
University Distributed CSE Project Report

Expressive and scalable finite element simulation

beyond 1000 cores

Chris N. Richardson∗ Garth N. Wells†

10 August 2013

Abstract

The FEniCS Project is a widely used, open-source problem solving environment for
partial differential equations that allows users to specify equations in mathematical sym-
bolic form via a domain-specific language, and solve them using the finite element method.
The FEniCS Problem solving environment provides C++ and Python interfaces, and re-
lies on automated code generation to reconcile expressive input with high performance.
Because of the generic nature of the software, many different scientific problems are being
addressed using FEniCS/DOLFIN, including geodynamics, heat flow, elasticity, electro-
magnetics, flow in porous media, Navier–Stokes equations and acoustics.

The key aims of this project were to enhance the applicability and usability of DOLFIN,
the core finite element library in the FEniCS Project, on parallel architectures. DOLFIN
already supported fully distributed computation via MPI, but lacked some important
infrastructure for enabling large scale parallel computation. This included a lack of (i)
scalable parallel I/O and (ii) parallel mesh refinement. In addition, (iii) DOLFIN did not
support threaded operations in combination with MPI. Implementation of the three afore-
mentioned points formed the objectives of this project. All three objectives have been
realised and exceeded, and the computer code developed is publicly available. Outcomes
of this project are either already in a release of DOLFIN or are in development reposito-
ries and will be included in the next release, and are already being used in a number of
research projects, including projects supported by UK research councils.

∗Email: chris@bpi.cam.ac.uk
†Email: gnw20@cam.ac.uk

1

chris@bpi.cam.ac.uk
gnw20@cam.ac.uk

Contents

1 Introduction and objectives 3
1.1 Hybrid OpenMP/MPI matrix assembly . 3
1.2 Parallel file input and output . 3
1.3 Distributed mesh refinement . 4

2 Hybrid MPI/threaded assembly (WP1) 4
2.1 Issues with threaded finite element assembly 4
2.2 Profiling and testing approach . 4
2.3 Thread-safe distributed linear algebra insertion 5
2.4 Assembly scaling . 5
2.5 Scaling versus runtime performance (and how to tell performance lies) 6
2.6 Non-uniform memory access (NUMA) effects 8
2.7 Outcomes . 9

3 Enhancing parallel I/O capabilities in DOLFIN (WP2) 10
3.1 Parallel I/O libraries . 10
3.2 Parallel I/O performance . 11
3.3 Outcomes . 12

4 Parallel mesh refinement (WP 3) 14
4.1 Approach . 14
4.2 Performance . 14
4.3 Outcomes . 15

5 Dissemination to the wider scientific community 15

6 Summary and conclusions 15

7 Funding statement 16

2

1 Introduction and objectives

This report summarises the outcomes of the Distributed Computational Science and Engi-
neering project ‘Expressive and scalable finite element simulation beyond 1000 cores’. This
project aimed to add to and enhance parallel functionality in the open-source finite el-
ement library DOLFIN [1, 2], which is a component of the FEniCS Project [3] (http:
//www.fenicsproject.org). Three areas were identified for development in this project
to improve DOLFIN in parallel. The three areas were:

1. Hybrid threaded/MPI assembly of finite element matrices and vectors;

2. Scalable, parallel I/O; and

3. Distributed mesh refinement.

The background to each of these three points is summarised in this section. The outcomes of
the project are described in the remainder of this report.

1.1 Hybrid OpenMP/MPI matrix assembly

When solving equations using the finite element method, equations are integrated over in-
dividual cells (elements), yielding a small dense matrix or vector. The process of assembly
is the insertion of these small matrices/vectors into a global vector or sparse matrix. The
objective of this work package was to build on existing MPI-based and OpenMP-based paral-
lelism for this process to develop support for hybrid OpenMP/MPI assembly, with processes
distributed across compute nodes using MPI, and threads used on multi-core nodes (possibly
with a small number of MPI processes). The primary motivations are to reduce the memory
overhead associated with multiple MPI processes, and to map better onto linear solvers that
are known to work best when threaded (e.g. LU solvers).

1.2 Parallel file input and output

DOLFIN I/O was based around XML formats, with memory scalability achieved using SAX
parsing (line-by-line read) for input, and using VTK XML output for post-processing, which
uses a one-file-per-process (and per time step) model. Issues with these approaches include:

• XML parsing is slow;

• XML SAX parsing scales poorly in time;

• XML SAX parsing is difficult to program;

• The file-per-process paradigm is not scalable in that it can produce an unworkable
number of files, which on some systems may not be permitted, and at a minimum
presents a management problem for the user; and

• XML-based formats cannot easily exploit MPI-IO or parallel file systems.

The objective of this work package was to implement high-performance, single file parallel
I/O, with support for parallel file systems.

3

http://www.fenicsproject.org
http://www.fenicsproject.org

1.3 Distributed mesh refinement

The execution of very large simulations often requires distributed mesh refinement since one
is usually limited in the size of mesh that can be generated by the available mesh generation
tools. For problems with domain boundaries that can be represented by a ‘coarse’ input
mesh, distributed refinement can be used to scalably create a refined mesh for simulation.
DOLFIN had support for serial mesh refinement, but no support for the distributed refinement
of distributed meshes. The objective of this work package was to develop and implement
distributed refinement in two and three dimensions.

2 Hybrid MPI/threaded assembly (WP1)

Modern HPC systems have an increasing number of processor cores per compute node, and in
cases decreasing memory per core. With modern MPI libraries, it can be possible to get very
good intra-node parallel scaling for many finite element operations. However, for high core
counts and low memory per core the memory overhead for MPI processes can become prob-
lematic. Moreover, for some linear solvers, such as direct LU solvers, hybrid MPI/threaded
performance in time and memory usage can be dramatically better than pure MPI implemen-
tations (e.g., PaStiX [4]). To map the entire solution process (matrix/vector assembly and
linear solvers) onto distributed systems with multiple cores per node it is desirable to support
hybrid MPI/threaded assembly. There are other benefits to threaded computation on nodes
or sockets, such as reduced demands on, and improved matching to, network and disk I/O
resources.

2.1 Issues with threaded finite element assembly

The parallel linear algebra libraries supported by DOLFIN include PETSc and Epetra. These
libraries provide some support for threaded linear algebra operations (features are rapidly
evolving), but are not thread-safe for matrix and vector element insertion. Existing support
in DOLFIN for a pure OpenMP approach to assembly is based on:

• Exact initialisation of the matrix sparsity pattern;

• Colouring of mesh cells such that elements on cells of a common colour do not share
data; and

• An assembly loop over cells by colour, with this loop parallelised using OpenMP. Race
conditions are avoided as the parallel loop is over cells that do not share matrix/vector
entries.

Previous investigations indicated that mesh data re-ordering by colour was important to
achieve good scaling using this approach, and re-ordering had been implemented for the
non-MPI case, but was not supported in combination with MPI parallelism.

2.2 Profiling and testing approach

Profiling and testing focused on a single node of a dual socket system. Detailed profiling was
performed to gauge the influence of various aspects of a problem. It became evident that the
performance of threaded assembly is more dependent on many more problem/system details

4

than an MPI version, such as architecture, compiler, mesh ordering, degree of freedom map
ordering and profiling noise.

Two hardware/compiler systems were used for testing:

1. Dual socket Westmere (12 cores) with GCC 4.7.3 and OpenMPI 1.6.3 with
hwloc (for thread pinning ’OMP PROC BIND=true‘ was using, and ‘mpirun flags

--bind-to-socket --bysocket’).

2. Dual socket Sandy Bridge (16 cores) with Intel 13.1.2 and IntelMPI 4.0 (for
pinning ‘KMP AFFINITY=granularity=fine,compact’ was used, and with MPI
‘I MPI PIN DOMAIN=socket’).

Unless otherwise stated, the default DOLFIN Cuthill-McKee degree-of-freedom reordering
is applied for spatial locality in the linear algebra objects. This usually speeds up the linear
solver phase, but it has been observed in this project that for the DOLFIN unit meshes (square
and cube domains) it can lead to a drop in assembly performance since the degree-of-freedom
map, while providing spatial locality for the linear algebra objects, no longer maps well onto
the order in which the mesh cells are iterated over.

2.3 Thread-safe distributed linear algebra insertion

In this project, we have chosen to work with the PETSc linear algebra backend. With a
pre-allocated sparsity structure, insertion of on-process matrix/vector entries is thread safe
if an entry is not written to simultaneously by more than one thread. Thread safety in this
respect is guaranteed by the colouring approach. Insertion of off-process entries in a PETSc
distributed matrix or vector is not thread-safe due to the PETSc dynamic caching of these
entries. To remedy this, management of caching of off-process entries has been implemented
in the DOLFIN interface to PETSc. The layout of the cache is created at matrix initialisation,
and off-process entries (the number of which is relatively small) are communicated at the end
of the assembly loop, outside of the threaded region.

2.4 Assembly scaling

The performance of the colouring approach with a single MPI process on a dual socket node
(16 cores) had been tested for a three-dimensional Poisson problem (linear Lagrange elements)
and two three-dimensional Navier–Stokes-like problems (linear and quadratic Lagrange ele-
ments). The three cases represent a range of scenarios; the Poisson problem has a very
compute-light element kernel, and the quadratic Navier-Stokes kernel is very compute heavy.
In all cases, the element kernel is generated using the form compiler FFC [5, 6] using optimi-
sations. With the highly optimised kernels, the Poisson kernel code requires 58 multiply-add
pairs, the linear Navier-Stokes-like kernel around 7.5k operations and the quadratic Navier-
Stokes-like kernel around 360k operations. The computational cost of the kernel for the
Poisson problem is negligible compared to other operations, such as matrix insertion. At the
other extreme, the quadratic Navier-Stokes computation is dominated by the element kernel
cost.

The computed speed-up factors using the coloured assembly approach on the Sandy Bridge
node are shown in Figure 1. The runtime is normalised using the time for a single thread
using the colouring assembler. The speed-ups for the Navier–Stokes problems look very

5

0 2 4 6 8 10 12 14 16
number of threads

0

2

4

6

8

10

12

14

16

sp
ee

d
up

 fa
ct

or

Poisson
Poisson (pinned)
Navier-Stokes P1
Navier-Stokes P1 (pinned)
Navier-Stokes P2
Navier-Stokes P2 (pinned)
ideal

Figure 1: Speed-up factors for threaded finite element sparse matrix assembly on one MPI
process. Poisson problem is on a 1283 mesh (2.15M dofs), the lineat Navier–Stokes problem
is on a 643 mesh and the quadratic Navier–Stokes problem is on a 323 mesh (both 824k dofs).

good. The scaling for the Poisson problem is reasonable up to eight threads (with thread
locality pinning). Beyond eight threads, scaling falls away dramatically. This work package
was motivated by the observed dramatic drop-off in scaling beyond eight cores, which we
attribute to NUMA (non-uniform memory access) effects. The large number of operations
performed in the element kernels for the Navier–Stokes problem hide to a large extent the
memory issues that are manifest in the Poisson problem. We therefore focus now on the
Poisson problem.

2.5 Scaling versus runtime performance (and how to tell performance lies)

It turns out that Figure 1 is incredibly misleading (as scaling results often can be). The speed-
up is presented relative to a single thread version of the colouring assembler, and thereby hides
the most important performance measure – runtime. What Figure 1 masks is that the simple
colouring approach adopted is fundamentally cache-unfriendly; by construction, it involves
operations on data that are not spatially local (to avoid race conditions). If the scaling data
presented in Figure 1 is normalised with reference to the default DOLFIN assembler, the
picture is very different, and is shown in Figure 2. The results in Figure 2 indicate that there
is a dramatic performance drop in changing from the standard DOLFIN assembly algorithm
to the coloured assembly algorithm. The standard algorithm iterates over mesh cells, the
mesh data for which is local in memory, and the target memory for a matrix or vector has a
degree of spatial locality. By contrast, the cell colouring approach deliberately accesses data
that is not spatially local in order to avoid race conditions.

Previous scaling results had indicated that mesh cell re-ordering by colour could enhance
scaling for threaded assembly. For the Poisson problem, scaling results with the mesh re-
ordered by colour (cells of the same colour are stored in contiguous parts of the array holding
cell vertex indices) are shown in Figure 3. These results indicate that mesh re-ordering has

6

0 2 4 6 8 10 12 14 16
number of threads

0

2

4

6

8

10

12

14

16

sp
ee

d
up

 fa
ct

or

Poisson-
Poisson (pinned)-
Navier-Stokes P1
Navier-Stokes P1 (pinned)
Navier-Stokes P2
Navier-Stokes P2 (pinned)
ideal

Figure 2: Speed-up factors for threaded finite element sparse matrix assembly on one MPI
process with the standard (non-coloured) DOLFIN assembler time used for normalisation.

0 2 4 6 8 10 12 14 16
number of threads

0

2

4

6

8

10

12

14

16

sp
ee

d
up

 fa
ct

or

No mesh reordering
Mesh reordered by colour
ideal

Figure 3: Scaling for the Poisson problem with a mesh that has been re-ordered by cell colour.
The speed-up is based on the one thread time using the standard DOLFIN assembler for each
problem.

7

0 2 4 6 8 10 12 14 16
number of threads

0

2

4

6

8

10

12

14

16

sp
ee

d
up

 fa
ct

or

No mesh reordering
Mesh reordered by colour
ideal

Figure 4: Scaling for the Poisson problem with a mesh that has been re-ordered by cell colour.
The speed-up is based on the time for one thread using the standard DOLFIN assembler for
the mesh without cell re-ordering.

a positive effect on performance. However, when normalised using the standard DOLFIN
assembler without mesh re-ordering (see Figure 4), it becomes evident that the mesh re-
ordering by colour simply degrades the performance of the standard single thread assembler
(by a factor of approximately 2.5), bringing it into line with the coloured assembler.

The tests with re-ordered meshes illustrate that good speed-ups can be achieved relative
to a cache/memory inefficient single threaded assembler, but speed-ups are poor with respect
to a cache-friendly assembler. Re-ordering for the coloured assembler does not help as the
essence of colouring involves operations of data that are not local. An objective of this
work package was to enable mesh re-ordering for distributed meshes akin to that already
available for serial meshes. The necessary code infrastructure for re-ordering distributed
meshes has been implemented, but the re-ordering strategy advocated in the proposal has
not been pursued as performance profiling shows that it is not competitive with MPI-based
assembly (by a factor of approximately three with 16 processes).

2.6 Non-uniform memory access (NUMA) effects

To handle NUMA effects on dual-socket nodes, it was advocated in the proposal to use one
MPI process per socket on a node. For the Poisson matrix assembly problem, the parallel
efficiency (normalised by the single thread time and the number of threads) is shown in
Figure 5. In the case of the MPI test, the fewest number of threads is two, hence the MPI factor
is normalised by the time for two threads. Figure 5 presents results for a Sandy Bridge and
a Westmere node. All examples show a drop-off with increasing thread count. Importantly,
the MPI case shows a plateau for higher thread counts, unlike the purely threaded case.
These results lend support to the assertion that MPI processes on a NUMA shared memory
node are beneficial. Note that the MPI results should be compared against the cases with
degree-of-freedom re-ordering, as re-ordering is necessary as part of the distribution process.

8

0 2 4 6 8 10 12 14 16
number of threads

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pa
ra

lle
l e

ffi
ci

en
cy

Sandy Bridge, no dof reorder
Westmere, no dof reorder
Sandy Bridge, dof reorder
Westmere, dof reorder
Sandy Bridge, 2 MPI

Figure 5: Parallel efficiency for the Poisson matrix assembly problem using pure OpenMP
and hybrid OpenMP/MPI on a dual socket node normalised by the single thread coloured
assembler.

The same results are now presented in Figure 6 as the speed-up factor over the best single
threaded performance on the given architecture, which is the standard DOLFIN assembler
without degree of freedom re-ordering. Firstly, it shows that not re-ordering the degrees
of freedom for this problem does have an impact on performance, bearing in mind however
that the performance is still very far from optimal. Secondly, the Sandy Bridge/Intel results
appear much more sensitive to ordering than the Westmere/GCC node. Thirdly, only the
hybrid OpenMP/MPI case exhibits linear scaling across the range of threads, and it is the
fastest when using all available cores, although slower than the default MPI assembler by a
factor of three for 16 processes.

2.7 Outcomes

Support for hybrid OpenMP/MPI assembly has been implemented, as planned. In terms of
scaling, running two MPI processes on a dual socket node appears to overcome the NUMA ef-
fects observed for a pure OpenMP approach with a lightweight element kernel when spanning
CPU sockets. However, it became clear that the advocated form of the colouring approach
is fundamentally cache-unfriendly and the required algorithmic change incurs a large over-
head with just one thread compared to the non-coloured version of the assembler with good
ordering. For a problem with otherwise good data locality, the straightforward cell colour-
ing approach is therefore not recommended for threaded assembly. The profiling and testing
performed during this project has suggest some alternative thread-safe schemes that will
have improved data locality and which will be investigated in the future, building on the
developments of this project.

The necessary code re-factoring and development to support mesh re-ordering with dis-
tributed meshes has been merged into the DOLFIN master development repository. It will
form the basis for future investigations into new threaded assembly strategies. The hybrid
assembly code is available in a separate repository from the master branch, but due to the

9

0 2 4 6 8 10 12 14 16
number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

d
up

 fa
ct

or

Sandy Bridge, no dof reorder
Westmere, no dof reorder
Sandy Bridge, dof reorder
Westmere, dof reorder
Sandy Bridge, 2 MPI

Figure 6: Parallel efficiency for the Poisson matrix assembly problem using pure OpenMP and
hybrid OpenMP/MPI on a dual socket node normalised by the standard DOLFIN assembler
using a single thread and without cell re-ordering by colour.

observed performance issues it will not be merged immediately into the master branch.

3 Enhancing parallel I/O capabilities in DOLFIN (WP2)

Before this project, most I/O in DOLFIN was either in DOLFIN XML or VTK XML formats.
Whilst these are simple and work well for small datasets on serial machines, they are difficult
to use in parallel. XML is a text format, and reading in parallel requires every process to
read the entire file and parse it. Writing often involves gathering all data on one node,
or, in the case of VTK XML output, producing a new file at each output on each process.
Therefore, with a highly parallel, time-dependent problem, hundreds of thousands of files
could be produced. VTK is primarily a visualisation format, and cannot be read back into
DOLFIN (VTK read is not supported as it is not a lossless format).

3.1 Parallel I/O libraries

HDF5 was chosen as a library on which to build parallel DOLFIN I/O. HDF5 is portable,
actively developed, well supported and widely available library with parallel I/O via MPI-IO
and support for parallel systems. The API is well documented (see http://www.hdfgroup.

org) and it provides a flexible, hierarchical internal structure for files, which looks like a file
system made up of groups and datasets. HDF5 adopts a single binary file approach in parallel,
with each process writing to a defined part of a file.

Whilst HDF5 offers great flexibility, it does not provide any defined formats for data files
for use with third-party visualisation tools. Therefore, it was it was decided early in the
project that a scalable visualisation format would be highly desirable. After some investiga-
tion, XDMF (see http://www.xdmf.org) was chosen. Lightweight meta-data for XDMF files
is written in XML, with ‘heavy’ problem data stored using HDF5. XDMF files can be read by

10

http://www.hdfgroup.org
http://www.hdfgroup.org
http://www.xdmf.org

XML HDF50

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

37.8

0.28

Figure 7: Time to read a Mesh object from file in XML and HDF5 formats.

widely used visualisation tools, including ParaView (http://www.paraview.org) and VisIt
(https://wci.llnl.gov/codes/visit/home.html).

With these choices, there is a clear upgrade path in parallel for users from XML to HDF5
and from VTK to XDMF.

3.2 Parallel I/O performance

Figure 7 shows the time taken to read a mesh with 34M cells from file on an eight-core
workstation using the existing DOLFIN XML parsing and the new HDF5 functionality. A
speed up factor of over 100 is already apparent at this scale, and is even more stark on HPC
architectures.

Figure 8 shows timing for reading a mesh with 34M cells (1.3GB) on three different
systems (University of Cambridge system Darwin, HECToR and Bullard at the Department
of Earth Sciences, University of Cambridge). The time taken to read the mesh is generally
independent of the number of processes, although there is a certain amount of noise in the
results, probably due to file caching and filesystem variability. It is nearly always under 10s,
which in the context of the solution runtime on such a mesh is negligible. Note that the
time to partition the mesh amongst the processes using the SCOTCH library is significantly
greater than the time spent reading the mesh from file.

Writing a mesh to file is more time consuming than reading, as it is necessary to sort the
mesh vertices into order before writing. Because the mesh is distributed, some vertices appear
on more than one process. Moreover, the XDMF format implicitly assigns global indices to
vertices based on position in the file. In order to simplify the file to be written to disk, the
duplicates are eliminated by sorting them into order first. Figure 9 shows the timings for
writing a tetrahedral mesh of a cube with 100 vertices in each direction on the three different
systems. Again, the timings are fairly flat for the write operation, and generally 10s or under
on Darwin, 20s on HECToR and 200s on Bullard. The Bullard cluster uses Ethernet and
NFS entirely for communication and storage, respectively, so is therefore significantly slower

11

http://www.paraview.org
https://wci.llnl.gov/codes/visit/home.html

16 32 64 128 256 512 1024 2048 4096
Number of cores

10-4

10-3

10-2

10-1

100

101

102

103

Ti
m

e
to

 re
ad

 fi
le

 (s
)

HDF5: read mesh(Bullard)
Partition graph (calling SCOTCH)(Bullard)
HDF5: read mesh(Darwin)
Partition graph (calling SCOTCH)(Darwin)
HDF5: read mesh(HECToR)
Partition graph (calling SCOTCH)(HECToR)

Figure 8: Wall times for reading a large mesh on HECToR, Darwin and Bullard systems.

at writing than the other systems.
Finally, we consider DOLFIN Function input and output. A Function can be considered

as a collection of data organised on a mesh according to a degree of freedom map. The degree
of freedom map gives the relationship between the data and the mesh entities. Because
the data is in no certain order when distributed amongst processes, this poses the biggest
challenge, since when reading the Function back in, it may be on a different number of
processes. In this case, the new degree of freedom map will be ordered differently from the
degree of freedom map in the file, and considerable sorting has to be done. In all, seven MPI
all-to-all sequences are required to reorder the data correctly. Figure 10 shows the results
on the different architectures. Here we consider a 48M cell cube. The scaling properties are
generally satisfactory, and again here, the slow speed of I/O on the Bullard cluster can be
noticed.

3.3 Outcomes

The original I/O objectives were achieved. In addition, support for a new visualisation format
with improved performance has been implemented. DOLFIN now has a well defined interface
to the HDF5 library, enabling all the functionality which was described in the original design
proposal. Additionally, support for a metadata format called XDMF has been implemented,
which allows many of the HDF5 output formats to be read by widely available visualisation
software. Given the very large performance gain over existing XML formats and the obser-
vation that I/O time did not increase for a fixed size problem with increasing with process
count on modern systems, there was no need for data aggregation in practice, as suggested
in the proposal. For the range of process counts considered, we would expect the cost of data
aggregation to outweigh any benefits. Moreover, the use of threaded assembly on compute
nodes will effectively provide node-level aggregation. The code developed has dramatically
improved performance for parallel I/O and provided a framework for future work in this area.

The supported file formats that are available for different objects in DOLFIN, following

12

16 32 64 128 256 512 1024
Number of cores

10-2

10-1

100

101

102

103

104

105

Ti
m

e
(s

)
HDF5: write mesh to file(Bullard)
HDF5: reorder vertex values(Bullard)
HDF5: write mesh to file(HECToR)
HDF5: reorder vertex values(HECToR)
HDF5: write mesh to file(Darwin)
HDF5: reorder vertex values(Darwin)

Figure 9: Wall time for writing a large mesh on HECToR, Darwin and Bullard systems.

16 32 64 128 256 512 1024 2048
Number of cores

10-1

100

101

102

103

104

Ti
m

e
(s

)

HDF5: read Function(Bullard)
HDF5: write Function(Bullard)
HDF5: read Function(Darwin)
HDF5: write Function(Darwin)
HDF5: read Function(HECToR)
HDF5: write Function(HECToR)

Figure 10: Wall time for Function object I/O on HECToR, Darwin and Bullard systems

13

Object XML VTK HDF5 XDMF

Mesh(r) X X X
Mesh(w) X X* X X
Mesh(r,//) X X X
Mesh(w,//) X* X X
MeshFunction(r) X X X
MeshFunction(w) X X* X X
MeshFunction(r,//) X X X
MeshFunction(w,//) X* X X
Vector(r,//) X X
Vector(w,//) X X
Function(r,//) X X
Function(w,//) X X* X X*

* visualisation format

Table 1: I/O formats supported by DOLFIN for read (r) and write (w), optionally in paral-
lel (//)

this project, are summarised in Table 1. The necessary code is either already included in the
most recent DOLFIN release or in the master development branch for the next release.

4 Parallel mesh refinement (WP 3)

4.1 Approach

Two interfaces were developed for mesh refinement in parallel, one for two-dimensional
meshes, and one for three-dimensional meshes. Although they share some commonalities,
the algorithms are quite different in two and three dimensions. In both cases, a common class
was used to store information about shared facets. An edge bisection method was used for
refinement, which required a simple round of MPI communication to pass the bisection infor-
mation between processes, eliminating the need for a new ‘distributed mesh query manager’.

In two dimensions, an algorithm from Carstensen [7] was implemented, which preserves
the similarity shapes of the triangles being refined. In three dimensions, it is not possible to
maintain the similarity shapes so easily, and the quality of the mesh is not guaranteed. For
future work, it will be necessary to put markers on cells that are not fully refined, and use
these for determining the behaviour of multiple further refinements. Marker-based refinement
was implemented, and has enabled existing mesh adaptive solvers to now work in parallel.

Beyond the scope of the original proposal, some simple load balancing has been possible.
By calling the mesh partitioner after each level of refinement, the mesh can naturally divide
between processes according to the number of cells. Work was put into the interfaces to
ParMETIS and Zoltan to make this more efficient.

4.2 Performance

To compare the efficiency of mesh refinement on different architectures, the time taken to
refine a 6M cell tetrahedral mesh mesh of a cube to 48M cells was measured with different
numbers of processes. As can be seen from Figure 11, scaling varied somewhat between

14

16 32 64 128 256 512 1024 2048
Number of cores

10-1

100

101

102

103

104

Ti
m

e
(s

)

Parallel-refine 3D (Bullard)
Parallel Refine: reorder vertices (Bullard)
Parallel-refine 3D (Darwin)
Parallel Refine: reorder vertices (Darwin)
Parallel-refine 3D (HECToR)
Parallel Refine: reorder vertices (HECToR)

Figure 11: Wall time for parallel refinement algorithms on different systems.

architectures, with Darwin again performing best. Apart from one anomalous case, the
refinement took less than 10 seconds on all machines.

4.3 Outcomes

The objectives of the project for distributed mesh refinement have been achieved and ex-
ceeded. Beyond the scope of the proposed work, load balancing for refined meshes has been
implemented. The developed code has been merged into the DOLFIN master branch and will
be part of the next release.

5 Dissemination to the wider scientific community

The functionality developed in this project is available to the many users of the FEniCS
libraries around the world. The FEniCS Project is an open-source project, and as such, is
freely available to download from the Internet. The developments in this project have been
announced via FEniCS mailing lists as they became available during the project.

All source code developed in this project is hosted at https://bitbucket.org/chris_

richardson/nag-dcse. Much of the code is available in the most recent release of DOLFIN or
has been merged into the master development branch of DOLFIN, at http://www.bitbucket.
org/fenics-project/DOLFIN, and will be included in the next release of DOLFIN.

6 Summary and conclusions

The objectives set out in the proposal for this project have all been achieved. The developed
software is publicly available, and in most cases will appear in the next release of the library
DOLFIN. Unit tests have been developed for the functionality developed in this project,
hence the new code is covered by the FEniCS automatic testing framework. The parallel I/O
functionality developed in this project is already being used in a number of research projects,

15

https://bitbucket.org/chris_richardson/nag-dcse
https://bitbucket.org/chris_richardson/nag-dcse
http://www.bitbucket.org/fenics-project/DOLFIN
http://www.bitbucket.org/fenics-project/DOLFIN

and in this context has enabled new investigations that were not previously possible due to
parallel I/O limitations.

In addition to the objectives in the project proposal, the efficiency and scalability of
building distributed graphs for mesh partitioning has been improved substantially, and load
balancing for distributed meshes has been implemented.

7 Funding statement

This project was funded under the HECToR Distributed Computational Science and Engi-
neering (CSE) Service operated by NAG Ltd. HECToR – A Research Councils UK High End
Computing Service - is the UK’s national supercomputing service, managed by EPSRC on
behalf of the participating Research Councils. Its mission is to support capability science and
engineering in UK academia. The HECToR supercomputers are managed by UoE HPCx Ltd
and the CSE Support Service is provided by NAG Ltd. http://www.hector.ac.uk

References

[1] A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM Trans.
Math. Software, 37(2):20:1–20:28, 2010. URL http://dx.doi.org/10.1145/1731022.

1731030.

[2] A. Logg, G. N. Wells, and J. Hake. DOLFIN: A C++/Python finite element library. In
Automated Solution of Differential Equations by the Finite Element Method, volume 84 of
Lecture Notes in Computational Science and Engineering, chapter 10. Springer, 2012.

[3] A. Logg, K.-A. Mardal, and G. N. Wells, editors. Automated Solution of Differential
Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational
Science and Engineering. Springer, 2012. doi: 10.1007/978-3-642-23099-8. URL http:

//dx.doi.org/10.1007/978-3-642-23099-8.

[4] P. Hénon, P. Ramet, and J. Roman. PaStiX: A high-performance parallel direct solver
for sparse symmetric definite systems. Parallel Computing, 28(2):301–321, 2002.

[5] R. C. Kirby and A. Logg. A compiler for variational forms. ACM Trans. Math. Software,
32(3), 2006. URL http://dx.doi.org/10.1145/1163641.1163644.

[6] K. B. Ølgaard and G. N. Wells. Optimisations for quadrature representations of finite
element tensors through automated code generation. ACM Trans Math Software, 37(1):
8:1–8:23, 2010. URL http://dx.doi.org/10.1145/1644001.1644009.

[7] C. Carstensen. An adaptive mesh-refining algorithm allowing for an H1 stable L2 pro-
jection onto Courant finite element spaces. Constructive Approximation, 20(4):549–564,
2004. URL http://dx.doi.org/10.1007/s00365-003-0550-5.

16

http://www.hector.ac.uk
http://dx.doi.org/10.1145/1731022.1731030
http://dx.doi.org/10.1145/1731022.1731030
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1145/1163641.1163644
http://dx.doi.org/10.1145/1644001.1644009
http://dx.doi.org/10.1007/s00365-003-0550-5

	Introduction and objectives
	Hybrid OpenMP/MPI matrix assembly
	Parallel file input and output
	Distributed mesh refinement

	Hybrid MPI/threaded assembly (WP1)
	Issues with threaded finite element assembly
	Profiling and testing approach
	Thread-safe distributed linear algebra insertion
	Assembly scaling
	Scaling versus runtime performance (and how to tell performance lies)
	Non-uniform memory access (NUMA) effects
	Outcomes

	Enhancing parallel I/O capabilities in DOLFIN (WP2)
	Parallel I/O libraries
	Parallel I/O performance
	Outcomes

	Parallel mesh refinement (WP 3)
	Approach
	Performance
	Outcomes

	Dissemination to the wider scientific community
	Summary and conclusions
	Funding statement

