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Abstract

The assumption of perfectly rational representative agents is now com-
monly questioned. This paper explores the equilibrium properties of
boundedly rational heterogeneous agents. We combine an adaptive learn-
ing process in a modi�ed cobweb model within a Stackleberg framework.
We assume that there is an asymmetric information di¤usion process from
leading to following �rms. In contrast to a simple cobweb model which
has a unique REE, our model may produce multiple restricted perceptions
equilibria (RPE). However, a unique and learnable RPE, under certain
conditions, can exist in our model. In addition, the following �rms�fore-
casts can confound the leading �rms�forecasts �when the following �rms
misinterpret information coming from the leading �rms. We refer this sit-
uation to the boomerang e¤ect. We also �nd that the leading �rms�mean
squared forecast error can be even larger than that of following �rms if
the proportion of following �rms is su¢ ciently large in the market.
Keywords: Adaptive Learning; Expectational Stability; Information Dif-
fusion, Cobweb Model, Heterogeneous Expectations
JEL classi�cation: C62, D84, E37

1 Introduction

The rational expectations hypothesis (REH) [Muth (1961); Lucas (1972, 1973)]
has revolutionized how economists conceptualize and model economic phenom-
ena. Currently rational expectations (RE) represents a key component in the
study of macroeconomic problems [Frydman and Phelps (1983); Haltiwanger
and Walman (1985)]. Under RE, agents are assumed to act as if they can take
conditional (mathematical) expectations of all relevant variables. However, for
all its analytical traction, RE is a rather strong assumption. Sargent (1993),
for example, points out that agents with RE are even more sophisticated than
the economist who sets up the economic model.
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One line of inquiry has been to determine whether a rational expectations
equilibrium (REE) can be achieved under the assumption that agents form
expectations using less sophisticated mechanisms [Bray (1982); Bray and Savin
(1986); Evans (1983); Evans and Honkapohja (2001)]. This line of inquiry allows
agents to achieve the REE within the context of a stochastic (updating) process
that is typically represented via least squares learning. Agents use a least
squares learning rule and do not initially obtain the REE, but over time they
update their forecasts (expectations) as new information becomes available.
In more technical terms, least squares learning is used so that agents update

parameters of a forecasting rule � perceived law of motion (PLM) � associ-
ated with the stochastic process of the variable in question in an attempt to
learn an REE. This process requires a condition establishing convergence to
the REE �the E-stability condition. The E-stability condition determines the
stability of the equilibrium in which the PLM parameters are adjusted slowly to
the implied actual law of motion (ALM) parameters. Evans (1989) and Evans
and Honkapohja (1992) show that the mapping from the PLM to the ALM is
generally consistent with the convergence to REE under least squares learn-
ing. This correspondence is called the E-stability principle.1 This principle
also possesses additional attributes. If the equilibrium is E-stable, then the
RE method may be an appropriate technique for solving long run equilibria.
Moreover, E-stability conditions can be an important selection criteria (i.e.,
determining stable solutions) when a model has multiple equilibria.
In this paper, we extend adaptive learning methods to a scenario involving

heterogeneous information levels and social interaction. Prior research linking
adaptive learning procedures to heterogeneous information levels has not made
use of social interaction. This previous research generally assumes that agents
forecast independently and solely gather their own information.
For example, Evans and Honkapohja (1996) relax the assumption of ho-

mogeneity and allow for N di¤erent groups of agents who may form di¤erent
(heterogeneous) expectations. Agents are allowed to have di¤erent coe¢ cient
estimates in the same structural forecasting rule. They use a general cobweb-
type model and show that the E-stability condition remains the same as in the
case of a homogeneous expectations learning model. In addition, Giannitsarou
(2003) allows heterogeneous adaptive learning in an economy with a homoge-
neous structure. She �nds that di¤erent types of heterogeneity may result in
di¤erent stability conditions compared to homogeneous learning.
Others have relaxed the assumption of representative agents in the learning

process [Honkapohja and Mitra (Forthcoming)]. They �nd that such structural
heterogeneity alters E-stability conditions in di¤erent macroeconomic models.
Finally, Guse (2005a) allows heterogeneity in the use of forecasting models used
to form expectations in a model with multiple equilibria. He �nds that the
E-stability conditions of each equilibrium are determined by the proportion of
agents using each forecasting model. Furthermore, the two equilibria exchange
stability at the smallest proportion of heterogeneity where the mean squared
forecast error (MSE) of the two forecasting models are equal.
Currently, there is no study analyzing how agents�interactions would a¤ect

model equilibria. While standard adaptive learning models provide important
extensions of the RE framework, the assumption of agent forecast independence

1See Evans and Honkapohja (2001) for further details of E-stability.
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can be relaxed. There is empirical justi�cation for this modi�cation. Infor-
mation di¤usion (or interaction) among di¤erent groups of agents is perhaps a
natural process especially when people do not interpret the public information
in an identical manner [Kandel and Zilberfarb (1999)]. Carroll (2003) �nds, for
example, statistical evidence of information di¤usion that professional in�ation
forecasts Granger-cause household forecasts to become more accurate.2

Against this theoretical and empirical background we modify a standard
Muthian cobweb model [Muth (1961)] to allow for both information hetero-
geneity and information di¤usion. We assume a Stackleberg framework, where
there are two types of agents ��rst and second moving �rms. The �rst-moving
�rms (leading �rms) make the initial forecasts of an aggregate price level accord-
ing to exogenous information in a market while second-moving �rms (following
�rms) form their forecasts based on the forecasts made by the leading �rms.
Although the following �rms obtain the leading �rms�forecasts, we assume that
they are unable to accurately interpret the content of information because there
is some miscommunication between �rms. Thus, observational errors due to
misinterpretation of leading �rms� expectations would naturally occur in the
information acquisition process.3

With the assumption of social/information interactions, we �rst examine the
uniqueness of the equilibrium in a cobweb model. In contrast to results in a
simple cobweb model (without social interaction) which has a unique REE, there
may exist multiple restricted perceptions equilibria (RPE) in the "interactive"
cobweb model.4 However, we show that a unique RPE exists under plausible
conditions. Next, we demonstrate that the E-stability conditions for the RPE
where there is information di¤usion are identical to the conditions under no
information di¤usion (homogeneous expectations). We also �nd that the con-
ditions for uniqueness and E-stability are the same. It implies that the unique
RPE is the only E-stable solution. More importantly, the E-stability conditions
rule out other possible equilibria in the model. Although the information dif-
fusion process has no in�uence on the E-stability conditions, its degree a¤ects
the stochastic (equilibrium) process of the aggregate price level.
Perhaps our most important result is the "boomerang e¤ect," which we de-

�ne as a situation (equilibrium) in which the inaccurate forecasts of the following
�rms confound the forecasts of the leading �rms. We show that the leading �rms
fail to learn the REE because of the following �rms�misinterpretation(s). Not
only is the REE unobtainable, but the MSE for the leading �rms is larger than
it would be under the REE.
In addition to these �ndings, we also examine the relation between the size

of the boomerang e¤ect and the proportion of leading and following �rms in the
model. We �nd that, under certain conditions, the leading �rms�MSE can be

2 Information di¤usion has been documented in many areas of research. For example,
�nancial economists have studied explanations for herding behavior, in which rational investors
demonstrate some degree of behavioral convergence [See Devenow and Welch (1996)]. Most
recently studies of monetary economics are exploring how information di¤usion in�uences
economic forecasting behavior. The standard monetary view from the �credibility� literature
holds that policymakers have superior information to citizens [Romer and Romer (2000)] and
hence can choose how much information to disseminate for better stabilization outcomes [See
Backus and Dri¢ ll (1985); Barro and Gordon (1983)].

3The terms "observational errors", "(mis)interpretation errors" and "(mis)communication
errors" are used interchangeably in the text.

4The RPE concept will be discussed further in the following sections.
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even larger than that of following �rms if the proportion of following �rms is
su¢ ciently large.
This paper is organized as follows. Section 2 introduces the cobweb model

which includes interactions between leading and following �rms. We also show
the condition of the unique RPE. In Section 3, we study the E-stability condi-
tions of the model. Section 4 demonstrates the boomerang e¤ect and Section
5 concludes.

2 A Simpli�ed Interactive Cobweb Model

The cobweb model has been used extensively in the macroeconomic and learning
literature [See Muth (1961); Arifovic (1994); Evans and Honkapohja (2001);
Branch and McGough (Forthcoming)]. It is assumed that there are n �rms in a
competitive market producing a homogeneous product. The �rms produce an
optimal quantity of their good to maximize their expected pro�ts in accordance
with their (rational or nonrational) expectations of the market price in the next
period.
The reduced form of the model can be presented as follows:5

yt = �E
�
t�1yt + 
xt�1 + �t; (1)

where yt is the price level at time t, E�t�1yt is the expectation (not necessarily
rational) of yt formed at the end of time t � 1; xt�1 presents an exogenous
observable which is iid

�
0; �2x

�
and �t � iid

�
0; �2�

�
:

We modify the cobweb model into a Stackleberg setup where it contains two
types of �rms. We assume that a proportion of 1 � � of �rms as �rst-moving
(or leading) �rms which form expectations of the market price based on the
information (xt�1) observed in the market, where 0 � � < 1.
Based on the adaptive learning literature, we assume that �rms act like

econometricians and forecast yt by running least squares regressions of yt based
on their past information. According to the above setup, we assume that the
leading �rms (Type-L �rms) makes their forecasts based on the form of minimum
state variable (MSV) solution.6 The preceived law of motion (PLM) for the
Type-L �rms is given as:

yt = bxt�1 + "t; (2)

yeL;t = bxt�1;

where yeL;t presents the expectations of yt for the Type-L �rms at time t�1. The
remaining � �rms are assumed to be second-moving (following) �rms which ob-
serve the Type-L �rms�expectations to form their expectations of market price.
However, the following (Type-F) �rms may interpret (or even misinterpret) the
Type-L �rms�expectations di¤erently among themselves. Therefore, the PLM

5Lucas�s (1972) model shares the same reduced form as (1) with 0 < � < 1: Thus, our
�ndings would also apply in his model.

6McCallum (1983, 1999) discusses the MSV concept at length, interpreting it as a fun-
damental solution that includes no bubble or sunspot components. McCallum proposes a
solution procedure that generates a unique solution in a very wide class of linear RE models.
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for the Type-F �rms is:

yt = c
�
yeL;t + vt�1

�
+ "t; (3)

yeF;t = c (bxt�1 + vt�1) ;

where yeF;t presents the expectations of yt for the Type-F �rms at time t � 1
and vt�1 � iid

�
0; �2v

�
represents the observational errors which are uncorrelated

with "t:
It is also intuitively reasonable to believe that �rms are not able to obtain

the exact information from others. Therefore, we impose a distribution of ob-
servational errors, vt�1; which indicates the degree of misinterpretation of other
�rms�actions.7 Since the Type-F �rms obtain the observed information after
the Type-L �rms form their expectations, the Type-L �rms are not able to re-
vise their expectations according to the ex post observational errors generated
by the Type-F �rms.8

Based on the proportions of the Type-L and Type-F �rms, average expec-
tations of the market price is:

E�t�1yt = � [c (bxt�1 + vt�1)] + (1� �) bxt�1:

The actual law of motion (ALM) is obtained by substituting average expecta-
tions of next period�s market price into equation (1):

yt = [�b (� (c� 1) + 1) + 
]xt�1 + ��cvt�1 + �t
= (�b + �cb)xt�1 + �cvt�1 + �t; (4)

where �b � � (1� �) b + 
 and �c � ��c. Note that the form of each PLM is
inconsistent with the ALM. In this case, the projected ALM (associated with
each PLM) is the best description of the process of yt within the class of PLM�s
considered.
The projected ALM�s are obtained by computing the following linear pro-

jections:

E [xt�1 ((�b + �cb)xt�1 + �cvt�1 + �t � Tbxt�1)] = 0

E [(bxt�1 + vt�1) ((�b + �cb)xt�1 + �cvt�1 + �t � Tc (bxt�1 + vt�1))] = 0;

where:
yt = Tbxt�1 + "t;

7Kandel and Zilberfarb (1999) argue that people do not interpret existing information
in an identical way. Using Israeli in�ation forecast data, they show that the hypothesis
of identical-information interpretation is rejected. In addition, Bernanke and Woodford
(1997) study "in�ation forecast" targeting policy rule where policymakers are assumed to
conduct monetary policy by targeting private-sector forecasts of in�ation. In their model,
they also suggest a similar argument regarding the error misinterpretation by private-sector
forecasts. The authors argue that some private-sector agents may be "incompetent" at using
their information to produce optimal forecasts (p. 659).

8 If we assume that Type-F �rms, which observe the Type-L �rms�expectations, also obtain
the exogenous information, xt, to form their forecasts, both types of �rms (Type-L and Type-
F) will obtain the rational expectations equilibrium (REE). This is a relatively standard result
in the literature. This can be demonstrated and is available upon request from the authors.
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is the projected ALM associated with the PLM of the Type-L �rms and:

yt = Tc (bxt�1 + vt�1) + "t

is the projected ALM associated with the PLM of the Type-F �rms.
The above linear projection suggests that the forecasts associated with the

two PLM�s must satisfy the least-squares orthogonality condition where the
regressors are uncorrelated with the forecast errors. If we assume that Exv = 0,
then this projection gives the following T-mapping from the two PLM�s to their
associated projected ALM�s:

T

�
b
c

�
=

�
Tb (b; c)
Tc (b; c)

�
=

 
�b + �cb

�c +
b�2x

b2�2x+�
2
v
�b

!

=

 
[(1� �) + �c]�b+ 


�c� +
b�2x

b2�2x+�
2
v
((1� �)�b+ 
)

!
: (5)

In a misspeci�ed model, Evans and Honkapohja (2001) refer to the resulting
equilibria as "restricted perceptions" equilibria (RPE)9 since agents are not
fully aware of the true stochastic process of the aggregate variables they are
forecasting. The RPE can be found where:

T

�
b
c

�
=

�
b
c

�
:

The RPE is the following in this model:

�b =



1� � (1� �+ ��c) (6)

�c =
�b2�2x

�b2�2x + (1� ��)�2v
:

Although �rms misspecify their forecasting models, the RPE are optimal
relative to the restricted information set used by the �rms. Due to the orthog-
onality condition, �rms cannot detect a misspeci�cation unless they step outside
of their forecasting models. This is one limitation of the RPE as variables in
the ALM not included in a forecast will be correlated with the forecast errors.
As the variable vt�1 is unobservable for the Type-L �rms, this does not present
a problem.
From solution (6) ; we observe that the RPE of �b and �c are non-linear and

there may exist multiple equilibria for a open set of parameters when �2v > 0:
However, we show that there is a unique RPE when � < 1 and �2v > 0: On the
other hand, if �2v = 0; both types of �rms would have the same information and

therefore the RPE is equivalent to the unique REE where
�
�b; �c
�
=
�



1�� ; 1

�
:

We summarize the result in the following proposition:

Proposition 1. There exists a unique RPE of �b and �c when � < 1:

9Restricted perceptions are also discussed in Adam (2005), Adam, Evans, and Honkapohja
(Forthcoming), Branch and Evans (Forthcoming), and Guse (2005b).
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The proof is given in Appendix A. Next, we explore some important prop-
erties of the RPE which will prove useful when discussing the learnability of the
RPE. The properties are expressed in the following lemma:

Lemma 1. The RPE �b and �c have the following properties:

1. �c 2 (0; 1] if � < 1 and �2v is �nite:

2. sign
�
�b
�
= sign (
) if � < 1:

3. �c and
���b�� are monotonically increasing in � for � < 1:

The proof is given in Appendix B. Part 1 of Lemma 1 states that the Type-F
�rms will always use some information from the Type-L �rms in equilibrium. As
mentioned above, if �2v = 0, then the Type-F �rms have the same information
as the Type-L �rms and thus the equilibrium level of c will be �c = 1. As
�2v increases, the information from the Type-L �rms becomes less useful to the
Type-F �rms and thus �c! 0 as �2v !1. Part 2 of the Lemma states that the
sign of �b must be consistent with the sign of 
 for � < 1. It turns out that if
� > 1 this is not always the case.10 Finally, part 3 of the Lemma states that
the information from the Type-F �rms is more useful for larger values of � (for
a �xed �2v) when � < 1. An increase in � suggests that expectations of yt are
more important and this feeds back into the the equilibrium by increasing

���b��.
As the useful information (jbxt�1j) increases relative to the miscommunication
error (vt�1), the Type-F �rms would wish to make more use of the information
by increasing �c. Therefore, when � ! 1, it turns out that

���b��!1 and �c! 1.

3 Expectational Stability of the RPE

Evans and Honkapohja (2001) discuss the E-stability condition of the cobweb
model under homogeneous expectations. Assuming that all agents have the
forecasting rules as equation (2) ; they show that the E-stability condition is
� < 1. In Evans and Honkapohja (1996), they relax the assumption of homo-
geneous expectations learning allowing for N di¤erent groups of agents forming
di¤erent expectations. Based the above set-up, they �nd the E-stability is the
same as that for the case of homogeneous expectations learning. In this sec-
tion, we further explore the E-stability condition in the cobweb model where
we allow for interactions among agents. As mentioned before, there may exist
multiple RPE according to solution (6) : Interestingly, we �nd a striking result
that the E-stability condition under the process of information di¤usion is � < 1
which is also equivalent to that for the cases of homogeneous and heterogeneous
expectations learning. It also provides an important implication that only the
unique RPE is E-stable. Although there may be multiple equilibria when � � 1;
it turns out that none of the possible equilibria would be learnable under ordi-
nary least squares (OLS). That is, provided � < 1; both types of �rms learn
asymptotically the unique restricted perception equilibrium in the model.

10For � > 1, there may be multiple RPE where no RPE is stable under learning. This
inconsistency in signs between �b and 
 may be the reason why �b is unstable under learning.
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To show the E-stability condition, consider the following ordinary di¤erential
equation (ODE):

d�

d�
= T (�)� �

where T is the mapping from the PLM, �, to the implied ALM, T (�) and �
denotes "notional" or "arti�cial" time. In this case, T (�) is represented by
equation (5) and

� =

�
b
c

�
.

Evans and Honkapohja (2001) de�ne an equilibrium (�xed point of the ODE)
to be E-stable if the ODE is stable when evaluated at the equilibrium values.
Similar to the E-stability condition in Evans and Honkapohja (1996 and

2001) where the REE is E-stable if � < 1 and E-unstable if � > 1, based on the
T-mapping represented by equation (5), we are able to show that the E-stability
conditions do not change under the above form of heterogeneous expectations
in the cobweb model. We summarize this �nding in the following proposition:

Proposition 2. The RPE �b and �c are E-stable if � < 1 and E-unstable for
� > 1.

The proof is given in Appendix C. Guse (2005a) has shown that under a
similar situation where heterogeneous expectations come from agents using two
di¤erent forecasting models, the E-stability condition turns out to be a convex
combination of the two E-stability conditions under homogeneous expectations.
To study each RPE under homogeneous expectations, consider the following

model similar to the ALM above:

yt = �E
�
t�1yt + 
xt�1 + �vt�1 + �t:

Suppose that all agents had the Type-L PLM:

yt = bxt�1 + �t:

The ALM is the following:

yt = (�b+ 
)xt�1 + �vt�1 + �t;

and the projected T-map is:

T (b) = �b+ 
:

Thus, the E-stability condition for the RPE �b is � < 1:
Next, assume that all agents had the Type-F PLM where �b is some constant:

yt = c
�
�bxt�1 + vt�1

�
:

The ALM is the following:

yt =
�
�c�b+ 


�
xt�1 + (�c+ �) vt�1 + �t;
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and the projected T-map is:

T (c) = �c+
�b
�2x + ��

2
v

�b2�2x + �
2
v

:

Thus, the E-stability condition for the RPE �c is � < 1: As all convex combina-
tions of these two conditions is always � < 1, the E-stability condition for any
� 2 [0; 1] must be � < 1.

4 The Boomerang E¤ects

The previous section shows that the E-stability condition in an interactive cob-
web model is identical to the one in the standard cobweb model with homoge-
neous expectations learning. In this section, we discuss the comparative sta-
tics of equilibrium (RPE) and its forecast accuracy (i.e., mean squared error
(MSE)) with respect to the observational errors (vt�1). We argue that, under
the process of information di¤usion, the inaccurate forecasts of the Type-F �rms
would eventually confound the Type-L �rms�equilibrium and forecast accuracy
such that the Type-L �rms fail to obtain the REE and have higher MSE. We
refer this consequence as the boomerang e¤ect. We then further examine the
relationship between the boomerang e¤ect and the fractions of the Type-L and
Type-F �rms in the model. We �nd that the Type-L �rms�MSE can be larger
than that of Type-F �rms if � is su¢ ciently large.

4.1 The Boomerang E¤ect on the RPE

In RPE (6) and Lemma 1; we see that the observational error, vt�1; plays a
very important role in the model. How much the Type-F �rms use the observed
expectations from the Type-L �rms depends on how accurately the Type-F
�rms interpret the Type-L �rms�expectations. The accuracy is represented by
the variance of the observational error, �2v: Lemma 1 shows that the RPE �c is
between zero and one depending on the size of �2v: If the Type-F �rms fully
understand and make use of the Type-L �rms�expectations, (i.e., �2v = 0), then
�c = 1: It implies that both types of �rms�expectations become homogeneous
and therefore they are able to achieve the REE.
We also consider the case of �2v > 0; where the Type-F �rms misinterpret

the Type-L �rms� expectations. Although the Type-L �rms use the existing
exogenous observable, xt; to form their expectations, the ex post observational
error created by the Type-F �rms eventually confound the Type-L �rms to
obtain the REE. We refer this result as the boomerang e¤ect on the RPE
which is summarized as the following proposition:

Proposition 3. (Boomerang E¤ect on the RPE). For a �nite �2v; the E-

stable RPE �b 2
�

j
j
1��(1��) ;

j
j
1��

�
for � 2 [0; 1) and �b 2

�
j
j

1��(1��) ;
j
j
1��

�
for

� 2 (�1; 0).

The proof of this proposition is straightforward. According to Proposition
2, c 2 (0; 1] for all �nite �2v; therefore, from equation (6), we see that

���b�� 2�
j
j

1��(1��) ;
j
j
1��

�
for � 2 (0; 1) and

���b�� 2 �
j
j

1��(1��) ;
j
j
1��

�
if � is negative.
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When � = 0; �b = 
: It is the case that the expectations are not involved in the
model. The shaded region in Figure 1 shows possible values of �b for a given �
when 
 and � are �xed. The lower boundary for � < 0 and the upper boundary
for � > 0 represent the REE of b when the Type-F �rms accurately observe the
forecasts from the Type-L �rms (i.e., �2v = 0 and c = 1) while other boundaries
represent a case where the Type-F �rms do not use any of the forecasts given
by the Type-L �rms (i.e., �2v !1 and c! 0). RPE �b would be located in the
shaded region and determined by �2x and �

2
v. If the Type-F �rms accurately

observe the expectations of the Type-L �rms (�2v = 0), the Type-L �rms obtain
the E-stable REE (�bREE) which lies on the boundaries of the REE. However,
if the Type-F �rms are unable to perfectly observe the Type-L expectations (a
�nite �2v), then �b for the Type-L �rms would move to the inside of the shaded
region. It turns out that

���b�� > ���bREE�� when � < 0, and
���b�� < ���bREE�� when

0 < � < 1. This result represents the Type-L �rms�failure to obtain the REE
when the Type-F �rms misinterpret the forecasts of the Type-L �rms under the
process of information di¤usion.

Figure 1. The Region of the Boomerang E¤ect on the RPE

To illustrate that the Type-L �rms fail to obtain the REE with �nite values
of �2v we simulate the model (1) with the reduced form parameters: � = 0:5 < 1;

 = 2; and � = 0:5: Our objective of the simulation is to show that �rms do
not learn the REE but they eventually learn the RPE. The observable xt�1
and the unobservable �t are assumed to be white noise processes with standard
deviation equal to two and one, respectively. We also assume that the Type-
L and Type-F �rms initially obtain the REE, (b0 = 4 and c0 = 1); and the
(mis)interpretation error (vt�1) has a standard deviation of �ve. We explore
whether the parameters will converge to the RPE in the long run.11 In this

11The intuition in the simulation is that Type-F �rms perfectly understand the expectations

10



simulation, the virtual time period is 20,000.
Figure 2 demonstrates the learning process for the Type-L (upper panel) and

the Type-F (lower panel) �rms. The Y-axis represents the parameter value of
a �rm�s PLM and the X-axis represents the learning period. To highlight the
changes and convergence in the parameters, we separate the time period into
three columns. Each column shows a speci�c time period, ranging from one to
1,000 for column one, 1,000 to 10,000 for column two, and 10,000 to 20,000 for
column three.
In Figure 2, we see that, under the process of information di¤usion with

�nite misinterpretation error variance (generated by the Type-F �rms), the
parameters for both �rms PLMs�do not converge to the REE (represented as
the dashed lines in the �gure). Part 1 of Lemma 1 is shown numerically in the
lower panel of Figure 2. With �v = 5; the Type-F �rms make partial use of the
expectations formed by the Type-L �rm. The result is the Type-F �rms�PLM
parameter, c, converges to RPE �c = 0:72 < 1:
More importantly, the upper panel of Figure 2 describes the boomerang

e¤ect on the Type-L �rms�forecasts. Although the Type-L �rms are initially at
the REE and obtain exogenous observables, xt�1, to make forecasts, they fail
to stay at the REE and instead eventually learn the RPE when they interact
with the Type-F �rm (with a �nite �2v): For time period between one to 100, the
value of b �uctuates and gradually adjusted. After period 4,000, the parameter
b becomes more stable and converges to the RPE �b = 3:56; which is di¤erent
from the REE �bREE = 4:

made by Type-L �rms in the early stages of interaction
�
�2v = 0

�
. Consequently, Type-F �rms

are able to obtain the REE. However, in subsequent interaction the communication between
the two types of �rms becomes "noisey" for a variety of reasons and deteriorates so that by
time t = 0 there is a �nite (mis)interpretation error (vt�1) in the information di¤usion process.

11



Figure 2. Simulations for Type-L and Type-F Firms�PLM

4.2 The Boomerang E¤ect on the MSE

We also consider how both types of �rms�forecast accuracy are a¤ected from
miscommunication or misinterpretation of information. To show this, we calcu-
late the MSE for the forecasts of the Type-F and Type-L �rms. The MSE for
the Type-F �rms is given as:

MSEF = E
�
yt+1 � yeF;t+1

�2
= (1� �c)2 �b2�2x + [(1� ��) �c]

2
�2v + �

2
�:

Note that from the equilibrium for �c, we can �nd an expression for �b2�2x :

�b2�2x =
(1� ��) �c�2v
(1� �c) :

Therefore, we have:

MSEF = �c (1� ��) (1� ���c)�2v + �2�: (7)
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For the Type-L �rms, the MSE can be calculated as:

MSEL = E
�
yt+1 � yeL;t+1

�2
= (���c)

2
�2v + �

2
�: (8)

The MSE for the Type-F �rms in (7) shows that when the Type-F �rms ac-
curately observe the expectations from the Type-L �rms

�
�2v = 0

�
, the Type-F

�rms obtains the minimum MSE
�
MSEF = �

2
�

�
: However, the �nite �2v reduces

the Type-F �rms�predictive accuracy where MSEF > �2�: More interestingly,
the results for the Type-L �rms indicate that only �2v = 0 or �

2
v !1 produce

the most e¢ cient outcome,MSEL = �2�. However, if there exists a �nite �
2
v; the

Type-L �rms�forecasts become less e¢ cient (i.e., larger MSE). The consequence
is called the boomerang e¤ect on the MSE :

Proposition 4. (The Boomerang E¤ect on the MSE). The �nite variance
of the Type-F �rms�observational errors

�
�2v
�
generates a higher MSE for the

Type-L �rms where MSEL = (���c)
2
�2v + �

2
� > �

2
�:

The proof is trivial as it comes directly from MSEL. The intuition behind
this information rigidity follows from the assumption that Type-L �rms are not
able to observe the (mis)interpretation error, vt�1; when making their forecasts.
However, vt�1 alters actual yt in equation (4) ; consequently, Type-L �rms can-
not "disentangle" their expectations from vt�1. This results in forecasts by
Type-L �rms that vary in accuracy (as re�ected by larger MSE�s).
Next, we also show that the Type-L �rms� forecasts can actually have a

higher MSE that the Type-F �rms�forecasts under certain values of �. We �rst
present the following proposition:

Proposition 5. MSEL > MSEF if � > 0 and �c > 1���
�� :

The proof is given in Appendix D. This proposition states that it may be
possible that the MSEL > MSEF if �c is large enough. However, this cannot
always be the case since �c is constrained to be between zero and one. The
following corollary states that for MSEL > MSEF , it must be that � and �
are su¢ ciently large:

Corollary 1. If � 2 (1=2; 1), then there is a �̂ 2 (1=2; 1) such that if �̂ <
� < 1, then MSEL > MSEF .
The proof is given in Appendix E. In Proposition 5 and Corollary 1, we show

that when the fraction of the Type-F �rms is larger than that of the Type-L
�rms (i.e., for some � > 1=2), it is possible that the MSE of the Type-L �rms
is larger than that of the Type-F �rms for some � 2 (1=2; 1). We illustrate
such scenario in Figures 3 and 4. By assuming � = 0:7 > 1=2; we obtain a
shaded region of MSEL > MSEF under open values of c and � which satis�es
c > 1���

�� ; where � is on the horizontal axis and c (for any c) is on the vertical
axis. From Proposition 5, we also see that the region becomes larger as �
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approaches one.

Figure 3. The Region of MSEL > MSEF

From Lemma (1), we show that the RPE of c is monotonically increasing in �.
Thus, provided that � is large enough, it is possible to have an RPE �c which lies
in the critical region where MSEL > MSEF for some � > 1=2. Therefore, in
Figure 4, we combine the shaded region with a function of RPE �c with respect
to �:12 We �nd that, for a large �, there exist some values of the RPE �c which
lie in the shaded region.13 In Figure 4, the numerical example shows that the
function of RPE intersects the boundary of the shaded region at � = 0:74. It
implies that when the proportion of Type-F �rms su¢ ciently outweights that of
Type-L �rms (i.e., � = 0:7), we can obtain a RPE �c such thatMSEL > MSEF
for � 2 (0:74; 1). However, when � < 0:5; the critical region does not exist
for any � < 1: Therefore, it is impossible to obtain a possible RPE �c where
MSEL > MSEF :

12We assume � = 0:7, �2x = 1, �2v = 2, and 
 = 1.
13The discussion of the relationship between c and � would be more interesting. However,

we are unable to show such relationship analytically as �b and �c are non-linearily depended on
each other.
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Figure 4. The RPE of c satisfying MSEL > MSEF

As noted earlier, the size of the boomerang e¤ect is related to the proportion
of the Type-L and Type-F �rms. In particular, when the proportion of the
Type-F �rms becomes large (i.e., a large �), equation (4) shows that the weight
of the misinterpretation error (vt�1) generated by the Type-F �rms increases.
The variations of vt�1 would have a more signi�cant e¤ect (larger inaccuracy)
for the Type-L �rms�PLM. Eventually, the MSE for the Type-L would turn
out be larger than that for the Type-F �rms. This would occur when the
proportion of the Type-F �rms su¢ ciently exceeds that of the Type-L �rms.

5 Conclusion

In this paper, we introduce a process of information di¤usion in a modi�ed
Muthian cobweb model where agents � �rms � form their expectations in
accordance with an adaptive learning process. We consider two types of �rms
following a Stackleberg process in the market. The leading �rms (Type-L)
form initial forecasts while the following �rms (Type-F) observe (and use) the
leading �rms�forecasts when forming their own expectations. In this modi�ed
cobweb model, we �nd there may exist multiple restricted perception equilibria.
However, we show that there is a unique RPE under a certain condition (i.e.,
� < 1). In addition, we conclude that, compared to the simple cobweb model,
the E-stability condition in the modi�ed model remains unchanged and the
unique RPE is the only E-stable solution.
We also focus particular attention on the equilibrium properties and forecast-

ing accuracy of the model. We introduce and �nd evidence for the boomerang
e¤ect, which we de�ne as a situation in which the inaccurate forecasts of the
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Type-F �rms confound the Type-L �rms� forecasts. We also argue that the
MSE�s of the Type-L �rms can possibly exceed that of the Type-F �rms when
the proportion of the Type-F �rms is larger than the proportion of the Type-L
�rms.
In the current setting of our model, heterogeneity � the proportion of the

Type-L and Type-F �rms �is assumed to be exogenous. However, endogenizing
heterogeneity would be an important future research challenge [See Brock and
Hommes (1997); Evans and Ramey (1998)]. In particular, one issue to consider
is the degree to which heterogeneity exists for alternative types of �rms if �rms
optimally choose to become either Type-L or Type-F �rms based on the trade-o¤
between forecast accuracy and the cost of acquiring forecast information.
We note that the framework in this paper can be extended to monetary

policy issues [See Bernanke and Woodford (1997)]. In particular, there are im-
plications for the overall performance of an in�ation-stabilizing monetary policy.
If we substitute the public for the Type-F �rms and the monetary authority for
the Type-L �rms and also assume that the information disadvantage resides in
the public�s limited understanding of economic events, then a plausible conse-
quence (based on our model�s �ndings) is that information di¤usion creates a
boomerang e¤ect for the policymakers. Since the equilibrium forecasts in an
economy are aggregations of agents�forecasts, a large boomerang e¤ect can cause
policymakers themselves to make inaccurate forecasts of economic conditions.
The inaccurate forecasts can eventually cause additional economic volatility and
failed stabilization policies.14

To alleviate the boomerang e¤ect, one normative policy suggestion is that
policymakers should be more transparent about policy information. Greater
transparency will make it possible for the public to better understand how
the policy will work and hence make more accurate use of others with more
information.15 With more precision in information acquisition, the public will
confound the policymaker�s forecasts less and it can reduce the boomerang e¤ect,
improve policy e¤ectiveness, and help with overall economic performance.

6 Appendices

Appendix A: Proof of Proposition 1
If �2v = 0; it is straightforward to solve a unique equilibrium that

�
�b; �c
�
=�



1�� ; 1

�
: If �2v > 0; we show the number of real roots in the solution (6) by

expanding the cubic function of �b:

A�b3 +B�b2 + C�b+D = 0; (9)

where A = (1� �)�2x; B = �
�2x; C = �2v (1� � (1� �)) (1� ��) ; D =
��2v
 (1� ��) : According to Cardano�s approach [See Nickalls (1993)], there
exists a single real root in a cubic function if G2 + 4H3 > 0; where G =
A2D � ABC=3 + 2 (B=3)3 and H = AC=3 � (B=3)2 : We substitute A;B;C
14A similar implication is also suggested by Bom�m (2001).
15There is research supporting this common-sense suggestion. Bernanke et al. (1999) notes

that when information about the plans, objectives, or decisions of the monetary authori-
ties are carefully explained, the public can more easily understand the contents of a policy
announcement.
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and D into Cardano�s solution, we get:

G2 + 4H3 =

�
�2x
�3

729

�
4M3 +N2

�
; (10)

whereM = �
2�2x+3�2v (1� �) (1� � (1 + �� (1� �))) andN = �2x

2(2�2x


2+
9�2v (1� �) (1� ��) (2� � (2 + �))): AlthoughM can be negative, we can show
that, with some manipulations, 4M3 +N2 > 0 for � < 1 and �2v > 0: Since �b is
determined, �c will be determined in (6) :

Appendix B: Proof of Lemma 1
For 1, consider the RPE for �c :

�c =
�b2�2x

�b2�2x + (1� ��)�2v
:

As 1��� > 0 for all � < 1, it must be that �c 2 (0; 1]. For 2, consider the RPE
for �b:

�b =



1� � (1� �+ ��c) :

As 1� � (1� �+ ��c) > 0 for � < 1, �b and 
 must have the same sign. Finally,
for 3, one can see that an increase in � will increase

���b�� and �c if � < 1: Therefore,���b�� and �c are monotonically increasing in �.
Appendix C: Proof of Proposition 2
Consider the standard E-stability ODE:

@�

@�
= T (�)� �;

where:

� =

�
b
c

�
:

Therefore:

d�

d�
=

 
[(1� �) + �c]�b+ 


�c� +
b�2x

b2�2x+�
2
v
((1� �)�b+ 
)

!
�
�
b
c

�
:

Now, consider the ODE for c:

dc

d�
=

b�2x
b2�2x + �

2
v

((1� �)�b+ 
) + (�� � 1) c: (11)

Note that b will just a¤ect the �xed point of �c and will not a¤ect the stability of
this ODE. If b is stable, then the �xed point of (11) will be the RPE, and if b is
unstable, then the �xed point will be �c = 1. Assuming that b is a constant, we
can consider (11) as a univariate ODE. The eigenvalue of the Jacobian matrix
is the following:

��� 1:
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Thus, �c is E-stable if:

1 � � < 1

�
:

As c is stable for any b, we can express the RPE �c as a function of � as we will
wish to determine the value of c (�) for a given �. Next, consider the ODE for
b:

db

d�
= [(1� �) + �c (�)]�b+ 
 � b: (12)

If we assume that c (�) is a constant for a given �, then (12) can be considered
as a univariate ODE as well. The eigenvalue of the Jacobian is the following:

� (1� �+ �c (�))� 1:

Therefore, �b is E-stable if:

� (1� �+ �c (�)) < 1:

As c (�) is monotonically increasing in �, there can only be one solution to the
equation:

� (1� �+ �c (�))� 1 = 0:

Since c (�) is a function of � and c (�)! 1 as � ! 1, the E-stability condition
turns out to be:

� < 1:

Therefore, both RPE as E-stable when the more strict condition of � < 1 is
satis�ed.

Appendix D: Proof of Proposition 5
Consider the di¤erence between MSEL and MSEF :

MSEL �MSEF = (���c)
2
�2v � �c (1� ��) (1� ���c)�2v

=
�
��c+ ���c2 + ���c

�
�2v:

If � > 0, the expression can be positive if:

�c >
1� ��
��

:

If � < 0, the expression can be positive if:

�c <
1� ��
��

< 0:

Since �c 2 (0; 1], this cannot occur.

Appendix E. Proof of Corollary 2
Let:

c� (�) =
1� ��
��

:

Note that c� is monotonically decreasing in � (for � 2 (0; 1)), c� (�) < 1 if
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�� > 1=2, and:

c� (1) =
1� �
�

:

Assume that � > 1=2, so we have the following:

c� (1) < 1:

According to Lemma (1), we can write the RPE �c as a monotonically increasing
function �c (�) 2 (0; 1). As �c (0) < c� (0) and �c (1) > c� (1), then there will be a
�̂ 2 (1=2; 1) such that:

�c
�
�̂
�
= c�

�
�̂
�
:

Therefore, for �̂ < � < 1, we will have:

�c >
1� ��
��

;

and thus
MSEL > MSEF :
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