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Abstract

In theory the potential for credit risk diversi�cation for banks could be substantial. Portfolios
are large enough that idiosyncratic risk is diversi�ed away leaving exposure to systematic risk.
The potential for portfolio diversi�cation is driven broadly by two characteristics: the degree
to which systematic risk factors are correlated with each other and the degree of dependence
individual �rms have to the di¤erent types of risk factors. We propose a model for exploring
these dimensions of credit risk diversi�cation: across industry sectors and across di¤erent coun-
tries or regions. We �nd that full �rm-level parameter heterogeneity matters a great deal for
capturing di¤erences in simulated credit loss distributions. Imposing homogeneity results in
overly skewed and fat-tailed loss distributions. These di¤erences become more pronounced in
the presence of systematic risk factor shocks: increased parameter heterogeneity greatly reduces
shock sensitivity. Allowing for regional parameter heterogeneity seems to better approximate
the loss distributions generated by the fully heterogeneous model than allowing just for industry
heterogeneity. The regional model also exhibits less shock sensitivity.
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1 Introduction

In theory the potential for credit risk diversi�cation for banks can be considerable. Insofar as

di¤erent industries or sectors are more or less pro-cyclical, banks can alter their lending policy

and capital allocation across those sectors. Similarly, internationally active banks are able to

apply analogous changes across countries. In addition to such passive credit portfolio management,

�nancial engineering, using instruments such as credit derivatives, enable banks (and other �nancial

institutions) to engage in active credit portfolio management by buying and selling credit risk (or

credit protection) across sectors and countries. Credit exposure to the U.S. chemical industry, say,

can be traded for credit exposure to the Korean steel sector. One may, therefore, think of a global

market for credit exposures where credit risk can be exported and imported.

Within such a global context, default probabilities are driven primarily by how �rms are tied

to fundamental risk factors, both domestic and foreign, and how those factors are linked across

countries. In order to implement such a global approach in the analysis of credit risk, we have

developed in Pesaran, Schuermann and Weiner (2004), hereafter PSW, a global vector autoregres-

sive macroeconometric model (GVAR) for a set of 25 countries accounting for about 80% of world

output. Importantly, the foreign variables in the GVAR are tailored to match the international

trade pattern of the country under consideration.

Pesaran, Schuermann, Treutler and Weiner (2005), hereafter PSTW, relate asset returns for

a portfolio of 119 �rms to the global macroeconometric model, thus isolating macro e¤ects from

idiosyncratic shocks as they relate to default (and hence loss). The GVAR e¤ectively serves as the

macroeconomic engine capturing the economic environment faced by an internationally active global

bank. Domestic and foreign macroeconomic variables are allowed to impact each �rm di¤erently.

In this way we are able to account for �rm-speci�c heterogeneity in an explicitly interdependent

global context. Developing such a conditional modeling framework is particularly important for

the analysis of the e¤ects of di¤erent types of shock scenarios on credit risk, an important feature

we exploit here.

In this paper we extend the analysis of PSTW along four dimensions. First, we provide some

analytical results on the limits of credit risk diversi�cation. Second, we illustrate the impact of two

di¤erent identi�cation restrictions regarding the default condition on the resulting loss distributions.

Third, we use this framework to understand the degree of diversi�cation with �ve models which

di¤er in their degree of parameter heterogeneity, from fully homogeneous to allowing for industry

and regional heterogeneity but homogeneous factor sensitivities all the way to a fully heterogeneous

model. Fourth, we have more than doubled the number of �rms in the portfolio from 119 to 243

�rms providing for more robust results and allowing us to explore the importance of exposure

granularity. We go on to explore the impact of shocks to real equity prices, interest rates and real

output on the resulting loss distribution as implied by the di¤erent model speci�cations.
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Such conditional analysis using shock scenarios from observable risk factors is not possible

in the most commonly used model in the credit risk literature, namely the Vasicek (1987, 1991,

2002) adaptation of the Merton (1974) default model. In addition to being driven by a single and

unobserved risk factor, this model also assumes that risk factor sensitivities, analogous to CAPM-

style betas, are the same across all �rms in all regions and industries, yielding a fully homogeneous

model. This single factor model also underlies the risk-based capital standards in the New Basel

Accord (BCBS (2004)), as shown in Gordy (2003).

We �nd that full �rm-level parameter heterogeneity matters a great deal for capturing di¤er-

ences in simulated credit loss distributions. Imposing homogeneity results in extremely skewed and

fat-tailed loss distributions. These di¤erences become more pronounced in the presence of system-

atic risk factor shocks: increased parameter heterogeneity greatly reduces shock sensitivity. For

example, an adverse 2:33� shock to U.S. equity prices increases loss volatility by about 31% for

the fully heterogeneous model, but by 73% for the homogeneous pooled model. These di¤erences

become even more pronounced as shocks become more extreme: for an adverse 5� shock to U.S.

equity prices, loss volatility increases by about 85% for the heterogeneous model, but by more than

240% for the restricted model.

We further �nd that symmetric shocks result in asymmetric and nonproportional loss outcomes

due to the nonlinearity of the default model. Loss increases arising from adverse shocks are larger

than corresponding loss decreases from benign (but equiprobable) shocks. Here too there are

important di¤erences across model heterogeneity. While all models exhibit this asymmetry for

expected losses and loss volatility, only the fully heterogeneous model maintains this asymmetric

response in the tail of the loss distribution. By imposing homogeneity, not only are the relative loss

responses exaggerated (all the percentage increases and decreases are larger for the restricted than

for the unrestricted model), but perceived reduction of risk in the tail of the loss distribution tends

to be overly optimistic. Failing to properly account for parameter heterogeneity could therefore

result in too much implied risk capital.

Both the baseline and shock-conditional loss distributions seem to change noticeably with the

addition of heterogeneous factor loadings. Allowing for regional heterogeneity appears to be more

important than allowing for industry or sector heterogeneity. However, the biggest marginal change

arises when allowing for full heterogeneity.

The apparently innocuous choice of identifying restriction �same default threshold versus same

unconditional probability of default (or distance to default), by credit rating �makes a material

di¤erence. Under the same threshold (by rating) restriction, conditioning on risk factor forecasts

changes �rm default probabilities only somewhat: unconditional and conditional probabilities of

default are highly correlated (96%). By contrast, such conditioning has a signi�cant impact under

the same distance to default (by rating) restriction. The conditional default probabilities disperse

resulting in a low correlation with unconditional default probabilities (79%).
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Finally, we are able to assess the impact of granularity or portfolio size on the risk of the

portfolio for a simpli�ed version of the model where analytic solutions for unexpected loss (UL)

are available. The lower the average correlation across �rm returns, the greater is the potential for

diversi�cation. But to achieve the theoretical (asymptotic) lower bound to the UL, a relatively large

N is required when return correlations are low. A common rule of thumb for return diversi�cation

of a portfolio of equities is around 50. Default correlations are, of course, much lower than return

correlations, and we show that to come within 3% of the asymptotic UL values, more than 5,000

�rms are needed. Thus credit portfolios or credit derivatives such as CDOs which contains rather

fewer number of �rms most likely would still retain a signi�cant degree of idiosyncratic risk. In the

case, for instance, of our more modestly sized portfolio of 243 �rms, the UL is some 44% above its

asymptotic value.

The plan for the remainder of the paper is as follows: Section 2 provides a model of �rm value and

default. Section 3 covers some useful analytical results for the loss distribution of a credit portfolio.

Section 4 presents the framework for conditional credit risk modeling including a brief overview of

the global macroeconometric model. In Section 5 we introduce the credit portfolio and present the

results from the multi-factor return regressions that link �rm returns to the observable systematic

risk factors from the macroeconomic engine. We present results for �ve models ranging from the

homogeneous pooled model to one allowing for full heterogeneity, with intermediate speci�cations

that allow for industry and geography e¤ects. In Section 6 we consider how those models impact

the resulting loss distributions under a variety of macroeconomic shock scenarios. In this section we

also consider the impact of portfolio size and granularity on the resulting loss distribution. Some

concluding remarks are provided in Section 7.

2 Firm Value and Default1

Most credit default models have two basic components: (i) a model of the �rm value, and (ii)

conditions under which default occurs. In this section we set out such a model by adapting the

option theoretic default model due to Merton (1974) to our global macroeconometric speci�cation

of the systematic factors. Merton recognized that a lender is e¤ectively writing a put option on the

assets of the borrowing �rm; owners and owner-managers (i.e. shareholders) hold the call option.

If the value of the �rm falls below a certain threshold, the owners will put the �rm to the debt-

holders. Thus a �rm is expected to default when the value of its assets falls below a threshold value

determined by its liabilities.

The problem of modeling �rm default inherits all the asymmetric information and agency prob-

lems between borrower and lender well known in the banking literature. The argument is roughly as

follows. A �rm, particularly if it is young and privately held, knows more about its health, quality

1This section follows the approach introduced in PSTW.
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and prospects than outsiders, e.g. lenders. Banks are particularly well suited to help overcome these

informational asymmetries through relationship lending; learning by lending. Moreover, managers

and owners of �rms have an incentive to substitute higher risk for lower risk investments as they

are able to receive upside gains (they hold a call option on the �rm�s assets) while lenders are not

(they hold a put option). See the survey by James and Smith (2000) for a more extensive discus-

sion, as well as Garbade (2001). If the �rm is public, we have other sources of information such as

quarterly and annual reports which, though accounting based, are then digested and interpreted

by the market. Stock and bond prices serve as summary statistics of that information.

The scope for credit risk diversi�cation thus can manifest itself through two channels: how �rm

value reacts to changes in the systematic risk factors and through di¤erentiated default thresholds.

Both channels need to be modeled. Since we shall be concerned with possibilities of diversi�cation

along the dimensions of geography and industry (or sector), we will consider �rms j; j = 1; :::; N;

in country or region i; i = 1; :::;M; and sector s; s = 1; :::; S; and denote the �rm�s asset value at

the end of period t by Vjis;t; and its outstanding stock of debt by Djis;t. According to Merton�s

model, default occurs at the maturity date of the debt, t + H, when the �rm�s assets, Vjis;t+H ;

are less than the face value of the debt at that time, Djis;t+H . This is in contrast with the �rst-

passage model where default would occur the �rst time that Vjis;t falls below a default boundary (or

threshold) over the period t to t+H.2 Under both models the default probabilities are computed

with respect to the probability distribution of asset values at the terminal date, t+H in the case

of the original Merton model, and over the period from t to t +H in the case of the �rst-passage

models. Although our approach can be adapted to the �rst-passage model, for simplicity we follow

the Merton approach here.

We follow the approach developed in detail in PSTW where default is said to occur if the value

of equity, Ejis;t+H ; falls below a possibly small but positive threshold value, Cjis;t+H ;

Ejis;t+H < Cjis;t+H : (1)

This is reasonable since technical default de�nitions used by banks and bondholders are typically

weaker than outright bankruptcy. Moreover, because bankruptcies are costly and violations to the

absolute priority rule in bankruptcy proceedings are so common, in practice the debtholders have an

incentive to put the �rm into receivership even before the equity value of the �rm hits the zero value.

The default point could vary over time and with �rm�s particular characteristics (region and sector

being two of them, of course). It is, however, di¢ cult to measure, since observable accounting-based

factors are at best noisy and at worst reported with bias, highlighting the information asymmetry

2See Black and Cox (1976). More recent modeling approaches include direct strategic default considerations

(e.g. Mella-Barral and Perraudin (1997)). Leland and Toft (1996) develop a model where default is determined

endogenously, rather than by the imposition of a positive net worth condition. For a review of these models, see, for

example, Lando (2004, Chapter 3).
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between managers (agents) and shareholders and debtholders (principals).3

To overcome these measurement di¢ culties and information asymmetries, we make use of a

�rm�s credit rating R 2 R = fAAA;AA; :::g.4 This will help us speci�cally in nailing down the

default threshold, details of which are given below in Section 2.1. Naturally rating agencies have

access to, and presumably make use of, private information about the �rm to arrive at their �rm-

speci�c credit rating, in addition to incorporating public information such as, for instance, �nancial

statements and equity returns.

To simplify the exposition here we adopt the standard practice and assume that asset values

follow a Gaussian geometric random walk with a �xed drift.

ln (Ejis;t+1=Ejist) = rjis;t+1 = �jis + �jis"jis;t+1;

where "jis;t+1 v N(0; 1), distributed independently across t (but not necessarily across �rms, �jis

is the return innovation volatility and �jis the drift of the one-period holding return, rjis;t+1. This

speci�cation is �unconditional� in the sense that it does not allow for the e¤ects of business cycle

and monetary policy variables on returns (and hence defaults). We shall return to conditional asset

return speci�cations that allow for such e¤ects in Section 2.2. The distribution of the H-period

ahead holding period return associated with the above speci�cation is then given by

rjis(t; t+H) =
HX
�=1

rjis;t+� v N(H�jis;
p
H�jis); (2)

where the notation (t; t+H) is used throughout to mean over the period �from t+ 1 to t+H.�

Default then occurs at the end of H periods if the H-period change in �rm value (or return)

falls below the log threshold-equity ratio, or return default threshold, as in

ln

�
Ejis;t+H
Ejis;t

�
< ln

�
Cjis;t+H
Ejis;t

�
;

or

rjis(t; t+H) < �jis(t; t+H):

Therefore, using (2), the �rm�s probability of default (PD) at the terminal date t+H is given by

�jis(t; t+H) = �

 
�jis(t; t+H)�H�jis

�jis
p
H

!
; (3)

where �(�) is the distribution function of the standard normal variate. The argument of �(�) in
(3) is sometimes called the distance to default (DD). We may rewrite the H-period forward return

default threshold as

�jis(t; t+H) = H�jis +�
�1 (�jis(t; t+H)) �jis

p
H:

3Du¢ e and Lando (2001), with this in mind, allow for imperfect information about the �rm�s assets and default

threshold in the context of a �rst-passage model.
4For an overview of the rating industry, see Cantor and Packer (1995). For no reason other than convenience, we

shall be using the ratings nomenclature used by Standard & Poor�s and Fitch.
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where ��1 (�jis(t; t+H)) is the quantile associated with the default probability �jis(t; t+H). The

�rm defaults if its H-period return, rjis(t; t +H); falls below its expected H-period return, less a

multiple of its H-period volatility.5

2.1 Identi�cation of the Default Threshold

In this section we provide a brief discussion of the problem of identifying the default threshold for

each �rm. Details can be found in Hanson, Pesaran and Schuermann (2005). In what follows we

shall be suppressing the country and sector subscript for simplicity. Suppose now that at time t we

have a portfolio of size Nt of �rms, or credit exposures to those �rms, and denote the exposure share

or weight for the jth �rm as wjt � 0 such that
PNt
j=1wjt = 1.6 At time t the expected portfolio

default rate at the end of H-periods from now (e.g. one year) is then given by

�(t; t+H) =

NtX
j=1

wjt �

 
�j(t; t+H)�H�j

�j
p
H

!
: (4)

Relation (4) may be thought of as a moment estimator for the unknown thresholds �j(t; t + H),

since �j and �j and �(t; t+H) can be estimated from past observed returns and realized defaults.

With one moment condition and Nt unknown thresholds, one needs to impose Nt � 1 identifying
restrictions; for example, one could impose the same threshold for every �rm in the portfolio. The

number of required identifying restrictions could be reduced if further information can be used.

One such type of information is provided by credit rating-speci�c default information.

Although �rm-speci�c default probabilities, �j(t; t + H), are not observable, the default rate

by rating, �R(t; t+H); can be estimated by pooling historical observations of �rms�defaults in a

particular rating class, using a sample spanning t = 1; :::; T . In this case the number of identifying

restrictions can be reduced to NT � k, where k denotes the number of rating categories, and NT

the number �rms in the portfolio at time T . There are two simple ways that identi�cation can be

achieved. One could, for example, impose the same distance to default on all �rms in the same

rating category, namely

�̂j(T; T +H)�H��j
��j
p
H

= DDR(T; T +H) 8j 2 R; (5)

where �̂j(T; T +H) is default threshold estimated on the basis of information available at time T ,

and ��j and ��j are sample estimates of (unconditional) mean and standard deviations of one-period

holding returns obtained over the period t = 1; 2; :::; T . Then with estimates of default frequencies

by rating in hand, namely �̂R(T; T + H); we are able to obtain an estimate of DDR(T; T + H)

5Note that ��1 (�jis(t; t+H)) is negative for �jis(t; t + H) < 0:5; which covers the default probability values

typically considered in the literature.
6Note that we are disallowing short positions which is not very restrictive for credit assets.
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given by7 dDDR(T; T +H) = �
�1 (�̂R(T; T +H)) ; (6)

and hence the �rm-speci�c default thresholds

�̂j(T; T +H) = ��j
p
H ��1 (�̂R(T; T +H)) +H��j : (7)

Note that imposing the same DD by rating as in (5) imposes the same unconditional PD for each

R-rated �rm, as in (6), but allows for variation in the estimated default thresholds �̂j(T; T +H)

across �rms within a rating because of di¤erent unconditional means and standard deviations of

returns, as in (7). Note also that each element on the right-hand-side of (7) is horizon dependent,

making the default threshold horizon dependent.

Alternatively, one could impose the restriction that the default threshold �̂j(T; T + H) is the

same across �rms in the same rating category:

~�j(T; T +H) = �̂R(T; T +H) 8j 2 R; (8)

which, when substituted into (4), now yields

�̂R(T; T +H) =
X
j2R

wj;T �

 
�̂R(T; T +H)�H��j

��j
p
H

!
: (9)

This is a non-linear equation that needs to be solved numerically for �̂R(T; T + H). Condition

(9) implies that DD, and hence unconditional PDs, will vary across �rms within a rating, since

�̂R(T; T+H) is chosen such that on average the PD by �rm with rating R is equal to �̂R(T; T+H):

2.2 Firm-Speci�c Conditional Defaults

For the credit risk analysis of di¤erent shock scenarios it is important to distinguish between

conditional and unconditional default probabilities. For the conditional analysis we assume that

conditional on the information available at time t, 
t, and as before the return of �rm j in region i

and sector s over the period t to t+H, rjis(t; t+H) = ln (Ejis;t+H=Ejis;t) ; can be decomposed as

rjis(t; t+H) = �jis(t; t+H) + �jis(t; t+H); (10)

where �jis(t; t + H) is the (forecastable) conditional mean (H-step ahead), and �jis(t; t + H) is

the (non-forecastable) component of the return process over the period t to t+H. It may contain

�rm-speci�c idiosyncratic as well as systematic risk factor innovations. We shall assume that

�jis(t; t+H) s N
�
0; �2jis(t; t+H)

�
: (11)

7Condition (5) implies that all �rms with rating R have the same unconditional distance to default and hence the

same unconditional default probability, as in (6).
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We can now characterize the separation between a default and a non-default state with an indicator

variable zjis(t; t+H);

zjis(t; t+H) = I [rjis(t; t+H) < �jis(t; t+H)] ; (12)

such that,

zjis(t; t+H) = 1 if rjis(t; t+H) < �jis(t; t+H) =) Default, (13)

zjis(t; t+H) = 0 if rjis(t; t+H) � �jis(t; t+H) =) No Default.

Using the same approach as above, the H-period ahead conditional default probability for �rm j

is given by

�jis(t; t+H) = �

�
�jis(t; t+H)� �jis(t; t+H)

�jis(t; t+H)

�
: (14)

�jis(t; t + H) and �jis(t; t + H) can be estimated using the �rm-speci�c multi-factor regressions

using a sample ending in period T . In what follows we denote these estimates by �̂jis(T; T +H) and

�̂jis(T; T +H), respectively. The default thresholds, �jis(T; T +H), can be estimated, following the

discussion in Section 2.1, by imposing either the same distance to default by rating, DDR(T; T+H);

as in (5), or the same default threshold by rating, as in (8). Speci�cally, under the same DD by

rating, the �rm-speci�c conditional PD will be given by

�̂jis(T; T +H) = �

 
��jis

p
H ��1 [�̂R(T; T +H)] +H��jis � �̂jis(T; T +H)

�̂jis(T; T +H)

!
: (15)

Under the same default threshold by rating we have

�̂jis(T; T +H) = �

 
�̂R(T; T +H)� �̂jis(T; T +H)

�̂�jis(T; T +H)

!
; (16)

where �̂R(T; T +H) is determined by (9).

Similarly, in the case of the same DD by rating the empirical default condition for �rm j with

credit rating R can now be written as

I
h
rjis(T; T +H) < �̂jis(T; T +H)

i
= 1 if rjis(T; T +H) < ��jis

p
H ��1 [�̂R(T; T +H)] +H��jis;

(17)

and in the case of the same default threshold by rating the default condition will be

I
h
rjis(T; T +H) < �̂R(T; T +H)

i
= 1 if rjis(T; T +H) < �̂R(T; T +H); (18)

where as before �̂R(T; T +H) is given as the solution to (9). Note that in the case of (18) there

are only as many default thresholds as there are credit ratings, whereas in the case of (17), each

default threshold is �rm speci�c (through ��jis and ��jis):
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Mappings from credit ratings to default probabilities are typically obtained using corporate

bond rating histories over many years, often 20 years or more, and thus represent averages across

business cycles. The reason for such long samples is simple: default events for investment grade

�rms are quite rare; for example, the annual default probability even for an �A� rated �rm is

approximately one basis point for both Moody�s and S&P rated �rms (see, for example, Jafry and

Schuermann (2004)). Accordingly, we will make the further indentifying assumption that credit

ratings are "cycle-neutral", in the sense that ratings are assigned only on the basis of �rm-speci�c

information and not on systematic or macroeconomic information. On this interpretation of credit

ratings also see Saunders and Allen (2002) and Amato and Fur�ne (2004).

Given su¢ cient data for a particular region or country i (the U.S. comes to mind) or sector

s, one could in principle consider default probabilities that vary over those dimensions as well.

However, since a particular �rm j�s default is only observable once, multiple (serial) bankruptcies

notwithstanding, it makes less sense to allow � to vary across j.8 Empirically, then, we abstract

from possible variation in default rates across regions and sectors, so that probabilities of default

vary only across credit ratings and over time.

Finally, another important source of heterogeneity that could be of particular concern for our

multi-country analysis is the di¤erences that prevail in bankruptcy laws and regulations across

countries. However, by using rating agency default data, which broadly speaking are based on

homogeneous de�nition of default, we expect our analysis to be reasonably robust to such hetero-

geneities.

3 Credit Loss Distribution9

The complicated relationship between return correlations and defaults manifest itself at the portfolio

level. Consider a credit portfolio composed of N di¤erent credit assets such as loans at date t, and

for simplicity assume that loss given default (LGD) is 100%, meaning that no recovery is made in

the event of default. Then we may de�ne loss as a fraction of total exposure by

`N;t+1 =

NX
j=1

wjzj;t+1; (19)

8To be sure, one is not strictly prevented from obtaining �rm-speci�c default probabilities estimates at a given

point in time. The bankruptcy models of Altman (1968), Lennox (1999) and Shumway (2001) are such examples, as

is the industry model by KMV (Kealhofer and Kurbat (2002)). However, all of these studies focus on just one country

at a time (the U.S. and U.K in this list) and do not address the formidable challenges of point in time bankruptcy

forecasting with a multi-country portfolio.
9This section presents a synopsis of results developed in detail in Hanson, Pesaran and Schuermann (2005).
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where wj is the exposure share, where wj � 0 and
PN
j=1wj = 1; and zj;t+1 = I(rj;t+1 < �jt), with

�jt assumed as given.10 Under the Vasicek model

V ar (`N;t+1) = �(1� �)

0@ NX
j=1

w2j

1A+ �(1� �)��
0@ NX
j 6=j0

wjwj0

1A ;

where � = E (zj;t+1), which is the same for all �rms, and �� is the default correlation,

�� (�; �) =

E

�h
�
�
��1(�)p
1�� �

q
�
1��ft+1

�i2�
� �2

�(1� �) ; (20)

where expectations are taken with respect to the distribution of ft+1; assumed here to be N(0; 1).11

For example, for � = 0:01, and � = 0:30, we have �� = 0:05: Since,
PN
j=1wj = 1, it is easily seen

that
NX
j=1

w2j +
NX
j 6=j0

wjwj0 = 1;

and hence

V ar (`N;t+1) = �(1� �)

8<:�� + (1� ��)
NX
j=1

w2j

9=; : (21)

Under
NX
j=1

w2j ! 0; as N !1; (22)

which is often referred to as the granularity condition, the second term in brackets in (21) become

negligible as N becomes very large, and V ar (`N;t+1) converges to the �rst term which will be

non-zero for �� 6= 0. Hence, in the limit the unexpected loss is bounded by
p
�(1� �)��. For a

�nite value of N , the unexpected loss is minimized by adopting an equal weighted portfolio, with

wj = 1=N . Full diversi�cation is possible only in the extreme case where �� = 0 (which is implied

by � = 0), and assuming that the above granularity condition is satis�ed.

The loss distribution associated with this homogeneous model is derived in Vasicek (1991,

2002) and Gordy (2000). Not surprisingly, Vasicek�s limiting (as N !1) distribution is also fully
determined in terms of � and �. The former parameter sets the expected loss of the portfolio, while

the latter controls the shape of the loss distribution. In e¤ect one parameter, �, controls all aspects

of the loss distribution: its volatility, skewness and kurtosis. It would not be possible to calibrate

two Vasicek loss distributions with the same expected and unexpected losses, but with di¤erent

degrees of fat-tailedness, for example.12

10To simplify the notations and without loss of generality, in this section we assume N and the exposure weights

are time invariant.
11For a derivation of (20), see Hanson, Pesaran and Schuermann (2005).
12The literature on modeling correlated defaults has been growing enormously. For a recent survey, see Lando

(2004, ch. 9).
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Further, Vasicek�s distribution does not depend on the portfolio weights so long as (22) is

satis�ed. Therefore, for su¢ ciently large portfolios that satisfy the granularity condition, (22), there

is no further scope for credit risk diversi�cation if attention is con�ned to the homogeneous return

model that underlies Vasicek�s loss distribution. Also, Vasicek�s set up does not allow conditional

risk modeling where the e¤ects of macroeconomic shocks on credit loss distribution might be of

interest. With these considerations in mind, we allow for systematic factors and heterogeneity

along several dimensions. These are: 1) multiple and observable factors, 2) �rm �xed e¤ects, 3)

di¤erentiated default thresholds, and 4) di¤erentiated factor sensitivities (analogous to �rm �betas�)

by region, sector or even �rm-speci�c. If the Vasicek model lies at the fully homogeneous end of

the spectrum, the model laid out in Section 2 above describes the fully heterogeneous end. How

much does accounting for heterogeneity matter for credit risk? The outcomes we are interested in

exploring are di¤erent measures of credit risk, be it means or volatilities of credit losses (expected

and unexpected losses in the argot of risk management), as well as quantiles in the tails or value-

at-risk (VaR). Before we are able to answer some of these questions we �rst need to introduce the

macroeconomic or systematic risk model that we plan to utilize in our empirical analysis.

4 Conditional Credit Risk Modeling

4.1 The Macroeconomic Engine: GVAR

The conditional loss distribution of a given credit portfolio can be derived by linking up the return

processes of individual �rms, initially presented in equation (10), explicitly to the macro and global

variables in the GVAR model. The macroeconomic engine driving the credit risk model is described

in detail in PSW. We only provide a very brief, non-technical overview here. The GVAR is a

global quarterly model estimated over the period 1979Q1-1999Q1 comprising a total of 25 countries

which are grouped into 11 regions, (shown in bold in Table 1 from PSTW, reproduced here for

convenience). The advantage of the GVAR is that it allows for a true multi-country setting;

however, it can become computationally demanding very quickly. For that reason we model the

seven key economies of the U.S., Japan, China, Germany, U.K., France and Italy as regions of their

own while grouping the other 18 countries into four regions.13 The output from these countries

comprises around 80% of world GDP (in 1999).

[Insert Table 1 about here]

In contrast to existing modeling approaches, in the GVAR the use of cointegration is not con�ned

to a single country or region. By estimating a cointegrating model for each country/region sepa-

rately, the model also allows for endowment and institutional heterogeneities that exist across the

13See PSW, Section 8, for details on cross-country aggregation into regions.
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di¤erent countries. Accordingly, speci�c vector error-correcting models (VECM) are estimated for

individual countries (or regions) by relating domestic macroeconomic variables such as GDP, in�a-

tion, equity prices, money supply, exchange rates and interest rates to corresponding, and therefore

country-speci�c, foreign variables constructed exclusively to match the international trade pattern

of the country/region under consideration. By making use of speci�c exogeneity assumptions re-

garding the �rest of the world�with respect to a given domestic or regional economy, the GVAR

makes e¢ cient use of limited amounts of data and presents a consistently-estimated global model

for use in portfolio applications and beyond.14

The GVAR allows for interactions to take place between factors and economies through three

distinct but interrelated channels:

� Contemporaneous dependence of domestic on foreign variables and their lagged values;

� Dependence of country speci�c variables on observed common global e¤ects such as oil prices;

� Weak cross-sectional dependence of the idiosyncratic shocks.

The individual models are estimated allowing for unit roots and cointegration assuming that

region-speci�c foreign variables are weakly exogenous, with the exception of the model for the U.S.

economy which is treated as a closed economy model. The U.S. model is linked to the outside world

through exchange rates, which in turn are themselves determined by the rest of the region-speci�c

models. PSW show that the careful construction of the global variables as weighted averages of the

other regional variables leads to a simultaneous system of regional equations that may be solved

to form a global system. They also provide theoretical arguments as well as empirical evidence in

support of the weak exogeneity assumption that allows the region-speci�c models to be estimated

consistently.

The conditional loss distribution of a given credit portfolio can now be derived by linking up

the return processes of individual �rms, initially presented in equation (10), explicitly to the macro

and global variables in the GVAR model. We provide a synopsis of the model developed in full

detail in PSTW.

4.2 Firm Returns Based on Observed Common Factors Linked to GVAR

Here we extend the �rm return model by incorporating the full dynamic structure of the systematic

risk factors captured by the GVAR. We present a notationally simpli�ed version of the model

outlined in detail in PSTW. Accordingly, a �rm�s return is assumed to be a function of changes in

14For a more updated version of the GVAR model which covers a longer period and a larger number of countries

see Dees, di Mauro, Pesaran and Smith (2005). This version also provides a theoretical framework where the GVAR

is derived as an approximation to a global unobserved common factor model.
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the underlying macroeconomic factors (domestic and foreign), the exogenous global variables (in

our application oil prices) and the �rm-speci�c idiosyncratic shocks �jis;t+� :

rjis;t+� = �jis + 

0
jisft+� + �jis�jis;t+� ; t = 1; 2; :::; T; (23)

where �jis;t+� v i:i:d:N(0; 1), � = 1; 2; :::;H, rjis;t+� is the equity return of �rm j (j = 1; :::; nci) in

region i and sector s; �jis is a regression constant (or �rm �alpha�), 
jis are the factor loadings (�rm

�betas�), and ft+� collects all the observed macroeconomic variables plus oil prices in the global

model (totaling 64 in PSW). To be sure, these return regressions are not prediction equations per

se as they depend on contemporaneous variables.

The GVAR model provides forecasts of all the global variables that directly or indirectly a¤ect

the returns. As a result default correlation enters through the shared set of common factors,

ft+� ; and the factor loadings, 
jis: If the model captures all systematic risk, the idiosyncratic risk

components of any two companies in the model would be uncorrelated, namely the idiosyncratic

risks ought to be cross-sectionally uncorrelated. In practice, of course, it will be hard to absorb all

of the cross-section correlation with the systematic risk factors modeled by the GVAR.

Note that we started by decomposing �rm returns into forecastable and non-forcastable com-

ponents in (10), namely rjis(t; t + H) = �jis(t; t + H) + �jis(t; t + H). In the case of the above

speci�cation we have

rjis(t; t+H) = H�jis + 

0
jis

HX
�=1

ft+� + �jis

HX
�=1

�jis;t+� ;

and as an illustration assuming a �rst-order vector autoregression for the common factors:

ft+� = �f t+��1 + vt+� ; (24)

we have15

�jis(t; t+H) = H�jis + 

0
jis

 
HX
�=1

��

!
ft; (25)

and

�jis(t; t+H) = 

0
jis

 
HX
�=1

	H��vt+�

!
+ �jis

HX
�=1

�jis;t+� ; (26)

where

	H�� = I+�+ :::+�
H�� :

The composite innovation �jis(t; t+H) contains the idiosyncratic innovation �jis;t+� , and common

macro innovations from the GVAR, here represented by vt+� , for � = 1; 2; :::;H. The predictable

component is likely to be weak and will depend on the size of the factor loadings, 
jis, and the ex-

tent to which the underlying global variables are cointegrating. In the absence of any cointegrating

15Note that for a pure random walk, � = 0; and conditional and unconditional returns processes are identical.
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relations in the global model, none of the asset returns are predictable. As it happens the econo-

metric evidence presented in PSW strongly supports the existence of 36 cointegrating relations in

the 63-equation global model and is, therefore, compatible with some degree of predictability in

asset returns, at least at the quarterly horizon modeled here. The extent to which asset returns

are predicted could re�ect time-varying risk premia and does not necessarily imply market ine¢ -

ciencies. Our modelling approach provides an operational procedure for relating excess returns of

individual �rms to all the observable macro factors in the global economy.

4.3 Expected Loss Due to Default

Given the value change process for �rm j, de�ned by (23), with �jis(T; T +H) and �jis(T; T +H)

by (25) and (26), and the return default threshold, �̂R(T; T +H), obtainable from an initial credit

rating (see Section 2), we are now in a position to compute (conditional) expected loss. Suppose

we have data for �rms and systematic factors in the GVAR for a sample period t = 1; :::; T: We

need to de�ne the expected loss to �rm j at time T +H given information available to the lender

(e.g. a bank) at time T; which we assume is given by 
T . Default occurs when the �rm�s return

falls below the return default threshold �̂jis(T; T + H) or ~�jis(T; T + H) de�ned by (7) and (8),

depending on the scheme used to identify the thresholds. Expected loss at time T (and realized at

T +H), ET (Ljis;T+H) = E (Ljis;T+H j 
T ) ; is given by (using ~�jis(T; T +H) = �̂R(T; T +H), for

j 2 R; for example) and

ET (Ljis;T+H) = Pr
h
�jis(T; T +H) <

~�jis(T; T +H)� �jis(T; T +H) j 
T
i
�Ajis;T�ET ('jis;T+H);

(27)

where Ajis;T is the exposure assuming no recoveries (typically the face value of the loan) and is

known at time T; and 'jis;T+H is the percentage of exposure which cannot be recovered in the

event of default or loss given default (LGD). Typically 'jis;T+H is not known at time of default

and is therefore treated as a random variable over the unit interval. In what follows we make the

simplifying assumption that LGD is 100%.

Substituting (23) into (27) we obtain:

ET (Ljis;T+H) = �jis(T; T +H)�Ajis;T ; (28)

where

�jis(T; T +H) = Pr
h
�jis(T; T +H) <

~�jis(T; T +H)� �jis(T; T +H) j 
T
i
:

is the conditional default probability over the period T to T + H, formed at time T . Under the

assumption that the macro and the idiosyncratic shocks are normally distributed and that the

parameter estimates are given, we have the following expression for the probability of default over
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T to T +H formed at T 16

�jis(T; T +H) = �

 
~�jis(T; T +H)� �jis(T; T +H)

��jis(T; T +H)

!
; (29)

where ��jis(T; T + H) =
q
V ar

�
�jis(T; T +H) j 
T

�
. Exact expressions for �jis(t; t + H) and

��jis(t; t+H) will depend on the nature of the global model used to identify the macro innovations.

In the case of the illustrative example given above, we have

V ar
�
�jis(T; T +H) j 
T

�
= 
 0jis

 
HX
�=1

	H��
v	
0
H��

!

jis +H�

2
jis;

where
v is the covariance matrix of the common shocks, vt. The relevant expressions for �jis(T; T+

H) and ��jis(T; T +H) in the case of the GVAR model are provided in the Supplement to PSTW.

The expected loss due to default of a loan (credit) portfolio can now be computed by aggregating

the expected losses across the di¤erent loans. Denoting the loss of a loan portfolio over the period

T to T +H by LT+H we have

ET (LT+H) =
NX
i=0

nciX
j=1

�jis(T; T +H)�Ajis;T ; (30)

where nci is the number of obligors (which could be zero) in the bank�s loan portfolio resident in

country/region i.

Finally note that, �jis;T is the explained or expected component of �rm j�s return, obtained from

the multi-period GVAR forecasts which in general could depend on macroeconomic shocks world-

wide. Thus, although individual �rms operate in a particular country/region i, their probability of

default can be a¤ected by global macro economic conditions.

4.4 Simulation of the Loss Distribution

The expected loss as well as the entire loss distribution can be computed once the GVAR model

parameters, the return process parameters in (23) and the thresholds using either (7) or (8), have

been estimated for a sample of observations t = 1; 2; :::; T . We do this by stochastic simulation

using draws from the joint distribution of the shocks, �jis(T; T +H), which is assumed to have a

conditional normal distribution with variance �2�jis(T; T +H):

Denote the bth draw of this vector by �(b)jis(T; T +H), and compute the H-period �rm-speci�c

return, r(b)ijs(T; T +H), noting that

r
(b)
ijs(T; T +H) = �jis(T; T +H) + �

(b)
jis(T; T +H); (31)

16Joint normality is su¢ cient but not necessary for �jis(T; T +H) to be approximately normally distributed. This

is because �jis(T; T + H) is a linear function of a large number of weakly correlated shocks (63 in our particular

application).
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where �jis(T; T +H) is derived from the GVAR forecasts (along the lines of (25)), and

�
(b)
jis(T; T +H) =  jis;H Z

(b)
0 + �jis

p
HZ

(b)
jis (32)

is the composite innovation, where Z(b)0 and Z(b)jis are independent draws from N(0; 1). The loading

coe¢ cients  jis;H and �jis
p
H are determined by the parameters of the GVAR and the coe¢ cients

of the asset return regressions, (23). In the case of the GVAR model the relevant expressions for

the simulation of the multi-period returns are provided in Section B of the Supplement to PSTW.

Note that Z(b)0 is shared by all �rms for a given draw b. Details on the derivation of  jis;H for

the GVAR model can be found in PSTW. The idiosyncratic portion of the innovation is comprised

of the �rm speci�c volatility, �jis; estimated using a sample ending in periods T , and a �rm speci�c

standard normal draw, Z(b)jis: One may then simulate the loss at the end of period T + H using

(known) loan face values, Ajis;T , as exposures:

L
(b)
T+H =

NX
i=0

nciX
j=1

I
h
r
(b)
ijs(T; T +H) <

~�jis(T; T +H)
i
Ajis;T : (33)

The simulated expected loss due to default is given by (using B replications)

�LB;T+H =
1

B

BX
b=1

L
(b)
T+H

p! ET (LT+H) , as B !1: (34)

The simulated loss distribution is given by ordered values of L(b)T+H ; for b = 1; 2; :::; B. For a desired

percentile, for example the 99%, and a given number of replications, say B = 100; 000, credit value

at risk is given as the 1000th highest loss.

5 An Empirical Application

5.1 The Credit Portfolio

To analyze the e¤ects of di¤erent model speci�cations, parameter homogeneity versus heterogeneity,

we construct a �ctitious large-corporate loan portfolio. This portfolio is an extended version of that

used in PSTW and is summarized in Table 2a. It contains a total of 243 companies, resident in 21

countries across 10 of the 11 regions in the GVAR model. In order for a �rm to enter our sample,

several criteria had to be met. We restricted ourselves to major, publicly traded �rms with a credit

rating from either Moody�s or S&P. Thus, for example, Chinese companies were not included for

lack of a credit rating. The �rms should be represented within the major equity index for that

country. We favored �rms for which equity return data was available for the entire sample period,

i.e. going back to 1979. Typically this would exclude large �rms such as telephone operators which

in many instances have been privatized only recently, even though they may represent a signi�cant
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share in their country�s dominant equity index today. The data source is Datastream, and we took

their Total Return Index variable which is a cum dividend return measure.

The third column in Table 2a indicates the inception of the equity series available for the multi-

factor regressions. We allocated exposure roughly by share of output of the region (in our �world�

of 25 countries). Within a region, loan exposure is randomly assigned. Loss given default is assumed

to be 100% for simplicity. Table 2b provides summary information of the number of �rms in the

portfolio by industry.

[Insert Tables 2a & 2b about here]

In order to obtain estimates for the rating-speci�c default frequencies (�̂R;T+HjT ), we make use

of the rating histories from Standard & Poor�s spanning 1981-1999, roughly the same sample period

as is covered by our GVAR model. The results are presented in Table 3 below for the range of ratings

that are represented in our portfolio of �rms, namely AAA to B. Empirical default probabilities,
�̂R;T+� ; for � = 1; 2; :::;H are obtained using default intensity-based estimates detailed in Lando

and Skødeberg (2002) and computed for di¤erent horizons under the assumption that the credit

migrations are governed by a Markov process (in our application H = 4 quarters). This assumption

is reasonable for moderate horizons, up to about two years; see Bangia et al. (2002). Since S&P

rates only a subset of �rms (in 1981 S&P rated 1,378 �rms of which about 98% were U.S. domiciled;

by early 1999 this had risen to 4,910, about 68% U.S.), it is reasonable to assign a non-zero (albeit

very small) probability of default, even if the empirical estimate is zero. This is particularly relevant

if we wish to infer default behavior for a much broader set of �rms than is covered by the rating

agencies. With this in mind, we impose a lower bound on the quarterly default frequency of 0.025

basis points per quarter or 0.1 basis points per annum. As can be seen in Table 3, this constraint is

binding only for the AAA rating. In this table we also show in parentheses the exposure share by

rating and the resulting EL. Based on the exposures in our portfolio, the (unconditional) expected

default (or loss under the maintained assumption of no recovery) over one year is 0.294% or 29.4bp

(basis points), bolded in the table.

[Insert Table 3 about here]

5.2 Multi-factor Return Regressions: Speci�cation, Estimation and Selection

With the GVAR framework serving as the global economic engine, multi-factor return regressions

are speci�ed in terms of the observed macro factors in the GVAR model. A general form of these

return regressions is given by (23). Given the diverse nature of the �rms in our portfolio, one

is tempted to include all the domestic, foreign and global factors (i.e. oil price changes) in the

multi-factor regressions. Such a general speci�cation may be particularly important in the case

where a multinational is resident in one country, but the bulk of its operations takes place in the
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global arena. However, because there is likely to be a high degree of correlation between some of the

domestic and foreign variables (in particular the domestic and foreign real equity prices), it is by no

means obvious that a general-to-speci�c model selection process would be appropriate, particularly

considering the short time series data available relative to the number of di¤erent factors in the

GVAR.

An alternative model selection strategy, which we adopted in PSTW and follow in this paper,

is to view the 243 multi-factor regressions as forming a panel data model with heterogeneous

coe¢ cients. Such panels have been studied by Pesaran and Smith (1995) and Pesaran, Smith and

Im (1996) where it is shown that instead of considering �rm-speci�c estimates one could base the

analysis on the means of the estimated coe¢ cients, referred to as the mean group estimates (MGE).

This approach assumes that the variations of factor loadings across �rms in di¤erent regions are

approximately randomly distributed around �xed means. This is the standard random coe¢ cient

model introduced into the panel literature by Swamy (1970) and used extensively in the empirical

literature.17 The choice of the factors in the multi-factor regressions can now be based on the

statistical signi�cance of the (population) mean coe¢ cients by using the MGE to select a slimmed-

down regressor set.18

The above factor selection procedure applied to the panel of 243 �rms led to the following set

of factors: changes in domestic or foreign real equity prices, which we denote by �~qi;t+1, domestic

interest rate (��i;t+1) and oil price changes (�p
o
t+1). We ran two sets of multi-factor regressions

(including the interest rate and oil price variables); one with �qi;t+1 (the domestic aggregate

equity return variable) and another with �q�it (the foreign country-speci�c equity return variable),

and selected the regression with the higher �R2. For three-quarters of the portfolio (183 �rms) the

domestic equity market return was chosen. This fully heterogeneous return equation (to be denoted

as model M0) is given by

rjis;t+1 = �jis + �1;jis�~qi;t+1 + �2;jis��i;t+1 + �3;jis�p
o
t+1 + "jis;t+1; (35)

where the idiosyncratic errors, "jis;t+1; are assumed to be i:i:d:N(0; �2jis). As credit rating informa-

tion is used, default thresholds are computed using (7) and (8), depending on whether we �x DD

or � by rating.

The summary of the �nal set of multi-factor regressions of (35) and the associated MG estimates

are given in Table 4. In this speci�cation changes in equity prices, interest rates and oil prices remain

the key driving factors in the multi-factor regressions.

[Insert Table 4 about here]

As is to be expected, the portfolio equity �beta�is highly signi�cant, but somewhat below unity

at 0.918. An increase in the rate of interest results in a decline in �rm returns while the overall e¤ect
17A recent review of the random coe¢ cient models is provided by Hsiao and Pesaran (2004).
18The appropriate test statistics for this purpose are given in PSTW, Section 6.
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of the oil price changes is positive. This seems a reasonable outcome for energy and petrochemical

companies and for some of the banks, although one would not expect this result to be universal. In

fact we do observe considerable variations in the individual estimates of the coe¢ cients of oil prices

changes across di¤erent �rms in our portfolio. In the �nal regressions, of the 243 �rm regressions,

the coe¢ cient on oil price changes was positive for 144 �rms (about 59% of the total), and negative

for the remaining �rms. The MGE for each subset was also signi�cant. A pooled estimate would,

of course, impose the same factor loadings, in this case positive, on all �rms.19

The lack of other observable systematic risk factors entering the return model con�rms that

most information relevant for �rm returns is contained in the contemporaneous market return.

Only interest rates and oil prices changes provided marginal explanatory power. To be sure, when

forecasting the macroeconomic variables, and when conducting scenario analyses, the dynamics

of all the variables modeled in the GVAR (all 63 of them, plus oil prices) can still a¤ect returns

through their possible impacts on equity returns and interest rates. A direct presence in the �rm

return equation is not necessary for real output, for example, to in�uence returns. Output shocks

in�uence returns and credit losses to the extent that real output, interest rates and stock market

returns are contemporaneously correlated.

In addition to the above fully heterogeneous speci�cation, we also consider a number of spec-

i�cations with di¤ering degrees of slope and error variance heterogeneity, but based on the same

three systematic factors (�~qi;t+1;��i;t+1;�p
o
t+1): We consider the following additional models:

M1(Fully Homogeneous Model): Pooled return equations with the same �alpha�and �beta�

across all 243 �rms in the portfolio:

rjis;t+1 = �+ �1�~qi;t+1 + �2��i;t+1 + �3�p
o
t+1 + "jis;t+1; (36)

where the error variances are assumed to be the same for all �rms, i.e. �2jis = �2" 8 jis.20

M2 (Firm Fixed E¤ects): This is the standard �xed e¤ects speci�cation:

rjis;t+1 = �jis + �1�~qi;t+1 + �2��i;t+1 + �3�p
o
t+1 + "jis;t+1; (37)

where the error variances are assumed to be the same for all �rms, as in the model M1.

M3: (Industry/Sector Fixed and Marginal E¤ects): This model imposes the same in-

tercept (�alphas�) and slopes (�betas�) within an industry/sector but allows those parameters to

vary across industries:

rjis;t+1 =

SX
s=1

�sSDs +

SX
s=1

�1sSDs�~qi;t+1 +

SX
s=1

�2sSDs��i;t+1 (38)

+

SX
s=1

�3sSDs�p
o
t+1 + "jis;t+1;

19Similarly for ��i;t+1; 38% of �rms actually have a positive coe¢ cient.
20The parameters � and �0i are estimated by pooled OLS.
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where SDs is a sector dummy variable which takes the value of 1 for sector s and 0 otherwise, for

all t, i and j. All �rms within a given sector have the same error variance, but those variances are

allowed to vary across industries.

M4: (Region Fixed and Marginal E¤ects): In this model we impose the same intercept

(�alpha�) and slope (�beta�) within a region but allow those parameters to vary across regions.

rjis;t+1 =

MX
i=1

�iRDi +

MX
i=1

�1iRDi�~qi;t+1 +

MX
i=1

�2iRDi��i;t+1 (39)

+
MX
i=1

�3iRDi�p
o
t+1 + �jis;t+1;

where RDi is dummy variable which takes the value of 1 for region i and 0 otherwise, for all t, s

and j. All �rms within a given region have the same error variance, but those variances are allowed

to vary across regions.

Model M2 is arguably the simplest complication beyond a fully homogeneous model in that

it allows �rm �xed e¤ects (�rm �alphas�) but still imposes the same error variance on all �rms.

Models M3 and M4 explore the impact of parameter (mean and variance) heterogeneity by industry

and region respectively.

Table 5 summarizes the regression results for the remaining models, M1 to M4. The equity

factor loading is highly statistically signi�cant (1% or better) across all models, and for the pooled

models, with or without a �rm �xed e¤ect, M2 (0.869) and M1 (0.865) respectively, the coe¢ cient is

close to the MG estimate for the heterogeneous model, M0 (0.918). There is, however, considerable

variation across industries (M3) and regions (M4). For the industry model, the equity �beta�

is lowest for Communication, Electric & Gas and Non-durable Manufacturing, both 0.752, and

highest for FIRE (Finance, Insurance and Real Estate), 0.909. The sector equity �beta�closest to

the pooled model is Agriculture, Mining & Construction, 0.889.

[Insert Table 5 about here]

There is even more variation in the equity �beta�across regions, ranging from a low of 0.622 for

Latin America to a high of 1.926 for the Middle East, represented in our portfolio simply by four

Turkish �rms and so should not be taken as typical.21 The second lowest �beta�was estimated

for Italy, 0.663, and the second highest for neighboring Germany, 1.165. Evidently geographic

proximity does not translate to similarity in equity betas, at least not for our portfolio. South East

Asia is closest to the pooled �beta�at 0.842.

Turning now to interest rate sensitivity, recall that the MGE of the interest rate variable for the

heterogeneous model is -2.990, meaning an increase in interest rates has an adverse e¤ect on �rm

21The Middle East region did not include a domestic equity variable, so all return equations for the Turkish �rms

include the foreign equity return variable, �q�i;t+1, for i = Turkey.
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returns. This coe¢ cient is not signi�cant for either of the pooled models, M1 and M2, and it has the

wrong sign. Allowing for variation across sectors, M3, results in signi�cant and negative coe¢ cients

for FIRE, -5.590, and Wholesale & Retail Trade, -3.711. Just one of the positive coe¢ cients is

signi�cant: 3.402 for Non-durable Manufacturing. Similar results are obtained in the case of Model

M4, where the interest rate variable is statistically signi�cant with a correct sign only in case of

US �rms (-5.974), the Turkish �rms in the Mid East region (-6.676), and South East Asia (-5.454).

Only one of the positive estimates is statistically signi�cant, although it is small, and that is for

Latin America, 0.111.

The coe¢ cient on oil price changes is signi�cant and positive for both pooled models, M1 (0.063)

and M2 (0.064), echoing the MGE for the heterogeneous model M0 (0.145). Recall, however, that

the MGE of the sub-groups with positive and negative coe¢ cients were also signi�cant, suggesting

that �rm-level heterogeneity for this factor loading may be particularly important. When group-

ing by industry or region, however, only the positive coe¢ cients are signi�cant. Indeed, in the

indeustry/sector model, the coe¢ cient of the oil price variable is signi�cant only for Communica-

tion, Electric & Gas, at 0.113. In the regional model it is signi�cant for several regions, including

the U.S. (0.076), Germany (0.230), Mid East (2.341), which is not surprising, and Latin America

(1.035), although the oil exporter Venezuela is not part of our Latin American region.

From a model �t perspective, as measured by �R2, regional heterogeneity is more important

than industry heterogeneity: �R2 = 0:171 for the former and 0:151 for the latter. Both are preferred

to just adding �rm �xed e¤ects to the pooled model: the �R2 for M2 is 0:148. By comparison, the

average �R2 for the heterogeneous model M0 is 0.201; see Table 4.

Finally, we computed the average pair-wise cross-sectional return correlation across all �rms

in our portfolio as well as of the residuals for each of the return speci�cations, M0 through M4.

The average pair-wise cross-sectional return correlation turns out to be about 11.2%. While this

may seem low for equity returns, note �rst that returns are measured at relatively low frequency

�quarterly, and second that our portfolio is quite well diversi�ed, with �rms from 21 countries

grouped into 10 regions, and across all major industry groups. The three factors used in the �ve

model speci�cations are able to absorb a signi�cant amount of the cross-�rm dependence: the

average residual correlation ranges from 3.7% to 4% across the models.

Another consideration in our comparative analysis is the extent to which the �ve alternative

parametric speci�cations a¤ect cross section correlations of the simulated returns. Since all the �ve

models are based on the same set of observed factors, cross section correlations of the simulated

returns will be a¤ected signi�cantly by parameter heterogeneity only if the di¤erences of parameters

across �rms are systematic. In the case of pure random di¤erences across slopes, it is easily seen

that all speci�cations would imply similar degrees of error cross correlations, and this is in fact true

in the present application.
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6 Simulated Credit Loss Distributions

6.1 Unconditional and Conditional Loss

With the estimated GVAR model serving as the macroeconomic scenario generator and the �tted

multi-factor regressions as the linkage between �rms and the global economy, we simulated loss

distributions one year ahead. We do this by �rst forecasting, out-of-sample, the evolution of

the 64 GVAR risk factors, using those forecasts and the risk factor loadings or return regression

coe¢ cients to compute �rm return forecasts, and then seeing if that return forecast falls below the

default threshold. A one year horizon is typical for credit risk management and thus of particular

interest. We carried out 200,000 replications for each scenario, baseline as well as shock scenarios,

using Gaussian innovations.

The estimation period ends in 1999Q1, and we generate the loss distribution out of sample over

one year to the end of 2000Q1. The year over which the loss distribution is simulated turned out

to have been relatively benign for the �rms in our portfolio when compared to the sample period

which we use to compute unconditional parameters such as expected returns and return volatilities.

The unconditional one-year portfolio return (i.e. the exposure weighted average return of all �rms

in the portfolio) is 14.67%, whilst using the speci�cation for the fully heterogeneous model M0;

the conditional portfolio return projected for the forecast year is 37.78%. This is re�ected in the

di¤erence between conditional and unconditional portfolio default (the same as expected loss, EL,

under the maintained assumption of no loss recovery). Recall from Table 3 that unconditional EL

is 0.294%, but conditional EL under the default threshold (�) identifying assumption (8) is 0.096%,

and under the same distance to default (DD) assumption (5) is 0.089%.22 When we compare

the analytical to the simulated conditional portfolio default or expected loss, they are very close:

0.096% for same � and 0.087% for same DD.

Fixing DD to be the same across �rms by rating also �xes the unconditional default probability;

the two are isomorphic. Conditioning on return forecasts updates those probabilities. Fixing

the default threshold � by rating, however, allows for heterogeneity in the unconditional default

probabilities; they just need to be the same on average (see the discussion in Section 2.2). Those,

in turn, may be updated over time as conditioning information is incorporated. This �rm-level

heterogeneity in unconditional probabilities of default (PD) can make a big di¤erence empirically,

as is seen in Figure 1 which displays a scatter plot of unconditional (horizontal axis) and conditional

(vertical axis) one-year PDs for the 243 �rms in the portfolio. The top panel is for the same default

threshold (�) by credit rating for all �rms, while the bottom panel is for the same distance to default

(DD) by credit rating for all �rms. The axes on both charts are scaled to be directly comparable.

We see immediately in the top panel that conditional and unconditional PDs are not only widely

22The di¤erences between the latter two estimates are due to rounding error arising from the inverse normal

transform on very small probabilities.
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dispersed, re�ective of the underlying �rm level heterogeneity, but also highly correlated (� = 0:961).

By contrast the sameDD by rating chart (bottom panel) has both the unconditional and conditional

PDs tightly clustered in a narrow range. As there are six credit ratings represented in this study,

so we see six vertical lines, where the vertical scatter represents the variation in conditional PD by

rating (all having the same unconditional PD, of course) resulting in a lower correlation between

unconditional and conditional PDs (� = 0:790). In contrast to same �; the PDs implied by same

DD change dramatically through conditioning. (or updating). These di¤erences will become more

explicit and pronounced in the loss distributions across the model speci�cations, an issue we address

next.

[Insert Figure 1 about here]

6.2 Model Heterogeneity and Baseline Losses

In moving from the most homogeneous model M1 to M2, we add heterogeneity in the conditional

mean by allowing for �rm �xed e¤ects, as well as heterogeneity in the unconditional probability of

default, namely by introducing credit rating information. To isolate the e¤ects of these relaxations

of the homogeneity restrictions, we add an intermediate model which augment model M1 with credit

rating information. Consequently we denote M1a to be the homogeneous model without the use of

rating information, and M1b the homogeneous model that allows for credit ratings in determination

of the default thresholds.

Table 6 gives summary statistics for the baseline (i.e. no risk factor shocks) loss distribution

for all models, with the top panel imposing the same threshold, �; identifying restriction, and the

bottom panel the same distance to default, DD, restriction. We show the �rst four moments as

well as three tail quantiles or values-at-risk (VaR): 99.0%, 99.5% and 99.9%, corresponding to levels

commonly used by risk managers, and in the last case, the risk tolerance level of the New Basel

Capital Accord (BCBS (2004)).

[Insert Table 6 about here]

Looking �rst at the top panel, EL and UL vary signi�cantly across the di¤erent speci�cations,

both increasing as we increase model heterogeneity. However, as shown in Hanson , Pesaran and

Schuermann (2005), it is important that the di¤erences in EL�s across the di¤erent portfolios are

taken into account, before implications of heterogeneity for unexpected losses can be evaluated.

There is no obvious way that this can be done. Here we normalize risk, whether measured by

unexpected loss (UL) or VaR, by EL. We shall refer to these as EL multiples.

The results in Table 6 show that it takes about 21 EL multiples to obtain one standard deviation

of losses for the most homogeneous model M1a, just 11 for the industry model M3, and only 2.5

for the fully heterogeneous model M0. The third and fourth moments, skewness and kurtosis
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respectively, also decline when more heterogeneity is allowed for. Imposing homogeneity results in

overly skewed and fat-tailed loss distributions. This point becomes quite clear when looking at the

99.9% VaR: model M1a and M1b have EL multiples in excess of 300, while the regional model M4

has a multiple of only 54 and the fully heterogeneous model M0 only 21, less than one-tenth of the

most homogeneous model.

Adding credit ratings to the homogeneous speci�cation, model M1b; results in noticeable drop

in EL multiples: UL/EL drops from 20.8 to 17.1, and 99.9% VaR from 382 to 305. Adding �rm

�xed e¤ects, model M2, does not help; in fact risk seems to increase slightly. We need to allow

for variation in factor loadings, either by industry, model M3, or region, model M4, before EL

multiples decline further. A similar pattern holds when looking at value at risk. In this regard

regional heterogeneity seems to play a more important role than industry heterogeneity, perhaps

not surprising given the international nature of this portfolio.23

Turning to the bottom panel, where the loss distributions are simulated under the same DD

identifying restriction, di¤erences across model speci�cations are much more muted. The results

for the heterogeneous model M0 are broadly in line with its same � counterpart in the top panel

(EL and UL, and VaR are similar). However, EL decreases as we increase the degree of parameter

heterogeneity. Moreover, there is little di¤erence in EL multiples, whether looking at loss volatility

(UL) or VaR. In fact, the results would suggest that increased heterogeneity actually increases risk:

UL/EL for M1a is 1.4 and for M0 is 3.0. Further, 99.9% VaR, normalized by EL, is 11 for M1a and

28 for M0. In light of these results, and the previous discussion of unconditional and conditional

PDs, in the remaining analysis we focus on the same threshold (�) identifying restriction.

Before proceeding to the shock scenarios, it may be of interest to compare the simulated UL

to that implied by the Vasicek model as discussed in Section 3. This asymptotic expression, given

in (21), is driven by the average default rate across the portfolio, �; and the default correlation,

��; itself a function of � and the average return correlation of the �rms in the portfolio, �; which

is 11.2% for our portfolio; see (20) in Section 3. Thus using the unconditional portfolio default

rate from Table 3, � = 0:294%, this yields a default correlation of �� = 0:470% and an asymptotic

UL =
p
�(1� �)�� = 0:371%, which is above the simulated UL of all models. However, those

simulated ULs are conditional, not unconditional, and if we substitute the simulated (conditional)

EL (which, under the maintained assumption of no loss recovery, is identical to �); all asymptotic

UL values are below their simulated counterparts, as they should be, assuming that the average

return correlation � remains unchanged. For example, in the case of model M0, � = 0:094%; so

that �� = 0:208% . In that case asymptotic UL = 0:140% which is below the simulated UL of

0.239%. The di¤erence is clearly due to granularity, an issue we pick up in Section 6.5 below.

23We tried a di¤erent industry speci�cation using 10 instead of 6 groups to match the number of parameters in the

regional model (there are 10 regions). This did not change our conclusions.
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[Insert Figure 2 about here]

In Figure 2 we compare the simulated loss distributions across model speci�cations. The top

panel displays the 20% tail (80th percentile and beyond) and the bottom panel focuses on the 5%

tail. The extreme skewness and fat-tailedness of the more restricted models becomes apparent.

We see that the fully heterogeneous model in particular accumulates losses much earlier in the

distribution, already by about the 82nd percentile, than the other models. Signi�cant losses are not

seen until about the 95th percentile for the regional model M4, not until after the 97th percentile

for the industry model M3, and well beyond the 99th percentile for all other models.

6.3 Model Heterogeneity and Risk Factor Shocks

One of the main advantages of our conditional modeling approach is that it allows us to consider

the impact of di¤erent macroeconomic or risk factor shock scenarios. The ability to conduct shock

scenario analysis with observable risk factors is clearly important for policy analysis, be it business

or public policy.

Recall that the risk factors in the �rm return models are equity returns, interest rates and

oil prices. In addition we shall explore the impact of business cycle heterogeneity across di¤erent

countries by considering shocks to real output, which (as noted earlier) can in�uence the loss

distributions indirectly through their contemporaneous correlations with equity returns and interest

rates. Accordingly we examined the following equiprobable scenarios, though others are possible,

of course:24

� a �2:33� shock to real U.S. equity, corresponding to a quarterly change of �14.28% from the

baseline forecast,25

� a +2:33� shock to the German short term interest rate, corresponding to a quarterly rise of

0.33%,

� a �2:33� shock to real U.S. output, corresponding to a quarterly drop of 1.85%.

In order to learn more about the tail properties of the various loss distributions, we also consider

an extreme stress scenario for the U.S. equity market as reported in PSTW, namely an adverse

shock of 8:02�. This corresponds to a quarterly drop of 49% which is the largest quarterly drop in

the S&P 500 index since 1928, and that occurred over the three months to May of 1932. Finally,

we include an intermediate negative equity shock of �5� which corresponds to a quarterly decline
242.33� corresponds, in the Gaussian case, to the 99% Value-at-Risk (VaR), a typical benchmark in risk manage-

ment.
25Relative to historic averages, this shock corresponds to a rise (drop) of 17.95% (11.35%), computed as

exp (2:23%� 14:28%)� 1:
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of 30.64%. Details of how the macroeconomic shocks are generated and how they feed through �rm

returns to the loss distribution can be found in PSTW.

[Insert Table 7 about here]

We start the discussion with a �2:33� shock to real U.S. equity under the same threshold,
�; restriction, summarized in Table 7. For each model we repeat the baseline results for ease of

comparison and display the percentage increase (decrease) from that baseline of EL, UL and 99.9%

VaR. For each model, the percentage increase in EL and UL arising from the adverse shock is

always larger than the corresponding decline in losses due to a benign shock. Consider model M1a:

EL (UL) increases by 88% (73%) under the adverse shock and decreases by 67% (48%) under the

benign shock. The size of those impacts declines as we allow for more heterogeneity. The regional

model M4, for instance, shows an increase in EL (UL) of 151% (42%) from the adverse shock

against a decline of 46% (29%) from the benign shock. The smallest impact can be seen from the

most heterogeneous model, M0: the adverse shock increases EL (UL) by 51% (31%) and the benign

shock decreases EL (UL) by 31% (21%).

This asymmetric and non-proportional response of credit losses to symmetric shocks is due

to the nonlinearity of the credit risk model. When going to the tails of the loss distribution,

however, only the fully heterogeneous model M0 maintains this asymmetric response. For all other

model speci�cations, the reduction in 99.9% VaR arising from the benign shock is larger than the

corresponding increase in 99.9% VaR due to the adverse shock. Thus, by imposing homogeneity,

not only are the relative loss responses exaggerated (all the percentage increases and decreases are

larger for the restricted than for the unrestricted model), but perceived reduction in risk in the tail

of the loss distribution tends to be overly optimistic.

Finally, note that an adverse shock results in less skewed and fat-tailed loss distributions, relative

to their respective baselines, across all models, and conversely a benign shock renders them more

extreme. The adverse (benign) shock results in more (fewer) �rms defaulting systematically due

to the displacement of expected (i.e. forecast) returns, before any additional idiosyncratic risk is

accounted for. As a result an adverse (benign) shock shifts probability mass of the loss distribution

closer to (farther from) the mean. The e¤ects of the shocks on the shape of the loss distribution is

quite large for relatively homogeneous models, and much more modest for heterogeneous ones. For

instance, the skewness (kurtosis) for M1a decreases to 19.4 (537) under the adverse shock compared

to the baseline, 29.4 (1200), but increases to 38.0 (1652) under the benign shock. By contrast, the

skewness and kurtosis decreases to 5.1 and 37, respectively, for the regional model, M4; under the

adverse shock scenario as compared to the baseline values of 6.5 and 56, but increases to 8.4 and

86 under the benign shock scenario, respectively. The relative impact is, of course, even smaller for

the fully heterogeneous model, M0.
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The evidence thus far suggests that heterogeneity is important in controlling risk both under

a baseline forecast and under shock scenarios. Allowing for regional heterogeneity appears to be

more important than allowing for industry or sector heterogeneity. Both the baseline and shock-

conditional loss distributions seem to change noticeably with the addition of heterogeneous factor

loadings, i.e. starting with model M3. However, the biggest marginal change arises when allowing

for full heterogeneity with model M0.

Next we consider an adverse shock to German interest rates. Naturally we could have shocked

interest rates of other countries, e.g. the U.S., but since we already have other U.S.-based shock

scenarios, we wanted to broaden the discussion by considering shocks to other countries�macroeco-

nomic factors. Interest rate shocks are of particular interest in our modeling context because the

corresponding factor loading is positive, but insigni�cant, for the pooled models M1 and M2, on

average negative and signi�cant for the heterogeneous model M0, and rather mixed for the industry

and regional models, M3 and M4.

[Insert Table 8 about here]

The loss simulation results are summarized in Table 8. Compared with adverse U.S. equity

shocks, the impact on credit losses due to an equiprobable adverse shock to German interest rates

is more modest. EL increases on average by only about 24%, UL by only 12%, and 99.9% VaR by

around 5%. Here too we see a similar model ranking as before, with the most homogeneous model

M1a being the most shock sensitive, at least when measured by EL and UL impact, and the most

heterogeneous model M0 the least shock sensitive. The impact on on 99.9% VaR is modest across all

models, and given parameter uncertainty, broadly similar across the di¤erent model speci�cations.

Even though the factor loading on interest rates is positive, albeit small and not signi�cant,

for the pooled models M1a, M1b and M2, losses still increase in reaction to an adverse interest rate

shock. Because of the complicated inter-dependencies that exist in the GVAR model, shocking

one of the factors will potentially impact all the other 62 factors. As a result the overall e¤ect of

the shock on the loss distribution need not have the same sign as the coe¢ cient of the factor in

the return equation. Consequently an adverse interest rate shock may have the counter-intuitive

benign direct e¤ect on �rm returns in the pooled return regressions, but the intuitive adverse

indirect e¤ects through the equity return factor.

With this in mind we consider the e¤ects of an adverse shock to real U.S. output. Recall that

output does not enter the �rm return regressions; however, shocks in output may enter indirectly

through the other variables such as interest rates and equity prices. We summarize those results

in Table 9 and notice immediately that the changes from the baseline are of the wrong sign but

quite small and are unlikely to be statistically signi�cant. One year after the shock, credit losses

are projected to actually decline somewhat. Average decline in EL across models is about 5%, the

decline in UL is about 3%, and the decline in 99.9% VaR about 2% relative to the baseline loss
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distribution. In Section 6.4 below we explore whether including output directly in the �rm-speci�c

return regressions makes any di¤erence.

[Insert Table 9 about here]

Finally, we consider the e¤ect of extreme shocks to the resulting distribution of credit losses

under di¤erent model speci�cations. Table 10 presents results from two di¤erent U.S. real equity

shock scenarios: �5:00� in Panel A and �8:02� in Panel B, the latter matching the largest quarterly
drop in the S&P 500 index since 1928. To be sure, a shock as extreme as �8:02� is, of course,
outside the bounds of the estimated model. It would be unreasonable to believe that such a large

shock would not result in changes to the underlying parameters. However, it is still instructive to

examine the impact of an extreme shock, one way one might stress a credit risk model. Moreover,

5� events are more common at higher frequencies than the quarterly data we have available to us,

and in this way our results will likely underestimate the true loss outcomes.

[Insert Table 10 about here]

Under the �5� shock scenario, shown in Panel A, increases in expected losses across models
range from eleven-fold (1035%) (M2) to nine-fold (794%) (M1a) to just 154% (M0). UL increases

for the same models are about three and a half-fold for M1a (244%) and M2 (266%) and not quite

double for M0 (85%). Di¤erences in the tail impact at the 99.9% level are not as extreme: 150%

for M1a, 107% for M2 and 83% for M0. But the broad pattern observed so far holds: the more

restrictive (homogeneous) the model, the more sensitive it reacts to shock scenarios.

[Insert Figure 3 about here]

As the shock becomes more extreme to �8:02�; see Panel B in Table 10, the resulting loss

distribution for all models becomes less skewed and fat-tailed, as measured by kurtosis. To see

this graphically we generated density plots for model M0; presented in Figure 3. In the top panel

we display the simulated loss densities for model M0 for the baseline, the symmetric and two

severe shocks to U.S. real equity prices. To make it easier to see some of the features of the

shock-conditional distributions, the positive shock density is not shown in the bottom panel.

6.4 Business Cycle Shocks: An Alternative Model Speci�cation

The return regressions used in the above simulation exercises do not select the real output growth

as a risk factor. As noted earlier this might not be that surprising as the e¤ects of business

cycle �uctuations on �rm returns could have already been incorporated indirectly through market

returns. It is, however, possible that the factor selection and the subsequent model estimation
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could have been biased due to the use of country-speci�c asset return variables, particularly in the

case of countries with relatively small asset markets.26

With this in mind, and following the work of Kapetanios and Pesaran (2004), we proceeded

to estimate an alternative version of the fully heterogeneous model which includes a global equity

return, ��qt+1, de�ned as the cross-sectional average of all equity indices in the GVAR model

instead of the country-speci�c market returns, �~qi;t+1 used in (35). We then run this version of

the return regression augmented with real output growth for region i, denoted by �yi;t+1; and the

other variables, namely changes in interest rates (��i;t+1) and oil prices (�p
o
t+1):

27

rjis;t+1 = �jis + �1;jis��qt+1 + �2;jis��i;t+1 + �3;jis�p
o
t+1 + �4;jis�yi;t+1 + �jis;t+1: (40)

The MGE results for the alternative speci�cation (40) using PPP weights are given in Table 11.

These new estimates attribute a smaller e¤ect to market returns with the average market �beta�

falling from 0.918 to 0.780 and the interest rate e¤ects rising (in absolute value) from -2.99 to -4.236.

The average e¤ect of real output growth on �rm returns is also statistically signi�cant and has the

correct sign, which contrasts the earlier results based on country-speci�c equity market returns.

The average e¤ects of oil price changes, although still positive, are no longer statistically signi�cant.

The change in the estimates as a result of using ��qt+1 instead of �~qi;t+1 are in line with a priori

expectations and could be explained by a positive correlation between the country-speci�c market

returns and the errors in the �rm-speci�c return regressions. This is also re�ected in the estimates

of the in-sample �t of the return regressions where the avg. �R2 declines from 0.201 to 0.103 as we

move from �~qi;t+1 to ��qt+1. The decline in the �t is quite substantial and could be an important

consideration in the choice between the alternative speci�cations, although any simultaneity arising

from inclusion of �~qi;t+1 could in itself result in an upward bias in the avg. �R2.

[Insert Table 11 about here]

Bearing in mind the uncertainty associated with these alternative speci�cations, the loss simu-

lations based on the new return regressions for the baseline scenario as well as for the 2.33� shock

scenarios are summarized in Table 12. These simulations can be viewed as providing a check on the

robustness of the loss simulation results obtained so far. Baseline loss behavior is only somewhat

di¤erent from M0 (see last row of Table 6, top panel), but importantly it is closer than any of the

26Recall that the estimates of the output e¤ects are obtained by regression of �rm-speci�c returns on the market

returns, output growth and other variables such as changes in the interest rates and oil prices. Since market returns

are in e¤ect weighted averages of the �rm-speci�c returns, the return regressions could yield biased estimates if the

market return happens to be based on a relatively few �rms.
27This cross-sectional average may be either equal weighted or PPP-weighted. We experimented with both. In the

latter case we used PPP weights from 1996, the same weights used in the GVAR to construct regions from countries.

There were little di¤erences in the result, and in what follows we focus on the estimates based on the PPP-weighted

global real equity index.
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other restricted models, even though their in-sample goodness of �t was higher. When we examine

the impact of shocks, even though real output now directly enters the �rm return regressions, the

impact of an adverse shock to real U.S. output growth is very similar to the previous speci�cation:

it is both small and of the wrong sign. Meanwhile the impact of the other shocks are similar in this

as in the original speci�cation.

[Insert Table 12 about here]

Although the average loading on output is positive, statistically signi�cant and large at 0.7, it

turns out that about half (45%) of the �rms actually have a negative coe¢ cient (loading) on output.

Indeed when we look at the MGE of the positive and negative subsets, they are both signi�cant.

Hence it is not surprising that for our portfolio, the net impact of an adverse shock to output is

about zero. Of course, if the portfolio were comprised only of �rms with a positive loading, credit

losses would likely increase in the event of an adverse output shock.

As far as loss distributions are concerned, our overall conclusions seem to be robust to the choice

of the �rm-speci�c return regressions.

6.5 Idiosyncratic Risk and Granularity

Portfolio-level results of credit risk models such as those discussed in Vasicek (1987, 2002) assume

that the portfolio is su¢ ciently large that all idiosyncratic risk has been diversi�ed away. More

generally we consider a credit portfolio composed ofN di¤erent credit assets such as loans, each with

exposures or weights wi, for i = 1; 2; ::; N , such that the granularity condition (22) holds. Recall

that a su¢ cient condition for (22) to hold is given by wi = O
�
N�1�.28 The lower the average �rm

return correlation, the greater the potential for diversi�cation, but a larger N is required to attain

that limit than if correlations are lower. A common rule of thumb for return diversi�cation of a

portfolio of equities is N � 50: But as seen in Section 6.2, default correlations are much lower than
return correlations, meaning that more �rms are needed to reach the diversi�cation limits of credit

risk.

Thus it seems reasonable to ask if a portfolio of N = 243 is large enough to diversify away the

idiosyncratic risk. To answer this question we used an empirical version of the one-factor Vasicek

model described in Section 3 and analyzed the impact of increasing N on simulated compared to

analytic (asymptotic) unexpected loss (UL). For simulation purposes, Vasicek�s model takes the

following form:

rj;t+1 = �r + �f ft+1 + �""j;t+1; (41)

28Conditions (22) on the portfolio weights was in fact embodied in the initial proposal of the New Basel Accord

in the form of the Granularity Adjustments which was designed to mitigate the e¤ects of signi�cant single-borrower

concentrations on the credit loss distribution. See Basel Committee (2001, Ch.8).
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where �r =
PT
t=1

PN
j=1 rjt=NT ,  

"j;t+1

ft+1

!
s i:i:d:N (0; I2) ;

I2 is a 2-dimensional identity matrix, � = �2f=
�
�2f + �

2
"

�
; and �2f is the variance of the �market�

return. These parameters can be estimated as

�̂2f =

PT
t=1(�rt � �r)2
T � 1 ; �rt =

NX
j=1

rjt=N; (42)

and

�̂2" =

PT
t=1

PN
j=1 (rjt � �rt)

2

NT � 2 : (43)

Loss is given by (19) with the return default threshold given by

� = �r +
q
�2f + �

2
" �

�1 (�) : (44)

For our portfolio, for the one-year horizon we have the following parameter values: �r = 13:356%;

�̂f = 11:230%; �̂" = 34:856%; �̂ = 0:294%, so that the implied average return correlation � =

9:404%, with an associated default correlation of �� = 0:369%.29 Substituting these values in (44)

obtains a one-year return default threshold of �87:51%, meaning that any �rm that experiences a

one-year return worse than �87:51% would default.

Calibrating the Vasicek�s model to these parameters we simulated losses assuming di¤erent

portfolio granularity, ranging from 119 to 10,000 �rms. To be sure, all �rms share the same draw of

the systematic factor f and the same default threshold lambda, while each �rm carries idiosyncratic

risk (re�ected by �rm-speci�c draws from "j;t+1 v N(0; 1)). Idiosyncratic risk should diversify

away, with the simulated UL approaching the analytic UL as the number of �rms increases.

The results are summarized in Table 13. The result for N = 119 relates to the number of �rms

in the PSTW portfolio. By more than doubling N we cut idiosyncratic risk nearly in half. But to

come within 3% of the asymptotic UL of the portfolio, more than 5,000 �rms are needed! Thus

credit portfolios or credit derivatives such as CDOs which contains rather fewer number of �rms

will likely still retain a signi�cant degree of idiosyncratic risk, an observation also made by Amato

and Remolona (2004).

[Insert Table 13 about here]

29The relationship between � and �� is given by (20).
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7 Concluding Remarks

In this paper we have made use of a conditional credit risk model with observable risk factors,

developed in Pesaran, Schuermann, Treutler and Weiner (2004), to explore several dimensions of

credit risk diversi�cation: across industries (sectors) and across di¤erent countries or regions, either

in a relatively restrictive �xed e¤ects return speci�cations, or by allowing for full �rm-level hetero-

geneity. Speci�cally, we �x the number of risk factors �there are three: market equity returns and

changes in domestic interest rates and oil prices �and only vary the degree of parameter hetero-

geneity across models. We �nd that full �rm-level parameter heterogeneity matters a great deal for

capturing di¤erences in simulated credit loss distributions. Expected loss (EL) increases as more

heterogeneity is allow for. However, unexpected losses, normalized by EL, decline dramatically.

Moreover, imposing homogeneity results in overly skewed and fat-tailed loss distributions.

These di¤erences become more pronounced in the presence of shocks to systematic risk factors.

The most restricted model which imposes the same factor sensitivities across all �rms is overly

sensitive to such shocks, and thus failing to properly account for parameter heterogeneity could

result in too much implied risk capital. Allowing for regional parameter heterogeneity seems to

better approximate the loss distributions generated by the fully heterogeneous model than allowing

just for industry heterogeneity.

The results raise a number of questions and issues that merit further exploration. Our portfolio,

by virtue of being allocated across 21 countries in 10 regions, is already quite diversi�ed as evidenced

by an average cross-sectional pair-wise return correlation of 11.2%. Concentrating all of the nominal

exposure into just one region or one industry would undoubtedly have signi�cant impact on the

resulting loss distribution, in addition to yielding di¤erences across models. A di¢ culty one would

quickly encounter in exploring this problem are the rating or default probability di¤erences across

those dimensions. The average rating in the U.K., for instance, is much higher than for the

Latin American obligors, especially if one follows the rule that an obligor rating cannot exceed

the sovereign rating.30

It is also worth exploring the impact of fat-tailed innovations on the resulting loss distributions.

The current application is limited to the double-Gaussian assumption (both idiosyncratic and

systematic innovations are normal), but it seems reasonable to relax this assumption by considering,

say, draws from Student-t distributions with low degrees of freedom.

30This rule seems quite reasonable when one considers debt denominated in, say, USD (or euros), but perhaps less

so if the debt is exclusively in the local currency.
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Table 1  

Countries/Regions in the GVAR Model 
 

U.K. Germany Italy France 

Western Europe 

 Belgium 

 Netherlands 

 Spain 

 Switzerland 

South East Asia 

 Indonesia 

 Korea 

 Malaysia 

 Philippines 

 Singapore 

 Thailand 

Latin America 

 Argentina 

 Brazil 

 Chile 

 Mexico 

 Peru 

 

Middle East 

 Kuwait 

 Saudi Arabia 

 Turkey 

 

U.S.A. Japan China  
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Table 2a  

The Composition of the Sample Portfolio by Regions 
 

Region # of 

Obligors 

Equity Series1 

Quarterly 

Credit Rating2 

Range 

Portfolio 

Exposure (%) 

U.S.A. 

U.K. 

Germany 

France 

Italy 

W. Europe 

Middle East 

S.E. Asia 

Japan 

L. America 

63 

24 

21 

14 

10 

24 

4 

34 

35 

14 

79Q1 – 99Q1 

79Q1 – 99Q1 

79Q1 – 99Q1 

79Q1 – 99Q1 

79Q1 – 99Q1 

79Q1 – 99Q1 

90Q3 – 99Q1 

89Q3 – 99Q1 

79Q1 – 99Q1 

89Q3 – 99Q1 

AAA to BBB- 

AA to BBB+ 

AAA to BBB- 

AA to BBB 

A to BBB- 

AAA to BBB+ 

B- 

A to B 

AAA to B+ 

A to B- 

20 

8 

10 

8 

8 

11 

2 

14 

14 

5 

Total 243 – – 100 

 
1. Equity prices of companies in emerging markets are not available over the full sample period used for the 
estimation horizon of the GVAR. We have a complete series for all firms only for the U.S., U.K., Germany 
and Japan. For France, Italy and W. Europe, although some of the series go back through 1979Q1, data are 
available for all firms from 1987Q4 (France), 1987Q4 (Italy), 1989Q3 (W. Europe). For these regions the 
estimation of the multi-factor regressions are based on the available samples. For Latin America we have 
observations for all firms from 1990Q2. 

2. The sample contains a mix of Moody’s and S&P ratings, although S&P rating nomenclature is used for 
convenience. 
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Table 2b  

Portfolio Breakdown by Industry 
 

 #  (%) of Firms 

Agriculture, Mining & Construction 

Communication, Electric & Gas 

Durable Manufacturing 

Finance, Insurance & Real Estate 

Non-Durable Manufacturing 

Service 

Wholesale & Retail Trade 

24 (9.9%) 

45 (18.4%) 

30 (12.3%) 

71 (29.2%) 

27 (11.1%) 

6 (2.5%) 

40 (16.4%) 

Total 243 (100%) 
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Table 3  

Unconditional Default Probabilities by Rating 
 

1, 2, 3 & 4 quarter ahead (in basis points), exposure weighted in parentheses 

S&P Rating Exposure 

Share 
( ), 4ˆR T Tπ +  

AAA 

AA 

A 

BBB 

BB 

B 

4.8% 

17.6% 

32.5% 

27.7% 

11.6% 

5.8% 

0.100 (0.005) 

0.372 (0.066) 

0.721 (0.234) 

10.69 (2.97) 

49.54 (5.72) 

353.61 (20.42) 

Portfolio 100% 29.42 

 
Based on ratings histories from S&P, 1981Q1 - 1999Q1 
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Table 4 

Mean Group Estimates of Factor Loadings, Heterogeneous Model (M0) 
 

Factors MGE 

β̂  

S.E. of MGE 

( )ˆ. .s e β
 

t-ratios 

constant 

, 1i tq +∆ %  

, 1i tρ +∆  

1
o
tp +∆  

0.022 

0.918 

-2.990 

0.145 

0.002 

0.026 

0.528 

0.042 

10.495 

34.862 

-5.663 

3.456 

avg. 
2R  

avg. 
2R  

# of firm quarters 

0.238 

0.201 

17,114 

  

 

, 1i tq +∆ %  is equal to , 1i tq +∆  (domestic equity return) or 
, 1

*
i t
q

+
∆  (foreign equity return), depending on 

which yields a better in-sample fit. , 1i tρ +∆  is the change in the domestic interest rate, and 1

o

tp +∆  is 
the change in oil prices. 
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Table 5: Return Regression Results for Models M1 - M4 
 

 M3:Industry Fixed & Marginal Effects 

 

 M4:Region Fixed & Marginal Effects 

 

 M1: 

Pooled 

M2: 

Pooled  + 

Firm FE 

C
om

m
un

ic
at

io
n,

 

El
ec

tri
c 

&
 G

as
 

A
gr

ic
., 

M
in

in
g 

&
 C

on
st

ru
ct

io
n 

D
ur

ab
le

 

M
an

uf
ac

tu
rin

g 

FI
R

E 

N
on

-D
ur

ab
le

 

M
an

uf
ac

tu
rin

g 
Se

rv
ic

e 

W
ho

le
sa

le
 &

 

R
et

ai
l T

ra
de

 

U
.S

. 

U
.K

. 

G
er

m
an

y 

Fr
an

ce
 

Ita
ly

 

W
es

te
rn

 E
ur

op
e 

M
id

 E
as

t 

(T
ur

ke
y 

on
ly

) 

So
ut

h 
Ea

st
 A

si
a 

Ja
pa

n 

La
tin

 A
m

er
ic

a 

Constant 0.020*** 

(0.001) 

 0.022*** 

(0.003) 

0.014*** 

(0.004) 

0.015***

(0.004) 

0.023*** 

(0.003) 

0.030***

(0.004)

0.028***

(0.008) 

0.015*** 

(0.003) 

0.015*** 

(0.003) 

0.032*** 

(0.004) 

0.006 

(0.004) 

0.020*** 

(0.005) 

0.027*** 

(0.006) 

0.026*** 

(0.004) 

0.156*** 

(0.014) 

0.012*** 

(0.004) 

0.008*** 

(0.003) 

0.076*** 

(0.007) 

Equity 0.869*** 

(0.016) 

0.865*** 

(0.016) 

0.752*** 

(0.081) 

0.889*** 

(0.051) 

0.834***

(0.044) 

0.909*** 

(0.028) 

0.752***

(0.055)

0.775***

(0.122) 

0.944*** 

(0.045) 

0.916*** 

(0.039) 

0.801*** 

(0.065) 

1.165*** 

(0.064) 

1.097*** 

(0.067) 

0.663*** 

(0.059) 

0.808*** 

(0.056) 

1.926*** 

(0.242) 

0.842*** 

(0.036) 

0.904*** 

(0.044) 

0.622*** 

(0.045) 

Interest 

rate 

0.018 

(0.050) 

0.031 

(0.050) 

-0.020 

(0.081) 

0.115 

(0.106) 

0.124 

(0.082) 

-5.590*** 

(0.573) 

3.402**

(1.515)

-2.717 

(3.480) 

-3.711*** 

(1.316) 

-5.974*** 

(0.907) 

0.669 

(1.366) 

0.699 

(3.061) 

-1.016 

(2.414) 

-0.576 

(2.961) 

-2.493 

(2.288) 

-6.676*** 

(0.840) 

-5.454*** 

(0.824) 

-0.885 

(2.072) 

0.111** 

(0.050) 

Oil price 0.063*** 

(0.021) 

0.064*** 

(0.020) 

0.113** 

(0.049) 

0.067 

(0.065) 

0.059 

(0.057) 

0.175*** 

(0.040) 

0.012 

(0.059)

0.058 

(0.124) 

-0.006 

(0.048) 

0.076** 

(0.038) 

0.058 

(0.061) 

0.230*** 

(0.067) 

0.023 

(0.085) 

-0.004 

(0.104) 

-0.117 

(0.067) 

2.341*** 

(0.241) 

0.047 

(0.066) 

0.009 

(0.053) 

1.035*** 

(0.125) 

R2 0.144 0.160 0.152       0.173          

2R  0.144 0.148 0.151       0.171          

# Firm 

Quarters 

17,114 17,114 2,989 1,689 2,178 4,546 2,099 474 3,139 4,977 1,896 1,622 1,030 674 1,634 156 1,799 2,765 561 

() indicates the standard error of the parameter estimate 

* indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level 

Firm return regressions using quarterly returns for 243 firms from 21 countries grouped into 10 regions.  More detail on the equity return data 
series by region is contained in Table 2a.  Systematic risk factors are market equity return, “Equity,” the change in the domestic (short) interest 
rate, “Interest rate,” and the change in the (global) price of oil, “Oil price.”  The factor selection process and details on the return specifications 
for models M1 to M4 are given in Section 5.2.  
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Table 6 

Baseline Scenario 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead 

Same λ      Value-at-Risk (VaR/EL) 

Model Specifications EL UL UL/EL Skewness Kurtosis 99.0% 99.5% 99.9% 

M1a Homogeneous - No Rating 0.001% 0.030% 20.8 29.4 1200 0%  (0) 0%  (0) 0.56%  (382) 

M1b Homogeneous - w/ Rating 0.002% 0.035% 17.1 22.1 633 0%  (0) 0%  (0) 0.62%  (305) 

M2 Firm fixed effects (σ2) 0.002% 0.030% 19.4 23.9 691 0%  (0) 0%  (0) 0.59%  (377) 

M3 Industry (σ2
s) 0.006% 0.062% 10.7 12.9 194 0.15%  (26) 0.53%  (92) 0.88%  (153) 

M4 Regional (σ2
i) 0.023% 0.120% 5.2 6.5 56 0.63%  (27) 0.85%  (37) 1.25%  (54) 

M0 Heterogeneous (σ2
jis) 0.094% 0.239% 2.5 3.6 24 1.06%  (11) 1.33%  (14) 1.93%  (21) 

Same DD      Value-at-Risk (VaR/EL) 

Model Specifications EL UL UL/EL Skewness Kurtosis 99.0% 99.5% 99.9% 

M1a Homogeneous - No Rating 0.644% 0.905% 1.4 2.9 19 4.16%  (6) 5.07%  (8) 7.31%  (11) 

M1b Homogeneous - w/ Rating 0.150% 0.363% 2.4 4.3 36 1.63%  (11) 2.08%  (14) 3.27%  (22) 

M2 Firm fixed effects (σ2) 0.131% 0.324% 2.5 4.3 36 1.47% (11) 1.84%  (14) 2.91%  (22) 

M3 Industry (σ2
s) 0.146% 0.358% 2.5 4.2 34 1.63% (11) 2.06%  (14) 3.16%  (22) 

M4 Regional (σ2
i) 0.152% 0.358% 2.4 3.8 27 1.62% (11) 2.01%  (13) 2.96%  (19) 

M0 Heterogeneous (σ2
jis) 0.086% 0.259% 3.0 5.4 58 1.18% (14) 1.52%  (18) 2.43%  (28) 

 

Simulated one year ahead loss distributions for all return model specifications using 200,000 simulations.  Details on the return specifications for 
models M0 to M4 are given in Section 5.2.  Table compares two alternative identification restrictions: top panel imposes the same return default 
threshold, λ, by rating when rating information is used (this is the case for all models except M1a), while bottom panel imposes the same distance to 
default, DD, by rating when rating information is used. 
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Table 7 

±2.33σ Shock to U.S. Real Equity Returns 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead, Same λ 

         Value-at-Risk 

Model Specifications  EL 
% EL to 
Baseline UL 

% UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating - 2.33 σ 0.004% 172% 0.052% 73% 19.4 537 0% 0.38% 0.74%  (33%) 

   Baseline 0.001% 0.030%  29.4 1200 0% 0% 0.56% 

   + 2.33 σ 0.0005% -67% 0.016% -48% 38.0 1652 0% 0% 0.12%  (-78%) 

M1b Homogeneous - No Rating - 2.33 σ 0.007% 221% 0.066% 88% 13.9 279 0.25% 0.56% 0.88%  (41%) 

   Baseline 0.002% 0.035%  22.1 633 0% 0% 0.635% 

    + 2.33 σ 0.0007% -68% 0.019% -45% 36.7 1673 0% 0% 0.30%  (-52%) 

M2 Firm fixed effects (σ2) - 2.33 σ 0.005% 228% 0.056% 87% 14.3 259 0.15% 0.44% 0.83%  (41%) 

   Baseline 0.002% 0.030%  23.9 691 0% 0% 0.59% 

    + 2.33 σ 0.0005% -69% 0.016% -46% 39.0 1704 0% 0% 0.16%  (-73%) 

M3 Industry (σ2
s) - 2.33 σ 0.014% 151% 0.102% 65% 9.0 108 0.62% 0.83% 1.08%  (23%) 

   Baseline 0.006% 0.062%  12.9 194 0% 0.53% 0.88% 

    + 2.33 σ 0.002% -61% 0.037% -40% 19.0 400 0% 0% 0.67%  (-24%) 

M4 Regional (σ2
i) - 2.33 σ 0.043% 88% 0.171% 42% 5.1 37 0.85% 1.00% 1.50%  (20%) 

   Baseline 0.023% 0.120%  6.5 56 0.63% 0.85% 1.25% 

    + 2.33 σ 0.012% -46% 0.085% -29% 8.4 86 0.50% 0.59% 0.87%  (-30%) 

M0 Heterogeneous (σ2
jis) - 2.33 σ 0.142% 51% 0.314% 31% 3.4 21 1.41% 1.73% 2.55%  (32%) 

   Baseline 0.094% 0.239%  3.6 24 1.06% 1.33% 1.94% 

    + 2.33 σ 0.065% -31% 0.189% -21% 3.9 26 0.89% 1.00% 1.52%  (-21%) 
 
Simulated one year ahead loss distributions for all return model specifications imposing symmetric shocks to U.S. market equity returns. 200,000 
simulations are used, and the same return default threshold, λ, by rating when rating information is used (this is the case for all models except M1a) is 
imposed. 



-45- 

 
Table 8 

+2.33σ Shock to German Interest Rates: Quarterly Increase of 0.33% 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead, same λ  

        Value-at-Risk 

Model Specifications EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating 0.002% 39% 0.036% 20% 26.2 980 0% 0% 0.58%  (5%)
M1b Homogeneous - w/ Rating 0.003% 32% 0.041% 16% 19.7 511 0% 0.180% 0.65%  (4%)

M2 Firm fixed effects (σ2) 0.002% 28% 0.034% 13% 20.8 520 0% 0% 0.59%  (1%)

M3 Industry ( σ2
s) 0.007% 22% 0.068% 10% 11.7 164 0.33% 0.56% 0.88%  (<1%)

M4 Regional (σ2
i) 0.026% 15% 0.130% 8% 6.2 51 0.77% 0.85% 1.34%  (7%)

M0 Heterogeneous (σ2
jis) 0.10% 8% 0.25% 5% 3.6 23 1.11% 1.40% 2.04  (5%)

 

Simulated one year ahead loss distributions for all return model specifications imposing an adverse shock to the German short maturity interest rate. 
200,000 simulations are used, and the same return default threshold, λ, by rating when rating information is used (this is the case for all models except 
M1a) is imposed. 
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Table 9 

-2.33σ Shock to U.S. Real Output: Quarterly Decline of 1.85% 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead, same λ 

 

        Value-at-Risk 

Model Specifications EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating 0.001% -13% 0.028% -6% 31.8 1405 0% 0% 0.53%  (-4%)
M1b Homogeneous - w/ Rating 0.002% -2% 0.035% 0% 22.2 619 0% 0% 0.63% (<1%)
M2 Firm fixed effects (σ2) 0.001% -4% 0.030% -2% 24.3 703 0% 0% 0.59  (<1%)
M3 Industry (σ2

s) 0.006% -2% 0.062% 0% 12.9 192 0.15% 0.53% 0.88%  (<1%)
M4 Regional (σ2

i) 0.022% -6% 0.117% -3% 6.7 59 0.59% 0.85% 1.23%  (-2%)
M0 Heterogeneous (σ2

jis) 0.088% -7% 0.230% -4% 3.7 24 1.00% 1.28% 1.86%  (-4%)
 

Simulated one year ahead loss distributions for all return model specifications imposing an adverse shock to U.S. real output growth. 200,000 
simulations are used, and the same return default threshold, λ, by rating when rating information is used (this is the case for all models except M1a) is 
imposed. 
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Table 10 

Extreme Shocks to Real U.S. Equity Returns 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead, same λ 

 

Panel A: -5σ, Quarterly Decline of 30.6%      Value-at-Risk 

Model Specifications EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating 0.01% 794% 0.10% 244% 12.7 241 0.53% 0.64% 1.39%  (150%)

M1b Homogeneous - w/ Rating 0.02% 963% 0.13% 265% 8.8 116 0.64% 0.88% 1.47%  (135%)

M2 Firm fixed effects (σ2) 0.02% 1035% 0.11% 266% 8.8 113 0.62% 0.76% 1.22%  (107%)

M3 Industry (σ2
s) 0.04% 588% 0.18% 192% 6.3 59 0.88% 1.08% 1.77%  (101%

M4 Regional (σ2
i) 0.09% 275% 0.26% 113% 4.1 27 1.20% 1.43% 2.15% (72%)

M0 Heterogeneous (σ2
jis) 0.24% 154% 0.44% 85% 3.1 19 1.98% 2.42% 3.53%  (83%)

         

Panel B: -8.02σ, Quarterly Decline of 49%      Value-at-Risk 

Model Specifications EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating 0.05% 3363% 0.23% 674% 8.5 119 1.17% 1.54% 2.72%  (390%)

M1b Homogeneous - w/ Rating 0.08% 3914% 0.28% 689% 5.7 57 1.29% 1.67% 2.79%  (347%)

M2 Firm fixed effects (σ2) 0.07% 4203% 0.24% 687% 5.7 55 1.08% 1.44% 2.36%  (302%)

M3 Industry (σ2
s) 0.12% 1974% 0.35% 460% 4.4 32 1.63% 1.98% 3.07%  (249%)

M4 Regional (σ2
i) 0.19% 714% 0.41% 242% 3.4 20 1.86% 2.24% 3.32%  (165%)

M0 Heterogeneous (σ2
jis) 0.45% 382% 0.69% 187% 2.9 19 3.09% 3.74% 5.44%  (181%)

 

Simulated one year ahead loss distributions for all return model specifications imposing two more extreme adverse shocks to U.S. U.S. market equity 
returns . 200,000 simulations are used, and the same return default threshold, λ, by rating when rating information is used (this is the case for all 
models except M1a) is imposed. 
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Table 11 

Mean Group Estimates of Factor Loadings, Heterogeneous Model (M0b) 

Alternative specification 
 

Factors MGE 

β̂  

S.E. of MGE 

( )ˆ. .s e β
 

t-ratios 

constant 

1tq +∆  

, 1i tρ +∆  

1
o
tp +∆  

, 1i ty +∆  

0.010 

0.780 

-4.326 

0.041 

0.700 

0.003 

0.031 

0.520 

0.038 

0.260 

3.075 

24.874 

-6.923 

1.064 

2.695 

avg. 
2R  

avg. 
2R  

# of firm quarters 

0.157 

0.103 

17,114 

  

 

1tq +∆  is the cross-sectional average of all equity indices in the GVAR model using 1996 PPP 

weights, , 1i tρ +∆  is the change in the domestic interest rate, 1

o

tp +∆  is the change in oil prices and  

, 1i ty +∆  is the change in domestic real GDP. 
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Table 12 

Impact of Various 2.33σ Shocks to on Alternative Model 

Statistics of Simulated Losses, One Year Ahead, same λ 

 

       Value-at-Risk 

Scenario EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

Baseline 0.091% 0.208%  2.7 12 0.92% 1.00% 1.43% 

-2.33σ shock to U.S. real output growth 0.090% -1% 0.205% -2% 2.6 11 0.91% 0.97% 1.39%  (-3%) 

+2.33σ shock to German interest rates 0.097% 6% 0.215% 4% 2.7 12 0.94% 1.07% 1.52%  (6%) 

-2.33σ shock to U.S. equity returns 0.137% 51% 0.259% 25% 2.3 10 1.08% 1.26% 1.74%  (22%) 

+2.33σ shock to U.S. equity returns 0.066% -28% 0.176% -15% 3.1 15 0.79% 0.94% 1.28%  (-11%) 
 

Simulated one year ahead loss distributions using the alternative specification of the fully heterogeneous model M0, described in Section 6.4.  
Comparing loss distributions for the baseline scenario, adverse shocks to U.S. real output growth and German short maturity interest rates, and 
symmetric shocks to U.S. equity returns.  For all scenarios, 200,000 simulations are used, and the same return default threshold, λ, by rating when 
rating information is used (this is the case for all models except M1a) is imposed. 
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Table 13  

Impact of Granularity using Vasicek model 
 

 # of loans in portfolio (N) 

 119 243 1,000 5,000 10,000 

Deviation from asymptotic lower bound 80% 44% 12% 3% 2% 
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Figure 1: Scatter plot of unconditional (horizontal axis) and conditional (vertical axis) one-year probabilities of 
default (PD) for 243 firms in portfolio.  Top panel: same default threshold (λ) by credit rating for all firms.  Bottom 
panel: same distance to default (DD) by credit rating for all firms. 
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Figure 2: Comparing the tail of the baseline loss distributions across models, same λ identifying restriction by 
rating when rating information is used, 200,000 simulations.  Top panel: 20% tail (losses beyond the 80th 
percentile).  Bottom panel: 5% tail (losses beyond the 95th percentile).  Model M0 is fully heterogeneous model, M1a 
is homogenous (no rating information), M1b is homogeneous (with rating information), M2 is firm fixed effects, M3 
is industry fixed and marginal effects, and M4 is regional fixed and marginal effects. 
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Figure 3: Comparing simulated loss densities across different shocks to U.S. real equity prices, fully heterogeneous 
model M0 imposing the same default threshold λ identifying condition, 200,000 simulations.  All densities are 
estimated with an Epanechnikov kernel using Silverman’s (1986) optimal bandwidth. 


