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Abstract

The paper presents an analysis of thermodynamic losses in thermal reservoirs due

to irreversible heat transfer and frictional effects. The focus is upon applications to

large-scale electricity storage for which it is the loss in availability (or exergy) that

is most relevant. Accordingly, results are presented as loss coefficients which are

defined as the fractional loss of the entering availability. Only losses stemming from

irreversibility are considered – heat losses to the surroundings are not included

in the analysis. A number of simplifying assumptions have been adopted, but the

results nonetheless clearly demonstrate the dependence of the losses on operating

temperatures, reservoir geometry and mode of operation, and point the way towards

methods of optimisation. Estimates for a typical installation suggest that the losses

are not insignificant, particularly for one-off charge and discharge (i.e., for long

term storage), but are not so large as to rule out the use of thermal reservoirs for

electricity storage schemes.
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1 INTRODUCTION

The increasing use of renewable energy technologies for electricity generation,

many of which have an unpredictably intermittent nature, will inevitably lead

to a greater interest in large-scale electrical energy storage schemes. In par-

ticular, the expanding fraction of electricity produced by wind turbines will

require either backup or storage capacity to cover extended periods of wind

lull. The scale of this problem within the UK is discussed by Mackay [1] who

points out that country-wide wind lulls of several days duration are common.

Future requirements for storage will clearly depend on the future mix of gen-

erating technologies but, based on recent trends and the current emphasis on

CO2 reduction, it is likely that several hundreds of GWh storage capacity

will be required in the UK within the next few decades. (For comparison, the

capacity of Britain’s pumped hydro storage schemes currently totals some 30

GWh, with a power capacity of just under 3 GW.)

For large-scale storage (i.e., hundreds of MWh and upwards) the main tech-

nologies currently employed are pumped hydro storage (PHS), and compressed

air energy storage (CAES). Of these, PHS is the most mature, and benefits

from fast response and high round-trip efficiencies – typically 70 to 80% –

but suffers from high capital cost and from obvious geographical constraints.

Similar limitations apply to CAES since large, robust caverns are required for

storage of the air at pressures of up to 100 bar. Fuel cells, flywheels and other

new storage technologies have not yet reached a stage where they can compete

in terms of cost, capacity and power output with either PHS or CAES.

Thermal energy storage is employed in a wide variety of applications, par-

ticular in connection with space heating and space cooling (see for example

Ref. [2]). As yet it has not been used for electrical energy storage, but two

technologies employing thermal reservoirs are currently under development,

these being Advanced Adiabatic CAES (AA-CAES) and a scheme that will
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be referred to here as pumped thermal electricity storage or PTES. A full

description of AA-CAES is given by Bullough et al [3], its main feature being

that thermal energy is extracted and stored separately before the air enters

the storage cavern. This increases the storage density and efficiency, whilst

also protecting the cavern walls against exposure to high temperatures.

A simplified layout of a PTES scheme (shown during the charging phase) is

given in Fig. 1. This interesting scheme seems to have been proposed almost

simultaneously and independently in England [4] and France [5]. Effectively it

operates as a reverse Joule (or Brayton) cycle heat pump during the charging

phase, extracting heat from the cold reservoir and delivering heat to the hot

reservoir. During discharge the processes are reversed such that the device

operates as a closed Joule cycle heat engine. The version of PTES described

in Ref. [5] uses turbomachinery for the compression and expansion processes,

whereas that described in [4] employs reciprocating devices on the grounds

that these might be made to achieve higher isentropic efficiencies. The two

heat exchangers serve to reject heat at low temperature, this being necessary

to counter the effects of system irreversibilities. Compared with AA-CAES,

PTES has the advantage of higher storage density and it does not suffer the

same geographical constraints. The highest pressures in a PTES system are

also considerably lower than for CAES, thereby reducing the cost of the ther-

mal storage containment vessel. However, a complete charge and discharge

cycle involves twice as many compression, expansion and heat transfer pro-

cesses, each of which entrain a degree of irreversibility.

The present paper focuses on the thermodynamic efficiency of the storage pro-

cess within the thermal reservoirs alone. Losses within these reservoirs have

two components: thermal losses (associated chiefly with irreversible heat trans-

fer) and pressure losses. The latter are very straightforward and are readily

computed, provided skin friction correlations are available for flow over the

storage media. Thermal losses are less straightforward, and indeed their mag-
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nitude is likely to depend on the mode of operation of the storage scheme. Two

limiting cases may be identified: (a) regular periodic charge and discharge (e.g.,

for diurnal load-levelling applications) and (b) longer term storage to cover

unexpected shortfalls in electricity supply (e.g., those due to extended wind

lull).

There is of course an extensive literature relating to thermal storage and re-

generators. A comprehensive description of design and analysis techniques is

given by Schmidt and Willmott [6] but, as noted by Krane [7] these techniques

are based on First Law considerations. For electricity storage it is clearly the

loss in availability associated with the storage process that is of relevance and

so Second Law analysis is required. Krane, following Bejan’s approach [8],

undertook such an analysis for a “sensible heat” storage device, concluding

that between 70 and 90% of the availability would be destroyed in a typi-

cal charge-discharge cycle. However, the device considered employed a liquid

storage medium for which much of the availability is destroyed by irreversible

mixing; solid media regenerators such as pebble beds potentially have much

lower losses.

Regenerator performance has also been extensively treated by the Stirling

engine fraternity and there are numerous relevant publications available in

this field (see, for example, [9]). Nonetheless, the issues of concern to large-

scale electricity storage are sufficiently different as to warrant the separate

treatment given in the present paper.

NOTATION

A reservoir cross-sectional area, [m2]

B stored availability (see eq.(30)), [J]

Bi Biot number, h/ksSv
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Cf friction coefficient

cpg gas isobaric specific heat capacity, [J/kgK]

cs solid specific heat capacity, [J/kgK]

dp particle diameter in packed bed, [m]

h heat transfer coefficient, [W/m2K]

k thermal conductivity, [W/mK]

L reservoir length, [m]

ℓ thermal length scale, [m]

ṁ gas mass flow rate, [kg/s]

Ms total mass of solid storage medium, [kg]

Nu Nusselt number, hdp/kg

p gas pressure, [N/m2]

Rem modified Reynolds number, ρgus/(1− ǫ)Svµg

Rep particle Reynolds number, ρgusdp/µg

St Stanton number, h/ρguscpg

Sv particle surface-to-volume ratio, Sv = 6/dp [m2/m3]

T temperature [K]

tC charge period during cyclic operation [s]

tN nominal (full) charge time [s]

ui interstitial velocity, us/ǫ [m/s]

us superficial (empty tube) velocity, ṁ/ρgA [m/s]

V reservoir (storage medium) volume, [m3]

VN nominal thermal front velocity, [m/s]

α storage utilisation factor, tC/tN

β normalised availability (see eq.(4))

γ isentropic index

δ dimensionless temperature difference, ∆T/T2

∆T temperature difference across reservoir, T1 − T2 [K]

ǫ packed bed void ratio
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η dimensionless time variable

θ dimensionless temperature variable

Λ dimensionless reservoir length, L/ℓ

φ dimensionless exit temperature, T2/T0

Π dimensionless charge period, tC/τ

ρ density, [kg/m3]

τ thermal time scale [s]

ξ dimensionless distance variable

ζ loss coefficient (defined in appendix B)

subscripts

0, 1, 2 ambient, inlet (charged), exit (discharged)

g, s gas, solid

2 BASIC DEFINITIONS AND STORAGE DENSITY

The reservoirs of interest here exploit ‘sensible heat’ storage as opposed to

latent heat of phase-change or heat of reaction. This allows integration with

the two storage technologies discussed above without creating ‘pinch point’

problems. Figure 2 shows a schematic view of heat transfer within a thermal

reservoir, together with typical axial temperature profiles. The reservoir com-

prises a solid storage medium which may be in the form of a packed bed (e.g.,

gravel or pebbles) or may be arranged so as to provide a uniform array of

channels. The solid occupies a volumetric fraction (1− ǫ) of the reservoir and

is held within a perfectly insulated containment vessel which may or may not

be pressurised. The reservoir (a hot reservoir in the case shown) is arranged

vertically in order to reduce buoyancy-driven mixing. During the charge phase,

gas (typically air or Argon) enters the top of the reservoir with a mass flow
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rate of ṁ and an initial temperature T1, and is cooled by the storage medium

which is initially at T2. During discharge, the flow is reversed, entering from

the bottom at temperature T2. Note that cold reservoirs (e.g., CS in Fig. 1)

will have T1 below T2, and cold gas will enter from the bottom during charge.

An ideal reservoir would have no thermal resistance between the gas and solid,

and the thermal front would remain as an abrupt change in temperature from

T1 to T2 as it progressed through the reservoir. Straightforward energy balance

gives the speed of this front as:

VN =
ṁcpg

A(1− ǫ)csρs
=

ρgcpg
(1− ǫ)ρscs

us, (1)

where A is the (total) cross-sectional area of the reservoir, ρs and ρg are

the solid and gas densities respectively, cpg and cs are the gas (isobaric) and

solid (isochoric) specific heat capacities respectively, and us is the superfi-

cial (or open tube) gas velocity. In practice, the thermal front will not, of

course, remain perfectly abrupt, but will instead spread out during its progress.

Nonetheless, VN may still be interpreted as the nominal speed of the front and

the nominal charge time is thus given by:

tN =
L

VN

=
Mscs
ṁcpg

, (2)

where L is the reservoir length and Ms the mass of solid storage media.

2.1 Energy Storage Density

Ignoring the (usually) very small contribution from the gas, the change in

internal energy of the reservoir between its fully discharged and fully charged

states is simply Emax = Mscs∆T . However, for electricity storage applications

it is really the thermodynamic availability, that is relevant, this being the

maximum work that can be extracted via an ideal heat engine rejecting heat

to the environment at temperature T0. In terms of a storage density (in J/m3)
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the maximum availability (relative to the discharged state) is given by:

ρB =
Bmax

V
= (1− ǫ)ρscs

{

∆T − T0 ln
(

T1

T2

)}

, (3)

where V = AL is the reservoir volume. It is also useful to define a dimensionless

availability which, in terms of the dimensionless temperature drop δ = ∆T/T2

and the dimensionless exit temperature, φ = T2/T0, is given by:

β =
Bmax

MscsT0

= δφ− ln(1 + δ). (4)

Typical values of storage density are given in Table 1 compared with storage

densities for CAES and PHS. For reasons discussed below, the full storage

capacity cannot be exploited but the table nonetheless suggests that thermal

reservoirs have the potential to provide relatively compact storage devices.

3 THERMAL LOSSES

Within the thermal front, the temperature difference between the gas and the

solid (shown exaggerated in Fig. 2) results in irreversible heat transfer which

is the main source of the thermal loss. This manifests itself as a smearing of

the thermal front as it progresses through the reservoir, the consequences of

which are two-fold:

(1) the availability of the heated solid at any time is less than would be the

case were an abrupt thermal front to be maintained;

(2) the reservoir cannot be fully charged without hot gas issuing from the

exit.

These two issues are theoretically quite separate, but in practice both impinge

upon the thermodynamic efficiency of the storage process.
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3.1 Governing Equations

The equations governing heat exchange within thermal reservoirs have been

presented many times within the literature (e.g., [10]) but are outlined here

for completeness. The following simplifying assumptions are made (which are

effectively equivalent to the so-called Schumann model):

(1) The reservoir is adiabatic and contains no radial or circumferential tem-

perature variations. For the applications under consideration, it is ob-

viously desirable that heat losses from the reservoirs are kept small. If

this is achieved then radial temperature variations should also be small.

Thus, although two-dimensional models may be found in the literature

(e.g., [11,12]) these are usually aimed at applications where heat transfer

at the wall is intentional.

(2) Heat transfer to and from the solid is limited by the thermal resistance at

its surface (i.e., the Biot number is assumed zero). Estimates presented

in section 5 suggests that this is justified.

(3) Conduction along the reservoir in both the gas and solid is neglected.

Willmott [10] has presented numerical results of temperature distribu-

tions including the effects of longitudinal conduction which show that

these effects are not dramatic, although neither are they insignificant.

(Note that, in common with most models, radiative heat transfer has

also been neglected here.)

With these assumptions, application of the unsteady flow energy equation to

the gas and the First Law to the solid gives:

ṁcpg
∂Tg

∂x
+ Aǫ

(

ρgcpg
∂Tg

∂t
−

∂p

∂t

)

= hA(1− ǫ)Sv(Ts − Tg) (5)

ρsA(1− ǫ)cs
∂Ts

∂t
= hA(1− ǫ)Sv(Tg − Ts) (6)
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where h is the surface heat transfer coefficient, Sv is the solid surface area to

volume ratio, and other symbols are as defined in the notation. (Note that

the unsteady mass continuity equation has also been used in the derivation of

eq.(5).) Accurate simulations require numerical integration of these equations

together with the mass continuity and momentum equations in order to take

account of gas density and other property variations. Although quite straight-

forward, there is not much to be gained from this extra complication and a

clearer exposition is obtained by assuming average values for the gas density

etc. and a constant mass flow rate. Neglecting the unsteady pressure term,

eqs. (5) and (6) may then be expressed in the normalised form (see Ref. [10]):

∂θg
∂ξ

= θs − θg (7)

∂θs
∂η

= θg − θs (8)

where θg,s = (Tg,s − T2)/∆T , and ξ and η are the dimensionless length and

time variables given by:

ξ =
x

ℓ
; η =

t

τ
−

ǫx

usτ
.

The length and time scales used for this normalisation are, respectively:

ℓ =
ṁcpg

hA(1− ǫ)Sv
=

1

St(1− ǫ)Sv
(9)

τ =
ρscs
hSv

=
ℓ

VN

(10)

where St = h/ρguscpg is the Stanton number. Note that the dependence of

η on x stems from the unsteady accumulation of internal energy within the

gas and can be ignored due the low heat capacity of the gas per unit volume

compared with that of the solid.
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3.2 Single Charge Operation

One possible use of an electricity storage device is to deal with infrequent

and unexpected shortfalls in supply. In this case, the storage is likely to be

long-term and the charging process for the reservoir is similar to the so-called

single blow problem. An analytical solution to this problem was first presented

in 1926 by Anzelius [13] and is described in detail in Ref. [10]. The result for

the normalised temperature difference between the gas and the solid (starting

from a fully discharged state at η = 0) is:

θg − θs = exp {−(ξ + η)} Io

(

2
√

ξη
)

, (11)

where Io is the zero-th order modified Bessel function of the first kind. As

will become apparent, reduction of thermal losses requires the dimensionless

reservoir length, Λ = L/ℓ , and charge time, η, to be very large. Evaluation of

the analytical solution then becomes cumbersome due to the divergence of Io,

and it is quicker and more reliable to integrate eqs. (7) and (8) numerically. An

efficient numerical integration routine for this purpose is outlined in appendix

A.

Computed gas temperature profiles are plotted in Fig. 3 and show how the

thermal front becomes progressively less steep as it moves through the reser-

voir. The figure also shows curves of (θg−θs)
2 (dashed lines) which provide an

estimate of the local rate of entropy increase due to irreversible heat transfer

(see appendix B). The analytical solution for this quantity is shown for η = 10

and demonstrates the accuracy of the numerical method.

Thermal Loss Coefficients Loss coefficients are defined in the present

work as the loss in availability associated with each irreversible process, nor-

malised with respect to the availability that has entered the reservoir. Ulti-

mately it is the total loss for a complete charge-discharge cycle that is impor-
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tant, but it is nonetheless instructive to compute loss coefficients for a single

charge / storage event. In this context there are three sources of thermal loss:

(1) The thermodynamic loss, quantified by ζt, stems from irreversible heat

transfer between the hot gas and cooler solid and is computed by inte-

grating the entropy generation rate with respect to time.

(2) The exit loss, quantified by ζx, is due to hot gas issuing from the reservoir

once it is almost fully charged. In principle the available energy carried

by this gas could be exploited, but in most cases it is not practicable

to do so. The sum of the exit and thermodynamic loss is determined

by computing the available work stored within the solid and subtracting

from the incoming availability.

(3) The storage loss is due to the levelling off of residual temperature gra-

dients within the solid prior to discharge. The extent of this loss clearly

depends on the storage duration but it reaches a maximum, quantified

by ζs∞, when all gradients have decayed. ζs∞ can thus be determined by

computing the stored availability at the final uniform temperature.

Expressions for the three loss coefficients are derived in appendix B and are

plotted as a function of η in Fig. 4 for reservoirs of dimensionless lengths

Λ = 300 and 600, with δ = 2 and φ = 1 (i.e., the discharge state at ambient

temperature). From this figure it is clear that the thermodynamic component

of loss decreases continuously with η. This is because the gradient of the

thermal front becomes progressively less steep and so heat transfer takes place

over an increasing gas-solid interface. Reducing ζt therefore requires making

the dimensionless length of the reservoir as long as possible. The exit loss is

initially zero but rises steeply as the nose of the thermal front breaks through

the exit – in this case just before η = Λ. Finally, the storage loss is initially

very high but reduces rapidly as the reservoir reaches full charge since the

average temperature of the storage media then approaches T1. The total loss

(applicable in cases of long storage duration) therefore has a sharp minimum,
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located at points A and B for Λ = 300 and Λ = 600 respectively.

As noted in appendix B, ζt (which constitutes the major part of the total loss)

depends on the dimensionless temperature difference, δ, and the dimension-

less exit temperature, φ, as well as upon η and Λ. However, with very little

error, ζt may be factorised into a temperature-dependent term, F(δ, φ), and

a geometric term, I(η,Λ)/η. This enables selection of optimum temperature

conditions independently of the detailed geometry. Such optimisation should

of course be undertaken for the storage system as a whole, but it is of interest

to examine how the losses and storage capacity are influenced by the operating

temperatures. Figure 5 shows the function F(δ, φ) plotted against dimension-

less availability, β, which is proportional to storage density. The bold curve

in the figure corresponds to an ambient discharge temperature (φ = 1) and

shows losses decreasing with storage density (i.e., as the reservoir gets hotter)

for hot reservoirs, but increasing with storage density (i.e., as the reservoir

gets colder) for cold reservoirs. (This opposite behaviour arises from the in-

verse dependence of the entropy generation rate on the absolute temperatures

Ts and Tg, as shown by eq.(26) in appendix B.) The other curves (φ 6= 1)

suggest that it may be possible to significantly reduce thermal losses by se-

lecting exit (discharged state) temperatures above and below ambient for hot

and cold reservoirs respectively. (This may also help to reduce the effect of

irreversibility in the compression and expansion devices, as discussed in Ref.

[14].) ∗

∗ It is important to note that for a PTES system the hot and cold reservoir tempera-

tures cannot be varied independently since compression and expansion temperature

ratios (see Fig. 1) are approximately equal. For such systems it is probably more

convenient to employ combined loss coefficients for both reservoirs.

13



3.3 Cyclic Operation

For load-levelling applications, the operation of the thermal reservoirs is more

akin to regular, periodic charge and discharge. Calculations for this type of op-

eration are undertaken by applying the same numerical scheme (see appendix

A) and treating flow reversal between charge and discharge by setting:

θ′s(ξ, 0) = θs(Λ− ξ,Π), (12)

where Π = tC/τ is the normalised charge period and the prime denotes quan-

tities during discharge. A similar expression is applied at the end of discharge,

and gas inflow conditions are given by θg(0, η) = 1 (charge) and θ′g(0, η) = 0

(discharge). This is essentially the same approach as that presented in [10]. For

simplicity, it is assumed that charge and discharge are of equal duration and

that one follows immediately after the other. Furthermore, mass flow rates,

specific heat capacities and heat transfer coefficients are assumed unchanged

between charge and discharge so that Λ = Λ′ and Π = Π′. (In regenerator

parlance, the operation is said to be balanced and symmetric.) Computations

are started from an initial fully-discharged state and, after a transient phase,

reach a steady-state periodic mode wherein consecutive cycles are identical.

The performance of the reservoir under this cyclic operation is governed to a

large extent by the duration of the charge period compared to the nominal

charge time, i.e., by the ratio α = tC/tN = Π/Λ. The quantity α may be inter-

preted as a capacity or utilisation factor since the availability stored during

tC is ∼ αBmax. Figure 6 shows computed gas temperature profiles at various

stages during the charge phase for α = 0.50 and α = 0.25. Towards the end of

the charge period (the curves labelled (c) in the figure) the gas exit temper-

ature begins to rise above T2 and, as with single-charge operation, this gives

rise to an exit loss. Similarly, towards the end of discharge the temperature of

the returned gas falls below T1, but it is still usually possible to extract work
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from this slightly cooler gas. The overall thermal loss coefficient, assuming

zero storage loss, is thus:

ζt + ζx =
Bin −Bout

Bin

, (13)

where Bin and Bout are in the inflow and outflow of availability (both at the

top of the reservoir shown in Fig. 2) during charge and discharge respectively.

For example,

Bout = ṁcpg

∫

dis.

{

Tg(0)− T2 − T0 ln

(

Tg(0)

T2

)}

dt, (14)

where the integral is over the discharge period and Tg(0) denotes the value at

x = 0 (i.e., the top of the reservoir in Fig. 2). The exit loss during the charge

period is given by a similar expression to eq.(14) but with Tg(0) replaced by

Tg(L) and the integration carried out over the charge period.

The two loss components are shown in Fig. 7 as a function of α for Λ = 150 and

Λ = 300. Both components clearly increase with α (particularly for α & 0.5)

and decrease with Λ, but over much of the range it is the thermodynamic

component that dominates. The increase of ζt with α may be explained by

returning to Fig. 6 which (as would be expected) shows a steeper temperature

gradient for the higher value of α. As with the single-charge case, this means

that heat transfer occurs over a smaller interfacial area resulting in a larger

temperature drop between gas and solid and hence a higher entropy gener-

ation rate. In the limiting case of very short duration cycles (α → 0), and

provided the reservoir is sufficiently long that end effects may be neglected

(Λ ≫ 1), the temperature profiles must ultimately tend towards the straight

line distribution:

θs ≃ θg = 1− ξ/Λ. (15)

From eq.(7) the temperature difference ∆θ is then constant at 1/Λ and so the

expression for the entropy generation rate (eq.(26) in appendix B) may be

integrated analytically. The resulting loss coefficient is given (after straight-
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forward manipulation) by:

ζt,min =
2δ2

Λ(1 + δ){δφ− ln(1 + δ)}
(16)

Values calculated from this expression are shown in Fig. 7 and agree very

well with the numerical results. More generally, the inverse relation between

ζt and Λ shown by eq.(16) appears to be approximately valid for values of

α significantly above zero. This is supported by the fact that doubling ζt for

Λ = 300 agrees tolerably well with the curve for Λ = 150 for α . 0.5, as shown

by the solid symbols in Fig. 7.

4 PRESSURE LOSSES

The analysis of pressure losses within packed beds or other types of thermal

reservoir is straightforward and can be found in many standard texts (see, for

example, Ref. [15]). Without loss of generality, the pressure gradient may be

written as:

∂p

∂x
= −1

2

(

{ρgus}
2 Sv

1− ǫ

ǫ3

)

Cf

ρg
, (17)

where Cf is the friction coefficient, which depends on the Reynolds number and

geometric arrangement of the packing. The bracketed term may be treated as

constant but the ratio (Cf/ρg) depends on gas temperature and hence varies

over the length of the reservoir. As before, precise calculations therefore require

eq.(17) to be integrated in conjunction with the energy equations (5, 6) and

the mass continuity equation, but a reasonable estimate of the overall pressure

loss, ∆p, can be obtained by using an average value for (Cf/ρg). In keeping with

the thermal loss analysis, this pressure loss is expressed here a loss coefficient

(i.e., fractional loss of availability), given by:

ζp =
T0∆sp
cpgT0β

, (18)
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where ∆sp is the gas specific entropy increase due to ∆p. Provided the frac-

tional pressure drop is small, ∆sp ≈ R∆p/p. Substituting into eq.(18) and

making use of eq.(17) and eq.(9) then gives:

ζp =
γ − 1

2β
M2

s

(

1− ǫ

ǫ3

)

CfSvL, (19)

where Ms is the Mach number based on us. As would be expected, ζp in-

creases with reservoir length and with the surface-to-volume ratio of the stor-

age medium, so there is clearly a conflict between reducing the thermal and

pressure losses. Mach numbers are usually very low, but high values of the

product SvL nonetheless mean that pressure losses may become significant,

particularly for cold reservoirs where Ms is greatest.

5 DIMENSIONAL CALCULATIONS

In the interests of generality, results thus far have been presented in terms

of non-dimensional quantities such as Λ, Π and β. However, the relationships

between such quantities and the parameters that may be freely varied during

the design process are not always transparent. For example, an energy storage

installation is likely to be specified in terms of its energy storage capacity and

power rating. This effectively sets the storage volume and gas mass flow rate

(assuming the storage material, working fluid and cycle temperatures have also

been specified). The main reservoir parameters remaining under the designer’s

control are then L (or equivalently A), Sv and possibly ǫ, but these do not

relate in a straightforward manner to the various loss coefficients, particularly

because losses depend on skin friction and Stanton numbers. The purpose of

the present section is thus to provide an estimate of the overall fractional loss in

availability associated with the storage process for a nominal design of PTES

installation. Consideration is then given to how losses might be minimised by

adjustment of the design parameters.

17



Table 2 gives the outline geometry and operating parameters for a nominal 2

MW PTES scheme with a maximum storage capacity of ∼ 12 MWh, using

Argon as the working fluid and gravel as the storage medium. The choice of

optimum operating pressures and temperatures involves considerations (e.g.,

stressing, economics, cycle performance) beyond the scope of the present paper

and so the set of values given in the table, although not unrealistic, serves only

to provide an example.

Estimates are first required for Cf and St. The friction coefficient is obtained

from the Carman correlation [15]:

Cf =
10

Rem
+

8

10Rem
1/10

(20)

where Rem is the modified Reynolds number, as defined in the notation. Es-

timation of the Stanton number is subject to considerable uncertainty due to

the difficulties in obtaining reliable measurements of heat transfer coefficients

in packed beds – see, for example, the discussions in Refs. [16,17]. For the

range of Reynolds number of interest, Wakao et al [17] suggest the following

Nusselt number correlation:

Nu = 2.0 + 1.10Pr1/3Re3/5p (21)

where Pr is the Prandtl number and Rep = ρgusdp/µg is the particle Reynolds

number. It is worth noting that the experimental data presented in Ref. [17]

straddle the above correlation and encompass a factor of ∼ 4 in the range of

interest. (The data are for spherical particles for which Sv = 6/dp.)

Table 3 shows the the main dimensionless parameters together with estimates

for the various loss coefficients for the hot and cold reservoirs. (Note that the

estimated Biot numbers are very low so that thermal resistance is dominated

by the solid-gas surface term and the lumped-capacity model is therefore jus-

tified.) For single-charge operation the values of the ζ ’s given in the table

are for the charging process alone. Similar pressure and thermodynamic losses
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would occur during discharge † , but the discharge exit loss cannot easily be

quantified without regard for the other components in the cycle: for example,

at some point the discharge temperature of the hot reservoir will fall below a

value at which it is practical to extract work from the turbine. For simplicity,

the exit loss during discharge is assumed equal to that during charge, giving:

ζ sin.tot = 2(ζt + ζx + ζp) + ζs∞. (22)

Tabulated values are those obtained by minimisation of ζ sin.tot in a fashion similar

to that demonstrated in Fig. 4. For cyclic operation,

ζcyc.tot = ζt + ζx + 2ζp. (23)

The total losses (highlighted in bold in the table) are obtained by weighting

values for the hot and cold reservoirs by their respective storage densities (or,

equivalently, β).

It is notable from the table that both thermal and pressure loss coefficients

are considerably greater for the cold reservoir than for the hot one. The lower

pressure in the cold reservoir results in a lower gas density which in turn leads

to higher velocities and a higher (absolute) pressure drop. Furthermore, it is

really the fractional pressure drop that is relevant since the work that can be

extracted by a turbine (or other expansion device) depends on the pressure

ratio across it. Thus, in the cold (low pressure) reservoir, the pressure drop

through the packing has a bigger impact. The higher thermal losses are due to

the lower dimensionless length (which in turn is due to lower Stanton numbers

at the higher Reynolds numbers) and higher value of F(δ, φ), as shown by

points H and C in Fig. 5, corresponding to the hot and cold reservoir conditions

respectively.

† This will be accurate if the storage is of long duration but will otherwise overes-

timate the thermodynamic loss since the returning thermal front during discharge

is then less steep than during charge.
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It is also apparent that losses are significantly lower for periodic operation

than for single charge due to the more gentle temperature gradients in the

former. This is of course at the expense of reduced storage capacity. (On the

basis of Fig. 7, a value of α = 0.5 was used to generate the results in Table 3,

this providing a reasonable compromise between loss and utilisation.)

5.1 Loss Minimisation

Optimisation for an energy storage installation should be undertaken for the

system as a whole, but it is nonetheless instructive to examine how loss for an

individual reservoir might be minimised. As an example, Fig. 8 shows how the

total loss (as given by eq.(22)) varies with reservoir length for a cold reservoir

operated in a single charge-discharge mode. The curves shown have been com-

puted for fixed mass flow and reservoir volume (i.e., fixed power and storage

capacity) at two different particle sizes. Over the range of Reynolds numbers

concerned, the friction coefficient remains approximately constant, so pressure

losses scale as ∼ u2
sL. Increasing the length (at fixed volume) decreases the

cross-sectional area and increases us, so that ζp follows very closely a cubic

variation with L. By contrast, all thermal loss components fall with length

such that there is a minimum in ζ sin.tot . For the hot reservoir, fractional pressure

losses are much smaller, so the optimum shape is a longer, thinner reservoir.

Choosing the correct geometry clearly has a significant impact, but in practice

this requires more reliable estimates of heat transfer coefficient particular to

the storage medium in use.

6 CONCLUSION REMARKS

An analysis of losses in thermal reservoirs due to irreversible heat transfer

and viscous effects has been presented. The simplifying assumptions involved,
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particularly for the thermal analysis, mean that loss coefficients are likely

to be underestimated since a number inherently irreversible processes have

been neglected. However, the greatest source of uncertainty stems from the

correlations employed for heat transfer and friction coefficients since there

is considerable spread in the experimental data for these quantities. Despite

these shortcomings, the following points may be concluded with reasonable

confidence:

i. Together, thermal and viscous (pressure) losses are significant (typically

upwards of a few percent for regular, periodic operation) but not so large

as to preclude the possibility of using thermal reservoirs as part of an

electricity storage scheme.

ii. Losses for one-off charge and discharge are substantially greater than

for periodic operation due to the steeper thermal front associated with

the former. This implies that long-term storage applications will suffer

greater losses than, for example, diurnal load-levelling.

iii. Due to the essentially conflicting requirements of high surface area for

heat transfer and low surface area for viscous loss, there is potential for

substantial loss reduction by geometric optimisation.

iv. Thermal loss coefficients depend strongly on the operating temperatures

in a manner that is not straightforward. This provides further opportunity

for optimisation, but this should be undertaken for the system as a whole

since the performance of the individual cycle components is inextricably

linked.
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APPENDIX A: NUMERICAL INTEGRATION ROUTINE

The numerical method used to integrate equations (7 & 8) is similar to that

presented in Ref. [10], but stability and computational efficiency have been

improved by employing a semi-analytical approach. Figure 9 shows part of

the (regular) computational grid at two time levels. At a particular stage in

the calculation, temperatures are known at all nodes for time step n− 1 and

for nodes up to and including i − 1 at time step n. The task is therefore

to determine temperatures at (i, n). This is achieved by integrating eq.(7)

analytically between nodes i−1 and i whilst treating θs as a constant, giving:

θng,i = θ̄s(1− exp{−∆ξ}) + θng,i−1 exp{−∆ξ}, (24)

where θ̄s is taken as the average value between i−1 and i at time n. A similar

integration is applied to eq.(8), taking a constant, average value for θg between

n − 1 and n at node i. The resulting pair of equations may be expressed in

the form:









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1 1
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
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, (25)

where a = exp{−∆ξ} and b = exp{−∆η}. Eq.(25) is readily inverted to obtain
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the two unknown temperatures. The advantage of this approach is that the

‘stiffness’ is integrated out of the equations enabling much larger time steps

to be taken than with a straightforward finite difference discretisation.

APPENDIX B: THERMAL LOSS COEFFICIENTS

Loss coefficients are defined here as the fractional loss in availability associated

with each of the loss-making processes. Derivations of the various thermal loss

coefficients are given below for the single charge case. The unsteady accumu-

lation of gas internal energy has been neglected in these derivations (see the

note following eq.(10)). Since the heat capacity of the gas per unit storage

volume is typically three orders of magnitude less than that of the solid, this

effectively corresponds to over-predicting the thermodynamic loss by ∼ 0.1%

of the stored availability.

Thermodynamic Loss

The major component of the thermal loss is that due to irreversible heat

transfer and is determined by integrating the entropy generation rate over

the length of the reservoir and over the duration of the charging process. The

total, instantaneous entropy generation rate is given by:

Ṡirr=
∫

(

1

Ts
−

1

Tg

)

dQ̇

=
∫ L

0

(

1

Ts

−
1

Tg

)

hA(1− ǫ)Sv(Tg − Ts)dx, (26)

and the associated loss coefficient at time t (starting from a fully discharged

reservoir at t = 0) is:

ζt =
1

ṁcpgT0βt

∫ t

0
T0Ṡirrdt. (27)
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Combining Eqs. (26) & (27) and incorporating the expression for the thermal

length scale, ℓ, gives:

ζt =
δ2

βη

∫ η

0

∫ Λ

0

(θg − θs)
2

(1 + θgδ)(1 + θsδ)
dξdη. (28)

The presence of δ in the integrand of this expression suggests that the temper-

ature and geometric dependence of ζt are inextricably linked. However, with

reference to Fig. 3 it is reasonable to suppose that the major contribution

to the integral in eq.(28) occurs for values of θg and θs of ∼ 1
2
so that the

denominator in the integrand can be approximated by (1 + δ + δ2/4). In fact

this tends to slightly underestimate the loss, but numerical experimentation

shows that, with virtually no error (less than 0.25% over the ranges of δ and

η of relevance), eq.(28) may be replaced by:

ζt =
δ2

(1 + δ + δ2/12)βη

∫ η

0

∫ Λ

0
(θg − θs)

2dξdη = F(δ, φ)
I(η,Λ)

η
. (29)

The significance of this is that the function F depends only on the operating

temperatures, whereas I(η,Λ)/η depends only on geometric factors † and the

level of charge. (Note that η = Λ implies t = tN and hence corresponds to

nominal full charge.)

Exit Loss

This stems from hot gas (or cold gas in the case of cold storage) issuing from

the reservoir exit as it approaches full charge. The availability stored within

the reservoir at any time relative to its discharged state is:

B(t) =
∫ L

0
ρscs(1− ǫ)A

{

(Ts − T2)− T0 ln
(

Ts

T2

)}

dx, (30)

† In fact, as shown by the ζt curve in Fig. 4, the integral is independent of Λ until

the thermal front breaks through the exit plane.
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whereas the maximum availability that could have been stored (in an infinite

reservoir) in the same time is Bin = ṁcpgT0βt. The difference between these

two quantities is the lost work associated with both irreversible heat transfer

and the exit flow. Thus,

ζt + ζx = 1−
B

Bin

= 1−
1

βη

∫ Λ

0
(θsδφ− ln{1 + θsδ})dξ. (31)

The exit loss is zero in the initial stages of charge (see Fig. 4) so eqs. (29) &

(31) should then yield identical results. This is used as a check that the grid

and time steps are sufficiently small to provide accurate results.

Storage Loss

Once charged, any residual temperature gradients within the storage medium

will gradually decay, leading to a further reduction in availability. The mecha-

nism for this process (i.e., axial conduction through the reservoir) has not been

included within the analysis, but the maximum value of the storage loss can

nonetheless be computed. This maximum occurs when the storage medium

has acquired a uniform temperature which, assuming the storage is adiabatic,

is given by the average value:

θ̄s =
1

Λ

∫ Λ

0
θsdξ. (32)

The total loss during charge plus storage (but not discharge) is then:

ζtot = ζt + ζx + ζs∞ = 1.0−
(

θ̄sδφ− ln{1 + θ̄sδ}
)

/β, (33)

from which the maximum storage loss, ζs∞, can be obtained by subtracting

eq.(31). ζtot is a function of η (see Fig. 4) because the average temperature,

θ̄s, clearly depends on the extent to which the reservoir is charged.
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TABLES

Technology / Storage Expression for ρB Assumptions ρB, MJ/m3

PHS Water ρg∆H ∆H = 500m 5

CAES Air p{ln(p/p0)− (1− p0/p)} p = 100bar 36

Hot Res. Gravel Eq.(3) T1 = 773 K 227

Cold Res. Gravel Eq.(3) T1 = 123 K 109

Table 1

Comparison of storage density, ρB, for various technologies. For the hot an cold

reservoirs, the assumed material properties are ρs(1−ǫ) = 1500 kg/m3 and cs = 800

J/kgK, and T2 = T0 = 300 K
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Hot Resevoir Cold Reservoir

Inlet temperature (charge): T1 773 K 123 K

Exit temperature (charge): T2 300 K 300 K

Normalised availability: β 0.627 0.301

Operating pressure: p 10 bar 1 bar

Reservoir internal diameter: D 5.0 m 5.0 m

Reservoir length: L 5.0 m 5.0 m

Gravel storage medium:

Void fraction ǫ 0.33

Particle size dp 0.02 m

Argon working fluid:

Mass flow rate ṁ 12.5 kg/s

Nominal storage ∆B 12 MWh

Nominal charge time tN 6 h

Nominal power Ẇnet 2 MW

Table 2

Geometry and operating conditions of the hot and cold reservoirs for a PTES system
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Hot Reservoir Cold Reservoir

Reynolds Number, Rem 87 188

Prandtl Number, Pr 0.67 0.67

Friction Coefficient, Cf 0.63 0.53

Stanton Number, St 0.15 0.11

Biot Number, Bi 0.07 0.05

Normalised Length, Λ 150 105

ζt 4.80 9.80

ζx 0.62 1.75

ζs∞ 1.34 2.15

ζp 0.03 1.75

si
n
gl
e

Total: 17.6 %

ζt 3.20 7.60

ζx 0.30 0.17

ζp 0.03 1.80

ch
ar
ge
-d
is
ch
ar
ge

lo
ss
es
,
%

cy
cl
ic

Total: 6.1 %

Table 3

Estimation of losses for the hot and cold reservoirs of Table 2. (α = 0.5 for the

cyclic calculations.)
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