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Summary 

The main theme of this thesis was to explore the regulatory landscape of CAM using systems 

biology approaches. The scope of the regulatory landscape was drawn around the mesophyll 

metabolism of the dicotyledonous obligate CAM genus, Kalanchoe, even though the 

computational frameworks that had been developed here can also be applied to other species. 

The first result chapter presented the Ordinary Differential Equation modelling of Crassulacean 

acid metabolism (Chapter 2) which was developed to capture the classical gas-exchange 

patterns as well as the responses to perturbation conditions. The findings suggested that the 

model was sufficient to explain the classical gas-exchange pattern whilst was also responsive 

to the perturbations. Nonetheless, the model parameters which represented the protein activities 

indirectly captured the upstream regulatory controls. Thus, the following result chapter shifted 

the focus to explore a more upstream level of regulations at the level of gene expression. 

The second result chapter presented the Gene Regulatory Network Inference of Kalanchoe 

fedtschenkoi (Chapter 3). This chapter identified potential transcriptional regulators on 

different functional compartments of CAM including the following: Carboxylation 

subnetwork, Decarboxylation subnetwork, Circadian subnetwork and Stomatal subnetwork. 

This chapter highlighted the potential transcriptional regulators of key CAM genes, for 

example, PEPCarboxylase (PEPC), PEPCkinase (PPCK), pyruvate orthophosphate dikinase 

(PPDK), and pyruvate orthophosphate dikinase regulatory protein (PPDK-RP). Overall, the 

Gene Regulatory Network Inference provided the ranking of the potential transcriptional 

regulatory candidates on CAM genes. Hence, a reasonable step forward would be to probe for 

direct binding evidence through molecular approaches. The first step towards accessing the 

chromatin landscape with ATAC-sequencing technique was the  Nuclei isolation followed by 

the flow cytometry separation technique for Kalanchoe fedtschenkoi which was presented as 

the final result chapter (Chapter 4). 

To conclude, this thesis showed that the minimal mechanistic model at the level of protein 

functions can capture CAM gas-exchange patterns under various scenarios. Subsequently, a 

more upstream level of regulatory controls was explored across the genome with the Gene 

Regulatory Network Inference method. The key findings highlighted the potential 

transcriptional regulations of key CAM genes in addition to the regulations at the level of 

protein activities. Finally, the nuclei isolation was conducted as an initial step for a future 

molecular experiment to probe for chromatin accessibility for the CAM model species. 

Systems analysis of Crassulacean acid metabolism (CAM) physiology and molecular biology 
                                                                                                                             M Chomthong
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Classical knowledge of Crassulacean Acid Metabolism 

Crassulacean Acid Metabolism (CAM) species are known for their remarkable photosynthetic 

traits, including night-time primary CO2-fixation by enzyme Phosphoenolpyruvate 

Carboxylase (PEPC), which conserves water when stomata are closed for part of the day as 

opposed to the daytime stomatal opening and atmospheric CO2 fixation in C3 species. 

Although common CAM plants are typically associated with the succulent traits, not all 

succulent species perform CAM pathway and not all CAM plants are succulent (Kluge and 

Ting 1978b). The presence of the storage water within succulent tissues (i.e. leaf or stem) 

provides the ecological adaptive value for plants to occupy habitats with limited water supply 

in both semi-arid desert environments or the epiphytic niches in tropical rainforests. The 

combination of these beneficial traits led to remarkable global diversity arising from multiple 

independent origins of CAM over the last 5 million years and accounted for at least 6% of the 

modern Angiosperm species (Dodd et al. 2002; Borland et al. 2018; Wai and VanBuren 2018; 

Edwards 2019). 

Although the earliest record of Crassulacean acid metabolism (CAM) the author is aware of 

was dated back to the Roman time where someone noticed the acid taste in house plants in the 

morning, the official origin of the scientific study of CAM was in the Late Enlightenment 

period (Black and Osmond 2003). The earliest academically documented CAM phenomenon 

was done by de Saussure1 in 1804 where the ability of the Opuntia stem to remove CO2 from 

the atmosphere at night was observed. In a separate observation of garden plants in India, the 

organic acid accumulation in Bryophyllum calycinum leaves was documented by Heyne2 in 

1815. Because the discovery of CO2 fixation at night by de Saussure was very unexpected at 

that time, this observation did not fit into the developing concept of photosynthesis and was 

forgotten for more than a century. As a result, the malic acid accumulation documented by 

Heyne remained an unsolved puzzle despite the fact that mechanistic explanation of the acid 

accumulation had been documented 11 years earlier. These two aspects of CAM, the night time 

CO2 fixation and malic acid accumulation, were not linked together as one phenomenon until 

Thomas and Wolf made this connection in 1949 (de Saussure, 1804; Heyne, 1815; Thomas, 

1949; Wolf, 1949; Kluge & Ting, 1978b).   
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In terms of the taxonomical distribution, CAM pathway have been identified in more than 30 

Angiosperm families, namely Agavaceae, Aizoaceae, Asclepiadaceae, Asteraceae, 

Bromeliaceae, Cactaceae, Crassulaceae, Cucurbitaceae, Didiereaceae, Euphorbiaceae, 

Geraniaceae, Labiatae, Liliaceae, Oxalidaceae, Orchidaceae, Piperaceae, Portulacaceae and 

Vitaceae.  Although these families are not taxonomically close, they are all tropical or 

subtropical in origins and most of their CAM members are either stem or leaf succulents. 

Suffice it to say, many physiological, anatomical, biochemical and molecular features of CAM 

have developed convergently to regulate the expression of the CAM in a wide range of families. 

 

 

Footnote: 

1 “…The cactus takes up CO2 and oxygen in the same proportions when the former is present 

in small amounts. Experiments reported in A. on oxygen fixation have been performed in air 

previously deprived of CO2, and the question arises whether this latter is taken up by the leaves 

in the normal air preferably to oxygen. I could show that a cactus placed in a jar with air 

enriched in CO2 fixes CO2 and oxygen at similar rates. Fixation was faster than in the absence 

of added CO2. The experiment was as follows: 153.6 cm3 (7.75 cubic inches) of cactus were 

placed in the afternoon in a jar containing 43.5 cubic inches of air over mercury; the air 

contained 74% nitrogen, 19% oxygen and 7% CO2 in volume. After 12h darkness, the volume 

of the air was reduced by the plant to 81% of the initial volume. Hence, air taken up by the 

leaves was about 1.25 times of their volume. I found by analysing the remaining air that the 

leaves absorbed 13.5 parts of oxygen and 5.5 parts of CO2. The two gases were thereafter fixed 

in similar proportions, about ¾ of their initial amount. After their fixation the leaves were 

saturated and no further fixation could be observed in continuing darkness…” (de Saussure, 

1804, quoted from  Kluge & Ting, 1978b) 

2 “…The leaves of the Cotyledon calcina, a plant called by Mr. Salisbury Bryophyllum 

calycinum, which on the whole have herbaceous taste, are in the morning as acid as sorrel, if 

not more so; as the day advances, the lose their acidity, and are tasteless about noon and 

become bitterish towards evening…” (Heyne, 1815, quoted from Kluge & Ting, 1978c) 
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The distinct regulation of guard cells allows stomatal opening at night, directing CO2 flux into 

the primary carboxylation process by PEPC during Phase I of CAM (Osmond 1978). This 

temporal shift in initial carboxylation by PEPC is mediated by the action of a circadian clock-

controlled protein kinase called Phosphoenolpyruvate Carboxylase Kinase (PEPC kinase) 

which phosphorylates the PEPC and thus reduces its sensitivity to malate-inhibition at night 

(Hartwell et al. 1996; Hartwell et al. 1999; Nimmo 2000; Dodd et al. 2002). The final product 

of the primary carboxylation process catalysed by the active form of PEPC is malic acid which 

is then sequestered into large storage vacuoles that can occupy up to 95% of the mesophyll cell 

volume. During predominant part of the subsequent light period (Phase III), the malic acid is 

released from the vacuole and enters the decarboxylation pathway to release CO2 for the 

secondary carboxylation by Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco). 

The CO2 is concentrated around Rubisco behind closed stomata during the day-time, allowing 

CAM Rubisco to delay activation and to adopt a more relaxed specificity factor (selectivity of 

CO2 over O2 lower, compared to C3 plants) albeit with the retention of a high affinity for CO2 

(low Km,CO2) (Griffiths et al. 2002, 2007, 2008). This temporal separation between primary 

and secondary CO2 fixation within a single mesophyll cell enhances an overall operating 

carboxylation efficiency while water use is lower compared to C3 species (Borland et al. 2009, 

2018). 

A number of complex CAM phenotypes demonstrate remarkable physiological and ecological 

plasticity which still engender intriguing research questions (Yang et al. 2015; Winter et al. 

2015; Heyduk et al. 2019; Winter 2019). In strong CAM species, such as Kalanchoe 

daigremontiana, Agave tequilana and Tillandsia usneoides, the strength and duration of the 

intermediate Phases II and IV (i.e. early morning and late afternoon, respectively) are adversely 

affected by degree of succulence and drought, but can be restored quickly upon rehydration 

(Owen and Griffiths 2013; Owen et al. 2016). Plasticity as represented by facultative CAM has 

also been documented for woody dicotylenous species such as Clusia minor, and temperate 

perennial herbs such as Sedum telephium, and many members of the Aizoaceae which can 

rapidly and reversibly undergo CAM induction (Borland and Griffiths, 1990; Haag-Kerwer et 

al. 1992; Borland et al. 1992; Dodd et al. 2002). Finally, there is the well-defined CAM 

induction triggered by abiotic stress in Mesembryanthumum crystallinum (Adams et al. 1998; 

Cushman 2001; Winter and Holtum 2007) or during leaf development and aging in Kalanchoe 

species (Hartwell et al., 2016). These examples of CAM inducibility and Phase II and IV 

responsiveness suggest that CAM regulatory mechanisms drive a core temporal switch which 
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can then be modified depending on environmental conditions and/or internal metabolic 

feedback. The latest supporting evidence comes from the extent that the circadian expression 

of the CAM cycle can be disrupted when key metabolic enzymes have been manipulated 

(Dever et al., 2015; Hartwell et al., 2016; Boxall et al., 2017, 2020) 

Modern -omics data and genetic manipulation tools of 

Crassulacean Acid Metabolism 

Availability of CAM genomes have provided a springboard for analysis of orthologues and 

transcriptional control elements (Ming et al. 2015; Yang et al. 2017; Wai et al. 2019), whereas 

comparative multi-omics analysis have contributed to a more in-depth understanding of 

potential regulatory relationships in various CAM species (Zhang et al. 2016; Chiang et al. 

2016; Abraham et al. 2016; Yin et al. 2018; Heyduk et al. 2019). Firstly, comparative 

transcriptomic studies have provided insights into the evolutionary trajectory of CAM and 

suggested that transcriptional regulation is associated with specific expression profile of key 

CAM genes (Ming et al. 2015; Yang et al. 2017; Wai et al. 2019). Secondly, additional analysis 

could extract lists of candidate CAM specific transcription factors which mediate CAM mode 

in obligate CAM species (Kalanchoe fedtschenkoi and Agave americana) (Moseley et al. 2018; 

Yin et al. 2018) and mediate the transition from C3 to CAM mode in facultative CAM species 

(Mesembryanthemum crystallinum and Talinum triangulare) (Brilhaus et al. 2016; Amin et al. 

2019; Maleckova et al. 2019). Thirdly, additional layers of control are also being explored at 

the level of less conventional post-transcriptional regulation via microRNAs as well as long 

non-coding RNAs which could function competitively with endogenous RNAs to alter the 

expression profile of key CAM pathway genes such as PEPC and PPDK (Yang et al. 2015; 

Wai et al. 2017; Bai et al. 2019). Finally, transgenic manipulation experiments with RNA 

silencing approaches have been used to investigate the relationships between different genes 

in Kalanchoe species (Dever et al. 2015; Boxall et al. 2017; Boxall et al. 2020). 

Comparative transcriptomic studies have provided a list of genes with specific CAM 

expression patterns with timing either phase-shifted or inverted between C3 and CAM. These 

genes with specific CAM expression patterns may play important roles in synchronising CAM 

mesophyll processes. Comparative transcriptomic studies have associated CAM evolution with 

specific regulation of transcript abundance pattern. Firstly, comparative studies within 13 

Orchid species suggested that regulation at the transcription level of carboxylation and 

decarboxylation genes (PEPC, PPCK, and PPDK) was associated with CAM evolution within 
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this clade (Zhang et al. 2016). Secondly, transcriptomic analysis of two cultivated pineapple 

varieties and one wild pineapple relative showed that CAM-related genes demonstrated an 

inverse diel expression pattern in photosynthetic tissues (Ming et al. 2015). With the available 

pineapple genome data, they also suggested that CAM evolved not by gene duplication but 

through the modified expression of existing C3 genes. In addition, a key mechanism that 

controls the expression timing of CAM specific genes has been suggested to be the circadian 

clock, because the differentially regulated CAM pathway genes were enriched with clock-

associated cis-regulatory elements (Ming et al. 2015). 

 

The molecular basis to metabolic regulation associated with CAM 

Carbohydrate and malate metabolism also show contrasting patterns between CAM and C3. 

Firstly, Kalanchoe genome analysis provided evidence for contrasting differential regulation 

of carbohydrate processing between CAM and C3 species. A network analysis compared 

families of carbohydrate ‘active’ gene families which were similar in number to those found in 

Arabidopsis but with altered expression profiles, with a possible role for a trehalose-6-

phosphate synthase and an invertase, acting to alter carbohydrate partitioning between 

substrates for CAM and those needed for growth (Yang et al. 2017). Secondly, putative 

orthologues of chloroplast and vacuolar sugar transporters of pineapple have adopted a defined 

diel expression pattern, hence being implicated in the diel processing of carbohydrate in this 

soluble sugar processing CAM species (Borland et al. 2016). Thirdly, genomic studies of 

transcriptional patterns have also supported that malate channel ALMT could be one of the key 

candidate control point to allow for CAM evolution and function in both pineapple and Talinum 

(Brilhaus et al. 2016; Wai and VanBuren 2018). Finally, it is well-established that CAM 

induction in Mesembryanthemum crystallinum is associated with an increased in transcript 

abundance of a chloroplast carbohydrate transporter gene associated with a higher Glucose-6-

phosphate transport rate in its CAM mode (Cushman et al. 2008). 

The contribution of non-canonical post-transcriptional control must not be neglected. 

Emerging evidence from microRNA (miRNA) and long non-coding RNA (lncRNA) studies in 

pineapple have also offered additional control mechanism on several CAM-related genes at the 

post-transcriptional level (Wai et al. 2017; Bai et al. 2019). The evidence in pineapple (Ananas 

comosus) has suggested that long non-coding RNAs may compete with PPCK and PEPC genes 

for being transcribed in the photosynthetic tissue during the daytime, hence preventing these 



7 
 

nocturnal CAM enzymes from being transcribed during the day (Bai et al. 2019). A separate 

study also identified 20% of pineapple microRNAs with diel expression pattern and the specific 

binding sequence to CAM genes including PPCK1 and MDH (Wai et al. 2017). 

Recent transgenic manipulation experiments suggest a close link between circadian and 

metabolic control in CAM. Downregulating the carboxylation activity (PEPC) or 

decarboxylation activity (mitochondrial NAD-Malic enzyme (NAD-ME)) have been shown to 

disrupt CAM rhythmicity in other mesophyll components distant to the knockdown point, in 

addition to altering the oscillation pattern of circadian clock genes through unidentified 

metabolic feedbacks  (Dever et al. 2015; Boxall et al. 2020). At the carboxylation pathway, the 

regulation of PEPC has been recently investigated using two recent RNA silencing approaches. 

In the first approach, the PEPC kinase of Kalanchoe fedtschenkoi was silenced, resulting in 

reduced dark phosphorylation of PEPC and a 66% reduction in night-time CO2 assimilation 

(Boxall et al. 2017). This study emphasised the importance of PEPC phosphorylation to 

maintain PEPC activity through the dark period, which in turn affected circadian clock stability 

and overall CAM productivity. Subsequently, this group developed transgenic lines of K. 

laxiflora in which PEPC was down-regulated using RNAi (Boxall et al. 2020). The plants 

suffered a complete loss of dark CO2 assimilation, fixing CO2 directly only in the light, and the 

stomata revert back to C3 daytime opening. Additionally, transcripts for PPCK were down-

regulated at night and peaked at the start of the light period, and gas exchange suffered 

arrhythmia under constant light, despite the transcript abundances of some core circadian clock 

genes being enhanced (Boxall et al. 2020).     

Considering the decarboxylation component of the CAM cycle, RNA silencing has been used 

to reduce the activities of two CAM enzymes, NAD-ME and PPDK, which are both involved 

in the decarboxylation of malate and release of CO2 internally during the light period  (Dever 

et al. 2015). The expression of CAM was suppressed in both sets of plants, which tended to 

take up the majority of CO2 directly in the light. There was a reduction in transcripts of many 

genes associated with the CAM cycle, including PEPC and genes associated with storage 

carbohydrate trafficking, including PPDK (in NAD-ME mutant) and glucan water dikinase and 

glucose-6-phosphate translocator. Whilst the expression patterns of PPCK and core clock gene 

transcripts were not affected, the circadian cycle became arrhythmic under continuous light, 

again suggesting a role for metabolite feedback in resetting the CAM cycle on a daily basis 

(Dever et al. 2015). 
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Although the transgenic perturbation approaches did not target the carbon storage element of 

CAM directly, the manipulation of PPCK and decarboxylation pathway both resulted in altered 

cellular carbohydrate balances (Dever et al. 2015; Boxall et al. 2017). Starch accumulation, 

which normally precedes the dark period to provide carbon skeletons for carboxylation, was 

generally reduced. In addition, there was a distinct correlation between a peak of sucrose and 

the expression of a circadian response-regulator transcripts. This provided more evidence for 

the connection between  carbohydrate supply with circadian clock expression (Borland and 

Griffiths, 1997; Boxall et al. 2017). Moreover, the reduction in PEPC expression may have 

suggested additional insights for the transition between C3 and CAM modes of assimilation 

(Boxall et al. 2020). Transcript for genes associated with the partitioning of starch in C3 

systems, such as the amylolytic pathway at night, were upregulated in the K. laxiflora 

transgenic lines developed by Boxall et al. 2020, as compared to the phosphorolytic route 

normally associated with starch-storing CAM species (Borland et al. 2009, 2016). 

 

Remaining questions of Crassulacean Acid Metabolism 

Remaining questions of CAM can be grouped into 2 categories; A) How are enzymes and their 

related pathways become active/inactive at the right time of the day?, and B) how have they 

reached that stage from the starting material in ancestral species? 

In terms of the temporal control of the CAM pathway, the most complete explanation lies at 

the Phosphoenolpyruvate Carboxylase (PEPC) which is phosphorylated by a nocturnally 

expressed enzyme, PEPCkinase (PPCK) (Hartwell et al. 1999). The phosphorylated form of 

PEPC has lower sensitivity to malate inhibition, thus it actively catalyses the  initial 

carboxylation at night. The regulation of decarboxylation pathway is, however, less clear in 

CAM species. In C3 and C4 species, the enzyme pyruvate orthophosphate dikinase (PPDK) is 

active in the dephosphorylated-form whilst its phosphorylation and dephosphorylation 

reactions are catalysed by the same bi-functional enzyme, PPDK-Regulatory protein (PPDK-

RP). This regulatory relationship between the PPDK-RP and PPDK has not been verified in 

CAM species. The most direct evidence is from timeseries immunoblotting in K. fedtschenkoi 

which detected phosphorylated-form of PPDK from 4 hours before dusk into 8 hours after dusk 

(Dever et al. 2015). The presence of the inactive phosphorylated-form of PPDK over the first 

two-thirds of the dark period is consistent with with the lack of decarboxylation activity during 

the night. This suggested that the phosphorylation/dephosphorylation reaction may be partly 
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responsible for the diurnal activation of PPDK in K. fedtschenkoi. Nonetheless, the conditions 

that facilitate the alternating function of PPDK-RP between kinase and phosphorylase are not 

known for CAM. In addition, there is another level of complexity due to the 

compartmentalisation of PPDK, whereby two-thirds of this protein is localised in the cytosol, 

whereas the remaining one-third is in chloroplasts (Kondo et al. 2000). It is evident that 

activities of different compartments of CAM must be highly orchestrated (Borland et al. 2016; 

Ceusters et al. 2021). However, there is a big gap in the understanding of how genes across 

different compartments or pathways are synchronised. Are different genes under the same or 

unique regulators? Are these regulators responding directly to physical parameters including 

light intensity, wavelength distribution, intercellular CO2 concentration (Ci), and humidity? 

How does the circadian network wire into the CAM system? How different is CAM circadian 

network from the C3 circadian network? 

It remains challenging to date to dissect these questions not only because CAM traits are 

complex, but also because CAM operates through the interlocking loops. Stomatal conductance 

and the strength of carboxylation activity influences the CO2 diffusion rate. Subsequently, the 

CO2 that has entered the leaf influences the degree of stomatal opening and carbohydrate 

production through the intercellular CO2 (Ci)-sensing pathway and (de)carboxylation-Calvin 

cycle, respectively. Finally, carbohydrate is recycled to produce the 3-carbon compound, 

Phosphoenolpyruvate, which is the reagent for the primary carboxylation of the atmospheric 

CO2, hence influencing the next round of CO2 fixation and so on (Borland et al. 2016; Borland 

et al. 2018). Disturbing one specific point can affect the whole system, but some components 

might have ability to respond directly to the perturbation signal or adjust upstream components. 

For example, the series of genetic perturbation experiments have demonstrated that genes in 

unrelated pathways were responding, but this may have been signalled by the level of 

metabolites or the circadian clock arrhythmia (Dever et al. 2015; Boxall et al. 2017, 2020). 

One of the more specific examples is from the genetic perturbation of gene coding for NAD-

ME. In the NAD-ME knockdown line, the phosphorylated-form of PPDK was detected 

throughout a 24-hour period, implying the constitutive down-regulation of PPDK activity 

(Dever et al. 2015). In other words, the lack of NAD-ME, which has a  normal function to 

catalyse the first step in the decarboxylation pathway, resulted in the downregulation of the 

enzyme PPDK, which catalyses the subsequent step within the same decarboxylation pathway. 

Stomatal behaviour is part of the complex CAM traits The puzzle regarding CAM stomatal 

function persists as follows. Firstly, the evidence for CAM stomatal response to light is still 
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inconclusive. Initial reports on facultative CAM species (Mesembryanthemum crystallinum 

and Portulacaria afra) suggested that stomata no longer respond to light signals once induced 

into CAM mode (Lee and Assmann 1992; Tallman et al. 1997). However, the stomata of obligate 

CAM species (Kalanchoe pinnata and K. daigremontiana) have been shown to open in 

response to blue-light, similar to C3 stomata (Gotoh et al. 2019). These contradictory 

observations provide a focus for the question originally posed by Osmond (1978), and the 

interplay between light cues with the CAM pathway. How can the canonical pathway of 

stomatal opening in responding to blue-light be overridden during the Phase III of CAM? 

Secondly, nocturnal opening behaviour of CAM is hypothesised to be mediated by the low 

intercellular CO2 (Ci) as a result of PEPC activity, but any precise mechanism has not been 

elucidated to date (Borland and Griffiths 1997; Drennan and Nobel 2000; Ceusters et al. 2008; 

von Caemmerer and Griffiths 2009). Thirdly, it is not clear whether guard cell 

Phosphoenolpyruvate Carboxylase (PEPC) activity at night contributes to the stomatal 

behaviour in CAM species by providing malate as one of the major solutes driving the opening 

process (Santelia and Lawson 2016; Males and Griffiths 2017). Finally, the analysis of 

transcriptomic data from Agave showed that ABA biosynthesis and signaling components are 

enriched in the expression cluster that shows peak expression at 0 and 3 hours before dawn 

(Abraham et al. 2016). This suggested a potential role for ABA in being synthesised and 

perceived at the precise time that CAM plants enter Phase III stomatal closure. However, the 

direct effect of ABA on the inverted timing of CAM stomatal behaviour remains elusive 

(Holtum and Winter 1982; Chu et al. 1990; Bastide et al. 1993; Dai et al. 1994; Taybi et al. 

1995; Taybi and Cushman 1999). 

In terms of the evolution from C3 ancestral species, it is hypothesised that key CAM genes are 

already present in C3 system, but the regulatory components are rewired to result in the specific 

temporal characteristic of CAM pathway (Ming et al. 2015). The analysis of the pineapple 

(Ananas comosus) genome showed that CAM has evolved from re-wiring of existing C3 

components through regulatory neofunctionalisation of pre-existing genes, rather than by 

coding neofunctionalisation  (Ming et al. 2015). Whole-genome duplication and single-gene 

duplication are common features in plant genome evolution. After duplication events, some 

duplicated genes may be lost through fractionation. Alternatively, the duplicated genes that are 

retained within the genome can either partition the original gene function (i.e. 

subfunctionalisation) or develop novel functions (neofunctionalisation). The two types of 

neofunctionalization are regulatory neofunctionalisation and coding functionalisation. 
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Regulatory neofunctionalisation is a result of expression divergence which allows the protein 

encoded from the duplicated gene to function in a different temporal or spatial environment as 

compared to the protein encoded from the original gene. On the contrary, the coding 

neofunctionalisation results in a novel protein function due to the gain-of-function mutation in 

the coding region of the duplicated gene (Hughes et al. 2014). 

Key CAM genes are present in C3 species, but do not function in the primary CO2 fixation 

pathway like in CAM. For instance, whilst β-CA is crucial for catalysing the formation of 

HCO3- for primary CO2 fixation in CAM, the roles of β-CA in C3 range across photosynthetic 

and non-photosynthetic tissues (Aubry et al. 2011). The β-CA  systems have been implicated 

in the CO2 -sensing pathway in Arabidopsis (Hu et al. 2010), in supplying CO2 to carboxylation 

site in tobacco (Price et al. 1994), and in lipid biosynthesis in cotton seed (Hoang et al. 1999; 

Hoang and Chapman 2002) and legume nodules (Flemetakis et al. 2003; Kavroulakis et al. 

2007). In C3 species, the enzyme PEPC functions in providing carbon skeletons for Krebs 

cycle and ammonium assimilation pathway (Miyao and Fukayama 2003; Masumoto et al. 

2010), maintaining malate homeostasis, and regulating stomatal conductance (Aubry et al. 

2011). Notably, the transcript abundance of PEPC genes increase in response to drought and 

salinity stress in Arabidopsis and wheat (González et al. 2003; Sánchez et al. 2006). In C3, the 

PEPC is not the primary CO2 fixation enzyme although there have been reports of PEPC 

catalysing the fixation of respired CO2 in rice (Imaizumi et al. 1997). Similarly, a PEPCkinase 

knockout experiment in Arabidopsis implied that the enzyme functions in regulating the Krebs 

cycle and photorespiration, as opposed to the main regulator of the primary carboxylation 

pathway, as in CAM. In these examples, it could be that β-CA activity is prompted by the 

supply and demand for HCO3
- when PEPC is activated. 

To increase the probability of the rewiring of the gene network, duplication events followed by 

changes in the protein sequence and regulatory motifs would provide evidence for the 

formation of novel regulatory relationships, which then dictate the distinct diel expression 

profiles of CAM system. These genome rearrangements have been identified in multiple CAM 

species (Yang et al. 2017; Heyduk et al. 2019a). The presence of multiple paralogues of key 

CAM genes may have facilitated the neofunctionalisation of the newly duplicated genes. For 

instance, there are 5 paralogous PEPC genes in Kalanchoe fedtschenkoi genome with a single 

copy being highly expressed specifically at night (Yang et al. 2017). However, the evidence of 

the changes of the regulatory motif in the promoter region of this duplicated PEPC gene is still 

lacking. In a different CAM model species, pineapple, there has been a search for regulatory 
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motifs in promoter regions of key CAM genes which include β-CA, PEPC, PEPCkinase, MDH, 

PEPCK and PPDK (Ming et al. 2015). This study in pineapple searched for 5 known circadian 

clock-related motif sequences: morning element, evening element, CCA1-binding site, G-box 

element and TCP15-binding motif. They identified the presence of at least 1 of these 5 motifs 

for all of these genes of interest, with the exception of PPDK. However, direct evidence for 

specific Transcription Factors (TF) and the conditions under which TF binding occurs, have 

yet to be verified. 

In this thesis, the author set out to address the first category of the open questions for CAM: 

how are enzymes and their related pathways regulated to become active/inactive at the right 

time of the day-night cycle? Our methodology relies on systems biology approaches, including 

computational modelling and the handling of large scale transcriptomic datasets. We address 

how newly available large-scale data can be aligned with various computational techniques 

including systems models developed for CAM to make more rapid progress in addressing the 

fundamental physiological questions. By identifying key molecular targets associated with 

regulatory hubs controlling key elements of the CAM system, such an approach could be used 

to inform the experimental genetic manipulation approaches needed to define these responses 

empirically. In order to develop these approaches, the focus of this thesis is firstly on the 

mesophyll control of biochemistry which is highly coordinated across the CAM Phases. The 

effect of physical or genetic perturbations on the pattern of CAM Phases through mesophyll 

biochemistry were explored with Ordinary Differential Equations. Subsequently, the author 

expanded the scope of the modelling into the Gene Regulatory Network level to investigate the 

potential roles of candidate transcriptional regulators of key CAM genes. 
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Large scale approaches (Section 1): An overview 

A recent review covered the advancement in CAM modelling and the newly available ‘-omics’ 

data with the venue for expansion/development (Chomthong and Griffiths 2020). A bottom-up 

approach builds on existing mechanistic models (Owen and Griffiths, 2013; Hartzell et al. 

2018) and metabolic network models (Cheung et al. 2014; Shameer et al. 2018). Such models 

posit a null state, in which the only a minimal circadian regulation is imposed on selective 

model components. At this stage, the experiments reporting manipulated gene expression and 

associated physiological outputs are fruitful resources for developing an improved versions of 

the existing CAM mesophyll metabolic models (Boxall et al. 2017; Boxall et al. 2019; Dever 

et al. 2015). The advantage of this bottom-up approach is that it does not require prior 

knowledge about an entire regulatory network. In contrast, the top-down approaches such as 

the construction of gene regulatory network and protein interaction network require genome-

wide input data (Emmert-Streib et al. 2014). The challenge of the top-down approach is to 

connect the complete information back to the classical mechanistic understanding of the CAM 

system and distinguish between causation and correlation.  

Ultimately the top-down and bottom-up approaches converge in allowing identification of a 

specific gene knockdown/knockout targets which could be introduced into tractable 

transformation systems, such as Kalanchoe (Hartwell et al. 2016; Liu et al. 2019). The 

refinement of pre-existing mesophyll metabolic models would allow for an in silico 

quantification of the effect that a combination of candidate control points have on CAM 

physiological output. In addition, multiple versions of model developed specifically for 

different CAM condition may capture the transition from C3 into CAM behaviour which could 

suggest multiple possible routes for evolutionary, developmental or stress-induced transition 

from C3 into CAM. The responses to the genetic perturbation can be used to validate the 

models and potentially be informative for a future CAM biodesign attempt (Lim et al. 2019). 
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Large scale approaches (Section 2) : Modelling approaches with a 

Systems Dynamic Model and Ordinary Differential Equations 

CAM mesophyll metabolism integrates complex traits coupled via feedback effects, and 

control of gene expression. The diel pattern of CAM mesophyll metabolism relies on circadian 

controls which set the diel phases of carboxylation processes while metabolites provide another 

layer of refinement (Borland et al. 2016). Circadian regulation of the activation of key 

enzymes, including carboxylases PEPC and Rubisco, has been shown to play an important role 

in governing the temporal separation of CAM photosynthetic activity (Carter et al. 1991; 

Hartwell et al. 1996; Hartwell et al. 1999; Griffiths et al. 2002; Maxwell et al. 2002; Dodd et 

al. 2002; Davies and Griffiths 2012). The most prominent integration point between circadian 

control and metabolite control is at PEPC which is phosphorylated by PPCK at night leading 

to the reduced sensitivity to malate allosteric inhibition, whilst the PPCK abundance itself is 

under transcriptional control from circadian clock outputs (Carter et al. 1991; Hartwell et al. 

1999). In addition, PPCK gene expression can be modified, with increased malate 

accumulation exerting negative feedback on PPCK gene expression, possibly as a secondary 

effect via the circadian clock (Borland et al. 1999; Nimmo 2000). Thus, modelling techniques 

that allow for the interaction of various components in the system have been proved useful for 

CAM.   

System Dynamics modelling was a common tool in modelling continuous nonlinear systems 

with interlocking feedback interactions. The approach was firstly developed in 1961 for 

complex problems in economics and world population (Olson 2003). The System Dynamics 

modelling was developed for CAM in 2013 by Owen and Griffiths (Owen and Griffiths 

2013).The model for CAM imposed regulation at flow junctions which include stomatal 

conductance, mesophyll conductance, and malic acid transport across vacuole while these 

junctions were responding to feedback control from stomatal aperture, malate-inhibition of 

PEPC and enzyme kinetics (Owen and Griffiths 2013).  

Ordinary Differential Equations (ODEs) are equations in which the derivatives are taken with 

respect to one independent variable. The term ‘Ordinary’ distinguishes the approach from 

Partial Differential Equations (PDEs), where the derivatives are taken with respect to multiple 

variables. The ODE system is a more mathematically rigorous form of writing the system 

dynamics model while keeping feedback interactions embedded in the system of equations. In 
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the case of CAM modelling, the single variable where all other state variables were taken 

derivative with respect to would be the ‘time’ variable.  

The System Dynamics model and Ordinary Differential Equations have been developed to be 

parameterised by experimental data. Thus, the emergence of genetic and physiological 

manipulation experiments can be integrated into these modelling tools to investigate the effect 

of perturbation on the system responses through comparing measured and predicted changes 

in expression of the canonical CAM pathway.   

 

Large scale approaches (Section 3): The nature of the timeseries 

transcriptome data and its potential for further use 

The study that acted as a springboard for subsequent detailed analysis of CAM in Kalanchoe 

spp. was the genome sequencing and transcriptome sequencing project done by Yang et al in 

2017 (Yang et al. 2017). This study set-off by sequencing the 256 Mb genome (diploid 2n = 

34 chromosomes) of Kalanchoe fedtschenkoi for the first time. After the genome assembly, the 

30,964 protein-coding genes were predicted and annotated. This was the first eudicot CAM 

lineage to be sequenced at that time. After the gene annotation has been done, this study by 

Yang identified two distinct whole genome duplication events in the K. fedtschenkoi based on 

the analysis of the synthenic patterns. The authors identified multiple key CAM genes to have 

undergone a recent genome duplication events, including PEPC, MDH, ALMT, NAD-ME, and 

NADP-ME families. This is in agreement with the view that gene duplication and functional 

diversification through temporal gene expression reprogramming could be a major source of 

the evolution of CAM in the Kalanchoe fedtschenkoi. However, this is different from the 

scenario in pineapple genome whereby the key CAM genes did not go through duplication. 

Instead, the pineapple CAM genes are the same ancestral copies that are present in non-CAM 

grass species but are more highly expressed in CAM tissue compared to non-photosynthetic 

tissues (Yang et al. 2017; Wai and VanBuren, 2018). 

The transcriptome obtained through this same project by Yang et al were used for gene co-

expression analysis, cluster analysis, and inferring the convergent evolution of key genes. The 

gene co-expression modules were firstly constructed from the timeseries 24-hr transcriptome 

data with the sampling frequency of every 2 hours. The total of 25 gene co-expression modules 

were obtained from the weighted correlated network. Among these 25 modules, there was one 
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module of 782 genes associated with the nighttime sample collection and one module of 1911 

genes associated with the daytime sample collection. Notably, the genes encoding for β-

Carbonic anhydrase (gene ID of Kaladp0018s0289), PEPC2 (gene ID of Kaladp0048s0578), 

PPCK (gene ID of Kaladp0037s0517), MDH (gene ID of Kaladp0022s0111) and ALMT6 

(gene ID of Kaladp0062s0038) were clustered into the nighttime module whereas the PPDK-

RP (gene ID of Kaladp0010s0106) was clustered into the daytime module (Yang et al. 2017). 

In addition to the gene co-expression module analysis, Yang et al also performed cluster 

analysis. The key difference between the co-expression module and cluster analysis is that the 

co-expression module was based on the Weighted correlation network analysis (WGCNA) 

whereas the cluster analysis was done by performing polynomial regression on each gene 

expression function prior to choosing the number of clusters by minimizing the within group 

sum of square (Yang et al. 2017). The clustering analysis returns 11 clusters with a zinc-finger 

protein CONSTANS-like gene as a central hub for a cluster which  

contain PEPC1 (Kaladp0095s0055) and PPCK2 (Kaladp0604s0001), and evening-element 

binding REVEILLE transcription factors as hubs in cluster of NADP-ME genes 

(Kaladp0092s0166) (Yang et al., 2017). 

The study by Yang et al also attempted to identify the convergent evolution of CAM genes 

through the convergent diel expression profiles and the convergent in protein sequence. 

Initially, the convergent diel expression profiles were created by comparing the timeseries gene 

expression profiles of Kalanchoe fedtschenkoi (eudicot CAM), Ananas comosus (pineapple, 

monocot CAM) and Arabidopsis thaliana (eudicot C3). The authors use three conditions to 

define the convergent diel expression profiles between these two CAM species. The first 

condition was the expression profiles of K. fedtschenkoi being positively correlated with 

pineapple (r > 0.8) but not highly correlated with A. thaliana (r < 0.5). The second condition 

was the expression profile within the K. fedtschenkoi itself must have significant difference in 

expression level between midday-vs-midnight or dawn-vs-dusk. The final condition was the 

shift in ‘timecourse’ between K. fedtschenkoi and pineapple were less than 3 hours but the shift 

between K. fedtschenkoi and A. thaliana were more than 6 hours. This approach identified 54 

genes with convergent diel expression profiles between K. fedtschenkoi and pineapple as 

opposed to the profiles of C3. These 54 genes include important genes with well-known 

functions such as phosphoenolpyruvate carboxylase kinase 1 (PPCK1), phototropin 2 (PHOT2) 

and Heat shock protein 70 (HSP70). In a parallel analysis, the convergence of protein sequence 

was studied through the construction of phylogenetic trees based on protein sequence of 13 
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plant species (8 C3 species, 2 C4 species, and 3 CAM species)3. Convergent changes in protein 

sequence were identified between K. fedtschenkoi and P. equestris for PEPC2 (gene ID of 

Kaladp0048s0578) and ELONGATED HYPOCOTYL5 (HY5, gene ID of Kaladp0060s0460) 

genes. The HY5 is a bZIP family transcription factor which was previously reported to entrain 

the circadian clock in C3 species through the blue light signaling pathway, but the equivalent 

role in CAM is yet to be confirmed (Hsu and Harmer 2014). 

The evidence of convergence did not span homogeneously across all pathways. Although there 

are evidence of convergence in the carboxylation pathway, the analysis of the decarboxylation 

pathway did not detect any convergent in the diel gene expression pattern nor the convergence 

in protein sequence for decarboxylation genes of K. fedtschenkoi (Yang et al. 2017). Based on 

this line of evidence alone, the authors suggested that CAM evolution may have not involved 

the major changes in the decarboxylation genes. On a related note, there was no evidence of 

the convergence in the diel gene expression patterns of circadian genes between K. fedtschenkoi 

and pineapple despite HY5 being a circadian gene which showed the convergence in protein 

sequence between CAM species (Yang et al. 2017). One possible explanation is that there 

could be unknown circadian genes which are shared between K. fedtschenkoi and pineapple 

but whose orthologues are not part of the circadian network in the A. thaliana. Alternatively, it 

opens up a rather interesting question on the comparative evolution of eudicot CAM versus 

monocot CAM. What is the possibility of similar genes from the same functional pathways, be 

that the decarboxylation pathway or others, are expressed at the different time of the day and 

are controlled by different regulators but can still result in the fully functional CAM systems? 

What would be the most favourable evolutionary trajectories throughout the 60 independent 

origins of CAM? 

 

Footnote 

3 -The thirteen plant species include eight C3 species, two C4 species, and three CAM species 

C3 = {Amborella trichopoda, Arabidopsis thaliana, Brachypodium distachyon, Mimulus 

guttatus, Musa acuminata, Oryza sativa, Solanum lycopersicum, Vitis vinifera}  

C4 = {Setaria italica, Sorghum bicolor} 

CAM = {Ananas comosus, Kalanchoë fedtschenkoi, Phalaenopsis equestris} 
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Large scale approaches (Section 4): Gene regulatory network 

inference  

Gene Regulatory Networks (GRNs) encompass highly complex interactions of transcriptional 

regulators and their respective target genes. The availability of the microarray and/or 

transcriptome data has opened up the way for the construction of Gene Regulatory Networks 

(GRNs) by the inference methods in various biological systems. The term inference indicates 

the nature of the resultant GRNs which are based on the interactions of genes calculated 

through the model structures rather than the direct evidence of transcriptional regulator binding 

to the promoter regions of the genes of interest. The GRN inference has been widely used in 

animal system around year 2000 and subsequently being adopted by the plant community 

(Emmert-Streib et al. 2014). The application in plants have brought insight into the questions 

of abiotic-responses such as nitrogen-signaling in Arabiodopsis (Varala et al. 2018). 

Nonetheless, the application of GRN inference approaches had not been extended into CAM 

research. The availability of the timeseries transcriptome data from K. fedtschenkoi in 2017 has 

brought our attention to the application of GRN inference to address the GRN of CAM species. 

The co-expression network analysis suggested the number of potential transcriptional 

regulators of CAM to be as many as 1509 candidate genes from Agave americana (Yin et al. 

2018). With this large number of potential regulators in CAM system, this is beyond the 

capacity of a small number of equations. Hence, the GRN inference approach has become a 

useful tool for addressing CAM questions. 

The GENIE3 algorithm was the state-of-the-art gene regulatory network inference algorithm 

with the best performance in the DREAM4 challenge (Huynh-Thu et al. 2010; Mercatelli et al. 

2020). The improved version of this algorithm, dynamical GENIE3 (dynGENIE3), was 

developed specifically to handle timeseries datasets (Huynh-Thu and Geurts 2018). The 

dynGENIE3 algorithm was validated extensively through the artificial data on DREAM4 

challenge platform as well as biological benchmarks from three systems (Saccharomyces 

cerevisiae, Drosophila melanogaster and Escherichia coli) (Huynh-Thu and Geurts 2018). The 

dynGENIE3 algorithm uses the Ordinary Differential Equation (ODE) to model the expression 

level of any gene j to be dependent on the rate of gene expression minus mRNA degradation. 

Then, the transcription rate was assumed to be a potentially non-linear function fj of the 

expression levels of any genes p (possibly including the gene j itself). In both GENIE3 and 

dynGENIE3an ensemble of regression trees was constructed to return the function fj , which 
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are the outputs that contain the information of gene regulatory relationships. The regression 

trees split the input samples (i.e. timeseries gene expression data) with binary tests based on 

one input variable, trying to reduce as much as possible the variance of the output variable in 

the resulting subsets of samples. Subsequently,  the Variable Important Measure (VIM) is 

computed from the reduction in variance at each branch of the trees and ranked in descending 

order to provide the Regulatory Link Ranking for each individual target gene. This Regulatory 

Link Ranking provides what would be of interest to experimental biologists, i.e. the ranking 

scores which hint the priority of the most likely candidate when a choice must be made to select 

which regulatory relationships would be knockout/knockdown before others. The large scale 

computational step was done in a non-bias manner and contain the score of all the possible 

combinations of regulatory relationship within the genome, that is (the total number of genes) 

x (the total number of genes - 1). With the genome size of K. fedtschenkoi, the total number of 

possible combinations of regulatory relationship within the genome would be 958,738,332 

interactions which are impossible to be calculated by hands 

 

Large scale approaches (Section 5): Nuclei isolation and ATAC-

sequencing 

Despite predictive power of the Gene Regulatory Network (GRN) approach, it relies heavily 

on transcriptome data. The developers of the dynGENIE3 algorithm acknowledged that 

complexity of biological network could limit the predictive power of computational model 

(Huynh-Thu and Geurts 2018). To complement the GRN predictions from computational 

methods, experimental data that capture the chromatin accessibility state will be required. This 

type of data can be obtained from early approaches such as DNaseI-seq, MNase-seq, FAIRE-

seq , and ChIP-seq. Alternatively, the Assay for Transposase-Accessible Chromatin with high-

throughput Sequencing (ATAC-seq) is the state of the art method with the fastest protocol yet 

requires the smallest number of pure nuclei compared to other protocols previously mentioned 

(Tsompana and Michael J Buck 2014). The ATAC-seq relies on the highly active transposase 

enzyme (Tn5) to insert the sequencing primers preferentially into the physically accessible 

regions of chromatin strands. Following with the next-generation sequencing, the sequencing 

reads can be aligned back to the genome to indicate the open regions across the genome. 
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The first step in the ATAC-seq protocol is to purify nuclei from the tissue samples. There are 

two methods for nuclei isolation: INTACT (Isolation of Nuclei TAgged in specific Cell Types) 

and sucrose-gradient sedimentation. The INTACT method requires the generation of 

transgenic plants containing biotinylated nuclei which can be extracted through affinity 

purification using the streptavidin-coated magnetic beads. The sucrose-gradient sedimentation 

method is a non-transgenic approach which relies on the gravity-based separation of nuclei 

from organelles and cellular debris according to the different density along the vertical axis of 

the sucrose-gradient centrifugation. In theory, the nuclei obtained from the INTACT method 

would be less contaminated than the nuclei obtained from the sucrose-gradient sedimentation 

method. However, the success of the INTACT depends on the feasibility of the transgenic 

protocol. For species with limitations in transgenic approach, the sucrose-gradient 

sedimentation method is sufficient for the ATAC-seq protocol which requires 50,000 nuclei 

for the subsequent transposase reaction. Due to the chloroplast and mitochondrial 

contamination, it is estimated that the number of sequencing reads per library mapped to nuclei 

is 50% and > 90% for sucrose-gradient sedimentation and INTACT method, respectively. To 

increase the number of sequencing reads being mapped to the nuclei, the number of reads per 

library can be increased at the sequencing step. 

For CAM species, there is currently no protocol for generating the biotinylated-nuclei 

transgenic lines. The available option is to modify the transgenic protocol developed for the 

RNA inference method (Dever et al. 2015). However, this thesis explores the sucrose-gradient 

sedimentation method in combination with the spectral flow-cytometer in order to purify CAM 

nuclei for subsequent sequencing protocol (Lu et al. 2017; Bajic et al. 2018). Once nuclei 

isolation for CAM species is successful, the next step would be to aim for ATAC-seq. The 

sequencing reads would indicate the open chromatin regions. Given sufficient sequencing 

depth, the transcription factor footprinting could also be recovered. These pieces of information 

would complement the predictions from Gene Regulatory Network inference and verify the 

roles of candidate transcriptional regulators and the condition at which the promoter regions of 

the target genes are accessible. It is to be expected that the combination of Gene Regulatory 

Network and chromatin accessibility will advance understanding of the gene regulatory 

landscape of CAM in the near future. 
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General aims and hypotheses 

This thesis aims to explore the question of regulatory control of CAM from the systems biology 

approach. The ultimate goal within and beyond this thesis is to identify the key regulators for 

CAM to function in a highly synchronised manner between multiple functional modules. It is 

apparent that there is temporal separation of key CAM genes at the level of enzymatic function. 

Since these temporal shifts are seen in enzymatic content and activation status as well as gene 

expression patterns, it suggests the complexity of the system is intertwined with transcriptional 

regulators, post-translational regulators and possibly epigenetics and small RNAs. With the 

author’s appreciation for rigorous mathematical approaches, the second and third chapters (2 

and 3) of the thesis are allocated to computational methods. However, although computational 

methods are powerful in the sense that they can tackle the tasks human cannot do by hand in a 

timely manner, these approaches could only provide an initial screening of the potential 

candidates or predictions that are yet to be verified by experimental manipulation. Hence, 

throughout this thesis, the computational tools were never used in isolation from the 

experimental data. The critical view of the author was that computational tools should be used, 

where possible, in conjunction with experimental data; computational outputs can be used to 

guide experimental design, while experimental results should be used to improve or validate 

the model or algorithm. The final results chapter (Chapter 4) of the thesis describes the 

initiation of an ATAC-sequencing project for CAM by purifying nuclei from non-transgenic 

K. fedtschenkoi for further downstream Tn5 transposase reactions and ATAC-seq analysis for 

the future (a promising piece of research beyond the PhD project, funded by the Cambridge 

Philosophical Society). The thesis contains three result chapters with their aims and hypotheses 

outlined in the following section. 
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Chapter 2: Ordinary Differential Equations representing CAM mesophyll metabolism 

The aim of this chapter was to theoretically test whether the core component of existing systems 

dynamic model of CAM were sufficient to capture CAM behaviour, and to test the flexibility 

of parameterisation and  optimisation steps. 

Hypothesis 1: The ODE system is sufficient to capture the broad pattern of the CAM cycle but 

may be limited in terms of parameterisation and optimisation.  

Hypothesis 2: The ODE system is limited by the higher level or more refined regulatory 

controls such as transcriptional controls and any associated metabolic or circadian feedback. 

 

Chapter 3: Gene Regulatory Network from CAM timeseries transcriptome data 

The aim of this chapter was to construct networks of gene regulation from timeseries 

transcriptome data using computational approaches for CAM for the first time. 

Hypothesis 1: A Gene Regulatory Network can be constructed by dynGENIE3 algorithm using 

the available timeseries transcriptome data of K. fedtschenkoi, that is, the amount of data is 

suitable for the algorithm and the size of the computer cluster which could limit the 

computational power and storage memory. 

Hypothesis 2: The output of a Gene Regulatory Network returns candidate Transcription 

Factors of key CAM genes for the following selected functional pathways: carboxylation, 

decarboxylation, circadian control and stomatal regulation. 

Hypothesis 3: A number of these candidate Transcription Factors have transcription factor 

binding sites (TFBS) in the promoter regions of their corresponding target genes. 

Hypothesis 4: There are shared transcription factors between multiple genes from the same 

pathway, and between genes from different pathways. 

Hypothesis 5: Multiple transcription factors target a specific target gene to provide more than 

1-to-1 control. The target genes expected to adopt this pattern include, but are not limited to, 

PEPC kinase (PPCK) and PPDK-RP. 
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Chapter 4: Nuclei isolation with sucrose-gradient and fluorescence-based spectral flow 

cytometer 

The aim of this methodological chapter was to design and define the protocol for nuclei 

isolation for a CAM species, in preparation for ATAC sequencing. 

Hypothesis 1: The combination of sucrose-gradient isolation and fluorescence-based spectral 

flow cytometer would yield purify nuclei of greater than 10% of the total number of particles 

in the nuclei extract.  

Hypothesis 2: The combination of sucrose-gradient isolation and fluorescence-based spectral 

flow cytometer would facilitate the separation of chloroplasts out of the nuclei extract. 

Hypothesis 3: The combination of sucrose-gradient isolation and fluorescence-based spectral 

flow cytometer would facilitate the separation of mitochondria out of the nuclei extracts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Additional background information of CAM is provided in Appendix B, which reproduces a 

peer-reviewed publication I authored. 

Chomthong M, Griffiths H. 2020. Model approaches to advance crassulacean acid 

metabolism system integration. The Plant Journal 101: 951–963. 
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Introduction: 

Crassulacean acid metabolism (CAM) is a specialised form of photosynthesis documented in 

6-7% of angiosperms with a strict temporal separation between the initial carboxylation 

enzyme, phosphoenolpyruvate carboxylase (PEPC), and the secondary carboxylation enzyme, 

Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco), which function during the dark 

and light period, respectively (Smith and Winter 1996). Whilst the nocturnal carbon dioxide 

(CO2) fixation leading to vacuolar malic acid storage has been the most notable feature of 

CAM, dating back to leaf acidity observations in Roman times, with other specialised features 

of CAM also documented in terms of tissue succulence, nocturnal stomatal opening, root 

hydraulic responses to drought stress and the four Phase gas-exchange pattern (Osmond 1978; 

Lüttge 2004; Borland et al. 2009). 

The combination of CAM metabolism and hydraulic characteristics have resulted in an 

improved water use efficiency (WUE) to be within the range of 6 – 30 × 10–3 mol CO2/mol 

H2O, whereas the WUE of C3 and C4 are in the range of 0.6 – 1.3 × 10–3 and 1.7–2.4 × 10–3 

mol CO2/mol H2O respectively (Black 1973; Lüttge 2004). This improved WUE has put CAM 

species of interest for deploying in marginal lands as an alternative form of biofuel (Borland et 

al. 2009; Owen et al. 2016). To this end, field-scale modelling has been developed to predict 

CAM productivity in response to environmental fluctuations (Hartzell et al. 2020).  

In parallel to the global-scale productivity modelling, progress on CAM metabolic modelling 

has been made continuously. There are a number of modelling approaches addressing temporal 

orchestration and metabolite partitioning in CAM, which can be grouped into three categories. 

Firstly, flux balance analysis has captured the complete metabolic network under 

stoichiometric constraints and optimisation of the objective (Orth et al. 2010; Shameer et al. 

2018; Töpfer et al. 2020). Secondly, a category includes mechanistic models which incorporate 

simplified mathematical representations of the CAM circadian rhythm (Blasius et al. 1998; 

Bartlett et al. 2014; Hartzell et al. 2018, 2020). Third, a systems dynamic representation of 

minimal CAM component biochemical and physiological pathways has allowed the fine-tuning 

of key parameters (Owen and Griffiths 2013). This latter approach has allowed the relative 

contribution to limitations such as stomatal sensitivity, carboxylation processes and vacuolar 

storage to predict the impact of succulence on gas exchange profiles (Owen and Griffiths, 

2013). 
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In this study, the systems dynamic biochemical model of Owen and Griffiths (2013) was re-

formulated into a mathematical rigorous form using ordinary differential equation (ODE) 

approaches. The ODE model was then used in simulating the expression of the CAM pathway 

in response to two studies representing contrasting experimental modes of manipulation:  the 

imposition of atmospheric CO2 transients (von Caemmerer and Griffiths 2009) and the 

knockdown expression of PEPC (Boxall et al. 2020). The ODE model, derived from the 

systems dynamic model (Owen and Griffiths, 2013),  reduces the focus onto five key metabolic 

processes, which were shown to be suitable for manipulating CAM behaviour and verifying 

minimal CAM inputs. Having established a minimal model to capture outline behaviour, 

additional components allowing the molecular fine tuning of metabolism could be added to 

refine the model structure (Chomthong and Griffiths 2020). We hypothesised that the classical 

textbook description of the CAM pathway, with one key isozyme for each reaction, would be 

sufficient to capture the Phases of CAM under both standard conditions and following various 

manipulations. 

Overall, the simulated results captured the CAM gas-exchange profile when compared with the 

raw data from these contrasting experimental manipulations. The updated system of ordinary 

differential equations (now developed as a more accessible format in Matlab) showed 

sensitivity to biochemical parameters and anatomical parameters, while addressing the 

significance of the interplay between two carboxylation enzymes: Rubisco and PEPC. 

Therefore, this improved version of the systems dynamic biochemical model has become a 

useful tool for the increasing numbers of studies perturbing CAM behaviour and provides an 

important in silico system for the CAM community to test environmental and molecular 

transformations (Yang et al. 2015; Hartwell et al. 2016). 
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Figure 1 Crassulacean acid metabolism (CAM) pathway in Kalanchoe                                

During the night period, primary carboxylation reaction is mediated by PEPC while the final 

product in the form of malate is stored in the vacuole. In the subsequent light period, malate 

undergoes decarboxylation reaction and release CO2 for secondary carboxylation by Rubisco 

to enter the Calvin cycle. Yellow components and blue components represent key enzymes and 

transporters respectively. CA Carbonic anhydrase, PEPC Phosphoenolpyruvate carboxylase, 

PPCK Phosphoenolpyruvate carboxylase kinase, PP2A Protein phosphatase 2A, MDH Malate 

dehydrogenase, ME Malic enzyme, PPDK Pyruvate phosphate dikinase, tDT Tonoplast 

dicarboxylate transporter, ALMT Aluminium-activated malate transporter and Pi Inorganic 

phosphate. 
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Material and methods: 

1. Key experimental references 

Two publications that framed the scope of our simulation were the CO2 perturbation study on 

Kalanchoe daigremontiana by von Caemmerer and Griffiths in 2009, and the genetic 

perturbation study on Kalanchoe laxiflora by Boxall et al. in 2020. The first study set out to 

explore the stomatal responsiveness by manipulation of the environment within a leaf chamber, 

whilst the second study set out to determine the significance of phosphoenolpyruvate 

carboxylase (PEPC) using antisense RNA interference methods. The key findings from these 

two publications highlighted CAM plasticity under different types of manipulation 

(physiological and molecular) whilst framed by species-specific gas-exchange patterns. 

 

2. Ordinary differential equation (ODE) modelling structure 

A system of ordinary differential equations (ODE) was developed from the original systems 

dynamic model of Owen and Griffiths (2013) so as to capture the mesophyll photosynthetic 

process of CAM plants mechanistically, based around empirical modules framing stomatal 

behaviour and key enzymatic processes which are used to entrain the timing of the four CAM 

four-Phases (Osmond, 1978). The parameter descriptions are summarised in Table 1 (Matlab 

scripts are provided in Appendix A). 

The system of five state variables includes  

Equation 1:   

dy1/dt =  gs*(Cca-Conversion*y1) 

    -gm*(y1*Conversion-y2/Chlorenchyma Volume/Henry’s law constant 

 

Equation 2: 

dy2/dt = gm*(y1*Conversion-y2/ Chlorenchyma Volume/ Henry’s law constant)  

         +Decarboxylation activation term*{Vdmax * y3/ (Kd+y3)} +Vm  

         - Rubisco activation term*(Vcmax * y2/ Chlorenchyma Volume) / (Kc      

         + y2/ Chlorenchyma Volume) – PEPC reaction; 
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Equation 3: 

dy3/dt = PEPC reaction  

         - Decarboxylation activation term*{Vdmax * y3/ (Kd+y3)} 

         -Malic acid influx rate*(1- y4/Xvmax)*y3   

         +Malic acid efflux rate*(y4/Xvmax) 

Where  

PEPC reaction = PEPC activation term*(Vpmax * y2/ Chlorenchyma Volume) /  

                 {Kp*(1+y3/Ki) + y2/ Chlorenchyma Volume} 

 

Equation 4: 

dy4/dt = Malic acid influx rate*(1-y4/Xvmax)*y3 

             -Malic acid efflux rate*(y4/Xvmax) 

 

Equation 5: 

dy5/dt = Rubisco activation term*Vcmax*y2/Chlorenchyma Volume  

         / (Kc+y2/Chlorenchyma Volume)-Vm 

Where  

y1 represents intercellular CO2, y2 represents intracellular CO2  

y3 represents cytosolic malate pool, y4 represents vacuolar malate pool 

y5 represents chloroplastic carbohydrate pool 

 

3. Parameter setting 

Within the five differential equations, there are the total number of 19 parameters. The 

maximum likelihood estimation method has a maximum limit of 5 learning parameters based 

on this model structure, hence the priority was given to the manipulation of key biochemical 

parameters and malate transport rates, with the remaining parameters were fixed according to 

published values (for details, see Table 1). Maximum likelihood estimation was performed 

against the representative data published by Boxall et al 2020. Parameters Vmax and K 

represent the maximum rate of enzyme activity and effective Km constant for its substrate, 

respectively; these were written in a general form of density-dependent feedback of Michaelis-

Menten kinetics (Owen and Griffiths 2013). 
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Table 1  Parameter descriptions and references 

 

Parameter K. daigremontiana 

with constant 

atmospheric CO2  

K. laxiflora wild-type 

Biochemical parameters   

Maximum rate of PEPC activity (Vpmax) 

Unit: µmol m-2 s-1 

 

80 

Minimised RMSE 

5.0 

Maximum likelihood 

estimation 

Michaelis constant for PEPC (Kp)  

Unit: µM 

 

12.0 

(Nott and Osmond 

1982) 

12.0 

(Nott and Osmond, 

1982) 

Maximum rate of Rubisco activity (Vcmax)  

Unit: µmol m-2 s-1 

25 

Minimised RMSE 

10.82 

Maximum likelihood 

estimation 

 

Michaelis constant for Rubisco (Kc) 

Unit: µM 

10.8  

(Griffiths et al., 2008) 

10.8  

(Griffiths et al., 2008) 

 

Michaelis-Menten constant for malic acid-

induced inhibition of activated PEPC (Kia)  

Unit: µM 

 

8000  

(Anne M Borland and 

Griffiths 1997b) 

8000  

(Borland and Griffiths, 

1997) 

Maximum rate of malic acid 

decarboxylation (Vdmax) 

Unit: µmol m-2 s-1 

9  

(Borland and Griffiths, 

1997, Maxwell et al., 

1999, Griffiths et al., 

2002) 

 

5.5 

Maximum likelihood 

estimation 

Michaelis-Menten constant for Malic 

enzyme (Kd) 

Unit: µM 

Kd = 11 

(Artus and Edwards 

1985)  

Kd = 11 

(Artus and Edwards 

1985)  
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Mitochondrial respiration rate (Vm)  

Unit: µmol m-2 s-1 

 

0.6  

(Owen and Griffiths 

2013) 

0.6  

(Owen and Griffiths 

2013) 

Malic acid efflux rate  

Unit: µmol m-2 s-1 

 

40 

(Owen and Griffiths 

2013) 

33.19 

Maximum likelihood 

estimation 

 

Malic acid influx rate  

Unit: µmol m-2 s-1 

2  

(Owen and Griffiths 

2013) 

7.34 

Maximum likelihood 

estimation 

Anatomical parameters   

Mesophyll Conductance (gm)  

Unit: mol m-2 s-1 bar-1 

0.058  

(Griffiths et al., 2008) 

0.058  

(Griffiths et al., 2008) 

 

Maximum vacuolar capacity (Xvmax)  

Unit: µmol of malate m-2 

150000  

(Borland and Griffiths 

1997) 

150000  

(Borland and Griffiths 

1997) 

 

Succulence (S)  

Unit: kg m-2 

2.8  

(Griffiths et al., 2008) 

(Maxwell et al. 1997) 

2.8  

(Griffiths et al., 2008) 

(Maxwell et al. 1997) 

 

Stomatal aperture parameter (SA)* Time-series function 

(Von Caemmerer and 

Griffiths 2009) 

 

Time-series function 

(Boxall et al 2020) 

Physical parameters   

Henry’s law constant (mol L-1 bar-1) 0.03445 0.03445 

Conversion for converting CO2 (µmol m-2) 

to CO2 (µbar) 

 

0.025  

(Owen and Griffiths 

2013) 

0.025 

(Owen and Griffiths 

2013) 
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Ratio of conductance to water vapour : 

conductance to CO2 

 

1.6 1.6 

Atmospheric CO2 (Cca) 

Unit: µbar 

400 

(Von Caemmerer and 

Griffiths 2009) 

 

400 

(Boxall et al 2020) 

*Stomatal aperture parameter (SA) was parameterised with experimental data from each 

experimental set-up using MATLAB curve-fitting tool with exponential functions for Phase 

I,II,III, and IV separately (Supplementary data). 

 

4. Establishing settings for Initial conditions 

The ODE system could be simulated across multiple 24-hr cycles to reflect the repeated diel 

behaviour of the biological system. However, simulation outputs at the corresponding time-of-

day from different diel cycles can be different despite the same setting of time-dependent 

parameters. This is due to the different values of the state-variables at the start of each diel 

cycle influencing the simulation outputs of each diel cycle.  

These simulation results have emphasised the significance of the state-variables at the start of 

every diel cycle as well as the choice of initial conditions at the start of the simulation. This 

has allowed for 2 model development approaches. The first approach is to rely on the available 

reference source of the initial conditions, whereas the second approach is to search for 

alternative sets of initial conditions that can return repeated diel simulation outputs. The 

primary settings for the initial condition were referenced to the system dynamic model outputs 

(Owen 2013). 

Under the first approach, biochemical parameters can be estimated from the maximum 

likelihood method. This is advantageous because it allows model users to account for 

uncertainty in biochemical measurement and variability between species, varieties and growing 

condition. However, the values of the state-variables at the end of the simulation cycle (t = 24 

hr) were not the same as the values of the state-variables at the beginning of the simulation        

(t = 0 hr) which results in 2 consecutive diel simulations returning different outputs at the 

corresponding time-of-day. Therefore, this approach would restrict the use of the ODE model 

to only 1 diel cycle. This approach was adopted for the Kalanchoe daigremontiana simulation. 
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Under the second approach, an alternative set of initial conditions is selected from the values 

of state-variables after the simulation has entered the repeated diel cycle behaviour (> 100 diel 

simulation cycles). This methodology would not be subjected to the uncertainty of the initial 

condition with reference to the system dynamic model, but it is under the influence of the 

choice of parameters for the first cycle which also determine whether the maximum likelihood 

estimation would converge (Mantel and Myers 1971). This second approach was adopted for 

Kalanchoe laxiflora simulation.  

 

5. Assessing the model performance  

Normalised root mean square error (RMSE) was calculated between simulations of CO2 

assimilation and actual experimental data (Von Caemmerer and Griffiths, 2009; Boxall et al. 

2020) according to the following formula. 

RMSE = √(∑(𝑤𝑖

𝑛

𝑖=1

− 𝑦𝑖)2)/𝑛 

Where 

yi is the observed value for the ith observation,  

wi is the predicted value, 

n is the total number of observation 
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Results: 

1. Simulation of Kalanchoe daigremontiana under an unperturbed condition 

The original gas exchange data from the von Caemmerer and Griffiths (2009) study were 

kindly supplied by Prof S von Caemmerer, and were initially plotted as a control dataset 

without the additional manipulations in CO2 concentration that had been applied (Figure 2). 

The simulation results captured the classical CO2 influx peak during Phase I (night time) of the 

succulent Kalanchoe daigremontiana (Figure 2). The initial dip at the start of the dark period 

represents the adjustment to the pre-set parameters, described in Section 4 above. Towards the 

end of the night-time, the second CO2 influx peak was produced from the simulation as a result 

of PEPC activity with the increase in stomatal conductance between 11 hr and 12 hr, a feature 

that had been taken into the parameterisation step to represent expected pattern of CAM Phase 

II. In this scenario, Phase II occurred at night coinciding with the increased of stomatal 

conductance of the experimental data. The marked decline of the assimilation rate at the 

transition into Phase III was due to the stomatal closure, absence of PEPC activity and the low 

Rubisco activity level. Subsequently, during 12 hr to 18 hr, the ODE simulated CO2 influx was 

at its minimum within the range of -0.5 and 0.5 µmol m-2 s-1.  

The daytime reverse flux of CO2 from intercellular spaces into the atmosphere during Phase III 

was seen in both the raw data and captured by the model (Figure 2). Because the 

decarboxylation rate was higher than internal CO2 re-uptake by Rubisco, the accumulated 

intercellular CO2 was higher than atmospheric CO2 hence constituting a reverse flux though 

incompletely-closed stomata. However, as Rubisco became fully activated at the middle of the 

day (t = 18 hr), the secondary CO2 fixation was still mostly supplied by the internal CO2 behind 

the closed stomata. 

After the plant entered Phase IV at t = 20 hr (Figure 2), coinciding with the stomatal re-opening 

behaviour, intercellular CO2 (Ci) level was below atmospheric level allowing CO2 to flow 

inwards for the direct fixation by Rubisco. This atmospheric CO2 assimilation during Phase IV 

can be observed in some CAM species under well-watered condition. It is worth emphasising 

that the Rubisco activation state was set to reached its maximum activity at the middle of the 

day (t = 18 hr) and subsequently declined towards the end of the light period. Nonetheless, the 

CO2 assimilation was still sustained by the declining Rubisco activity provided that the activity 

was sufficiently high to keep Ci lower than atmospheric CO2 concentration. 
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Figure 2: Performance of the ODE simulation gas-exchange profiles compared to 

experimental data from Kalanchoe daigremontiana. The black line represents ODE 

modelling outputs with optimised parameter setting (supplementary data); data points (blue 

crosses) represent experimental data across 1 cycle of 12-hr light/12-hr dark. Experimental data 

were obtained from Von Caemmerer and Griffiths 2009. The apparent Phase II occurred at 

night as a result of an increased stomatal conductance (obtained from experimental data of  Von 

Caemmerer and Griffiths 2009) at the corresponding time-point. 

 

Simulation of Kalanchoe daigremontiana under CO2 transient perturbation conditions 

Subsequently, the short-term manipulations in atmospheric CO2 concentration was introduced 

to test the model simulation on Kalanchoe daigremontiana data, to mimic the experimental 

study by Von Caemmerer and Griffiths (2009) which compared stomatal responsiveness of 

Kalanchoe species by using atmospheric CO2 transients (400 µbar to 95 µbar) over 30 minutes 

to compare the response and recovery of gas exchange in terms of assimilation and stomatal 

conductance. The transients were applied twice during Phase I, once during Phase III and once 

during Phase IV of the CAM cycle.  
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Figure 3: Performance of the ODE simulation gas-exchange profiles compared to 

experimental data from Kalanchoe daigremontiana under CO2 perturbation conditions. 

The black line represents ODE modelling outputs with optimised parameter settings 

(supplementary data); data points (blue crosses) represent experimental gas exchange data 

across 1 cycle of 12-hr light/12-hr dark. The atmospheric CO2 was set at 400 µbar with four 

30-minute transient drop to 95 µbar. Experimental data were obtained from Von Caemmerer 

and Griffiths 2009. Data were collected at every minute during the 30-minute CO2 transient 

perturbation and the following 30 minutes. 

 

The CO2-transient simulation during each of the four phases captured the general profile of 

background gas exchange data for K. daigremontiana. However, an over-sensitive response 

was seen in the 30-minute periods corresponding to the low CO2 transients, where the model 

predicted both a more extreme reduction in assimilation rate, and the overshoot of the recovery 

at the first and last transient periods, before re-establishing values close to the measured data 

(Figure 3). In general, the model captures stomatal sensitivity and impact on CO2 assimilation 
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rate more consistently for daytime gas exchange (Phase III and IV), and suggests that CO2 

uptake would be more responsive to a transient reduction in ambient CO2 concentration during 

the dark. This response may be explained by size of the simulation time-step as well as the 

time-lag for leaf chamber equilibrium adjustment, which would not have captured the predicted 

magnitude of transient responses (Weiss et al. 2009). 

 

3. Simulation of Kalanchoe laxiflora with a genetically perturbation condition 

The model was then applied to an additional data set in which PEPC activity had been reduced 

by genetic modification in K. laxiflora. In figure 4, a 24-hour cycle of the original diel CO2 

assimilation data from Boxall et al., (2020) is repeated to provide 5 successive replicate day-

night cycles. Values for wild-type (Figure 4A) and PEPC transgenics (Figure 4B) are shown 

and compared (Figure 4C), with the model simulations shown as continuous lines. In figure 

4A, the major CO2 assimilation processes of wild-type occurred during the night time which 

agreed to the simulation outputs. The simulation thus successfully captured the biochemistry 

of malate inhibitory effect on PEPC enzyme and the associated Phase I carboxylation rate in 

wild-type (Figure 4). The simulation over-estimated gas exchange activity by day for the wild-

type plants, and suggested that net CO2 uptake might continue into Phases III and IV, with a 

positive offset of 0.75 µmol m-2 s-1 as compared to the experimental data showing CO2 release 

by day (Figure 4A). The non-zero assimilation rate during the daytime of the simulation was a 

result of Rubisco activity and the intercellular CO2 (Ci) value being lower than atmospheric 

CO2 as a carried on effect from end of the night period.  

Simulation of transgenic RNAi lines with no detectable PEPC activity (rPPC1-B) showed a 

lower nocturnal CO2 assimilation rate than wildtype throughout Phase I, agreeing with the 

experimental data (Boxall et al., 2020). These simulated gas-exchange pattern of the rPPC1-B 

knockdown line reflected the major assimilation phase during the day-time. The lack of PEPC 

activity reported in experiment and implemented in the model was sufficient to reduce the 

assimilation peak characteristic seen in wild-type down to near-zero night-time assimilation 

under the simulation of the rPPC1-B line. The stomatal opening behaviour during the day-time 

had allowed direct atmospheric CO2 fixation by Rubisco. Nonetheless, the optimised parameter 

setting to capture initial assimilation during the day of 7 µmol m-2 s-1, had required Rubisco to 

have higher activity than wild-type at the beginning of the day. 
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The alteration in carboxylation partitioning between PEPC and Rubisco in the PEPC 

knockdown line (rPPC1-B) as compared to the wild-type can influence stomatal behaviour 

through intercellular CO2 (Ci) signalling. This effect was incorporated into the model through 

stomatal conductance parameterisation. The diurnal opening of stomata for the PEPC 

knockdown line (rPPC1-B) was associated with the Rubisco demand, hence producing direct 

CO2 assimilation during the light period. The Rubisco activation status was boosted to the 

maximum daytime value at the 30-minute transition from dark into light period as a metabolic 

response to the night-time carbon ‘famine’ state as documented for CAM species  (Maxwell et 

al. 1999; Griffiths et al. 2002). Nonetheless, the discrepancies between the simulation and 

experimental data at the second half of the light period could be explained by more rapid 

Rubisco inactivation in vivo due to the effect of ADP/ATP ratio and redox potential on Rubisco 

inhibition, the saturation of electron transport rate, or malate transport rate. All of these 

suggestions would allow for finer Rubisco parameter tuning, if experimental data for these 

responses were available. 
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Figure 4: Performance of the ODE simulation gas-exchange profiles compared to experimental 

data from Kalanchoe laxiflora.  (A) Wild-type line, (B) PEPC1 knockdown line (rPPC1-B). The black 

line represents ODE modelling outputs with optimised parameter setting (supplementary data); data 

points (blue crosses) represent experimental data extended into 5 cycles of 12-hr light/12-hr dark. 

Experimental data were obtained from Boxall et al., 2020. (C) Overlay plot of the Wild-type line (black) 

and PEPC1 knockdown line rPPC1-B (red). Solid lines represent the ODE simulation results. Plus 

markers (+) represent the experimental data from Boxall et al 2020.  
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A notable feature of the rPPC1-B simulation was the discrepancies in the maximum 

assimilation rate and the slope of the diurnal phase between the simulation and the 

representative rPPC1-B plant (Figure 5). The simulation set reached the maximum at t = 2.303 

hr with assimilation rate of 6.892 µmol m-2 s-1 whereas the representative plant reached the 

maximum earlier at t = 0.570 hr with assimilation rate of 7.096 µmol m-2 s-1. In terms of the 

slope of the diurnal phase, the magnitude of the slope of the simulation set was 0.621 µmol m-

2 s-1hr -1 whereas that of the representative plant was 1.367 µmol m-2 s-1 hr -1.  

To attempt to explain these discrepancies from the biological perspective, the stomatal 

conductance patterns were revisited. The corresponding stomatal conductance of the 

representative rPPC1-B plant reached the maximum at t = 0.303 hr which was closer to the 

maximum assimilation timing of the representative plants but preceded the maximum 

assimilation timing of both the representative plant and the simulation set (Figure 5). This led 

to further explanation that the ‘delay’ in the simulation set may be explained by any parameters 

that influence the substomatal cavity CO2 level in such a way that CO2 remains low for a longer 

period of time in the simulation scenario than in the representative plant. The anatomical 

parameters and parameters related to the diurnal CO2 supply and drawdown were 

systematically adjusted to investigate the effect they may have on the slope of the diurnal phase 

CO2 assimilation (Figure 6). Within the scope of the parameter optimisation in this study, the 

results suggested that the discrepancies between the simulation set and the representative plant 

cannot be resolved by parameterising the parameters in this ODE system. Further exploration 

on how sensitive the model is to each parameter (i.e. the parameter sensitivity analysis) is to 

be presented in the subsequent section. 
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Figure 5 Diurnal slope of the simulation and the representative rPPC1-B plant and the associated 

stomatal conductance patterns. A) PEPC1 knockdown line (rPPC1-B). Black line represents ODE 

modelling outputs with optimised parameter setting (supplementary data); data points (blue crosses) 

represent experimental data extended into 5 cycles of 12-hr light/12-hr dark. Dashed lines (black and 

blue) represent the slopes of ODE output and experimental data, respectively. B) Stomatal conductance 

(gs) from the representative rPPC1-B plant. This experimental gs pattern was used in the ODE setting. 
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Figure 6 The effect of anatomical and Rubisco parameters on the simulation of PEPC1 

knockdown line (rPPC1-B). Black solid line represents ODE modelling outputs with 

optimised parameter setting (supplementary data); data points (blue crosses) represent 

experimental data; black dashed line represents the ODE modelling outputs with the adjusted 

parameter setting specified in each plot. The default parameter setting of each parameter is as 

following; gm = 0.053 mol m-2 s-1 bar-1, Kc = 10.8 µM, and Vcmax = 15 µmol m-2 s-1. 
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Figure 7 The effect of the decarboxylation and malate efflux parameters on the simulation 

of PEPC1 knockdown line (rPPC1-B). Black solid line represents ODE modelling outputs 

with optimised parameter setting (supplementary data); blue marks represent experimental 

data; the black dashed line represents the ODE modelling outputs with the adjusted parameter 

setting specified in each plot. The default parameter setting of each parameter is as following; 

Vdmax = 7.27 µmol m-2 s-1, and Malic acid efflux rate= 40 µmol m-2 s-1. Panels on the right 

column are the zoom-in plots of the panels on the left column. 
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An additional explanation for these discrepancies also relates to the nature of the primary data 

provided by Dr Hartwell and colleagues:  the gas exchange profile of the rPPC1-B mutant 

(Figure 4B), showed a severely truncated degree of daytime CO2 uptake, more consistent with 

the mid-drought period when measured with a whole plant gas exchange cuvette in the original 

data, (see Boxall et al. 2020, Figure 4D). Although the LICOR 6400 gas exchange 

measurements were made on attached leaves (Boxall et al. 2020), it seems likely that the 

reduced daytime CO2 assimilation seen in the transgenic line is indicative of drought stress. If 

one compares the gas exchange profiles for data from the droughted experiment (compare day 

1-6 with day 12- 18), there is a dramatic reduction in the extent of daytime gas exchange for 

rPPC1-B mutant as drought intensifies (Boxall et al. 2020, Figure 4D).  

 

 

Parameter sensitivity 

The sensitivity of the predicted CO2 assimilation to ODE model parameters is illustrated in 

Figure 8. All four Phases of CAM show sensitivity to biochemical parameters (Carboxylation 

rate, Decarboxylation rate, Mitochondrial respiration rate and Malate transport rate) as well as 

anatomical parameters (Succulence, Vacuolar capacity and Mesophyll conductance). 

Importantly, the gas-exchange simulation outputs are sensitive to carboxylation enzyme 

activities. This emphasise the future application of this ODE model structure which allows for 

an empirical stomatal conductance parameterisation, yet the output is still responsive to other 

key parameters especially the PEPC and Rubisco activities.  
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Figure 8: Parameter sensitivity of the ODE simulation gas-exchange profiles. The 

horizontal bars represent the changes in gas-exchange characteristics when the base-line 

simulation was substituted with 10-times original parameter setting of nine parameters labelled 

on the Y-axis as compared to the original gas-exchange characteristic indicated with the 

vertical base-lines of 5.77 µmol m-2s-1, 4.98 µmol m-2s-1, 3.50 hour and 3.46 µmol m-2s-1 for 

Phase I, Phase II, Phase III and Phase IV respectively. The base line simulation was Kalanchoe 

daigremontiana under a constant atmospheric CO2 condition. The sensitivity parameters 

include: Maximum rate of PEPC activity (Vpmax), Maximum rate of Rubisco activity 

(Vcmax), Maximum rate of decarboxylation activity (Vdmax), Mitochondrial respiration rate 

(Vm), Malate influx rate, Malate efflux rate, Succulence, Vacuolar capacity (Xvmax) and 

Mesophyll conductance (gm). The stomatal conductance (gs) were set according to the 

measured value from each of the experiments. 
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The parameter sensitivity showed both expected and unexpected trends. The expected trends 

include the positive responses of night time assimilation (Phase I and II) to the increased PEPC 

activity, the positive responses of the daytime assimilation (Phase III and IV) to the increased 

Rubisco activity, and the positive response of Phase III to the increased decarboxylation 

activity. However, the increased PEPC activity also shortened the length of Phase III and 

reduced the Phase IV maximum assimilation. A possible explanation is that higher PEPC 

activity led to a greater inward CO2 flux thus leaving CO2 available for Rubisco at the transition 

of Phase II to III, thus delaying the onset of Phase III. On the contrary, the negative influence 

of PEPC activity on Phase IV assimilation can only be explained through the adjusted balance 

between intercellular CO2, intracellular CO2, and malate pool through equation 2 and 3 

(Methods section 2). A similar explanation also applies to the effect of increased Rubisco 

activity on the decreased maximum assimilation during Phase II. In contrast, the negative 

response of Phase IV to the increased decarboxylation rate can be explained by the prolonged 

Phase III with backward diffusion which extended into and shortened Phase IV. Figure 8 

indicated the lack of Phase IV with zero assimilation rate. This suggested that the 

decarboxylation rate was significantly higher than the Rubisco fixation rate which led to the 

CO2 loss through open stomata. 

Secondly, the effect of mitochondrial respiration (Vm) on assimilation rate can be interpreted 

in relation to the saturation level of the carboxylation enzymes. If the carboxylation enzymes 

are operating near their saturation level, increasing Vm would prevent more CO2 from entering 

the leaves, thus resulting in the decreased in assimilation rate from the atmosphere. However, 

the respired CO2 provided internal resource for the carbon fixation process, thus resulting in 

the higher total CO2 available during the prolonged Phase III. 

Thirdly, malate influx, succulence and vacuolar capacity shared the same trends (Figure 8). 

Increased values of these parameters allowed more malate to be stored during the night and 

sustained the prolonged Phase III. Because  malate continues to be released during Phase IV, 

the build-up in CO2 prevented the inward flow of atmospheric CO2 thus led to the apparent 

lower CO2 assimilation from the atmosphere. However, the greater amount of storage does not 

ensure greater maximum assimilation rate during Phase I because it is reflected by the area 

under the graph rather than the maximum point. On the other hand, the responses to malate 

efflux indicate that the original parameter setting was at its maximum limit. Thus, increasing 

the malate efflux further had negligible effects on the simulation outputs. 
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Finally, increased mesophyll conductance is expected to facilitate the CO2 flow. This was the 

case for Phase I, II and III but not Phase IV. When mesophyll conductance was increased, the 

maximum assimilation rate during Phase IV reached lower values 1hr later than the original 

simulation. This could be explained by the fact that mesophyll conductance also facilitates the 

backward diffusion during Phase III. Therefore, the system took longer time to restore CO2 

back to the inward flow direction and Phase IV started after Rubisco has passed its maximum 

activity rate, resulting in the lower Phase IV maximum assimilation even though the mesophyll 

conductance was higher. 

The effect of the relative strength between the two carboxylation enzymes on the gas-exchange 

simulation is summarised in Figure 9. The simulation with varying carboxylation strength 

(Black solid lines) were compared to baseline simulation (Blue dashed line) showing that 

simulation outputs are responsive to the carboxylation activity in such a way that nocturnal 

assimilation rate and diurnal assimilation rate are positively dependent on the PEPC activity 

and Rubisco activity, respectively. Firstly, the increase in PEPC strength by 50% at each step 

in the horizontal direction affects the simulation output in terms of increasing the night-time 

assimilation rate until the simulation reached t = 12hr which is the transition point from PEPC 

to Rubisco activities. Secondly, the decrease in Rubisco strength by 50% at each step in the 

vertical direction affects the simulation output in terms of decreasing the day-time assimilation 

rate during Phase IV when stomata are re-opened. Finally, the diagonal line from top left to 

bottom right reflects the upregulation of CAM and down regulation of Rubisco activities which 

results in the sequentially increase of Phase I fixation and decrease of Phase IV. An important 

feature emerging from the ODE simulation is that the Rubisco activities during day-time can 

be the cause of CO2 loss from the backward diffusion process if the accumulated Ci during 

Phase III was higher than atmospheric CO2 (Figure 8: subplot with Vcmax = 12.5). Hence, the 

simulation suggested that the down-regulation of Rubisco throughout the diurnal cycle is not 

beneficial for the overall photosynthetic yield, instead the maximum enzyme activities with 

strict temporal control are required for an efficient operating system.  
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Figure 9: Gas-exchange pattern simulation along the gradient of Rubisco and PEPC strength. The enzyme 

strength is expressed in terms of Maximum catalytic activities which are under biological control at the level of 

gene expression level, protein abundance and/or post-translational modification controls. The X-axis represents 

the gradient of PEPC strength while the Y-Axis represents the gradient of Rubisco strength. Standard simulation 

of Kalanchoe daigremontiana experiment (Vpmax = 80 and Vcmax = 25) is plotted as reference line in each 

subfigure (Blue dashed line). The simulation results with a different combinations of Rubisco and PEPC strengths 

represented in each subfigure (Black solid line). Stomatal conductance has been set to represent the Kalanchoe 

daigremontiana experimental data, in order to investigate the sensitivity of the simulation to non-stomatal 

parameters. The panel in row 3, column 3 showing the lines aligned completely because they are under the same 

conditions. 
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Discussion: 

The goal of this chapter is to transform the system dynamics model of CAM photosynthesis 

into a more compact and rigorous mathematical format of Ordinary Differential Equation 

(ODE). Another objective of the ODE format was to minimise the number of parameters which 

cannot be derived from existing experimental data. The key findings of this chapter are listed 

below: 

1. Simulation of the ODE captures classical patterns of CAM gas-exchange patterns. 

2. Simulation of the ODE captures CAM responses to internal and external perturbations. 

3. Parameterisation with stomatal conductance data does not fix the model to the stomatal 

behaviours alone. Instead, the models are shown to be responsive to key parameters 

including biochemical parameters (Carboxylation rate, Decarboxylation rate, 

Mitochondrial respiration rate and Malate transport rate) and anatomical parameters 

(Succulence, Vacuolar capacity and Mesophyll conductance).  

This section will discuss in greater detail the properties that are conserved after the systems 

dynamic model was transformed into ODE format, followed by the significance and 

implications of parameterisation and compartmentalisation seen in the current version of the 

model. 

Regarding the model transformation, it is worth emphasising that the apparent concentrations 

of any chemical entity at a specific time including that of enzymes are the results of the rate of 

production minus the rate of degradation at any point in time. This is the fundamental 

mathematical concept of the Ordinary Differential Equation (ODE) model. The time-dependent 

nature and the ability of the simulation output at tn-1 to influence the simulation output at tn are 

also retained after systems dynamic model was written in the ODE format. In addition, Owen’s 

systems dynamic model (Owen and Griffiths, 2013) has previously identified the timing of 

enzyme activation to be critical for the CAM carboxylation patterns. This property of the 

system was also transferred into the ODE model.  

In terms of the model parameterisation, firstly, it is crucial to incorporate stomatal conductance 

data into the model to capture contrasting CAM 4 Phases of species with contrasting degree of 

succulence (Neales 1975; Griffiths et al. 2008; von Caemmerer and Griffiths 2009; Boxall et 

al. 2020). The model construction that included the 4-Phase stomatal conductance pattern 

differed from the method that assigned a fixed oscillatory term such as the first half of the 
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sinusoidal wave form to the stomatal conductance variable. The rigid oscillatory stomatal 

behaviour with a fixed oscillatory term may be suitable for primary model derivation but has 

limited application for capturing the plastic behaviour of CAM (Dodd et al. 2002). By having 

stomatal conductance as one of the ‘carefully’ parameterised inputs , raised a concern to the 

author at the time of model construction that it may  lead to overfitting or making the model 

results being too ‘rigid’ (i.e. only responsive to the stomatal conductance but not responsive to 

other variables). However, it has been successfully shown here that the dynamic system that 

has been parameterised with experimental stomatal conductance is still responsive to 

biochemical parameters (Figure 8 and 9). These responsive behaviours indicated that the 

stomatal conductance (gs) parameterisation did not result in over-fitting by allocating too much 

weight onto stomatal conductance (gs) parameter alone. In other words, the ODE model 

structure allows for an empirically fine-tuning parameterisation but the output is yet still 

responsive to expected key biochemical parameters which included but not limited to the PEPC 

activity and Rubisco activity. This property is crucial but often overlooked when discussing 

the performance and the success of a model construction. Henceforth, it is both favourable and 

advisable to any field biologist to collect the stomatal conductance (gs) data when performing 

gas-exchange measurements to feed into further model development, as well as to parameterise 

the model system to be specific to their specific set of biological samples. 

Secondly, the relevance of Rubisco cannot be neglected even when working under the context 

of CAM. In C3 species, it is well documented that Rubisco is activated during the day through 

the inhibitor removal by Rubisco activase followed by the carbamylation process, while the 

activity of the Rubisco activase is in turned under the influence of ADP/ATP ratio and redox 

potential (Zhang and Portis 1999; Parry et al. 2008). In K. daigremontiana, the carbamylation 

state increased during the morning and reached its maximum before midday (Phase III) 

preceding the maximum Rubisco activity during Phase IV (Maxwell et al. 1999). A separate 

study in K. daigremontiana also showed that protein level of the enzyme Rubisco activase 

reached maximum at midday (Phase III) (Griffiths et al. 2002). These lines of evidence support 

the idea that the regulation of Rubisco activity by Rubisco activase and carbamylation process 

is also operating in CAM species. In addition, the conserved sequence and structural prediction 

of Rubisco across plant phylogeny resulted in expected Rubisco sensitivity to the chemical 

microenvironment even in CAM species (Griffiths et al. 2002). It was speculated that the 

Rubisco regulation maybe modified by the environmental conditions that limit nocturnal PEPC 

activity in such a way that the Rubisco becomes active earlier in the diurnal phase following a 
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night when the CO2 fixation by PEPC was restricted (Griffiths et al. 2002). From our ODE 

model, the simulation of transgenic RNAi lines with no detectable PEPC activity (rPPC1-B) 

was reflected in the requirement for higher Rubisco activity at the onset of light period, rather 

than the temporal shift in Rubisco activation function, to sustain the diurnal CO2 assimilation 

pattern.  The furthest that the ODE model can inform without stretching the evidence is that 

the activity of Rubisco at the onset of light period influences the CO2 assimilation pattern 

throughout the diurnal phases. The ODE model and the existing empirical evidence pointed 

towards the same conclusion that the precise activation of Rubisco is critical for CAM. Hence, 

we encourage the plant sciences community to consider Rubisco function when studying or 

thinking about CAM. 

Thirdly, although the parametrisation step has allowed for a more precise simulation outputs 

than fixing the systems of equations with an oscillatory term, there are limits to the maximum 

number of parameters that can be optimised simultaneously. For the parameters that can be 

measured, this problem can be mitigated by performing direct measurements on the species 

and experimental condition of interest (Wedding et al. 1976; von Caemmerer et al. 1994). 

However, there are still gaps in the knowledge regarding the identity and activity of malate 

transporters. The current understanding about malate transport in CAM points towards two 

putative transporters, tonoplast dicarboxylate transporter (tDT) and aluminium activated 

malate transporter (ALMT), however, the in vivo activities in CAM have not been estimated 

(Hafke et al. 2003; Emmerlich et al. 2003; Holtum et al. 2005; Meyer et al. 2011; Frei et al. 

2018). This provides another venue of parameter fine-tuning once the transporter identities and 

their responsiveness to physiological pH have been revealed. 

In terms of the model compartmentalisation, chemical reactions were grouped into modules. 

The term ‘module’ in this chapter refers to the fundamental unit of the model defined by the 

broad biological function (i.e. stomata, primary carboxylation, malate storage, 

decarboxylation, secondary carboxylation), thus each module incorporates more than 1 

chemical reaction (Owen and Griffiths 2013). It is to be expected that different modules should 

be synchronized or at the very least interact in some ways to prevent problems from futile 

cycles (Borland et al. 2016). A good example of the prevention of futile cycle in CAM is at the 

temporal separation of nocturnal primary carboxylation and diurnal decarboxylation. However, 

when zooming into the detail of the carboxylation and decarboxylation processes, the complex 

pathway involve trafficking of organic compounds of varying length through phospholipid 

bilayer membranes. In other words, the futile cycling prevention is the collective effort of 
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various components including transporter proteins, enzymes, enzyme activators, enzyme 

inhibitors, enzyme degradation pathways, and many signaling molecules. Although various 

components are required to function in a synchronised manner, it is a trade-off whether to 

incorporate more components and their associated error rates into any model or to analyse a 

more compact model more thoroughly.  

Finally, this compact five state-variable ordinary differential equation system relies on the 

minimal number of key CAM enzymes with the representation of one gene isoform for each 

reaction. This is the proof of the concept that the current understanding of CAM pathway can 

be represented by this textbook version even when modelling the perturbation studies. Notably, 

this does not contradict to the Kalanchoe transcriptome analysis which reported multiple 

isoforms of each enzymes, since the expression level of only one gene tended to dominate the 

system (Yang et al. 2017). Nevertheless, more model components can be expanded into the 

carbohydrate metabolic pool which are tightly linked to the regeneration of 

phosphoenolpyruvate (Borland et al. 2016). The carbohydrate metabolism module in this ODE 

model is not expanded into its minute detail because the objective of the model construction 

here was to minimise the number of parameters which cannot be constrained  from existing 

experimental data. Here, the carbohydrate metabolism was reduced into an assumption that the 

PEP regeneration is not a limiting factor for the following. Despite being sufficient in this 

study, this aspect could be the missing component that resulted in the simulation overestimating 

the night-time CO2 flux in the rPPC1-B line (Boxall et al. 2020). 
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Conclusions: 

This study has provided a foundation for applying the systems dynamic modelling to capture 

experimental perturbation studies on the model CAM species, Kalanchoe. Thus, this leaves an 

open venue for future development of this simulation platform to match with a growing number 

of Kalanchoe genetic perturbation studies. The reconciliation between this compact system of 

differential equations with additional components representing enzymes or transporters of 

interest emerging from metabolic network flux balance analysis would help accelerate the 

process of building a more complete picture of CAM metabolic function. The chapter that 

follows moves on to consider the possibility of transcriptional regulations on CAM function. 
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Gene regulatory network inference 

identifies key transcriptional 

regulators of CAM in Kalanchoe 
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Abstract: 

The completed 24-hour timeseries transcriptomic study of Kalanchoe fedtschenkoi provided 

an opportunity to investigate the molecular building blocks of Crassulacean Acid Metabolism 

(CAM) and suggest evidence for molecular convergence from an evolutionary genomics 

perspective. This dataset offers a rich resource for large-scale computational studies including, 

but not limited to, Gene Regulatory Network (GRN) inferences. There is a longstanding 

hypothesis in the research field of Crassulacean Acid Metabolism (CAM) that the nocturnal 

primary carbon fixation together with the orchestration of the associated carbohydrate 

metabolic pathways have been achieved through the rewiring of the regulatory components 

onto the orthologues of C3 genes, rather than neofunctionalization to create CAM genes. To 

investigate this matter further in CAM, we developed an algorithmic pipeline for the 

combination of Gene Regulatory Network (GRN) inferences and Transcription Factor Binding 

Site (TFBS) searches. The combination of these two algorithms was the most rigorous 

computational approach for identifying the transcriptional regulatory network between 

transcription factor genes (source nodes) and the CAM-functional genes (target nodes) given 

this type of transcriptomic data. In this study, for the first time for a CAM system, we identified 

potential regulatory candidates of gene expression in an unbiased manner when processing the 

whole transcriptome with the size of 30,964 protein-coding genes without a priori assumptions. 

The dynGENIE3 algorithm has been developed by Huynh-Thu and colleagues to tackle 

complex gene regulatory network with options of performing supervised or unsupervised 

machine learning (Huynh-Thu and Geurts 2018). The output from the DynGENIE3 algorithm 

yielded a ranked list of transcriptional regulatory candidates for 118 key CAM genes including 

phosphoenolpyruvate carboxylase kinase (ppck), and the pyrophosphate dikinase regulatory 

protein gene (ppdk-rp). Both of these genes are known to demonstrate an inverted timing 

relative to their orthologues in C3 species, and to have a prominent role in the circadian control 

of carboxylation and regeneration of intermediate carbon compound, respectively. 

Subsequently, the dynGENIE3 outputs were passed onto Transcription Factor Binding Site 

(TFBS) analysis, using the well-established computational tool FIMO (Grant et al. 2011). 

Statistically significant relationships between transcriptional regulatory candidates and their 

respective targets were identified from the combination of the two algorithms to provide a 

complete list of transcriptional regulatory candidates for each target gene of interest. This study 

was focussed on four key subnetworks that are orchestrated to govern the function of CAM: 

namely carboxylation, decarboxylation, circadian and stomatal subnetworks. From this 
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analysis we have identified a list of 21 common transcriptional regulatory candidates from 12 

transcription factor families which reach the target genes across all four subnetworks. The 

identities of genes of interest could be specified to the unique gene ID for both the transcription 

factors and their target genes. These 12 transcription factor families were AP2/ERF-ERF, 

BBR-BPC, bHLH, C2C2-Dof, C2C2-GATA, C2H2, GRAS, HB-KNOX, LOB, MADS-

MIKC, RWP-RK, and TCP. The notable CAM genes included,  but were not limited to, genes 

coding for PPCK, PPDK-RP and malate transporters, as well as regulatory components of the 

circadian function (HY5, LUX, ELF3, and ELF4) and stomatal function (OST1, SLAC1, 

PHOT2). In addition to providing the most complete gene regulatory network analysis of CAM, 

this framework is a show-case for the reciprocity between experimental and computational 

techniques in accelerating  the identification of fundamental mechanisms underpinning 

classical biological questions. 
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Introduction: 

Temporal separation between the primary carbon fixation by phosphoenolpyruvate 

carboxylase (PEPC) at night, and the secondary carbon fixation by ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) by day, is the unique feature of Crassulacean acid 

metabolism (CAM). This specialised form of photosynthesis is found in 6-7% of flowering 

plant families and has evolved independently at least 60 times (Silvera et al. 2010; Edwards 2019). 

So far, it has been suggested that this strict temporal activity in CAM was achieved through 

the rewiring of regulatory networks which already exist in the C3 pathway, hence resulting in 

re-scheduling of transcriptional timing of key metabolic genes (Wai et al. 2017; Yin et al. 2018; 

Heyduk et al. 2019; Chen et al. 2020). However, the structure of the rewired network of CAM 

has remained elusive. Given the availability of time-series transcriptome data, it is now possible 

to construct gene regulatory networks using data-driven approaches (Emmert-Streib et al. 

2014; Mochida et al. 2018). 

A systems approach through Gene Regulatory Network (GRN) inference can help in 

deciphering the CAM puzzle. Firstly, phosphoenolpyruvate carboxylase kinase (PPCK, PEPC 

kinase) functions directly in promoting PEPC activity at night and the ppck gene expression 

pattern is shifted from day to night during the CAM induction process. This ppck encodes a 

Ser/Thr kinase enzyme which phosphorylates PEPC and reduces its sensitivity to malate 

inhibition, hence allowing for its primary carboxylation activity at night (Hartwell et al. 1996; 

Hartwell et al. 1999; Nimmo 2003). Although the transcript abundance of ppck gene shows a 

distinct nocturnal accumulation pattern, the transcriptional regulator of ppck is not known to 

date. Therefore, the transcriptional regulatory links on ppck gene are of interest for the CAM 

community, as are the regulatory processes leading to phosphoenolpyruvate (PEP) 

regeneration, controlled by the pyrophosphate dikinase regulatory protein gene (ppdk-rp). 

Secondly, carbohydrate metabolism must be synchronised to the CAM carboxylation process 

to provide sufficient phosphoenolpyruvate as substrates throughout the night (Borland et al. 

2016). Thirdly, the mechanisms that underlie the nocturnal stomatal opening behaviour of 

CAM are still unclear. On one hand, the inverted timing of CAM stomatal behaviour could be 

secondary responses to the internal CO2 concentration- as drawdown at night, or increase 

during decarboxylation processes of CAM which result in up to 1% CO2  within internal air 

spaces (Cockburn et al. 1979). On the other hand, stomata could be controlled directly by 

rewired circadian components. Finally, a circadian network could potentially controls CAM 
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behaviour but is itself responsive to perturbation of carboxylation processes (Borland and 

Griffiths, 1997; Dever et al. 2014; Wai and VanBuren, 2018). Therefore, unlocking the gene 

regulatory network of CAM is of great interest not only in terms of determining the overall 

network structure, but also to shed light on the regulatory links that permit the unique inverse-

timing behaviour inherent to elements of the CAM cycle.  

Clustering analysis of the time-series transcriptome data from CAM model species, Kalanchoe 

fedtschenkoi, provided the foundation for an initial network analysis (Yang et al. 2017). The 

clustering analysis identified 11 temporal clusters and distinguished them from genes without 

a fluctuation in diel expression patterns. Although clustering has advantages for showing the 

temporal grouping of genes, it does not directly reflect the regulatory relationship between 

transcription factors and their targets. Therefore, additional analyses such as gene regulatory 

network inference, hereafter GRN inference, are still required to decipher the transcriptional 

regulatory relationships. The difference between clustering analysis and GRN inference lies in 

the algorithm logic: co-expression clustering groups genes with shared co-expression features 

without directional indication, whereas GRN inference calculates the directional relationship 

score between any gene pair. In this study, we used the time-series gene expression data from 

Kalanchoe fedtschenkoi (Yang et al. 2017) to construct GRN inference networks. The specific 

focus was on the phosphoenolpyruvate carboxylase kinase gene (ppck) which has such a 

prominent role in regulating the nocturnal carboxylase activity of PEPC, as well as the 

pyrophosphate dikinase regulatory protein gene (ppdk-rp), which controls regeneration of the 

PEPC substrate, PEP. Both exhibit a marked diel expression fluctuation profile, but regulatory 

factors were still unknown.  

The use of GRN inference is still a growing branch of computational biology. Various 

algorithms have shown satisfactory performances in the DREAM4/5 comparative challenges, 

although false positives are common to all (Greenfield et al. 2010; Marbach et al. 2012; Huynh-

Thu and Geurts 2018). Therefore, it is important to utilise multiple algorithms to confirm the 

identity of the strong candidate regulators and provide a comprehensive list of previously 

unidentified CAM transcriptional regulators.  Here, we used dynGENIE3, an algorithm based 

on random forest decision tree which has been developed specifically to tackle timeseries 

dataset, to obtain the overall network structure and the regulatory links for genes of interest 

(Huynh-Thu et al. 2010). Ultimately, the regulatory links from dynGENIE3 algorithms are 

passed through FIMO (Find Individual Motif Occurrences tool) to confirm the identity of 

strong potential regulators, whilst discarding false positives (Grant et al. 2011).  
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As a result of GRN inference, firstly we identified members of BES1, bHLH, TCP, AP2/ERF-

ERF, C2H2 and MYB transcription factor families as strong candidate regulators on ppck gene 

(Kaladp0037s0517). Secondly, we identified members of TCP, bHLH, AP2/ERF-ERF, C2H2, 

and C2H2-GATA transcription factor families as strong candidate regulators on ppdk-rp gene 

(Kaladp0010s0106). Thirdly, we identified members of GARP-G2-like, MYB-related and 

AP2/ERF-ERF transcription factor families as strong candidate regulators on HY5 gene 

(Kaladp0060s0460), and members of RWP-RK and AP2/ERF-ERF transcription factor 

families as strong candidate regulators on LUX (Kaladp0033s0047). We also demonstrated 

that 21 transcriptional regulatory candidates from 12 transcription factor families are shared 

between all four subnetworks. Overall, this study has provided a step towards building the 

complete regulatory landscape of a CAM species. The benefit of applying the GRN inference 

approach to the Kalanchoe fedtschenkoi transcriptome is that this species already has 

transformable protocols that would allow direct functional validation through RNA 

interference perturbation studies and would allow the exploration of more specific controls on 

CAM circadian components and stomatal networks (Hartwell et al. 2016). 
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Material and methods: 

Data source: 

The 24-hour timeseries transcriptome data with the sampling rate of every 2 hours were 

collected and published by Yang et al in 2017 and subsequently deposited in the public 

databases NCBI SRA with the BioSample accession codes SAMN07453940 - 

SAMN07453987 (Yang et al., 2017). This specific set of input data for the dynGENIE3 model 

construction of K. fedtschenkoi in this study were obtained directly from the Kalanchoe 

genome project team leader. Gene ID was obtained from the phytozome database version 13 

(Goodstein et al. 2012). 

 

Data pre-processing: 

Timeseries transcriptome data were converted into a list of arrays. Each array represent the 

data collected from an experiment which can be described as a 2 dimensional matrix whereby 

rows are the time points and columns are the genes. Each value in the matrix represents the 

gene expression value for the individual gene at a given time point. Genes that contain 0 gene 

expression value for all time points were removed from the list of arrays. 

 

The dynamic GENIE3: 

The dynamic GENIE3 (dynGENIE3) is a model that infers gene regulatory networks from time 

series expression data. It works by creating a function which models the expression data of a 

gene in the dataset by taking the input from time series expression data of all genes using 

random forest method, and identifying which gene has the highest importance in predicting the 

expression value of a given gene. This algorithm returns the ranking of scores of all candidate 

regulators for each and every target genes across the whole genome. 

Random Forest is a method for creating a regression function based on the principle of decision 

tree, a flowchart structure that has several nodes, each node is a true-or-false test splitting into 

true or false branches. It starts by creating a bootstrap dataset from the learning data by 

randomly selecting expression data of the gene in a different time point, and creating an array 

with identical shape to the learning data. Next, the decision tree is created from the bootstrap 

data. In the tree growing process, random forest allows each node to identify the best split from 
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the set of K genes which are selected randomly at each divide. For each gene, the bootstrapping 

and decision tree creation process are repeated n times. Each decision tree may predict different 

results from the given input, but the final result is the prediction averaged from all the trees. 

Hyperparameters: nTrees = 1000, K = sqrt, Method = RF 

The Random Forest method allows the importance of a variable in predicting the output to be 

measured, which can be used in assigning edge scores for the Gene regulatory network (GRN). 

In the random forest ensemble of a given gene, the reduction of variance caused by each test 

node in a decision tree is computed. In one decision tree, the relevance of a gene (variable) in 

predicting the gene expression value is the sum of all variance reduction of the nodes where 

the gene is used to split. This process is repeated to assign variable importance scores in all 

ensemble trees. The edge score of a gene is then averaged from all the trees (Huynh-Thu and 

Geurts 2018). The edge scores for permutations of every gene pair are ranked. After looking at 

the score distribution, it was  decided to use the threshold of edge score ≥ 1e-4  (unitless). The 

choice of the threshold value is always subjective and reflects how many edges down the rank 

from the most significant score would be of interest within a particular study. 

 

Transcription factor binding site (TFBS) search: 

The promoter regions of all target genes were extracted from the complete genome sequence 

using Linux command (courtesy of Dr Citu and Dr Yadav from National Institute of Plant 

Genome Research, New Delhi, India, supplementary material). These promoter regions were 

defined as upstream/downstream (+/-) across the ori point of each gene. Subsequently, the 

promoter regions were passed into the FIMO (Find Individual Motif Occurrences) to check for 

the presence of corresponding cis-elements of candidate regulators for a particular gene. The 

presence of the cis-elements of candidate regulators within the promoter region of prospective 

target genes with a significant score of p-value ≤ 1e-4  were kept and reported as the highly 

likely candidate transcriptional regulators.   
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Defining subnetworks: 

The entire 30,964 protein-coding genes were annotated from the original transcriptome and 

sequencing study (Yang et al. 2017). In this study, key CAM genes were selected from these 

30,964 genes and grouped into 4 subnetworks according to the key metabolic processes of 

CAM over the 24-hour period. These four subnetworks included: 

A) Carboxylation subnetwork containing 39 target genes (Table 1) 

B) Decarboxylation subnetwork containing 17 target genes (Table 2)  

C) Circadian subnetwork containing 33 target genes (Table 3)  

D) Stomatal subnetwork containing 20 target genes (Table 4)  

Different ways of re-grouping subnetworks would not affect the regulatory ranking score for 

any target gene because the scores were calculated across the entire genome regardless of the 

subnetwork in which they function. The subnetworks were defined to facilitate the data 

handling at a later stage such as  the search for common regulators within the same functional 

unit of CAM. 

Importantly, more subnetworks can be defined later. The gene regulatory network (GRN) 

construction included the entire 30,964 protein-coding genes, thus it can return the maximum 

number of 958,738,332 regulatory pairs. The subnetwork only comes into play when a 

modeller would like to extract parts of the network for further analysis or data visualisation. 

Hence, any other subnetworks are always to be encouraged since there is no need to repeat the 

heavy computing-power step of random forest construction. 

 

  Table 1: Target genes of carboxylation subnetwork 

Transcript ID Gene name 

Kaladp0018s0287.1 β-CA 

Kaladp0018s0289.1 β-CA 

Kaladp0024s0122.1 β-CA 

Kaladp0034s0051.1 β-CA 

Kaladp0081s0140.1 β-CA 

Kaladp0081s0143.1 β-CA 

Kaladp0538s0011.1 β-CA 

Kaladp0037s0517.1 PPCK1 

Kaladp0050s0014.1 PPCK 
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Transcript ID Gene name 

Kaladp0082s0192.1 PPCK 

Kaladp0604s0001.1 PPCK2 

Kaladp0011s0355.1 PEPC 

Kaladp0011s1355.1 PEPC 

Kaladp0048s0578.1 PEPC2 

Kaladp0062s0055.1 PEPC 

Kaladp0095s0055.1 PEPC1 

Kaladp0001s0257.1 MDH 

Kaladp0022s0111.1 MDH 

Kaladp0048s0189.1 MDH 

Kaladp0058s0569.1 MDH 

Kaladp0095s0052.1 MDH 

Kaladp0095s0564.1 MDH 

Kaladp0101s0211.1 MDH 

Kaladp0082s0194.1 MDH 

Kaladp0093s0088.1 MDH 

Kaladp1038s0012.1 MDH 

Kaladp0068s0169.1 MDH 

Kaladp0101s0012.1 MDH 

Kaladp0024s0194.1 ALMT 

Kaladp0048s0850.1 ALMT 

Kaladp0050s0298.1 ALMT 

Kaladp0062s0038.1 ALMT6 

Kaladp0073s0021.1 ALMT6 

Kaladp0007s0011.1 ALMT 

Kaladp0011s0027.1 ALMT 

Kaladp0011s0028.1 ALMT 

Kaladp0087s0091.1 ALMT 

Kaladp0091s0013.1 ALMT 

Kaladp0093s0149.1 ALMT 

  *Carboxylation subnetwork containing 39 target genes 
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  Table 2: Target genes of decarboxylation subnetwork 

Transcript ID Gene name 

Kaladp0042s0251.1 TDT 

Kaladp0010s0106.1 PPDK-RP 

Kaladp0060s0363.1 PPDK-RP 

Kaladp0039s0092.1 PPDK 

Kaladp0076s0229.1 PPDK 

Kaladp0023s0088.1 PEPCK 

Kaladp0040s0194.1 PEPCK 

Kaladp1116s0004.1 PEPCK 

Kaladp0024s0016.1 NADP-ME 

Kaladp0045s0427.1 NADP-ME 

Kaladp0092s0166.1 NADP-ME 

Kaladp0001s0130.1 NAD-ME 

Kaladp0015s0134.1 NAD-ME 

Kaladp0033s0124.1 NAD-ME 

Kaladp0037s0467.1 NAD-ME 

Kaladp0063s0037.1 NAD-ME 

Kaladp0472s0027.1 NAD-ME 

*Decarboxylation subnetwork containing 17 target genes 
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Table 3: Target genes of circadian subnetwork 

Transcript ID Gene name 

Kaladp0011s0927.1 COP1 

Kaladp0071s0308.1 CRY1 

Kaladp0082s0193.1 CRY2 

Kaladp0039s0732.1 ELF3 

Kaladp0036s0214.1 FKF1 

Kaladp0034s0172.1 PHYA 

Kaladp0039s0298.1 PHYB 

Kaladp0496s0018.2 CCA1 

Kaladp0032s0054.1 CHE 

Kaladp0040s0489.1 GI 

Kaladp0033s0047.1 LUX 

Kaladp0057s0097.1 PIF3 

Kaladp0058s0661.1 PRR3 

Kaladp0032s0115.1 PRR5 

Kaladp0101s0041.1 PRR7 

Kaladp0032s0115.1 PRR9 

Kaladp0040s0446.2 TOC1 

Kaladp0809s0098.1 ZTL 

Kaladp0607s0046.1 LNK1 

Kaladp0099s0129.1 LNK2 

Kaladp0574s0015.1 RVE1 

Kaladp0055s0349.1 RVE6 

Kaladp0577s0020.1 RVE8 

Kaladp0016s0180.1 CKB4 

Kaladp0045s0206.1 ELF4 

Kaladp0089s0025.1 FIO1 

Kaladp0060s0460.1 HY5 

Kaladp0076s0198.1 JMJD5 

Kaladp0048s0797.1 LWD1 

Kaladp0056s0075.1 PRMT5 

Kaladp0040s0680.1 SKIP 

Kaladp0071s0383.1 STIPL1 

Kaladp0040s0530.1 TEJ 

  * Circadian subnetwork containing 33 target genes 
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  Table 4: Target genes of stomatal subnetwork 

Transcript ID Gene name 

Kaladp0011s0443.1 ABI1 

Kaladp0048s0509.1 ABI2 

Kaladp0008s0304.1 AHA2 

Kaladp0055s0506.1 AKT1 

Kaladp0062s0038.1 ALMT9 

Kaladp0043s0196.1 BAK1 

Kaladp0062s0090.1 BLUS1 

Kaladp0040s0351.1 CPK23 

Kaladp0042s0341.1 CPK3 

Kaladp0055s0096.1 CPK6 

Kaladp0073s0100.1 HT1 

Kaladp0008s0789.1 KAT1  

Kaladp0840s0007.1 KAT2  

Kaladp0016s0289.1 OST1 

Kaladp0098s0188.1 OST2/AHA1 

Kaladp0071s0248.2 PHOT1 

Kaladp0033s0113.1 PHOT2 

Kaladp0008s0082.1 PYL9 

Kaladp0091s0013.1 QUAC1/ALMT12 

Kaladp0050s0214.1 SLAC1 

  * Stomatal subnetwork containing 20 target genes 
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Results: 

Regulatory relationships inferred from the computational method were derived as directional 

edges with an edge score ≥ 1e-4 from dynGENIE3 method, which was combined with the 

evidence of transcription factor binding sites (TFBS) within the promoter region of the 

target gene. These regulatory relationships were grouped into the 4 biological processes related 

to CAM function, namely carboxylation, decarboxylation, circadian and stomatal function.  

In this result section, the data will be presented in the same consecutive order for each 

subnetwork. Firstly, key genes within each subnetwork were identified from the literature and 

initially presented as a directed graph showing directional edges which were initiated from 

transcriptional factor families and pointed towards particular key target genes (Figure 1). 

Subsequently, the data were presented as diagrams to show multiple target genes that could 

potentially be regulated by the same transcription factor. The final set of figures highlights the 

most detailed information arising from this study which define the exact locations of potential 

transcription factor binding sites within the promoter region of key target genes. 

 

 

 

 

 

 

Figure 1: Example network diagram The source nodes (black) are linked to the target nodes 

(orange) through directional edges (grey arrows). The relationship can be one-to-many (A), 

many-to-one (B), one-to-one (C), or not exist (D). Multiple arrows connecting the same source 

node to the same target node can be seen if the node represents a group of genes (i.e. gene 

family) rather than a single gene with its unique gene ID. 
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Carboxylation subnetwork: 

Carboxylation genes in Kalanchoe fedtschenkoi are comprised of 39 genes from 5 gene 

families, namely β-carbonic anhydrase (β-CA:7 genes), Phosphoenolpyruvate carboxylase 

kinase (PPCK: 4 genes), Phosphoenolpyruvate carboxylase (PEPC:5 genes), Malate 

dehydrogenase (MDH;12 genes), and Tonoplast aluminium-activated transporter (ALMT:11 

genes). Among these carboxylation genes, the Phosphoenolpyruvate carboxylase kinase1 

(ppck1) with the gene ID of Kaladp0037s0517 and Phosphoenolpyruvate carboxylase1 (pepc1) 

with the gene ID of Kaladp0095s0055 have been annotated as the functional members of their 

gene families according to the diel gene expression profiles and the highest mRNA and protein 

abundance compared to those of other gene members within same gene families (Yang et al. 

2017; Abraham et al. 2020). 

Our results were initially presented as directed graph showing directional edges (i.e. arrows) 

which started from the transcriptional factor families and pointed towards these key target 

genes. For the purpose of visualisation, the transcription factors and target genes were grouped 

into their gene families. As a result, multiple arrows could be connecting between the same 

source node (i.e. where the arrow starts) and the target node (i.e. where the arrow ends). The 

source nodes are transcription factor families and the target nodes are target genes from the 

carboxylation pathways and vacuolar malate transporters. 

The carboxylation subnetwork contained 248 directional edges from 150 transcription factor 

source nodes for the  39 carboxylation gene target nodes. Figure 2 shows the relationships 

between transcription factor source nodes (black) and their carboxylation target nodes (blue) 

of the top 100 edges ranked by edge score. These 150 transcription factor nodes belonged to 

33 different transcription factor families from the total number of 69 transcription factor 

families identified in K. fedtschenkoi (Zheng et al. 2016). The data were also analysed to show 

individual transcription factor genes with the highest number of different target genes within 

the carboxylation subnetwork (Figure 2). The maximum number of unique target genes sharing 

the same transcription factor was 4 target genes per 1 transcription factor gene. In this 

subnetwork, there were nine transcription factor genes with this characteristic: 

Kaladp0019s0146 (ERF family), Kaladp0028s0030 (Dof family), Kaladp0037s0181 (ERF 

family), Kaladp0039s0249 (ERF family), Kaladp0042s0372 (HD-ZIP family), 

Kaladp0053s0637 (bHLH family), Kaladp0059s0271 (GRAS family), Kaladp0076s0056 (ERF 

family) and Kaladp0081s0001 (C2H2 family) (Figure 3). 
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Analysing the regulatory relationship on the ppck1 gene (Kaladp0037s0517) revealed 8 

transcription factor binding sites (Figure 3). With the additional information from transcription 

factor binding site (TFBS) predictions, three members of bHLH family and one member of 

BES1 family showed double transcription factor binding site (TFBS) positions, whereas a 

member of TCP, ERF,C2H2 and MYB transcription factor family have one TFBS position in 

the promoter region of the ppck1 gene (p-value ≤ 1e-4) (Figure 4). 

With the focus on the  pepc1 gene, there were also 8 transcription factor genes forming 

regulatory links onto the pepc1 gene (Kaladp0095s0055) (Figure 4). Firstly, two members of 

NAC transcription factor family (Kaladp0067s0128 and Kaladp0093s0119) had triple TFBS 

positions. Secondly, the third member of NAC member (Kaladp0035s0004) formed double 

TFBS positions within the promoter region of the pepc1 gene. Finally, the fourth member of 

NAC family (Kaladp0075s0012), two members of MYB-related family (Kaladp0043s0101 and 

Kaladp0016s0316), a member of MADS-MIKC (Kaladp0016s0148), and a member of ERF 

family (Kaladp0076s0056) each had a single TFBS position within the promoter region of the 

pepc1 gene (p-value ≤ 1e-4) (Figure 5).  
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Figure 2: Carboxylation subnetwork with transcription factors as source nodes  

Ed
ge

 n
u

m
b

er
 1

 t
o

 5
0

 
Ed

ge
 n

u
m

b
er

 5
1 

to
 1

0
0

 



72 
 

Figure 2: Carboxylation subnetwork with transcription factors as source nodes showing 

the top 100 edges from transcription factor source nodes (black) to carboxylation target nodes 

(blue). Transcription factor nodes and carboxylation target nodes were grouped by transcription 

factor families and carboxylation gene families respectively (Edge score ≥ 1e-4 and p-value ≤ 

1e-4). 
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Figure 3: Multiple carboxylation genes sharing the same transcription factor source 

nodes Transcription factors with the maximum number of different target genes within the 

carboxylation subnetwork (4 target genes:1 transcription factor gene) were selected to plot in 

this figure. Black nodes indicate the transcription factor gene ID and family, whereas grey 

nodes indicate the target gene ID and gene family (Edge score ≥ 1e-4 and p-value ≤ 1e-4)
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                              Table Regulatory links on ppck1 gene 

Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0011s0808 BES1 Kaladp0037s0517 PPCK1 258 268 + 5.5625 5.02E-05 

Kaladp0011s0808 BES1 Kaladp0037s0517 PPCK1 257 267 - 3.35938 7.87E-05 

Kaladp0012s0014 bHLH Kaladp0037s0517 PPCK1 259 266 + 14.0593 1.60E-05 

Kaladp0012s0014 bHLH Kaladp0037s0517 PPCK1 259 266 - 14.0593 1.60E-05 

Kaladp0131s0006 TCP Kaladp0037s0517 PPCK1 417 425 - 10.2316 9.19E-05 

Kaladp0007s0017 bHLH Kaladp0037s0517 PPCK1 259 266 + 14.7816 9.78E-06 

Kaladp0007s0017 bHLH Kaladp0037s0517 PPCK1 259 266 - 13.9425 1.96E-05 

Kaladp0008s0733 AP2/ERF-

ERF 

Kaladp0037s0517 PPCK1 1671 1691 - 10.4375 2.07E-05 

Kaladp0092s0233 C2H2 Kaladp0037s0517 PPCK1 1536 1553 + 8.96875 6.88E-05 

Kaladp0059s0339 MYB Kaladp0037s0517 PPCK1 1093 1107 + 13.5625 1.08E-05 

Kaladp0063s0028 bHLH Kaladp0037s0517 PPCK1 260 273 + 13.9688 1.27E-05 

Kaladp0063s0028 bHLH Kaladp0037s0517 PPCK1 252 265 - 12.0156 3.00E-05 

 

bHLHs: 259-266 

MYB: 1093-1107 

BES1: 258-268 

C2H2: 1536-1553 

bHLH: 260-273 

BES1: 267-257 
bHLHs: 266-259 

   TCP: 425-417 

   AP2/ERF-ERF: 1691-1671 

425-417 

bHLH: 265-252 
PPCK1 (Kaladp0037s0517) 

Promoter 
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Figure 4: Transcription factors as regulatory candidates of ppck1 gene Edges with supporting evidence from transcription factor binding site 

(TFBS) prediction within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding 

positions were illustrated in the diagram with their statistical scores listed in the table. The ‘bHLHs’ labels denotes the exact same TFBS position 

of two members of bHLH family (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp downstream 

of the target gene starting position). 
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Table Regulatory links on pepc1 gene 

Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target gene 

function 

start stop strand score p-value 

Kaladp0067s0128 NAC Kaladp0095s0055 PEPC1 1099 1111 + 12.5469 2.96E-05 

Kaladp0067s0128 NAC Kaladp0095s0055 PEPC1 1099 1111 - 11.7812 6.20E-05 

Kaladp0067s0128 NAC Kaladp0095s0055 PEPC1 1454 1466 + 11.3438 8.81E-05 

Kaladp0043s0101 MYB-related Kaladp0095s0055 PEPC1 560 569 - 11.3368 9.41E-05 

Kaladp0035s0004 NAC Kaladp0095s0055 PEPC1 1097 1111 + 14.2031 9.15E-06 

Kaladp0035s0004 NAC Kaladp0095s0055 PEPC1 1454 1468 - 13.2812 1.69E-05 

Kaladp0016s0148 MADS-MIKC Kaladp0095s0055 PEPC1 1054 1074 - 10.75 7.67E-05 

Kaladp0075s0012 NAC Kaladp0095s0055 PEPC1 1095 1112 - 13.7188 9.91E-06 

Kaladp0093s0119 NAC Kaladp0095s0055 PEPC1 1096 1113 + 14.6562 5.51E-06 

Kaladp0093s0119 NAC Kaladp0095s0055 PEPC1 1452 1469 - 14.6094 5.70E-06 

Kaladp0093s0119 NAC Kaladp0095s0055 PEPC1 1261 1278 + 9.875 9.80E-05 

Kaladp0076s0056 AP2/ERF-ERF Kaladp0095s0055 PEPC1 1212 1221 + 11.9895 2.54E-05 

Kaladp0016s0316 MYB-related Kaladp0095s0055 PEPC1 451 459 + 12.2174 6.15E-05 

 

PEPC1 (Kaladp0095s0055) 

   NAC: 1111-1099 

MYB-related: 569-560 

   NAC: 1468-1454 

MADS-MIKC: 1074-1054 

NAC: 1112-1095 

   NAC: 1469-1452 

NAC: 1097-1111 
NAC: 1099-1111 

MYB-related: 451-459 

258-268 

NAC: 1454-1466 

NAC: 1096-1113 

NAC: 1261:1278 
AP2/ERF-ERF: 1212-1221 

Promoter 
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Figure 5: Transcription factors as regulatory candidates of pepc1 gene Edges with supporting evidence from transcription factor binding site 

(TFBS) prediction within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding 

positions were illustrated in the diagram with their statistical scores listed in the table. (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 

bp with 1,500 bp upstream and 200 bp downstream of the target gene starting position)
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Decarboxylation subnetwork: 

Genes associated with the decarboxylation subnetwork  in Kalanchoe fedtschenkoi comprised 

17 genes from 6 gene families, namely Tonoplast dicarboxylate transporter (TDT:1 gene), 

Pyruvate, orthophosphate dikinase (PPDK:2 genes), PPDK regulatory protein (PPDK-RP:2 

genes), Phosphoenolpyruvate carboxykinase (PEPCK:3 genes), NAD-dependent malic 

enzyme (NAD-ME:6 genes), and NADP-malic enzyme (NADP-ME:3 genes). Based on the 

taxonomic distribution of carbon metabolism enzymes among CAM plants, CAM species can 

decarboxylate malate via two routes; NAD(P)-ME or PEPCK. Our species of interest K. 

fedtschenkoi, has been classified in the inactive PEPCK group. Among the two Pyruvate 

orthophosphate dikinase (PPDK) genes, a paralogous gene (gene ID of Kaladp0076s0229) has 

the maximum FPKM expression level twice that of other paralogues, hence this 

Kaladp0076s0229 gene was selected to be representative of the PPDK step. In the case of two 

paralogous PPDK regulatory protein (PPDK-RP) genes, the maximum expression level of both 

genes did not differ for more than two-times and both showed raised cyclical expression 

patterns which were clustered into the same co-expression module, and hence the focus was on 

both genes in this study (Yang et al. 2017). 

The decarboxylation subnetwork contained 114 directional edges from 94 transcription factor 

source nodes associated with 17 decarboxylation gene target nodes (Figure 6). These 94 

transcription factor nodes belonged to 28 different transcription factor families out of the total 

number of 69 transcription factor families identified in K. fedtschenkoi (Zheng et al. 2016). The 

maximum number of unique target genes sharing the same transcription factor was 5 target 

genes per 1 transcription factor gene. In this subnetwork, Kaladp0071s0407 (HB-KNOX 

family) was the only transcription factor gene with this characteristic. The second highest 

number of target genes sharing the same transcription factor gene was 4 target genes per 

transcription factor gene; Kaladp0016s0148 (MADS-MIKC family) and Kaladp0037s0181 

(ERF family) (Figure 7). 

Within this decarboxylation subnetwork, firstly, there were 8 transcription factors that formed 

regulatory links onto the ppdk-rp gene with the gene ID of Kaladp0010s0106. With the 

additional information from transcription factor binding site (TFBS) predictions, a member of 

C2H2 family showed six TFBS positions, whereas other transcription factors from TCP, ERF, 

C2H2 and MYB families  had one or two TFBS position in the promoter region of this ppdk-

rp gene (p-value ≤ 1e-4) (Figure 8). Secondly, with the focus on the other ppdk-rp gene with 
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the gene ID of Kaladp0060s0363, there are 6 transcription factors forming regulatory links 

onto this ppdk-rp gene. A member of C2C2-Dof, MYB-related and bZIP family showed double 

transcription factor binding site (TFBS) positions, whereas a member of SBP and Trihelix 

family showed single TFBS position within the promoter region of the ppdk-rp gene with the 

gene ID of Kaladp0060s0363 (Figure 9). 

With a focus on the  ppdk gene, there were 7 transcription factor genes forming regulatory links 

onto the ppdk gene (Kaladp0076s0229). First, a member of AP2/ERF-ERF transcription factor 

family (Kaladp0037s0181) had 6 TFBS positions. Second, the other member of AP2/ERF-ERF 

transcription factor family (Kaladp0039s0495) had triplet TFBS positions. Finally, a member 

from Trihelix, bHLH, MYB-related, NAC and B3-ARF transcription factor family each 

showed a single TFBS position within the promoter region of the ppdk gene (p-value ≤ 1e-4) 

(Figure 10).  
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Figure 6: Decarboxylation subnetwork with transcription factors as source nodes showing 

the top 100 edges from transcription factor source nodes (black) to decarboxylation target 

nodes (yellow). Transcription factor nodes and decarboxylation target nodes were grouped by 

transcription factor families and decarboxylation gene families respectively(Edge score ≥ 1e-4 

and p-value ≤ 1e-4). 
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Figure 7: Multiple decarboxylation genes sharing the same transcription factor source 

nodes Transcription factors with the maximum number of different target genes within the 

decarboxylation subnetwork (5 target genes:1 transcription factor gene) and the second 

maximum number of different target genes within the decarboxylation subnetwork (3 target 

genes:1 transcription factor gene) were selected to plot in this figure. Black nodes indicate the 

transcription factor gene ID and family, whereas grey nodes indicate the target gene ID and 

gene family (Edge score ≥ 1e-4 and p-value ≤ 1e-4). 
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Transcription factor 
gene ID 

Transcription 
factor family 

Target gene ID Target gene function start stop strand score p-value 

Kaladp0630s0020 TCP Kaladp0010s0106 PPDK-RP 143 152 - 13.1789 1.43E-05 

Kaladp0057s0097 bHLH Kaladp0010s0106 PPDK-RP 663 672 - 10.3594 8.34E-05 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0010s0106 PPDK-RP 23 30 + 13.8571 1.05E-05 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0010s0106 PPDK-RP 68 75 + 11.7524 4.82E-05 

Kaladp0081s0001 C2H2 Kaladp0010s0106 PPDK-RP 26 44 + 18.4917 2.44E-07 

Kaladp0081s0001 C2H2 Kaladp0010s0106 PPDK-RP 23 41 + 15.125 2.14E-06 

Kaladp0081s0001 C2H2 Kaladp0010s0106 PPDK-RP 1482 1500 - 8.35833 8.67E-05 

Kaladp0081s0001 C2H2 Kaladp0010s0106 PPDK-RP 29 47 + 8.28333 8.99E-05 

Kaladp0081s0001 C2H2 Kaladp0010s0106 PPDK-RP 49 67 + 8.25 9.14E-05 

Kaladp0081s0001 C2H2 Kaladp0010s0106 PPDK-RP 1485 1503 - 8.125 9.71E-05 

Kaladp0015s0060 C2C2-GATA Kaladp0010s0106 PPDK-RP 46 60 - 13.0312 2.06E-05 

Kaladp0015s0060 C2C2-GATA Kaladp0010s0106 PPDK-RP 47 61 + 10.875 8.27E-05 

Kaladp0060s0097 C2H2 Kaladp0010s0106 PPDK-RP 492 508 - 8.1875 9.20E-05 

Kaladp0093s0044 TCP Kaladp0010s0106 PPDK-RP 143 152 - 14.8421 4.55E-06 

Kaladp0093s0044 TCP Kaladp0010s0106 PPDK-RP 153 162 + 11.0105 5.30E-05 

Kaladp0089s0020 AP2/ERF-ERF Kaladp0010s0106 PPDK-RP 20 32 - 12.2812 2.60E-05 

PPDK-RP (Kaladp0010s0106) Promoter 

TCP: 153-162 

AP2/ERF-ERF: 68-75 

C2C2-GATA: 47-61; C2H2: 49-67 

AP2/ERF-ERF: 23-30; C2H2: 23-41, 29-47 

AP2/ERF-ERF: 20-32 

C2C2-GATA: 46-60 

TCPs: 143-152 

C2H2: 492-508 

bHLH: 663-672 

C2H2:1482-1500, 1485-1503 
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Figure 8: Transcription factors as regulatory candidates of PPDK-RP (Kaladp0010s0106) Edges with supporting evidence from transcription 

factor binding site (TFBS) prediction within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their 

associated binding positions were illustrated in the diagram with their statistical scores listed in the table. (Edge score ≥ 1e-4, p-value ≤ 1e-4, 

Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp downstream of the target gene starting position). 
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Figure 9: Transcription factors as regulatory candidates of PPDK-RP (Kaladp0060s0363) Edges with supporting evidence from transcription 

factor binding site (TFBS) prediction within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their 

associated binding positions were illustrated in the diagram with their statistical scores listed in the table. (Edge score ≥ 1e-4, p-value ≤ 1e-4, 

Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp downstream of the target gene starting position). 

Transcription factor 
gene ID 

Transcription 
factor family 

Target gene ID Target gene function start stop strand score p-value 

Kaladp0053s0101 C2C2-Dof Kaladp0060s0363 PPDK-RP 412 432 - 11.375 6.25E-05 

Kaladp0053s0101 C2C2-Dof Kaladp0060s0363 PPDK-RP 471 491 - 11.0312 7.96E-05 

Kaladp0055s0349 MYB-related Kaladp0060s0363 PPDK-RP 206 214 - 13.3905 4.43E-05 

Kaladp1295s0017 MYB-related Kaladp0060s0363 PPDK-RP 828 842 + 10.7656 9.57E-05 

Kaladp0016s0065 SBP Kaladp0060s0363 PPDK-RP 1349 1359 - 10.4531 8.66E-05 

Kaladp0059s0110 Trihelix Kaladp0060s0363 PPDK-RP 88 101 + 10.6562 6.29E-05 

Kaladp0076s0065 bZIP Kaladp0060s0363 PPDK-RP 157 173 - 23.6094 1.95E-11 

Kaladp0076s0065 bZIP Kaladp0060s0363 PPDK-RP 160 176 + 17.9531 6.72E-07 

PPDK-RP (Kaladp0060s0363) Promoter 

MYB-related: 828-842 

bZIP: 160-176 

Trihelix: 88-101 

bZIP: 157-173 

MYB-related: 206-214 

C2C2-Dof: 412-432 

C2C2-Dof: 471-491 

SBP: 1349-1359 
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Transcription factor 
gene ID 

Transcription 
factor family 

Target gene ID Target gene function start stop strand score p-value 

Kaladp0011s0356  

Trihelix 
 Kaladp0076s0229  

PPDK 
682  696  + 15.5938  3.10E-06  

Kaladp0747s0001  

bHLH 
 Kaladp0076s0229  

PPDK 
53  63  - 12.7703  3.48E-05  

Kaladp0577s0020  

MYB-related 
 Kaladp0076s0229  

PPDK 
1123  1134  + 11.0312  9.57E-05  

Kaladp0037s0181  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
1048  1068  + 15.5942  1.46E-06  

Kaladp0037s0181  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
1161  1181  + 9.26087  3.45E-05  

Kaladp0037s0181  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
1137  1157  + 9.17391  3.58E-05  

Kaladp0037s0181  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
690  710  - 7.86957  6.24E-05  

Kaladp0037s0181  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
659  679  + 7.3913  7.60E-05  

Kaladp0037s0181  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
1045  1065  + 6.98551  8.96E-05  

Kaladp0039s0495  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
685  699  + 16.3438  1.37E-06  

Kaladp0039s0495  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
686  700  - 12.0156  1.36E-05  

Kaladp0039s0495  

AP2/ERF-ERF 
 Kaladp0076s0229  

PPDK 
680  694  - 7.45312  9.45E-05  

Kaladp0056s0140  

NAC 
 Kaladp0076s0229  

PPDK 
156  174  + 11.7812  3.59E-05  

Kaladp0100s0015 
 

B3-ARF 
 

Kaladp0076s0229 
 

PPDK 1573 
 

1582 
 - 

12.875 
 

2.39E-05 
 

bHLH: 53-63 

AP2/ERF-ERF: 680-694 

AP2/ERF-ERF: 686-700, 690-710 

PPDK (Kaladp0076s0229) Promoter 

MYB-related: 1123-1134; AP2/ERF-ERF: 1137-1157,  1161-1181 

AP2/ERF-ERF: 1045-1065, 1048-1068 

Trihelix: 682-696; AP2/ERF-ERF: 685-699 

AP2/ERF-ERF: 659-679 

NAC: 156-174 

B3-ARF: 1573-1582 
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Figure 10: Transcription factors as regulatory candidates of PPDK Edges with supporting evidence from transcription factor binding site 

(TFBS) prediction within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding 

positions were illustrated in the diagram with their statistical scores listed in the table. (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 

bp with 1,500 bp upstream and 200 bp downstream of the target gene starting position).
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Circadian subnetwork: 

Core circadian genes of Kalanchoe fedtschenkoi have been identified from the set of 

orthologous circadian genes in  Arabidopsis thaliana (Moseley et al., 2018). For the purpose 

of this study, the circadian genes of K. fedtschenkoi were defined according to the study by 

Yang et al, rather than a full functional validation of candidate circadian genes. Therefore, this 

set of circadian genes could include non-functional circadian gene orthologues and/or miss out 

some other CAM-specific circadian genes, if any exist. Based on this definition, the circadian 

genes comprised of 32 genes from 33 gene families, namely Constitutive photomorphogenic 1 

(COP1), Cryptochrome 1 (CRY1), Cryptochrome 2 (CRY2), Early flowering 3 (ELF3), Flavin-

binding, Kelch repeat, F box 1 (FKF1), Phytochrome A (PHYA), Phytochrome B (PHYB), 

Circadian clock associated 1 (CCA1), CCA1 hiking expedition (CHE), Gigantea (GI), Lux 

arrhythmo (LUX), Phytochrome interactive factor 3 (PIF3), Pseudo-response regulator 3 

(PRR3), Pseudo-response regulator 5 (PRR5), Pseudo-response regulator 7 (PRR7), Pseudo-

response regulator 9 (PRR9), Timing of Cab expression 1 (TOC1), Zeitlupe (ZTL), Night light-

inducible and clock regulated 1 (LNK1), Night light-inducible and clock regulated 2 (LNK2), 

Reveille 1 (RVE1), Reveille 6 (RVE6), Reveille 8 (RVE8), Casein kinase II beta subunit 4 

(CKB4), Early flowering 4 (ELF4), Fiona 1 (FIO1), Elongated hypocotyl 5 (HY5), Light 

insensitive period 1 (JMJD5), Light-regulated WD 1 (LWD1), Protein arginine 

methyltransferase 5 (PRMT5), SNW/SKI-interacting protein (SKIP), Spliceosomal timekeeper 

locus 1 (STIPL1), and Poly(ADP-ribose) glycohydrolase 1 (TEJ). Among these circadian 

genes, the PHYA, PHYB, PIF3 and HY5 have been shown to play critical roles in C4 

photosynthesis, whilst ELF3,ELF4 and LUX  displayed a concerted phase shift of 4 hr ahead 

of their Arabidopsis orthologues and pass 3 strong selection criteria for circadian expression 

pattern characteristics, namely: amplitude, period and oscillation (Ezer et al. 2017; Yang et al. 

2017). 

The circadian subnetwork contained 210 directional edges from 138 transcription factor source 

nodes for the 30 circadian gene target nodes (Figure 11). These 138 transcription factor nodes 

belonged to 33 different transcription factor families out of the total number of 69 transcription 

factor families identified in K. fedtschenkoi (Zheng et al. 2016). In this subnetwork, the 

maximum number of target genes sharing the same transcription factor was 6 targets per 1 

transcription factor. The transcription factor Kaladp0022s0176 (CPP family) formed regulatory 

links to 6 target genes, including PIF3. The second highest number of target genes per one 
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transcription factor is 5 targets per 1 transcription factor, namely Kaladp0037s0181 (AP2/ERF-

ERF family) with HY5 as one of the five target genes (Figure 12). 

With the focus on the transcription factor binding site (TFBS) data, there were 13 transcription 

factors forming regulatory links onto the PHYA gene, 7 transcription factors forming regulatory 

links onto the PHYB gene, 11 transcription factors forming regulatory links onto the PIF3 gene, 

4 transcription factors forming regulatory links onto the HY5 gene, 5 transcription factors 

forming regulatory links onto the ELF3, 8 transcription factors forming regulatory links onto 

the ELF4, and 2 transcription factors forming regulatory links onto the LUX (Figure 13-19). 
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Figure 11: Circadian subnetwork with transcription factors as source nodes showing the 

top 100 edges from transcription factor source nodes (black) to circadian target nodes (red). 

Transcription factor nodes and circadian target nodes were grouped by transcription factor 

families and circadian gene families respectively (Edge score ≥ 1e-4 and p-value ≤ 1e-4). 
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Figure 12: Multiple circadian genes sharing the same transcription factor source nodes 

Transcription factors with the maximum number of different target genes within the circadian 

subnetwork (6 target genes:1 transcription factor gene) and the second maximum number of 

different target genes within the circadian subnetwork (5 target genes:1 transcription factor 

gene) were selected to plot in this figure. Black nodes indicate the transcription factor gene ID 

and family, whereas grey nodes indicate the target gene ID and gene family(Edge score ≥ 1e-4 

and p-value ≤ 1e-4).

ZTL 

LNK2 

LNK1 

GI PIF3 

CRY1 

Kaladp0607s0046 

Kaladp0040s0489 

Kaladp0071s0308  

Kaladp0057s0097  

Kaladp0809s0098  

HY5 RVE8 PRR5/9 COP1 
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Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target gene 

function 

start stop strand score p-value 

Kaladp0032s0071 HSF Kaladp0034s0172 PHYA 1543 1554 - 11.9219 3.09E-05 

Kaladp0019s0146 AP2/ERF-ERF Kaladp0034s0172 PHYA 933 953 + 16.5652 7.19E-07 

Kaladp0019s0146 AP2/ERF-ERF Kaladp0034s0172 PHYA 930 950 + 16.4783 7.54E-07 

Kaladp0019s0146 AP2/ERF-ERF Kaladp0034s0172 PHYA 927 947 + 13.6522 3.30E-06 

Kaladp0019s0146 AP2/ERF-ERF Kaladp0034s0172 PHYA 864 884 + 13.5072 3.55E-06 

Kaladp0019s0146 AP2/ERF-ERF Kaladp0034s0172 PHYA 981 1001 + 11.0145 1.13E-05 

Kaladp0019s0146 AP2/ERF-ERF Kaladp0034s0172 PHYA 861 881 + 7.63768 4.57E-05 

Kaladp0019s0146 AP2/ERF-ERF Kaladp0034s0172 PHYA 975 995 + 7.57971 4.68E-05 

Kaladp0019s0146 AP2/ERF-ERF Kaladp0034s0172 PHYA 936 956 + 5.66667 9.48E-05 

Kaladp0073s0079 GARP-G2-like Kaladp0034s0172 PHYA 205 217 + 10.7344 8.26E-05 

Kaladp0674s0108 E2F-DP Kaladp0034s0172 PHYA 910 930 + 3.34783 2.83E-05 

Kaladp0008s0226 Trihelix Kaladp0034s0172 PHYA 227 244 + 11.4058 6.27E-05 

Kaladp0008s0352 MYB Kaladp0034s0172 PHYA 1262 1271 + 11.8105 4.72E-05 

Kaladp0046s0332 MYB Kaladp0034s0172 PHYA 879 889 - 15.9875 2.16E-06 

Kaladp0057s0097 bHLH Kaladp0034s0172 PHYA 726 735 - 11.4531 5.70E-05 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0034s0172 PHYA 933 947 + 13.7812 5.69E-06 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0034s0172 PHYA 930 944 + 12.625 1.02E-05 

 

 

Figure 13: Transcription factors as regulatory candidates of PHYA (continue next page) 
 

PHYA (Kaladp0034s0172) 
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Figure 13: Transcription factors as regulatory candidates of PHYA Edges with supporting evidence from transcription factor binding site (TFBS) prediction 

within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were illustrated in the 

diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp 

downstream of the target gene starting position). 

 

 

 

 

 

 

 

 

Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target gene 

function 

start stop strand score p-value 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0034s0172 PHYA 864 878 + 9.71875 3.81E-05 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0034s0172 PHYA 861 875 + 8.75 5.68E-05 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0034s0172 PHYA 871 885 + 7.96875 7.74E-05 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0034s0172 PHYA 1436 1450 + 7.875 8.03E-05 

Kaladp0001s0060 BBR-BPC Kaladp0034s0172 PHYA 1316 1336 + -0.68919 4.77E-05 

Kaladp0001s0060 BBR-BPC Kaladp0034s0172 PHYA 913 933 + -1.24324 5.58E-05 

Kaladp0001s0060 BBR-BPC Kaladp0034s0172 PHYA 1038 1058 - -1.94595 6.79E-05 

Kaladp0045s0236 bHLH Kaladp0034s0172 PHYA 157 170 + 11.3125 7.22E-05 

Kaladp0045s0236 bHLH Kaladp0034s0172 PHYA 117 130 - 9.65625 9.62E-05 

Kaladp0016s0134 MYB Kaladp0034s0172 PHYA 125 139 + 11.4219 5.27E-05 

Kaladp0087s0163 AP2/ERF-ERF Kaladp0034s0172 PHYA 861 875 + 9.59375 7.96E-05 
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Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target gene 

function 

start stop strand score p-value 

Kaladp0921s0014 bZIP Kaladp0039s0298 PHYB 758 772 + 9.6875 4.81E-05 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0039s0298 PHYB 27 34 + 15.8 2.25E-06 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0039s0298 PHYB 30 37 + 15.8 2.25E-06 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0039s0298 PHYB 33 40 + 11.7905 4.42E-05 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0039s0298 PHYB 24 31 + 11.2667 6.24E-05 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0039s0298 PHYB 26 33 - 10.5143 8.58E-05 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0039s0298 PHYB 29 36 - 10.5143 8.58E-05 

Kaladp0066s0035 AP2/ERF-ERF Kaladp0039s0298 PHYB 32 39 - 10.5143 8.58E-05 

Kaladp0048s0420 AP2/ERF-ERF Kaladp0039s0298 PHYB 18 38 + 27.1562 1.10E-10 

Kaladp0048s0420 AP2/ERF-ERF Kaladp0039s0298 PHYB 21 41 + 26.3125 2.84E-10 

Kaladp0048s0420 AP2/ERF-ERF Kaladp0039s0298 PHYB 15 35 + 23.875 3.36E-09 

Kaladp0048s0420 AP2/ERF-ERF Kaladp0039s0298 PHYB 12 32 + 18.1875 3.45E-07 

Kaladp0048s0420 AP2/ERF-ERF Kaladp0039s0298 PHYB 24 44 + 14.2344 4.42E-06 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0039s0298 PHYB 26 44 - 25.0156 1.18E-09 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0039s0298 PHYB 23 41 - 24.25 2.60E-09 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0039s0298 PHYB 29 47 - 17.875 4.73E-07 

 

Figure 14: Transcription factors as regulatory candidates of PHYB  (continue next page) 

PHYB (Kaladp0039s0298) TFBS 
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Figure 14: Transcription factors as regulatory candidates of PHYB  Edges with supporting evidence from transcription factor binding site (TFBS) prediction 

within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were illustrated in the 

diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp 

downstream of the target gene starting position). 

 

 

 

 

 

 

 

 

 

Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0039s0298 PHYB 20 38 - 11.9844 1.39E-05 

Kaladp0101s0229 AP2/ERF-ERF Kaladp0039s0298 PHYB 27 34 + 17.7158 1.13E-06 

Kaladp0101s0229 AP2/ERF-ERF Kaladp0039s0298 PHYB 30 37 + 17.7158 1.13E-06 

Kaladp0101s0229 AP2/ERF-ERF Kaladp0039s0298 PHYB 33 40 + 13.8632 1.36E-05 

Kaladp0101s0229 AP2/ERF-ERF Kaladp0039s0298 PHYB 24 31 + 12.1263 2.98E-05 

Kaladp0008s0410 B3-ARF Kaladp0039s0298 PHYB 233 253 + 7.4375 3.38E-06 

Kaladp0008s0410 B3-ARF Kaladp0039s0298 PHYB 1320 1340 - -0.9125 4.23E-05 

Kaladp0016s0148 MADS-MIKC Kaladp0039s0298 PHYB 1612 1632 + 13.7353 1.17E-05 

Kaladp0016s0148 MADS-MIKC Kaladp0039s0298 PHYB 197 217 + 11.8676 4.06E-05 

Kaladp0016s0148 MADS-MIKC Kaladp0039s0298 PHYB 635 655 - 11.1765 6.07E-05 
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Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0053s0301 WRKY Kaladp0057s0097 PIF3 804 816 - 7.85938 9.20E-05 

Kaladp0059s0271 GRAS Kaladp0057s0097 PIF3 596 615 - 10.9714 6.53E-05 

Kaladp0050s0021 bZIP Kaladp0057s0097 PIF3 1225 1236 + 11.7263 5.36E-05 

Kaladp0050s0021 bZIP Kaladp0057s0097 PIF3 1220 1231 + 11.6105 5.80E-05 

Kaladp0050s0021 bZIP Kaladp0057s0097 PIF3 1222 1233 - 11.6105 5.80E-05 

Kaladp0050s0021 bZIP Kaladp0057s0097 PIF3 1297 1308 - 11.3158 6.96E-05 

Kaladp0081s0001 C2H2 Kaladp0057s0097 PIF3 621 639 + 18.3833 2.63E-07 

Kaladp0081s0001 C2H2 Kaladp0057s0097 PIF3 446 464 - 14.1917 3.75E-06 

Kaladp0081s0001 C2H2 Kaladp0057s0097 PIF3 624 642 + 14.0833 3.99E-06 

Kaladp0081s0001 C2H2 Kaladp0057s0097 PIF3 618 636 + 12.075 1.26E-05 

Kaladp0081s0001 C2H2 Kaladp0057s0097 PIF3 440 458 - 9.70833 4.41E-05 

Kaladp0081s0001 C2H2 Kaladp0057s0097 PIF3 627 645 + 9.61667 4.62E-05 

 

Figure 15: Transcription factors as regulatory candidates of PIF3  (continue next page) 

PIF3 (Kaladp0057s0097) TFBS 
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Figure 15: Transcription factors as regulatory candidates of PIF3  Edges with supporting evidence from transcription factor binding site (TFBS) prediction 

within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were illustrated in the 

diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp 

downstream of the target gene starting position). 
 

 

 

 

 

 

 

Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0081s0001 C2H2 Kaladp0057s0097 PIF3 595 613 + 9.15833 5.83E-05 

Kaladp0081s0001 C2H2 Kaladp0057s0097 PIF3 597 615 + 8.59167 7.73E-05 

Kaladp0042s0072 HSF Kaladp0057s0097 PIF3 312 326 + 11.6622 1.26E-05 

Kaladp0042s0072 HSF Kaladp0057s0097 PIF3 610 624 - 6.27027 8.70E-05 

Kaladp0071s0407 HB-KNOX Kaladp0057s0097 PIF3 597 616 + 13.5333 9.44E-06 

Kaladp0045s0236 bHLH Kaladp0057s0097 PIF3 1548 1561 - 12.0938 5.37E-05 

Kaladp0022s0176 CPP Kaladp0057s0097 PIF3 547 556 + 11.2929 1.00E-04 

Kaladp0279s0002 AP2/ERF-

ERF 

Kaladp0057s0097 PIF3 574 588 + 8.57812 8.20E-05 

Kaladp0042s0084 WRKY Kaladp0057s0097 PIF3 803 816 - 6.8125 9.00E-05 

Kaladp1246s0007 HB-HD-ZIP Kaladp0057s0097 PIF3 273 283 - 12.3382 4.40E-05 
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Figure 16: Transcription factors as regulatory candidates of HY5  Edges with supporting evidence from transcription factor binding site (TFBS) prediction 

within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were illustrated in the 

diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp 

downstream of the target gene starting position). 
 

 

 

Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target gene 

function 

start stop strand score p-value 

Kaladp0073s0079 GARP-G2-

like 

Kaladp0060s0460 HY5 490 502 - 11.4375 5.88E-05 

Kaladp1295s0017 MYB-related Kaladp0060s0460 HY5 778 792 - 12.8594 2.34E-05 

Kaladp0043s0101 MYB-related Kaladp0060s0460 HY5 4 13 - 12.5158 2.49E-05 

Kaladp0037s0181 AP2/ERF-

ERF 

Kaladp0060s0460 HY5 46 66 + 7.15942 8.35E-05 

TFBS 
HY5 (Kaladp0060s0460) 
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Figure 17: Transcription factors as regulatory candidates of ELF3  Edges with supporting evidence from transcription factor binding site (TFBS) prediction 

within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were illustrated in the 

diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp 

downstream of the target gene starting position). 
 

 

Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp1295s0017 MYB-related Kaladp0039s0732 ELF3 1122 1136 - 10.7969 9.41E-05 

Kaladp0053s0101 C2C2-Dof Kaladp0039s0732 ELF3 1402 1422 + 12.2969 3.12E-05 

Kaladp0053s0101 C2C2-Dof Kaladp0039s0732 ELF3 962 982 + 11.4375 5.98E-05 

Kaladp0048s0596 C2C2-GATA Kaladp0039s0732 ELF3 724 738 + 2.67188 8.17E-05 

Kaladp0063s0022 MYB Kaladp0039s0732 ELF3 1123 1137 - 11.2969 7.13E-05 

Kaladp0085s0007 C2H2 Kaladp0039s0732 ELF3 197 216 + 15.7969 2.58E-06 

TFBS 

C2C2−Dof 

C2C2−GATA 

C2H2 

MYB 

MYB−related 

50

 
100

 

ELF3 (Kaladp0039s0732) 
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Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 133 153 - 20.1304 8.77E-08 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 164 184 + 16.9565 6.60E-07 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 161 181 + 11.058 1.52E-05 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 124 144 - 10.8841 1.65E-05 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 371 391 + 10.7536 1.75E-05 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 136 156 - 8.98551 3.89E-05 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 127 147 - 8.97101 3.91E-05 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 130 150 - 8.92754 3.98E-05 

Kaladp0037s0181 AP2/ERF-ERF Kaladp0045s0206 ELF4 58 78 - 6.92754 9.17E-05 

Kaladp0011s0067 B3-ARF Kaladp0045s0206 ELF4 154 161 - 13.8506 3.81E-05 

Kaladp0011s0067 B3-ARF Kaladp0045s0206 ELF4 61 68 + 7.52874 9.73E-05 

Kaladp0011s0067 B3-ARF Kaladp0045s0206 ELF4 583 590 + 7.52874 9.73E-05 

Kaladp0033s0047 GARP-G2-like Kaladp0045s0206 ELF4 104 117 - 11.0167 5.71E-05 

Kaladp0747s0001 bHLH Kaladp0045s0206 ELF4 559 569 - 12.1351 4.87E-05 

Kaladp0011s0356 Trihelix Kaladp0045s0206 ELF4 205 219 + 14.25 7.50E-06 

Kaladp0011s0356 Trihelix Kaladp0045s0206 ELF4 370 384 - 13.5781 1.12E-05 

 

Figure 18: Transcription factors as regulatory candidates of ELF4 (continue next page) 

ELF4 (Kaladp0045s0206) TFBS 
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Figure 18: Transcription factors as regulatory candidates of ELF4  Edges with supporting evidence from transcription factor binding site (TFBS) prediction 

within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were illustrated in the 

diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp 

downstream of the target gene starting position). 

 

 

 

 

Transcription 

factor gene ID 
Transcription 

factor family 
Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0011s0356 Trihelix Kaladp0045s0206 ELF4 369 383 + 11.3906 3.58E-05 

Kaladp0039s0249 AP2/ERF-ERF Kaladp0045s0206 ELF4 172 179 - 18 1.13E-06 

Kaladp0039s0249 AP2/ERF-ERF Kaladp0045s0206 ELF4 175 182 - 18 1.13E-06 

Kaladp0039s0249 AP2/ERF-ERF Kaladp0045s0206 ELF4 370 377 + 10.0952 2.12E-05 

Kaladp0039s0249 AP2/ERF-ERF Kaladp0045s0206 ELF4 367 374 - 10.0952 2.12E-05 

Kaladp0039s0249 AP2/ERF-ERF Kaladp0045s0206 ELF4 534 541 - 10.0952 2.12E-05 

Kaladp0039s0249 AP2/ERF-ERF Kaladp0045s0206 ELF4 373 380 + 9.29524 5.91E-05 

Kaladp0039s0249 AP2/ERF-ERF Kaladp0045s0206 ELF4 172 179 + 9.12381 7.30E-05 

Kaladp0039s0249 AP2/ERF-ERF Kaladp0045s0206 ELF4 175 182 + 9.12381 7.30E-05 

Kaladp0089s0020 AP2/ERF-ERF Kaladp0045s0206 ELF4 171 183 + 17.8594 4.71E-07 

Kaladp0089s0020 AP2/ERF-ERF Kaladp0045s0206 ELF4 174 186 + 13.7969 1.22E-05 

Kaladp0089s0020 AP2/ERF-ERF Kaladp0045s0206 ELF4 154 166 + 13.2344 1.67E-05 

Kaladp0089s0020 AP2/ERF-ERF Kaladp0045s0206 ELF4 363 375 + 12.5 2.38E-05 

Kaladp0089s0020 AP2/ERF-ERF Kaladp0045s0206 ELF4 168 180 + 9.40625 6.87E-05 

Kaladp0089s0020 AP2/ERF-ERF Kaladp0045s0206 ELF4 369 381 - 9.29688 7.06E-05 

Kaladp0050s0101 bHLH Kaladp0045s0206 ELF4 829 849 + 13.7188 1.38E-05 

Kaladp0050s0101 bHLH Kaladp0045s0206 ELF4 828 848 - 11.0469 5.72E-05 
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Figure 19: Transcription factors as regulatory candidates of LUX  Edges with supporting evidence from transcription factor binding site (TFBS) prediction 

within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were illustrated in the 

diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp 

downstream of the target gene starting position). 

Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0082s0024 RWP-RK Kaladp0033s0047 LUX 1589 1603 - 13.971 9.15E-06 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0033s0047 LUX 1512 1530 - 13.9531 5.04E-06 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0033s0047 LUX 1577 1595 + 10.0312 3.47E-05 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0033s0047 LUX 1574 1592 + 8.9375 5.57E-05 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0033s0047 LUX 1580 1598 + 8.82812 5.83E-05 

Kaladp0081s0316 AP2/ERF-ERF Kaladp0033s0047 LUX 1583 1601 + 8.75 6.03E-05 

TFBS 
LUX  (Kaladp0033s0047) 
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Stomatal subnetwork: 

Genes which have been associated with stomata function in Kalanchoe fedtschenkoi comprised 

20 genes from 14 gene families, namely ABA Insensitive (ABI:2 genes), Plasma membrane 

protein ATPase 2 (AHA2), Potassium transporter 1 (AKT1), Aluminium-activated malate 

transporter 9 (ALMT9), BRI1-associated receptor kinase (BAK1), Blue light signalling 1 

(BLUS1), Calcium-dependent protein kinase (CPK: 3 genes), High leaf temperature 1 (HT1) 

Potassium channel in Arabidopsis thaliana (KAT:2 genes), Open stomata (OST:2 genes), 

Phototropin (PHOT:2 genes), Pyrabactin resistance 1-like 9 (PYL9), Quick-activating anion 

channel 1 (QUAC1/ALMT12), and Slow anion channel-associated 1 (SLAC1). Among these 

stomatal-function related genes, the Open stomata 1 (OST1) with the gene ID of 

Kaladp0016s0289 and Slow anion channel-associated 1 (SLAC1) with the gene ID of 

Kaladp0050s0214 are key genes of interest due to their central role in stomatal function in C3 

plants. In addition, Phototropin 2 (PHOT2), with the gene ID of Kaladp0033s0113, is the key 

gene of interest for the light-signalling pathway in CAM, from evidence of a convergence shift 

in the diel expression pattern from dawn in C3 Arabidopsis thaliana to dusk in two CAM 

species (K. fedtschenkoi and Ananas comosus) (Yang et al. 2017).  

The stomatal subnetwork contained 128 directional edges from 95 transcription factor source 

nodes associated with the 19 stomatal gene target nodes (Figure 20). These 95 transcription 

factor nodes belonged to 34 different transcription factor families out of the total number of 69 

transcription factor families identified in K. fedtschenkoi (Zheng et al. 2016). The maximum 

number of unique target genes sharing the same transcription factor is 4 target genes per 1 

transcription factor gene in this stomatal subnetwork. The three transcription factor genes with 

this characteristic of 1 transcription factor binding to 4 targets were Kaladp0047s0231 (Dof 

family), Kaladp0073s0028 (RAV family) and Kaladp0085s0007 (C2H2 family) (Figure 21). 

With the focus on the transcription factor binding site (TFBS) data, there were 9 transcription 

factors forming regulatory links onto the promoter of OST1 gene (Kaladp0016s0289), 5 

transcription factors forming regulatory links onto the promoter of SLAC1 gene 

(Kaladp0050s0214), and 3 transcription factors forming regulatory links onto the promoter of 

PHOT2 gene (Kaladp0033s0113) (Figure 22-24). Among these three target genes of interest, 

there are no common transcription factor family controlling all 3 genes whereas there are 

members of bZIP control both OST1 and SLAC1 and members of HB-HD-ZIP control SLAC1 

and PHOT2. 
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Figure 20: Stomatal subnetwork with transcription factors as source nodes  showing the 

top 100 edges from transcription factor source nodes (black) to stomatal target nodes (green). 

Transcription factor nodes and stomatal target nodes were grouped by transcription factor 

families and circadian gene families respectively (Edge score ≥ 1e-4 and p-value ≤ 1e-4). 
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Figure 21: Multiple stomatal genes sharing the same transcription factor source nodes 

Transcription factors with the maximum number of different target genes within the stomatal 

subnetwork (4 target genes:1 transcription factor gene) were selected to plot in this figure. 

Black nodes indicate the transcription factor gene ID and family, whereas grey nodes indicate 

the target gene ID and gene family (Edge score ≥ 1e-4 and p-value ≤ 1e-4). 
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Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0076s0065 bZIP Kaladp0016s0289 OST1 1658 1674 - 8.57812 5.28E-05 

Kaladp0011s0508 bZIP Kaladp0016s0289 OST1 59 73 - 8.39062 9.14E-05 

Kaladp0011s0508 bZIP Kaladp0016s0289 OST1 1662 1676 - 8.26562 9.59E-05 

Kaladp0091s0012 NAC Kaladp0016s0289 OST1 607 621 - 13 2.18E-05 

Kaladp0085s0049 NAC Kaladp0016s0289 OST1 58 73 - 9.65625 9.91E-05 

Kaladp0040s0059 AP2/ERF-ERF Kaladp0016s0289 OST1 947 974 - 13.2031 5.26E-06 

Kaladp0040s0059 AP2/ERF-ERF Kaladp0016s0289 OST1 944 971 - 12.6562 6.28E-06 

Kaladp0040s0059 AP2/ERF-ERF Kaladp0016s0289 OST1 941 968 - 10.9219 1.04E-05 

Kaladp0040s0059 AP2/ERF-ERF Kaladp0016s0289 OST1 498 525 - 5.35938 4.93E-05 

Kaladp0040s0059 AP2/ERF-ERF Kaladp0016s0289 OST1 880 907 - 4.375 6.50E-05 

 

Figure 22: Transcription factors as regulatory candidates of OST1 (continue next page) 

TFBS 

OST1 (Kaladp0016s0289) 
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Transcription 

factor gene ID 

Transcription 

factor family 

Target gene ID Target 

gene 

function 

start stop strand score p-value 

Kaladp0040s0059 AP2/ERF-ERF Kaladp0016s0289 OST1 962 989 - 3.51562 8.21E-05 

Kaladp0071s0407 HB-KNOX Kaladp0016s0289 OST1 977 996 - 12.3067 1.86E-05 

Kaladp0071s0407 HB-KNOX Kaladp0016s0289 OST1 716 735 - 10.6933 4.14E-05 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0016s0289 OST1 957 971 - 13.6094 6.22E-06 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0016s0289 OST1 898 912 - 13.1562 7.82E-06 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0016s0289 OST1 1671 1685 - 8.59375 6.05E-05 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0016s0289 OST1 901 915 - 8.4375 6.44E-05 

Kaladp0039s0495 AP2/ERF-ERF Kaladp0016s0289 OST1 960 974 - 8.01562 7.60E-05 

Kaladp0008s0200 C2H2 Kaladp0016s0289 OST1 710 724 - 13.2923 1.15E-05 

Kaladp0071s0445 AP2/ERF-ERF Kaladp0016s0289 OST1 902 921 + 14.2656 6.68E-06 

Kaladp0071s0445 AP2/ERF-ERF Kaladp0016s0289 OST1 894 913 + 12.2656 2.06E-05 

Kaladp0071s0445 AP2/ERF-ERF Kaladp0016s0289 OST1 1672 1691 + 12.1406 2.20E-05 

Kaladp0071s0445 AP2/ERF-ERF Kaladp0016s0289 OST1 958 977 + 11.25 3.42E-05 

Kaladp0071s0445 AP2/ERF-ERF Kaladp0016s0289 OST1 952 971 + 10.8906 4.05E-05 

Kaladp0071s0445 AP2/ERF-ERF Kaladp0016s0289 OST1 981 1000 + 10.0469 5.94E-05 

 

Figure 22: Transcription factors as regulatory candidates of OST1  Edges with supporting evidence from transcription factor binding site (TFBS) prediction 

within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were illustrated in the 

diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream and 200 bp 

downstream of the target gene starting position). 
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Figure 23: Transcription factors as regulatory candidates of SLAC1  Edges with supporting evidence from transcription factor binding site (TFBS) 

prediction within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were 

illustrated in the diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream 

and 200 bp downstream of the target gene starting position). 

Transcription factor 

gene ID 

Transcription factor 

family 

Target gene ID Target gene 

function 

start stop strand score p-value 

Kaladp0024s0501 HB-HD-ZIP Kaladp0050s0214 SLAC1 1253 1260 + 11.6117 6.13E-05 

Kaladp0042s0123 bZIP Kaladp0050s0214 SLAC1 795 812 - 9.89062 2.49E-05 

Kaladp0071s0038 bHLH Kaladp0050s0214 SLAC1 834 848 + 10.625 4.32E-05 

Kaladp0071s0038 bHLH Kaladp0050s0214 SLAC1 825 839 - 7.64062 9.66E-05 

Kaladp0053s0637 bHLH Kaladp0050s0214 SLAC1 827 840 + 12.5811 2.84E-05 

Kaladp0001s0060 BBR-BPC Kaladp0050s0214 SLAC1 1651 1671 - -2.77027 8.52E-05 

TFBS 

SLAC1 (Kaladp0050s0214) 
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Figure 24: Transcription factors as regulatory candidates of PHOT2  Edges with supporting evidence from transcription factor binding site (TFBS) 

prediction within the promoter regions were classified as candidate regulatory relationships. Multiple TFBS with their associated binding positions were 

illustrated in the diagram with their statistical scores listed in the table (Edge score ≥ 1e-4, p-value ≤ 1e-4, Promoter region = 1,700 bp with 1,500 bp upstream 

and 200 bp downstream of the target gene starting position). 

 

Transcription factor 

gene ID 

Transcription 

factor family 

Target 

gene ID 

Target gene 

function 

start stop strand score p-value 

Kaladp1246s0018 Kaladp0033s0113 PHOT2 MYB-related 1181 1191 + 11.5469 7.50E-05 

Kaladp0043s0142 Kaladp0033s0113 PHOT2 C2C2-Dof 1442 1451 - 12.1695 1.77E-06 

Kaladp0042s0372 Kaladp0033s0113 PHOT2 HB-HD-ZIP 946 958 - 10.4 8.99E-05 

TFBS 

PHOT2 (Kaladp0033s0113) 
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Shared regulators between subnetworks: 

This study identified 21 transcription factor genes that reach targets across all 4 subnetworks. 

These 21 transcription factor genes belong to 12 transcription factor families (Table 5). Similar 

analysis performed at the level of gene family showed that 25 families of transcription factor 

from the total of 69 families reached targets across all 4 subnetworks (Table 6).  

Notably, the same dataset presented in this chapter can be visualised differently by comparing 

the upstream regions of CAM-specific isoforms of each CAM gene against their 

homologs/paralogs that are not used in CAM. Subsequently, further comparisons between 

subnetworks can be made. For example, the carboxylation subnetwork, decarboxylation 

subnetwork and stomatal subnetwork may have acquired different regulatory outputs from the 

circadian network components. 
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Table 5: The 21 transcription factor genes that reach targets across all 4 subnetworks 

Transcription factor Target genes 

Family Gene ID Carboxylation Decarboxylation Circadian Stomata 

AP2/ 

ERF-ERF 

 

Kaladp0051s0049 MDH,ALMT6,PEPC

  

NAD-ME  STIPL1,ZTL  ALMT9,CPK23 

Kaladp0039s0249 ALMT6,MDH  NAD-ME  CHE,COP1,ELF4,JMJD5 ALMT9,BAK1 

Kaladp0037s0181 PEPC,PPCK,MDH

  

PEPCK,PPDK  COP1,ELF4,HY5,PRR5/9,RVE8 ABI2 

Kaladp0048s0420 MDH,PEPC  NAD-ME  PHYB,RVE6  OST2/AHA1 

Kaladp0021s0014 MDH, 

β-CA,PEPC  

NAD-ME,PEPCK  RVE1,PRR5/9  CPK3 

Kaladp0039s0495 PPCK  PPDK  PHYA  OST1 

BBR-BPC Kaladp0001s0060 ALMT  NAD-ME,NADP-ME,PEPCK PHYA  SLAC1 

bHLH 

 

Kaladp0057s0097 ALMT, 

β-CA 

NADP-ME,PPDK-RP PRR5/9, PHYA  AHA2 

Kaladp0747s0001 MDH  PPDK  CRY1,ELF4  AHA2 

C2C2-Dof Kaladp0053s0101 ALMT,MDH  PPDK-RP  ELF3,JMJD5,TEJ  ABI2 

C2C2-

GATA 

Kaladp0015s0060 ALMT,MDH  PPDK-RP  CRY1  CPK3,CPK6 

C2H2 

 

Kaladp0085s0007 MDH  NAD-ME  ELF3  ABI1,CPK3,KAT1,KAT2 

Kaladp0060s0097 PEPC2  PPDK-RP  FIO1,LNK1   CPK3 

GRAS Kaladp0059s0271 PEPC,MDH,ALMT6 PEPCK   PIF3,PRR3,GI ALMT9,CPK23,OST2/AHA1 

HB-KNOX Kaladp0071s0407 MDH  NAD-ME,NADP-ME  PIF3  CPK23,OST1 

LOB Kaladp0089s0088 ALMT6,MDH  NAD-ME  RVE6  ALMT9 
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Table 5 (continue): The 21 transcription factor genes that reach targets across all 4 subnetworks 

Transcription factor Target genes 

Family Gene ID Carboxylation Decarboxylation Circadian Stomata 

MADS-

MIKC 

Kaladp0016s0148 ALMT,MDH,PEPC1

  

NADP-ME,PEPCK  JMJD5,PHYB,RVE8,TEJ ABI2 

RWP-RK Kaladp0082s0024 MDH,β-CA  NAD-ME  LNK2,LUX,SKIP  KAT2 

TCP 

 

Kaladp0093s0044 MDH  PPDK-RP  LNK2 CPK23 

Kaladp0630s0020 PEPC  PPDK-RP  LNK2,TEJ  ABI1,HT1 

Kaladp0131s0006 PPCK1,ALMT,β-CA PEPCK  CHE,CKB4  BAK1 
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Table 6: All transcription factor families of K. fedtschenkoi with 25 families reaching 

target across all four subnetworks. Total number of transcription factor families is 69 with 

MYB as the largest family and AP2/ERF-AP2 and CPP as the smallest families. Green box indicates 

the presence of target in the subnetwork. White box indicate the absence of target in the subnetwork. 

Transcription 

factor family 

Number of 

members 

Targets 

Carboxylation Decarboxylation Circadian Stomata 

MYB  235         

bHLH  218         

bZIP  185         

AP2/ERF-ERF  173         

C2H2  162         

MYB-related  138         

NAC  119         

C3H  110         

B3  104         

WRKY  103         

GARP-G2-like  93         

MADS-MIKC 88         

FAR1  78         

HB-HD-ZIP  61         

C2C2-GATA  60         

GRAS  60         

B3-ARF  59         

MADS-M-type  55         

HSF  53         

LOB  52         

C2C2-Dof  48         

Trihelix  46         

C2C2-YABBY  44         

GARP-ARR-B  44         

RWP-RK  35         

OFP  32         

SBP  31         

NF-YB  30         

HB-BELL  29         
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Transcription 

factor family 

Number of 

members 

Targets 

Carboxylation Decarboxylation Circadian Stomata 

TCP  29         

HB-other  28         

NF-YC  28         

TUB  27         

NF-YA  25         

CAMTA  23         

HB-WOX  23         

AP2/ERF-AP2  22         

CPP  22         
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Discussion: 

As an author, I am responsible for setting these large sets of gene regulatory network data in 

an  evolutionary context, to facilitate the understanding of Crassulacean Acid Metabolism 

(CAM) physiology for general biologists as well as more general readers. To begin with, CAM 

lineages evolved independently more than 60 times throughout the history of angiosperms. The 

major CAM speciation events arose after a reduction in atmospheric CO2 and climatic shifts 

associated with the uplift of the Tibetan Plateau in the Miocene-Pliocene: CAM probably 

originated between 10- 20 Ma, and diversified in many families in the past 5 million years 

(Givnish et al. 2014). During this period, ambient CO2 concentration was reduced to the lowest 

levels in palaeohistory, and during the Quaternary has hovered between 180 and 280 ppm for 

the past 2 million years. Such a reduction in CO2 was also associated with increased seasonality 

in many of the savanna regions where C4 systems had developed and diversified for an 

estimated of 5-10 Ma. The evolution of CAM seems to have been favoured in semi-arid 

habitats, where a regular recharge of water occurred on a seasonal basis (such as the summer 

monsoon and winter rains in the Sonoran Desert). Secondly, it is generally accepted that the 

origins of CAM lie in the molecular and physiological rescheduling of existing C3 systems to 

generate the inverse cycle of stomatal opening and associated temporally reprogrammed 

carboxylation/decarboxylation cycles. The aim of this current investigation was to take 

advantage of the recent proliferation in molecular sequencing data to identify the potential 

transcriptional regulators which could have signalled this transition. This approach also 

assumes that cellular succulence and tissue water storage had already evolved developmentally 

at some earlier point, presumably in response to water limitation in terrestrial and epiphytic 

habitats. The reduced mesophyll conductance associated with succulence would itself add 

another selection pressure leading to enhanced CAM activity, owing to the enhanced 

drawdown in internal CO2 associated with succulent leaves (Maxwell et al. 1997).  

Given the critical role in the CAM cycle, the first focus was given to the activation timing of 

the key carboxylation enzyme, Phosphoenolpyruvate carboxylase (PEPC), which drives the 

nocturnal CO2 uptake process and perhaps through the initial recycling of respiratory CO2 

which may represent an intermediate step in this progression (Griffiths et al. 1989). PEPC is 

known to be under the control of PEPC kinase (PPCK),  which in turn is responsive to (as yet) 

unidentified transcriptional regulatory controls. In current CAM systems, it is the exact timing 

of PEPC kinase gene expression that is crucial to the entire PEPC primary fixation process 
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(Hartwell et al. 1996; Hartwell et al. 1999; Nimmo 2003). Therefore, PEPC kinase regulators 

were also key for addressing the development of CAM. It was also timely to focus upon such 

a well-defined genus Kalanchoe, for which so many physiological and molecular advances 

have been made. Nonetheless, one cannot rule out other possible ‘selective-agents’ such as the 

malate accumulation process (thus focusing on malate transporter too, ALMT, tDT), since if 

the malate cannot be stored at night, a futile cycle would have caused an energetic penalty for 

CAM (with acknowledgements to J Andrew C Smith, personal discussion).  

Alternatively, in the subsequent day-time phase (Phase III), another regulatory step could be 

the decarboxylation process, which functions in releasing CO2 from the storage malate to feed 

the secondary carboxylation reaction catalysed by Rubisco. Interestingly, the decarboxylation 

process has always been less of a focus than  carboxylation processes when one considers CAM 

functioning. Hence, the decarboxylation subnetwork has been included in our analysis as the 

decarboxylation process could be as important as carboxylation for CAM to function (Ceusters 

et al. 2021).  

Thirdly, the circadian network has been shown on multiple occasions to be central to every 

organism function ranging from single celled algae to complex plant or mammalian organs. 

Unfortunately, we need to put the circadian subnetwork of CAM lower down the ranking when 

it comes to CAM evolution, as the exact identity of CAM central circadian network is not well 

understood. It would not be surprising to have two-way interactions between CAM 

carboxylation/decarboxylation processes and the rhythmicity of the core circadian network. 

This would have ensured that entrainment can be tailored  specifically to CAM. Indeed, it has 

been shown from recent RNAi knockdown experiments using Kalanchoe laxiflora (very 

similar to K. fedtschenkoi) that the lack of normal PEPC activity resulted in the clock 

arrhythmia –and vice versa (Boxall et al. 2017; Moseley et al. 2018; Boxall et al. 2020).  

Finally, the stomatal subnetwork has also been included in our analysis. This question of 

stomatal functioning in CAM was the very first question that brought my personal attention to 

CAM research in 2015. An email asking  “How could CAM stomata open at night?” was sent 

out to two professors at the end of the first year physiology lecture series. One of them replied 

to this disoriented undergraduate by inviting her to come talk to members of his research group. 

Although 7 years later, none can provide a satisfactory answer to this question, including 

myself. The best we know is that the interplay between intercellular CO2 (Ci) and other 

canonical stomatal signalling may be sufficient to result in CAM stomatal behaviour. 
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Intriguingly, my supervisor and his long-term collaborator have kindly pointed out to me that 

perhaps I was asking a slightly wrong question. I could have asked why CAM stomata close 

during the day! The limited stomatal opening at night could be a response to the high CO2 

drawdown associated with the PEPC carboxylation capacity and affinity even at relatively low 

stomatal conductance. The question of whether high Ci triggers stomatal closure during the 

day remains an active area of study, alongside with the attempts to dissect the complete CO2 

sensing pathway in C3 species by the Julian Schroeder group in the USA (Engineer et al. 2016). 

The best hope for our GRN approach to address these questions is to characterise the candidate 

regulators of key stomatal signalling genes. If there are any shared regulators between the 

stomatal subnetwork and the carboxylation subnetwork, then we could propose that there may 

be a simultaneously selective pressure acting on multiple pre-existing C3 genes in such a way 

that allows stomatal behaviour and carboxylation timing to be orchestrated/synchronised by 

the same transcription factors or same transcription factor families. 

Finally,  it should be noted that the question of regulation through carbohydrate balance (in 

terms of supplying PEP for the nocturnal carboxylation and demand for resynthesis of reserves 

and partitioning for growth by day) should also be considered as another key subnetwork. 

Suffice it to say that the analysis of the transcriptional regulators of carbohydrate metabolism 

is underway, but was not completed in time for inclusion in this Chapter. Nonetheless, it is very 

important to emphasise that our overall findings suggested that transcriptional regulations may 

be the basis of the molecular evolutionary mechanisms for K. fedtschenkoi, while leaving the 

gap open as to whether this would also be conserved in other sister CAM clades. Nevertheless, 

this study is a crucial step for the understanding of CAM as Kalanchoë fedtschenkoi is one of 

the best model CAM species, being the first eudicot CAM lineage with a genome sequence to 

date, as well as being the first sequenced species in the distinct eudicot lineage of Saxifragales. 
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Discussion point 1:  Common transcription factor shared between 4 subnetworks can 

shed light into the orchestration of the CAM system through potential crosstalk between 

subnetworks. 

From the total of 3,048 transcription factors (TFs) from 69 transcription factor families, our 

analysis has narrowed attention to 21 transcription factor genes that interact with targets across 

all 4 subnetworks (carboxylation, decarboxylation, circadian and stomata) as summarised in 

Table 5. In addition to the shared transcription factor genes, the shared transcription factor 

families have also been identified. These shared transcription factor families include, but are 

not limited to, the top 5 largest transcription factor families of Kalanchoe fedtschenkoi (i.e. 

MYB, bHLH, bZIP, AP2/ERF-ERF and C2H2) (Table 6). Interestingly, the smallest 

transcription factor family that spans across all 4 subnetworks is the BBR-BPC family with 

only 10 TF genes in this family.  

In C3 species, transcription factors from MYB, bHLH, bZIP, AP2/ERF-ERF and C2H2 

families are involved in various processes including developmental and stress responses 

(Ambawat et al. 2013; Wang et al. 2018; Sun et al. 2018; Xie et al. 2019; Han et al. 2020).  However, 

the functions of these transcription factor families in CAM are still inconclusive. The most 

recent information about transcription factors associated with CAM arose from the following 

experiments and bioinformatic analysis performed on various CAM species, including both 

obligate CAM (Agave tequilana, Agave sisalana and Kalanchoe fedtschenkoi) and facultative 

CAM (Mesembryanthemum crystallinum and Talinum triangulare).  

First, members of AP2/ERF/CRF, NAC, HB, bZIP, MADS/AGAMOUS-LIKE8, and 

AP2/ERF in M. crystallinum were the top 8 transcription factors that showed increased 

transcript abundance in response to drought stress (Amin et al. 2019). The orthologue of these 

genes in K. fedtschenkoi also showed increased transcript abundance during the developmental 

CAM induction (Amin et al., 2019; Cushman unpublished data). A follow-up functional 

characterisation of KfMYB59 by overexpressing this K. fedtschenkoi transcription factor in 

Arabidopsis thaliana led to the conclusion that this KfMYB59 transcription factor functions in 

plant growth and development (flowering, biomass, rosette size, shoot length) and responses 

to abiotic stress (increased water-use-efficiency, positive response to selenium stress and 

higher adaptability to nutrient-limited conditions) in the Arabidopsis transgenic line (Amin et 

al. 2019).  
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Second, there are 47 transcription factors which have been subjected to purifying selection 

through CAM evolution in monocot A. tequilana or A. sisalana. These 47 transcription factors 

belong to bHLH (8 members), zinc finger (23 members), MYB (6 members), AP2 (5 

members), NAC (3 members), WRKY (1 member), and bZIP (1 member) families (Huang et 

al. 2018). Third, a comparative transcriptome study found 40 rhythmic transcription factors in 

K. fedtschenkoi with phase-shift from their rhythmic orthologues in A. thaliana. These 40 

rhythmic transcription factors of K. fedtschenkoi belong to 12 families (AP2/ERF-ERF, bHLH, 

C3H, GRAS, HB-BELL, HB-PHD, HRT, HSF, MYB, SET, Tify and Trihelix) (Moseley et al. 

2018).  

Fourth, Brilhaus et al, 2015 identified a number of transcription factors in Talinum triangulare 

that are upregulated to coincide with the onset of CAM and/or sustained throughout the CAM 

mode (Brilhaus et al. 2015). The method by Brilhaus et al. provided the most direct evidence 

of transcription factor expression profiles through the transition from C3 into CAM mode 

within the timeframe of 4, 9 and 12 days after the onset of drought induction. However, a 

similar approach has not been undertaken in other CAM species. The study identified the 

transient upregulation of transcription factors on day 9 after drought induction that include the 

Drought Responsive element responsive TFs of the C-repeated binding factor (CBF) family. 

In addition, the same study also identified the sustained upregulation of transcription factors 

which included ABA responsive transcription factors and growth associated regulators. This 

information suggested that multiple transcription factors across different families may play 

important roles in the induction and/or maintenance of CAM. Further, some transcription 

factors may function in the transient induction phase but not sustained throughout the CAM 

stage, and vice versa. Nevertheless, the functions and identities of transcription factors could 

differ between CAM clades and CAM types given that the T. triangulare is a drought-induced, 

reversible, facultative CAM system, whereas K. fedtschenkoi is an obligate CAM species. 

From the 21 transcription factor genes that interact with targets across all 4 subnetworks 

identified in our study, PIF3 (Kaladp0057s0097) which belongs to bHLH family, and 

Integrase-type DNA-binding superfamily protein (Kaladp0039s0495), which belongs to 

AP2/ERF-ERF family, have been previously identified in the comparative rhythmicity analysis 

to have a phase shift from their orthologues in A. thaliana (Moseley et al. 2018). The phase of 

PIF3 in K. fedtschenkoi was 6 hours leading its orthologue in A. thaliana, whereas the phase of 

Integrase-type DNA-binding superfamily protein in K. fedstchenkoi was 8 hours behind its 

orthologue in A. thaliana. There are 3 out of these 21 transcription factor genes 
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(Kaladp0093s0044-TCP family, Kaladp0053s0101-C2C2-Dof family and Kaladp0037s0181-

AP2/ERF-ERF family) which have rhythmicity in K. fedschenkoi but not in its orthologues in 

A. thaliana. There are 6 out of these 21 genes (Kaladp0131s0006-TCP family, 

Kaladp0087s0163-AP2/ERF-ERF family, Kaladp0071s0407 HB-KNOX family, 

Kaladp0085s0049-NAC family, Kaladp0089s0088-LOB family, Kaladp0060s0097-C2H2 

family) which have rhythmicity in A. thaliana but not in its orthologues in K. fedschenkoi. 

 

Discussion point 2: Complexity within  biological networks may have arisen from gene 

duplication and expanded gene families. 

Reconstructing the regulatory network for any organism is a challenging task due to the 

complex interplays between various controls, starting from the unfolding of chromatin 

structure up until the translocation of a functional protein to its right location. It is important to 

emphasise that the focus of this study is at the transcriptional control, nonetheless, there exists 

complexity due to a large number of transcription factors forming a combinatorial explosion 

across the whole network. Understanding the transcriptional regulatory network in plants is 

further complicated by the fact that plants have larger transcriptional factor families than 

animal and fungi, as a result of whole genome duplications, local duplications and transposon 

activities (Hong 2016). A good example of a transcription factor gene family expansion from 

duplication is the bHLH transcription factor family, the largest family of transcription factor in 

A. thaliana, with 137 and 218 gene members being identified in A. thaliana and K. fedtschenkoi 

respectively.  

Apart from the complexity arising from an expanded gene family, there is also evidence of 

transcription factors from different families binding to the same cis-element sequence. For 

example, members of both bHLH and bZIP transcription factor families are known to bind 

specifically to the same short sequence (G-box element), with a few exceptions of bHLH 

members binding to the E-box element (Ezer et al. 2017). This illustrates the complications in 

determining the gene regulatory networks based solely on the identification of short cis-

element sequences in the promoter region because a large number of transcription factors 

within the same family and across the families may utilise the same short cis-element sequence. 

In other words, due to the complication from genome duplication and shared cis-element, a 

gene regulatory network built from cis-element searching alone is not as indicative as a gene 
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regulatory network built from the direct association between transcription factor identities and 

their target sites. Previous studies have searched for the enrichment of cis-elements within the 

promoter regions of a sugar-storage obligate CAM species pineapple (Ananas comosus). The 

motif search within promoter regions of key CAM genes in pineapple found the CIRCADIAN 

CLOCK ASSOCIATED 1 (CCA1)-binding site (CBS; AAAAATCT) and G-box binding site 

(CACGTG) (Chen et al. 2020). This is consistent with our finding that the members of bHLH 

and bZIP are potential regulators of PPCK1, PPDK-RP and PPDK genes in K. fedtschenkoi. It 

is worth emphasising that the pineapple and K. fedtschenkoi belong to different clades of CAM 

as well as possessing different carbohydrate storage pathways;  (pineapple is sugar-storing 

whereas K. fedtschenkoi is starch-storing). On one hand, the similarity in having both bHLH 

and bZIP controlling key CAM genes perhaps indicate the homologous controls which were 

key to CAM development. On the other hand, the large family size of both bHLH and bZIP 

may allow for flexibility in developing CAM by using different family members to control the 

same key CAM genes, hence relaxing the evolutionary constraint on the exact transcription 

factor identity but relying more on locating the shared motif in the promoter regions of all key 

CAM genes. 

The network information constructed in this chapter would also allow for the identification of 

transcription factors that are unique to CAM specific isoforms of each CAM protein 

compared with the transcription factors of the homologous/paralogous genes which are not 

used in CAM. This additional analysis could provide a more in-depth information on the 

regulators upstream of CAM gene expression, which may or may not be involved with the 

known circadian network. 

Discussion point 3:  Central dogma of molecular biology does not end at the transcription 

step but is followed by post-translational and other controls. 

It is common to find multiple regulatory steps as a central dogma of molecular biology. The 

CAM system is no exception. The two key CAM enzymes, phosphoenolpyruvate carboxylase 

(PEPC) and PYR orthophosphate dikinase (PPDK) are classic examples of the combination of 

post-translational modification and other forms of regulation. The PEPC kinase (PPCK) 

enzyme phosphorylates PEPC to make it less sensitive to malate inhibition at night. Similarly, 

PPDK regulatory protein (PPDK-RP) performs post-translational modifications on PPDK to 

alter its biochemical properties to either be active or inactive, provided that the PPDK-RP is a 

bi-functional enzyme as in C4 species (Chastain et al. 2018). As a result, PEPC is active at 
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night for the carboxylation process whereas PPDK is active during the day for the 

decarboxylation process. 

 

Discussion point 4:  Defining ‘circadian genes’ for CAM is risky. A Circadian network 

generates the cell-autonomous biological clock, but many genes with rhythmical 

expression profiles may be the output, not the core components. 

Transcription factor with rhythmic diel expression profile do not always reach the targets in 

CAM systems. Transcription factor from HB-BELL, HB-PHD, HRT, and Tify families had 

been previously shown to have rhythmical diel expression pattern, however our study 

suggested that they do not reach targets within CAM 4 subnetworks (Moseley et al. 2018 and 

Table 6 of this chapter). Whereas the transcription factors from AP2/ERF-ERF, bHLH, C3H, 

GRAS,HSF, MYB, and Trihelix families have rhythmical members and reach targets across 

multiple subnetworks. Within the circadian subnetwork, HY5 and LUX have the lowest 

number of transcription factors reaching them as compared to other target genes in our 

circadian subnetwork.   

However, the set of target genes identified in the circadian subnetwork should be viewed with 

precautions. This is because such ‘Circadian genes’ of K. fedtschenkoi have been identified 

from the characteristics of gene expression profiles as opposed to the functional validation 

experiments in Arabidopsis thaliana (Moseley et al. 2018). To be more specific, these K. 

fedtschenkoi  ‘Circadian genes’ are the set of orthologues of A. thaliana circadian genes whose 

gene expression patterns met 3 selective criteria of the theoretical clock-gene behaviour: 

absolute amplitude > 10;fold-changes > 2; and JTK rhythmicity p ≤0.05. This restriction within 

the set of A. thaliana circadian orthologues could have pre-excluded unique circadian gene of 

K. fedtschenkoi. Alternatively, there is a potential for false positive identifications whereby the 

orthologues may retain the circadian characteristic in their expression profiles but are not 

functioning as part of the central circadian oscillators. Evidence in pineapple showed that there 

are approximately 42% of transcription factors and 45% of transcription co-regulators 

displaying diel rhythmic expressions (Sharma et al. 2017). This emphasises the potential 

existence of CAM-specific circadian genes at least in the sugar-storage monocot branch of 

CAM. Therefore, the circadian subnetwork results must be taken forward with caution and 

updated with additional, true circadian genes which have been identified and validated. 
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In addition to the post-translational controls, the time-series transcriptome data also showed 

that these target genes (PEPC and PPDK) and their respective regulators (PPCK and PPDK-

RP) all show diel expression patterns with peak expression levels at a specific time of the day. 

The expression of PPCK at night explains the nocturnal PEPC phosphorylation, whereas the 

bifunctionality of PPDK may require a more obscure explanation. Our study has advanced a 

step further by identifying the candidate transcription factors controlling the PEPC, PPCK, 

PPDK, and PPDK-RP (Figure 8-10). Overall, it is possible that transcriptional control would 

be operating alongside post-translational controls. Firstly, PPCK and PPDK-RP are known to 

be under transcriptional control. Subsequently, the PPCK and PPDK-RP exert their post-

translational control on their targets: PEPC and PPDK respectively. Finally, PEPC and PPDK 

are under both transcriptional control and post-translational control to ensure that night-time 

carboxylation and day-time decarboxylation are tightly regulated to prevent futile cycling. This 

multitude of controls can be pursued further in the context of the CAM spectrum, reflecting the 

plasticity in terms of strength and duration of the four phases of CAM (Griffiths et al. 2008).  

Furthermore, non-coding RNAs may be involved with CAM function. The evidence in 

pineapple (Ananas comosus) has suggested that long non-coding RNAs may compete with 

PPCK and PEPC genes for being transcribed in the photosynthetic tissue during the daytime, 

hence preventing these nocturnal CAM enzymes from being transcribed during the day (Bai et 

al. 2019). A separate study also identified 20% of pineapple microRNAs with diel expression 

pattern and the specific binding sequence to CAM genes including PPCK1 and MDH (Wai et 

al. 2017). The equivalent study of non-coding RNAs has not been undertaken in the Kalanchoe 

genus. 

 

Discussion point 5:  Comparing transcriptional regulation of stomatal-function genes 

between our network and the Local Edge Machine (LEM) algorithm  

A different study has built a gene regulatory network for K. fedtschenkoi stomata with a Local 

Edge Machine (LEM) algorithm (Moseley et al. 2021). In that study, 1,605 stomatal genes were 

obtained from a text-mining approach, 17 of which were controlled by core clock TFs and had 

rescheduled expression pattern compared to their orthologues in A. thaliana. Within these 17 

target genes, 3 of which are known to have gene ontology as calcium-dependent protein kinase 

26 (CPK26), phototropin-2 (PHOT2), and mitogen-activated protein kinase homolog 

(MMK2); 5 genes were obtained from the K. fedtschenkoi transcriptome project (Yang et al. 
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2017), whereas the other 12 target genes in Moseley’s stomatal subnetwork were obtained from 

a text mining approach. From the algorithmic point of view, Moseley’s starting set of target 

genes are wider than our set of target genes because they not only included 20 genes from 

homology-based method from the K. fedtschenkoi transcriptome project, but also included 

1,585 more genes from text-mining approach (Moseley et al. 2021; Yang et al. 2017). On the 

contrary, our set of potential regulators are wider than in Moseley’s study because we allowed 

for any transcription factors and any gene across the genome, whereas Moseley restricted the 

regulators within the set of clock transcription factors. 

Phototropin 2 (PHOT2; gene ID Kaladp0033s0113) was selected as gene of interest in both our 

study and Moseley et al 2020. The Phototropin 2 (PHOT2) has been in the spotlight for stomatal 

functioning in CAM since 2019  from the evidence of convergence change in the diel 

expression pattern found in two CAM species (K. fedtschenkoi and Ananas comosus) relative 

to the expression pattern in C3 A. thaliana (Moseley et al. 2018). The timing of peak transcript 

abundance in K. fedtschenkoi and A. comosus shifts from the pattern in A. thaliana by 11-hr 

and 9-hr respectively making the PHOT2 gene being most abundant at dusk in CAM, rather 

than at dawn in A. thaliana. The possibility of this PHOT2 participating in pathway that 

contributes to the inverted timing of the stomatal opening in CAM was later followed by the 

knockdown study in K. fedtschenkoi, the first Crispr/cas protocol paper for CAM (Liu et al. 

2019). This experiment showed that the lack of PHOT2 resulted in higher stomatal conductance 

and CO2 assimilation at night but lower stomatal conductance and CO2 assimilation in the late 

afternoon (Phase IV) suggesting that PHOT2 is participating in the timing of stomatal opening 

in CAM. However, whether PHOT2 is functioning to promote stomatal opening both in the 

night (Phase I) and day (Phase IV) requires the direct comparisons of the transcript abundance 

and protein activity between wildtype and knockdown line at both timepoints, which were not 

reported from such a study (Liu et al. 2019). 
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Conclusions: 

Our computational analysis has narrowed down candidate transcription factors governing 

CAM function in Kalanchoe fedtschenkoi from 3,048 transcription factors from 69 families 

down to exactly 21 transcription factors from 12 families, and the remaining transcription 

factors have been ranked in order of potential significance for regulating a certain target gene. 

In the long run, our analysis pipeline can be applied to other CAM species with annotated 

genome and time-series transcriptome data to allow cross-species comparisons of CAM 

evolution (Ming et al. 2015; Zheng et al. 2016; Yang et al., 2017; Wai and VanBuren, 2018; 

Yin et al. 2018; Heyduk et al. 2019; Abraham et al. 2020). Additionally, this GRN inference 

method can facilitate attempts at targeted transcriptional reprogramming, because the GRN 

finding has narrowed down the set of candidate regulators and opened up the opportunity to 

identify novel regulatory components in an unbiased manner from information derived across 

the entire  genome (Amin et al. 2019). With computational prediction, a set of strong candidates 

has been narrowed down from the genome-wide data. Subsequently, this set of strong 

candidates could be validated experimentally with the new CRISPR/Cas9 transformation 

protocol developed specifically for CAM species (Liu et al. 2019). The experimental validation 

would distinguish the functional regulators from the pool of stochastic-binding transcription 

factors. Subsequently, the up-to-date knowledge on transcriptional factor identities can be fed 

back into the machine-learning model to develop a better prediction under a supervised method. 

It is clear that both the computation and the large-scale experimental validation should go hand 

in hand to advance the CAM physiology field. As a general rule, plant physiology research can 

advance faster with computational tools with the availability of the large scale -omics data, 

provided that the fundamental physiological questions are always kept in mind.  
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Introduction: 

The Gene Regulatory Network Inference in Chapter 3 have provided a list of candidate 

transcriptional regulators and their predicted target genes with the presence of specific cis-

element within the promoter regions. Even though these predictions were based on the 24-hour 

timeseries transcriptome data, they do not represent the direct binding evidence of the 

transcriptional regulators on their targets nor the timing and condition that such binding may 

have taken place. Thus, it is essential to pursue the area of Gene Regulatory Network through 

the attempt to access the physical status of the chromatin and their associated proteins. The 

knowledge of the Gene Regulatory Network of CAM would be improved by the availability of 

pure nuclei and the intact binding evidence of the transcription factors and their associated cis-

elements. 

There are multiple options with different limitations for identifying open-chromatin region and 

the transcription factor binding regions within a genome. First, Chromatin 

Immunoprecipitation followed by Sequencing (ChIP-seq) relies on the immunoprecipitation of 

the antigen-antibodies specific for the proteins of interest which can be transcription factors, 

histones or enhancers, prior to sequencing. Only the chromatin regions associated with the 

proteins of interest are selectively pulled by the corresponding antibodies and sequenced. This 

technique was made possible because of the next-generation sequencing and the early studies 

which adopted this ChIP-seq technique were published in 2007 (Park 2009). However, ChIP-

seq in CAM species is challenging because there are not widely available set of antibodies 

designed to be specific for CAM transcription factors. In general, the antibodies against most 

plant transcription factors are lacking, thus it requires an additional step of generating the 

epitope-tagged versions of proteins of interest from the transgenic lines (Lu et al. 2017).  

Second, micrococcal nuclease digestion followed by high throughput sequencing (MNase-seq) 

relies on the micrococcal nuclease enzyme to cut the nucleosome-depleted region of the 

genome and returns the sequencing reads for the nucleosomal regions. This technique relies on 

laborious MNase enzyme titration and required 1-10 millions cells (Tsompana and Buck 2014). 

Third, DNase I hypersensitive sites sequencing (DNaseI-seq) uses the DNaseI enzyme to also 

cut the nucleosome-depleted region of the chromosome but returns the sequencing reads for 

the open regions with possibilities for the transcription factor binding evidence. DNase-seq 

also requires several enzyme titration and required 1-10 millions cells similar to MNase-seq 

(Tsompana and Buck 2014). Fourth, Formaldehyde-Assisted Isolation of Regulatory Elements 
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(FAIRE-seq), rely on the formaldehyde crosslinking and sonication to extract the nucleosomal-

depleted regions. This technique requires 100,000 to 10 million cells and returns low signal-

to-noise ratio which hinders the signal interpretation (Tsompana and Buck 2014).  

Finally, Assay for Transposase Accessibility Chromatin Sequencing (ATAC-seq) uses Tn5 

transposase enzyme which can access and cut accessible regions. The sequencing reads show 

the patterns of signal drop in the inaccessible regions indicating the evidence of protein binding. 

ATAC-seq is considered the most convenient method to date due to its concise protocol and its 

requirement of the smallest number of pure nuclei (500-50,000 nuclei) (Tsompana and Buck 

2014). This ATAC-seq technique was adopted for Arabidopsis thaliana in 2018 (Bajic et al. 

2018). 

To obtain pure nuclei for any chromatin accessibility protocol, nuclei sorting with flow 

cytometer offers a promising protocol. The fluorescence-activated nuclei sorting prior to 

ATAC-sequencing (FAN-ATAC) has been adopted successfully for A. thaliana to improve the 

quality of nuclei purification (Lu et al. 2017). Nonetheless, the adopting of any C3 protocol for 

CAM plants could be challenging due to the distinct anatomical structure of water-storage 

tissue, mucus tissue, malic acid storage. In addition, the thick epidermal layer may influence 

the protocol from the physical liquid nitrogen grinding or interact with chemical of the C3-

species extraction protocol. Nonetheless, fluorescence-based sorting is still the most promising 

tool to progress towards pure nuclei extraction for chromatin accessibility assay or other 

molecular protocols that require nuclei as starting material. Here, we combined the sucrose-

gradient nuclei isolation method with the fluorescence-based flow cytometry technique to 

segregate the particle into different populations which would improve the purity of nuclei. 

This chapter reported the absorption/emission patterns of particles in the nuclei extract obtained 

from sucrose-gradient nuclei isolation method. The absorption/emission patterns specific to 

DAPI signal were recorded as an indicator for the DNA-containing particles, whilst the red 

signal was recorded as an indicator of the chlorophyll fluorescence, and the forward scattering 

signal was an indicator of particle size. In this experiment, the population of particles that had 

DAPI signal but not chlorophyll fluorescence accounts for at least 44.2% of total particle counts 

(equivalent to 2,210 particles in total per flow cytometer run). 
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Material and methods: 

Plant growth 

Kalanchoe fedtschenkoi from the Cambridge botanical garden were grown and maintained in 

a glass house for 10 months under the natural light (with supplementary light to keep minimum 

radiance at 390-410 W/m2 through 06.00 am-18.00 pm during the short-day period), 40% 

Relative humidity, daytime temperature of 18 °C, and nighttime temperature of 15 °C. Leaf 

samples were taken from leaf pair 5th counting from the top starting from the first fully grown 

leaf pair and snap frozen in liquid nitrogen prior to the nuclei isolation process. 

Nuclei isolation (Sucrose-gradient method) 

Frozen leaf samples (~0.5 g) were ground in the ice-cold mortar with the liquid nitrogen until 

the tissue was broken into green homogeneous powder. The ground tissue was suspended in 

45 mL extraction buffer (14.6 mM Pipes pH 6.5, 19.5 mM NaCl, 78 mM KCl, 0.975 mM 

EDTA pH 8.0, 0.293 M Sucrose, 0.05 %V/V β-mercaptoethanol, 2.5 mM Spermidine, 1% V/V 

Triton-X, 0.125 mM Polyvinylpyrrolidone PVP40 and 1mM Protease inhibitor) and left on ice 

for 5 minutes before filtering through Miracloth (pore diameter 22-25µm) twice. The filtered 

solutions were centrifuged at 4,000 rpm at 4 °C for 20 minutes. Subsequently, the pellets were 

resuspended in 1 mL of extraction buffer (see above) before centrifuged at 12,000 rpm at 4 °C 

for 10 minutes. The pellets were resuspended in 300 µL of extraction buffer (see above) before 

layering on top of the clean 300 µL of extraction buffer (see above) in a different Eppendorf 

tube and centrifuged at 16,000 rpm at 4 °C for 1 hour. Finally, the pellets containing isolated 

nuclei were resuspended in 1 mL of extraction buffer (see above) to obtain the final product 

from the nuclei extraction steps. 

DAPI (6-Diamidino-2-phenylindol) staining 

The 10X DAPI solution (equivalent to 7.2 mM) was prepared by dissolving  10 mg DAPI in 5 

mL deionised water. The 10x DAPI solutions were kept in the dark at 4 °C before diluted 

tenfold into 1x DAPI solution for staining the nuclei extract with the proportion of 100 µL of 

1x DAPI in 1 mL of nuclei extract. 

Flow cytometer 

The nuclei extracts were passed into the Aurora Cytek machine (model: N7-00000-0A, serial 

number: R0069) with the maximum flow rate of 15 µL/min and total count of 5,000 particle 
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per run. The instrument were set to detect the DAPI signal (UV absorption with peak emission 

at 458 nm and emission range 428-720 nm). The laser and detection channels involved being 

used in this experiment were ultraviolet laser (Excitation 355 nm, Power 20 mW) with 16 UV 

channel detectors (UV4 channel with centre at 433 nm, bandwidth 15 nm, wavelength range 

436-451 nm) and 8 red channel detector (R3 channel with centre at 697 nm, bandwidth 19 nm, 

wavelength range 688-707 nm). The snap shot were taken after the flow rate was stabilised for 

30 second and as triplicates for each sample. The absorbance profiles of all particles being 

detected by the flow cytometer were recorded in the UV, red, forward scatter (FSC) and side 

scatter (SSC) channels.  

*Notably, the Aurora cytek flow cytometer is able to measure proportion of each subpopulation 

with their unique absorption/emission spectrum but does not allow the retrieval of 

subpopulation afterwards. This is different from cell sorter machine which allow the collection 

of one or more subpopulation from the pool after the proportion of each subpopulation has been 

determined despite both using the similar flow cytometry approach. 
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Results: 

The absorption/emission patterns of the samples with specific to DAPI channel were recorded 

through the UV4-A and R3-A channels. The absorption/emission patterns were different 

between the unstained sample and DAPI-stained sample (Figure 1). This indicated that the 

nuclei extraction indeed contained the DNA-containing particles (i.e. nuclei, mitochondria and 

chloroplast). The maximum emission of the unstained sample was in the range of 10-103 with 

the background emission in the range of 103-105. In contrast, the emission of the DAPI-stained 

sample appeared as a single peak in the range of 103-105.  

Population-1 was selected based on the absorption/emission patterns that appeared in the 

DAPI-stained set but not the unstained set , thus are most likely to be nuclei. Notably, the 

population-1 did not include the particles with red-wavelength emissions of more than 103. 

This is because the Channel R3-A (red channel) was selected to monitor the chlorophyll 

fluorescence of chloroplast particles that may have been contaminated in the nuclei extracts. 

The separation of the subpopulations according to the R3-A channel added another level of 

nuclei purification by excluding the particles that show red-emission (R3-A) despite having 

been positively stained with the DAPI and also returned blue-emission spectrum (UV4-A). 
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Figure 1: The comparison of flow cytometry signal of unstained and DAPI-stained nuclei 

extractions from Kalanchoe fedtschenkoi (biological replicate 1, technical replicate 1) 

(A-B)The absorption/emission patterns of the samples with specific to DAPI channel were 

recorded through the UV4-A and R3-A channels for blue light (wavelength range 436-451 nm) 

and red light (wavelength range 688-707 nm), respectively. (C-D) Particle count at each UV4-

A signal were plotted to show double peaks in the unstained sample and single peak in the 

DAPI-stained sample. 
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Figure 2: The comparison of flow cytometry signal of unstained and DAPI-stained nuclei 

extractions from Kalanchoe fedtschenkoi (biological replicate 1, technical replicate 2) 

(A-B)The absorption/emission patterns of the samples with specific to DAPI channel were 

recorded through the UV4-A and R3-A channels for blue light (wavelength range 436-451 nm) 

and red light (wavelength range 688-707 nm), respectively. (C-D) Particle count at each UV4-

A signal were plotted to show double peaks in the unstained sample and single peak in the 

DAPI-stained sample. 
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Figure 3: The comparison of flow cytometry signal of unstained and DAPI-stained nuclei 

extractions from Kalanchoe fedtschenkoi (biological replicate 1, technical replicate 3) 

(A-B)The absorption/emission patterns of the samples with specific to DAPI channel were 

recorded through the UV4-A and R3-A channels for blue light (wavelength range 436-451 nm) 

and red light (wavelength range 688-707 nm), respectively. (C-D) Particle count at each UV4-

A signal were plotted to show double peaks in the unstained sample and single peak in the 

DAPI-stained sample. 

 

 

 

Unstained  DAPI-stained 

A B 

C D 



137 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The comparison of flow cytometry signal of unstained and DAPI-stained nuclei 

extractions from Kalanchoe fedtschenkoi (biological replicate 2, technical replicate 1) 

(A-B)The absorption/emission patterns of the samples with specific to DAPI channel were 

recorded through the UV4-A and R3-A channels for blue light (wavelength range 436-451 nm) 

and red light (wavelength range 688-707 nm), respectively. (C-D) Particle count at each UV4-

A signal were plotted to show double peaks in the unstained sample and single peak in the 

DAPI-stained sample. 
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Figure 5: The comparison of flow cytometry signal of unstained and DAPI-stained nuclei 

extractions from Kalanchoe fedtschenkoi (biological replicate 2, technical replicate 2) 

(A-B)The absorption/emission patterns of the samples with specific to DAPI channel were 

recorded through the UV4-A and R3-A channels for blue light (wavelength range 436-451 nm) 

and red light (wavelength range 688-707 nm), respectively. (C-D) Particle count at each UV4-

A signal were plotted to show double peaks in the unstained sample and single peak in the 

DAPI-stained sample. 
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Figure 6: The comparison of flow cytometry signal of unstained and DAPI-stained nuclei 

extractions from Kalanchoe fedtschenkoi (biological replicate 2, technical replicate 3) 

(A-B)The absorption/emission patterns of the samples with specific to DAPI channel were 

recorded through the UV4-A and R3-A channels for blue light (wavelength range 436-451 nm) 

and red light (wavelength range 688-707 nm), respectively. (C-D) Particle count at each UV4-

A signal were plotted to show double peaks in the unstained sample and single peak in the 

DAPI-stained sample. 
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Figure 7: The comparison of flow cytometry signal of unstained and DAPI-stained nuclei 

extractions from Kalanchoe fedtschenkoi (biological replicate 3, technical replicate 1) 

(A-B)The absorption/emission patterns of the samples with specific to DAPI channel were 

recorded through the UV4-A and R3-A channels for blue light (wavelength range 436-451 nm) 

and red light (wavelength range 688-707 nm), respectively. (C-D) Particle count at each UV4-

A signal were plotted to show double peaks in the unstained sample and single peak in the 

DAPI-stained sample. 

 

 

Unstained  DAPI-stained 

A B 

C D 



141 
 

Although the population-1 has been selected to exclude chloroplast, the population-1 may still 

contain mitochondrial contamination instead of pure nuclei which can be expected from the 

sucrose-gradient nuclei isolation method. To alleviate this problem with the flow-cytometry 

approach, the DAPI absorption/emission was plotted against the forward scattering signal 

(FSC-A) because the DAPI signal indicated the DNA-containing particle whereas the forward 

scattering signal was positively correlated with the size of the particles being detected. 

Therefore, the population-1 can be further subdivided into population-8 and population-9 

according to the forward scattering signal (FSC-A). Population-8 represented the DNA-

containing particles with smaller size than the population-9, thus the population-9 is expected 

to contained the highest proportion of nuclei and should be selected for further molecular 

experiments. The similar flow cytometry approach can be repeated in the cell sorter machine 

prior to collecting the population-9 to be visualised under fluorescence microscope to verify 

the integrity and identity of nuclei. 
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Figure 8:  Population-1 were further categorised according to particle size indicated by 

forward scattering signal (FSC-A) (biological replicate 1) 

(A) Population-1 was selected based on the absorption/emission patterns specific to DAPI 

channel which were recorded through the UV4-A and R3-A channels for blue light (wavelength 

range 436-451 nm) and red light (wavelength range 688-707 nm), respectively.  

(B) Population-1 was divided into population-8 and population-9 based on FSC-A signal 

showing the population-8 with smaller particle size and population-9 with larger particle size, 

while both populations show blue light emission but not red light emission. The data was 

obtained from K. fedtschenkoi biological replicate 1. 
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Figure 9:  Population-1 were further categorised according to particle size indicated by 

forward scattering signal (FSC-A) (biological replicate 2) 

(A) Population-1 was selected based on the absorption/emission patterns specific to DAPI 

channel which were recorded through the UV4-A and R3-A channels for blue light (wavelength 

range 436-451 nm) and red light (wavelength range 688-707 nm), respectively.  

(B) Population-1 was divided into population-8 and population-9 based on FSC-A signal 

showing the population-8 with smaller particle size and population-9 with larger particle size, 

while both populations show blue light emission but not red light emission. The data was 

obtained from K. fedtschenkoi biological replicate 2. 
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Figure 10:  Population-1 were further categorised according to particle size indicated by 

forward scattering signal (FSC-A) (biological replicate 3) 

 (A) Population-1 was selected based on the absorption/emission patterns specific to DAPI 

channel which were recorded through the UV4-A and R3-A channels for blue light (wavelength 

range 436-451 nm) and red light (wavelength range 688-707 nm), respectively.  

(B) Population-1 was divided into population-8 and population-9 based on FSC-A signal 

showing the population-8 with smaller particle size and population-9 with larger particle size, 

while both populations show blue light emission but not red light emission. The data was 

obtained from K. fedtschenkoi biological replicate 3. 
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Discussion: 

The flow cytometer successfully allowed for separation of particles in the nuclei extract of K. 

fedtschenkoi according to their absorption/emission wavelength patterns. This would allow for 

an improved method for selecting pure nuclei despite the sample being prepared from the 

sucrose-gradient nuclei isolation method. The combination of sucrose-gradient and flow 

cytometer can thus circumvent the time and resource limitation in generating transgenic 

INTACT line in the CAM model species, whereas the purity of nuclei isolation can be 

improved according to their absorption/emission wavelength patterns.  

The fluorescent dye 4’-6-Diamidino-2-phenylindole (DAPI) was used in staining DNA-

containing particles in the nuclei extracts because the dye has high specificity for DNA. The 

DAPI-bound DNA has maximum excitation with the UV light of 358 nm, while the maximum 

emission is in the blue light range with maximum emission of 461 nm (Karg and Golic 2018). 

The choice of the dye was a topic of critical decision because it would be preferable to use the 

dye that do not interfere with the accessibility of DNA for the downstream ATAC-sequencing 

protocol. Literature review supported the mechanism of DAPI binding to the minor groove area 

of the DNA with preferential binding to the AT-rich region as opposed to intercalating between 

the base-pair ladder (Tanious et al. 1992; Pineda De Castro and Zacharias 2002). As a result, 

DAPI was considered permissible for nuclei preparation protocol for ATAC-sequencing 

because the non-intercalating property whilst the AT-rich signal may be selectively subtracted 

from the sequencing reads afterwards. In addition, it is common to use DAPI in the nuclei 

preparation protocol for ATAC-sequencing in other plants (Lu et al. 2017; Bajic et al. 2018). 

The non-zero background emission in the unstained sample indicated the DAPI-like emission 

without DAPI staining. This background signal is detected in all technical replicates, thus not 

indicating the cross-contamination in a single preparation batch. Therefore, this signal must 

represent non-DNA-containing particles within the nuclei extracts which can be accessory 

pigments. Although the reading overlap with the DAPI-stained particle, the presence of these 

non-DNA-containing particles would not compete with nuclei for Tn5 reaction, hence the 

selection of particle from this emission range should not be problematic for the ATAC protocol. 

In the ATAC study by Liu, the authors also select the corresponding region with maximum 

population size for the downstream Tn5 reaction with the subsequently successful ATAC-

sequencing signals. 
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Although the chloroplast and mitochondria should have been separated from the nuclei 

according to their different densities through the centrifugation process, there are possibilities 

that the chloroplast and mitochondria are contaminated in the final nuclei extracts depending 

on the density of these organelles in each species. However, the flow cytometry technique 

allowed for chloroplast population to be visualised due to their chlorophyll fluorescence 

property (Ni et al. 2019). In contrast, mitochondria do not have the inherent fluorescence 

property but they can be separated from nuclei due to their smaller size which is positively 

correlated to the forward scattering signal. Moreover, if the information regarding the 

granularity of these organelles and nuclei in CAM has emerged, the side scattering channel can 

be used in separating these subpopulations (Cossarizza et al. 2017). Finally, similar process as 

outlined in this experiment can be performed in the cell sorter machine. The selected population 

can be collected and subsequently visualised under the fluorescence microscope to check the 

morphology and integrity of nuclei as well as verifying the percentage of mitochondrial and 

chloroplast in each subpopulation. 
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Conclusions: 

Fluorescence-based flow cytometry with Cytek aurora instrument improved the purity of the 

nuclei extracts obtained from the sucrose-gradient method. The DAPI staining was the front 

line for selecting DNA-containing elements. Although the sucrose-gradient method should 

have minimised the contamination of chloroplasts and mitochondria in the final nuclei extracts 

due to the different densities, the flow cytometry technique can ensure that these contaminants 

are separated from the nuclei samples. Red autofluorescence signal and forward scattering 

signal are the two main axes for separating chloroplasts and mitochondria from the nuclei, 

respectively. 

The same flow cytometry setting can be repeated with the cell sorter instrument. The cell sorter 

instrument would enable the collection of particles from each fluorescent population according 

to their absorption/emission profiles. Subsequently, the collected samples can be visualised 

under a fluorescence microscope or processed with molecular protocols. Overall, the 

combination of sucrose-gradient nuclei isolation and fluorescence-based flow cytometry 

technique would improve the purity of final nuclei samples. This is suitable for ATAC-seq 

preparation as the higher purity of nuclei extracts would reduce the signal loss through the Tn5 

enzyme cross-reaction with mitochondrial and chloroplast DNA. 
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Chapter 5 

General conclusions and 

recommendations 
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Summary: 

The main theme of this thesis was to explore the regulatory landscape of CAM using systems 

biology approaches. The scope of the regulatory landscape was drawn around the mesophyll 

metabolism of the dicotyledonous obligate CAM genus, Kalanchoe, even though the 

computational frameworks that had been developed here can also be applied to other species 

from different CAM clades.  

Firstly, Ordinary Differential Equation modelling of Crassulacean acid metabolism (Chapter 

2) was developed to capture the classical gas-exchange patterns as well as the responses to 

perturbation conditions. The matching between the modelling output and experimental data for 

the wild-type unperturbed plants suggested that the minimal version of the mechanistic model 

was sufficient to explain the classical gas-exchange pattern of CAM. The matching between 

the modelling output and experimental data for the CO2-perturbation condition suggested that 

the model can represent the biological plant under such a physical perturbation scenario. In 

contrast, the discrepancies between the modelling output and the experimental data for the 

Phosphoenolpyruvate Carboxylase (PEPC) knockdown scenario at the start of the daytime 

suggested that the knocking down the pepc gene may have interfered with other metabolic 

components, hence the standard model would require more refined parameterisation. These 

findings from Chapter 2 encouraged me to explore the higher level of CAM regulation that 

acted upstream of the protein content and activity, and controlled physiological expression. 

This led to the interest in the Gene Regulatory Network of CAM which was explored in the 

next chapter. 

Secondly, the Gene Regulatory Network Inference of Kalanchoe fedtschenkoi (Chapter 3) 

identifies potential transcriptional regulators on different functional compartments of CAM 

including the following: Carboxylation subnetwork, Decarboxylation subnetwork, Circadian 

subnetwork and Stomatal subnetwork. The dynGENIE3 algorithm ranked candidate regulators 

for each target gene from the most to least likely candidates according to the patterns of 

transcriptome data collected over a 24-hour period. These candidates were subsequently 

checked for the presence of the corresponding cis-elements within the promoter regions of their 

target genes using the FIMO tool. This chapter highlighted the potential transcriptional 

regulators of ppck, pepc, ppdk-rp, ppdk, phya, phyb, pif3, hy5, elf3, elf4, lux, ost1, slac1, phot2. 

From the total of 3,048 transcription factors from 69 transcription factor families, the analyses 

identified the patterns of multiple target genes from the same subnetwork sharing the same 
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potential transcriptional regulators. In addition, 21 transcription factor genes interacted with 

targets across all 4 subnetworks.  

Because the Gene Regulatory Network Inference had provided the ranking of the potential 

transcriptional regulatory candidates, a reasonable step forward would be to probe for the direct 

binding evidence through molecular approaches. The state-of-the-art genome-wide chromatin 

accessibility profiling is ATAC-sequencing which had not been done on CAM species to date. 

Therefore, an improvement in the nuclei extraction protocol was required as it would provide 

the very first step towards an efficient ATAC-sequencing protocol.  

Finally, Chapter 4 explored the Nuclei isolation followed by the flow cytometry separation 

technique for Kalanchoe fedtschenkoi. The DAPI staining signals indicated the presence of 

DNA materials in the nuclei extracts obtained from the sucrose-gradient method. In addition, 

the autofluorescence signal and the forward scattering signal could be used for further 

segregating chloroplast and mitochondria from the nuclei. Overall, the population that has 

fluorescence characteristics of nuclei can be obtained for further experiments. This concluded 

the thesis by opening up the way to connect the computational prediction back to the 

experimental designs and validations. The following section covered each chapter in greater 

detail with the recommendation for future research. 
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Significance of the findings under the broader context of CAM: 

The system of Ordinary Differential Equations (ODEs) with the set of five equations that 

represent the key mesophyll metabolic processes were shown to capture the classical gas 

exchange patterns of Kalanchoe species (Chapter 2). Subsequently, the responses of the system 

were tested with two types of perturbation including the external CO2 manipulation and the 

internal downregulation of PEPC activity. The key result showed that the ODE model is 

capable of responding to both external and internal perturbations. The model simulations 

captured the broad trends of the experimental gas-exchange data provided that the enzyme 

Rubisco becomes active earlier in the diurnal phase when modelling the PEPC downregulation 

scenario.  

The early activation of Rubisco was a prerequisite in the PEPC knockdown simulation but not 

in the CO2 perturbation simulation. This suggested that CAM mesophyll photosynthetic 

enzymes may be more sensitive to the concentration of metabolites within the mesophyll layer 

than the flow rate of carbon dioxide. Griffiths et al 2002 suggested that the environmental 

conditions limiting nocturnal PEPC activity may have resulted in the early activation of 

Rubisco in the following diurnal phase (Griffiths et al. 2002). The changes in metabolic profiles 

in the PEPC knockdown line were detected for malate, starch, sucrose, glucose and fructose 

(Susanna F. Boxall et al. 2020). Thus, these metabolites are interesting candidates for functioning 

as primary stimuli or secondary messengers communicating the nocturnal carbon starvation 

status to the diurnal carboxylation pathway.  

As previously discussed in Chapter 2, the ODE model structure allows for an empirical fine-

tuning through parameterisation. Nonetheless, the model outputs remain responsive to key 

biochemical parameters which include, but are not limited to, PEPC activity and Rubisco 

activity. Therefore, the ODE system could be a useful tool for modelling more types of 

perturbations and addressing the gap between the internal metabolic signals and the activities 

of key CAM proteins. Metabolites that are explicitly written in the ODE model can be 

parameterised with the data from different perturbation studies. In contrast,  metabolites that 

are implicitly influencing the system through enzyme activities can be introduced into the 

model either via an addition of inhibition/activation equation or the adjustment of apparent 

enzyme activity. 

Because the parameters of the ODE model represent the level of protein activities, all of the 

upstream regulations prior to protein function have been implicitly incorporated into the input 
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parameters. To explore the potential transcriptional regulation of CAM genes, the Gene 

Regulatory Network (GRN) inference method from timeseries transcriptome data offered a 

more independent solution (Chapter 3). The gene encoding for enzyme PEPCkinase (PPCK) 

was expected to be under a strict transcriptional regulation because it had the distinct nocturnal 

gene expression pattern. With the GRN inference method, the gene encoding for PEPCkinase 

was predicted to be under the transcriptional regulation of members from BES1, bHLH, TCP, 

AP2/ERF-ERF, C2H2 and MYB transcription factor families. 

GRN inference approach also identified potential regulators of other key CAM genes that 

showed diel expression patterns but have not previously been probed for transcriptional 

regulation. These key CAM genes included ppck, pepc, ppdk-rp, ppdk, phya, phyb, pif3, hy5, 

elf3, elf4, lux, ost1, slac1, phot2. Transcriptional responses of CAM genes in 

Mesembryanthemum crystallinum had been curated previously (Cushman and Bohnert 1996). 

One member of PEPC gene family (Ppc1), NAD(P)-malate dehydrogenase and Pyruvate 

orthophosphate dikinase were upregulated in responses to salt stress and developmental stage 

in this inducible CAM species, whereas another member of PEPC gene family (Ppc2) was not 

responsive to salt stress. This has raised interesting question regarding the similarities or 

differences of the identity of the transcriptional regulators between Mesembryanthemum spp. 

and Kalanchoe spp. From a phylogenetic perspective, due to the distance between 

Mesembryanthemum genus and Kalanchoe genus, it would be unexpected for these two clades 

to rely on the equivalent set of  transcriptional regulators.  

Nonetheless, the regulatory motif must be accessible for these candidate transcriptional 

regulators to bind and induce or suppress the transcriptional activity. Methylation status in the 

promoter region of PEPC gene in C4 species like maize were reported to influence the 

expression level and enzyme concentration (Langdale et al. 1991). The chromatin accessibility 

would determine whether these potential regulators are functioning in vivo. The availability of 

the nuclei isolation protocol for K. fedtschenkoi (Chapter 4) allows for the further development 

of the Assay for Transposase Accessibility Chromatin Sequencing (ATAC) to determine the 

open chromatin region and possibly the transcription factor foot-printing for CAM species for 

the first time. 

Apart from the epigenetics and transcriptional regulation, other levels of regulation play 

important roles in CAM. The classical post-translational regulation of PEPC has always played 

important roles in modulating the PEPC sensitivity to malate inhibition. Furthermore, evidence 
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of the non-canonical regulation by non-coding RNA is also emerging. Overall, the CAM 

system relies on precise control at every level. Nevertheless, the mRNA product from 

transcriptional step determines whether the protein can be produced in the first place, prior to 

any post-translational modifications.  

All potential regulators including transcription factors and other types of transcriptional 

regulators identified in this thesis were ranked for all genes across the genome. This dataset is 

readily available for future research when one needs to prioritise which candidate regulators 

are to be genetically manipulated, given limited time and resources. With the available CAM 

transgenic protocols through RNA interference  and CRISPR-Cas methods, the transcription 

regulators of interest can be manipulated. Subsequently, the system responses of the transgenic 

lines and the wildtype can be compared in terms of gene expression patterns, enzyme activities 

and the overall gas-exchange patterns to infer the biological significance of each candidate 

regulator. 
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Recommendations for future research: 

Chapter 2 Ordinary differential equation modelling of Crassulacean acid metabolism to 

capture responses to perturbation conditions  

Chapter 2 examined the performance of core components of the pre-existing systems dynamic 

model of CAM and examine the flexibility of the parameterisation and the optimisation steps. 

The findings supported the following hypotheses. 

Hypothesis 1: The ODE system will be sufficient to capture the broad pattern of CAM but may 

be limited in terms of the parameterisation and optimisation.  

Hypothesis 2: The ODE system will be limited by the higher level of regulatory controls 

including transcriptional controls. 

 

Recommendation for future research for Chapter 2 

To explore the roles of metabolites, the metabolic components can be parameterised directly 

or exert the influence through the addition of inhibition/activation equations into the ODE 

systems. However, the introducing of more parameters into the systems of equations are 

projected to introduce a greater degree of uncertainty into the model predictions.  

The truncated daytime gas-exchange patterns which mimicked the drought stress response,  and 

the predicted early activation of Rubisco in the transgenic PEPC knockdown line, should be 

explored in other transgenic plants to verify if such responses were common physiological 

responses for all PEPC knockdown plants. In addition, any concomitant changes from other 

photosynthetic components, such as the electron transport rate and other Calvin cycle enzymes 

that has occurred within the same time frame as Rubisco activation could be explored. The 

findings would allow for model development as well as physiological insights into the 

transgenic PEPC lines. 

From statistical perspective, it is advisable to gather more experimental data for wildtype and 

transgenic plants under the same experimental settings, with  a sample size of at least 30 

biological replicates. Subsequently, the cross-validation method can be applied to verify the 

discrepancies between the trained and test dataset. The practical step would be to collect data 

of any new transgenic lines and their respective wildtype across the CAM research community. 
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Chapter 3 Gene regulatory network inference identifies key transcriptional regulators of 

CAM in Kalanchoe fedtschenkoi 

Chapter 3 constructed Gene Regulatory Network from the publicly available timeseries 

transcriptome data of Kalanchoe fedtschenkoi for this model CAM species for the first time. 

The findings supported the following hypotheses. 

Hypothesis 1: The amount of data from the timeseries transcriptome data of K. fedtschenkoi 

was sufficient for the dynGENIE3 algorithm whilst the size of the computer cluster would 

provide sufficient computational power and storage memory. 

Hypothesis 2: The output of the Gene Regulatory Network will return candidates transcription 

factors of key CAM genes for each functional pathways; namely carboxylation, 

decarboxylation, circadian and stomata. 

Hypothesis 3: A number of the associated candidates transcription factors have transcription 

factor binding sites (TFBS) in the promoter regions of their corresponding target genes.  

Hypothesis 4: There will be shared transcription factors between multiple genes from the same 

pathway, and between genes from different pathways.  

Hypothesis 5: This chapter will identify multiple transcription factors targeting the same target 

gene. 

 

Recommendation for future research for Chapter 3 

When more multi-omics data of the CAM model species has become available, the input 

functions of the dynGENIE3 algorithm can be replaced with the functional protein data which 

can capture the concentration, activity and location of proteins. The dynGENIE3 algorithm 

models the expression level of any gene j to be dependent on the rate of gene expression minus 

mRNA degradation. Subsequently, the transcription rate was assumed to be a potentially non-

linear function fj of the expression levels of any genes p. In the real biological system, the 

transcription rate is dependent on the concentration, activity, and location of transcriptional 

regulators which influence the probability of successful binding to promoter region of the target 

genes. Whenever the expression levels of gene p does not directly reflect the probability of 

successful binding, the GRN prediction will not represent the real biological system. 

Alternatively, by replacing the input function from gene expression level with protein 
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information (i.e. concentration, activity, and location), the GRN models can be restored back 

to represent the in vivo situations more accurately. Nevertheless, obtaining the timeseries 

proteomic data can be more challenging than transcriptomic data due to the possibility of signal 

loss through protein degradation whilst the protein molecules cannot be amplified like the 

transcript molecules prior to the signal detection. 

 

Chapter 4 Nuclei isolation followed by flow cytometry separation technique for 

Kalanchoe fedtschenkoi 

Chapter 4 constructed a protocol for nuclei isolation for K. fedtschenkoi. The use of a 

fluorescence-based spectral flow cytometer enhanced the ability to separate different particles 

in the nuclei extracts obtained from the sucrose-gradient nuclei isolation protocol. The finding 

supports the following hypotheses with the evidence of flow cytometry fluorescence 

absorption/emission signals and scattering signals, but could be additionally verified with the 

cell sorter instrument and fluorescence microscopy. 

Hypothesis 1: The combination of sucrose-gradient isolation and fluorescence-based spectral 

flow cytometer would yield purify nuclei of greater than 10% of the total number of particles 

in the nuclei extract.  

Hypothesis 2: The combination of sucrose-gradient isolation and fluorescence-based spectral 

flow cytometer would facilitate the separation of chloroplasts out of the nuclei extract. 

Hypothesis 3: The combination of sucrose-gradient isolation and fluorescence-based spectral 

flow cytometer would facilitate the separation of mitochondria out of the nuclei extracts. 

 

Recommendation for future research for Chapter 4 

Product of nuclei isolation from the sucrose-gradient method can be passed through the cell 

sorting machine with the same wavelength excitation/detection setting as the has been 

previously used in the Cytek aurora flow cytometer (Chapter 4). Samples from each 

subpopulation with the distinct fluorescence signals and forward scattering signals can be 

retrieved and visualised under fluorescence microscope to confirm which absorption/emission 

characteristics represent the nuclei and other possible contaminants such as chloroplast, 

mitochondria, ruptured nuclei, and pigments. 
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Appendix A: 

1. ODE_PEPCexperiment_WT.m 

function dydt = ODE_PEPCexperiment_WT(t,y) 
dydt = zeros(5,1); 
%y1 is Aci, y2 is Acc, y3 is Amc, y4 is Amv, y5 is Ac 
 
% Physical parameters. These are fixed. 
Cca= 400; 
Henrys_law_constant = 0.03445; 
Conversion_1 = 0.025; % Owen paper 2013 
 
% Anatomical parameters. Measurable. 
Succulence_leaf_area_to_volume = 2.8;  
Percentage_Chlorenchyma_air_space = 0.143; 
Chloren_V = Succulence_leaf_area_to_volume*Percentage_Chlorenchyma_air_space; 
gm = 0.053; 
Xvmax = 150000; 
 
% Biochemical parameters 
Vm_mitochondria = 0.6;% Have no experimental data but might be able to measure. 
 
% Set condition for multiple days 
t_hour = t/3600; 
r = mod(t_hour,24); 
 
if r>12 
%if t>43200 %night time 
    Malic_acid_efflux_rate = 0; 
else 
    Malic_acid_efflux_rate = 33.19; 
end 
 
if r>12 
%if t>43200 %night time 
    Malic_acid_influx_rate = 7.34;%Nick doesnt have this but set it to mirror PEPC 
activity 
else 
    Malic_acid_influx_rate = 0; 
end 
 
% Enzyme constants 
Vdmax = 5.5; 
Kd = 11;  
 
Vcmax = 10.82; 
Kc = 10.8; 
 
Vpmax = 5; 
Kp = 12; 
 
if r<12 
%if t<43200 
    gs = gs_WT_day (t/3600); 
else 
    gs = gs_WT_night(t/3600); 
end 
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Rubisco_activation_term = sin(2*pi*t/86400);%active at first half of 24 cycle 
if Rubisco_activation_term<=0 
    Rubisco_activation_term = 0; 
end 
 
PEPC_activation_term = -sin(2*pi*t/86400);%active at second half of 24 cycle 
if PEPC_activation_term<=0 
    PEPC_activation_term = 0; 
end 
 
Decarboxylation_activation_term = sin(2*pi*t/86400);%active at first half of 24 
cycle 
if Decarboxylation_activation_term<=0 
    Decarboxylation_activation_term = 0; 
end 
 
% Differential equations 
dydt(1) = gs*(Cca-Conversion_1*y(1))-gm*(y(1)*Conversion_1-
y(2)/Chloren_V/Henrys_law_constant);%Aci 
 
Ki = 8000; %reference from Nick's table and Borland&Griffiths 2008 
PEPC_reaction = PEPC_activation_term*(Vpmax  * y(2)/Chloren_V) / (Kp*(1+y(3)/Ki)  
+ y(2)/Chloren_V); 
 
dydt(2) = gm*(y(1)*Conversion_1-
y(2)/Chloren_V/Henrys_law_constant)+Decarboxylation_activation_term*(Vdmax  * 
y(3)/(Kd+y(3)) )+Vm_mitochondria-Rubisco_activation_term*(Vcmax  * y(2)/Chloren_V) 
/ (Kc  + y(2)/Chloren_V) - PEPC_reaction; 
dydt(3) = PEPC_reaction - Decarboxylation_activation_term*(Vdmax  * y(3)/(Kd+y(3)) 
)-0.05*Malic_acid_influx_rate*(1-
y(4)/Xvmax)*y(3)+Malic_acid_efflux_rate*(y(4)/Xvmax); 
dydt(4) = 0.05*Malic_acid_influx_rate*(1-y(4)/Xvmax)*y(3)-
Malic_acid_efflux_rate*(y(4)/Xvmax); 
dydt(5) = Rubisco_activation_term*Vcmax*y(2)/Chloren_V/(Kc+y(2)/Chloren_V)-
Vm_mitochondria; 
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2. plotJs.m 

%% PlotJs 
 
%Solve  
[t,y] = 
ode15s(@ODE_PEPCexperiment_WT,[0:1:86400*120],[6.7104,5.8921,1.5617e+05,6.5678e+04
,4.7408e+05]); 
 
 
figure 
%read experimental data from gas_exchange.xlsx file. 
%plot(t_WT_exp,Js_WT_exp,'+b') 
 
%plot5cycles 
t_exp_5cycles = [t_WT_exp;t_WT_exp+24;t_WT_exp+24*2;t_WT_exp+24*3;t_WT_exp+24*4]; 
Js_exp_5cycles = repmat(Js_WT_exp,5,1); 
plot(t_exp_5cycles,Js_exp_5cycles,'+k', 'LineWidth', 1) 
 
hold on 
 
%% Get Js from model  
 
%generate repeat gs for 1 cycle 
n = 1; 
t_hour = [0:1:86400*n]/3600; 
r = mod(t_hour,24); 
 
gs_array = []; 
for i = 1:length(t_hour)-1 
    if r(i)<12 
        gs = gs_WT_day (t_hour(i)); 
    else 
        gs = gs_WT_night(t_hour(i)); 
    end 
    gs_array = [gs_array,gs]; 
end 
 
%concatenate into 5 cycles 
gs_array_5cycles = repmat(gs_array,1,5)/1.6; 
gs_array_120cycles = repmat(gs_array,1,120)/1.6; 
 
%select to plot 100th to 105th cycle 
y_5cycles = y(86400*100+1:86400*105,:); 
 
%calculate Js 
Cca = 400; 
Conversion_1 = 0.025; 
Js = gs_array_5cycles.*(Cca-Conversion_1*y_5cycles(:,1)');%WT 
%Js = gs_array.*(Cca-Conversion_1*y_rPPC1B(:,1));%rPPC1-B 
 
plot([0:1:86400*5-1]/3600, Js, 'k', 'LineWidth', 3);  
 
%% Label plot 
 
xlabel ('Time (Hours)','FontSize', 18) 
ylabel ('CO_{2} assimilation rate (\mumol m^{-2} s^{-1})','FontSize', 18) 
hold on 
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%vertical_line = [-2:12]; 
for i = 1:9 
    plot(86400*i/2/3600*ones(1,length(vertical_line)),vertical_line, 'Color', [0.5 
0.5 0.5]) 
end 
xticks([0 12 12*2 12*3 12*4 12*5 12*6 12*7 12*8 12*9 12*10]) 
 
%add grey filled areas 
fill([12 24 24 12],[-1 -1 7 7],'k','FaceAlpha', 0.3) 
fill([36 48 48 36],[-1 -1 7 7],'k','FaceAlpha', 0.3) 
fill([60 72 72 60],[-1 -1 7 7],'k','FaceAlpha', 0.3) 
fill([84 96 96 84],[-1 -1 7 7],'k','FaceAlpha', 0.3) 
fill([108 120 120 108],[-1 -1 7 7],'k','FaceAlpha', 0.3) 

 

3. gs_WT_day.m 

function gs_fitted = gs_WT_day(x) 
 
%Coefficients (with 95% confidence bounds): 
    a =    0.006533 ;% (0.005408, 0.007658) 
    b =     -0.2216 ;% (-0.2892, -0.1541) 
     
    gs_fitted = a*exp(b*x); 
end 
 

 

4. gs_WT_night.m 

function gs_fitted = gs_WT_night(x) 
 
%Coefficients (with 95% confidence bounds): 
    a1_phase1 =       0.02799;%  (0.02311, 0.03287) 
    b1_phase1 =      18.39   ;%  (17.88, 18.9) 
    c1_phase1 =       4.408  ;%  (3.6, 5.217) 
 
    gs_fit_phase1 = a1_phase1*exp(-((x-b1_phase1)/c1_phase1).^2); 
    gs_fitted = gs_fit_phase1; 
end 
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Appendix B: 

Chomthong M, Griffiths H. 2020. Model approaches to advance crassulacean acid 

metabolism system integration. The Plant Journal 101: 951–963. 
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SUMMARY

This review summarises recent progress in understanding crassulacean acid metabolism (CAM) systems

and the integration of internal and external stimuli to maximise water-use efficiency. Complex CAM traits

have been reduced to their minimum and captured as computational models, which can now be refined

using recently available data from transgenic manipulations and large-scale omics studies. We identify three

key areas in which an appropriate choice of modelling tool could help capture relevant comparative molecu-

lar data to address the evolutionary drivers and plasticity of CAM. One focus is to identify the environmental

and internal signals that drive inverse stomatal opening at night. Secondly, it is important to identify the

regulatory processes required to orchestrate the diel pattern of carbon fluxes within mesophyll layers.

Finally, the limitations imposed by contrasting succulent systems and associated hydraulic conductance

components should be compared in the context of water-use and evolutionary strategies. While network

analysis of transcriptomic data can provide insights via co-expression modules and hubs, alternative forms

of computational modelling should be used iteratively to define the physiological significance of key compo-

nents and informing targeted functional gene manipulation studies. We conclude that the resultant

improvements of bottom-up, mechanistic modelling systems can enhance progress towards capturing the

physiological controls for phylogenetically diverse CAM systems in the face of the recent surge of informa-

tion in this omics era.

Keywords: stomatal physiology, mesophyll metabolism, hydraulic conductance, systems dynamic.

INTRODUCTION

Crassulacean acid metabolism (CAM) species are known

for their remarkable photosynthetic traits, including night-

time primary CO2 fixation by the enzyme phosphoenol

pyruvate carboxylase (PEPC), which conserves water when

stomata are closed for part of the day. At a morphological

level, succulence – of cells, leaves or stems – is typically

associated with both semi-arid desert environments and

the epiphytic niches in tropical rainforests, leading to

remarkable global diversity arising from multiple indepen-

dent origins of CAM over the last 5–10 million years (Dodd

et al., 2002; Borland et al., 2018; Wai and VanBuren, 2018;

Edwards, 2019). Many physiological, biochemical and

molecular features have evolved convergently to regulate

the expression of CAM in such contrasting systems. This

review will provide a brief introductory framework sum-

marising these features, and then identify modelling

approaches that could help to integrate the wealth of new

data arising from recent molecular analyses. The specific

aim will be to develop a better understanding of three

major regulatory processes constraining CAM productivity

across the day–night cycle, namely stomatal functioning,

mesophyll photosynthetic biochemistry and metering of

water use.

The distinct regulation of guard cells allows stomatal

opening at night, directing CO2 flux into the process of pri-

mary carboxylation by PEPC during Phase I of CAM

(Osmond, 1978). This temporal shift in initial carboxylation

by PEPC is controlled through reduced inhibition of PEPC

by a phosphorylation reaction mediated by a circadian

clock-controlled protein kinase called phosphoenol pyru-

vate carboxylase kinase (PEPC kinase; Hartwell et al., 1999;

Nimmo, 2000; Dodd et al., 2002). The final product of this

primary carboxylation process, malic acid, is then seques-

tered into large storage vacuoles that can occupy up to
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95% of the mesophyll cell volume. During the subsequent

light period (Phase III), regulation can occur during the

decarboxylation of malate, which releases CO2 for sec-

ondary carboxylation by ribulose-1,5-bisphosphate car-

boxylase/oxygenase (RubisCO) as well as the activation of

RubisCO (Griffiths et al., 2002). The CO2 is concentrated

around RubisCO behind closed stomata during the day-

time, allowing CAM RubisCO to adopt a more relaxed

specificity factor (i.e. the selectivity of CO2 over O2 is

lower) compared with C3 plants, albeit with the retention

of a high affinity for CO2 (low Km,CO2; Griffiths et al., 2008).

This temporal separation between primary and secondary

CO2 fixation within a single mesophyll cell enhances over-

all operating carboxylation and water-use efficiencies com-

pared with C3 species (Borland et al., 2009).

A number of complex CAM phenotypes demonstrate

remarkable physiological and ecological plasticity which

still engender intriguing research questions (Yang et al.,

2015; Winter et al., 2015; Borland et al., 2018; Edwards,

2019; Winter, 2019). In strong CAM species such as Kalan-

choe daigremontiana, Agave tequilana and Tillandsia

usneoides the strength and duration of the intermediate

Phases II and IV (respectively early morning and late after-

noon) are adversely affected by a degree of drought, but

can be restored quickly upon rehydration (Owen et al.,

2016). Plasticity, as represented by facultative CAM, has also

been documented for woody dicotyledonous species such

as Clusia minor, temperate perennial herbs such as Sedum

telephium and many members of the Aizoaceae which can

rapidly and reversibly undergo CAM induction (Borland and

Griffiths, 1990; Borland et al., 1992; Haag-kerwer et al., 1992;

Dodd et al., 2002; Winter, 2019). Finally, there is the well-de-

fined induction of CAM by stress in Mesembryanthemum

crystallinum (Adams et al., 1998; Cushman, 2001; Winter

and Holtum, 2007) or during leaf development and aging in

Kalanchoe species (Hartwell et al., 2016).

These examples of the inducibility of CAM and Phase II

and IV responsiveness suggest that the mechanisms regu-

lating CAM drive a core temporal switch which can then be

modified depending on environmental conditions or inter-

nal metabolic feedback. This is supported by the analysis of

the pineapple (Ananas comosus) genome showing that

CAM has evolved from re-wiring of existing C3 components

through regulatory neofunctionalisation, rather than by

acquisition of new genes with specialised CAM functions

through duplication processes (Ming et al., 2015). Additional

evidence comes from the extent that the circadian expres-

sion of the CAM cycle can be disrupted when key metabolic

enzymes have been manipulated (Dever et al., 2015; Hart-

well et al., 2016; Boxall et al., 2017). These are explored in

more detail in a subsequent section of this review.

The availability of CAM genomes has provided a spring-

board for analysis of orthologues and shared transcriptional

control elements (Ming et al., 2015; Yang et al., 2017; Wai

et al., 2019), whereas emerging comparative ‘omics’ analy-

sis of various CAM species has also contributed to a more

in-depth understanding of regulatory networks (Abraham

et al., 2016; Chiang et al., 2016; Zhang et al., 2016; Yin et al.,

2018; Heyduk et al., 2019). Comparative transcriptomic stud-

ies have provided insights into the evolutionary trajectory

of CAM and suggest that transcriptional regulation is pri-

marily associated with specific expression profiles of key

CAM genes. Additional analysis has listed candidate CAM-

specific transcription factors which mediate transition from

C3 to CAM mode in facultative (M. crystallinum and Tal-

inum triangulare; Brilhaus et al., 2016; Amin et al., 2019;

Maleckova et al., 2019) and obligate (Kalanchoe fedtschen-

koi and multiple Agave species; Moseley et al., 2018; Yin

et al., 2018) CAM species. Finally, additional layers of con-

trol are also being explored at the level of post-transcrip-

tional regulation via microRNA (miRNA) as well as less

conventional mechanisms such as long non-coding RNA

(lncRNA) which could function competitively with endoge-

nous RNAs to alter the expression profile of key CAM path-

way genes such as PEPC and PPDK (Yang et al., 2015; Wai

et al., 2017; Bai et al., 2019). Hence, computational mod-

elling is becoming increasingly important to make sense of

the explosion of data in the genomics era and not be deaf-

ened by the associated noise (Schatz, 2012; Fernie, 2016;

Smita et al., 2019; Yang et al., 2019).

In this review, we set the context for certain fundamental

questions concerning CAM that need to be resolved. We

then suggest how newly available large-scale data can be

aligned with various computational techniques, including

systems models developed for CAM (Owen and Griffiths,

2013a; Maurice Cheung et al., 2014; Hartzell et al., 2018), to

make more rapid progress in addressing fundamental phys-

iological questions (Figure 1). By identifying key molecular

targets associated with regulatory hubs controlling key ele-

ments of the CAM system, such an approach could be used

to inform experimental genetic manipulation approaches to

define these responses empirically. In order to develop

these approaches, the focus of this review is first on the reg-

ulatory processes leading to control of stomata across the

day–night cycle and secondly on mesophyll control of bio-

chemistry, which is highly coordinated across the CAM

phases. Finally, we shift the scale from the photosynthetic

site to the whole-plant system by considering how hydraulic

conductance, vasculature and succulence may have co-

evolved to integrate stomatal and mesophyll processes,

allowing the gradual metering of water loss, yet permitting

rapid recharge, for CAM plant tissues experiencing intermit-

tent precipitation events (Griffiths, 2013).

STOMATAL PHYSIOLOGY: SENSITIVITY AND

SIGNALLING PROCESSES ACROSS THE CAM CYCLE

‘What mechanisms underlie CAM stomatal behaviour of

night-time opening, day-time closing and the flexible day-

© 2020 The Authors.
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time re-opening in Phase IV?’: this question was posed in

1978 in a classic article by C Barry Osmond (Osmond,

1978) and it remains an important, and as yet unanswered,

problem (Osmond, 1978; Males and Griffiths, 2017; Borland

et al., 2018).

General models of C3 guard cell physiology suggest

that stomatal opening responds to light (both blue and

red wavelengths) and reduced atmospheric CO2 concen-

tration, whereas closure during the day is in response to

elevated CO2 and abscisic acid (ABA; Kim et al., 2010;

Assmann and Jegla, 2016). The magnitude of the

responses can be tempered by environmental conditions

(atmospheric vapour pressure and wind speed) as well as

leaf and guard cell ultrastructure (boundary layers, guard

cell dimensions and mechanical coupling with epidermal

cells; Henry et al., 2019). These generalised responses of

C3 species are superimposed upon a potentially distinct

guard cell circadian control system (Engineer et al., 2016;

Males and Griffiths, 2017; Hassidim et al., 2017). To tran-

sition from diurnal stomatal opening in C3 mode to noc-

turnal stomatal opening in CAM mode, light-induced

stomatal opening must either be blocked/downregulated

or overridden by other cue(s) such as high intercellular

CO2 (Ci) or ABA to eliminate opening behaviour during

the daytime. However, it is unclear how these canonical

C3 pathways are replaced or rewired with additional
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Figure 1. Summary of the three key areas for cras-

sulacean acid metabolism (CAM) model develop-

ment to address regulatory insights arising from

recent genetic perturbation and integrated genomic

approaches. Abbreviations: ABA, abscisic acid;

AQP, aquaporin; Ci, intercellular CO2; NAD-ME,

NAD-dependent malic enzyme; PEPC, phosphoenol-

pyruvate carboxylase.
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control mechanisms to allow for the stomatal behaviour

seen with CAM (Kong et al., 2019).

First, the evidence of the CAM stomatal response to light

is still inconclusive. Initial reports on facultative CAM spe-

cies (M. crystallinum and Portulacaria afra) suggested that

stomata no longer respond to light signals once induced

into CAM mode (Lee and Assmann, 1992; Tallman et al.,

1997). However, the stomata of obligate CAM species

(Kalanchoe pinnata and K. daigremontiana) have been

shown to open in response to blue light, similar to C3

stomata (Gotoh et al., 2019). These contradictory observa-

tions provide a focus for the question originally posed by

Osmond (1978) and the interplay between light cues and

the CAM pathway. In addition, it also highlights the poten-

tial difference in regulatory mechanisms and evolutionary

trajectory between facultative and obligate CAM species,

which have gone through environmental induction and

ontogenetic induction, respectively (Winter, 2019).

Secondly, nocturnal opening behaviour of stomata in

CAM is hypothesised to be mediated by low Ci as a result

of PEPC activity, but no precise mechanism has been eluci-

dated to date (Borland and Griffiths, 1997; Drennan and

Nobel, 2000; Ceusters et al., 2008; Von Caemmerer and

Griffiths, 2009). The fluctuation of Ci associated with the

two distinct CAM carboxylation processes, coupled to

decarboxylation, can result in significant fluctuations of Ci

over the range of 0.011% to 0.5% with a defined diel pat-

tern (Borland and Taybi, 2004). For Kalanchoe species with

contrasting degrees of succulence, this 24-h pattern of Ci

synchronised well with the night-time opening/daytime

closing behaviour and the underlying photosynthetic activ-

ity (Wyka et al., 2005; Griffiths et al., 2007, 2008; Males and

Griffiths, 2017). However, the presence of a Ci signalling

pathway operating across the 24-h cycle has yet to be veri-

fied. The transcriptomic work on Agave americana has

shown that genes involved with CO2 sensing, such as HT1,

have an inverted expression pattern to that of a C3 plant.

This suggested that the stomatal responsiveness to Ci of

A. americana might not be intact throughout the 24-h cycle

(Abraham et al., 2016). Nonetheless, the intermediate com-

ponents of the Ci signalling pathway are yet to be identi-

fied (Engineer et al., 2016; Hsu et al., 2018). Moreover, it

may be that responses to internal CO2 supply have differ-

ent sensing/signalling pathways depending on whether Ci

is decreasing or increasing. Hence a more systematic iden-

tification and analysis of a Ci signalling pathway in a com-

parative C3–CAM system is required at this stage.

Thirdly, it is not clear whether guard cell PEPC activity at

night contributes to the stomatal behaviour in CAM spe-

cies by providing malate as one of the major solutes driv-

ing the opening process (Santelia and Lawson, 2016;

Males and Griffiths, 2017). In C3 species, malate accumula-

tion as a result of PEPC activity during the day is critical for

the light-induced stomatal opening process (Asai et al.,

2000). Evidence from a transgenic RNA interference (RNAi)

experiment on the CAM species Kalanchoe laxiflora has

recently shown that stomata revert back to C3 daytime

opening in a PEPC knock-down line (Boxall et al., 2019).

However, because PEPC was knocked down in all tissues

in this RNAi experiment, the reduced stomatal conduc-

tance cannot be attributed solely to either the internal

metabolism of guard cells or Ci signals generated from

mesophyll metabolism. Further investigations could use a

more targeted genetic approach, such as a PEPC knock-

down line, but with a guard cell-specific promoter.

Finally, ABA has been implicated in the upregulation of

CAM gene expression and enzymatic activities, although

the direct effect of ABA on the inverted timing of CAM

stomatal behaviour remains elusive (Holtum and Winter,

1982; Chu et al., 1990; Bastide et al., 1993; Dai et al., 1994;

Taybi et al., 1995; Taybi and Cushman, 1999). The analysis

of transcriptomic data from Agave showed that ABA

biosynthesis and signalling components are enriched in

the expression cluster that shows peak expression at 0 and

3 h before dawn (Abraham et al., 2016). This suggested a

potential role for synthesis and perception of ABA at the

precise moment before CAM plants enter Phase III stom-

atal closure. Emerging evidence has also proposed candi-

date components that may link ABA to CAM stomatal

responses through transcriptional regulation (Lian et al.,

2018; Maleckova et al., 2019), reactive oxygen species sig-

nalling and/or protein kinase activities (Moseley et al.,

2019b). These details require integration into a framework

for stomatal signalling and further functional verification

tests.

Recent contributions to address these questions have

come from comparative transcriptomic approaches and

functional genomics (Fernie, 2016; Abraham et al., 2016;

Wai and VanBuren, 2018; Liu et al., 2019; Moseley et al.,

2019b). Transcriptomic studies elucidated genes that have

transcript abundance patterns with inverted timing in CAM

species when compared with their orthologues in C3 Ara-

bidopsis thaliana. These genes encode for stomatal sig-

nalling components and transporters in Agave spp. (e.g.

orthologues of OST1, HT1, PP2C, RCAR3, K+ transporter

AKT2/3, chloride channel CLC-c, Ca2+ transporter ACA2 and

ECA4), stomatal signalling components in pineapple (e.g.

orthologues of BLUS1, HT1, CPK6), an H2O2 detoxification

enzyme (orthologue of CAT2) implicated in the stomatal

signalling process and a blue-light receptor (PHOT2) in

K. fedtschenkoi (Abraham et al., 2016; Yang et al., 2017;

Wai and VanBuren, 2018; Moseley et al., 2019b). Among

these genes, only PHOT2 has been shown through a func-

tional study to have a direct implication for CAM stomatal

behaviour in K. fedtschenkoi (Liu et al., 2019). However,

the interplay between signalling components and trans-

porters is not always intuitive and would require computa-

tional modelling tool(s) to interpret (see the next section).

© 2020 The Authors.
The Plant Journal © 2020 John Wiley & Sons Ltd, The Plant Journal, (2020), 101, 951–963
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In addition, an important caveat concerning the compara-

tive transcriptomic approach is that transcript abundance

is not guard cell specific; rather, it represents the inte-

grated pattern across the whole leaf.

A recent genetic perturbation experiment also addressed

this question by investigating the relative gene expression

profiles in guard cell-enriched epidermal tissues. In this

experiment, differential regulation and phasing of key

genes involved in stomatal responses were associated with

the shift to daytime CO2 fixation in a PEPC knock-down line

(Boxall et al., 2019). The authors concluded that the differ-

ential regulation of HT1, SKOR and MYB61 genes (upregu-

lated) compared with SLAC1, PPC2C, SOS2, ACA2, ECA4

and MYB60 (downregulated) in the wild-type line were

consistent with nocturnal opening responses and light per-

iod closure during CAM (Boxall et al., 2019). In parallel,

guard cell-specific single-cell transcriptomic profiling of

M. crystallinum has suggested that specific transcriptional

reprogramming of 495 transcripts (including 18 transcrip-

tion factors, 285 guard cell genes and 7 CAM metabolism

genes) could be the underlying mechanism for the transi-

tion from C3 to CAM stomatal behaviour (Kong et al.,

2019). Such guard cell-specific insights could also feed into

computational analyses, although it is worth noting that

transcript abundance does not necessarily reflect protein

activity.

How can existing modelling platforms help?

Possible roles of the inverted gene expression profiles

could be further investigated with modelling approaches

and subsequent functional tests based around stomatal

signalling pathway(s) and solute transporter networks.

Starting from the canonical C3 stomatal signalling mod-

els, the specific CAM transcriptional timing can be super-

imposed onto the components of the signalling pathway

(s) to investigate if any specific signalling pathways are

up/downregulated coinciding with the four phases of

CAM. Concomitantly, timing of the expression of CAM

guard cell transporters can be mapped onto the biophysi-

cal modelling platform ‘OnGuard’ to develop a specific

CAM version (Hills et al., 2012). However, gene expres-

sion data alone do not provide conclusive evidence about

the time during which a particular signalling pathway is

operating. Genes that are not expressed simply yield

missing model components, whereas the protein abun-

dance and activity for genes that are expressed cannot

simply be inferred until other layers of control (e.g. post-

translational modification or protein turnover) have also

been measured (Yang et al., 2015; Fernie, 2016). In addi-

tion, the effect of redundancy or alternative pathways

that might appear exclusively in CAM must also be taken

into account. Therefore, more data can be extracted from

comparative transcriptomic/proteomic approaches to feed

into signalling/biophysical modelling platforms to address

the specific timings of CAM stomatal sensitivity to

various stimuli.

Alternatively, systems dynamic (SD) computational

modelling (Owen and Griffiths, 2013a) has provided a

framework for studying the role of Ci in governing CAM

stomatal behaviour. The current version of the model can

be improved by using the empirical data on CAM stomatal

responses and Ci to construct the stomatal response mod-

ule in the SD model (Bohn et al., 2001). As a result, the

entire Ci signalling pathway that is not fully characterised

in CAM can be by-passed using the experimental Ci pat-

tern across a 24-h period as the input into a black box

which generates stomatal conductance responses as out-

puts. These stomatal conductance outputs, together with

the CO2 gradient, would then dictate the CO2 flux from the

atmosphere into the mesophyll and identify the extent to

which the observed Ci pattern was a direct cause of stom-

atal opening or an effect of guard cell or mesophyll pro-

cesses (Sakamoto et al., 2015). If the minimal model with

only a Ci cue fails to capture CAM stomatal behaviour

throughout the four phases, alternative control loops such

as light (in)sensitivity, internal guard cell metabolism and/

or ABA sensitivity must be added to the model to better

reflect physiological scenarios.

MODELLING APPROACHES CAPTURE THE COMPLEX

CONTROL OF CAM MESOPHYLL PROCESSES

Mesophyll metabolism in CAM integrates complex traits,

coupled via feedback effects, and control of gene expres-

sion (Figure 2). To ensure that such a complex interlocking

system is amenable to modelling, CAM mesophyll pro-

cesses can be subdivided into three metabolic modules:

carbon assimilation (carboxylation), malic acid storage and

processing (decarboxylation) and carbohydrate supply and

demand. It is important to understand the control mecha-

nisms which ensure the accurate activation and precise

timing needed to synchronise carbon flow between these

three pools. One of the most important control points is

PEPC which integrates circadian and metabolic control in

the CAM system. However, more recent evidence from

genetic perturbation experiments and comparative geno-

mics studies has suggested other compelling candidate

control points that can be analysed further using existing

CAM mesophyll models.

To sustain the diel pattern of CAM mesophyll metabo-

lism, circadian controls set the diel phases of carboxylation

processes while metabolites provide another layer of

refinement (Borland et al., 2016). Circadian regulation of

the activation of key enzymes, including the carboxylases

PEPC and RubisCO, has been shown to play an important

role in governing the temporal separation of CAM photo-

synthetic activity (RubisCO: Griffiths et al., 2002; Maxwell

et al., 2002; Davies and Griffiths, 2012; PEPC: Carter et al.,

1991; Hartwell et al., 1999; Dodd et al., 2002). The most

© 2020 The Authors.
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prominent integration point between circadian control and

metabolite control is at PEPC. As the primary CO2-fixation

enzyme, PEPC is phosphorylated by PPCK at night, leading

to reduced sensitivity to malate allosteric inhibition, whilst

the abundance of PPCK itself is under transcriptional con-

trol from circadian clock outputs (Carter et al., 1991; Hart-

well et al., 1999). In addition, PPCK gene expression can be

modified, with increased malate accumulation exerting

negative feedback on PPCK gene expression, possibly as a

secondary effect via the circadian clock (Borland et al.,

1999; Nimmo, 2000; Figure 2).

Experimental evidence: manipulation of gene expression

Controls of CAM mesophyll metabolism extend beyond

the carboxylation module (Borland and Taybi, 2004).

Firstly, it is possible that other mesophyll enzymes/trans-

porters are under circadian control or can be modified by

CAM metabolites through similar secondary circadian

responses to those proposed for PPCK (Borland et al.,

1999; Cushman, 2001; Davies and Griffiths, 2012; Dever

et al., 2015; Hartwell et al., 2016). Recent transgenic manip-

ulation experiments suggest a close link between circadian

and metabolite control in CAM. Downregulation of the car-

boxylation activity (PEPC) or decarboxylation activity [mito-

chondrial NAD–malic enzyme (NAD-ME)] has been shown

to disrupt the rhythmicity of CAM in other mesophyll com-

ponents distant from the knockdown point, in addition to

altering the oscillation pattern of circadian clock genes

through unidentified metabolic feedbacks (Dever et al.,

2015; Boxall et al., 2019).

In terms of carboxylation, the regulation of PEPC has

recently been investigated through two RNAi experiments.

In the first approach, the PEPC kinase gene of

K. fedtschenkoi was silenced, resulting in reduced dark

phosphorylation of PEPC and a 66% reduction in night-

time CO2 assimilation (Boxall et al., 2017). This study

emphasised the importance of PEPC phosphorylation for

maintaining PEPC activity through the dark period, which

in turn affected the stability of the circadian clock and over-

all CAM productivity. Subsequently, this group developed

Malic acid

Vacuole

Phosphorylated PEPC
(active)

PEPC kinase transcript

OAA MalatePEP

CO2

PEPC kinase

Circadian clock 

PP2A 

PEPC
(inactive)

ALMT/tDT transporter

ALMT/tDT transporter

Malate

1. Secondary CO2 fixation (RubisCO)

2. Carbohydrate metabolism

3. Regeneration of carbon skeletons for 
primary carboxylation

CO2

Pyruvate
NAD-ME

PPDK

NIGHT: Primary carboxylation

DAY: Decarboxylation

PEPC (active)

Figure 2. A simplified diagram of the mesophyll

metabolic processes including key enzymes and the

integrated control between circadian clock and

metabolic feedback of crassulacean acid metabo-

lism (CAM) species that operate via the NAD-ME/

PPDK decarboxylation pathway. Key to metabolites

and enzymes/transporters: ALMT, aluminium-acti-

vated malate transporter; NAD-ME, NAD-dependent

malic enzyme; OAA, oxaloacetate; PEP, phospho-

enol-pyruvate; PEPC, phosphoenol-pyruvate car-

boxylase; PP2A, protein phosphatase 2A; PPDK,

pyruvate orthophosphate dikinase; tDT, tonoplast

dicarboxylate transporter. Metabolic feedback is

represented with malate effect; however, the exact

identity of the metabolite which exerts control on

the circadian clock remains inconclusive and could

be other molecules, including but not limited to

sucrose (discussed in text).

© 2020 The Authors.
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transgenic lines of K. laxiflora in which the PEPC gene was

downregulated directly (Boxall et al., 2019). The plants suf-

fered a complete loss of dark CO2 assimilation, fixing CO2

directly only in the light, and the associated impacts on the

regulation of stomatal aperture have been discussed

above. Additionally, transcripts for PPCK were downregu-

lated at night and peaked at the start of the light period,

and gas exchange suffered arrhythmia under constant

light, despite the transcript abundances of some core circa-

dian clock genes being enhanced (Boxall et al., 2019).

In terms of the decarboxylation component of the CAM

cycle, the RNAi approach has been used to reduce the activi-

ties of two CAM enzymes, NAD-ME and pyruvate

orthophosphate dikinase (PPDK), both of which are involved

in the decarboxylation of malate and release of CO2 inter-

nally during the light period (Figure 2) (Dever et al., 2015).

The expression of CAM was suppressed in both sets of

plants, which tended to take up the majority of CO2 directly

in the light. In addition, there was a reduction in transcripts

of many genes associated with the CAM cycle, among

which were PEPC and genes associated with storage carbo-

hydrate trafficking, including PPDK (in a NAD-ME transgenic

line), glucan water dikinase and glucose-6-phosphate

translocator. Whilst the expression patterns of PPCK and

core clock gene transcripts were not affected, the circadian

cycle became arrhythmic under continuous light, again sug-

gesting a role for metabolite feedback in resetting the CAM

cycle on a daily basis (Dever et al., 2015).

Despite not targeting the carbohydrate metabolic pro-

cess directly, the aforementioned RNAi experiments have

provided insights into the regulatory processes associated

with CAM carbohydrate metabolism. Firstly, starch accu-

mulation, which normally precedes the dark period to pro-

vide carbon skeletons for carboxylation, was generally

reduced in the transgenic line with perturbed carboxyla-

tion–decarboxylation processes (Dever et al., 2015; Boxall

et al., 2017). Secondly, transcripts of genes associated with

the partitioning of starch in C3 systems, such as the amy-

lolytic pathway at night, were upregulated in the K. laxi-

flora transgenic lines with reduced PEPC activity (Boxall

et al., 2019) compared with the phosphorylytic route nor-

mally associated with this starch-storing CAM species

(Borland et al., 2009). Finally, there was also a distinct cor-

relation between the peaks of sucrose and the expression

profiles of CAM orthologues of circadian clock components

in the K. fedtschenkoi line with reduced PEPC kinase activ-

ity, suggesting sucrose as a potential candidate for linking

CAM carbohydrate metabolic status back to the circadian

clock operation (Boxall et al., 2017).

Experimental evidence: gene expression and

transcriptomic approaches

Comparative transcriptomic studies have provided a list of

genes with specific CAM expression patterns with timing

either phase-shifted or inverted between C3 and CAM.

These genes with specific CAM expression patterns can be

considered ‘candidates’ that may play important roles in

synchronising CAM mesophyll processes. Such large-scale

comparative data are useful resources for bioinformatics

and network analysis for grouping genes into expression

modules under candidate transcription factors, although

functional tests need to be conducted to infer the physio-

logical influence on CAM behaviour.

Comparative transcriptomic studies have associated the

evolution of CAM with specific regulation of transcript

abundance patterns. Firstly, comparative studies within 13

orchid species suggested that regulation of the transcrip-

tion level of carbon fixation pathway genes (PEPC, PPCK

and PPDK) was associated with the evolution of CAM

within this clade (Zhang et al., 2016). Secondly, transcrip-

tomic analysis of two cultivated pineapple varieties and

one wild pineapple relative also showed that CAM-related

genes demonstrated an inverse diel expression pattern in

photosynthetic tissues (Ming et al., 2015). With the avail-

able pineapple genome data, they also suggested that

CAM evolved not by gene duplication but through the

modified expression of existing C3 genes. In addition, a

key mechanism that controls timing of the expression of

CAM-specific genes has been suggested to be the circadian

clock, because the differentially regulated CAM pathway

genes were enriched with clock-associated cis-regulatory

elements (Ming et al., 2015). Although the presence of

cis-regulatory elements suggested that a transcriptional

control process is in place, the contribution of post-

transcriptional control must not be neglected. Emerging

evidence from studies of miRNA and lncRNA in pineapple

has also offered additional control mechanisms for several

CAM-related genes at the post-transcriptional level (Wai

et al., 2017; Bai et al., 2019).

Candidate CAM regulatory points embedded in carbohy-

drate and malate metabolism can be as important as the

control of the carboxylation module discussed above.

Firstly, Kalanchoe genome analysis provided evidence for

contrasting differential regulation of carbohydrate process-

ing between CAM and C3 species. A network analysis com-

pared families of carbohydrate ‘active’ gene families which

were similar in number to those found in Arabidopsis but

with altered expression profiles, with a possible role for a

trehalose-6-phosphate synthase and an invertase, acting to

alter carbohydrate partitioning between substrates for

CAM and those needed for growth (Yang et al., 2017). Sec-

ondly, putative orthologues of chloroplast and vacuolar

sugar transporters of pineapple have adopted a defined

diel expression pattern, and are hence implicated in the

diel processing of carbohydrate in this soluble-sugar-pro-

cessing CAM species (Borland et al., 2016). Thirdly, geno-

mic studies of transcriptional patterns have also supported

that malate channel aluminium-activated malate

© 2020 The Authors.
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transporter (ALMT) could be one of the key candidate con-

trol points to allow for CAM evolution and function in both

pineapple and Talinum (Brilhaus et al., 2016; Wai and

VanBuren, 2018). Finally, it is well established that CAM

induction in M. crystallinum is associated with increased

in-transcript abundance of a chloroplast carbohydrate

transporter gene associated with a higher glucose-6-phos-

phate transport rate in its CAM mode (Cushman et al.,

2008).

Computational approaches needed to define metabolic

and environmental regulation of CAM

Top-down modelling approaches in terms of network anal-

ysis have been adopted to group candidate genes into

modules according to the specific diel expression patterns.

A transcriptome module network analysis could be used to

construct CAM-specific regulatory hubs on obligate CAM

species under different environmental stress manipula-

tions and/or on facultative CAM species, with the time ser-

ies sampled through the CAM induction process (Ming

et al., 2015; Abraham et al., 2016; Brilhaus et al., 2016;

Yang et al., 2017; Maleckova et al., 2019) To some extent,

the pioneering study by Ming et al. (2015) has already

demonstrated the power of comparative gene expression

network analysis from a comparison of circadian clock

motifs between pineapple, orchid, rice and maize. They

also presented a gene regulatory network analysis for

green tissues, highlighting genes and their interacting part-

ners associated with CAM. Yang et al. (2017) also under-

took a comparative gene regulatory network analysis,

firstly for phase shifts in gene expression and also for heat

shock proteins between Kalanchoe, pineapple and Ara-

bidopsis. It is also possible to take a further step with a

network inference algorithm to infer the distinct mecha-

nisms of circadian control of CAM-related genes within

each expression module (Moseley et al., 2019a). Overall,

these top-down network analysis approaches still suffer

from the limitation of unannotated components within

CAM genomes and unidentified regulatory processes. This

suggests that the construction of CAM regulatory networks

must be continuously updated as more experimental data

become available. Nonetheless, network analysis alone

would not address the functional significance of any regu-

latory process until functional tests have been conducted.

A bottom-up approach builds on existing mechanistic

models (Owen and Griffiths, 2013a; Hartzell et al., 2018)

and metabolic network models (Maurice Cheung et al.,

2014; Shameer et al., 2018). Such models posit a null state,

in which the only a minimal circadian and/or metabolic

regulation is imposed on selective model components. At

this stage, the experiments reporting manipulated gene

expression and associated physiological outputs are fruit-

ful resources for developing improved versions of the

existing CAM mesophyll metabolic models (Dever et al.,

2015; Boxall et al., 2017). These gene manipulation experi-

ments can be regarded as ‘test’ datasets, whereas the

models have previously been ‘trained’ against the unper-

turbed condition. With this approach, we are looking for

the simplest model that captures CAM mesophyll meta-

bolic behaviour based on existing physiological and

enzyme kinetic data, visualised as the goodness of fit to

diverse gas exchange phase profiles. If the models can

capture CAM behaviour of these genetically manipulated

data, it would suggest that the minimal control processes

already built in to these models are robust enough for

CAM to function. In contrast, if any metabolic module of

the models fails to capture modified CAM outputs, candi-

date control loops can be modified or augmented with the

information drawn from comparative genomic data and

biochemistry of allosteric effects of metabolites. The

advantage of this bottom-up approach is that it does not

require prior knowledge of an entire transcription-gene

regulatory network to capture CAM functions. Instead, it

allows plant physiologists to focus on the functional layer

of the CAM system in terms of enzyme/transporter

activities.

An example of the simplest CAM control loop is the

interplay between the carboxylation–decarboxylation pat-

tern and carbohydrate storage. Firstly, mesophyll CAM

activity is dominated by PEPC and RubisCO that influence

Ci, which in turn alters stomatal responses, the potential

carboxylation rate (by day or night) and carbohydrate pro-

duction. Subsequently, carbohydrate availability then

determines the amount of starting material for the next

round of CO2 fixation, and so on (Borland et al., 2016,

2018). If this simplest loop is not enough to explain CAM

behaviour, then a more complex loop needs to be intro-

duced, based on the regulatory gene expression described

above which controls circadian clock gene expression,

carboxylase activity or carbohydrate partitioning. Never-

theless, one must be aware that there are multiple levels of

control. Genes that have not adopted a CAM-specific diel

expression pattern can have a crucial role in CAM function

if the protein activities are modified at other levels of

regulatory processes, including but not limited to post-

translational modifications (Yang et al., 2015; Zhu et al.,

2018).

Ultimately the top-down and bottom-up approaches

converge, in allowing identification of specific gene knock-

down/knockout targets which could be introduced into

tractable transformation systems, such as Kalanchoe

(Hartwell et al., 2016; Liu et al., 2019). Firstly, the refine-

ment of the pre-existing mesophyll mechanistic models

would enable systematic in silico quantification of the

effects that multiple candidate control points have on CAM

physiological outputs. Subsequently, experiments must be

carefully designed to represent a subset of in silico scenar-

ios which significantly affect CAM behaviour in terms of

© 2020 The Authors.
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carbon assimilation pattern, malate accumulation or carbo-

hydrate metabolism. With additional information about the

gene regulatory network, the most effective genetic manip-

ulation strategy may be achieved by targeting a specific

set of key CAM regulatory process (e.g. transcription fac-

tors, metabolic signal integration point or specific CAM cir-

cadian genes). More importantly, a better understanding of

regulatory networks would ensure that the targeted genetic

manipulation points are selected to not interfere with the

fundamental cellular processes that may lead to an unfa-

vourable pleiotropic effect. Finally, genetic perturbations

can be introduced into a transformation system to perform

functional tests. The responses to the genetic perturbation

can be used to validate the models and potentially be

informative for a future attempt at CAM biodesign (Lim

et al., 2019). In the end, the combination of network analy-

sis, mechanistic models and functional tests would reveal

how a given component of the CAM system is wired with

the central CAM regulatory network which would inform

subsequent genetic manipulations and mitigate against

biased component selection or undetectable network read-

justments.

THE COMPROMISE BETWEEN CARBON UPTAKE AND

WATER LOSS: HYDRAULIC CONSTRAINTS WITHIN CAM

SHOOT AND ROOT SYSTEMS

If understanding the biochemical integration of CAM car-

bon assimilation can be addressed by integrating molecu-

lar and systems approaches (see above), control of water

uptake and use will require bottom-up models to capture

the biophysical elements of water supply, storage and

evaporative demand in the succulent tissues (Bartlett et al.,

2014; Hartzell et al., 2015, 2018). The relevance and context

for this section are provided by two contrasting themes

evident in recent major reviews of CAM processes – one

being the evolutionary trajectory associated with the diver-

sification of CAM phylogenetically over the past 5 million

years (Edwards, 2019) and the second the notion that CAM

could be engineered into C3 crops or trees to engender

resilience to water deficits under the climate change (Yang

et al., 2015; Borland et al., 2018).

There are three competing views regarding the evolution

of succulent tissues and CAM metabolic activities. The key

points have been captured by Edwards (2019), who ques-

tions whether strong CAMwas needed as a response to pho-

tosynthetic limitation (low mesophyll conductance) in

dense, succulent tissues which had evolved to enhance

water storage and hence drought tolerance. Alternatively,

the enhanced water-use efficiency associated with CAM

would need large vacuolate cells to provide a nocturnal stor-

age reservoir for the accumulated malic acid, so succulence

could have been a secondary trait. Finally, she suggests that

water storage in succulent tissues and high water-use effi-

ciency in CAMwere co-selected (Edwards, 2019).

The answer to these questions may not lie in a single

linear progression from a typical C3 leaf (high air space,

low succulence, facultative CAM) to strong CAM in dense,

succulent tissues, particularly given recent findings on the

extent of intermediate C3–CAM forms (Winter et al., 2015;

Earles et al., 2018; Edwards, 2019). Such evidence might be

compelling within single clades of annual or perennial

herbs with similar growth forms, or when inferred from

indirect proxies such as air spaces and vasculature (Earles

et al., 2018; Males and Griffiths, 2018) or carbon isotope

compositions (Edwards, 2019). However, different evolu-

tionary trajectories could have been associated with the

origins of CAM in contrasting leaf succulence traits, which

range across annual herbs, perennial leaves (planar or

massive) or stems, with differing arrangements of chlor-

enchyma and water storage parenchyma (hydrenchyma),

as well as their associated two- or three-dimensional (3D)

vasculatures (Ogburn and Edwards, 2013; Griffiths, 2013;

Griffiths and Males, 2017). Currently, we do not have

enough comparative studies between C3 and CAM mem-

bers within a single family, comparing both gas exchange

and hydraulic traits, to infer cause and effect in this evolu-

tionary progression (Borland et al., 2018; Males and

Griffiths, 2018), particularly for the ‘massive’ leaf and stem

succulent families (e.g. Agavaceae, Euphorbiaceae and

Cactaceae). Hence, in parallel with the rapid progress in

generating comparative transcriptomic studies, compara-

tive hydraulic trait measurements from similar clades

would provide invaluable information.

Modelling approaches have been developed to capture

hydraulic aspects of CAM. Firstly, the systems dynamic

modelling of Owen and Griffiths (2013a) demonstrated that

the plasticity in the expression of CAM phases could be

captured in a single model when applied to both extreme

forms of leaf succulence. For massive leaf succulents such

as Agave transient gas exchange during Phases II and IV is

typically limited in laboratory and field studies (Nobel and

Valenzuela, 1987; Owen et al., 2016). In contrast, for the

genus Kalanchoe, where leaves consist of homogeneous

chlorenchyma, the expression of these phases is more

extensive and has been related to the degree of succulence

(tissue density and airspaces) (Griffiths et al., 2008). How-

ever, the Owen and Griffiths (2013a) model was able to

capture the transition from Agave to Kalanchoe gas

exchange profiles by altering mesophyll conductance and

associated biochemical constraints (in terms of PEPC and

RubisCO activities and their activation timing). Alterna-

tively, a coupled carbon–water flux model has incorporated

the classical Farquhar–von Caemmerer–Berry photosyn-

thetic model with soil–plant–atmospheric continuum

(SPAC) components (Farquhar et al., 1980; Bartlett et al.,

2014; Hartzell et al., 2018). This shows promise for integrat-

ing the carbon–water balance in CAM plants and success-

fully captured CAM phases and their responses under

© 2020 The Authors.
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progressive droughting conditions (Bartlett et al., 2014).

The latest iteration is able to compare C3, C4 and CAM sys-

tems using the Photo3 modelling framework (Hartzell

et al., 2018).

More aspects of specialised CAM hydraulic traits still

need to be incorporated into the model or functionally

tested. Firstly, tissue differentiation in succulent CAM sys-

tems has allowed a range of chlorenchyma–hydrenchyma

associations to develop, in which the hydrenchyma may

be integrated more or less directly above, within or

between chlorenchyma cell layers (Griffiths and Males,

2017). Both cell types with large vacuoles can contribute to

overall leaf water storage (capacitance) but there may be a

differential regulation of cellular biophysical traits such as

the bulk modulus of elasticity and half-life for water

exchange (as reviewed recently by Borland et al., 2018).

For some systems, the distinct hydrenchyma layers may

preferentially lose water to support overall leaf or cladode

transpiration, which in Agave was demonstrated by an

electrical analogue model (Smith et al., 1987). Secondly, it

is also becoming evident that we need to partition the

overall hydraulic conductance into xylem (Kx) and meso-

phyll (Kox) components to sites of evaporation (Scoffoni

et al., 2018; Males and Griffiths, 2018). Whilst even in C3

leaves it is increasingly found that Kox represents a major

limitation in the transport of water (Scoffoni et al., 2018),

this is also likely to be true for succulent CAM leaves given

the relatively high whole-leaf water potentials (about

�1 MPa) retained even during an extensive drought (Bor-

land et al., 2009; Griffiths, 2013; Males and Griffiths, 2018;

North et al., 2019). Finally, the likely susceptibility to xylem

cavitation (i.e. embolisms) under more extreme water

potentials in CAM has recently been linked to the absence

of secondary lignification generally across CAM systems

(Borland et al., 2018).

The more recent application of 3D tomographic scan-

ning techniques, used to define intracellular air spaces, as

well as the distribution of primary and secondary vascula-

ture (Earles et al., 2018; North et al., 2019) can also be cou-

pled to reveal the proportion of embolised conduits (Nolf

et al., 2017; North et al., 2019). Empirical observations of

this sort will help to compartmentalise the hydraulic limita-

tions across CAM systems, from rain roots through to stem

and leaf xylem to mesophyll tissues, which will then allow

models to capture the co-regulation of these stages in

water transfer. Additional molecular evidence on the role

of aquaporins in regulating water transport in roots or

shoots and any associated ABA signalling (North et al.,

2004; Sade et al., 2014) would also allow the dynamics of

water transport to be reflected in future tissue-specific

transcriptomic studies.

To conclude this consideration of hydraulic limitations

associated with succulent tissues, it now seems generally

accepted that CAM represents a drought avoidance

mechanism, with mature, sclerified roots and their shrinkage

being the accepted mechanism to prevent loss of water to

drying soils (Nobel and Valenzuela, 1987; Griffiths, 2013;

Borland et al., 2018). One further question remains as yet

untested: whether the development of 3D vasculature in

many succulent systems permits more rapid water uptake to

commence following intermittent precipitation events

(Griffiths, 2013). Coupling the molecular expression of aqua-

porins between xylem tissues, mesophyll hydrenchyma and

chlorenchyma would maximise the recharge of capacitance

for stem or leaf tissues via the 3D vein network. The evi-

dence that Agave and Opuntia can take up nearly 50% of a

major precipitation event (Nobel and Valenzuela, 1987) is

consistent with succulent plants being restricted to semi-arid

areas where rainfall is seasonally predictable. Therefore,

CAM, in the broadest sense, has perhaps necessitated the

development of stomatal, mesophyll and xylem hydraulic

processes associated with optimising both carbon assimila-

tion and water uptake for succulent tissues.

CONCLUSIONS

How variations upon CAM themes are regulated has con-

tinued to engender fascination in terms of fundamental

research and more translational applications for bioenergy

or biomass production (Borland et al., 2018; Edwards,

2019). There has been a dramatic growth in datasets defin-

ing molecular genetics, phylogenetics and mechanistic

processes associated with the CAM cycle across varying

degrees of succulence and varying levels of commitment

to the CAM pathway (be it strong or constitutive CAM or

C3–CAM intermediate states) (Edwards, 2019; Winter,

2019). Such approaches within specialised CAM groups are

important, but increasingly we need more generalised

approaches to capture the key regulatory networks and sig-

nalling effectors associated with the expression and main-

tenance of CAM (Dever et al., 2015; Ming et al., 2015;

Abraham et al., 2016; Boxall et al., 2017, 2019).

In this review, we have identified the need to develop

more rigorous computational modelling approaches which

can capture the information within huge transcriptomic

datasets. Careful comparative approaches are needed to

sift and distil this information into gene regulatory net-

works, and thence identify targets for manipulation and

assessment of resultant phenotypes. Furthermore, we

recognise the need for the additional development of sys-

tems models and/or metabolic network models which

could then predict or capture the novel phenotypic traits

arising from molecular transformation and more traditional

physiological manipulations (Owen and Griffiths, 2013a;

Maurice Cheung et al., 2014; Hartzell et al., 2018).

Ultimately, key questions which still endure in terms of the

effect of interaction between circadian and environmental

effectors on the guard cell and mesophyll processes may

also be resolved in the long run.

© 2020 The Authors.
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Similar approaches could also be used to model phylo-

genetic transitions within major CAM families and address

the ‘cause or effect’ of tissue succulence in driving the

commitment to CAM shown across the CAM trait space

(Males and Griffiths, 2017; Edwards, 2019). Here, we stress

the need for CAM syndromes to be assessed in their

entirety: the regulation of CO2 supply and evaporative

demand as expressed by stomata, the mesophyll meta-

bolic processes and the limitations imposed by low meso-

phyll conductance in dense tissues with low airspaces.

These aspects need to be integrated with how water sup-

ply is monitored, metered and recharged when intermittent

external sources are available to roots or leaf rosettes (Grif-

fiths, 2013; Males and Griffiths, 2018; North et al., 2019).

We hope these challenges will continue to attract future

generations of researchers who can identify the peculiar

attraction required to ‘work the night shift’ with CAM

(Black and Osmond, 2003) and determine the extent that

CAM systems could contribute to more sustainable

biomass production in a changing world.
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