accumulation is also necessary for the development of 

atherosclerosis. 

 

The tendency for atherosclerosis to occur preferentially at particular sites may be 

explained by subtle variations in endothelial function. This is probably caused by 
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variations in local blood flow patterns, especially conditions of low flow, which can 

influence expression of a number of endothelial cell genes including those encoding 

ICAM-1 and eNOS (Resnick et al., 1997; Topper et al., 1996). In addition to flow speed, 

the type of flow can have a direct affect on cell morphology. In areas of laminar flow, 

endothelial cells tend to have an elliptoid shape, contrasting with the situation found at 

vessel branch points and curves where turbulent flow induces a conformational change 

towards polygonal shaped cells. Such cells have an increased permeability to LDL 

cholesterol and may promote lesion formation (Gimbrone, Jr., 1999). 

 

These data are consistent with the idea that the primary event in atherogenesis is 

endothelial dysfunction. The endothelium can be damaged by a variety of means, leading 

to dysfunction and subsequent subendothelial lipid accumulation. In this situation, the 

normal homeostatic features of the endothelium break down; it becomes more adhesive to 

inflammatory cells and platelets, it loses its anticoagulant properties and there is reduced 

bioavailability of NO. Importantly, endothelial function is improved by drugs that have 

been shown to substantially reduce death from vascular disease, including statins and 

angiotensin converting enzyme inhibitors (LIPID Study Group, 1998; Yusuf et al., 2000). 

 

1.2.2 Lipids and inflammatory cells 

 

The vascular endothelium provides a continuous boundary lining the vasculature, and is 

characterised by the presence of tight junctions at the margin of each endothelial cell. 

These tight junctions restrict the passage of macromolecules from blood to subendothelial 

space. However, a transcytolic route exists, via which certain macromolecules may be 

transported across the endothelial cell layer. It is through this system that LDL is thought 

to be transported from the blood into the vessel wall. This accumulation of subendothelial 

lipid, particularly when partly oxidised, stimulates the local inflammatory reaction that 

initiates and maintains the activation of overlying endothelial cells. The activated cells 

express a variety of selectins and adhesion molecules and also produce a number of 

chemokines, in particular MCP-1, whose expression is upregulated by the presence of 

oxidised LDL in the subendothelial space (Boring et al., 1998). Interestingly, the 
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protective effect of HDL against atherosclerotic vascular disease may be partly explained 

by its ability to block endothelial cell expression of adhesion molecules (Xia et al., 1999; 

Calabresi et al., 1997). Chemokines are pro-inflammatory cytokines that are responsible 

for chemoattraction, migration and subsequent activation of leukocytes. Mice lacking the 

MCP-1 gene develop smaller atherosclerotic lesions than wild-type animals (Gosling et 

al., 1999). 

 

The first stage of inflammatory cell recruitment to the intima is the initiation of ‘rolling’ 

of monocytes and T-cells along the endothelial cell layer. This phenomenon is mediated 

by the selectin molecules which selectively bind ligands found on the inflammatory cells. 

Having been slowed down by interactions with selectins, the subsequent firm adhesion to, 

and migration of leukocytes through the endothelial cell layer is dependent upon the 

endothelial expression of adhesion molecules such as ICAM-1 and VCAM-1, and their 

binding to appropriate receptors on inflammatory cells. Once present in the intima, 

monocytes differentiate into macrophages under the influence of chemokines such as 

macrophage colony stimulating factor. Such molecules also stimulate the expression of 

the scavenger receptors that allow macrophages to ingest oxidised lipid and to develop 

into macrophage foam cells, the predominant cell in an early atherosclerotic lesion. The 

formation of scavenger receptors is also regulated by peroxisome proliferator-activated 

receptor-γ, a nuclear transcription factor expressed at high levels in foam cells (Tontonoz 

et al., 1998). 

 

In early atherosclerosis at least, the macrophage can be thought of as performing a 

predominantly beneficial role as a  ‘neutraliser’, ingesting potentially harmful oxidised 

lipid components in the vessel wall. This removal prevents ongoing activation of the 

overlying endothelial cells by modified LDL. Unfortunately, the inflammatory process 

itself can have significant effects on lipoprotein movement into the arterial wall. 

Specifically, inflammatory mediators such as tumour necrosis factor alpha (TNF-α) and 

interleukin-1 may increase binding of LDL to endothelium. Other cytokines produced by 

macrophages have beneficial effects on the evolution of the plaque. Some of these factors 

are chemoattractant for VSMCs, for example osteopontin (Shanahan et al., 1994; Liaw et 
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al., 1994), others are growth enhancing, such as platelet-derived growth factor. Under the 

influence of these cytokines, VSMC migrate from the media to the intima, where they 

adopt a synthetic phenotype, well suited to matrix production and protective fibrous cap 

formation. This can be thought of as a useful ‘plaque stabilising’ function of 

macrophages. 

 

However, activated macrophages have a high rate of apoptosis. Once dead, their lipid 

content is released and becomes part of the core of the plaque, contributing to its 

enlargement. The apoptotic cells also contain high concentrations of tissue factor, which 

may invoke thrombosis if exposed to circulating platelets (Zaman et al., 2000). 

 

Immunohistochemical studies have demonstrated that T-lymphocytes are present in 

atheromatous plaques, located predominantly in the subendothelial space. The cells are in 

an activated state, as evidenced by their expression of HLA-DR, CD25 (interleukin-2 

receptor) and CD30 (de Boer et al., 2000). The cells are mainly of the T-helper type 1 

class, characterised by the production of interleukin-2 and interferon gamma (IFN). 

These factors can up-regulate adhesion molecule expression by endothelial cells, thereby 

recruiting more cells to join the inflammatory process.  

 

It is now generally recognised that the pathological progression and consequences of 

atherosclerotic lesions are determined by dynamic interactions between inflammatory 

cells recruited in response to subendothelial lipid accumulation, and the local reparative 

‘wound healing’ response of surrounding VSMCs (Farzaneh-Far et al., 2001). 

 

1.2.3 Vascular smooth muscle cells 

 

VSMCs reside mostly in the media of healthy adult arteries, where their role is to regulate 

vascular tone. Thus, medial VSMCs contain large amounts of contractile proteins, 

including myosin, tropomyosin and alpha-actin. Continued expression of this 

‘contractile’ phenotype is maintained by the influence of extracellular proteins in the 

media, which act via integrins in the VSMC membrane. In atherosclerosis, however, the 
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cells become influenced by cytokines produced by activated macrophages and endothelial 

cells. Under these influences, VSMCs migrate to the intima and undergo a phenotypic 

change characterised by a reduction in content of contractile proteins and a large increase 

in the number of synthetic organelles. This migration of VSMCs from the media to the 

intima, and the consequent change from a ‘contractile’ to a ‘synthetic’ phenotype, was 

previously thought to be a crucial step in the development of atherosclerosis in the 

modified response to injury hypothesis. More recently, it has been recognised that intimal 

VSMCs in atherosclerotic plaques bear a remarkable similarity to VSMCs found in early 

developing blood vessels (Shanahan et al., 1998), suggesting that intimal VSMCs may be 

performing a beneficial, reparative role rather than a destructive one in atherosclerosis.  

 

VSMC are well equipped for this action. Firstly, they can express the proteinases that 

they require to break free from the medial basement membrane and allow them to migrate 

to the site of inflammation or injury in response to chemokines. Secondly, they can 

produce various growth factors, including vascular endothelial growth factor and platelet-

derived growth factor, that act in an autocrine loop to facilitate their proliferation at the 

site of injury. Finally, and most importantly, they produce large quantities of matrix 

proteins, in particular glycosaminoglycans, elastin and collagen isoforms 1 and 3, 

necessary to repair the vessel and form a fibrous cap over the lipid rich core of the lesion. 

This fibrous cap separates the highly thrombogenic lipid-rich core from circulating 

platelets and the proteins of the coagulation cascade, and also confers structural stability 

to the atherosclerotic lesion. And since the VSMC is the only cell capable of synthesizing 

this cap, it follows that VSMCs play a pivotal role in maintaining plaque stability and 

protecting against the potentially fatal thrombotic consequences of atherosclerosis 

(Libby, 1995). 

 

1.2.4 Cellular interactions and lesion stability 

 

Generally, early atherosclerosis progresses without symptoms until a lesion declares itself 

in one of two ways. As discussed above, macrophage foam cells may undergo apoptosis, 

especially in the presence of high concentrations of oxidised LDL. Their cellular 
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remnants then become part of an enlarging lipid-rich core. In this manner, plaque size 

increases, and there may be a consequent reduction in vessel lumen area. At times of 

increased demand, such as during exercise, this may be sufficient to cause ischaemic 

symptoms such as angina. More hazardous is if the plaque first presents with disruption 

of its fibrous cap, leading to exposure of the thrombogenic lipid core to the flowing 

blood. This is likely to result in subsequent platelet accumulation and activation, fibrin 

deposition and intravascular thrombosis. Depending on several factors, such as the extent 

of arterial thrombus, local fibrinolytic activity and collateral blood supply, the end result 

may be arterial occlusion and downstream necrosis. 

 

However, by studying the pathology of rupture plaques, several characteristics have been 

identified that seem to be predictive of the risk of rupture in individual lesions (Galis et 

al., 1994). Plaques that are vulnerable to rupture tend to have thin fibrous caps with a 

high ratio of inflammatory cells to VSMCs, and to contain a lipid core that occupies more 

than 50% of the volume of the plaque (Boyle, 1997; van der Wal et al., 1994). Of these, 

the most important is the cellular composition of the fibrous cap. Plaques containing a 

heavy inflammatory cell infiltrate and relatively few VSMCs have the highest risk of 

rupture (Davies, 1996). 

 

Inflammatory cells in plaques act to promote plaque rupture in a number of synergistic 

ways. Firstly, activated T-cells produce pro-inflammatory cytokines, typified by IFN, that 

directly inhibit VSMC proliferation (Warner et al., 1989) and almost completely shut 

down collagen synthesis (Amento et al., 1991; Libby et al., 1995). Thus, VSMC in the 

vicinity of activated T-cells in plaques are poorly able to lay down or repair extracellular 

matrix. Secondly, macrophage-derived inflammatory cytokines, in particular interleukin 

1-β (IL-1β) and TNF-α along with IFN from T-cells are synergistically cytotoxic for 

VSMCs, causing depletion in cell number by apoptosis (Geng et al., 1996). These 

cytokines are found at high levels in vulnerable plaques (Sukhova et al., 1999). Thirdly, 

activated macrophages can induce VSMC apoptosis by direct cell to cell contact (Boyle 

et al., 2000). Finally, and probably most importantly, macrophages secrete a variety of 

matrix metalloproteinases (MMPs) that degrade the matrix components of the fibrous cap 
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by proteolytic cleavage of its protein components (Libby, 1995). The production of 

MMPs is upregulated by inflammatory mediators such as TNF-α. As well as being under 

threat from this array of insults, VSMCs themselves within the fibrous cap of a mature 

plaque have a reduced ability to proliferate (Ross et al., 1984; Bennett et al., 1998) and an 

enhanced susceptibility to apoptosis (Bennett et al., 1997; Geng et al., 1997). Thus, 

inflammatory cells can destroy the fabric of the fibrous cap, and resident VSMCs are 

poorly equipped to compensate, particularly in the presence of inhibitory inflammatory 

cytokines. Importantly, all these features can be present in small, haemodynamically 

insignificant plaques that are clinically silent and angiographically invisible. Thus, plaque 

composition is far more important than plaque size in determining outcome. 

 

1.2.5 Two forms of plaque disruption – fibrous cap rupture and endothelial 

erosion 

 

Atherosclerotic plaques become life-threatening when they initiate clot formation in the 

vessel lumen and disturb blood flow. This can occur in two different ways. Either there 

can be fibrous cap rupture, with consequent exposure of the thrombogenic extracellular 

matrix of the cap and the tissue factor-rich lipid core to circulating blood, or less 

commonly, there is erosion of the endothelial cell layer covering the fibrous cap, also 

potentially leading to the build-up of platelet-rich thrombus in the artery. Endothelial 

erosion probably accounts for around 30% of acute coronary syndromes overall, and 

seems particularly common in females (Farb et al., 1996). Both forms of plaque 

disruption invariably lead to local platelet accumulation and activation. This may result in 

triggering of the clotting cascade, thrombus formation and, if extensive, vessel occlusion. 

Platelet-rich thrombus contains chemokines and mitogens, in particular platelet-derived 

growth factor, thrombin and transforming growth factor beta, that induce migration and 

proliferation of VSMCs from the arterial media to the plaque and initiate healing of the 

disrupted lesion (McNamara et al., 1996). Platelets also express CD40 on their cell 

membrane, which causes local endothelial cell activation, resulting in the recruitment of 

more inflammatory cells to the lesion and perpetuating the cycle of inflammation, plaque 

rupture and thrombosis. However, fibrous cap rupture or erosion does not invariably lead 
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to vessel occlusion. Up to 70% of plaques causing high-grade stenosis contain 

histological evidence of previous, sub-clinical plaque rupture with subsequent repair 

(Davies, 1995). This is particularly likely to occur if high blood flow through the vessel 

prevents the accumulation of a large occlusive thrombus. Thus, non-occlusive plaque 

rupture induces formation of a new fibrous cap over the organising thrombus which 

restabilises the lesion, but at the expense of increasing its size. Since this occurs 

suddenly, there is little opportunity for adaptive remodelling of the artery and the healed 

lesion may now impede flow sufficiently to produce ischaemic symptoms. This explains 

why patients with previously normal exercise tolerance may suddenly develop symptoms 

of stable angina pectoris. It also follows that, if lesions can grow as a consequence of 

repeated episodes of silent rupture and repair, a reduction of plaque rupture rate will slow 

the progression of atherosclerosis. 

 

In summary, therefore, atheromatous plaques may become larger by two methods: the 

first is a gradual increase in size as a consequence of macrophage foam cell apoptosis and 

incorporation into an enlarging necrotic lipid-laden plaque core. The second is a stepwise 

increase in size because of repeated, often silent episodes of plaque rupture or erosion 

with subsequent VSMC-driven repair. 

 

1.2.6 Inflammatory markers in atherosclerosis 

 

The cell biology of plaque development and rupture illustrates that atherosclerosis is 

fundamentally an inflammatory condition. Confirmation of this inflammatory basis has 

come from several landmark studies that have all demonstrated a correlation between 

serum levels of markers of systemic inflammation, principally C-reactive protein (CRP), 

and risk of a clinical event due to plaque rupture, including myocardial infarction, stroke, 

and sudden death (Ridker et al., 2000a; Albert et al., 2002; Sacks et al., 1999; Ridker et 

al., 1997; Ridker, 2001). However, unlike other systemic inflammatory conditions such 

as rheumatoid arthritis, levels of CRP in atherosclerosis are characteristically not elevated 

above the conventional normal range, and a correlation between CRP level and coronary 

events was only demonstrated after development of a highly sensitive assay for CRP (hs-
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CRP) that was capable of measuring levels below the lower limit of detection of 

conventional assays. Similar, though less compelling correlations with clinical events 

have also been published for other markers of inflammation including soluble ICAM-1 

(Ridker et al., 1998a), VCAM-1 (de Lemos et al., 2000; Peter et al., 1999), P-selectin 

(Ridker et al., 2001) and interleukin-6 -  the primary driver of CRP production (Ridker et 

al., 2000b). Finally, a recent study has confirmed the importance of local inflammation in 

the pathogenesis of unstable atherosclerosis, showing widepread activation of 

inflammatory cells across the coronary vascular bed in patients with unstable angina, 

regardless of the location of the culprit stenosis (Buffon et al., 2002). 
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1.2.7 The balance of atherosclerosis 

 

Atherosclerosis is a dynamic process where the balance between the destructive influence 

of inflammatory cells and the reactive, stabilising effects of VSMCs determines outcome. 

This balance can be tipped towards plaque rupture by factors such as an atherogenic 

lipoprotein profile, high levels of lipid oxidation, local free radical generation, and 

genetic variability in expression and activity of certain central inflammatory molecules. 

For example, an association between plaque progression and a polymorphism in the 

stromelysin-1 gene promoter has been described (Ye et al., 1996). It is also possible that 

infectious organisms might be involved in atherosclerosis, either as plaque initiators or as 

having some role in causing plaque rupture. This fiercely debated question has still to be 

resolved but chlamydia pneumoniae remains the most plausible candidate pathogen. It is 

found in plaques, localising at high concentrations within macrophages, but is rarely seen 

in normal arteries (Kol et al., 1998). Although these data imply a pathological association 

between the presence of chlamydia infection and atherosclerosis, neither a causative role 

nor a convincing association between serum markers of infection and ischaemic heart 

disease has been established. Animal work has shown that healthy rabbits that have been 

nasally inoculated with chlamydia develop extensive atherosclerosis (Muhlestein et al., 

1998). However, in humans the situation appears to be somewhat different. Two large 

prospective studies and an extensive meta-analysis of previous data have failed to show 

any association between serum markers of infection with chlamydia and incidence of, or 

mortality from ischaemic heart disease (Danesh et al., 2000; Wald et al., 2000). The 

results of these two studies have effectively excluded a strong association, but allow the 

possibility of a weaker link, and several trials of anti-chlamydial antibiotics for the 

prevention of ischaemic heart disease are currently in progress. 

 

The balance of atherosclerosis can be tipped towards plaque stability by a reduction in 

plaque inflammation, or by an increase in VSMC-driven repair. Lipid reduction, by 

whatever means, reduces clinical events. Evidence that this may be due to a plaque 

stabilising effect comes from animal studies which showed that statins reduced 

inflammatory cell number while increasing the VSMC content of plaques (Shiomi et al., 
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1995; Williams et al., 1998), changes that would be expected to enhance stability. More 

importantly, however, evidence from human clinical studies also points to a plaque 

stabilising effect of statins. Angiographic trials have shown that statins produce only a 

small, haemodynamically insignificant reduction in progression of established stenoses 

(MAAS Investigators, 1994; MAAS Investigators, 1994; Pitt et al., 1995; Jukema et al., 

1995). They also reduce new lesion formation, and, importantly, the number of new 

vessel occlusions. Occlusions arise after rupture of a plaque, leading to an occlusive 

thrombus in the context of a well-collateralised myocardial circulation. This seems to 

imply that statins are stabilising plaques by reducing rupture rate. This conclusion is 

supported by the results of all the large primary and secondary prevention studies, which 

have demonstrated that statins produce major reductions in events due to plaque rupture, 

such as myocardial infarction and stroke (Shepherd et al., 1995; Sacks et al., 1996; LIPID 

Study Group, 1998; 4S Study, 1994; Downs et al., 1998). Since statins have only a 

modest effect on plaque size, but cause profound reductions in number of clinical events, 

these studies highlight the inadequacy of angiography for the prediction of clinical 

events, and suggest that statins have beneficial effects on plaque inflammation in addition 

to, or as a result of, their lipid lowering effects. Importantly, this notion is supported by 

the observation that the reduction in clinical events due to statin therapy is accompanied 

by a parallel decrease in CRP levels that is unlikely to be due to effects of statins on non-

atherosclerotic inflammation (Ridker et al., 1998b; Jialal et al., 2001). In addition, in the 

first study of its kind, it has recently been shown that statins reduce inflammation and 

apoptosis, and increase collagen content in human carotid artery atherosclerosis (Crisby 

et al., 2001). 

  

Statin drugs may help stabilise plaques in a number of different ways. It is known that 

they can exert direct effects on endothelial cell function, inflammatory cell number and 

activity, VSMC proliferation, platelet aggregation and thrombus formation (Treasure et 

al., 1995; Katznelson et al., 1998; Negre-Aminou et al., 1997; Rosenson et al., 1998; 

Lacoste et al., 1995). Evidence that non-lipid lowering effects may be important in-vivo 

comes from animal studies in which pravastatin caused beneficial changes in plaque 

composition (but not size), even when lipids were maintained at pre-treatment levels 
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(Williams et al., 1998). Additionally, in mice, simvastatin has direct anti-inflammatory 

effects that are as potent as those of indomethacin (Sparrow et al., 2001). Recently, a 

newly recognised effect of statins as immune modulators has been described, whereby 

major histocompatability complex class II mediated T-cell activation is reduced by a 

variety of statins (Kwak et al., 2000). These observations point to potentially important 

effects of statins that are poorly understood and have yet to be fully defined. 

 

1.3 CAROTID ARTERY ATHEROSCLEROSIS 

 

Carotid artery atherosclerosis has a number of distinct features that distinguish it from 

other forms of the disease. It has been shown in clinical trials that carotid artery plaques 

at high risk of rupture are characterised by the presence of high-grade internal carotid 

artery stenosis. As the degree of stenosis increases, so does the risk of an embolic event 

(i.e. Transient Ischaemic Attack – TIA) (ECST Group, 1998; Barnett et al., 1998). 

 

However, as at other arterial sites, the degree of inflammation is also crucial in 

determining the risk of rupture of carotid plaques. Pathological studies have found that 

the fibrous cap in symptomatic patients is thinner, and more infiltrated with macrophages 

and T-cells than caps associated with asymptomatic plaques (Svindland et al., 1988; 

Jander et al., 1998; Feeley et al., 1991; Golledge et al., 2000). Others have demonstrated 

increased levels of macrophage-derived proteolytic enzymes in ruptured carotid plaques 

(Galis et al., 1994; Sukhova et al., 1999). 

 

Carotid plaque rupture can have different outcomes. Either there can be distal 

embolisation of platelet-rich thrombus with sustained, but reduced, blood flow, or 

otherwise, if the thrombus load is greater, complete occlusion of the artery may occur. 

Both situations can result in reduced cerebral perfusion and either TIA or stroke, 

depending on additional factors such as collateral blood supply, local thrombolysis and 

extent of cerebral artery atherosclerosis. 
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Consideration will now be given to the current practice of atherosclerosis imaging, and, 

based on the underlying pathobiology of the disease, to the potential role of new imaging 

modalities in detecting the atherosclerotic plaque at risk of rupture – the vulnerable 

plaque.  

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 



 24 

1.4 IMAGING THE ATHEROSCLEROTIC PLAQUE 

 

The idea of direct visualisation of atherosclerotic plaques is a worthwhile research and 

clinical goal for at least three reasons. Firstly, it might allow a better understanding of the 

natural history of atherosclerosis. Secondly, it might permit investigators to predict those 

plaques at risk of rupture. Thirdly, monitoring of atherosclerotic plaques with a reliable 

and reproducible technique might allow one to assess longitudinally the effects of plaque 

modifying drugs. This discussion will focus on the imaging of atherosclerosis in general, 

with specific examples being given of interesting applications in individual vascular beds. 

Imaging techniques can be divided according to whether or not they are invasive of the 

vasculature. 

 

1.4.1 Invasive imaging 

 

1.4.1.1 X-ray contrast angiography 

 

For the past 40 years, x-ray contrast angiography has been the universally accepted, 

standard modality for imaging of the vascular tree. The procedure is performed by 

introducing a catheter under x-ray guidance into the artery of interest and injecting radio-

opaque contrast dye into the lumen. The presence of atherosclerotic disease is judged 

indirectly, according to whether the lumen is regular and smooth, by the rate of contrast 

flow, and by whether contrast completely fills the distal artery. Whilst angiography is an 

excellent technique for the high-resolution definition of the site and severity of arterial 

stenoses, it does have a number of important drawbacks. 

 

Angiography is invasive and it requires the use of ionizing radiation. Both of these 

factors mean that it has a finite complication rate, and as such, it tends to be used in 

symptomatic individuals only. This precludes the prospect of its being used for serial 

monitoring of asymptomatic patients at high-risk of atherosclerosis. Angiography also 

gives no information whatsoever about the vessel wall, because the wall is not directly 

imaged. This means that no knowledge is gleaned about the inflammatory state or 
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composition of the plaque and thus no guide to the likelihood of plaque rupture. Finally, 

diffuse atherosclerotic disease may narrow the entire arterial lumen, and as a result 

angiography may underestimate the degree of local stenosis. It is well known that some 

plaques can be displaced outwards from the wall as a result of vessel remodelling, giving 

the angiographic impression of a normal arterial lumen despite significant atheromatous 

disease (Glagov et al., 1987). This has been demonstrated particularly in carotid 

atherosclerosis (Saito et al., 2002). 

 

1.4.1.2 Intravascular ultrasound 
 
This is a catheter-based method of assessing the arterial wall using sound waves. It is 

becoming widely used as an adjunct to percutaneous coronary intervention, where it can 

aid in the selection of the most appropriate transcatheter therapy (Fayad et al., 2001a; 

Vallabhajosula et al., 1997). The technique does allow the skilled operator to distinguish 

various elements of the atherosclerotic plaque, such as lipid core, fibrous cap and 

thrombus on the basis of their differing echogenicity. However, it is of little use in the 

evaluation of asymptomatic individuals who are not already undergoing percutaneous 

investigation. 

 

1.4.1.3 Intravascular angioscopy 

 

Rather than the indirect appreciation of the vessel wall and plaque that can be gained 

from intravascular ultrasound, angioscopy allows the direct visualisation of both elements 

(Fayad et al., 2001b; Vallabhajosula et al., 1997). Surface colour, the presence of 

thrombus and macroscopic features of plaque instability (such as fissuring and ulceration) 

can all be appreciated. Once again, however, this procedure is limited by its invasiveness 

and its current role is as a research tool. Additionally, one is only able to visualise the 

inner vessel surface, with no information obtained about the different layers that 

comprise the vessel wall. 
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1.4.1.4 Thermography 

 

This experimental technique relies on the fact that atherosclerotic plaques exhibit a range 

of temperatures. A study that examined carotid endarterectomy specimens demonstrated 

temperature heterogeneity over the surface of the plaque, with the hotter areas being more 

densely infiltrated with macrophages. Following on from this observation, a catheter-

based technique was developed to examine coronary arteries in vivo. It was shown that 

coronary artery plaques in patients presenting with acute coronary syndromes had higher 

temperatures than those with symptoms of stable angina (Verheye et al., 2002; Naghavi 

et al., 2001; Stefanadis et al., 2001; Stefanadis et al., 2000; Stefanadis et al., 1999), and 

moreover, that temperatures within plaques could be reduced with statin therapy 

(Stefanadis et al., 2002). Thermography might be combined with IVUS to yield both 

anatomical and functional information from the same plaque. 

 

1.4.2 Non-invasive imaging 

 

1.4.2.1 Surface ultrasound 

 

Accurate measurement of carotid wall thickness and some examination of plaque 

morphology can be carried out with surface B-mode ultrasound studies. The echogenicity 

of the plaque reflects its underlying composition, with a hypoechoic appearance on 

ultrasound being associated with the presence of lipids and haemorrhage, whereas a 

hyperechoic image suggests an underlying fibrous or calcified plaque. Both the NASCET 

and ACAS trials have shown that the degree of stenosis and its haemodynamic 

consequences are predictive of subsequent stroke (Barnett et al., 1998; Warlow et al., 

1996). High resolution B-mode ultrasound has become the first line investigation for 

evaluating suspected carotid artery disease. Measurements of the intima-media thickness 

have been shown to correlate with the extent of coronary atherosclerosis (O'Leary et al., 

1999). However, as with other ultrasound techniques, this method is highly operator-

dependent and has low reproducibility.  
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1.4.2.2 Electron beam computed tomography 

 

This technique uses a beam of electrons to produce an image with an acquisition time of 

only 100 milliseconds. Its primary role is to assess the amount of calcium in the arteries 

under evaluation (known as the calcium score). The utility of this measure lies in the fact 

that high calcium scores are predictive of advanced atherosclerosis in patients judged at 

intermediate risk of disease, but this technique cannot be said to assess any aspect of the 

plaque except its calcium content. Furthermore, there is insufficient good evidence to 

suggest that changes in coronary calcification correspond to changes in cardiovascular 

risk (Schmermund et al., 2001; Callister et al., 1998; O'Rourke et al., 2000). Finally, 

although both the presence of an elevated serum CRP level and a high coronary calcium 

score are independently predictive of cardiac events and cardiac death, it was shown 

recently that there is no association between the two (Redberg et al., 2000), which 

suggests that both markers are measuring different aspects of the same process. 

 

1.4.2.3 Nuclear scintigraphy 

 

Many radiotracers, targeted against molecules and cells involved in atherosclerosis, have 

been evaluated as potential candidates for imaging atherosclerosis. Targets have included 

lipoproteins, macrophages, vascular smooth muscle cells and endothelial cell adhesion 

molecules (Vallabhajosula et al., 1997; Fayad et al., 2001a; Naghavi et al., 2001; 

Rumberger, 2001; Chen et al., 2002). They have met with limited success however, 

because although they all accumulated to some extent in atherosclerosis, the signal to 

noise ratios were poor as a result of slow blood tracer clearance (Loscalzo et al., 1992). 

Some nuclear agents do appear more suited to imaging atherosclerosis, such as antibodies 

to the platelet glycoprotein 2b3a receptor (Mitchel et al., 2000), which have a better 

clearance rate from blood. Unfortunately, however, there has yet to emerge a single 

radiotracer that is ideal for not only imaging atheroma but also providing prognostic 

information about the risk of plaque rupture. 
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1.4.2.4 Magnetic resonance imaging 

 

High-resolution magnetic resonance (HRMR) has emerged as the leading non-invasive 

imaging modality for atherosclerotic plaque characterisation. It differentiates plaque 

components on the basis of several biophysical and biochemical parameters, including 

physical state, chemical composition and concentration, water content, molecular motion, 

or diffusion. HRMR has the huge advantage that it does not involve ionizing radiation, 

and studies can therefore be repeated to monitor the progression and regression of 

disease. 

 

High-resolution MR relies on the same underlying principles as other MR techniques. 

The patient is subjected to a high strength local magnetic field, usually 1.5 Tesla but 

increasingly greater, which aligns the protons in the body in the direction of the field. A 

radiofrequency pulse then excites these protons, and receiver coils detect the 

radiofrequencies emitted as they relax. Detected signals are influenced by the relaxation 

times (called T1 and T2), proton density, motion and flow, molecular diffusion, 

magnetization transfer and changes in susceptibility. Three additional magnetic fields 

(gradient fields) are applied during MRI; one selects the slice and two encode spatial 

information. The timing of the excitation pulses and the successive magnetic field 

gradients determine the image contrast.  

 

MR images can be "weighted" to the T1, T2, or proton density values through 

manipulation of the MR parameters (i.e. repetition time and echo time). In a T1-weighted 

(T1W) image, tissues with low T1 values will be displayed as hyperintense picture 

elements or pixels (high signal intensity) and, conversely, high T1 values will be 

displayed as hypointense pixels (low signal intensity). In a T2-weighted (T2W) image, 

tissues with high T2 values will be portrayed as hyperintense pixels, and those with low 

T2 values as hypointense pixels. Thus, a T1W and a T2W image of the same anatomy can 

appear quite different because an MR image is not a photograph, but a computerized map 

of radio signals emitted by the tissue under study. Finally, in a proton density–weighted 

(PDW) image the differences in contrast are proportional to the density of water and fat 
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within which the protons are incorporated. PDW images are also referred to as 

intermediate-weighted images because the contrast in the image is a combination of mild 

T1 and T2 contrast. 

 

1.4.2.4.1 Plaque characterisation with MR 

 

Much of the experimental work that has validated the technique of high-resolution plaque 

MR has been performed by Fayad and his group. They have shown that the physical 

components of the atherosclerotic plaque can be distinguished from one another on the 

basis of their MR relaxation times (Fayad et al., 2000a). The differing characteristics are 

described below in Table 1.1 [adapted from (Fayad et al., 2001b)]. 

 

 

  

 

Relative MR Signal Intensity* 

T1W  

 

PDW  

 

T2W  

 

Calcium Hypointense Very hypointense Very hypointense 

Lipid Very hyperintense Hyperintense Hypointense 

Fibrous Isointense to slightly 

hyperintense 

Isointense to slightly 

hyperintense 

Isointense to slightly 

hyperintense 

Thrombus  

 

Variable 

 

Variable 

 

Variable 

 

Table 1.1 

*Relative to that of immediately adjacent muscle tissue. 
 

 

 

In studies of atherosclerosis in rabbits, MR images have been shown to correlate well 

with pathology (Worthley et al., 2000). Furthermore, other investigators have tracked 
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both progression and regression of atheroma in the abdominal aorta (Worthley et al., 

2000; McConnell et al., 1999; Helft et al., 2001). Regression of atheroma was induced 

both by withdrawal of a high fat diet and by the use of statin therapy. Plaque 

complications such as thrombus have been detected and characterised using MR (Corti et 

al., 2002). MR technology is now sufficiently advanced to allow the imaging of 

abdominal atherosclerosis in animals as small as Apo-E knockout mice (Fayad et al., 

1998). Using a magnetic field strength of 9.4 Tesla, Fayad was able to generate an in-

plane resolution of between 50 – 97µm, with a slice thickness of 500µm. There was 

excellent correlation between MR images and aortic plaque histology. 

 

1.4.2.4.2 Atherosclerosis imaging with MR in humans 

 

Advances in both hardware and software have allowed rapid development of in vivo MR 

imaging of atherosclerosis in humans. In most cases, a dedicated carotid phased-array 

coil is used for this purpose (Hayes et al., 1996). Imaging has been carried out in the 

carotid arteries (Yuan et al., 2001; Yuan et al., 1998) where plaque volume was 

accurately determined by high-resolution MR scanning. Different plaque components can 

be accurately documented (Hatsukami et al., 2000) and plaque progression can be 

monitored with serial imaging (Corti et al., 2001; Zhao et al., 2001). Recently, even new 

blood vessel formation within advanced plaque has been imaged successfully using a 

combination of non-contrast and gadolinium-enhanced MR (Yuan et al., 2002a). In 

addition, reliable documentation of the state of the fibrous cap has been demonstrated 

(Yuan et al., 2002b). Prospective studies will be required to determine whether the 

appearance of a disrupted cap on a high-resolution MR study is predictive of future 

carotid territory ischaemic events. 

 

Other vascular beds have been imaged using MR, including peripheral arteries, where 

vessel remodelling after balloon angioplasty was accurately documented (Coulden et al., 

2000). Imaging of the coronary arteries with MR presents a special challenge for 

investigators; their deep location, small calibre and susceptibility to respiratory and 

cardiac motion artifacts mean that the most useful images have been obtained using an 
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MR coil embedded in a transoesophageal probe, although some investigators are having 

increasing success using a surface coil (Fayad et al., 2000b; Quick et al., 2002; Fayad et 

al., 2001a). Aortic atheroma has been visualised using MR with a torso coil (Fayad et al., 

2000c), the results correlating well with transoesophageal images. It must be recalled, 

however, that MR imaging can only give information concerning the anatomy of the 

plaque. It cannot demonstrate inflammation – the most important determinant of plaque 

rupture. 
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1.5 INTRODUCTION TO POSITRON EMISSION TOMOGRAPHY 

 

An introduction to the background, physics and chemistry of positron emission 

tomography (PET) relevant to this work will be provided here. There will be some 

expansion on image analysis and quantification in the chapters dealing with PET imaging 

of human carotid atherosclerosis (Chapter 5), and experimental atherosclerosis (Chapter 

6). 

 

It has been recognised since the 1930s that cancer cells use more glucose than healthy 

cells, with requirements being greatest in the fastest growing tumours (Warburg, 1930; 

Warburg, 1956). This is the basis for PET using 2-[18F]fluoro-2-deoxy-D-glucose (FDG). 

PET is an imaging modality that allows the quantification (and visualisation) of regional 

physiology, biochemistry and pharmacology. It is the most sensitive and specific means 

available for imaging molecular pathways and interactions in vivo. By providing such 

functional information, it is an excellent accompaniment to the anatomical information 

that can be derived from computed tomography (CT) and magnetic resonance imaging. 

 

PET involves the administration of a positron-emitting radiotracer, followed by the 

detection, using a PET scanner, of gamma photon pairs that result from positron-electron 

annihilations within the subject (Figure 1.1). Tomographic image reconstruction 

techniques, similar to those used in CT, are then employed to produce a three 

dimensional image of the distribution of the PET tracer in the subject. Analyses can be 

performed on the image data to derive quantitative information, for example metabolic 

rate for glucose, blood flow, oxygen extraction or receptor binding potential, depending 

on the tracer and the region under investigation. 
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1.5.1 Positron emission  

 

All radioisotopes used in PET decay, at least in part, by positron emission. Figure 1.1 is a 

schematic diagram representing a positron-emitting radioisotope. Positrons are positively 

charged electrons. They are emitted from the nucleus of certain radioisotopes that are 

unstable because of an excessive number of protons relative to neutrons and hence have a 

positive charge. Positron emission stabilizes the nucleus by removing the positive charge 

through the conversion of a proton into a neutron. In doing this, one element is converted 

into another, the latter having an atomic number one less than the former. For 

radioisotopes used in PET, the element formed from positron decay is stable (i.e., not 

radioactive). A positron emitted from a decaying nucleus travels a short distance 

(~0.6mm for 18Fluorine (18F)), losing energy through scattering collisions with electrons, 

before eventually annihilating with an electron. In this annihilation, the mass of the two 

particles is converted to energy (governed by Einstein’s formula, E=MC2), in the form of 

two 511 keV gamma photons, emitted at (almost) 180° to each other. The vast majority 

of these photons escape from the body and are recorded by the rings of detectors 

contained within the PET scanner. The distance that the positron travels in tissue before 

annihilating with an electron is short but important; it is this distance that is one of the 

factors that determines the maximum resolution of PET scanning. In addition, the two 

gamma rays are not emitted at exactly 180 degrees to each other, due to the non-zero 

momentum of the electron-positron system at annihilation: this factor also contributes to 

the theoretical limit of spatial resolution of PET. In practice, however, it is the finite 

detector size, scanner sensitivity and the need to smooth the dataset to limit noise that 

constrain resolution in most clinical settings. 

 

1.5.2 PET scanner 

 

A PET scanner consists of a cylindrical arrangement of rings of scintillation detectors. 

These are capable of detecting the annihilation photons emitted from electron-positron 

annihilations. Coincidence electronics are used to pair up detected photons; typically, two 

events detected in opposing arcs of the ring within 12nsecs of each other are deemed a 
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valid event. In this case, the positron decay is assumed to have occurred somewhere 

along a line joining the two detectors. The cylindrical configuration of detectors collects 

data sufficient for tomographic reconstruction of a quantitative 3-D image of the 

distribution of the tracer in the subject under study: this is known as an emission scan. 

Emission scans may be performed in two modes : 2-D or 3-D. In 2-D mode, annular rings 

made of lead or tungsten, known as septa, separate the detector rings from each other. 

This means that photons from decay events are rejected when they have originated 

outside the field of view, and also if they don’t travel perpendicular to the axis of the 

scanner, which would otherwise degrade the signal to noise ratio. 

 

The sensitivity of the PET scanner can be increased by a factor of up to five times by 

operating in 3-D mode. In this mode, the septa are withdrawn, allowing the acquisition of 

decay events between detectors in different planes of the scanner. However, this is done 

at the expense of a large increase in the amount of scatter, and the detection of other 

background events, especially from activity outside the field of view. In addition, the 

computing power required to process data acquired in 3-D mode is much greater than for 

2-D mode.  

 

1.5.3 Data corrections 

 

In PET, in order to obtain a quantitative image, corrections must be applied to the data 

gathered during the emission study. Corrections are applied for attenuation of the photons 

due to scattering that occurs en route to the pair of detectors; this is known as attenuation 

correction. The correction factor is obtained by calculating the ratio between two 

additional scans - a blank scan and a transmission scan. The blank scan is performed 

when the scanner is empty, and the transmission scan is done using a radioactive rod 

source (Germanium 68) which rotates around the patient once inside the scanner, but 

before the administration of FDG. In this project, in Chapter 5, the transmission scan 

image was used to provide a crude ‘CT-like’ image of the patient’s neck, in order to 

ensure that the carotid area was adequately covered by the field of view. 
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The emission dataset is also corrected for detector dead time (when the detector is 

processing a decay, there is a finite time before it can register a further decay – this is 

known as the dead time), random decays (events produced by pairing up of gamma 

photons from separate annihilations purely due to the chance that they occurred within 12 

nsecs of each other) and scatter (photon pairs Compton-scattered by collisions with 

electrons in the patient and also the detectors). Finally, corrections are applied to the PET 

data for both sensitivity and normalisation, making all imaging planes and lines of 

response equally sensitive, and cross-calibrating the image planes to a well counter to 

generate images in kilobequerels per millilitre (kBq/ml). 

 

1.5.4 PET tracers 

 

As positron emitters do not exist in nature, they must be manufactured in a dedicated 

particle accelerator known as a cyclotron. Because of the short half lives of most positron 

emitters, this facility needs to be close to the PET scanner itself – the exception being 18F, 

which has a relatively long half life (109.8 minutes). The majority of radiotracers used in 

PET are based upon the atoms carbon, nitrogen and oxygen as these are biologically 

important elements; therefore radioactive versions of these can be used to study important 

biological processes in vivo. The fourth key positron emitter is Fluorine-18. 18F can be 

introduced into the glucose structure, in the place of a hydroxyl moiety at the C-2 

position in the carbon ring, to produce fluorodeoxyglucose (FDG). FDG is a glucose 

analogue, and was used as the tracer for imaging atherosclerosis in this project. 

 

1.5.5 Metabolic pathway of FDG 

 

The fate of FDG once injected into the body is shown in Figure 1.2. It is taken up by 

metabolically active cells throughout the body in a similar way to glucose, and is 

therefore widely distributed. Its normal distribution in healthy tissues includes the brain, 

heart, kidneys and urinary tract. FDG is transported into cells via the facilitative glucose 

transporter protein system in the same way as glucose itself. There are at least nine of 

these structurally related molecules, which are known as GLUT 1–5, GLUT 7 and GLUT 
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10-12 (Brown, 2000). No tissue has been discovered where the GLUT 6 gene is 

expressed (Kayano et al., 1990; Brown, 2000; Burant et al., 1991). In addition, a tiny 

fraction of FDG enters the cell by passive diffusion, with the small remainder entering 

through a sodium-dependent glucose transporter. 

 

Once inside the cell, both glucose and FDG undergo the first step in the glycolytic 

pathway, being phosphorylated by the hexokinase enzyme to glucose-6-phosphate and 

FDG-6-phosphate respectively. After this reaction, however, the two molecules have 

different fates. Glucose is further metabolised down the glycolytic pathway. However, for 

stochiometric reasons, FDG-6-phosphate is unable to proceed further down this pathway. 

Additionally, it is a polar molecule, which prevents it from crossing the cell membrane 

and leaving the cell. FDG-6-phosphate can be dephosphorylated, by glucose-6-

phosphatase, but this enzyme is found at low concentrations in most cells. FDG thus 

becomes trapped in the cell in quantities that reflect the glucose usage of that cell 

(Gallagher et al., 1978). 

 

1.5.6 Quantification of cellular FDG accumulation 

 

One of the strengths of PET is the ability to perform quantitative studies. In its most basic 

form, relative quantification means that average values of tracer uptake can be compared 

in different areas of interest in the region under study. At the other end of the spectrum, 

absolute quantification allows the determination of physiological parameters in absolute 

units for the tissue of interest (e.g. blood flow, oxygen extraction, metabolic rate for 

glucose etc). Both forms of analysis are discussed in general terms below. 

 

1.5.6.1 Qualitative image analysis 

 

This is the commonest form of analysis in clinical PET studies. It involves simple visual 

inspection and interpretation of PET images, without an attempt at any form of numerical 

quantification. It is widely used in oncological PET to diagnose metastatic disease. The 
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accuracy of this method can be improved upon by careful co-registration with another 

imaging modality such as CT or MR. This technique is known as image fusion. 

 

1.5.6.2 Quantative image analysis 

 

1.5.6.2.1 Time-activity curves 

 

This method involves simple comparisons of mean tracer uptake over time in different 

regions of interest. For example, in brain studies, a region in the area of interest (e.g. 

tumour) might be compared with a control region comprising presumed normal brain 

tissue. This is known as a tissue time-activity curve (TAC). Significantly, there is no 

requirement for an input function such as blood FDG activity with this approach to 

quantification. Using the time-activity curve approach, one can crudely compare PET 

studies performed under similar conditions with one another by examining the shape of 

their respective time-activity curves.  

 

1.5.6.2.2 Standard uptake value 

 

The TAC method can be improved upon to allow numerical comparison between patients 

by normalizing the uptake of tracer. The most common example of such normalization is 

the standard uptake value (SUV), commonly used in oncology PET to differentiate 

benign and malignant tumours on the basis of differing degrees of FDG uptake. The 

tracer uptake is normalized for patient mass and administered radioactivity (see equation 

below). The calculation of an SUV allows a reliable measure of glucose metabolism to be 

made from a single image without the need for blood sampling.  

 

Tracer Uptake in ROI (MBq/ml) 

SUV = 

Activity administered (MBq) / Patient mass (Kg) 
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There are, however, a number of limitations with the SUV technique. Firstly, SUVs are 

only accurate if the uptake of tracer has reached steady state at the time of measurement.  

This is not always the case, because some tissues will continue to accumulate FDG for a 

number of hours after its administration. Therefore, in order to compare patients, PET 

data must always be acquired at the same time after injection. A second problem arises in 

diabetic patients, especially those that are obese, where high serum glucose levels can 

compete with FDG for entry in the cells (Wahl et al., 1992). A correction that reflects the 

blood glucose level should therefore be applied to the data before comparisons between 

patients can be made. 

 

1.5.6.3 Absolute quantification 

 

1.5.6.3.1 Full kinetic modelling 

 

Full kinetic modelling is the holy grail of PET quantification. As shown in Figure 1.2, 

FDG is not fully metabolised, and its behaviour can be characterised by a three-

compartment model with four rate constants (k1-k4). In many tissues, the concentration 

of the enzyme glucose-6-phosphatase is low, and k4 therefore approximates zero and 

FDG thus behaves like a tissue-bound tracer. Given this assumption, a single plateau PET 

image in conjunction with knowledge of k1, k2 and k3 and a dynamic arterial blood 

curve (input function) can be used to quantify FDG uptake in the region of interest. If the 

value of the rate constants is not known, it can be determined by acquiring a dynamic 

sequence of PET and blood data, and mathematically fitting these data to the 

compartment model. Finally, in order to convert FDG uptake into glucose uptake for the 

tissue of interest, a correction factor known as the ‘lumped constant’ must be applied to 

the data. This is equal to the ratio of the rate of FDG phosphorylation to the rate of 

glucose phosphorylation under steady state conditions (Schmidt et al., 1996). 
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1.5.6.3.2 Patlak plot 

 

An alternative approach to full kinetic modelling is a graphical technique known as a 

Patlak Plot. This method was developed to address the case where a tracer is irreversibly 

trapped in tissue. In reality, very few tracers truly become permanently trapped, as there 

is almost always a path out of the tissue. However, a tracer is considered irreversibly 

trapped if there is no significant efflux during the time period of the PET scan. For such 

cases, the Patlak Plot was developed (Albert Gjedde first proposed this approach in 1981 

(Gjedde, 1981), but Patlak's seminal 1983 paper in which he formally developed this 

method caused his name to be associated with it (Patlak et al., 1983)). 

 

Construction of a Patlak plot involves plotting an ordinate and an abscissa using various 

combinations of the input function and image data at each of the observed time points of 

the PET study. The beauty of the Patlak plot is that it becomes linear at those time-points 

when the free tracer compartment is at steady state. 

 

The mathematical derivation of the Patlak method is shown below, where CT is the 

concentration of FDG in a tissue region-of-interest, Cf is the concentration of free FDG in 

a tissue ROI, Cb is the concentration of bound FDG in a tissue ROI, Cp is the 

concentration of FDG in the plasma (derived from arterial blood sampling), k1-k3 are 

rate constants as shown in Figure 1.3 and t is the time elapsed since injection of FDG. 

 

The rate of change of free FDG in the tissue ROI is governed by the outward flux and the 

inward flux as below: 

 
Equation 1 : dCf / dt = k1•Cp – (k2 + k3)•Cf 

 
The rate of change of bound FDG in the tissue ROI is governed by the flux inwards 

(assuming k4 equals zero): 

 
Equation 2 : dCb / dt = k3•Cf 
 
The concentration of tissue FDG is the sum of free and bound FDG: 
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Equation 3 : CT = Cf + Cb 

 
Substituting for Cb by rearranging Equation 2: 

Equation 4 : CT = Cf  +  k3• ∫
t

Cf
0

 

At steady state: dCf / dt = 0 (assuming that the concentration of free FDG at steady state 

does not change with time) : 

 
From Equation 1 Cpk •⇒ 1 = (k2 + k3)•Cf 
 
Substituting into Equation 3: 
 

CT = 
( )

Cp
kk

k
•

+ 32
1 + •

+

•

)32(
31
kk
kk

∫
t

Cp
0

 

 
Divide by CP : 

(CT/CP) = 
)32(

1
)32(
31 0

kk
k

Cp

Cp

kk
kk

t

+
+•

+

• ∫
 

 
y         =       m        x     + c 
 
 

Thus if (CT/CP) is plotted against ∫
t

Cp
0

/ CP, then a line with a gradient equal to (k1• k3) / 

(k2 + k3) is obtained, with an intercept of (k1) / (k2 + k3). If the gradient term is 

multiplied by the plasma glucose concentration, and divided by the ‘lumped constant’, 

the answer will be the metabolic rate for glucose (MRGlc) of the region of interest 

(Patlak et al., 1983). The intercept term is the volume of distribution of FDG. 

 

In a later publication, Patlak showed that some assumptions in his earlier work could be 

relaxed (Patlak et al., 1985). He stated that the tracer need not be trapped "forever", but 

that the net influx must be positive for an appreciable duration of time, i.e. the tracer can 

be transiently irreversibly bound. 
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Patlak analysis is employed in Chapter 5 to analyse FDG uptake in dynamic PET studies 

of carotid artery atherosclerosis. 

 

1.5.7 Partial volume effect 

 

A key limitation to all forms of quantification in PET within small regions of interest is 

the partial volume effect. This is a consequence of the inherent resolution of PET. 

Whenever objects with dimensions less than approximately twice the spatial resolution of 

PET are studied, the apparent activity in a hyperintense object is decreased, whilst that in 

a hypointense object is increased. For objects with a diameter equal to the spatial 

resolution, the apparent activity in a hyperintense object may be less than 50% of the true 

value (Mazziotta et al., 1981; Marsden, 1999). As with quantification of FDG uptake, 

once again, this topic is discussed more fully in Chapter 5. 
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1.6 PROJECT DESIGN 

 

The primary hypothesis behind this work was that FDG-PET would be able to image and 

quantify inflammation within human atherosclerotic plaques, and further that unstable 

plaques might be highlighted by virtue of their higher metabolic activity in comparison to 

stable plaques.  

 

There are several lines of evidence backing up this hypothesis. Firstly, unstable plaques, 

prone to fibrous cap rupture and clinical events, have a high macrophage to vascular 

smooth muscle cell ratio (Davies, 1996). Macrophages from unstable plaques are highly 

activated, producing MMPs and inflammatory cytokines, and ingesting oxidised lipid 

through scavenger receptors. A study using a sensitive thermistor (Casscells et al., 1996) 

demonstrated increased temperatures within excised human carotid plaques compared to 

surrounding tissue, which was interpreted as reflecting the high metabolic activity of 

plaque inflammatory cells. 

 

Secondly, it has been shown that macrophages, contained within tumour stromal tissue, 

avidly accumulate FDG, and may be responsible for up to 30% of the total tumour FDG 

uptake (Kubota et al., 1992; Kubota et al., 1994). Additionally, in an experimental model 

of subcutaneous inflammation in rats, macrophages were responsible for taking up the 

largest proportion of FDG of all cells within the lesions (Yamada et al., 1995). 

 

Thirdly, there are several reports of the use of FDG-PET imaging of atherosclerosis in 

animal models, which have been published in abstract form (Vallabhajosula et al., 1996; 

Badimon et al., 1999). The methods used in these reports differ significantly from those 

devised for this project, but nevertheless are supportive of the principle hypothesis. 

 

Therefore, firstly, it was determined whether a monocyte cell line might be capable of 

accumulating tritiated deoxyglucose (HDG) - an in vitro analogue of FDG - in cell 

culture conditions. Having established that this was the case, other experiments were 

devised to change the metabolic activity of the monocytes, to see if these differences 
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would be reflected by changes in HDG uptake. Similar experiments were then performed 

with freshly isolated human macrophages in culture. The results are described in Chapter 

3. 

 

Having established that macrophages would accumulate HDG, and that changes in 

activation were reflected by changes in HDG uptake, it was investigated whether human 

carotid atheroma removed from symptomatic patients might accumulate FDG, and 

furthermore, whether the degree of accumulation might correlate with the macrophage 

content of the plaques imaged. Autoradiographic studies were carried out to confirm the 

findings. Results from this group of experiments are shown in Chapter 4. 

 

The strategy outlined above, firstly using isolated macrophages and then carotid plaques 

yielded promising results, and suggested that it might be profitable to proceed to FDG-

PET imaging of carotid artery disease in symptomatic patients, the results of which are 

presented in Chapter 5.  

 

Finally, in pilot experiments, a rabbit model of atherosclerosis was established to 

investigate two related questions: firstly whether a small animal PET scanner might 

detect atheroma, and secondly whether FDG-PET could image and perhaps quantify 

atherosclerosis progression and its subsequent regression, and these results are presented 

in Chapter 6. 
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Figure 1.1 The process of positron emission 

p=proton, n=neutron, v=neutrino, e=electron 
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CHAPTER 2 
 

MATERIALS AND METHODS 
 

2.1 MATERIALS 

 

2.1.1 General laboratory reagents 

 

2-[18F]fluoro-2-deoxy-D-glucose     Cyclotron,WBIC 

2-Deoxy-D-[1-3H]glucose      Amersham 

Acetone        BDH 

Amphotericin B       Sigma 

Bovine serum albumin       Sigma 

Dimethylsulphoxide       Sigma 

Ethylene diamine tetra-acetic acid     Sigma 

Fluorescent mount medium      Dako 

Foetal calf serum       Sigma 

Histopaque-1077       Sigma 

Hoerscht nuclear stain       Sigma 

Hydrogen peroxide       Sigma 

Interferon-γ        Sigma 

Iodoacetic acid       Sigma 

L-glutamine        Sigma 

Lipopolysaccharide E Coli Serotype 026:86 (TCA extract)  Sigma 

Lipoprotein-deficient serum      Sigma 

Liquid scintillation fluid (Ultima Gold XR)    Packard 

Low density lipoprotein, oxidised and native    Sigma 

Medium 199        Sigma 

Methanol        BDH   

Niopam 300        Merck 

Paraformaldehyde       BDH 

Penicillin        Sigma 
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Phorbol myristate acetate      Sigma 

Phosphate-buffered saline tablets     Oxoid 

Polysucrose/sodium diatrizoate (Ficoll-Hypaque)    Sigma 

Soluene 350        Packard 

Streptomycin        Sigma 

Trypan blue        Sigma  

Tumour Necrosis Factor-Alpha     Sigma 

Xylene         BDH 

 

2.1.2 Materials for imaging experiments 

 

Alphaxalone/alphadolone (Saffan)     Schering-Plough 

Cholesterol-enriched (0.2%) rabbit diet     SDS 

Fiducial markers       Intermark 

Fogarty balloon embolectomy catheters    Baxter 

Iopamidol        Merck 

Isoflurane        Rhodia Organique 

New Zealand White rabbits (female)     Charles River  

Pentobarbitone (Euthatal)      Rhone Merieux 

Papaverine        Rhone Merieux 

Standard rabbit diet       SDS 

Sutures (ethilon/vicryl)      NHS supplies 

 

2.2 GENERAL STOCK SOLUTIONS 

 

Phosphate-buffered saline 

10 PBS tablets in1L H20 

 

Ethylenediamine tetra-acetic acid 

For 0.5M solution, 93.05g Na2EDTA.2H2O dissolved in 350ml H2O (dissolved in 

fume cupboard); pH adjusted to 8.0; made up to 500ml in H2O. 

 

Blocking buffer for immunocytochemistry 

3% (w/v) Bovine serum albumin made up in PBS 
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Destain solution for immunohistochemistry 

250ml methanol, 4ml 1M HCl, made up to 500ml in H2O. 

 

Scott's blueing solution 

10g MgSO4, 1g NaHCO3 in 500ml H2O. 

 

Tris-buffered saline 

For 10x stock solution: 87.66g NaCl, 12.11g Tris base in 800ml H2O; pH adjusted to 

8.0, made up to 1l in H2O. 

 

2.3 EXPERIMENTAL METHODS 

 

Except for methods relating to histological analysis of tissue, which are described 

below, the methods used for the work in each individual chapter will be described 

there. This is because there are only a few methods that are common to more than one 

chapter. 

 

2.3.1 Histology protocols 

 

Tissues were paraffin-embedded, sectioned and mounted on slides by Mrs N Figg in 

the University of Cambridge Department of Cardiovascular Medicine 

 

2.3.1.1 Anti-smooth muscle cell immunochemistry for animal studies 

 

Slides were deparaffinised in xylene (twice for 10 minutes), then hydrated by passing 

through graded alcohols (100%, 90% and 70% ethanol for 3 minutes each) into 

distilled water (5 minutes). They were then heated in a microwave with citrate buffer 

pH6 twice for 5 minutes. After cooling by placing under running tap water for 10 

minutes, slides were equilibrated in PBS for 5 minutes. To abolish endogenous 

peroxidase activity, slides were incubated for 10 minutes in 0.3 % (v/v) hydrogen 

peroxide in methanol, and were then washed for 5 minutes in running water and twice 

for 5 minutes in PBS. The slides were then blocked by incubation with 5% horse 

serum in PBS for 30 minutes at room temperature. The blocking buffer was drained 

off and a solution of primary antibody was applied for 1 hour (Alpha smooth muscle 
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actin clone 1A4, M0851, Dako, UK). The antibody was used at a concentration of 

1:50 (v/v) in 5% horse serum in PBS. This antibody is a murine monoclonal antibody. 

The slides were then washed twice for 5 minutes in PBS, and secondary antibody 

solution (biotinylated rabbit anti-mouse antibody [Vector], 1/400 [v/v] in PBS) was 

applied for 30 minutes. After a further 2 washes in PBS, sections were incubated in 

Avidin-Biotin Complex (Vector) for 30 minutes, and washed twice more with PBS.  

Diaminobenzidine (Sigma) was then applied for 1-5 minutes, the progress of the 

reaction being assessed through the microscope. The slides were washed in running 

tap water for 5 minutes and counterstained with Harris’s Haematoxylin (Sigma) for 5 

minutes, washed again in water for 5 minutes and dehydrated by reversing the 

rehydration regime described above. Coverslips were then applied. 

 

 

2.3.1.2 Anti-macrophage immunochemistry for animal studies 

 

Slides were deparaffinised in xylene (twice for 10 minutes), then hydrated by passing 

through graded alcohols (100%, 90% and 70% ethanol for 3 minutes each) into 

distilled water (5 minutes).  They were then heated in a microwave with citrate buffer 

(pH6) twice for 10 minutes. They were cooled for 20 minutes under running tap water 

and then washed in milli-Q water for a further 5 minutes. They were washed next in 

tris-buffered saline (TBS) for 5 minutes (pH 7.4-7.6). To abolish endogenous 

peroxidase activity, slides were incubated for 15 minutes in 3% (v/v) hydrogen 

peroxide in TBS at room temperature, and were then washed twice for 5 minutes in 

TBS. The slides were then blocked by incubation with horse serum diluted 1:5 in TBS 

for 30 minutes at room temperature. The excess serum was wiped away, and the slides 

were incubated with the primary antibody (RAM 11, M0633, Dako, UK)  diluted 1:50 

(v/v) in TBS for 30 minutes. They were then washed twice in TBS for 5 minutes, and 

incubated with biotinylated secondary goat anti-mouse antibody for 30 minutes (Dako 

Duet Kit K0492), and washed again in TBS twice for 5 minutes. The slides were then 

incubated for 30 minutes with ABComplex/HRP (Dako Duet Kit), and washed twice 

for 5 minutes in TBS. They were then incubated with DAB working solution (Vector 

SK4100), the progress of the reaction being monitored under a microscope. Finally 

they were washed in milli-Q water for 5 minutes and then counterstained with 

haematoxylin for 20 seconds and washed in tap water for 5 minutes. They were then 
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dehydrated through graded alcohols, cleared in xylene and mounted in DPX. 

Coverslips were then applied. 

 

2.3.1.3 Anti-macrophage and smooth muscle cell immunochemistry for human 

studies 

 

Slides were deparaffinised in xylene (twice for 10 minutes), then hydrated by passing 

through graded alcohols (100%, 90% and 70% ethanol for 3 minutes each) into 

distilled water (5 minutes).  They were then heated in a microwave with citrate buffer 

(pH6) twice for 5 minutes. After cooling by placing under running tap water for 10 

minutes, slides were equilibrated in PBS for 5 minutes. To abolish endogenous 

peroxidase activity, slides were incubated for 10 minutes in 0.3 % (v/v) hydrogen 

peroxide in methanol, and were then washed for 5 minutes in running water and twice 

for 5 minutes in PBS. Slides were then incubated in normal serum for 10 minutes. The 

serum was then drained from the sections and they were incubated in Dako mouse 

anti-human CD68 antibody (M0876 clone PG-M1) at a concentration of 1:100 (v/v) 

for 1 hour. After washing 3 times for 5 minutes in PBS, secondary antibody was 

applied for 30 minutes and again the slides were washed 3 times for 5 minutes each in 

PBS. Slides were incubated with Avidin-Biotin Complex (Vector) for 30 minutes and 

finally washed 3 times for 5 minutes each with PBS. DAB chromogen with Nickel 

enhancement (Vector) was applied for 5 minutes, after which the sections were well 

rinsed in running tap water. They were incubated with 0.01% avidin for 10 minutes, 

washed 3 times for 5 minutes in PBS, and then incubated with 0.001% biotin for 10 

minutes. After another 3 x 5 minute washes with PBS, mouse anti-human smooth 

muscle antibody (Dako M0851 clone 1A4) was applied at a concentration of 1:50 

(v/v) for 30 minutes. Slides were then washed again in PBS, 3 times for 5 minutes, 

and incubated with Dako envision Polymer secondary antibody (catalogue number 

4006) for 30 minutes, following which they were washed again for 5 minutes in PBS 

3 times. NovaRed chromogen (Vector SK4800) was applied for 5 minutes, and the 

slides were counterstained with Carazzi’s haematoxylin for 1 minute. They were 

washed again in water for 5 minutes and dehydrated by reversing the rehydration 

regime described above. Coverslips were then applied. 
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2.3.2 Haematoxylin and eosin staining 

 

Sections were deparaffinised in xylene (twice for 10 minutes), then hydrated by 

passing through graded alcohols (100%, 90% and 70% methanol for 5 minutes each) 

into distilled water (5 minutes). Slides were immersed in Harris’s Haematoxylin 

solution (Sigma) for 5 minutes, then placed in destain solution for 15 seconds. The 

slides were then immersed in Scott’s solution for 5 minutes, followed by immersion in 

Eosin (Sigma) for 3 minutes. They were rinsed briefly in distilled water and then 

rapidly dehydrated by reversing the rehydration regime above. Finally, coverslips 

were applied. 

 

 

2.4 STATISTICAL ANALYSIS 

 

Decisions concerning the statistical methods used in this work were taken after 

discussion with Dr Chris Palmer and Mrs Barbara Arch, statisticians at the Centre for 

Applied Medical Statistics, University of Cambridge.  

 

Results are expressed as mean ± standard error of the mean (SEM) with 95% 

confidence intervals in brackets where appropriate (95% CI). Error bars on graphs 

represent SEM. Statistical significance at the 5% level is expressed graphically by the 

symbol ‘*’. 

 

The unpaired two-tailed t-test was used to compare uptake of HDG in monocytes and 

macrophages under different conditions in Chapter 3.  

 

Pearson’s r-test was used to investigate correlations between FDG uptake and cell 

type in the in-vitro work described in Chapter 4. P values were generated from 

Pearson’s r-test using hypothesis testing (Altman, 1991). 

 

The paired two-tailed t-test was used to compare FDG accumulation in symptomatic 

and asymptomatic plaques in the human studies described in Chapter 5. 
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Paired and unpaired two-tailed t-tests were used as appropriate in Chapter 6 to 

compare cholesterol levels and aortic FDG uptake between different groups of 

animals. 
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CHAPTER 3 
 
THE CHARACTERISTICS OF HDG UPTAKE IN A MONOCYTE 

CELL LINE (THP-1) AND IN HUMAN MACROPHAGES IN 

CULTURE 

 
 
3.1 INTRODUCTION 
 
 
The primary objective of the research described in this chapter was to test the 

hypothesis that tritiated deoxyglucose (HDG) - an in-vitro analogue of 

fluorodeoxyglucose (d'Argy et al., 1988) (Kubota et al., 1992)- would accumulate in 

proportion to cellular metabolic activity. The hypothesis was examined in two 

populations of cells; an immortalised monocyte cell line (THP-1), and freshly isolated 

human monocytes that were allowed to differentiate into macrophages in culture. 

These cell populations were chosen because their metabolic activity can be easily 

manipulated to ascertain if HDG uptake varies. These experiments form a basis for 

the work undertaken in the following chapters, which address the measurement of 

FDG uptake into freshly resected human atherosclerotic plaque in vitro, human 

carotid plaque in vivo, and experimental atherosclerosis in a rabbit model. 

 

As highlighted in Chapter 1, monocytes (which differentiate into macrophages once 

they have left the bloodstream and entered the plaque) play a crucial role in plaque 

rupture. Plaques containing a high proportion of activated macrophages in relation to 

vascular smooth muscle cells have the greatest risk of rupture. This is because 

macrophages within plaque are responsible for the production of toxic cytokines and 

matrix metalloproteinases, and the induction of smooth muscle cell apoptosis (Davies, 

1996) which both lead to fibrous cap weakening. As a first step towards imaging 

atherosclerosis, it was postulated that this high metabolic activity seen in plaque 

macrophages might be reflected in measurable accumulation of HDG in cultured 

cells. 

 

Inflammatory cells, such as macrophages and neutrophils, like tumour cells, 

predominantly metabolise glucose. When stimulated, they can increase the expression 
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of transporter proteins that facilitate the movement of glucose into the cell (Gamelli et 

al., 1996) to support the greater energy required in the activated state (Hagi et al., 

2000; Chakrabarti et al., 1994; Fukuzumi et al., 1996). Macrophages mainly express 

glucose transporter protein 1 (GLUT 1), the levels of which are increased 

substantially after stimulation with lipopolysaccharide (LPS), either alone or in 

combination with TNF-α (Fukuzumi et al., 1996; Gamelli et al., 1996), to allow 

increased glucose entry into the cells. Also present on human macrophages is GLUT 

3, which is expressed at higher levels on the cell surface after the respiratory burst 

(Ahmed et al., 1997). Human macrophages do not, however, express the insulin-

sensitive GLUT 4 transporter subtype (Daneman et al., 1992; Estrada et al., 1994), 

whose mRNA is increased after insulin challenge. 

 

In this chapter, the uptake of HDG in two similar cell populations was examined. 

Initially, the immortalised monocyte THP-1 cell line was used, because it provided a 

plentiful source of monocytes without the need for lengthy and expensive extraction 

of monocytes from either buffy coats or peripheral blood. This cell line was originally 

derived from a 1 year old patient with acute monocytic leukaemia (Tsuchiya et al., 

1980). The cells are morphologically and functionally similar to non-immortalised 

human monocytes, in that they express Fc and c3b receptors, contain lysosomes and 

are capable of phagocytosis (Tsuchiya et al., 1980). The cells can be differentiated in 

culture to a macrophage-like phenotype by treatment with the protein kinase C 

activator phorbol myristate acetate (PMA), resulting in a loss of proliferation, 

adherence to cultureware, phagocytosis of latex beads and expression of the surface 

markers CD14 and CD11b. (Schwende et al., 1996a; Asseffa et al., 1993a; Akuzawa 

et al., 2000a). 

 

Subsequently, the uptake of HDG in human macrophages was evaluated. These cells 

were isolated as monocytes from buffy coats, and then differentiated to macrophages 

over the course of seven days in culture (Boyle et al., 2001; Gordon et al., 1995). 

 

Finally, both THP-1 cells and macrophages were treated with cellular activators, and 

the effect of these interventions on HDG uptake was assessed. 
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3.2 METHODS 
 
 
3.2.1 General cell culture techniques 
 
 

Human peripheral blood-derived monocytes and macrophages were grown in Medium 

199 (M199), supplemented with 100IU/ml penicillin, 100µg/ml streptomycin, 

250µg/ml amphotericin B and 4mmol/l L-glutamine. THP-1 cells were grown under 

identical conditions, except they did not receive amphotericin supplements. Culture 

medium for all cells was enriched with 20% foetal calf serum (FCS). Cells were 

maintained in 5% CO2 at 37oC in a humidified incubator. All manipulations of live 

cells were performed in a Class II laminar flow hood. Cells were counted using a 

haemocytometer (Neubater). All cells contained within four grids were counted, and 

the density of the cell suspension was determined from the formula: 

 

Number of cells / ml = (Total cell number in 4 grids) 

4 x 104 

 
Cell viability was assessed using trypan blue incubation as follows - cells were 

stained in filter-sterilised 0.2% trypan blue in PBS for 5 minutes, washed in PBS and 

then counted on a haemocytometer. Cell viability was calculated as the number of  

cells that excluded trypan blue as a proportion of the total cell number. 

 
 
3.2.2 Culture of THP-1 cells 
 
 
THP-1 cells were purchased from the European Collection of Cell Cultures. Cells 

were grown in suspension, in Corning T75 tissue culture flasks containing 50 mls 

medium. The medium was changed and the cells were split every 3 days. Cells were 

maintained in culture at a density of approximately 5 x 105 cells/ml. 
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3.2.3 Isolation of peripheral blood-derived mononuclear cells 

Fresh buffy coats, rich in leukocytes, were obtained from the National Blood 

Transfusion Service. Human peripheral blood mononuclear cells were isolated from 

them using established methods (Boyle et al., 2001; Geng et al., 1992a). Aliquots of 

35 mls of buffy coat were spun through 15mls of polysucrose/sodium diatrizoate 

mixture in a Sorvall centrifuge at 2500 rpm for 35 minutes. The interface between 

plasma and hypaque was removed. Microscopic examination of this layer confirmed 

that it consisted of human peripheral blood mononuclear cells (PBMC), mainly 

monocytes and lymphocytes, with some platelets and red cells. The PBMCs were 

washed in 110%PBS / 0.5mM EDTA during two further 5 minute centrifuge spins at 

1400 rpm to remove platelet and red cell contamination. 

3.2.4 Purification of monocyte fraction 

The purification method used relies on the fact that monocytes adhere more quickly 

and more firmly to plastic culture wells than lymphocytes. PBMCs were counted, and 

1ml aliquots containing 2 x 106 cells were pipetted into plastic 24-well tissue culture 

plates (Lab-Tek) and incubated at 37°C for 45 minutes. The wells were then washed 

twice with M199 to remove the non-adherent lymphocytes. Finally, 1 ml M199 was 

added to each well and the cells were cultured for 7 days. This time period allows the 

monocytes to differentiate into macrophages (Boyle et al., 2001). The cells obtained 

after the purification steps were shown to be highly pure monocytes by 

immunocytochemistry (see below), with a viability of approximately 95% by trypan 

blue assay. 

3.2.5 Immunocytochemical characterisation of monocytes 

PBMCs were isolated from buffy coats as in Section 3.2.3. The cells were seeded in 

8-well plates (Lab-Tek) at a density of 0.2 x 107 cells per well in 0.2 mls M199. 

Monocytes were purified from PBMCs as in Section 3.2.4. After 24 hours in culture, 

each well was washed twice with PBS for 5 minutes. A 200µL aliquot of chilled 

acetone (4°C) was added to each well for 10 minutes as a cellular fixative. The wells 

were then washed again with PBS twice for 5 minutes. Blocking buffer was added for 

60 minutes to block non-specific antibody binding. 
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Cells were then incubated in darkness with primary antibody for 60 minutes (FITC-

labelled mouse IgG2a kappa anti-human CD14 monocyte (Dako)), diluted in blocking 

buffer at 1:10 (v/v). Appropriate negative control antibody was used at the same 

concentration (FITC-labelled mouse IgG2a (Dako)). After one hour the wells were 

washed three times with PBS for 5 minutes. Hoerscht (50µg/ml) was then added to 

each well as a nuclear counterstain, 100µL per well. The plastic dividers between the 

wells were removed, fluorescent mount medium was added, and coverslips applied 

(BDH). The coverslips were sealed with nail varnish (Estee Lauder). Plates were 

stored in darkness at 4°C overnight, and then examined using fluorescence 

microscopy the following day. 

3.2.6 Analysis of HDG uptake over time in THP-1 cells 

 

Approximately one million THP-1 cells in a volume of 900µL M199 were placed into 

eppendorf tubes (1.5 ml). 1 microcurie of HDG in 100µL M199 was added to each 

tube and the eppendorfs were incubated at 37°C. To assess the degree of HDG uptake 

at different times, eppendorfs were batched into groups of three, and iodoacetic acid 

(10µL of 1mM solution) was added to halt HDG uptake to one set of tubes after 10 

minutes, another after 30 minutes, another after 60 minutes and finally the last set of 

three tubes was halted after 120 minutes. Iodoacetic acid is a potent glycolytic 

pathway inhibitor which acts on the enzyme glyceraldehyde-3-phosphate 

dehydrogenase (Rego et al., 1999). It has been shown to inhibit HDG uptake via the 

glucose transporter proteins (Waki et al., 1997). As controls, one eppendorf in each 

group was treated with iodoacetic acid at time = 0. Eppendorfs were then centrifuged 

in a benchtop centrifuge (MSE) at 13000rpm for 5 minutes to pellet the cells. 500µL 

of supernatant was removed from each eppendorf, added to 3mls of liquid scintillation 

fluid, and counted in a Packard Tricarb liquid scintillation counter. 

 

The cell pellet was washed three times with PBS and resuspended in 1 ml volume. It 

was then dissolved overnight in Soluene 350 at room temperature (this solvent is a 

mixture of toluene and ammonium hydroxide that dissolves cell membranes, allowing 

efficient mixing of dissolved cells and scintillation fluid to ensure accurate counting). 
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After 12 hours, 3mls of liquid scintillation fluid was added to the dissolved cell 

suspension, the mixture placed in scintillation vials and counted in the scintillation 

counter. 

 

3.2.7 Analysis of HDG uptake over time in human macrophages 

 

A similar protocol was used to that described for THP-1 cells above. The main 

differences occur because macrophages in culture are adherent to plastic cultureware. 

Therefore, after incubation with HDG has been completed, cells have to be removed 

from the plastic wells with a dilute EDTA washing step. 

 

Human monocytes were isolated and purified as described in Sections 3.2.3 and 3.2.4. 

They were seeded in 24-well plates at a density of approximately 1 x 106 cells per 

well. The cells were cultured for 7 days to allow differentiation to macrophages 

(Boyle et al., 2001). Then, HDG (1µCi) was added to each well at time = 0. The 

experiment was performed with n = 3 for each timepoint. Uptake of HDG was halted 

by the addition of 10µL iodoacetic acid per well at predetermined timepoints. 500µL 

of fluid was then pipetted from each well, added to 3mls of liquid scintillation fluid, 

and counted in a Packard Tricarb liquid scintillation counter. Adherent macrophages 

were removed from the wells by vigorous pipetting with ice-cold 110% PBS / 0.5mM 

EDTA solution, and transferred to eppendorfs. Inspection of the 24 well plates with a 

phase contrast microscope confirmed that adherent cells had been removed. The cells 

were then counted, pelleted, washed with PBS and dissolved overnight in Soluene 

350, in an identical manner to the THP-1 cells. After 12 hours, 3mls of liquid 

scintillation fluid was added to the cell suspension, the mixture placed in scintillation 

vials and counted in the scintillation counter. 

 

3.2.8 Analysis of HDG uptake in THP-1 cells after stimulation with PMA 

 

One million cells were incubated with 0.1µL PMA (1mg/ml) in eppendorf tubes. 

Controls were treated with PBS. After 18 hours of incubation, HDG uptake was 

assessed by adding 1µCi HDG per tube, and incubating at 37°C for one hour. HDG 

accumulation was halted after this time by the addition of 10µL iodoacetic acid per 
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tube. Cells were then spun down, washed and scintillation counted as in Section 3.2.6. 

Experiments were performed in triplicate. 

 

3.2.9 Analysis of HDG uptake in human macrophages after activation with 

various agonists 

 

Human monocytes were isolated and purified as described in Sections 3.2.3 and 3.2.4. 

They were cultured in 24-well plates at a density of approximately 1 x 106 cells per 

well. The cells were cultured for 7 days to allow differentiation to macrophages 

(Boyle et al., 2001). Cellular agonists were then added, at different concentrations and 

times, as described in the Results section (3.3.7). After agonist treatment, HDG 

uptake at 60 minutes was assessed by adding 1µCi HDG per well, stopping uptake 

after 60 minutes with 10µL iodoacetic acid and then removing adherent macrophages 

by vigorous pipetting with 110% PBS / 0.5mM EDTA. Cells were subsequently 

dissolved and scintillation counted as in Section 3.2.7. Each agonist experiment was 

performed in triplicate. 
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3.3 RESULTS 
 
 
3.3.1 Visual morphology of THP-1 cells in culture 
 

Figures 3.1 and 3.2 show THP-1 cells photographed in culture. The cells in Figure 3.1 

are unstimulated, whereas those in Figure 3.2 have been differentiated towards a 

macrophage-like phenotype by stimulation for 48 hours with the phorbol ester, PMA. 

The cells have changed from having a rounded shape in Figure 3.1, to a spindle-like 

appearance in Figure 3.2, which is characteristic of macrophages in culture. Also seen 

is the emergence of dendritic processes from some macrophages in Figure 3.2.. 

 

3.3.2 Visual morphology of monocyte/macrophage cells in culture 

 

Figures 3.3 and 3.4 chart the morphological changes that occur as monocytes 

differentiate into macrophages over time in culture. Figure 3.3 shows the appearance 

of freshly isolated monocytes, photographed on Day 1. Figure 3.4 shows the same 

cells after 5 days in culture on glass. On Day 1, the cells are rounded monocytes, 

similar to the THP-1 cells before differentiation. After 5 days, some of the cells have 

taken on a altered appearance and adopted the spindle shapes and cytoplasmic 

processes characteristic of macrophages. 

 

 
3.3.3 Immunocytochemical characterisation of monocytes 

 

Cells isolated from buffy coats were stained with a FITC-labelled primary antibody 

against CD14, a monocyte lineage marker. Nuclear counterstaining was performed by 

means of Hoerscht staining. Over 95% cells examined expressed CD14 (Figure 3.5), 

indicating a relatively pure fraction of monocytes that would differentiate into 

macrophages. 
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3.3.4 Analysis of HDG uptake over time in THP-1 cells 

 

The results are shown in Figure 3.6. The results from 3 experiments are combined, 

with each timepoint measured in triplicate, therefore, n = 9 for each timepoint. The 

lower line shows cells that have been pre-treated with iodoacetic acid (IAA), which 

switches off the glycolytic pathway, meaning that the cells take up very little HDG 

and can act as a negative control. The cellular uptake of HDG is expressed as 

percentage uptake per million cells, divided by the activity remaining in the 

supernatant from those cells, i.e.: 

 

Decays per minute (DPM) per million cells / DPM in supernatant per million cells 

 

This method of expressing HDG uptake is analogous to the method of quantitative 

regional analysis of PET data. For example in Chapter 5, tissue/plasma FDG uptake 

ratios are employed to calculate the degree of FDG uptake into the vessel wall. 

 

The graph shows an increase in cellular HDG concentration over time. After 60 

minutes, HDG uptake was 0.47% (± 0.05) in the THP-1 cells, compared to 0.16% 

(±0.01) in the control group, p=0.003. By 120 minutes, the gap had widened, with an 

uptake of 1.13% (± 0.17) versus 0.23% (±0.03) respectively, p=0.005. 

  

3.3.5 Effect of PMA stimulation on HDG uptake in THP-1 cells 
 
The results are shown in Figure 3.7. It can be seen that the treatment of THP-1 cells 

with PMA causes a statistically significant increase in HDG uptake after one hour, 

compared to undifferentiated control cells treated with PBS (1.14% (± 0.04) vs 0.31% 

(± 0.03)), p=0.005. 

 
 
3.3.6 Analysis of HDG uptake over time in macrophages 
 

The results are shown in Figure 3.8. The uptake of HDG was examined in Day 7 

macrophages and in control cells that had been incubated with IAA. It can be seen 

that HDG accumulates within macrophages in a time-dependent manner similar to 

that seen in THP-1 cells. There were significant differences between macrophages and 
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controls after 60 minutes (5.04% (± 0.47) vs 0.32% (± 0.03)), p=0.001 and 90 minutes 

(7.25% (± 0.92) vs 0.34% (± 0.03), p=0.002. 

   

3.3.7 Effect of various cytokine and non-cytokine activators on macrophage 
HDG uptake 
 

In order to investigate the effects of macrophage activation on deoxyglucose uptake, 

cells were exposed to various activating agents : interferon gamma (IFN), tumour 

necrosis factor alpha (TNF-α), bacterial lipopolysaccharide (LPS) and low-density 

lipoprotein (LDL). 

 

IFN is produced by activated T-cells, and is present in atherosclerotic plaques 

(Amento et al., 1991; Geng et al., 1996). It has a variety of actions on macrophages, 

acting as a priming agent, but also reducing expression of scavenger receptors and 

secretion of platelet-derived growth factor (Kosaka et al., 1992; Geng et al., 1992b). 

These effects of IFN on macrophages in culture suggest a crucial role in the control of 

macrophage behaviour in atherosclerotic plaques.  

 

Inflammatory cells, including macrophages, produce TNF-α (Kume et al., 2000; 

Kaartinen et al., 1998). It is a potent cytokine that is toxic to VSMCs, resulting in 

their apoptosis (Geng et al., 1996; Sukhova et al., 1999), thereby leading to 

weakening of the fibrous cap. It can also act in an autocrine fashion, activating those 

cells which release it (Fan et al., 1991a; Hori et al., 1987a). 

 

Lipopolysaccharide is a glycolipid component of gram-negative bacterial cell walls. It 

binds to the macrophage surface receptor CD14, causing upregulation of the 

transcription of inflammation-related genes, such as those encoding TNF-α (Kielian et 

al., 1995; Chow et al., 1995; Decker, 1998). 

 

Low density lipoprotein is found in atherosclerotic plaques, frequently in an oxidised 

state, where it accumulates within resident macrophages and leads to their 

transformation into foam cells (Kume et al., 2000; Hamilton et al., 1999; Ross, 1999; 

De Vries et al., 1998). In culture, the cellular responses induced in macrophages by 

LDL have been shown to depend on its concentration, degree of oxidation and the 
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length of its exposure to the cells (Hamilton et al., 1999; Han et al., 1999; De Vries et 

al., 1998; Geng et al., 1992a). 

 

3.3.7.1 Effect of treatment with IFN and TNF-α on macrophage HDG uptake  

 

Experiment 1 : Control wells received PBS 

IFN 50ng/ml alone for 24 hours then TNF-α 50ng/ml for 30 mins prior 

to addition of HDG 

IFN 50ng/ml alone for 24 hours prior to addition of HDG 

TNF-α 50ng/ml alone for 30 mins prior to addition of HDG 

   

 

IFN was added at a concentration of 50ng/ml, this concentration being based on work 

by others (Geng et al., 1992a; Geng et al., 1996). TNF-α was used at the same 

concentration, again based upon work by both Geng (Geng et al., 1996) and others 

(Fan et al., 1991b; Hori et al., 1987b), who showed that this concentration was 

sufficient to enhance the cytolytic activity of macrophages in culture. 

 

Cellular HDG uptake under the various conditions was as follows : Control wells 

0.12% (± 0.02), IFN and TNF-α 0.16% (± 0.01), IFN alone 0.10% (± 0.02), TNF-α 

alone 0.13% (± 0.01). These results are shown in graphical form in Figure 3.9. 

 

After pre-treatment of macrophages with IFN alone for 24 hours, there is a significant 

increase in HDG accumulation, compared with control, when they are subsequently 

treated with TNF-α for 30 minutes, p=0.02. This fits with the known priming effect 

of IFN on macrophages. Incubation with IFN allows greater response to subsequent 

exposure to activating agents like TNF-α, when compared to the effect of TNF-α 

alone, as seen here.  

 

The fact that treatment with IFN alone for 24 hours reduced subsequent HDG uptake 

compared with control is in broad agreement with Geng, who showed that IFN 

treatment for 3 days caused a marked reduction in scavenger receptor-mediated 

uptake of LDL, by decreasing the number of cell membrane receptors (Geng et al., 

1992b).  
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3.3.7.2 Effect of native and oxidised LDL on HDG uptake by macrophages 

 

In this experiment, to exclude the possibility that there was lipoprotein contamination 

in the foetal calf serum present in the growth milieu, cells were incubated in serum-

free medium 60 minutes before the addition of HDG. After 30 minutes incubation 

with HDG alone, the following reagents were added to the macrophages: 

 

Experiment 2 : Native LDL 50µg/ml 

Oxidised LDL 25µg/ml  

Oxidised LDL 50µg/ml 

Control wells received PBS 

 

HDG uptake was halted 30 minutes after the addition of the reagents.  

 

Cellular HDG uptake under the various conditions was as follows: Native LDL 

0.039% (± 0.007), oxidised LDL 25µg/ml 0.07% (± 0.014), oxidised LDL 50µg/ml 

0.05% (± 0.005), control wells 0.051% (± 0.01). The results are shown graphically in 

Figure 3.10. 

 

Compared with control cells, oxidised LDL 25µg/ml significantly increased HDG 

uptake, p=0.04. There was no significant effect on HDG uptake of either a higher 

concentration of oxidised LDL, or of native (unoxidised) LDL. This result is similar 

to that seen by De Vries, who used a microphysiometer to directly measure metabolic 

activity within macrophages (De Vries et al., 1998). This group noted a maximal 

excitatory effect upon macrophages with a dose of 35µg/ml oxidised LDL, with little 

effect seen with higher doses of oxidised LDL, or by the use of unoxidised LDL. 
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3.3.7.3 Effect of serum withdrawal, and the effect of IFN and LPS in 

combination, on HDG uptake in macrophages 

 

Experiment 3 : 0% serum 24 hours prior to addition of HDG 

20% serum 24 hours prior to addition of HDG 

IFN 50ng/ml and LPS 5µg/ml 24 hours prior to addition of HDG 

 

Finally, the effect of serum withdrawal was examined. This has the effect of inducing 

metabolic quiescence in many cell types (Tanner et al., 1998). 

 

Results under the various conditions were as follows : HDG uptake in cells cultured in 

serum-starved conditions 0.032% (± 0.004), in 20% serum 0.047% (± 0.007), IFN and 

LPS 0.05% (± 0.005). The results are shown graphically in Figure 3.11. 

 

It was demonstrated that reducing serum levels in culture medium non-significantly 

reduced uptake of HDG, compared with 20% serum (the standard concentration 

employed in macrophage culture) whilst the synergistic effect on macrophage 

activation of IFN plus LPS was evidenced by the large increase in HDG uptake 

compared to the 0% serum control, p=0.03. 
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3.4 DISCUSSION 
 

In this chapter, it has been shown that two populations of cells, namely THP-1 

monocyte line cells and buffy coat-derived macrophages, will accumulate HDG in 

culture over time. In addition, by changing the degree of activation of the cells one 

can produce detectable changes in HDG uptake. 

 

The accumulation of HDG over time is not surprising, since it is a glucose analogue 

and both types of cells use glucose as their principle source of energy. Once inside the 

cell HDG is not fully metabolised and becomes trapped. The consistent levels of 

uptake at each timepoint, the increasing levels of uptake with time, and the significant 

reduction in uptake by pre-treatment with iodoacetic acid indicate that the uptake 

mechanism is unlikely to be non-specific. 

 

In THP-1 cells, pre-treatment for 18 hours with 1µg of the phorbol ester PMA caused 

a 4-fold increase in HDG uptake. PMA differentiates THP-1 cells towards 

macrophages (Schwende et al., 1996b). This is an energy intensive process, with the 

cells undergoing many morphological and transcriptional changes (Akuzawa et al., 

2000b; Asseffa et al., 1993b) including surface adhesion and the ability to perform 

phagocytosis. Hence, it might be expected that energy requirements would increase 

during this process. 

 

It has also been demonstrated that stimulation of macrophages with various activators 

including oxidised LDL, and the combination of IFN and both LPS and TNF-α 

caused significant increases in HDG uptake in the cells. These results are similar to 

those obtained by others using LPS (Orlinska et al., 1993; Gamelli et al., 1996). 

Fukuzumi examined the uptake of HDG into murine peritoneal macrophages and 

found that the combination of LPS and IFN increased uptake by a factor of two to 

three times, mainly by upregulating the expression of GLUT 1 mRNA (Fukuzumi et 

al., 1996). Spolarics also noted a rapid-onset doubling in glucose usage in 

macrophage-rich tissues in rats challenged with systemic LPS (Spolarics et al., 1995). 

It might therefore be expected that both TNF-α (Gamelli et al., 1996; Meszaros et al., 

1987) and oxidised LDL (Hamilton et al., 1999; De Vries et al., 1998) have much the 
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same effect as LPS on glucose usage (and hence HDG uptake) in macrophages. TNF-

α, in particular, is capable of exerting strong metabolic effects in macrophage-rich 

tissues, and increased secretion of TNF-α may be one mechanism by which the body 

can respond to the demands of sepsis and endotoxicosis. Of course, this mechanism 

appears to be detrimental within atherosclerotic plaque, where release of TNF-α by 

macrophages is central to plaque rupture (Ross, 1999). 

 
 
As well as in isolated cell culture, there is evidence that tissue-based macrophages in 

inflammatory conditions are capable of accumulating deoxyglucose. Within the 

inflammatory stromal tissue associated with malignant deposits, macrophages avidly 

take up FDG, and can be responsible for up to 30% of the total FDG uptake of tumour 

masses (Kubota et al., 1992; Kubota et al., 1995; Kubota et al., 1994). 

 

Additionally, in an experimental model of subcutaneous inflammation in rats, 

Yamada showed that macrophages took up the largest proportion of FDG of all cells 

found within the lesions (Yamada et al., 1995). In a similar rodent model, this time of 

bacterial abscess formation, macrophages were shown to accumulate more FDG than 

neutrophils, with virtually no contribution to FDG uptake coming from fibroblasts 

(Kaim et al., 2002). This experimental uptake of FDG by metabolically active 

macrophages may explain the high levels of FDG uptake seen in humans with other 

inflammatory conditions, in which macrophages are known to play a part in 

pathogenesis, such as during abscess formation (Strauss, 1996), sarcoidosis (Lewis et 

al., 1994; Brudin et al., 1994) and tuberculosis (Strauss, 1996). 

 

Having demonstrated that variations in macrophage activity can result in changes in 

HDG accumulation, in the next chapter the role of FDG uptake in freshly excised 

atheroma was evaluated, to determine whether these findings in cultured cells are 

replicated in living atherosclerotic plaque. 
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Figure 3.1 THP-1 cells in culture - unstimulated 

Unstimulated THP-1 cells, magnification x20. 
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Figure 3.2 THP-1 cells in culture - stimulated 

THP-1 cells, stimulated for 48 hours with PMA, 
magnification x40. The white arrow is pointing 
towards a dendritic process emerging from a cell. 
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Figure 3.3 Monocytes in culture 

Freshly isolated monocytes, day 1 of culture on 
glass, magnification x20. 
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Figure 3.4 Macrophages in culture 

Day 7 macrophages in culture on glass, 
magnification x10. 
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Figure 3.5 CD14 immunocytochemistry 

Top panel shows CD14 FITC labelling of freshly 
isolated cells. Cells in the bottom panel are 
stained with nuclear counterstain (Hoerscht). 
Over 95% of cells express the monocyte marker 
CD14. Magnification x40. 
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Fig 3.6 The uptake of HDG in THP-1 cells over time 

 

The graph demonstrates that HDG accumulates within 
THP-1 cells over time to a greater extent than it does 
within cells pre-treated with IAA, p=0.003 at 60 minutes 
and p=0.005 at 120 minutes. 
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Figure 3.7 HDG uptake in THP-1 cells 
after PMA stimulation 

HDG accumulates within PMA-stimulated 
cells to a greater extent than in unstimulated 
control cells, p=0.005. 
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Figure 3.8 HDG uptake in human macrophages 
over time 

The graph demonstrates that HDG accumulates 
within untreated macrophages over time to a 
greater extent than it does in control macrophages 
pre-treated with IAA. p=0.001 and 0.002 at 60 and 
90 minutes respectively. 
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Fig 3.9 The effect of agonists on HDG uptake in 
human macrophages (1) 

Full explanation is given in Section 3.3.7.1. p=0.02 
compared to control. 
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Fig 3.10 The effect of agonists on HDG uptake in 
human macrophages (2) 

Full explanation is given in Section 3.3.7.2. p=0.04 
compared to control. 
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Fig 3.11 The effect of agonists on HDG uptake in 
human macrophages (3) 

Full explanation is given is Section 3.3.7.3. p=0.03 
compared to 0% serum control. 
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CHAPTER 4 
 
 
THE UPTAKE OF FDG IN ATHEROSCLEROSIS IN VITRO 
 
 
4.1 INTRODUCTION 
 
 
The aim of the work described in this chapter was to assess of the degree of uptake of 

FDG into symptomatic carotid atherosclerotic plaque. The plaques had been removed 

at endarterectomy because of carotid territory vascular symptoms. The experiments 

described here are a progression from those presented in the previous chapter, where 

it was demonstrated that macrophages in culture would accumulate HDG in 

proportion to their metabolic activity. It was felt important to determine whether 

macrophages would take up FDG, more so than surrounding cells, when they were 

present within the milieu of a symptomatic atherosclerotic plaque. 

 

It is now accepted that the presence of macrophage inflammatory cells in the fibrous 

cap region of plaques is a strong determinant of subsequent plaque rupture (Ross, 

1999). As a result, the hypothesis tested here was that this inflammatory activity 

might be visualised and quantified within plaques using the autoradiographic 

technique of phosphor imaging. A second aim was to attempt to correlate the extent of 

any FDG uptake seen in plaque with the cellular composition of the tissue. Lastly, 

tritiated autoradiography of the plaque was used to try to determine the cell type (or 

types) responsible for any deoxyglucose uptake. 
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4.2 METHODS 
 

4.2.1 Phosphor imaging technique 

 

Phosphor imaging is an autoradiographic technique that allows the visualisation and 

measurement of radioactivity within tissue samples. By placing exposed tissue in 

close proximity to a phosphor screen, a latent image of the tissue radioactivity 

becomes stored on the screen. The phosphor screen is covered with a thin layer of 

BaFBr:Eu2+ phosphor crystals on one side. These crystals absorb the energy emitted 

by FDG trapped in the tissue sample, and subsequently re-emit it as blue light in 

proportion to the energy deposited, when excited by a red laser contained within the 

screen reading device (Johnston et al., 1990).  

 

Phosphor imaging screens have a higher sensitivity to energy photons than 

conventional x-ray film, meaning that brief exposure times are sufficient. This makes 

phosphor imaging ideal for use with short-lived positron emitting nuclides such as 11C 

and 18F (with half-lives of 20.3 minutes and 109.7 minutes, respectively). The use of 

traditional x-ray film autoradiography with such nuclides is unfeasible, because its 

lower sensitivity means that exposure times stretching to many half-lives would be 

required to create an image, by which time much of the activity stored in the tissue 

would have decayed away. 

 

The phosphor screen used in this work has a spatial resolution of approximately 

500µm (with 18F) and can detect radioactivity concentrations as low as 0.04 Bq/mm2. 

The screen was read at a resolution of 600 dots per inch (42 µm pixel size). As this is 

much lower than the spatial resolution of the screen with 18F, it was assumed that the 

screen reader has a negligible influence on the overall spatial resolution. The reported 

linear dynamic range for the phosphor screen is five orders of magnitude, with a ± 5% 

standard deviation over the dynamic range. 
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4.2.2 Phosphor imaging of carotid atherosclerosis 

 

Carotid endarterectomy samples were obtained from patients undergoing surgery for 

symptomatic internal carotid artery disease of at least 70% stenosis. All had 

experienced a carotid territory TIA within three months of operation, and all gave full 

informed consent to the study. 

 

Plaques were collected from the operating theatre at Addenbrookes hospital, and 

immediately sectioned transversely into slices of approximately 5mm thickness. Each 

section was incubated with 0.037MBq FDG in 1ml M199 for one hour at 37˚C. This 

FDG dose was derived from typical plasma radioactivity levels seen during a whole-

body FDG-PET scan. Calculations showed that 0.037MBq per ml applied to the tissue 

sections in vitro was broadly equivalent to the plasma concentration of FDG fifteen 

minutes after injection of 370MBq FDG in a whole-body PET scan. 

 

After incubation for sixty minutes, FDG uptake into the carotid sections was halted by 

the addition of 10µl of 1mM iodoacetic acid, followed by three 5 minute washes with 

PBS to remove free FDG. The carotid sections were then placed onto glass slides 

(BDH), covered with clingfilm, apposed to a 43cm x 12.5cm high-resolution 

phosphor imaging screen (Packard Instrument Company, Connecticut, U.S.A.) and 

finally encased in an x-ray cassette for three hours. After this time, the screen was 

read in the scanning carousel (Packard Instrument Company, Connecticut, U.S.A.), 

and the resulting images were analysed using the OptiQuant software package 

(Packard Instrument Company, Connecticut, U.S.A.), by drawing regions of interest 

(ROI) of uniform size around the plaque phosphor images. 

 

To allow measurement of accumulated radioactivity in the tissue samples to be 

derived from the ROI data, a standard curve was constructed using serial dilutions of 

a known volume and activity of FDG. Aliquots containing 2µL were diluted serially 

by a factor of two and pipetted onto blotting paper, producing a series of blots of the 

same volume, each having half the radioactivity of the previous. The blotting paper 

was positioned next to the exposed tissue sections before apposing to the phosphor 

plate. 
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4.2.3 Plaque histological characterisation 

 

Following phosphor imaging, after allowing for a period of decay of FDG, the tissue 

sections were fixed in 4% paraformaldehyde for 12 hours at 4˚C. Specimens were 

then paraffin-embedded, sectioned to 5µm thickness and stained with haematoxylin 

and eosin as in Section 2.3.2 of Chapter 2. Immunohistochemistry was performed 

using monoclonal antibodies against markers for macrophages and vascular smooth 

muscle cells using the method described in Section 2.3.1.3 of Chapter 2. Histological 

images were digitised on a Nikon digital microscope, and image analysis was 

performed using Photoshop software version 5 (Adobe). A colour threshold method 

was employed to estimate the area of CD68 and SMA positive staining on each 

section as a percentage of its total area (Lehr et al., 1999).  

 

4.2.4 Correlation between plaque FDG uptake and cellular composition 

 

Comparisons were made between the FDG uptake in each section of plaque, derived 

from phosphor imaging data and expressed in units of Bq/mm2, and its macrophage 

and smooth muscle cell content, derived from immunohistochemical staining and 

expressed as area of plaque containing each cell type as a percentage of total plaque 

area. The statistical methods employed are described in Section 2.4 of Chapter 2. 

 

4.2.5 Tritiated deoxyglucose autoradiography of carotid atherosclerosis 

 
In a separate autoradiographic study, carotid plaques from an identical group of 

symptomatic patients were incubated whole with 50µCi tritiated deoxyglucose (HDG) 

in 5mls M199 for 60 minutes at 37ºC. Subsequently, paraffin sections of 5µm 

thickness were coated with autoradiographic emulsion (LM-1, Amersham, UK), 

exposed for 6 weeks, developed (D19, Kodak), and counterstained with haematoxylin 

and eosin as in Section 2.3.2 of Chapter 2. Control slides were prepared without 

radioactivity. 
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4.3 RESULTS 

 

4.3.1 Phosphor imaging of carotid atherosclerosis 

 

Phosphor imaging was carried out on plaques removed from seven patients. An 

example of phosphor imaging of two sections from a single plaque is shown in Figure 

4.1, along with single stained immunohistochemistry for both macrophages and 

smooth muscle cells on the same plaque. Red areas in the phosphor images reflect 

high levels of FDG uptake, whilst areas in blue have accumulated FDG to a lesser 

extent. 

 

It can be seen in the plaque section on the left hand side of the figure that high levels 

of FDG uptake in central areas (shown in red) co-localise with an area rich in 

macrophages. Conversely, in the plaque section shown on the right hand side of the 

figure, there is a low degree of FDG uptake (shown in blue). Examination of the 

corresponding histology shows that this piece of plaque that is made up largely of 

smooth muscle cells and contains very few macrophages. 

 

The results of a statistical analysis designed to detect correlations between plaque cell 

composition and FDG uptake are presented below. 

 

4.3.2 Correlation between plaque FDG uptake and cellular composition 

 

FDG uptake and cellular composition in seven carotid endarterectomy samples, 

sectioned into a total of 41 slices, were assessed using a weighted statistical technique 

described in Section 2.4 of Chapter 2. The results are presented in the two tables 

below. Table 4.1 shows data concerning FDG uptake and plaque macrophage 

percentage area. Table 4.2 shows data relating FDG uptake and plaque vascular 

smooth muscle cell percentage area. 

 

In both tables, n = the number of slices generated from each carotid specimen, r = 

correlation coefficient for each carotid experiment, slope = gradient of the correlation 
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curve for each carotid experiment, SE of slope = standard error of the gradient of each 

correlation graph. 

 

 
Carotid 
number n r Slope SE of 

slope 
 

1 9 0.94 0.04 0.01  
2 5 0.60 0.21 0.16  
3 7 -0.43 -0.03 0.03  
4 5 0.01 0.00 0.15  
5 4 0.13 0.03 0.14  
6 5 0.70 0.09 0.05  
7 6 0.55 0.05 0.04  

 
 

Table 4.1 

 

The overall weighted correlation coefficient for FDG uptake and macrophage % area 

was r = 0.56, with 95% CI: (-0.33,0.92), p = 0.19. 

 

 
 
 
 

 

Carotid 
number n r Slope SE of 

slope 
 

1 9 -0.57 -0.17 0.09  
2 5 -0.31 -0.02 0.04  
3 7 0.74 0.09 0.04  
4 5 -0.18 -0.08 0.36  
5 4 -0.64 -0.03 0.26  
6 5 0.62 0.07 0.03  
7 6 -0.15 -0.06 0.05  

 

Table 4.2 

 

The overall weighted correlation coefficient for FDG uptake and VSMC area % was   

r = -0.12 with 95% CI:(-0.80,0.70), p = 0.80. 
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It can be therefore be concluded from these data that there was no statistically 

significant positive or negative correlation between plaque FDG uptake, and either 

macrophage or smooth muscle cell content, as assessed by FDG phosphor imaging 

and quantative immunohistochemistry. 

 

There was a non-significant positive correlation between macrophage content and 

FDG uptake, with r = 0.56 and p = 0.19, which reflects the variability of results 

between different carotid samples. 

 

4.3.3 Tritiated deoxyglucose autoradiography of carotid atherosclerosis 

 

Carotid plaque autoradiography with tritiated deoxyglucose was performed on six 

plaque specimens, in an attempt to pin down the cell type responsible for the FDG 

uptake into plaques that had been noted in the phosphor imaging experiments 

presented above. 

 

However, three of these six plaques were heavily calcified, meaning that the cutting 

of sections from the exposed tissue was impossible; further analysis of these plaques 

was not feasible. Therefore, images shown here were obtained from the three plaques 

in which autoradiography was successful. In addition, two further carotid 

endarterectomy specimens were used as negative controls (not exposed to tritium, but 

fixed, coated with autoradiographic emulsion, developed and stained with H and E). 

This was done firstly to ensure that the autoradiographic process itself did not cause 

the development of silver grains in the tissue, and secondly that non-specific reactions 

within the plaques could not precipitate silver in the absence of radioactivity. 

 

In all plaques studied, silver grains were present in the macrophage-rich areas, 

especially at the lipid core/fibrous cap border of the lesions, implying accumulation of 

HDG in those areas. There was little uptake seen in other areas of the plaques. 

 

Figure 4.2 shows a representative example of carotid atheroma tritiated 

autoradiography with HDG uptake seen in the fibrous cap/lipid core region. Figure 

4.3 shows autoradiographic images in the top row, and the same images viewed under 

dark field microscopic conditions in the bottom row. The use of dark field microscopy 
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helps to improve the visualisation of the sliver grains, which become more striking 

under these conditions. Figure 4.4 confirms, at higher magnification, the development 

of silver grains within macrophages near the lipid core area of the plaque. Control 

sections, prepared without radioactivity, (Figure 4.5) showed no development of 

silver grains. 
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4.4 DISCUSSION 
 

In this chapter, freshly excised carotid atheroma, taken from patients with recent 

symptoms and hence by definition unstable, was incubated with FDG under 

conditions designed to mimic those encountered during clinical PET scans. 

 

Results showed that these tissue sections, composed largely of surgically removed 

arterial intima, were capable of accumulating FDG, and moreover, they did this in a 

heterogeneous manner both within and between adjacent sections of the same plaque. 

There was a trend towards a positive association between the degree of FDG uptake 

and the macrophage content of the tissue, expressed as a percentage of total area, but 

this did not reach statistical significance. There did not seem to be any discernable 

relationship between percentage content of vascular smooth muscle cells and FDG 

accumulation by symptomatic atheroma. 

 

Following on from these observations, tritiated autoradiography revealed a strong co-

localisation between plaque areas containing large numbers of macrophages and HDG 

uptake, which was consistent across all plaques studied. This relationship might 

account for the heterogeneous uptake of FDG into the plaque sections, because it is 

well known that macrophage content can vary widely within different areas of the 

same plaque (Boyle, 1997; Jander et al., 1998; Stary et al., 1995). How can the 

differences between the autoradiography results and the immunohistochemical-based 

studies be accounted for? 

 

One possible explanation lies with the choice of antigen targeted by 

immunohistochemistry. CD68 antigen is expressed on the macrophage cell surface as 

well as the cytoplasm (Pulford et al., 1990). This means that as well as labelling 

viable cells, CD68 also stains dead macrophages that clearly cannot accumulate FDG. 

There are often large numbers of these non-viable cells found within the lipid core of 

the plaque. This means that with the method used for calculating macrophage area 

based on area of CD68 staining, there was probably often an overestimate of the 

number of viable macrophages in a particular plaque section, causing any relationship 

between FDG uptake and true macrophage content to be diluted. 
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A second factor is that, even with perfect immunohistochemical quantification of 

macrophages contained within a plaque, all the plaques analysed in this work were 

taken from recently symptomatic patients, and therefore by definition were unstable 

and contained large numbers of macrophages. In order to determine more easily 

whether a relationship truly exists between FDG uptake and cellular composition of 

the plaque, specimens containing a range of macrophage numbers from few to many 

would need to be analysed. The source of plaques in this work meant that this was not 

possible. It may be that animal studies of experimental atherosclerosis might be able 

to fulfil this need by providing plaques in various stages of development containing a 

broader range of inflammatory cells. 

 

In order to improve the tritiated autoradiography technique, it was intended to 

perform immunocytochemistry against CD68 on adjacent sections of plaques. This 

was attempted several times, but there were technical difficulties because of the 

inability of the CD68 antibody to penetrate the autoradiographic emulsion and it 

proved impossible. Instead, the autoradiography sections were analysed by a local 

atherosclerosis expert histopathologist (Dr Martin Goddard, Papworth hospital), who 

confirmed that the silver grains were co-localised to macrophages on the H and E 

sections. Nevertheless, it will be important in future work to make provision for the 

compatibility of the autoradiographic emulsion and the antibody to allow staining of 

adjacent sections to be accomplished. 

 

Biologically, the conclusion that macrophages are responsible for the majority of 

FDG uptake within plaque makes sense, and sits well with the cell work presented in 

Chapter 3, which showed that macrophage HDG uptake could be modified by 

changing the activation state of the cells. In addition, later work, to be described in the 

following chapter, shows that unstable symptomatic plaques are responsible for 

greater FDG uptake than stable asymptomatic lesions, which also fits with what has 

been demonstrated here. 

 

If future studies support this work, namely that macrophages are the main source of 

metabolic activity within the atherosclerotic plaque, it might be profitable to use a 

more macrophage-specific positron-emitting compound than FDG, such as (11C) 1-(2-

chlorophenyl)–N-methyl-N-(1-methylpropyl)-1-isoquinolonecarboxamide (PK11195) 
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to repeat studies of this type. This is a ligand that binds with high affinity to the 

peripheral benzodiazepine receptor (Langer et al., 1988). These receptors, which have 

now been cloned (Weizman et al., 1993), are found at high concentrations within 

activated glial cells in the brain. Receptors are also found in monocytes, and at high 

densities in macrophages, especially when the cells are activated (Rocca et al., 1993). 

The receptors are expressed on mitochondrial membranes, and thus binding is not 

possible after cell death. This approach should enable better identification and 

quantification of viable macrophages within plaque specimens. 

 

The results from this chapter paved the way for in-vivo FDG-PET studies of human 

atherosclerosis, which are described in Chapter 5. 
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Smooth muscle 
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Macrophages 

FDG uptake 

Figure 4.1 Plaque FDG phosphor imaging 

Comparison of FDG uptake by phosphor imaging within 
two sections of plaque (top row), with corresponding 
histology for vascular smooth muscle cells and 
macrophages (middle and bottom rows respectively), 
magnification x20. 87a 



Fibrous cap 

Lipid core 

Figure 4.2 Plaque HDG autoradiography (1) 

A section of plaque is shown at magnifications 
x10 and x20, counterstained with H and E. The 
black dots are silver grains, and their presence 
implies HDG uptake. This is noted especially at 
the fibrous cap/lipid core junction 

89a 



Figure 4.3 Plaque HDG autoradiography (2) 

The top row shows HDG plaque 
autoradiography, whilst on the bottom row are 
the same sections viewed under dark field 
conditions in order to improve the visibility of 
the silver grains. Magnification x10 for the left 
hand images, x20 for the right hand images. 

89b 



Figure 4.4 Plaque HDG autoradiography (3) 

High power autoradiographic image showing 
cellular localisation of silver grains within 
macrophages. Magnification x40. 

90a 



Figure 4.5 Plaque HDG autoradiography (4) 

Control images of plaque prepared without radioactivity, 
shown at low (x10), medium (x20) and high (x40) 
magnification (A,B and C respectively). There are no 
silver grains present. 

C 

A B 

90b 
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CHAPTER 5 
 
 
THE UPTAKE OF FDG IN HUMAN ATHEROSCLEROSIS 
 
 
5.1 INTRODUCTION 
 
 

Having demonstrated in Chapters 3 and 4 that deoxyglucose accumulates in 

macrophages in culture and in atherosclerotic plaque, the hypothesis that FDG-PET 

might be of use to visualise and quantify inflammatory cell activity within atheroma 

in patients with carotid artery disease was tested. 

 

There is a need to quantify plaque inflammation, firstly to predict risk of plaque 

rupture and secondly to monitor the effects of atheroma-modifying therapies. This is 

crucial since recent experimental and clinical studies strongly suggest that HMG Co-

A reductase inhibitors promote plaque stability by decreasing plaque macrophage 

content and activity without substantially reducing plaque size and therefore 

angiographic appearance (Williams et al., 1998; Stefanadis et al., 2002; Crisby et al., 

2001), making angiography a poor tool for monitoring purposes. 

 

FDG-PET has been used successfully by others to image inflammation in vivo in a 

variety of inflammatory conditions, including polymyalgia rheumatica, Takayasu 

arteritis, inflammatory bowel disease and asthma (Skehan et al., 1999; Taylor et al., 

1996; Blockmans et al., 1999; Hara et al., 1999). However, none of these studies has 

been able to determine which cell type was responsible for the accumulation of FDG 

within the tissue studied. 

 

As far as atherosclerosis is concerned, there have been several reports of FDG uptake 

noted in blood vessels of patients undergoing whole body FDG-PET imaging for 

staging of malignant disease (Yun et al., 2001; Machac et al., 2001). These studies 

have shown a correlation between the degree of FDG uptake and the presence of 

vascular risk factors. However, neither report examined histological correlations or 

used any form of anatomical co-registration with the PET images. More direct 
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evidence that FDG might be taken up in atherosclerosis has come from work in 

cholesterol-fed rabbits, where the degree of FDG uptake in lesions correlated with 

their macrophage density (Lederman et al., 2001; Badimon et al., 1999). 

 

As noted in the Chapter 1, symptomatic carotid plaques causing transient ischaemic 

attack are characterised by the presence of thin fibrous caps, large volume lipid cores 

and low smooth muscle cell to macrophage ratios (Svindland et al., 1988; Jander et 

al., 1998; Feeley et al., 1991; Golledge et al., 2000; Galis et al., 1994; Sukhova et al., 

1999). Consistent with this, several investigators have found increased temperatures 

within atherosclerotic plaques (Casscells et al., 1996; Stefanadis et al., 2002; 

Stefanadis et al., 1999; Stefanadis et al., 2000); this has been ascribed to inflammation 

within the lesions, with symptomatic unstable plaques being hotter than stable ones. 

 

In patients who sustain a TIA, the risk of stroke is greatest in the three months 

following the event (Warlow et al., 1996a), implying a period during which the culprit 

plaque is unstable. This risk is greatly reduced by carotid endarterectomy (Warlow et 

al., 1996b; ECST Group, 1998). There is therefore a window of opportunity, between 

symptoms and surgery, for imaging unstable atheroma. 
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5.2 METHODS 
 

Three preliminary one hour 2-D dynamic PET studies were performed as pilot studies 

(‘Pilot 2-D dynamic imaging protocol’). Unfortunately, in all cases, high FDG blood 

signal was problematic, giving rise to a low plaque-to-background contrast. In 

addition, there was neck movement both during and between the PET and CT scans 

which made anatomical co-registration very difficult. 

 

In order to improve matters, the PET protocol was amended (‘Late imaging 

protocol’). Scanning mode was changed to 3-D in order to improve sensitivity, but at 

the expense of increased scatter. A stiff cervical collar was employed to minimise 

patient movement between the PET and CT scans. A higher dose of FDG was 

administered, and images were acquired later than previously, at 90 and 180 minutes 

after tracer injection, in order to try to enhance plaque-to-blood contrast. In addition, 

fiducial markers were employed to improve anatomical co-registration of the two 

scans. 

 

In parallel experiments, two 3-D dynamic PET studies were performed, with stiff 

collar, arterial blood sampling and fiducial markers, in a quest to obtain kinetic data 

and perform Patlak analysis. 

 

Subsequently, in order to image plaque with high resolution, some patients having 

PET scans also underwent high-resolution MR scanning of the carotid arteries. By 

using this dual approach to carotid imaging, it was hoped to be able to combine 

detailed plaque anatomy (from HRMR) with functional metabolic information (from 

FDG-PET) within a single image. 

 

5.2.1 Patient recruitment 

 

Patients were recruited from the Addenbrookes Neurovascular clinic, a rapid access 

clinic for patients with suspected TIA. All had experienced a recent carotid-territory 

TIA with an internal carotid artery stenosis of at least 70%, confirmed 

angiographically prior to the PET study. Patients were excluded if they had either 
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carotid artery occlusion or diabetes. The study protocol was approved by the local 

ethics committee and the UK Administration of Radioactive Substances Advisory 

Committee. All patients gave written informed consent. 

 

5.2.2 Computed tomography protocol 

 

Using a GE Hispeed Advantage CT scanner (GE Medical Systems, Milwaukee, 

U.S.A.), helical contrast CT angiograms were acquired from skull base to 3 cm below 

the level of the carotid bifurcation. CT was performed immediately after PET 

imaging. The contrast agent used was iopamidol (Niopam). 

 

5.2.3 PET protocols 

 

All PET imaging was carried out using a GE Advance PET scanner (GE Medical 

Systems, Milwaukee, U.S.A.), with the subject in a fasting state to avoid insulin-

induced hypoglycaemia (which may increase FDG uptake in brain and muscle tissue 

(Torizuka et al., 1997)). PET images were reconstructed using the PROMIS algorithm 

(Kinahan et al., 1989), with corrections applied for attenuation, dead time, scatter and 

random coincidences. 

 

5.2.3.1 Pilot 2-D dynamic imaging protocol 

 

185 MBq of FDG were injected at the start of the study. PET images were acquired in 

2-D mode, as 5x1, 5x2 and 9x5 minute frames with venous blood sampling taking 

place throughout the study. 

 

5.2.3.2 Late imaging protocol 

 

370 MBq FDG were administered intravenously over 60 seconds. PET images (as 4x 

5 minute frames) were acquired in 3-D mode, approximately 90 and 180 minutes after 

FDG administration. A stiff cervical collar was worn to minimise patient movement, 

being put into position, along with fiducial markers, shortly before the start of image 

acquisition. 
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5.2.3.3 3-D dynamic imaging protocol 

 

This protocol required the insertion of an arterial line under local anaesthesia prior to 

imaging to enable measurement of arterial activity. 185 MBq FDG was administered 

intravenously over 60 seconds, and PET data were acquired in 3-D mode 

continuously as 5x1 minute, 5x2 minute and 21x5 minute frames. A cervical collar 

and fiducial markers were positioned at the start of imaging.  

 

5.2.4 Image co-registration 

 
Rigid body co-registration with CT images was performed manually, using a 

combination of four fiducial markers (Intermark, Bromley, UK) and internal 

anatomical landmarks (spinal cord and muscles of the jaw and neck). This resulted in 

co-registration typically to within 1mm in each dimension around the stenosis. The 

fiducial markers, comprising a vanadium-48 disc (2mm diameter) within a CT-visible 

hydrogel annulus, were placed bilaterally on the temporomandibular joints, on the 

point of the chin, with the fourth marker just to the left of the central chin marker, to 

facilitate subsequent left/right orientation during image reconstruction and analysis. 

Automated rigid body co-registration was attempted, but was difficult because of 

occasional different degrees of neck flexion between the PET and CT studies. It was 

for this reason that the manual system was chosen for these studies. The software 

package ‘MPI tool’ (Max Planck Institut, Cologne, Germany) was used to display 

both the CT and PET images and apply translational and rotational offsets to co-

register the images. The program ‘XV image’ (John Bradley – University of 

Philadelphia) was used to convert Raster File images to Tagged Image File Format 

files that could be printed as hard copies. 

 

5.2.5 Quantification of plaque FDG concentration in late imaging studies 

 

To estimate plaque FDG concentration in the late imaging studies, three-dimensional 

volumes of interest (VOI) were drawn around the area of stenosis on the contrast CT 

scan using the Analyze software package (Robb et al., 1991). These regions were then 

placed onto the co-registered PET images to produce mean FDG concentration values 

(kBq/ml) for the early and late timepoints. The mean VOI size was 148 mm3 (range 
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100-305mm3). Plasma FDG concentration up to the scan time was measured to 

generate the input function. The use of venous blood to generate input function data 

has been shown to be equivalent to arterial blood approximately 30 minutes post- 

FDG injection (Ratib et al., 1982; Phelps et al., 1979). Therefore, with imaging times 

much later than this, it was assumed that venous blood sampling would be adequate 

for quantification of the late imaging studies. 

 

A semi-quantative method was used to derive information about FDG uptake into the 

VOI. Ideally, as explained in Chapter 1, one would quantify FDG metabolism in 

terms of FDG metabolic rate and relate this to metabolic rate for glucose (MRGlc) by 

multiplying by the lumped constant. However, this would require knowledge of the 

rate constants (k1-k4), which are not yet defined for atherosclerotic plaque. Hence, it 

was decided to express FDG uptake in terms of the net FDG accumulation rate (see 

below for derivation). This parameter is more accurate than quoting SUV, as it uses 

the integral of the measured input function, whereas SUV only approximates the 

integral of the input function from the injected FDG dose and body mass. 

 

The estimated net FDG accumulation rate was determined by dividing the mean 

decay-corrected plaque FDG concentration in the VOI by the integral of the decay-

corrected input function. It is expressed in units of sec-1. 

 

 
Decay-corrected plaque FDG concentration (kBq/ml)  

Net FDG accumulation rate (sec-1)  =  

Integral of the decay-corrected input function (kBqsec/ml) 
 

 

In three patients who presented with unilateral carotid artery disease, where there was 

no contralateral asymptomatic stenosis around which to draw VOI’s, a direct vessel 

wall-to-plasma FDG uptake ratio was calculated to assess tracer uptake into the 

angiographically normal artery. To determine this value, a VOI was drawn around the 

asymptomatic carotid bifurcation on the CT scan, and then placed onto the co-

registered PET scan. The Analyze software package was then employed to obtain the 

FDG concentration value (kBq/ml) within the VOI. This figure was then divided by 
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the plasma FDG activity at the mid-frame time (kBq/ml) to derive the vessel wall-to-

plasma FDG uptake ratio. This approach was chosen because a vessel wall-to-plasma 

ratio of 1.0 indicated that the FDG signal was purely due to FDG in blood, i.e. no 

FDG uptake into the vessel wall. This would not have been so clearly demonstrated 

using net FDG accumulation rate.  

 

5.2.6 Quantification of plaque FDG concentration in 3-D dynamic studies 

 
To express FDG uptake in the dynamic studies performed, Patlak plots were 

constructed, as described in Chapter 1. The fundamental assumption in this model is 

that the tracer is essentially trapped in the bound tissue compartment so that k4 

approximates zero (See Figure 1.2 in Chapter 1). As in the late imaging protocol, 

volumes of interest were drawn using the software package ‘Analyze’ to derive 

numerical data for the construction of Patlak plots. The input function was obtained 

from arterial sampling during the study 

 

5.2.7 High-resolution magnetic resonance (HRMR) protocol 

 

Images were acquired using a dedicated phased-array KNEEPA neck MR coil, on a 

GE systems 1.5 Tesla scanner. The coil was positioned over the carotid bifurcations 

after scout images had been acquired. An axial gated blood suppressed fast spin echo 

sequence was employed to acquire proton density weighted images (Echo Time (TE) 

= 38.4msec, echo train length (ETL) = 24, bandwidth = 31.2kHz, FOV=10x10cm, 

slice thickness = 3.0/0.0, gating = 2 x RR, matrix = 256x256, number of excitations 

(NEX) = 2, frequency direction = R/L, to cover 1cm inferior to the bifurcation and 

4cm superior, i.e. total coverage of 5cm at 3mm thickness, i.e. 17 slices). This 

protocol resulted in an in-plane resolution of 0.39 x 0.39 mm. 

 

T2 weighted images were acquired as above, but with TE = 100.4, and fat suppression 

and STIR images were also taken by appropriate selection from the MR setup menus. 

 

Image co-registration of HRMR to FDG-PET studies was performed using the 

following sequence : The PET data were co-registered to the corresponding CT 

images by applying shifts (rotations and offsets) to the CT images where necessary, 
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using the software package ‘MPI Tool’. Following PET and CT co-registration, the 

next step was to co-register the CT and the MR data, once again using MPI Tool, and 

applying shifts to the MR images only. Therefore, finally, the PET and MR scans 

could be co-registered by the summation of the two sets of shifts. This co-registration 

technique ensured a better accuracy than directly co-registering the PET and MR 

scans due to the limited extent of the MR studies in the ‘z’ direction and the relative 

lack of anatomical detail in PET. 

 

 

5.2.8 Plaque histological characterisation 

 

Following surgery, carotid endarterectomy samples were fixed, blocked and sectioned 

to 5µm thickness. Slides were stained with haematoxylin and eosin, and 

immunohistochemistry was performed against macrophages and vascular smooth 

muscle cells according to Sections 2.3.2 and 2.3.1.3 in Chapter 2. 
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5.3 RESULTS 

 

5.3.1 Patient characteristics 

 

Thirteen symptomatic patients were recruited for FDG/CT imaging with the late 

imaging PET protocol. Of these, useful data was acquired in 10 subjects. Of the three 

studies that did not yield useful data, one patient did not proceed to carotid 

endarterectomy because his TIA was felt to be due to a cardiac embolus, a further 

patient had a tissued FDG injection, and the third patient did not complete the 

scanning protocol because of claustrophobia; the procedure was halted after a few 

minutes. 

 

Two patients underwent the 3-D dynamic PET protocol. Of these, only one yielded a 

dataset that could be used for Patlak analysis. The other patient did not complete the 

imaging protocol because of claustrophobia. 

 

Seven patients underwent high-resolution MR scanning in addition to FDG-PET and 

CT imaging. 

 

5.3.2 Late imaging protocol 

 

The baseline characteristics of the 10 symptomatic patients imaged with the late 

protocol, along with those from the one satisfactory dynamic imaging subject are 

shown in Table 5.1. The median time between symptoms and PET study was 4 

months, and between PET and carotid endarterectomy was 39 days. 

 

In all 10 patients, co-registered late PET images acquired around three hours revealed 

FDG accumulation at the site of the symptomatic plaque, enhanced above surrounding 

tissue (Figure 5.1). Figure 5.2 shows an example of late FDG uptake in an 

asymptomatic plaque. Figure 5.3 shows late FDG uptake in the coronal and sagittal 

views, demonstrating unilateral uptake of FDG in this patient.  
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Normal physiological FDG uptake can be seen in these studies, for example in brain, 

salivary glands (Jabour et al., 1993) and laryngeal muscles (Kostakoglu et al., 1996). 

Some of this uptake is visible in these figures and it emphasises the importance of 

accurate anatomical co-registration to ensure that FDG uptake is anatomically 

correctly localised. 

 

Seven of the ten patients had contralateral asymptomatic stenoses ranging from 35%-

75% measured angiographically. A comparison was made between the late net FDG 

accumulation rate in symptomatic plaques and contralateral asymptomatic plaques. In 

all cases, symptomatic lesions had higher FDG accumulation rates than asymptomatic 

lesions; the mean late symptomatic net accumulation rate was 8.23×10-5 ± 0.58×10-5 

sec-1, 95% CI:(6.91-9.55×10-5), the mean late asymptomatic net accumulation rate 

was 6.33×10-5 ± 0.82×10-5 sec-1, 95% CI:(4.33-8.34×10-5), with a mean difference 

between symptomatic and asymptomatic lesions of 1.90×10-5 ± 0.47×10-5 sec-1, 95% 

CI:(0.75-3.05×10-5) (p=0.008). Table 5.2 lists the net FDG accumulation rates for all 

symptomatic and asymptomatic plaques at both the early and late time points. 

 

The corresponding early values were as follows : mean early symptomatic net 

accumulation rate was 11.27×10-5 ± 0.87 sec-1, 95% CI:(9.31–13.22×10-5sec-1). The 

mean early asymptomatic net accumulation rate was 10.34×10-5 ± 0.92 sec-1, 95% 

CI:(8.08–12.60×10-5 sec-1), with a mean difference between symptomatic and 

asymptomatic of 1.14×10-5 ± 0.74×10-5 sec-1, 95% CI:(-0.67–2.95). The p value for 

the difference between symptomatic and asymptomatic plaques at the earlier time 

point was not significant (p=0.175). The mean early and late mid frame times were 

101.8 (± 4.6) and 186.4 (± 5.9) minutes respectively. 

 

Three patients had angiographically normal arteries on the asymptomatic side, with no 

significant uptake of FDG into those vessels; neither the early nor the late FDG 

concentration in a VOI around the carotid bifurcation differed significantly from that 

measured in plasma (mean early wall-to-plasma FDG concentration ratio  = 0.9 ± 0.1, 

mean late wall-to-plasma FDG concentration ratio = 1.2 ± 0.2). 
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Histological examination of the excised symptomatic plaques from all patients who 

had undergone imaging revealed heavy macrophage infiltration. Examples are shown 

in Figures 5.4 (Patient 1) and 5.5 (Patient 9). 

 

5.3.3 Dynamic imaging PET protocol 

 

Dynamic imaging studies were performed in five subjects; three of these were part of 

preliminary pilot work and were performed in 2-D mode. Images from one of these 

studies are shown in Figure 5.6. 

 

Two further 3-D dynamic scans were performed, but only one study yielded useful 

data and this is shown in Figure 5.7. The patient was a 79 year old male who 

presented with a short history of left sided hemiparesis. He had several major vascular 

risk factors, and carotid angiography revealed a significant right internal carotid artery 

stenosis measuring 79%, there was disease on the left side amounting to a 29% 

stenosis. 

 

FDG-PET, CT and co-registered images from both carotid regions are shown in Fig 

5.7. The PET images were derived from the final frames of the study, one hour after 

FDG administration. FDG uptake is seen bilaterally in the carotid artery wall 

(arrowed), starting from well below the carotid bifurcation and extending upwards 

into the internal carotid artery, consistent with the extent of atherosclerotic disease 

noted angiographically. 

 

Patlak plots of the carotid stenosis regions on both sides were constructed using the 

arterial input function and ‘Analyze’ data from VOI’s drawn around the regions of 

stenosis.  

 

Plots are presented in Figures 5.8 and 5.9. Figure 5.8 shows the plot for the 

symptomatic stenosis in the right carotid artery. It is plotted from a mid-frame time of 

8 minutes to the end of the scan. Similarly, Figure 5.9 is the plot derived from data 

gathered for the left-sided asymptomatic stenosis. Both graphs have linear regression 

lines plotted on the same axes. Of note is the gradient of the linear plot (shown in bold 

on each plot). For the symptomatic lesion, the gradient is 0.82, compared to 0.67 for 
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the asymptomatic side. Recalling that the gradient of a Patlak plot is directly 

proportional to the metabolic rate of glucose usage in the region of interest (MRGlc) 

(Chapter 1 Section 1.5.6.3.2), it appeared that, in this patient, the MRGlc was greater 

in the symptomatic lesion than in the contralateral asymptomatic stenosis. 

 

 

5.3.4 FDG-PET/HRMR imaging 

 

Co-registered FDG-PET and HRMR images were acquired in seven patients. 

Representative FDG-PET with co-registered HRMR images are shown in Figures 

5.10, 5.11, 5.12 and 5.13. Full explanations of the images and arrows are given in the 

figure legends. 
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5.4 DISCUSSION 
 

Anecdotal reports of ‘hot spots’ in blood vessels of patients at high risk of 

atherosclerosis undergoing whole body FDG-PET studies for oncological indications, 

along with a single study in cholesterol-fed rabbits (Lederman et al., 2001), have 

suggested that FDG may accumulate in atherosclerotic plaques in vivo. 

 

By combining PET and CT imaging, with the addition of HRMR in some cases, it has 

been demonstrated in this chapter that FDG accumulates in human carotid artery 

atherosclerotic plaques, with significantly higher uptake in symptomatic than in 

asymptomatic lesions 3 hours after injection (23% greater). 

 

At earlier timepoints, the differences in FDG accumulation between symptomatic and 

asymptomatic lesions were not significant; this fact justifies the decision to modify 

the original protocol to extend data acquisition out to three hours. Net FDG 

accumulation rates were on average lower in the late frames; this is likely to be due to 

the fact that k4 is becoming more significant later on in the study. 

 

The Patlak plots in Figures 5.8 and 5.9, albeit in a single subject, showed a steeper 

positive gradient (thus implied higher metabolic activity) in symptomatic than 

asymptomatic plaque. Furthermore, it has already been demonstrated in Chapter 4, at 

least in vitro, that the majority of deoxyglucose accumulates in macrophage-rich areas 

of plaques, perhaps explaining the results shown in this chapter: namely that 

inflammation is present to a greater degree in symptomatic than asymptomatic 

plaques. 

 

These results suggest that FDG-PET may be capable of imaging and potentially quantifying 

plaque inflammation. This raises the possibility that FDG-PET could be used to predict risk of 

future plaque rupture, and perhaps therefore to target carotid surgery to high-risk stenoses 

regardless of angiographic appearance. More importantly perhaps, this approach 

might be used to monitor effectiveness of systemic atheroma-modifying treatments, 

since it is likely that any measurable effects of treatment on inflammation in carotid 

atheroma will reflect similar changes in other vascular beds, including the coronary 

arteries (Hulthe et al., 1997). 
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Before this potential can be realised, further studies are required to determine the 

precise relationship between FDG uptake, plaque macrophage activity and risk of 

plaque rupture. Histological and experimental data point to a close correlation 

between macrophage infiltration and plaque rupture. Furthermore, animal data 

suggest that statins stabilise plaques by attenuating plaque inflammation, thereby 

reducing clinical events. However, the implication from this work, that measured 

differences in plaque FDG uptake do indeed reflect differences in plaque macrophage 

content or activity (the two are not necessarily equivalent) needs to be confirmed. 

However, such confirmation would require measurements of FDG uptake in a number 

of plaques containing a spectrum of macrophage infiltration, ranging from large 

fibrotic plaques with little macrophage infiltration to small intensely inflamed 

plaques. Since it was possible only to obtain clinical specimens from patients 

undergoing carotid surgery for symptomatic, severely stenotic disease (the criteria for 

surgical intervention), there was access only to plaques that, by definition, were 

unstable and were, not surprisingly therefore, heavily infiltrated with macrophages. In 

other words, plaques were only available from one end of the disease spectrum. Thus, 

in this population, very large numbers of specimens would be required to obtain a 

statistically meaningful correlation between FDG uptake and macrophage number, 

particularly when one considers the inherent inaccuracies in trying to quantify 

macrophage content histologically. Therefore, the only way to address this important 

issue is by employing an animal model of atherosclerosis, in which plaque size and 

inflammation can be independently manipulated. A preliminary study using such a 

model was undertaken, and the results are presented and discussed in the Chapter 6. 

 

Although PET has limited spatial resolution (~ 5mm FWHM for GE Advance), it has 

been shown here that image co-registration with CT and/or MR can localise the FDG 

signal to individual atherosclerotic lesions. However, because CT angiography cannot 

accurately measure plaque volume (because remodelling can accommodate large 

plaques with little impact on lumen diameter) it was not possible, in this study, to 

apply a segmentation-based approach to partial volume correction to these data. It will 

be important in subsequent studies that partial volume error is minimised as much as 

possible by obtaining high-resolution MR in all subjects. The MR scans could then be 

segmented into stenosis, blood and background (soft tissue), then blurred to the 
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resolution of PET (5 x 5 x 6mm) (Meltzer et al., 1999). This will provide an estimate 

of the components that are contributing to FDG uptake in the stenosis region. Using 

the input function data, and a partial volume-free estimate of the background from the 

images in a uniform region away from the blood vessel, an estimate for the tracer 

concentration in pure stenosis could be calculated. However, this approach assumes a 

homogeneous tracer uptake in the plaque, which may not be accurate according to the 

phosphor imaging data presented in Chapter 4, so the situation becomes extremely 

complex. Even without full partial volume correction, the work in this chapter 

provides valuable additional information about plaque inflammatory state above that 

which is achievable by conventional imaging with either angiography, ultrasound, CT 

or MR. 

 

Future work will help to explore the potential uses and pitfalls of this imaging 

technique and will include FDG-PET imaging of a group of symptomatic TIA patients 

both before and after the administration of plaque stabilising drugs, most probably 

statins. The hypothesis here is that there would be quantifiable differences in FDG 

signal before and after statin therapy, thereby making the technique useful for 

monitoring the effect of these disease-modifying drugs. This hypothesis has recently 

been supported by a study which found that the significant temperature difference 

between atherosclerotic and healthy artery walls was ameliorated by atorvastatin 

treatment, achieved by a substantial reduction in macrophage number within the 

atherosclerotic plaques studied, suggesting a direct anti-inflammatory role for statins 

(Stefanadis et al., 2002). Additionally, the use of radiotracers that are more 

macrophage-specific than FDG, such as 11C-PK11195 (Myers et al., 1991), will be 

evaluated with the hope of improving the plaque/background ratio. This might 

eventually permit imaging of atherosclerosis in arteries where background uptake of 

FDG would be prohibitively high, such as those in the cerebral and coronary 

circulation. 

 

In summary, this chapter provides the first direct evidence that human atherosclerotic 

plaque inflammation can be assessed non-invasively by FDG-PET, and paves the way 

for a new approach to atheroma imaging that reflects the cellular pathology of the 

disease process rather than its anatomical consequences. 
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Patient ID Sex Age Symptoms 
Symptoms to PET 

(Months) 

Dynamic 010252 M 79 L hemiparesis 4 

1 000250 M 66 R amaurosis x 2 2 

2 000320 M 71 Aphasia x 3 4 

3 000361 F 48 R hemiparesis 8 

4 000396 M 68 L amaurosis x 2 6 

5 000435 M 52 L hemiparesis x 6 4 

6 000495 M 63 L hemiparesis x 2 4 

7 010067 F 69 L hemisensory 2 

8 010183 M 71 R hemiparesis 2 

9 010494 F 72 R hemiparesis 5 

10 010498 M 76 L amaurosis 3 

  Female (%) Mean age -  

  30 65.6   

 
Table 5.1 Characteristics of patients undergoing late and FDG-PET dynamic imaging. 
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Patient ID 
Symptomatic 

early 

Symptomatic 

late 

Asymptomatic 

early 

Asymptomatic 

late 

1 000250 13.66 5.88 13.04 3.44 

2 000320 11.69 8.05 - - 

3 000361 10.18 7.59 10.18 4.95 

4 000396 11.06 8.44 9.41 7.71 

5 000435 10.74 8.38 5.65 4.74 

6 000495 5.37 5.77 - - 

7 010067 13.29 10.87 12.57 9.91 

8 010183 12.28 8.65 11.21 6.49 

9 010494 9.16 7.24 10.33 7.10 

10 010498 15.23 11.47 - - 

MEAN  11.27 8.23 10.34 6.33 

S.E.  0.87 0.58 0.92 0.82 

95% C.I.  9.31 – 13.22 6.91 – 9.55 8.08 – 12.60 4.33 – 8.34 

 

Table 5.2 Early and late net FDG accumulation rate for late protocol FDG-PET 

patients (expressed as x10-5 sec-1). Dashes represent contralateral arteries without 

stenosis. 
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Figure 5.1 PET imaging of symptomatic carotid atherosclerosis 

The images (from left to right) show PET, contrast CT and co-
registered PET/CT images in the sagittal plane, from a 63 year old male 
who had experienced two episodes of left-sided hemiparesis. 
Angiography demonstrated 80% stenosis of the proximal right internal 
carotid artery; this was confirmed on the CT image (black arrow). The 
white arrows show FDG uptake at the level of the plaque in the carotid 
artery. As expected, there was high FDG uptake in the brain, jaw 
muscles and facial soft tissues. 
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Figure 5.2 PET imaging of asymptomatic carotid atherosclerosis 

The images (from left to right) demonstrate a low level of FDG uptake in an 
asymptomatic 65% carotid stenosis. The black arrow highlights the stenosis 
on the CT angiogram, and the white arrows demonstrate minimal FDG 
accumulation at this site on the FDG-PET and co-registered PET/CT images. 
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Figure 5.3 Unilateral carotid FDG uptake. 

From top to bottom, FDG-PET, CT and co-registered PET/CT 
images, coronal views on the left, sagittal views on the right. 
The white arrows indicate FDG uptake at the site of carotid 
atheroma in the right internal carotid artery. Note there is no 
uptake above background on the left side 
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Figure 5.4 Carotid plaque histology. 

Double immunohistochemistry demonstrating black stained 
macrophages beneath a brown coloured smooth muscle cell-rich 
fibrous cap (From Patient 1). Magnification x40. 
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Figure 5.5 Histology of ruptured carotid plaque 

Double immunohistochemistry against smooth muscle cells and 
macrophages. Macrophages, stained black, are present below the 
ruptured fibrous cap (From Patient 9). Magnification x40. 
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PET 

CT 

PET + 
CT 

Figure 5.6 Pilot 2-D dynamic FDG-PET images 

This figure shows high blood pool FDG activity in the PET images, 
acquired 45 minutes after FDG injection. From top to bottom, PET, 
CT and co-registered PET/CT images. Transverse, coronal and 
sagittal views from left to right. 
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LEFT RIGHT 

Figure 5.7 3-D dynamic carotid FDG-PET imaging 

This figure shows bilateral FDG uptake in the carotid region, seen 
in these sagittal views. The white arrows indicate the sites of 
stenosis. Patlak plots were constructed from these data. 
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Patlak plot of right (symptomatic) stenosis -        
8 mins onwards
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Figure 5.8 Patlak plot – symptomatic lesion 

This figure is a Patlak plot of the region around the symptomatic 
stenosis of the patient shown in Figure 5.7. The gradient of the 
linear regression line of this plot is 0.82. 
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Patlak plot of left (asymptomatic) stenosis -     
8 mins onwards
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Figure 5.9 Patlak plot – asymptomatic lesion 

This figure is a Patlak plot of the region around the asymptomatic 
stenosis of the patient shown in Figure 5.7. The gradient of the 
linear regression line of this plot is 0.67. 
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Figure 5.10 HRMR carotid plaque imaging 

This figure shows a HRMR scan at the level of the carotid arteries, 
with a left sided symptomatic plaque visible as a high signal lesion, 
arrowed in red. 
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MR 

PET 
+MR 

Figure 5.11 HRMR/FDG-PET carotid plaque imaging 

This figure shows images from the same patient as in Figure 5.10. 
From top to bottom are PET, MR and co-registered PET/MR 
images. Note the high FDG accumulation at the site of the lesion on 
the PET scan (white arrows). 
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Figure 5.12 HRMR carotid plaque imaging 

This figure shows a HRMR scan at the level of the carotid arteries. 
The left sided lesion is symptomatic, and has a smoothly thickened 
wall. On the asymptomatic right side, the wall is eccentrically 
thickened by plaque, with an area of high signal on the medial side 
of the vessel (arrowed in red). 

L! R!

106c 



Figure 5.13 HRMR/FDG-PET carotid plaque imaging 

This figure shows images from the same patient as Figure 5.12. The 
symptomatic left sided lesion has accumulated FDG (white arrows), 
whilst the asymptomatic lesion on the right (red arrow) has also 
taken up FDG to a similar extent, suggesting high inflammatory 
activity in this plaque also. 

106d 



 
 
 
 
 

________________________________________________ 
 

Chapter 6 
___________________________________________ 

 
 



 114 

CHAPTER 6 

 

THE UPTAKE OF FDG IN AN EXPERIMENTAL MODEL OF 

ATHEROSCLEROSIS 

 

6.1 INTRODUCTION 

 

The work described in this chapter was prompted by the results described in Chapter 

5, which showed that FDG accumulation occurs in atherosclerotic plaque above 

background levels, and furthermore that FDG accumulates to a greater extent in 

symptomatic plaques than asymptomatic plaques. Some of the questions raised by the 

results in Chapter 5, such as the relationship between FDG signal and plaque 

macrophage content and activity, the feasibility of serial imaging and the 

manipulation of plaque macrophage content cannot easily be addressed in studies of 

human subjects. 

 

Therefore it was decided to establish an experimental animal model of atherosclerosis, 

and to use the recently developed microPET small animal scanner to image the 

lesions generated. The questions addressed by this group of experiments were 

fourfold. 

 

Firstly, was it possible to establish an animal model of atherosclerosis to generate 

targeted lesions in the aorta? 

 

Secondly, was it feasible to perform serial imaging of these lesions using the 

microPET scanner and FDG? 

 

Thirdly, could any FDG uptake be quantified? 

 

The final intention was to gain pilot data on the feasibility of manipulating the 

macrophage content of lesions, over an extended time period, by altering dietary lipid 

intake of the animals. 
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6.1.1 Background to the model of atherosclerosis 

 
The New Zealand white rabbit (NZWR) balloon injury model of atherosclerosis was 

used. This model, described in detail below, has been extensively validated by others 

(Verheye et al., 2002; Meding et al., 2002; McConnell et al., 1999; Johnstone et al., 

2001; Galis et al., 1995; Aikawa et al., 1998; Abela et al., 1995) and reliably 

generates lesions that resemble human atherosclerotic plaques, having a recognisable 

fibrous cap covering a macrophage-rich lipid core. Plaques produced in this way have 

been reported (McConnell et al., 1999) to be more similar to human lesions than those 

derived from the other, less widely used rabbit model of atheroma (this uses 

Watanabe rabbits, which have a genetic defect in the region coding for the LDL 

receptor, and which spontaneously develop aortic atherosclerotic plaques as a result). 

 

In addition, after a lesion has been generated by the NZWR model, a reduction in the 

cholesterol content of the diet of the animal will result in amelioration of both 

macrophage proteolytic capability and the inflammatory cell content of the lesion; in 

other words dietary intervention can stabilize the lesions (Aikawa et al., 1998; 

Verheye et al., 2002). 

 

A balloon injury to the aortic endothelium in combination with a high cholesterol diet 

was employed as an alternative to high cholesterol diet alone. This is because the 

endothelial denudation it creates tends to accelerate lesion formation, produces lesions 

more uniform in size and distribution, and generates plaques with a smooth muscle 

cell-rich cap overlying a layer of lipid laden macrophages (Aikawa et al., 1998; Galis 

et al., 1995). It was for this reason, and because the balloon injury model allows the 

lesions to be targeted in the aorta for later PET imaging, that the NZWR model of 

atherosclerosis was chosen. Accurate targeting was necessary because there was no 

means of acquiring anatomical co-registration scans in this early work. 

 

6.1.2 MicroPET system 

 

Animal models of human disease are widely used in research for elucidating 

pathological mechanisms and for assessing the therapeutic potential of treatments on a 

disease process. Radiotracer techniques such as autoradiography are commonly 
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employed in these studies, but their use requires the sacrifice of several animals at the 

end of a single experiment, meaning that longitudinal studies necessarily involve the 

use of large numbers of animals. 

 

PET is the technique of choice for providing in-vivo, non-invasive functional imaging 

in animal models of disease. It may not have a spatial resolution approaching that of 

autoradiography, but with PET there is no requirement for animal sacrifice after each 

experiment, allowing longitudinal observations in a single animal. In addition, much 

information can still be obtained about disease pathogenesis and the kinetics of 

injected tracers even at a resolution of  ~2mm. Clinical PET scanners do not have 

sufficient resolution for small animal applications; therefore, a dedicated, high 

resolution small animal PET scanner is required to undertake these studies, and such a 

machine became available in Cambridge in late 2001. 

The scanner used was the microPET system, 4-ring primate version (P4) (Concorde 

Microsystems, Knoxville, TN, USA). Detailed evaluation and validation of this 

machine has been published elsewhere (Chatziioannou et al., 1999; Tornai et al., 

1999). MicroPET allows serial PET imaging to be performed in a variety of animal 

models ranging in size from mouse to non-human primate. The scanner specifications 

are shown in Table 6.1. 

An important point to note is that the scanner resolution is significantly superior to 

that of the GE Advance clinical PET scanner used for the carotid atherosclerosis 

studies in Chapter 5 (~1.85 mm vs ~5 mm, respectively, at the centre of the field of 

view). The main reason for this is that the detector dimensions are 2x2mm en face 

rather than 8x4mm in the Advance scanner. In addition, the resolution loss due to 

photon non-collimetry is reduced with the smaller ring diameter (26cm vs 93cm). 

Finally, replacing the bismuth germanate scintillation detectors in the Advance with 

lutetium oxyorthosilicate in the microPET system results in a faster scintillation decay 

time and more than five times the light output. A consequence of this is a significantly 

improved count rate performance and the ability to use a shorter coincidence time 

window (6nsecs in the microPET vs 12nsecs in the Advance). This shorter time 

window reduces the sensitivity of the scanner to random coincidences, which is 
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especially important as the scanner has no septa and therefore operates exclusively in 

3D mode. 

Employing an identical animal model of atherosclerosis to the one used here, a 

fibreoptic positron detection probe has already been used successfully to investigate 

atheroma ex-vivo (Lederman et al., 2001). The probe was able to distinguish diseased 

artery from normal segments on the basis of differing degrees of FDG accumulation. 

The authors of this study also noted a positive correlation between FDG signal and the 

intima-media ratio of the aortic wall. Others have reported work, in abstract form, 

(Badimon et al., 1999; Vallabhajosula et al., 1996), in which clinical PET scanners 

were used to image animal models of atherosclerosis. Both these studies revealed 

FDG accumulation at the site of previous balloon injury. However, neither used 

scanners with the spatial resolution that microPET affords, and additionally, serial 

PET imaging after manipulation of lipid levels was not undertaken. 
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6.2 METHODS 

 

The experimental plan is shown in Table 6.2 

 

Firstly, to provide control images, FDG-PET imaging was performed in two animals 

before balloon injury. Secondly, FDG uptake was assessed in eight animals, four 

months after a combination of balloon injury and high cholesterol diet (Atheroma 

progression imaging). Then, the animals were split into two groups - one group 

remained on a high cholesterol diet, and the second group was switched to a normal 

diet. Finally, all animals were imaged again, 75 days after this split, and a comparison 

was made between PET images obtained from the two dietary groups (Atheroma 

regression imaging). In addition, histological characterisation of the lesions in the 

aorta was carried out after the final imaging session. 

 

6.2.1 Rabbit housing and diet 

 

All animal work was covered by appropriate Home Office licences. Nine female, 10-

week old New Zealand white rabbits were purchased from Charles River (UK), and 

housed, one animal per cage, in a dedicated animal facility. The animals were fed 

200g per day of standard rabbit diet during an induction period from Day 1 until Day 

48, when they were all switched to a 50:50 mixture of standard diet and 0.2% 

cholesterol enriched diet. By Day 59, all rabbits had been fully established on 200g of 

0.2% cholesterol enriched diet. This was continued for a total of 128 days. Surgery 

was undertaken on Day 65. At Day 187, half of the animals were randomly switched 

back to 200g daily of standard rabbit diet, while the other half remained on the high 

cholesterol diet. On Day 290, 103 days after the dietary split, all of the animals were 

sacrificed. 

 

6.2.2 Lipid measurements 

 

Total cholesterol was measured in plasma samples taken from the marginal ear vein 

using a commercially available enzymatic assay kit (Cholesterol C-Test, Wako, UK). 
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Serum was obtained from whole blood by centrifuging at 8000rpm for 10 minutes. 

The reaction was assayed at 492nm, with each sample analysed in triplicate. 

 

6.2.3 Anaesthesia 

 

General anaesthesia was used during surgery and PET imaging. Induction was achieved 

using intravenous alphaxalone/alphadalone (Saffan, Schering-Plough, 0.2ml/kg) diluted 

in saline to a volume of 5mls, and anaesthesia was maintained with a mixture of 

oxygen (0.5L/min), nitrous oxide (0.8-1L/min) and isoflurane (2.5-4%) delivered by 

secured facemask. There was no need for endotracheal intubation during any of the 

surgical or imaging sessions. Rectal temperature was constantly monitored with the 

animal placed on a padded warming blanket throughout the procedure. Towards the end 

of the procedures, reducing the inspired concentration of isoflurane lightened 

anaesthesia. Animals were monitored closely until they had made a full recovery 

following anaesthesia. There were no anaesthetic-related adverse outcomes. 

 

6.2.4 Aortic balloon injury 

 

Under general anaesthesia, the right groin was shaved and the leg abducted to expose 

the femoral triangle. An incision was made in the right groin and the femoral vessels 

were isolated and freed from connective tissue using scalpel, scissors and forceps. 

Special care was taken to separate the femoral artery from the femoral nerve, which 

often ran close together in the inguinal canal. The vein was identified easily because 

of its dark colouration. Once isolated, the distal end of the artery was tied off using an 

Ethilon suture (4/0), and then cut. To facilitate cannulation of the artery, papaverine 

2% (3mls) was dripped slowly onto the exposed vessels to cause vasodilatation over 

the course of a minute. A clip was applied proximal to the tied off artery, exposing a 

length of artery measuring 2 to 3 cm. Iridectomy scissors were used to create an 

arteriotomy as distally as possible. A Fogarty balloon catheter (4F size) was then 

introduced into the artery to a distance of 30cm, measured using the 10cm markings 

on the catheter. Having tested and primed the balloon with 1.5mls air, 0.2mls were 

withdrawn, and the catheter was then pulled back to the aortic bifurcation with the 

balloon inflated. This resulted in an injury to the aorta of about 20cm in length. The 

balloon was then deflated and withdrawn from the artery. A bulldog clip was applied 
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around the arteriotomy site and tied off with Ethilon (4/0). Haemostasis was secured, 

and the fascia and skin were closed with Vicryl sutures (4/0). 

 

6.2.5 FDG-PET imaging protocols 

 

Imaging was performed using the University of Cambridge microPET scanner. 

Rabbits were imaged under general anaesthesia. An average dose of 129 MBq FDG 

was administered intravenously over 20 seconds via the marginal ear vein. The energy 

and coincidence windows for both the control imaging and first set of plaque imaging 

PET studies were 250-750 keV and 10 nsecs respectively. 

  

Further work indicated that narrowing of both of these parameters would improve 

data quality by cutting down scatter and random events, without significant sacrifice 

of true events. Thus the final series of PET images were acquired using energy and 

coincidence windows at 350-650 keV and 6 nsecs respectively.  

 

Blood sampling during PET scans was not performed because of the difficulties 

inherent in taking repeated aliquots of blood from the animals’ marginal ear veins. 

These are fragile vessels which tend to thrombose if a cannula is left in place for 

longer than five minutes. This will be addressed in future experiments by using the 

central artery of the ear to obtain samples. Therefore an approximation of the input 

function was derived from the ventricular cavity of the control images as explained in 

Section 6.2.7. 

 

6.2.5.1 Control imaging (Day 29) 

 

The heart was centred in the field of view (FOV) of the scanner using the laser guide 

lights. Images were acquired over ninety minutes as 10x1, 5x2 and 14x5 minute 

frames in a single bed position. 

 

6.2.5.2 Atheroma Progression imaging (Day 170) 

 

The descending aorta was placed at the centre of the FOV. Three frames of 35 

seconds duration in three consecutive bed positions were acquired immediately 
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following injection of FDG in order to provide a ‘blood image’ of a length of aorta 

that would be crucial for delineating the aorta in late FDG images. There was a 2cm 

overlap between each of the three bed positions. This was followed by 8x1, 10x2, 

12x5 minute frames with the descending aorta in the centre of the FOV. Finally two 

bed positions adjacent to this were used to obtain images, as 3x5 minute frames at 

each position, above and below the initial FOV. 

 

6.2.5.3 Atheroma Regression imaging (Day 262) 

 

The protocol for atheroma progression imaging described in Section 6.2.5.2 was used. 

 

6.2.6 Data corrections 

 

In order to generate fully quantifiable emission data, a whole series of data corrections 

must be applied to the data : normalisation, sensitivity, dead time, decay, scatter, 

randoms and attenuation. The software supplied with the microPet scanner only 

provides correction for random events (decay is also a trivial correction). 

Consequently, the Cambridge microPet group has been developing methods to 

achieve the other corrections. Normalisation correction was applied to these data, but 

the attenuation, dead time and sensitivity methods developed recently have only 

become available since the data in this chapter were acquired (scatter correction is 

still under development). Hence, it was not possible to achieve quantified images 

(KBq/ml) in these early experiments. 

 

Once acquired, image frames were reconstructed using an in-house version of the 3-D 

PROMIS algorithm (Kinahan et al., 1989) with correction applied for normalisation. 

Image frames were then imported into the ‘Analyze’ software package (Robb et al., 

1991). 

 

6.2.7 Assessment of plaque FDG concentration 

 

Regions of interest were drawn around the aorta on the initial early ‘blood’ images, 

which were formed through the concatenation of three 35 second frames at three 

overlapping bed positions, encapsulating 18cm of the aorta. This ROI was then 
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applied to the dynamic data set and FDG intensity during all frames of the study was 

determined. This value represents FDG uptake by the combination of aortic atheroma, 

vessel wall and also FDG in the bloodstream within the lumen of the vessel. In order 

to estimate the FDG signal purely due to uptake in atheroma at each timepoint of the 

scan, blood FDG uptake was subtracted using the following method. 

 

The control PET images were used to generate a blood curve (input function), in a 

similar way to that used in cardiac PET studies. Six frames, representing the final 30 

minutes of the study were averaged, and regions were drawn within the ventricular 

cavity, on three slices, well away from myocardial muscle. The assumption made is 

that any FDG signal from this cavity is due entirely to blood (this is obviously an 

approximation because of scatter and partial volume effects from the myocardial 

tissue). These ROI were then applied to the entire dynamic control image set, to 

generate an approximate blood curve input function for all timepoints. Blood curves 

were generated from both of the control studies and then averaged to give a mean 

input function curve. 

 

Once the input function curve had been derived, it was then possible to scale the early 

part (≈10 mins) of each aortic FDG uptake curve to this blood curve, making the 

assumption that early FDG activity within the aortic region would be coming almost 

entirely from blood within the lumen. The final step was to subtract the blood curve 

from the scaled aortic FDG uptake curve, leaving a pure aortic FDG uptake value for 

each timepoint of the scan. All values were decay corrected and the mean ROI size 

was 650mm3 (± 25.8). 

 

This analysis was carried out using the PET data for each animal from two studies : 

atheroma progression (Day 170) and atheroma regression (Day 262). The data from 

all animals were averaged, to allow comparisons of FDG aortic accumulation in both 

dietary groups. 

 

6.2.8 Perfusion fixation 

 

The animals were sacrificed by a rapid intravenous injection of 4mls of sodium 

pentobarbitone (Euthatal). After sacrifice, the chest was opened by cutting through the 
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ribs on either side of the sternum. Once the heart had been exposed, the pericardium 

was incised and stripped away. The left ventricle was cannulated, the cannula being 

secured using forceps, and the animals were then perfused for 30 minutes with 

warmed PBS, followed by 30 minutes with 4% paraformaldehyde solution. Ten 

seconds after the start of perfusion, the right atrium was incised to allow displaced 

blood to escape the circulation. In order to achieve adequate perfusion pressure, the 

saline and fixative solutions were raised to a height of 1.5 metres above the animal. 

This arrangement provided an intra-aortic pressure of approximately 80mmHg.  

 

After perfusion, the aorta, from arch to iliac bifurcation, was removed and fixed in 4% 

paraformaldeyde for a further 48 hours. Renal arteries were also taken to allow 

orientation of the aorta with the PET images. The aortas were photographed whole, 

and transverse sections were cut from each aortic specimen in the region that had 

undergone balloon injury. Sections were cut 5µm thick and mounted on BDH 

Superfrost Plus slides. These were stained using haematoxylin and eosin using the 

protocol described in Section 2.3.2 of Chapter 2, and immunocytochemistry was 

carried out against vascular smooth muscle cells (Chapter 2, Section 2.3.1.1) and 

macrophages (Chapter 2, Section 2.3.1.2). 
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6.3 RESULTS 

 

Surgery was carried out successfully in all nine animals, without immediate 

complications. However, one animal had to be sacrificed 15 days post-operatively 

because of a 20% loss of body weight (a Home Office criterion for immediate 

sacrifice). After examination by the veterinary surgeon, the cause of this weight loss 

was thought to be pneumonia. After euthanasia, examination of the surgical site of the 

animal showed no evidence of haemorrhage, infection or wound breakdown. 

 

6.3.1 Lipid profiles 

 
The mean (±SEM) total cholesterol before starting the high cholesterol diet for the 

whole group of 8 remaining animals was 66.0mg/dl (± 5.8), range 33.5-84.4 mg/dl. 

After 128 days on a 0.2% enriched cholesterol diet, the mean total cholesterol of the 

group had increased significantly to 1008.3mg/dl (± 157.4), range 146.9-1686.0 

mg/dl, p = 0.0006. 

 

The eight rabbits were then split into two groups of four animals. One group 

continued on the high cholesterol diet (‘High group’ i.e. animals numbered 5,7,8,9) 

while the other group returned to a normal diet (‘Low group’ i.e. animals numbered 

1,2,3,4) for the remainder of the experiment. Mean total cholesterol in the four 

animals randomised to normal diet had dropped significantly after 103 days [from 

1150.4mg/dl (± 210.6) to 226.2mg/dl (± 102.1), p = 0.0085], and, as expected, it 

remained elevated in those animals randomised to continue on high cholesterol diet 

[from 866.2mg/dl (± 240.3) to 939.7mg/dl (± 337.0), p = 0.7]. 

 

However, at the end of the experiment, 103 days after the groups split, mean total 

cholesterol levels did not differ significantly between the two dietary groups 

[939.7mg/dl (± 337.0) vs 226.2mg/dl (± 102.1), p = 0.089], mainly as a result of one 

non-responder to high cholesterol diet in ‘High group’ (animal number 7), and one 

animal in the ‘Low group’ whose serum cholesterol over the 103 days remained 

elevated (animal number 2) despite being on a normal diet (See Figure 6.1 and Tables 

6.3 and 6.4). 
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6.3.2 Aortic histology 

 
Examples of aortic histopathology are shown in Figure 6.2, taken from animal 9. The 

upper left panel shows sections that have been stained with haematoxylin and eosin to 

illustrate the three layers of the arterial wall. The upper right and lower panels show 

the same arterial section that has had immunochemistry performed against smooth 

muscle cells and macrophages respectively. The typical position of these cell types 

within the plaque is illustrated. 

 

6.3.3 Control FDG-PET imaging 

 

Control FDG-PET images were acquired in two animals after one month of standard 

rabbit diet. Early, late and composite images are shown in three planes in Figure 6.3. 

The heart was placed at the centre of the field of view with the region of the 

ascending and descending aorta also covered. The top row of images were generated 

from the summation of five one minute frames taken early after FDG injection. The 

late images in the middle row were generated from the summation of four five minute 

frames, the first being taken 60 minutes after FDG administration. The composite row 

contains images that are the result of fusion of early and late frames. In the early 

images, activity can just be seen within the ventricular cavity of the heart. The 

descending aorta is out of plane in these slices and is not seen. 

 

In the late images there is the predicted uniform uptake of FDG in myocardial tissue, 

but no accumulation above background seen in either the ascending or descending 

aorta (traced out by white arrows), confirming what was found in the human studies 

in Chapter 5, namely that FDG uptake into normal vessel wall is at background tissue 

levels. Blood in the ventricular cavity was used to generate input function data for 

quantification of FDG uptake in the later atheroma progression and regression FDG-

PET images. 

 

6.3.4 Atheroma Progression FDG-PET Imaging 

 

Imaging was carried out successfully in all eight animals, 170 days after the start of 

the experiment. 
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Figure 6.4 shows representative FDG-PET images in three planes from animal 2. The 

images on the top row were acquired during the first minute after tracer injection, and 

are therefore a good marker for activity contained within the bloodstream. Images in 

the middle row are the average of three five minute frames acquired one hour after 

FDG injection. The bottom row shows composites of the one minute and one hour 

images, where the later images have been overlaid onto the early ones, confirming 

that the FDG uptake seen in the late frames is situated within the aorta. The sections 

displayed in Figure 6.4 are at the level of the descending aorta, in the middle of the 

area targeted by the balloon injury procedure. 

 

FDG within the bloodstream in the descending aorta is well seen in the coronal and 

sagittal early images (yellow arrows). In the middle row, one hour after injection, 

activity from the blood pool has been lost, but there remains FDG uptake in the 

descending aorta (blue arrows). On the bottom row, the composite images confirm 

that this activity at one hour is within the aorta, because its position coincides exactly 

with the aortic blood activity in the early images. Figure 6.5 shows a close-up of a 

coronal 90 minute image from the same animal, again demonstrating FDG uptake in 

the aortic region (blue arrows). 

 

The averaged aortic FDG uptake curves over time, derived from all eight animals, are 

shown in Fig 6.6. Activity in the bloodstream has been subtracted as described in 

Section 6.2.7, leaving only FDG activity derived from aortic tissue. 

 

It can be seen that FDG accumulates in the aorta with time, plateauing at around 70 

minutes after FDG injection. It should be noted that all animals were on high 

cholesterol diet at this stage. The black curve is derived from the average aortic FDG 

activity in all eight animals. The red curve is the average of the four animals destined 

for low cholesterol diet, the blue curve is the average of the four animals destined for 

continued high cholesterol feeding. 

 

It can be seen that there are slight differences between FDG uptake in the two groups 

(red and blue curves), with the red group having generally higher FDG uptake values. 

This finding might be explained by the fact that this group, destined for subsequent 

low cholesterol diet, actually had higher average cholesterol values at the time of this 



 127 

scan (see Fig 6.1, red line), even though all animals were receiving identical diets at 

the time of imaging (1150.4 ± 210.6mg/dl versus 866.2 ± 240.3mg/dl). 

 

6.3.5 Atheroma Regression FDG-PET Imaging 

 

Imaging was carried out successfully in all eight animals at day 262. Illustrative data 

from three animals are shown below: 

 

Animal 2 : This animal was switched to low cholesterol diet at 170 days. The 

atheroma progression images from this animal are shown in Figures 6.4 and 6.5, and 

discussed above, illustrating FDG uptake in the aorta. 

 

The atheroma regression FDG-PET images in the same animal are shown in Figures 

6.7 and 6.8. Figure 6.7 shows the averaged early frames of the study, with three bed 

positions appended together and is essentially a blood image that delineates the aorta. 

Figure 6.8 is a late FDG-PET image of the aorta taken at 90 minutes after FDG 

injection, obtained over three bed positions, averaged together and appended. It can 

be seen that there is little FDG uptake in the aorta. Therefore, the uptake clearly seen 

in the progression images (Figures 6.4 and 6.5) is considerably reduced after the 

change to a low cholesterol diet, despite the fact that the cholesterol did not fall as far 

as the other rabbits in this group. 

 

Aortic microscopy of this animal is demonstrated in Figure 6.9 and shows that there is 

little difference in macrophage content at either level sampled. Both sections show the 

presence of moderate numbers of macrophages. 

 

Animal 5 : In this animal, with continued high cholesterol feeding throughout the 

experiment, substantial diffuse FDG uptake in the aorta is demonstrated after 90 

minutes, shown by the arrows in Figure 6.10. In the histology sections, shown in 

Figure 6.11, it can be seen that at both levels of the aorta sampled there are large 

volume, macrophage-rich lesions, consistent with the high levels of uptake of FDG.  
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Animal 8 : In this animal, once again from the continued high cholesterol feeding 

group, there is significant FDG uptake seen in aorta in the late PET image (Fig 6.12). 

The histology image (Figure 6.13) shows bulky, macrophage filled lesions at both 

levels sampled. 

 

In Figure 6.14, mean aortic FDG uptake curves are shown, derived from data from all 

animals at the time of the second PET scan. There are clear differences in FDG uptake 

between the two dietary groups at 67.5 minutes after FDG injection, but these 

differences do not quite reach statistical significance (647.5 vs 1880.1; p=0.084). This 

timepoint was chosen because it was felt that FDG flux would have reached steady 

state by this stage after injection. This result may be explained by the mean 

cholesterol measurements in the two groups, as shown in Figure 6.1, which at the time 

of the second PET scan are not statistically significantly different from each other. 

 

To explore this possibility further, at the end of the experiment, a correlation 

coefficient between serum cholesterol levels and FDG uptake in all animals was 

calculated. There was a significant positive correlation noted, with r=0.71, p=0.11. If 

animal 7 was excluded from the calculation, because it did not respond well to the 

high cholesterol diet, then the correlation between cholesterol level and FDG uptake 

became stronger, with r=0.86, p=0.07. 
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6.4 DISCUSSION 
 

It has been shown in this chapter that a model for generating aortic atherosclerotic 

lesions has been successfully established. Both the serum lipid levels generated by 

cholesterol feeding, and their reduction after its withdrawal in the low cholesterol 

group agree closely with the work of others, who also noted plaques that were 

morphologically similar to those produced here, in terms of size, inflammatory cell 

content, lack of complications and anatomical position within the aorta (Verheye et 

al., 2002; Aikawa et al., 1998; Johnstone et al., 2001; McConnell et al., 1999).  

 

Nevertheless, the NZWR model is not perfect as a model of human atherosclerosis. It 

did not produce complicated plaques, such as those with fibrous cap rupture, 

thrombosis or haemorrhage, that are frequently encountered in man. Although these 

outcomes can be achieved with pharmacological manipulation shortly before imaging 

(Johnstone et al., 2001; Abela et al., 1995), the effects are not reliably reproducible 

and this approach was not employed in this study. Non-responders to high cholesterol 

diet, and slow responders to its subsequent withdrawal are fairly frequently seen with 

this model (Kolodgie et al., 1996), and were therefore not unexpected in this work. It 

will be important to control for this in future studies. 

 

A second caveat is that the atherosclerotic plaques produced by this model are 

generated over several months, rather than the decades it takes for the development of  

a human plaque. This probably results from the extreme degree of 

hypercholesterolaemia in the rabbits, which greatly exceeds that encountered in man. 

 

There are therefore important differences in the natural history of plaques produced 

by this model and those found in man, but the NZWR method remains one of the 

most useful and widely used experimental models of this disease. 

 

The accumulation of FDG was successfully imaged within these plaques, and at a 

higher resolution than previous groups (Vallabhajosula et al., 1996). It has also been 

shown that quantitative changes in FDG uptake within atherosclerotic lesions can be 

detected after manipulating serum lipid levels using dietary interventions known to 
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stabilize plaques. Although, because of non-responders in both the small groups of 

animals, the lipid levels in the two groups did not differ significantly at the end of the 

experiment, quantitative differences between animals in both groups were still noted 

when the averaged FDG aortic uptake values were examined. In the four rabbits that 

continued high cholesterol feeding throughout the experiment, average FDG uptake 

around an hour after FDG injection was higher at the final imaging session (Fig 6.14), 

than in the four animals that switched to low cholesterol diet halfway through the 

experiment, although the differences fell short of statistical significance. There was 

also a strong, but once again non-significant positive correlation between serum 

cholesterol values and aortic FDG uptake at the end of the experiment. 

 

The lack of key data corrections (attenuation, dead time and scatter) meant that 

absolute quantification of FDG accumulation was impossible in this data series. 

Although limited graphical quantification and comparison between groups of animals 

was possible using estimated input function data, it will be desirable in subsequent 

work to try to achieve these corrections and also to perform plasma sampling during 

imaging sessions. A recent software upgrade provided by the manufacturers, and in-

house software and methodological work means that it will now be feasible to 

perform attenuation, sensitivity and dead time corrections on future studies. An in-

house Monte Carlo-based scatter correction technique is still under development. 

 

Based on work reported in Chapters 3, 4 and 5, it seems likely that the majority of 

FDG taken up into plaques in NZWR is sequestered by macrophages within the 

plaque. A reduction in both macrophage number and function in this model (as 

measured by matrix metalloproteinase production) occurs after several months of 

cholesterol-free diet (this varies between three and 16 months in published papers) 

(Aikawa et al., 1998; Verheye et al., 2002; McConnell et al., 1999), but a more potent 

and rapid effect is seen with the administration of statins (Bustos et al., 1998; Aikawa 

et al., 2001), which virtually abolish macrophage infiltration into the plaque after only 

four weeks treatment. It is probable, therefore, that such a change in the macrophage 

content of lesions (Shiomi et al., 1999) might have a greater effect on reducing FDG 

uptake than dietary changes alone in future longitudinal imaging studies. Once these 

issues have been resolved, future projects using this model will investigate whether 
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potent statin drugs are able to reduce inflammation within atherosclerotic plaques, and 

furthermore whether this can be visualised and quantified using FDG-PET. 

 

Additionally, other more macrophage-specific markers, such as [11C] PK11195, will 

be employed, for tandem imaging with FDG, in the hope of mapping out both 

macrophage content and activity within the same atherosclerotic plaque. Finally, the 

testing of novel anti-atheroma drugs may also be feasible, with the need for fewer 

animals than exists today with current approaches to the evaluation of such 

compounds. 
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Specifications  microPET® P4  

Detector Diameter  26.0cm 

Animal Port  22cm 

No. of Blocks per Ring 42 

No. of Detector Blocks 168 

Total No. of LSO 
Elements 10,752 

Timing Window  
Variable at 
2, 6, 10, 14 or 
18 nsec 

Energy Window  Variable from 
0keV - 810keV 

Absolute System 
Sensitivity ~650cps/µCi 

Resolution at Center of 
FOV ~1.85mm 

Reconstruction SSRB, FORE  

Table 6.1 Technical specifications of the Concorde microPet P4 model, taken from Concorde 
Microsystems website. 
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Table 6.2 The timeline of the experiments described in this chapter is shown above. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.2 % cholesterol 
enriched diet  

FDG-PET scan 
(Atheroma 

Progression) 

FDG-PET scan 
(Control) 

FDG-PET scan 
(Atheroma 
Regression)  

0.2 % cholesterol 
enriched diet 

Standard diet 
Standard diet 

BALLOON 
INJURY  

Day 65 Day 170 Day 29 Day 262  Day 290  

SACRIFICE  

Day 187 

Dietary split 
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Before 
feeding 
(n=8) 

At Split whole 
group 
(n=8) 

At Split high 
group (n=4) 

At Split low 
group (n=4) 

Final high 
group (n=4) 

Final low 
group 
(n=4) 

Mean total 
cholesterol ± 
SEM (mg/dl) 

66.0 ± 5.8 1008.3 ± 157.4 866.2 ± 240.3 1150.4 ± 210.6 939.7 ± 337.0 226.2 ± 102.1 

       
Range 
(mg/dl) 33.5-84.4 146.9-1686.0 146.9-1152.3 773.4-1686.0 92.8-1740.1 92.8-525.9 

 

 

Table 6.3 Mean total cholesterol profiles of NZWR. All animals received a high cholesterol diet 
for 128 days. At this timepoint, the group was split into two groups of four animals. One 
continued with the high cholesterol diet. The other four animals received standard diet without 
supplemental cholesterol. The experiment was terminated 103 days after splitting the groups. 
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 Baseline PET scan 1 and diet split PET scan 2 and cull 

    

Animal 1 73.0 1283.8 92.8 
Animal 2 84.4 1686.0 525.9 

Animal 3 59.0 858.5 100.5 

Animal 4 72.7 773.4 185.6 

    

Animal 5 55.4 1082.8 1005.4 

Animal 7 79.9 146.9 92.8 
Animal 8 33.5 1082.8 920.3 

Animal 9 70.0 1152.4 1740.1 
    
       

Table 6.4 Cholesterol profiles of individual NZWR. All animals received a high cholesterol 
diet from baseline until the dietary split after 128 days. At this timepoint, the group was 
separated into two groups of four animals. Animals 5 to 9 continued with the high cholesterol 
diet. Animals 1 to 4 received standard diet without supplemental cholesterol. It can be seen that 
animal 7, which received high cholesterol feeding throughout the experiment, did not respond 
as well as the other animals to the diet. Conversely, the cholesterol levels in animal 2 did not 
fall as far as the others in its group once it was switched from high cholesterol diet to low 
cholesterol diet. Cholesterol values are expressed in mg/dl. 
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Figure 6.1 Plasma cholesterol concentrations over time 

All animals received 0.2% cholesterol enriched diet until day 187 when 
they were split into two groups. Those illustrated by the blue graph 
continued on the high lipid diet, whereas those shown on the pink graph 
reverted to standard rabbit diet. 
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Figure 6.2 H and E, SMA and RAM 11 stained sections of aorta 
showing a typical plaque generated by the NZWR model 

The sections are taken from animal 9, which received a high cholesterol 
diet throughout the experiment. 
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Early 

Late 

Composite 

Figure 6.3 FDG-PET imaging of control NZWR 

Early, late and composite early/late images are shown from top to 
bottom. From left to right are transaxial, coronal and sagittal planes. 
There is significant FDG uptake in the myocardial tissue. There is no 
accumulation of FDG in the descending aorta, whose course is traced 
out by the white arrows. 125b 



Early 

Composite 

Late 

Figure 6.4 FDG-PET imaging of NZWR atherosclerosis during high lipid diet (1) 

Early, late and composite early/late images are shown of animal 2, taken 170 days 
after the start of the experiment. From left to right are transaxial, coronal and sagittal 
planes. Yellow arrows indicate blood activity in the early images. Blue arrows show 
late FDG uptake into aortic atherosclerosis. See text for further explanation. 
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Figure 6.5 FDG-PET imaging of NZWR atherosclerosis during high 
lipid diet (2) 

Coronal image taken 90 minutes after FDG injection, derived from 
animal 2. Blue arrows show late FDG uptake into aortic atherosclerosis. 
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Figure 6.6 Graphical representation of average aortic FDG uptake, 
after subtraction of FDG signal within the bloodstream. 

The average aortic FDG uptake of the whole group is shown in black, 
those animals destined for low cholesterol diet (1 to 4) are shown in 
red, and those destined to continue high cholesterol feeding (5-9) are 
shown in blue. It can be seen that FDG accumulates within the aorta 
over time, and plateaus at around 70 minutes after injection. Those 
animals in the red group had a higher serum cholesterol than those in 
the blue group. The lines are polynomial curves, fitted to the data 
points. 
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Aortic 
blood 
image 

Figure 6.7 FDG-PET imaging of NZWR atherosclerosis, after change 
to low cholesterol diet (1) 

Coronal image of animal 2, taken early after FDG injection. This shows 
an image of blood within the aorta and kidneys. 
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Minimal 
aortic FDG 

uptake 

Figure 6.8 FDG-PET imaging of NZWR atherosclerosis, after change 
to low cholesterol diet (2) 

Coronal image of animal 2, taken 90 minutes after FDG injection. This 
shows low aortic FDG uptake in comparison to adjacent kidneys. This 
should be compared with Figure 6.5 which is the equivalent image of 
this animal whilst on high cholesterol diet. 
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Figure 6.9 FDG-PET imaging of NZWR atherosclerosis, after change 
to low cholesterol diet, and subsequent histology 

Coronal image of animal 2, taken 90 minutes after FDG injection. This 
shows low aortic FDG uptake in comparison to adjacent kidneys. 
Histological sections have been taken at two levels of the aorta. Rabbit 
anti-macrophage (RAM) and smooth muscle actin (SMA) 
immunohistochemistry have been used. At both levels there is a large 
neointimal region seen, with some macrophages present. Magnification 
is x20. 
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Late aortic 
FDG uptake 

Figure 6.10 FDG-PET imaging of NZWR atherosclerosis, after 
continued high cholesterol diet 

Coronal image of animal 5, taken 90 minutes after FDG injection. This 
shows substantial aortic FDG uptake, illustrated by the blue arrows. 

127d 



RAM 
20x 

RAM 
20x 

SMA
20x 

Figure 6.11 FDG-PET imaging of NZWR atherosclerosis, with continued 
high cholesterol diet, and subsequent histology 

Coronal image of animal 5, taken 90 minutes after FDG injection. This shows 
high levels of aortic FDG uptake. Histological sections have been taken at two 
aortic levels. Rabbit anti-macrophage (RAM) and smooth muscle actin (SMA) 
immunohistochemistry have been used. At both levels there are numerous 
macrophages seen within a substantial neointima. Magnification is x20. 
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Late aortic 
FDG uptake 

Figure 6.12 FDG-PET imaging of NZWR atherosclerosis, after 
continued high cholesterol diet 

Coronal image of animal 8, taken 90 minutes after FDG injection. This 
substantial uptake of FDG within the aorta. 
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Figure 6.13 FDG-PET imaging of NZWR atherosclerosis, with 
continued high cholesterol diet, and subsequent histology 

Coronal image of animal 8, taken 90 minutes after FDG injection. This 
shows high aortic FDG uptake. Histological sections have been taken at 
two aortic levels. Rabbit anti-macrophage (RAM) and smooth muscle 
actin (SMA) immunohistochemistry have been used. At both levels 
there are numerous macrophages seen. Magnification is x20. 
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Figure 6.14 Graphical representation of average aortic FDG uptake 
after the dietary split after subtraction of FDG signal within the 
bloodstream 

The average aortic FDG uptake in those animals on low cholesterol diet 
are shown in red, and those on high cholesterol diet are shown in blue. 
It can be seen that FDG accumulates within the aorta over time, and 
plateaus at around 70 minutes after injection. There was greater average 
FDG accumulation within the aorta of the high cholesterol group at all 
timepoints after FDG injection, but this did not reach statistical 
significance. Those animals in the blue group had a higher serum 
cholesterol than those in the red group. The lines are polynomial curves, 
fitted to the data points. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 
Atherosclerosis with its complications remains an important cause of morbidity and 

mortality in the Western world, and is becoming increasingly problematic in 

developing countries. Inflammatory cell activity within the atherosclerotic plaque is a 

key determinant of subsequent fibrous cap rupture within the plaque, and this may 

lead to life-threatening vascular events. 

 

Various imaging modalities currently exist for visualising the extent of atherosclerotic 

plaque burden within the individual patient. Contrast angiography, the most 

universally accepted technique, gives high-resolution images of the arterial lumen, but 

no information about the plaque itself, in terms of structure, inflammatory state or 

complications. The ideal imaging tool would inform about the arterial lumen, and also 

give some indication as to the inflammatory state of the plaque, to help determine its 

risk of rupture. 

 

Advances in technology have enabled new strategies to get close to the clinical arena. 

The most likely candidate to emerge from the bunch is high-resolution magnetic 

resonance plaque imaging, which allows detailed plaque structure to be examined 

without exposing the patient to ionising radiation. However, despite high quality 

structural images, the inflammatory state of the plaque is not assessed by MR. 

Therefore, there is a need for an imaging technique that can assess the degree of 

plaque inflammation (and hence risk). 

 

This work follows on from the knowledge that plaque inflammation is crucial to 

rupture (Ross, 1999), and sits alongside that of Casscells and others (Casscells et al., 

1996; Verheye et al., 2002) who have demonstrated temperature variations both 

within the same plaque and between plaques in patients with different clinical 

presentations. These differences have been exploited to develop catheters that can 

map temperature contours within the coronary arteries. 
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This research project has investigated the potential role of FDG-PET to fulfil this 

requirement. FDG-PET is able to display areas of high metabolic activity within 

tissues. The hypothesis was that macrophages, driving inflammation within active, 

symptomatic plaques, would be detectable using FDG-PET, and further that this 

inflammation would be quantifiable. Initially, the ability of both monocyte THP-1 

cells and human blood-derived monocytes to accumulate tritiated deoxyglucose in 

culture was studied. Results showed that these cells would take up FDG in proportion 

to their metabolic activity. Moving on from this, symptomatic plaques that had been 

excised from patients with recent plaque rupture were examined. It was shown using 

FDG phosphor imaging and autoradiography with tritiated deoxyglucose that these 

plaques were capable of taking up deoxyglucose, and that there was a co-localisation 

of deoxyglucose to macrophage-rich areas of the plaques – i.e. these areas of the 

plaque appeared to have the highest metabolic activity. 

 

In parallel experiments, patients with symptomatic carotid artery disease were imaged 

using FDG-PET, in combination with computed tomography or MR to provide 

anatomical co-registration. Results clearly showed that symptomatic plaques 

accumulated significantly more FDG than did contralateral asymptomatic lesions, a 

conclusion that fits with the earlier work implicating macrophages as the most 

metabolically active cell type within the plaques. The combination of FDG-PET and 

MR imaging of carotid plaques allowed the detection of plaque inflammatory state 

(from PET) alongside high-resolution MR anatomical definition of the same plaque. 

 

Finally, a small-animal PET scanner was used to image experimentally-induced 

atherosclerosis within the aortas of rabbits. Comparison of two groups of animals, 

with one on a high cholesterol diet and the other on normal diet showed some 

differences in signal intensity between the two groups; the limits of this prototype 

technology meant that absolute quantification of such differences was not possible. 

However, it is likely that with a more potent intervention such as the administration of 

HMG Co-A reductase inhibitors (statin class drugs), and with full data corrections 

available, clear differences would be shown between plaques that have been stabilised 

and those that remain at high risk of rupture. 
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Despite these promising early results, which have been obtained after overcoming 

many technical challenges, there remain some drawbacks with FDG-PET as a method 

of non-invasive imaging. It involves the use of ionising radiation, the imaging times 

are relatively long, and the reproducibility of the technique has not been demonstrated 

in humans as yet, although serial imaging was performed in the animal work 

described in Chapter 6. Future work will use less radioactivity (early studies have 

shown that a dose of 185MBq FDG gives almost as much information as the 370MBq 

used in this study). Additionally, dynamic protocols might allow both faster image 

acquisition and full kinetic modelling of FDG behaviour within the plaque. Finally, it 

is intended to perform an intervention study in patients with symptomatic carotid 

artery disease, using statin drugs to stabilise plaques, in order to ascertain whether this 

approach might be useful for monitoring the effect of atheroma-modifying therapies. 

Two low-dose FDG PET scans will be performed for each patient, one before and one 

during statin therapy. The PET data from both studies will be compared for evidence 

of a change in metabolic activity in the index carotid plaques. 

 

It is hoped that by further studying the use of both FDG and more macrophage-

specific ligands such as [11C] PK11195, more light will be cast on the contribution of 

inflammation to plaque rupture. In addition, it is hoped that this work might pave the 

way for a novel approach to atherosclerosis imaging that reflects the cellular 

pathology of the disease rather than its anatomical consequences. 
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