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Summary 

This thesis analysed whether functional implicit learning differences existed in two areas 

that have produced promising, but equivocal, findings: individual differences in typical 

populations (e.g., Gebauer & Mackintosh, 2010) and group differences between Autism 

Spectrum Condition (ASC) and Typically Developing (TD) individuals (e.g., L. G. Klinger, 

Klinger, & Pohlig, 2007). Overall, the results from the four studies presented in this thesis 

emphasised a lack of functional differences in implicit learning between individuals. 

Study I investigated whether there were functional individual differences in implicit 

learning among a typical population by examining the inter-correlation between the 

performances of academic psychologists on three implicit learning tasks; the independence of 

those performances from IQ; the relationships between those performances, intuitive aspects of 

personality and occupational tacit knowledge; and, finally, whether the performances were 

related to occupational achievement. There was no evidence of inter-correlation between the 

implicit learning task performances, nor relationships between any of those performances, and 

occupational achievement, or personality. The study did replicate a finding that is important to 

the distinction between implicit and explicit learning: indices of explicit processing, but not 

performance on implicit learning tasks, were correlated with IQ (e.g., Gebauer & Mackintosh, 

2007). Additionally, the study found that Academic Psychology and Business Management Tacit 

Knowledge Inventories measured knowledge that predicted occupational achievement in 

academic psychology incrementally to IQ and personality, and was general to both occupations. 

However, tacit knowledge appeared to be acquired primarily as a function of practice and 

experience, rather than individual differences in implicit learning. Overall, I asserted that a 

consideration of the results from Study I with the wider literature currently leads to the 

conclusion that there are minimal individual differences in implicit learning, which signifies that 

there is no general implicit learning ability that is critical to how much is learnt implicitly. 

In the absence of a general ability that determines how much is learnt implicitly, it was 

argued that there could still be general, prerequisite processes, which are always necessary for 

implicit learning but without those processes determining the variation in how much was learnt 

implicitly. Such prerequisite processes would not constitute a psychometric ability but could be 
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conceptualised as general implicit learning processes. This conceptualisation of implicit learning 

would be supported by the existence of an atypical population who consistently demonstrated 

profound deficits on all implicit learning tasks and skills associated with an implicit acquisition. 

There is no convincing evidence of such a patient group, although the ASC population is a 

plausible candidate (e.g., L. G. Klinger, et al., 2007).  

Therefore, Study II compared IQ-matched ASC and TD individuals on a range of implicit 

learning tasks. The study, taken together with other recent reports (e.g., Barnes, et al., 2008), 

provided convincing evidence that implicit learning is actually intact in ASC and it was argued 

that deficits reported in previous studies must have resulted from differences in task procedures 

(e.g., L. G. Klinger, et al., 2007). In particular, the earlier studies used procedures that 

encouraged explicit strategies, which disadvantaged the ASC groups who had not been matched 

for IQ. A further analysis supported that interpretation: TD and ASC groups who were not 

matched for IQ exhibited differences on an explicit learning task, but not on the implicit learning 

tasks. 

In order to determine whether those previously identified implicit learning deficits in 

ASC resulted just from differences in IQ, or whether there was also a contribution from an ASC 

difficulty in explicit learning, Study III compared ASC individuals with IQ-matched TD 

individuals on an implicit learning task, the Serial Reaction Time (SRT) task, with a procedure 

that encouraged explicit strategies. The SRT procedure was combined with a contextual cueing 

task that provided an indirect, ongoing index of the extent to which sequence learning was 

explicit (Jiménez & Vázquez, in press). Study III indicated a difference in initial explicit 

sequence learning in ASC, which was independent of IQ. 

Study IV replicated the difficulty and by using a pre-task manipulation the study was also 

able to elaborate the nature of that difficulty: ASC individuals were able to learn sequence 

information explicitly, but they had a specific difficulty with learning to apply that explicit 

information. Thus, there was good evidence that implicit learning is intact in ASC and that 

instead ASC individuals have more difficulties with aspects of explicit learning. These findings 

refute the idea that ASC individuals successfully compensate for implicit deficits with explicit 

compensatory strategies. Instead, together with the ASC propensity for using explicit strategies, 

an ASC difficulty with explicit processing might explain some ASC deficits in a range of learnt 

skills, although I acknowledge that there are also plausible alternatives. More generally, these 
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findings and ideas accord with ASC literature concerning impairments in executive functions, 

which require flexible and intentional processing (e.g., Russell, 1997a) and emphasise that future 

research is focused on how explicit, executive differences emerge and affect behaviour. 

In conclusion, the thesis provided no evidence for the proposal that there are functional 

differences between individuals in implicit learning. I propose that, taken together with the 

equivocal evidence discussed in my reviews of the wider literature, it is parsimonious to 

conclude that there is neither a general implicit learning ability, nor general, prerequisite implicit 

learning processes. However, in line with previous literature, the thesis did support functional 

distinctions between implicit and explicit learning: explicit, but not implicit, learning was related 

to IQ; and ASC individuals have difficulties with explicit but not implicit learning. Therefore, I 

assert that a descriptive distinction between explicit and implicit learning remains both useful 

and valid. This is true even though implicit learning seems to be defined by the absence, or 

minimal influence, of explicit processing rather than the general presence of an implicit learning 

ability or processes. Beyond the issue of functional differences, I argue that these findings and 

conclusions make modest, but not decisive, contributions to some of the other fierce debates in 

the wider implicit learning literature. Finally, I propose some recommendations, and directions, 

for future research. 
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““What are you talking about?” “I can’t remember. The Ukrainians. My birth. Candles. I 

know there was a point. Where did I begin?” And so it was when anyone tried to speak: 

their minds would become tangled in remembrance. Words became floods of thought 

with no beginning or end, and would drown the speaker before he could reach the life 

raft of the point he was trying to make. It was impossible to remember what one meant, 

what, after all of the words, was intended”” (Safran Foer, 2002, p. 261).
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I. General Introduction 

“The subject is intrinsically of great interest. Man‟s power to change himself, that is, to 

learn, is perhaps the most impressive thing about him” (Thorndike, 1931, p. 3). 

 

Learning is a critical part of our everyday lives. It affords us the flexibility to change our 

behaviour over time, and to use past experience to improve our responses to old and new 

environmental challenges. Consequently, philosophers and scientists have been motivated for 

centuries to understand and characterise the basic nature of learning (e.g., Aristotle, 2007; James, 

2009; Plato, 1997). Yet many fundamental issues remain unresolved. One important, unresolved 

issue is whether there are differences between individuals in implicit learning that are related to 

meaningful differences between them in their everyday behaviour. In fact, the importance of 

individual differences in implicit learning has rarely been subject to empirical study. This lack of 

research is almost certainly a consequence of the fierce debate within the field on other issues, 

one of which could be interpreted as being about whether implicit learning even exists. 

In this introduction, evidence is reviewed that leads to the conclusion that implicit 

learning certainly exists, providing it is conservatively defined. Specifically, implicit learning 

exists insofar that people can learn when they are not primarily engaged in trying to learn, and 

that consequently they are unable to report verbally on how or what they learnt. Implicit 

learning, defined as such, is not substantially contested, nor is the fact that implicit learning tasks 

provide operational, if impure, measures of this capacity (e.g., D. C. Berry & Dienes, 1993; 

Cleeremans & Dienes, 2008; Shanks, 2005). Instead, the fierce debate has been focused around 

surrounding questions including: How does evidence of implicit learning elucidate the role of 

awareness, attention and automaticity in learning, and in particular, does this evidence 

definitively demonstrate learning without consciousness? What can such results reveal about the 

nature of consciousness and mental representation? Does the existence of implicit learning entail 

the existence of two distinct learning systems, and if so, what are the natures of and differences 

between the two systems? Or, if it does not, is there other evidence of implicit learning with 

further characteristics that would demonstrate the existence of two learning systems (e.g., 

Shanks, 2005)? Such issues remain of utmost importance to the fundamental nature of learning 
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and cognition. However, it is also important to realise that such debate is separate to the 

undisputed existence of conservative conceptions of implicit learning. This realisation is 

important because it legitimises the investigation of whether there are important consequences 

that relate to the capacity of people to learn without express intention, and without being able to 

report verbally on the process or the resultant knowledge, as measured by implicit learning tasks. 

Indeed, the question is not just legitimate but it is extremely important when considering 

how critical learning is to people, and that individual differences in the capacity for explicit, 

intentional learning are well understood and demonstrably important to a number of life 

outcomes (e.g., Carroll, 1993; Kaufman, et al., 2009; Mackintosh, 1998). Consequently, 

differences in implicit learning have recently received investigation. For example, differences in 

implicit learning have been explored in terms of the differences between individuals in a typical 

population (e.g., Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in press), and the 

differences between groups, such as typically developing (TD) and Autism Spectrum Condition 

(ASC) individuals (e.g., L. G. Klinger, et al., 2007; Mostofsky, Goldberg, Landa, & Denckla, 

2000; Romero-Mungu a, 2008). Without providing conclusive evidence, initial results have 

supported functional differences in both these areas. Specifically, there is evidence that 

individual differences in implicit learning can be measured and are related to second-language 

acquisition; there is also evidence of an ASC deficit in implicit learning, which contributes to 

diagnostic social, communicative and motor impairment. These particular avenues of 

investigations are clearly of intrinsic interest and importance. Additionally, it is hoped that such 

functional investigation of implicit learning will contribute, albeit indirectly, to the fierce and 

important debates surrounding the implicit and explicit learning literature, and will thereby 

complement the more direct approaches to resolving those debates. Thus, this thesis aimed to 

provide further empirical examination of both the validity of individual differences in implicit 

learning, in the new context of occupational achievement, and of the group difference between 

ASC and typically developing individuals. 

1. Implicit Learning 

Everyone knows that you can learn implicitly or explicitly. Most people might not call it 

that, but with a little explanation, they would readily concur that sometimes they have learnt 

about something intentionally, with effort and ongoing awareness, and yet at other times they 
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seemed to have learnt about something regardless of intention, and with little awareness of both 

the learning process and what exactly has been learnt. Everyday examples are easy to identify: 

compare an infant learning language for the first time with an older child studying for a second-

language exam. Or remember learning to catch a ball, and then call to mind a physics class 

explaining trajectories, air resistance, and angles. Any sports people (golfers and cricketers in 

particular) find the experience of changing their technique using a few explicit instructions from 

their coach highly dissimilar to when they first picked up the sport during childhood summers in 

their back garden. 

These innocuous and apparently obvious observations belie the questions they raise and 

the extraordinary amount of corresponding debate and research they have inspired (for some 

illustrative reviews see: D. C. Berry, 1997; D. C. Berry & Dienes, 1993; Cleeremans, 

Destrebecqz, & Boyer, 1998; Cleeremans & Dienes, 2008; Dienes & Berry, 1997; French & 

Cleeremans, 2002; Jiménez, 2003; Perruchet, 2008; A. S. Reber, 1993; Seger, 1994; Shanks, 

2005; Stadler & Frensch, 1998; G. Underwood, 1996). Debate has raged on definitions, 

semantics, methodologies, implications for cognitive architecture, and even on the central issue 

of veracity: can learning actually occur without awareness and intention, or is it a matter of 

degree and a trick of everyday experience? There is now substantial evidence and consensus to 

support the existence of implicit learning, to the extent that people are able to learn when they 

are not primarily engaged in trying to learn explicitly and deliberately, and are consequently 

unable to report verbally on how or what they learnt. This evidence has been provided primarily 

by performance patterns on various ‘implicit learning’ tasks. 

2. Implicit Learning Tasks 

Arthur S. Reber was the first to utilise a learning task for the study of implicit learning, 

and is credited with igniting interest in the field. There had been earlier interest in a distinction 

between automatic and cognitive learning; a major catalyst was Thorndike’s law of effect 

(Shanks, 2009; Thorndike, 1931). However, prior to A. S. Reber, research and ideas appeared to 

have been rooted upon explicit hypothesis-testing in learning (e.g., Bruner, Goodnow, & Austin, 

1956; Shanks, 2005). In his thesis, A. S. Reber coined the term ‘implicit learning’ and adapted an 

Artificial Grammar Learning (AGL) task (Chomsky & Miller, 1958; Miller, 1958), which he 

claimed demonstrated implicit learning (A. S. Reber, 1965, 1967). A. S. Reber has later reported 
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that his thesis “was not well received” and that “a long editorial battle ensued before the work 

was published” (A. S. Reber, 2002, p. xi); difficulties that were somewhat prescient of the 

definitional disagreement and debate that would subsequently characterise the field. Nonetheless, 

AGL tasks became one of the most common and important procedures for studying implicit 

learning. During AGL tasks, participants are typically exposed to a series of letter strings that 

have been created according to an artificial grammar. However, participants are only told about 

the rules once the initial exposure is finished. Further, they are then instructed that they will see 

some new strings and will have to decide whether or not strings conform to the rules. Usually, 

participants are able to make these decisions with better-than-chance accuracy but have little 

ability to describe the rules. This dissociation has led many researchers to cite performance on 

the AGL task as a demonstration of implicit learning (for a recent review, see Pothos, 2007). 

It was another two decades before there was an explosion in the volume of empirical 

implicit learning research. Shanks (2005) reported that in the 1980s there were only 15 articles 

with the term ‘implicit learning’ in their title, while in the 1990s there were 253. When the 

equivalent search of the combined Science and Social Sciences Citation Indexes is conducted on 

the 2000s, it is clear that the upsurge in research has continued: 430 articles have been published 

in the past ten years. The development of the Serial Reaction Time (SRT) procedure in the late 

1980s (Lewicki, Hill, & Bizot, 1988; Nissen & Bullemer, 1987) played no small part in this 

increase. Together with the AGL, the SRT is the paradigmatic method for studying implicit 

learning (Shanks, 2005). In a typical SRT procedure, participants are instructed to respond as 

quickly and accurately as possible to the location of a stimulus that is presented at one of several 

different possible locations from one trial to the next. Unknown to the participants, the locations 

in which the stimuli appear follow a regular sequence, and participants typically become faster to 

respond to locations predicted by the sequence. Learning is described as implicit because 

participants are generally unable to verbalize the details of the sequence, with only fragmentary 

knowledge present which is unable to account for performance (Jiménez, Mendez, & 

Cleeremans, 1996; Jiménez, Vaquero, & Lupiáñez, 2006). 

While the SRT and the AGL have been the most frequently used tasks for studying 

implicit learning, there are several other implicit learning tasks that demonstrate conceptually 

similar results. For example, there are probability learning tasks (e.g., Millward & Reber, 1968), 

which have been commonly studied as Probabilistic Classification Learning (PCL) tasks (Gluck 
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& Bower, 1988). In a typical PCL task, participants have to classify, or make decisions, about 

stimuli. Following each decision, the participant receives feedback. However, the feedback is 

probabilistic: thus, for a given stimulus there is no definitively correct answer; instead each 

stimulus-outcome is associated with a probability greater than zero but less than one. 

Nonetheless, participants are able to classify stimuli with greater accuracy than chance would 

predict. Yet, because participants have very little, if any, insight into the relationship between the 

stimuli and outcomes, the learning is described as implicit (e.g., Gluck, Shohamy, & Myers, 

2002). 

The Contextual Cueing (CC) task (Chun & Jiang, 1998) is a visual search task in which 

participants are shown displays of stimuli and are required to detect a target stimulus (e.g., a 

rotated T) within a subset of distractor stimuli (e.g., rotated Ls). On half of all the displays, the 

arrangement of the distractors is highly predictive of the location of the target. Participants are 

typically faster to respond on these trials in comparison to trials in which displays do not reliably 

predict the location of the target. Learning is implicit because participants rarely notice that 

contexts are repeated. Moreover, when they are given a test of their explicit knowledge – for 

example, having to recognise the predictive contexts (Chun & Jiang, 1998), or to generate the 

location of the missing target when presented with predictive displays in which the target has 

been replaced by another distractor (Chun & Jiang, 2003; Jiménez & Vázquez, in press) – then 

participants usually perform no better than chance. 

Another variety of procedures are Invariant Feature Learning (IFL) tasks (McGeorge & 

Burton, 1990). The critical feature of IFL tasks is that participants are incidentally exposed to a 

set of stimuli, which have an attribute that is common to them all; they have an invariant feature. 

In a subsequent phase, participants are presented with pairs of novel stimuli, and only one of 

each pair has the invariant feature, and participants are asked to select which of the two they 

have already seen. Even though both stimuli are novel, participants select the stimulus with the 

invariant feature more often than the stimulus without. Learning is implicit because participants 

are also usually unable to report that there was an invariant feature (e.g., McGeorge & Burton, 

1990). 

In order to address the question of whether differences in implicit learning have 

functional implications for everyday life, this thesis has used particular versions of all these five 

categories of task (AGL, CC, IFL, PCL and SRT; more details are provided in the Methods for 
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each experiment). These tasks are often introduced as principal categories of implicit learning 

tasks (e.g., Cleeremans & Dienes, 2008). However, there are several other implicit learning 

tasks. Probably the best known is the Process, or Dynamic Systems, Control task (e.g., D. C. 

Berry & Broadbent, 1988; Broadbent, 1977). On these tasks, participants have to learn how to 

control a simulated system (e.g., a ‘factory’) in order to achieve a certain goal (‘output’ for a set 

period). The equations determining the complex relationships between input and output are 

withheld. Yet, typically, performance is satisfactory and independent of verbalizable knowledge 

about the principles of the input-output relationships. Instead, performance is only dependent on 

practice. Explicit instructions of the input-output principles selectively improve verbal 

explanations and not performance. Further examples of implicit learning tasks include 

Covariation Learning (e.g., Lewicki, 1986); the Number Reduction Task (e.g., Haider & Frensch, 

2009; Woltz, Bell, Kyllonen, & Gardner, 1996); and Word Segmentation (e.g., Saffran, Johnson, 

Aslin, & Newport, 1999); while Shanks (2005) has reviewed some other, infrequently cited, 

demonstrations of implicit learning. 

3. Consensus on Implicit Learning 

Altogether the above descriptions of implicit learning tasks make it clear that implicit 

learning tasks share common conceptual features and reliably produce similar conceptual results. 

Moreover, those results demonstrate that a conservative conception of implicit learning exists: 

people learn when they are not primarily engaged in trying to learn explicitly and deliberately, 

and are consequently unable to report verbally on how or what they learnt, as operationally 

measured by implicit learning tasks. Additionally, given the intensity of debate that is associated 

with the literature, it is important to emphasise that this interpretation of evidence would achieve 

a large consensus. For example, Shanks, typically depicted as the fiercest critic in the field, has 

concluded:  

“it cannot be disputed that the examples described at the beginning of the chapter all 

possess a common „essence‟ that marks them out from the more traditional varieties of (explicit) 

learning studied by psychologists” (Shanks, 2005, p. 216). 

The examples of implicit learning tasks provided by Shanks (2005) did not include all the 

tasks described in this chapter. However, there was no claim that the examples were exhaustive, 

and no tasks were actively excluded. More important to this demonstration of consensus, the 
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‘common essence’ is described in more detail and is patently true of other implicit learning tasks, 

such as those described in this thesis: 

 “First, they all involve situations in which the primary task the person engages in is 

something other than deliberately, explicitly, trying to learn about the contingencies 

programmed by the experimenter. For instance, in Reber‟s artificial grammar learning (AGL) 

task, all that participants are told in the learning phase is that they should try to memorize a 

series of letter strings. They are not told to try to work out the rules governing the structure of 

these strings. Hence any evidence that they have indeed learned these rules would suggest that 

learning was incidental or unintentional....Secondly, the examples have in common the 

implication that learning can be dissociated from awareness. Participants were shown in these 

situations to have learned something – to have their behaviour controlled by a variable – of 

which they were apparently unaware. In most of the cases awareness is assumed to be 

synonymous with „verbally reportable‟” (Shanks, 2005, p. 204). 

4. Disagreements on Implicit Learning 

To reaffirm, researchers tacitly agree that implicit learning exists, if defined 

conservatively as the capability of people to learn when they are not primarily engaged in trying 

to learn, and that consequently they are unable to report verbally on how or what they learnt 

(e.g., D. C. Berry & Dienes, 1993; Cleeremans & Dienes, 2008; Shanks, 2005). However, many 

do not define implicit learning as such because they are justifiably interested in implicit learning 

to the extent that it can definitively elucidate the role of awareness, attention and automaticity in 

learning; the modularity of learning system; and the nature of consciousness and mental 

representation. Consequently, many researchers instead invoke aspects of A. S. Reber’s original 

claim that implicit learning is learning without awareness, or unconscious learning. In order to 

provide empirical support of such a definition, researchers insist upon exhaustive, objective 

attempts that fail to evidence awareness. There is undoubtedly weaker evidence and consensus 

that implicit learning tasks have documented learning characterised by the objective absence of 

awareness and consciousness (e.g., Perruchet, 2008; Shanks, 2005), not least because of the 

resultant difficulties in defining learning without awareness or consciousness. Notoriously, 

consciousness itself is a ‘mongrel concept’ (Block, 1995). Indicative of such difficulty, Frensch 

(1998) listed eleven different definitions provided by contributors to a book he edited with 
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Stadler (Stadler & Frensch, 1998). More recently, Perruchet asserted that this is still a problem: 

“what defines implicitness in IL is far from being agreed upon” (Perruchet, 2008, p. 609). 

Moreover, even once a more global definition of implicit is accepted, there is a 

considerable methodological challenge of demonstrating the objective absence of consciousness 

and awareness. In order to demonstrate implicit learning with the ‘objective absence of 

awareness’, tests of awareness must satisfy at least three criteria: (i) the information criterion, 

which states that the assessments must concern the information that is actually governing 

behaviour; (ii) the sensitivity (exhaustiveness) criterion, which states tests must be sensitive to 

the extent participants are conscious of the relevant information; (iii) the forgetting criteria, 

which dictates that attempts should rule out the possibility of awareness that is subsequently 

forgotten (e.g., Perruchet, 2008; Reingold & Merikle, 1988; Shanks & St. John, 1994). Indeed, in 

almost all implicit learning tasks, when tests of awareness have met these criteria, participants 

have been shown to be conscious of the relevant regularities, in the sense that they were able to 

identify or generate examples of relevant information (Perruchet, 2008; Shanks, 2005). For 

example, in the AGL, awareness tests adjusted according to the information criterion 

demonstrated that AGL knowledge can be fragmentary: in addition to whole strings, participants 

discriminated between letter pairs (bigrams) that were legal and illegal according to the grammar 

(e.g., Perruchet & Pacteau, 1990). In the CC, a generation task enhanced according to the 

sensitivity criterion demonstrated that participants could generate contexts above chance if a 

sufficient number of trials were used (Smyth & Shanks, 2008). In the SRT, a recognition test 

enhanced by concurrent sampling demonstrated that participants could recognise sequence 

fragments from probabilistic sequences presented in rapid succession (Shanks, Wilkinson, & 

Channon, 2003). 

However, direct measures of awareness, like generation and recognition tasks, rely on the 

logic that they exclusively index conscious processes (Reingold & Merikle, 1988). This dubious 

logic brings the definitional problem back into contrast. Generation and recognition 

performance, and similar examples, establish that participants are in some sense ‘conscious’ of 

the relevant regularities, but it does not necessarily establish that the participants are any more 

conscious than a blindsight patient who is able to discriminate between an object moving up and 

down (e.g., Cleeremans & Dienes, 2008; Dienes, 2008; Weiskrantz, 1986). That is, they do not 

evidence another, or for some ‘the’, critical dimension of consciousness: whether participants are 
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conscious that they are ‘conscious’ of the regularities; or, whether participants are in possession 

of a conscious mental state that they are sensitive to the regularities. Yet, such an 

acknowledgment does not solve the definitional problem. There are then at least three different 

approaches to what being conscious of a mental state constitutes, all of which demand differing 

methodological approaches (Cleeremans & Dienes, 2008). 

One conception asserts that the significance of a conscious mental state is its 

accessibility; it is defined by its “availability for use in reasoning and for rationally guiding 

speech and action” (Block, 1995, p. 227). In order to demonstrate implicit learning in this sense, 

it would be necessary to show that all the knowledge underpinning performance was available 

for use in another context. Recognition and generation tests are clearly a demonstration of the 

availability of knowledge on implicit learning tasks. Yet, using detailed correlational analyses, 

Jiménez, Mendez, and Cleeremans (1996) have demonstrated that in SRT, the knowledge is 

fragmentary and unable to account for all RT performance. However, it is clearly possible to 

make the argument that a larger number of generation and recognition tests might reveal more 

knowledge that is available and able to account for all RT performance. 

The second type of approach identified by Cleeremans and Dienes (2008) was made 

popular by Jacoby (1991), and claims that a critical aspect of consciousness is whether the 

content of the mental state can be used according to one’s intentions. Jacoby also introduced the 

Process Dissociation Procedure as a means of discriminating whether the learnt knowledge could 

be used according to intentions. This involves asking participants to behave in a fashion that is 

consistent or inconsistent with what they had learnt implicitly. Subsequently, the extent to which 

participants evidence implicit learning when they were asked not to do so is compared with when 

they were intending to do so. For example, Destrebecqz and Cleeremans (2001) applied this 

logic to a generation task following an SRT experiment; in an inclusion condition participants 

had to generate examples of the sequence they had seen, while in the exclusion condition, they 

had to avoid producing such examples. These authors found that performance was above chance 

even in the exclusion phase while finding no evidence that performance was worse than in the 

inclusion phase, and concluded that the knowledge was unconscious insofar that it could not be 

used in line with intentions. However, subsequent research has been less conclusive. Wilkinson 

and Shanks (2004) still found no evidence that participants could actively exclude (participants 
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were not able to generate fewer examples than chance), yet they did find generation was 

significantly reduced in exclusion as compared with inclusion. 

A second methodology focuses on determining whether the process of learning, rather 

than the resultant knowledge, can be manipulated according to intentions. Specifically, the 

methodology investigates whether learning is possible on implicit learning tasks when attention 

is diverted from the primary task by the introduction of a concurrent secondary task. For 

example, Shanks and Johnstone (1999) asked participants to complete a SRT task and 

concurrently count the number of high tones when high and low tones were being presented 

randomly after each correct response. Participants still learnt about the sequence, which implies 

learning without attention. However, Shanks (2005) has argued that it is only evidence of 

learning with reduced attention because other experiments have shown the manipulation is 

detrimental to learning even though it does not abolish it (e.g., Shanks & Channon, 2002). 

The final approach described  by Cleeremans and Dienes (2008) is centred around the 

idea that “conscious mental states are states we are conscious of being in” (Rosenthal, 2002, p. 

233). That is, the emphasis is put on subjectively knowing that one knows something (e.g., 

Dienes, 2008). In order to investigate this idea of consciousness researchers have asked 

participants to provide concurrent reports about the mental states underpinning their answers. For 

example, they are asked to provide descriptions (e.g., ‘guess’, ‘intuition’, ‘knew’) and/or 

confidence ratings. Researchers commonly interpret responses according to two criteria. The 

‘guessing criterion’ argues learning was unconscious if performance remained above chance 

when considering only the responses on which participants claimed they were guessing. The 

‘zero correlation criterion’ claims learning was unconscious if improvements in performance 

were not accompanied by increases in confidence (Dienes, Altmann, Kwan, & Goode, 1995). 

Dienes (2008) recommended a number of studies that provide evidence of participants who were 

sensitive to regularities from an implicit learning task even though they reported themselves to 

be guessing (the guessing criterion, e.g., Dienes, et al., 1995; Tunney & Shanks, 2003b; Ziori & 

Dienes, 2008). Similarly, he advised on several studies that had demonstrated that there was no 

relationship between confidence and performance; participants were equally confident about 

correct and incorrect judgments (the confidence criterion, e.g., Dienes, et al., 1995; Channon, et 

al., 2002; Dienes, 2008). However, in the case of zero correlation some researchers have argued 

that the failure to find a relationship results from the use of a continuous scale, and that scales 
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asking for binary confidence judgments do reveal a relationship (Tunney, 2005; Tunney & 

Shanks, 2003b; cf. Dienes, 2010). 

In all these approaches to establish learning without consciousness or awareness, it is 

possible to focus on different aspects of the results to one’s own purpose. For example, in 

process dissociation, it is possible to focus on either the evidence that a participant can generate 

fewer examples in exclusion than inclusion; or the evidence that those participants are still 

unable to exclude below chance (Tunney & Shanks, 2003a). In subjective measures, it is possible 

to focus on either the fact that participants seem to have some subjective idea about their 

performance insofar that they perform better when describing high as opposed to low confidence 

judgments (e.g., Tunney & Shanks, 2003a), or that when participants report themselves to be 

guessing they can still perform at a greater than chance level (e.g, Dienes, et al., 1995). How a 

researcher interprets the evidence will probably depend upon the kind of research question they 

are asking. Where absolute answers are required, the problem might be intractable until the field 

has a better idea and understanding of consciousness; although a great deal of enduring 

knowledge has been, and will likely continue to be, learnt in the pursuit (e.g., Shanks, 2005). 

Nonetheless, it seems indisputable that all the counter-evidence for each of the methodologies is 

indicative of something less than the definition of consciousness that first inspired each of those 

methodologies. In addition to this, there are reasons for retaining the idea of implicit learning 

because of functional differences between implicit and explicit learning. 

5. Differences between Implicit and Explicit Learning 

There are a variety of functional reasons for distinguishing between implicit and explicit 

learning. For example, there are considerable literatures in many areas of psychology that 

usefully employ a similar conceptual distinction between the implicit and explicit, including 

attitude (Greenwald, McGhee, & Schwartz, 1998), creativity (Dijksterhuis & Meurs, 2006), 

decision-making (Bechara, Damasio, Tranel, & Damasio, 1997; Dijksterhuis, Bos, Nordgren, & 

van Baaren, 2006), emotion (Damasio, 1996), memory (Schacter, 1987), motivation (King, 1995; 

McClelland, 1980), orienting and perception (MacLeod, 1998; Risko & Stolz, 2010), personality 

(Asendorpf, 2007), reasoning (Sloman, 1996), and ‘thought’ (Dijksterhuis & Nordgren, 2006). 

However, there is debate about the similarity of the distinctions across these different areas, 
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beyond all being dichotomous, and also about whether the various applications have proved 

particularly useful (e.g., Keren & Schul, 2009). 

The distinction can be fitted into a plausible evolutionary and comparative psychological 

framework (e.g., A. S. Reber, 1993). The idea is centred on two observations: the relatively 

recent evolution of consciousness in humans; and the existence of learning as a fundamental 

process central to all other complex organisms. Parsimony insists that humans and all other 

organisms would have once shared the same basic learning capacities and that by definition it 

would have been a learning capacity independent of human awareness. Since consciousness 

evolved after a basic learning capacity, it is suggested that there must be two mechanisms for 

human learning: the basic, ancestrally-shared, learning capacity and a second means bestowed by 

the evolution of consciousness; explicit learning guided by awareness. There are two reasons for 

arguing that the basic learning capacity must have persisted. First, since consciousness evolved 

from a psychology incorporating a basic learning capacity, it is likely that they are intimately 

linked. Second, it is unlikely that an adaptive capacity, such as a reliable mechanism for learning, 

would be subsequently selected against. However, the evolution of psychology is far more 

uncertain than morphology, and both arguments are surmised as likelihoods rather than logical 

consequences. This is pertinent when considering consciousness, which is characterised by a 

pervasive and mysterious nature. For example, an alternative and plausible argument could be 

made that the very presence of consciousness fundamentally changed the psychological nature of 

all other brain processes and rendered all processes as ‘one system’. 

 “Explicit representations are a pervasive and central feature of creative and flexible 

human cognition” (Clark & Karmiloff-Smith, 1993, p. 504), which are capable of explaining 

much about human learning (e.g., De Houwer, 2009; Mitchell, De Houwer, & Lovibond, 2009). 

Yet, incredibly rich explanations of many learning phenomena have also been achieved using 

‘automatic link machinery’ (or connectionist-type) models. For an illustrative review of the 

successes of these models in explaining associative learning data see Schmajuk and Kutlu 

(2009), for implicit learning performances see Cleeremans and Dienes (2008), and for 

reinforcement learning results see Dayan and Abbott (2001). Indeed, authors have argued that 

the explanatory power of connectionist models provides sufficient reason to abandon a purely 

propositional account of learning (e.g., Shanks, 2009). Yet, reconciling the propositional and 

connectionist accounts into one mode of learning is difficult for two reasons. First, without 



CHAPTER I  13   
 

 

external intervention, connectionist-type models are unable to analyse, or symbolically represent, 

their own activity. Yet, people are proficient at this kind of symbolic self-introspection (Clark & 

Karmiloff-Smith, 1993, p. 504; e.g., Cleeremans & Dienes, 2008). Second, connectionist 

architectures function to represent how the world actually exists, to track reality, yet people are 

also clearly capable of representing and entertaining counterfactual possibilities and models 

(Scott & Dienes, in press). Therefore in order to retain two fairly vast and useful modelling 

literatures, the indication is that some kind of distinction between two types of learning would be 

sensible and meaningful. 

Potentially, the connectionist and propositional traditions can be somewhat reconciled: 

perhaps with an explanation that abstract propositions emerge from the basic operations of 

connectionist networks (e.g., Shanks, 2009), or in a hybrid connectionist model (for a review of 

possibilities see Cleeremans & Dienes, 2008). Yet, even within such reconciliations there still 

clearly remains some kind of distinction that is at least worthy of further investigation. This 

remnant of a distinction might not convince a researcher of the need for absolutely dissociable 

systems, if they were concerned with cognitive architecture (e.g., Keren & Schul, 2009), but it is 

worth noting that such researchers disagree about whether the one system should be conceived as 

predominantly propositional (e.g., De Houwer, 2009; Mitchell, et al., 2009), or connectionist 

(e.g., Shanks, 2009). 

There appear to be different neural substrates for different modes of learning. For 

example, participants learning either implicitly or explicitly have displayed distinct coding 

patterns in their recorded event-related brain potentials (e.g., Rüsseler & Rösler, 2000). 

Neuroimaging suggests that different sites tend to show greater activation depending on whether 

a learning task was more implicit or explicit (e.g., Dolan & Fletcher, 1999; Lieberman, Chang, 

Chiao, Bookheimer, & Knowlton, 2004; Skosnik, et al., 2002). Explicit performance tends to be 

more associated with the medial temporal lobe and hippocampal circuits; implicit performance 

with the basal ganglia and striatal circuits; with evidence of interaction and competition between 

the two of them (for illustrative reviews see Poldrack, et al., 2001; Poldrack & Rodriguez, 2004). 

These interpretations are supported by the classic single dissociation presented in amnesia, a 

condition in which the limbic region, including the hippocampus and related structures, is 

characteristically damaged. Amnesic patients can typically learn information implicitly and yet 

show severely impaired declarative memory for the learning episode (e.g., Knowlton, Mangels, 
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& Squire, 1996; Schacter, Chiu, & Ochsner, 1993; cf, Speekenbrink, Channon, & Shanks, 2008). 

Further, double dissociations between different neuropsychological patients suggest that some 

neural substrates distinct to different types of learning can operate relatively independently of 

one another (e.g., Bechara, et al., 1995; Knowlton, Mangels, et al., 1996; Knowlton, Squire, 

Paulsen, Swerdlow, & Swenson, 1996). For example, Bechara and colleagues (1995) reported 

that a patient with selective damage to the amygdala showed no autonomic conditioning yet 

declaratively acquired the contingency pairings between the stimuli. By contrast, a patient with 

selective hippocampal damage showed conditioning but no declarative contingency learning. 

Additionally, a patient with selective damage to both areas demonstrated no learning of either. In 

a review by Poldrack and colleagues (2001) the dissociation of neural sites was argued to be 

supported by neural lesion dissociations in the animal literature (e.g., Packard, Hirsh, & White, 

1989; Packard & McGaugh, 1992). While these results again point to functional reasons for 

distinguishing between modes of learning, some theorists have pointed out that double-crossed, 

functional dissociations can be produced within single system architectures (e.g., C. J. Berry, 

Shanks, & Henson, 2008; Dunn & Kirsner, 1988; Plaut, 1995). 

It is a widely held view that implicit memory is much more durable than explicit 

memory. However, while differences in decay patterns are characteristic of implicit and explicit 

memory measures, it is not always the implicit that is more durable than the explicit (Schacter, 

1987). Moreover, the implicit memory and learning fields have quite different methodologies 

(e.g., Scott & Dienes, 2010), in spite of a good deal of empirical and theoretical overlap (D. C. 

Berry & Dienes, 1991). Thus, although it is a fairly common assumption that implicit learning 

and explicit learning result in knowledge with different patterns of decay, there is actually 

relatively little research. The research that exists suggests implicit learning results in knowledge 

that is relatively resilient to decay (R. Allen & Reber, 1980; Higham, Vokey, & Pritchard, 2000; 

Lee & Vakoch, 1996; Tamayo & Frensch, 2007; Tunney, 2003). 

There is evidence that the relationship of age with implicit and explicit learning is quite 

different. Explicit learning has a fairly steep developmental trajectory; for example, older 

children learn and recall far more words than younger children (e.g., Carroll, 1993; Cole, 

Frankel, & Sharp, 1971). By contrast, implicit learning seems to be developed from a very early 

age. For example, Gomez and Gerken found across four separate experiments that children of 

just twelve months learnt about an artificial grammar (1999; for a follow-up review of infant 



CHAPTER I  15   
 

 

learning see Gomez & Gerken, 2000). Further, several studies have reported no correlations 

between performance and age within children of varying ages (López-Ramón, 2007; Vicari, 

Verucci, & Carlesimo, 2007; Vinter & Perruchet, 2000), while other studies have reported no 

evidence of group differences between younger and older children (Vinter & Detable, 2003), or 

children and adults (Meulemans, Van der Linden, & Perruchet, 1998; cf Thomas, et al., 2004). In 

terms of normal aging, explicit learning appears to decline in old age. For instance, explicit 

acquisition and subsequent recall is impaired in list learning, paired-associate learning, and prose 

learning (e.g., Verhaeghen, Marcoen, & Goossens, 1993). Yet, implicit learning has been found 

to be relatively stable (for a review see Rieckmann & Bäckman, 2009). Rieckmann and Bäckman 

(2009) suggest that aging differences have only emerged on implicit learning tasks due to either 

intereference from explicit processing, or the complexity of the learning task exceeding the 

working memory capacity for chunking of the older participants. Rieckmann and Bäckman 

(2009) noted that this stability of implicit learning was in spite of the fact that striatal areas 

typically degrade in old age and suggested that the stability reflected neural reorganisation. 

Finally, there is a different relationship between IQ and implicit learning compared with 

IQ and explicit learning. Explicit learning is closely related to IQ (e.g., Carroll, 1993; Gebauer & 

Mackintosh, 2007, 2010; Kaufman, et al., in press; A. S. Reber, Walkenfeld, & Hernstadt, 1991), 

and appears to predict IQ above and beyond working memory and processing speed (Kaufman, 

et al., 2009). In contrast, implicit learning appears to be largely invariant of IQ (Feldman, Kerr, 

& Streissguth, 1995; López-Ramón, Introzzi, & Richard's, 2009; Maybery, Taylor, & O'Brien-

Malone, 1995; Myers & Conner, 1992; A. S. Reber, et al., 1991; Vinter & Detable, 2003; cf 

Fletcher, Maybery, & Bennett, 2000; McGeorge, Crawford, & Kelly, 1997; Salthouse, 

McGuthry, & Hambrick, 1999). Gebauer and Mackintosh (2007) have provided the most 

compelling evidence of IQ dissociating implicit and explicit learning. In their study, one group of 

participants completed implicit learning tasks according to typical implicit instructions, while 

another group were given instructions to use explicit strategies to aid their performance. 

Although this instruction manipulation did not change the overall performance across the 

learning tasks, a relationship with IQ was consistently observed only under the explicit 

instructions. Most importantly, the dissociation could not have been caused by a difference in the 

sensitivity of the implicit and explicit learning tasks: the learning tasks were exactly the same, 

only the instructions varied. 
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In summary, there is a consensus that people learn when they are not primarily engaged 

in trying to learn explicitly and deliberately, and are consequently unable to report verbally on 

how or what they learnt. In spite of this consensus, researchers do not agree whether learning can 

occur without awareness or consciousness since it seems possible to focus on different aspects of 

the results from the methodologies for investigating the absolute involvement of consciousness. 

Nonetheless, it seems indisputable that all the counter-evidence for each of those methodologies 

is indicative of something less than the definition of consciousness that first inspired each of 

those methodologies. Further, there are reasons for retaining the concept of implicit learning 

because of functional differences between implicit and explicit learning including: the existence 

of plausible comparative and evolutionary frameworks; the differences in computational models 

that explain much of the different types of learning; different neural sites associated with the 

different modes of learning; and contrasting relationships of implicit and explicit learning with 

durability, age and IQ. Taken altogether, this demonstrates that it is a legitimate, empirical 

question as to whether there are important differences in implicit learning, as measured 

operationally by implicit learning tasks. It is hoped this question can exist in parallel and 

complement research that requires more absolute evidence and methodologies, such as efforts to 

understand how evidence from learning tasks can elaborate the role of awareness, attention and 

automaticity in learning, and what that evidence can reveal about consciousness, mental 

representation and the modularity of learning systems. 

6. Differences in Implicit Learning 

The issue of differences in implicit learning is not only legitimate but potentially 

extremely important: learning is central to everyday life, and differences in explicit, IQ based 

processing are extensively researched and have been usefully related to many life outcomes (e.g., 

Mackintosh, 1998). To this end, some encouraging recent research has begun investigating the 

possible impact of differences in implicit learning. For example, there has been some success in 

measuring individual differences in implicit learning in a typical population (e.g., Gebauer & 

Mackintosh, 2007, 2010; Kaufman, et al., in press) in spite of the hypothesis by A. S. Reber that 

such individual differences would be minimal (1993). However, it has been noted that further 

research and replication would be necessary to make the modest evidence base more convincing 

(Gebauer & Mackintosh, 2010; Kaufman, et al., in press). 
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In a second type of approach, group differences between typical and atypical populations 

have been investigated. A. S. Reber (1993) had hypothesised that implicit learning would be 

relatively robust in the face of psychological disorders. There is much evidence to support this 

view: intact implicit learning on particular tasks has been reported in Alzheimer’s disease (e.g., 

Eldridge, Masterman, & Knowlton, 2002 ); amnesia (e.g., Chun & Phelps, 1999; Knowlton, 

Mangels, et al., 1996); OCD (Rauch, et al., 2007); Down Syndrome (e.g., Vicari, et al., 2007); 

dyslexia (e.g., Folia, et al.); Huntington’s disease (Knowlton, Squire, et al., 1996); intellectual 

disability (Vinter & Detable, 2003); Parkinson’s disease (e.g., P. J. Reber & Squire, 1999); 

psychosis and ADHD (Karatekin, White, & Bingham, 2009); and schizophrenia (e.g., Keri, et al., 

2000). However, in some of these disorders, there is evidence that there are deficits on other 

implicit learning tasks: dyslexia (e.g., Folia, et al.); Huntington’s disease (e.g., Knowlton, Squire, 

et al., 1996); Parkinson’s disease (e.g., Knowlton, Mangels, et al., 1996); and schizophrenia 

(Horan, et al., 2008). In the two disorders where only deficits have been reported, it has never 

been on more than one task: a deficit on the SRT task in Williams Syndrome (e.g., Vicari, et al., 

2007); and a deficit on the PCL task in Tourette Syndrome (Kéri, Szlobodnyik, Benedek, Janka, 

& Gádoros, 2002). Thus, there is clearly an implication that deficits on particular implicit 

learning tasks do not necessarily provide evidence of general deficits but are instead related to 

the particular demands of different aspects of the learning tasks.  

In contrast, an argument has been made that the deficit is more general in Autism 

Spectrum Condition (e.g., L. G. Klinger, et al., 2007; Mostofsky, et al., 2000; Romero-Mungu a, 

2008), and initial results supported that view (Gordon & Stark, 2007; L. G. Klinger & Dawson, 

2001; L. G. Klinger, et al., 2007; Mostofsky, et al., 2000). Nonetheless, the issue is not yet fully 

resolved and would benefit from an investigation of the same individuals on a wider range of 

implicit learning tasks. 

Thus, there is not yet entirely convincing, and certainly not extensive, evidence of 

functional differences in implicit learning. Instead, the field is at stage where it would benefit 

from further investigation into the possible functional differences. To this end, a dual-approach 

was applied in this thesis. The first approach was to seek further evidence as to whether there are 

meaningful individual differences in implicit learning among the typical population. Specifically, 

Study I investigated the inter-correlation between three implicit learning tasks; the independence 

of those tasks from IQ; the relationships between those tasks, intuitive aspects of personality and 
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occupational tacit knowledge; and finally whether performance on implicit learning tasks was 

related to occupational achievement. The second approach was adopted concurrently and 

examined whether there were group differences in implicit learning between a typically 

developing and an Autism Spectrum Condition population. Specifically, Studies II, III and IV 

examined whether there is an ASC deficit in implicit learning, which contributes to diagnostic 

social, communicative and motor impairment. 
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II. Individual Differences in Implicit Learning: Study I 

1. Introduction 

The possibility of individual differences in implicit learning has received little empirical 

attention. In Chapter I it was asserted that this lack of research is at least partly a result of the 

complex debate on the validity and details of a distinction between implicit and explicit learning. 

Another reason is that A. S. Reber has actively theorised that individual differences in implicit 

learning are likely to be minimal (e.g., A. S. Reber, 1993; A. S. Reber & Allen, 2000). 

Specifically, A. S. Reber’s theory is primarily based on the evolutionary argument that adaptive 

learning must have existed prior to the relatively recent evolution of conscious, explicit learning, 

and that old, adaptive structures are relatively stable and invariant between individuals. Although 

this argument is plausible, the issue is an empirical one and can be tested within a psychometric 

framework. In order to establish meaningful individual differences in implicit learning, it would 

be necessary to demonstrate inter-relationships between implicit learning tests; independence 

from explicit, IQ-mediated cognition; the nature of the relationships with other existing 

characteristics; and correlation with real-life behaviours assumed to be implicitly acquired (e.g., 

Carroll, 1993; Gebauer & Mackintosh, 2010). Although such empirical investigation using an 

individual differences approach has been relatively scant, the research that exists has provided 

encouraging results (Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in press). 

Gebauer and Mackintosh (2007) dissociated implicit, in contrast with explicit, learning 

from a general factor of intelligence. Kaufman and colleagues (in press) also dissociated implicit 

learning from a general factor of intelligence, and, further, established its independence from 

explicit associative learning and working memory while providing evidence of a relationship 

between implicit learning and both educational achievement in second language acquisition, and 

intuitive aspects of personality. However, there was no evidence of an inter-relationship between 

several different measures of implicit learning in either of those studies (Gebauer & Mackintosh, 
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2007; Kaufman, 2009).1 A further study by Gebauer and Mackintosh (2010) replicated the 

finding of a correlation between implicit learning and educational achievement in a second 

language, and importantly, did find some positive relationships among different measures of 

implicit learning. However, the modesty of that overlap led the authors to encourage further 

replication and investigation of the relationship.  

Thus, one aim of Study I was to provide such replication of the inter-relationships of 

implicit learning tasks. Additionally, rather than further investigate the relationship of implicit 

learning to language acquisition, the study investigated the relationship between implicit learning 

and another domain of everyday behaviour that is popularly associated with an implicit 

acquisition, this being occupational achievement.  

In order to successfully recruit expert participants and thereby allow an interesting 

investigation of implicit learning and occupational achievement, it was judged unrealistic to 

include more than three implicit learning tasks in the study; a probabilistic Serial Reaction Time 

(SRT) task, an Artificial Grammar Learning (AGL) task, and an Invariant Feature Learning 

(IFL) task. The SRT and AGL tasks were suitable for inclusion since they have been described 

as paradigmatic methods for studying implicit learning, and are thoroughly researched (Shanks, 

2005). Further, the two tasks contrast substantially in their approach to measuring implicit 

learning. Therefore, it would be reasonable to assume that any shared variance would not result 

from some other, superficial factor. Lastly, these two tasks have been utilised successfully in the 

promising initial investigation of individual differences in implicit learning (Gebauer & 

Mackintosh, 2007, 2010; Kaufman, et al., in press). IFL has also been used to study implicit 

learning. Unusually for the implicit learning literature, IFL has been demonstrated with both 

abstract (McGeorge & Burton, 1990) and real-world stimuli (Kelly, Burton, Kato, & Akamatsu, 

2001). It was the successful demonstration of IFL with real-world stimuli that suggested its 

relevance to this study. 

                                                 
1 It should be noted that Kaufman (2009) and Kaufman and colleagues (in press) are not separate studies. 

Kaufman and colleagues (in press) published an article that was based on some of the data from Kaufman’s (2009) 

thesis. The details of the additional implicit learning tasks and their inter-correlations are only provided in 

Kaufman’s (2009) thesis, thus I reference Kaufman (2009) when referring to that detail of the study reported in 

Kaufman and colleagues’ (in press). 
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In addition to investigating the inter-relationships between these implicit learning tasks 

and occupational achievement, the study also sought to clarify further the relationship between 

implicit learning and some other characteristics, namely practice, explicit IQ-mediated 

processing, personality, and occupational tacit knowledge. Explicit IQ-mediated processing was 

assessed, in an attempt to further establish its independence from implicit learning. This 

assessment was achieved by including both abstract and verbal reasoning IQ subtests, and 

deriving two further measures of explicit processing, one from the AGL task and the other from 

the SRT task. There were two reasons for choosing to investigate further the relationship 

between implicit learning and personality. The first was to replicate the interesting relationships 

between intuitive aspects of personality and implicit learning that were identified by Kaufman 

and colleagues (in press). Second, personality is particularly implicated in occupational 

achievement, and could plausibly interact or mediate the influence of implicit learning on 

performance. Thus, in order to make a strong case for implicit learning as an independent ability, 

it was necessary to clarify any possible relationship. An index of practice was included in order 

to establish whether implicit learning was able to predict occupational achievement 

independently of practice. This result would help distinguish between the relative importance of 

individual differences in implicit learning as compared with time. 

1.1. Tacit Knowledge 

The desire to understand the relationship of implicit learning to occupational tacit 

knowledge stems from the suggestion that tacit knowledge may be acquired by an implicit 

learning system (Mackintosh, 1998, pp. 363-367). One reason that such a relationship is 

plausible stems simply from the description of tacit knowledge: tacit knowledge is “generally 

unspoken knowledge gained from experience, as opposed to explicit instruction” (R. K. Wagner 

& Sternberg, 1986, p. 52). R. K. Wagner and Sternberg were not responsible for the concept of 

tacit knowledge; tacit knowledge had been previously invoked in the philosophy of science 

(Polanyi, 1958), ecological psychology (Neisser, 1976), and organisational behaviour (Schön, 

1983). The unique contribution by R. K. Wagner and Sternberg was the development of a tool to 

assess such knowledge, the Tacit Knowledge Inventory. Over the course of several studies, the 

authors achieved modest validation of their inventories (e.g., Hedlund, et al., 2003; Sternberg, et 

al., 2000; R. K. Wagner, 1985, 1987; R. K. Wagner & Sternberg, 1985). Importantly, from these 
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studies there is good evidence that (i) tacit knowledge predicts occupational achievement, and 

modest evidence that (ii) tacit knowledge does not correlate with IQ and (iii) tacit knowledge 

does not wholly depend on practice. Insofar that these findings are true, then this suggests that 

there is some system for acquiring information, specifically tacit knowledge, that is not simply a 

function of time and yet predicts important differences in performance, and is seemingly not 

mediated by explicit, IQ-dominated, processing. Since it might plausibly be an individual’s 

implicit learning ability that is primarily responsible for the acquisition of tacit knowledge, then 

it is critical that any relationship between them is elucidated. Further, if tacit knowledge is the 

intermediary between an individual’s implicit learning ability and its behavioural manifestation 

in performance differences, then the study is actually far more likely to find evidence to support 

the role of implicit learning in individual performance differences by also measuring that 

relevant intermediary. 

It is important to note that while Sternberg and colleagues (e.g., Sternberg, et al., 2000) 

strongly believe in the validity of tacit knowledge, other authors are considerably less convinced 

(e.g., Gottfredson, 2003a; McDaniel & Whetzel, 2005). Therefore, Study I also provided an 

opportunity to resolve some of the outstanding issues concerning tacit knowledge, which shall 

now be described.  

R. K. Wagner (1985, 1987) and R. K. Wagner and Sternberg (1985, 1986) devised 

measures of tacit knowledge concerning specific occupational fields. This was achieved by 

asking experienced and highly successful individuals in the fields of academic psychology and 

business management to describe typical work-related situations and possible responses to them. 

Their descriptions and a tentative theoretical framework were used to assemble, in questionnaire 

format, two sets of work-related situations requiring judgments about the quality of response 

alternatives; one for academic psychology, and one for business management. In untimed 

conditions, the questionnaires ask individuals to indicate the appropriateness of multiple 

response strategies for a problem situation using a rating scale of 1 (extremely bad or extremely 

unimportant) to 7 (extremely good or extremely important). Tacit knowledge is quantified using 

either an ‘item-discrimination method’ or ‘expert-prototype method’ (R. K. Wagner, 1985, 1987; 

R. K. Wagner & Sternberg, 1985 see Method 2.3.4 of this chapter for more details). Since that 

initial investigation, tacit knowledge has been examined in several other occupations by 

Sternberg and colleagues including bank management, sales, primary education, clerical work, 
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policing and military leadership (Grigorenko, Sternberg, & Strauss, 2006; Hedlund, et al., 2003; 

Hedlund, Wilt, Nebel, Ashford, & Sternberg, 2006; Matthew & Sternberg, 2009; Mueller & 

Bradley, 2009; Sternberg, et al., 2000; Sternberg & Wagner, 1993; Sternberg, Wagner, & 

Okagaki, 1993; Sternberg, Wagner, Williams, & Horvath, 1995; R. K. Wagner, Sujan, Sujan, 

Rashotte, & Sternberg, 1999). 

An important issue concerning tacit knowledge is its true relationship with IQ, practice 

and personality. These relationships are clearly instrumental to the interpretation of the role that 

tacit knowledge, and thus possibly implicit learning, has in determining performance differences. 

Sternberg and colleagues certainly believe tacit knowledge has been empirically demonstrated to 

be largely independent of IQ and personality (e.g., Sternberg, 2003; Sternberg, et al., 2000), and 

not to be solely a function of practice (e.g., R. K. Wagner & Sternberg, 1986). Further, those 

authors believe that important individual differences in tacit knowledge acquisition remain 

independent of IQ, personality and practice, and play a role in differences in practical 

intelligence between individuals. However, other authors interpret their evidence and theories 

differently (e.g., Gottfredson, 2003a; McDaniel & Whetzel, 2005). 

Gottfredson (e.g., 2003a) has made many strong criticisms of the research but it appears 

her primary objection is that the extent of Sternberg’s theorising is not justified by the data. For 

example, she states that Sternberg makes “an implausible claim, namely, that tacit knowledge 

reflects a general factor of intelligence that equals or exceeds IQ in its generality and everyday 

utility” (Gottfredson, 2003a, p. 391). Brody has similar complaints of Sternberg’s broader 

theorising on practical intelligence (e.g., Brody, 2003). However, for current purposes, if tacit 

knowledge could predict meaningful differences independently of IQ, personality and practice, 

regardless of how relatively restricted that prediction was, then it would still offer significant 

theoretical support of an additional, albeit less dominant, system with meaningful individual 

differences.  

McDaniel and colleagues have argued that the general format of Tacit Knowledge 

Inventories can be described as a Situational Judgment Test, insofar that it features a set of 

common problem situations, which have long been used in personnel selection (e.g., as long ago 

as 1947, McDaniel, Morgeson, Finnegan, Campion, & Braverman, 2001; McDaniel & Whetzel, 

2005). Taken alone, this fact supports the validity of Tacit Knowledge Inventories, and their 

ability to improve the prediction of performance. However, McDaniel and colleagues also 
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reported meta-analyses that demonstrated situational judgement tests do tend to relate to IQ, 

personality and practice. McDaniel and colleagues therefore argued that tacit knowledge was 

acquired according to differences in explicit-IQ mediated cognition and personality over time, 

and as such that there was no reason to invoke another system to explain the acquisition of tacit 

knowledge, such as practical intelligence or implicit learning. Thus, if McDaniel and colleagues 

are correct in identifying R. K. Wagner and Sternberg’s (1985) Tacit Knowledge Inventories as 

Situational Judgment Tests, then it seems unlikely that R. K. Wagner and Sternberg’s findings 

will be replicable. However, given it is at least possible that there is something particular about 

the inventories R. K. Wagner and Sternberg (1985) have developed, however similar they might 

appear to situational judgement tests, an empirical replication and investigation using those 

particular inventories should provide the most convincing resolution to the debate. 

However, Gottfredson (2003) argued that even Sternberg’s research concerning his own 

specific Tacit Knowledge Inventories has not always shown such convincing independence from 

IQ (e.g., p. 377). In reply, Sternberg (2003) contended that, on balance, there was more evidence 

towards the conclusion of independence from IQ (p. 407-408). Unconvinced, Gottfredson (2003) 

maintained such strong assertions were only possible by “reporting evidence selectively and 

inaccurately” (p. 415). Rather than debating the evidence that Sternberg and colleagues have 

provided, selectively, inaccurately or otherwise, a more useful approach is to conduct 

independent empirical research in order to resolve the issues. 

Therefore, Study I analysed the relationship between the Academic Psychology-Tacit 

Knowledge Inventory (AP-TKI, R. K. Wagner and Sternberg, 1985), and IQ, practice and 

personality. There were three reasons for using the Academic Psychology-Tacit Knowledge 

Inventory. The primary reason was that research into the Academic Psychology Inventory has 

contributed to the pattern of results I have identified as important to the validity of tacit 

knowledge. Specifically, performance on the Inventory has shown moderate independence from 

practice (e.g., faculty outperformed postgraduates, who outperformed undergraduates, but there 

was no evidence of a correlation between tacit knowledge and the year of Ph.D among faculty, r 

= .04); moderate independence from IQ (e.g., there was evidence of a small correlation between 

IQ and tacit knowledge in one study, r = .30, but in another study there was no evidence of 

correlation, r = -.09); and a relationship with real world performance (e.g., tacit knowledge 

correlated with the number of publications among the faculty, r = .28, R. K. Wagner & 
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Sternberg, 1986). Second, these results are frequently cited in support of tacit knowledge (e.g., 

Cianciolo, et al., 2006; Hedlund, et al., 2003; Hedlund, et al., 2006; Sternberg, et al., 2000), and 

yet these results have not been replicated. Clearly, the Inventory warrants further investigation. 

The final reason was the practical availability of academic psychologists as participants. 

The final important tacit knowledge issue that this study addressed was domain 

generality. The questions used on Tacit Knowledge Inventories are ostensibly quite specific to 

the relevant occupation, and suggest that the knowledge would be domain specific. Certainly, 

Gottfredson (2003) interpreted Tacit Knowledge Inventories as assessments of domain specific 

job knowledge, and McDaniel and colleagues (2005) argued performance on Situational 

Judgment Tests, and by extension Tacit Knowledge Inventories, is not underpinned by a general 

factor. However, Sternberg (2003) and colleagues (1986, 2000) have argued to the contrary, 

claiming, for example, that tacit knowledge is domain general across all practical, occupational, 

tasks. R. K. Wagner and Sternberg (1986) justified this claim based on the “the moderately 

strong correlation (r = .60) found...between performance on the tacit knowledge measures for 

Academic Psychology and Business Management” (Wagner and Sternberg, 1986, p. 77), which 

remained the only empirical evidence offered in the ‘Tacit Knowledge as a General Construct’ 

section of Sternberg and colleagues’ (2000) book. However, only their undergraduate group were 

given both of the two different tests of tacit knowledge. Therefore, the correlation could have 

resulted from the low range of scores achieved by the inexpert undergraduates on both 

inventories. Thus, perhaps it is the case that only undergraduates use domain general tacit 

knowledge precisely because they lack requisite expertise in their chosen field. Thus, the 

correlation of undergraduates’ scores on different tests of tacit knowledge was insufficient 

evidence on which to conclude that scores would correlate with one another across the full range 

of expertise. In order to address this unsatisfactory assessment of Tacit Knowledge in Sternberg 

and colleagues’ study, Study I assessed the relationship between performance on two types of 

Tacit Knowledge Inventory, Academic Psychology and Business Management (BM-TKI), across 

a full range of expertise, from undergraduates to professors. 

More recently, researchers, in collaboration with Sternberg, have begun investigating 

overtly generic forms of tacit knowledge (e.g., the College Life Questionnaire, the Common 

Sense Questionnaire, and the Everyday Situational Judgment Inventory), which ask questions 

clearly non-specific to occupation. The existence of a positive relationship between generic Tacit 
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Knowledge Inventories and IQ (Cianciolo, et al., 2006) contrasts with Sternberg’s claims about 

the independence of IQ and occupational Tacit Knowledge Inventories (e.g., Sternberg, 2003), 

and therefore also contrast with the argument that tacit knowledge is completely general. Instead, 

this finding of different relationships with IQ is suggestive that, at the very least, generic and 

occupational Tacit Knowledge Inventories assess different constructs. In order to examine this 

possibility, participants in Study I also completed a Common Sense Questionnaire (CSQ), in 

order that the relationship between occupationally-specific Tacit Knowledge Inventories and 

generic Tacit Knowledge Inventories could be directly assessed. 

Finally, it should be acknowledged that it was interesting for Study I to clarify the 

generality of tacit knowledge, in order to understand the relationship between tacit knowledge, 

implicit learning and everyday performance. However, it is clearly not critical to theories of 

implicit learning as a general ability that all types of tacit knowledge are strongly related to one 

another. Only one tacit knowledge inventory, which meaningfully predicted differences 

independently of IQ, personality and practice, would need to be related to implicit learning, in 

order to offer theoretical support to the existence of an additional system with meaningful 

individual differences. The resultant implication of the independence of different Tacit 

Knowledge Inventories would be that such a system does not ubiquitously influence individual 

differences in performance. 

In summary, the central aim of this study was to provide a further test of the theory of 

meaningful individual differences in implicit learning. In achieving this aim, Study I was first 

interested in whether the overlap between implicit learning tests identified by Gebauer and 

Mackintosh (2010) was replicable. Similarly, it was necessary to re-examine the independence of 

implicit learning from IQ-mediated explicit processing (e.g., Gebauer & Mackintosh, 2007, 

2010; Kaufman, et al., in press; A. S. Reber, et al., 1991), and replicate possible relationships 

between implicit learning and intuitive aspects of personality (Kaufman, et al., in press). In order 

to establish whether implicit learning was related to meaningful differences in everyday 

performance in addition to second language acquisition (Gebauer & Mackintosh, 2010; 

Kaufman, et al., in press), Study I uniquely investigated whether implicit learning was related to 

occupational achievement. Lastly, since tacit knowledge has been plausibly postulated as an 

intermediary construct that might mediate the influence of implicit learning influence on 
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behaviour (Mackintosh, 1998), Study I also uniquely examined the relationship between tacit 

knowledge and implicit learning.  

Furthermore, in order to understand fully the implications of a tacit knowledge and 

implicit learning relationship, the study also took the opportunity to resolve outstanding issues 

relating to tacit knowledge. In particular, the interpretation of the relationships between tacit 

knowledge, IQ and personality, have been subject to fierce debate (e.g., Gottfredson, 2003a, 

2003b; McDaniel & Nguyen, 2001; McDaniel & Whetzel, 2005; Sternberg, 2003). It has been 

claimed this is, in part, a consequence of a failure to acknowledge the similarities of Tacit 

Knowledge Inventories to Situational Judgment Tests, which are better researched (e.g., 

McDaniel & Whetzel, 2005), and a selective reporting of the data on Tacit Knowledge 

Inventories (e.g., Gottfredson, 2003b). While such arguments are sensible and plausible, it is 

hoped that the debate would be resolved by an independent, empirical investigation of those 

relationships using precisely the same inventories as those devised by Sternberg and colleagues 

(e.g., R. K. Wagner & Sternberg, 1986).  

Finally, the issue of domain generality in tacit knowledge has not received a thorough test 

to date. Therefore, Study I analysed the relationship between performance on two different 

occupational inventories by one occupational group that displayed a broad range of expertise, 

together with performance on an inventory which assesses overtly generic, non-occupational-

specific knowledge.  

To achieve these aims, 103 academic psychologists completed three implicit learning 

tasks (SRT, AGL, IFL task), two IQ sub-tests (DAT verbal and analogical reasoning tests), one 

personality questionnaire (Big Five Inventory), three Tacit Knowledge Inventories (Academic 

Psychology, Business Management and CSQ) and one General Questionnaire primarily 

pertaining to their educational and occupational histories. 

2. Method 

2.1. Participants 

The data obtained from 103 academic psychologists were included in the study (61 

females). Participants were aged between 18 to 78 years old (M = 31.97, SD = 12.72). In the 

investigation of occupational achievement with implicit learning and tacit knowledge, the 
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participants were split into three groups depending upon their level of academic expertise (e.g., 

R. K. Wagner and Sternberg, 1986). There was an undergraduate group (Undergraduates, N = 

34), a ‘junior’ academics group (Junior-Academics, N =39) and a ‘senior’ academics group 

(Senior-Academics, N = 30). Junior and senior academics were arbitrarily distinguished 

depending upon whether their position required them to lead research projects beyond the 

doctoral level, and/or lecture. Relevant descriptive statistics of these groups of participants are 

provided in Table 1. Participants were recruited by emailing UK psychology departments and 

organisations with a request that they invited their members’ participation. In return for 

participation, £1,000, £500 each, was donated to two charities. Participants were excluded if they 

were not academic psychologists, not ‘native English-speakers’, or demonstrated evidence of 

substantial business management experience (to allow comparison with performance on the 

Business Management Tacit Knowledge Inventory). 



CHAPTER II  29   
 

 

Table 1. Descriptive Statistics indicating Participants‟ Expertise in Academic Psychology 

Measure M SD Range  

Senior-Academics (N = 30)     

# Publications 28.73 39.01 0 – 160  

# Conference papers 14.66 15.94 0 – 60  

Job Title Rating a 3.23 1.22 1 – 5  

Dept.’s RAE Outcome b  47.17 28.58 0 – 85  

% Time spent researching c 56.61 30.14 0 – 100  

Salary (£1000s; N = 29)d 41.64 12.11 22.50 – 67.50  

Years since Ph. D was acquired 10.80 13.63 0 – 45  
Years in academic psychology 17.79 12.28 4.27 – 51.14  

Age (years) 41.95 13.80 23.83 - 77.54  

Junior-Academics (N = 39)     

# Publications 1.18 2.42 0 – 11  

# Conference papers 1.00 1.81 0 – 8  

Dept.’s RAE outcome 46.79 20.37 10 – 85  

Years in academic psychology 5.09 2.45 0.55 – 11.15  

Age (years) 31.74 9.20 22.53 – 54.30  

Undergraduates (N = 34)     

Dept.’s RAE outcome 43.24 24.18 10 – 85  

Years in academic psychology 1.83 1.24 0.35 – 4.63  

Age (years) 23.44 8.35 18.41 – 55.24  
 

   

 

Notes: a Job titles rated between 1 to 5: 1 = Associate Research Fellow; 2 = Research Fellow; 3 
= Lecturer; 4 = Senior or Principal Lecturer; 5 = Professor or Reader. b The Department with 
which the participant was associated. The variable is the percentage of the Department‟s RAE 
submitted research judged to be above 3*. Thus, the quality of that percentage of research is 
equal or better than “internationally excellent in terms of originality, significance and rigour but 
which nonetheless falls short of the highest standards of excellence” (Research Assessment 
Exercise, 2008, p. 8). c Percentage of time that participants spent researching relative to time 
spent on administration and teaching. d Salary means are based on the midpoint of the £5,000 
bands that participants selected. 
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2.2. General Procedure and Apparatus 

All data collection occurred remotely. Participants who replied to the recruitment emails 

were first directed to the online General Questionnaire, which requested general, demographic 

details and information pertaining to their academic expertise (see Appendix A for details of the 

questionnaire, which provides screenshots of the questionnaire as presented in Study I). 

Participants were screened according to exclusion criteria, and the remaining individuals were 

invited to participate in the entire study. Those participants were sent a download link, user-name 

and password. All tasks were programmed within Delosis Psytools software. Participants were 

unable to complete any of the tasks without first downloading and installing the software. This 

ensured that when a participant was running a task it was safeguarded from interruption from 

internet problems and other programmes on the computer, and thus all participants received a 

uniform experience of each task and questionnaire. Additionally, installing software onto 

participants’ machines allowed the utilisation of a battery of three different clocks on Windows 

and the system timer on Macs to provide millisecond timing accuracy. 

All participants were instructed to complete the tasks in one of two of the following 

orders with the following names (parenthesis information added here for clarity): 1) Personality 

Questionnaire (BFI); 2) Task C (DAT Verbal IQ subtest); 3) Task F (DAT Abstract IQ subtest); 

4) Common Sense Questionnaire (CSQ); 5) Task I (IFL); 6a) Business Management 

Questionnaire (BM-TKI) or 6b) Academic Psychology Questionnaire (AP-TKI); 7) Task A 

(AGL); 8a) Business Management Questionnaire or 8b) Academic Psychology Questionnaire; 9) 

SRT. Fixed orders allow the most accurate comparison between individuals, and for this reason, 

trial and item order were also fixed. However, it was necessary to use the two different overall 

task orders to permit a valid within-subject comparison of performance on AP-TKI and BM-TKI. 

The task order was chosen to maximise variety, and thus the interest of the participants, 

in the hope of minimising participant withdrawal. This consideration was particularly relevant to 

Study I given that participation was remote and that many participants were experts with busy 

schedules. Participants were instructed, and the software dictated, that they had to finish each 

task and questionnaire once it had begun, and that they should do so in a quiet and distraction-

free environment. Participants were also instructed that they could complete the nine different 

tasks using as many as breaks as their schedules required; again, this freedom was necessary in 

order to minimise participant withdrawal. Participants were routinely reminded by email about 
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both the study and their right to withdraw but were sent an exclusion notification after an 

extended period of inactivity (approximately three months). The mean time to complete all the 

tasks was 46.54 days (SD = 59.53 days). Once a participant completed a task, results were 

securely transmitted back to the server when an internet connection was available. Each 

participant’s dataset was identified by their user-name and password, which they had to enter 

prior to completing any of the tasks. Finally, upon completing all nine tasks, participants were 

sent a questionnaire about the implicit learning tasks, and were asked to complete and return the 

questionnaire by email. 

2.3. Tasks 

2.3.1. General Questionnaire 

This General Questionnaire asked participants to provide, where they were happy to do 

so, demographic information and, more importantly, detailed educational and occupational 

achievement (see Appendix A for more details). The answers to these questions were used to 

screen potential participants, assign selected participants to one of three groups (Undergraduates, 

Junior- or Senior-Academics) and compile quantitative indices of expertise (Publications, 

Conference Papers, Job Title Rating, Dept.’s RAE Outcome, Relative Percentage of Time Spent 

Researching, Salary), opportunity for practice (time spent in academic psychology and time since 

Ph. D was acquired) and educational achievement (at both sixteen and eighteen). Some questions 

were asked in the General Questionnaire that were not used to create these listed indices (see 

Appendix A for details of questions not used). Those questions were included with the intention 

of using them to compute more indices of expertise; however, either too few participants 

responded or data was too non-normally distributed to analyse. 

2.3.2. Implicit Learning 

 Serial Reaction Time (SRT) task 

Participants in Study I were asked to respond as quickly and as accurately as possible to a 

large blue dot appearing in one of four locations by pressing corresponding keys on their 

keyboard (‘V’, ‘B’, ‘N’, ‘M’). They were instructed that upon pressing the correct corresponding 

button, the blue dot would move to another location and that they should continue the task in this 
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fashion. The location of the dot location followed a 12-digit second-order conditional sequence 

(312143241342), such that the subsequent location of the dot was perfectly predicted by the 

previous two locations (e.g., after the series 3 followed by 1, location 2 is expected). However, 

the sequence was probabilistic, so that occasionally the dot appeared in locations unpredicted by 

this sequence. These improbable trials were generated randomly on 15 % of trials, by following 

the constraints of an alternative second-order sequence (132341243142). Thus, in those trials, the 

series 3, 1 would not be followed by 2, but rather by 4, as stipulated in this alternative series 

(Schvaneveldt & Gomez, 1998). The utilisation of this probabilistic second-order sequence, and 

the fact that the response-to-stimulus interval was programmed at 0 ms, should have minimised 

the use of explicit strategies during learning (Destrebecqz & Cleeremans, 2003). There were 9 

blocks of trials: the first was a baseline block, consisting of 48 trials during which both 

sequences were equally likely; the remainder consisted of 120 trials each with 15 % of 

improbable trials, as described above. Between each block, the experimenter provided the 

participant with feedback about their accuracy. Sequence learning was assessed by comparing 

participants’ RT between trials that were generated according to the frequent sequence (i.e. 

probable trials) and those that were generated by the alternative sequence (i.e. improbable trials). 

 Artificial Grammar Learning (AGL) task 

During a learning phase, participants in Study I were told that they would be presented 

with a series of nonsense letter strings, which they should memorise because, after each letter 

string disappeared, they would need to reproduce it using the keyboard. Each string was 

presented for four seconds. When reproducing the strings, upon typing an incorrect letter, 

participants were instructed “Incorrect. Please try again”. Participants were then presented with 

the string for another four seconds before trying again to reproduce it. In total, twenty different 

strings were presented during this learning phase; each was presented twice, once in each of two 

blocks, which were separated by a short interval. Crucially, all the learning strings conformed to 

an artificial, semantic-free, finite-state grammar (see Figure 1). To elaborate, grammatical strings 

are created by following the direction of an arrow and a letter is added to the string whenever a 

node is passed (e.g., PTTTVPS or TSXXTTVV). These learning strings were replicated exactly 

from the stimuli reported in A. S. Reber, Walkenfeld, and Hernstadt (1991) and A. S. Reber 

(1993). Thus, letter strings were between 3-8 letters long and strings were selected so that all the 
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variations of the grammar, the three loops, and all possible beginnings and endings were 

displayed (A. S. Reber, et al., 1991 and see Appendix A for the complete list of learning phase 

letter strings used). 

 

Figure 1. Schematic diagram of the artificial, finite-state grammar used to produced stimuli for 
the AGL task (reproduced from A. S. Reber, et al., 1991). 

Instructions up to the end of the learning phase described a memory experiment and the 

fact that the strings had been produced according to a grammar was unknown to the participants. 

Upon beginning the test phase, participants were told that the strings had followed rules. 

Participants were further instructed that they would now see letter strings, some of which 

followed the rules and some of which did not, and that they would have to judge, according to 

their first feeling, whether they followed the rules. Test strings were presented one at a time, for 

a maximum of 6 seconds, with no feedback and a response-stimulus interval of 500 ms. 

Participants pressed ‘Y’ to indicate that a string followed the rules and pressed ‘N’ to indicate 

that it did not. Test stimuli were also replicated exactly from the stimuli reported in A. S. Reber, 

Walkenfeld, and Hernstadt (1991) and A. S. Reber (1993). Thus, test stimuli consisted of 25 

grammatical letter strings (7 of which were old strings from the learning set and the remaining 
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were novel grammatical strings) and 25 non-grammatical letter strings, which were formed by 

introducing one or more violations into otherwise grammatical letter strings (A. S. Reber, et al., 

1991 and see Appendix A for the complete list of test phase letter strings used). Overall, 

grammar learning was assessed by comparing classification performance against the chance level 

of performance. 

 Invariant Feature Learning (IFL) task 

In a learning phase, participants were presented with a series of four digit number strings, 

and were instructed that they had to press a key to indicate whether the two left-hand digits (by 

pressing ‘Z’), or two right-hand digits (by pressing ‘M’), summed to give the greater number. 

Each string was presented until a valid response was provided, after which correct and incorrect 

feedback were appropriately given. In total, twenty different strings were presented during this 

learning phase; each was presented twice, once each in two blocks, which were separated by a 

short interval. Critically, and unknown to participants, all these four-digit number strings 

included the numeral ‘3’. In the subsequent test phase, participants were shown pairs of four-

digit number strings and instructed to indicate which member of the pair had already appeared in 

the first phase. In fact, all strings presented were new, but only one member of each of the pairs 

contained the invariant feature, 3. In total, thirty unique pairs of strings were presented during the 

test phase, during which there was no feedback and no response-stimulus interval. All of the 

numbers used in the strings, other than the invariant feature 3, were generated randomly with two 

constraints. First, none of the numbers included a zero to ensure that participants always had to 

sum both sides of the four-digit number during the learning phase. Second, two adjacent numbers 

were never the same because this would have made a string more unique and memorable, and 

may thereby have compromised the cover story for the test phase that one of the pair was 

repeated from the learning phase (see Appendix A for the complete list of number strings used). 

Overall, IFL learning was assessed by comparing the selection of test-items containing the 

invariant feature 3 against the chance level of selection. 

2.3.3. Explicit Processing 

Two indices of explicit learning were derived, one from the AGL task and one from the 

SRT task. During the learning phase of the AGL, the mean number of errors that participants 
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made before correctly reproducing each letter string was taken as an index of explicit processing. 

These errors are indicative of a participant’s ability to explicitly remember and reproduce letter 

strings in the short-term, and have been used previously as a measure of explicit processing that 

is related to IQ (e.g., A. S. Reber, et al., 1991). During the SRT, mean RTs to improbable trials 

were used as another index of explicit processing. Such RTs are not the most obvious index of 

explicit processing. However, ‘perceptual speed’ (Gs) has been specified within the Horn-Cattell 

theory of intelligence (Horn & Cattell, 1966) and ‘general speediness’ has been evoked in 

Carroll’s three-stratum theory of intelligence (Carroll, 1993). Moreover, ‘processing speed’ has 

been found to correlate with IQ; for example, higher-IQ participants respond more quickly to 

simple and four-choice RTs procedures (Deary, Der, & Ford, 2001).2 Thus, RTs to improbable 

trials on the SRT provided another index of explicit processing. 

2.3.4. Tacit Knowledge 

 Academic Psychology and Business Management Inventories 

The Academic Psychology and Business Management Tacit Knowledge Inventories were 

reproduced from R. K. Wagner (1985; see Appendix A for screenshots of the inventories as 

presented in Study I). Both inventories consisted of 12 work-related situations, each of which 

was associated with 9 to 11 response items for Academic Psychology; and 10 to 11 response 

items for Business Management. In untimed conditions, participants read a work-related 

situation and rated the appropriateness of possible response strategies on a 7-point scale by either 

its quality (1 = extremely bad, 4 = neither good nor bad, and 7 = extremely good) or its 

importance (1 = extremely unimportant, 4 = somewhat important, and 7 = extremely important). 

The work-related situations were presented one at a time, and participants had to rate all the 

responses before irreversibly advancing to the next situation. Prior to advancing from each 

situation, participants were able to change their ratings freely to all of the response alternatives. 

Participants rated both the ‘actual’ and ‘ideal’ quality, or importance, of each response item. The 

                                                 
2 It is not clear exactly why RTs provide an index of explicit IQ-mediated processing. Some authors have 

argued the link between them is individual differences in overall efficiency and speed of the nervous system 

(Anderson, 1992; Jensen, 1998). However, it is possible that the relationship actually results from the influence of 

vigilance or ability to avoid distraction on the RT tasks, rather than mere neural efficiency (Mackintosh, 1998). 
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actual and ideal ratings were originally included to measure relative pragmatic and idealistic 

orientations. Study I was not interested in this analysis, and only included ideal ratings in case 

the presence of those alternatives was important to the actual ratings’ ability to index expertise. 

Tacit knowledge was quantified using the item discrimination method. This method 

specifies that only a subset of the response alternatives be retained. R. K. Wagner and Sternberg 

(1985) identified the subset as the items that were differentially rated by experts and novices. It 

was necessary to retain the remaining items on the scale as the expertise lies in the identification 

of items as important, or good, relative to one another. Items which experts rated differentially 

from novices as unimportant or bad (rather than important or good) were reflected such that all 

ratings were summed into a single score that reflected the total ‘correct’ high-scoring of all the 

discriminatory items. 

Later, the authors specified a second scoring method, in order to provide corroboration 

and validation of their first method (R. K. Wagner, 1985, 1987; R. K. Wagner & Sternberg, 

1986). In that instance, each individual’s response rating was compared with the mean ratings of 

a highly expert group. The score was represented by the sum of the squared deviations from the 

expert profile. High levels of tacit knowledge were indicated by close agreement between an 

individual’s ratings and the prototype. The expert group had been identified by high performance 

on external criteria. Cut-off points for the criteria to identify experts were relatively arbitrary, but 

the expert cut-off points were varied slightly, and all such variation yielded similar evaluative 

results. More importantly, analyses using the item-discrimination method and the expert-group 

comparison produced the same pattern of results. Since the item-discrimination method 

identified which items caused differences, and then used those items to establish the magnitude 

of the differences, without the corroboration from the expert-group method, such item 

discrimination is suspect. Specifically, although there is no reason to explain why the magnitude 

of the discriminated items correlated with the external criteria among the experts, group 

comparisons between experts and non-experts would have been invalid. However, the cost of 

using an expert group is that those participants cannot be validly included in the main analysis. 

Therefore, Study I used the item-discrimination method, but critically by using the items that R. 

K. Wagner (1985) reported as discriminative of the groups in his study. Therefore, group 

comparisons in Study I were perfectly valid, because the discriminative items were not identified 

using the current groups, and there was no need to exclude any experts. It was preferable to use 
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the discriminative items identified by R. K. Wagner (1985), rather than the exact mean ratings of 

the expert profile R. K. Wagner reported: which items are discriminative are less likely to change 

over time than the exact mean rating of a particular strategy by a group of experts. 

 Common Sense Questionnaire 

This questionnaire was reproduced from Cianciolo and colleagues (2006; see Appendix 

A for screenshots of the questionnaire as presented in Study I). The questionnaire consisted of 15 

everyday situations for individuals who are employed, or seeking employment, in low- to mid-

level entry jobs. Each situation was associated with 8 response items. In untimed conditions, 

participants read a situation and rated the appropriateness of possible response strategies on a 7-

point scale according to its quality (1 = “extremely bad”, 4 = “neither good nor bad”, and 7 = 

“extremely good”). The situations were presented one at a time, and participants had to rate all 

the responses before irreversibly advancing to the next situation. Prior to advancing from each 

situation, participants were able to change their ratings freely to all of the responses alternatives. 

Cianciolo and colleagues’ (2006) method for deriving a CSQ score was employed. For 

each of the 15 situations, the deviation of an individual’s response profile to all of the solutions 

from the consensus response profile of the whole sample was taken to index Common Sense 

Tacit Knowledge. In particular, profiles that adhered closely to the consensus profile represented 

tacit knowledge about ‘Common Sense’. The deviation was quantified by calculating the 

standardized Euclidean distance (Mahalanobis D2) of an individual’s vector of solution-ratings 

from the centroid of the sample. The squared Mahalanobis distance provided a useful 

standardisation by accounting for the different variances and covariances of the different 

solutions within each situation. In particular, less weight was given to deviation from consensus 

on a given solution if that solution had a relatively large variance and weak correlation with other 

solutions in the situation (Rencher, 1995). All the scores were averaged across the 15 situations. 

This average squared Mahalanobis distance was square-rooted to provide an overall CSQ score. 

Lastly, the scores were reflected such that a larger CSQ score was indicative of ‘better’ Common 

Sense Tacit Knowledge. 
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2.3.5. IQ: DAT Verbal and Abstract Reasoning 

Participants completed both the verbal and abstract reasoning sections of the Differential 

Aptitudes Test (DAT-V and DAT-A, The Psychological Corporation, 1995). The tests were 

administered in accordance with the standard guidelines, with the exception that the tasks were 

completed electronically rather than with pen and pencil. After examples, participants had 25 

minutes to complete 40 questions on the DAT-V, and 20 minutes to complete 40 questions on 

the DAT-A. At the beginning of each question, participants were told how long, and how many 

questions, remained. In the DAT-V, each participant was presented with an analogy that was 

missing two words. The participant’s task was to select which of the five possible solutions was 

analogically consistent. In the DAT-A, each participant was presented with a series of four 

geometric shapes. The series varied according to abstract rules, and participants had to reason 

which of five possibilities completed the series correctly. Performance was quantified using the 

raw scores from the two sub-tests. The scores were not transformed into IQ scores; a whole 

battery of IQ tests was not administered and so no norm tables were available. Moreover, when 

the sample is so large, and made up of adults, who thus have relatively stable IQs, IQ can be 

accurately related to other variables in the study by estimating an IQ factor. This was achieved 

by extracting a general factor from the two sets of raw DAT scores (as standard within the field, 

e.g., Cianciolo, et al., 2006; Kaufman, et al., 2009). 

 

2.3.6. Personality: BFI 

The inventory was reproduced from and administered according to Benet-Martinez and 

John (1998) and John and Srivastava (1999, see either reference for a full listing of the BFI used 

in this study). Participants were presented with 44 statements pertaining to characteristics that 

might apply to them. In untimed conditions, for each statement, participants indicated the extent 

to which they agreed with the statement using a 5-point scale (disagree strongly to agree 

strongly). Five scale scores were computed that related to Extraversion (8 items), Agreeableness 

(9 items), Conscientiousness (9 items), Neuroticism (8 items) and Openness (10 items). These 

scores were computed as the mean ratings of the items on each scale (after reversing the false-
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keyed items) such that the prominence of the traits was reflected in the magnitude of the mean 

ratings. 

3. Results 

For all analyses, the alpha level was set at .05, two-tailed and extreme outliers (values 

either less than three times the interquartile range below the lower quartile, or greater than three 

times the interquartile range above the upper quartile) were excluded. Where relevant, the 

appropriate epsilon correction was used when sphericity was violated. Šidák corrections were 

used to control for familywise error rates during multiple comparisons (Cardinal & Aitken, 2006, 

pp. 87-90). Where significant interactions were found in mixed analyses of variance, separate 

ANOVAs on the levels of interest were conducted to establish simple effects. When conducting 

independent sample t-tests, equal sample variances were assumed unless Levene’s test for the 

equality of variances was significant. Cohen’s d is reported as a measure of effect size except 

where relative measures of effect size are more appropriate, and then partial eta-squared (η2
p) is 

reported. 

3.1. Descriptive Statistics 

3.1.1. Implicit Learning 

 SRT 

RTs on error trials were discarded. First trial data were excluded, since meaningful 

assessment can only occur when the stimuli have been presented sequentially. Figure 2 

represents the mean RT (ms) difference between trial-types across blocks. A difference score 

greater than zero indicates that participants responded faster to the probable trials. Clearly, there 

was learning: difference scores were above zero and, on average, difference scores after the first 

block tended to be greater than those on the first block. A within-subject analysis of variance 

conducted on mean RTs, with two within-subjects factors, Trial Type (Probable vs. Improbable) 

and Block (1-9), supported this interpretation: there was a main effect of Trial-Type (F(1, 102) = 

134.07, p < .001, η2
p = .57), Block (F(3, 334) = 21.63, p < .001, η2

p = .18), and an interaction 

between Trial-Type x Block (F(6, 655) = 42.11, p < .001, η2
p = .29). A linear contrast confirmed 

that the differences between trial-type increased across blocks (F(1, 100) = 146.99, p < .001, η2
p 
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= .60). The overall SRT-RT learning score was derived by calculating the difference between 

mean RT to probable trials and mean RT to improbable trials, excluding the first practice block 

(M = 19.86 ms, Standard Error of Mean (SEM) = 1.38 ms). 

 

Figure 2. There was learning on the SRT task; participants were quicker on the probable than 
improbable trials. Depicted are mean RTs on probable and improbable trials on the SRT across 
training. The error bars show twice the standard error of differences between trial-type means at 
different levels of block. 

There were few errors on the task (M = 3.12 %, SD = 2.16 %). Song, Howard and 

Howard (2007) argued that accuracy on the SRT index learning in the same way as do RTs: 

fewer errors on the probable compared to the improbable trials indicate participants must have 

learnt about the sequence. A within-subjects ANOVA was conducted on the SRT error data, 

using the same factors as the RT analysis. Consistent with the RT analyses there was evidence of 

learning (Trial-Type (F(1, 102) = 84.90, p < .001, η2
p = .45; Block, F(7, 716) = 18.44, p < .001, 

η2
p = .15; Trial-Type x Block (F(8, 768) = 9.53, p < .001, η2

p = .09). A linear contrast confirmed 

that the interaction was indicative of an increase in the differences between trial-type across 

blocks (F(1, 100) = 40.96, p < .001, η2
p = .29). The overall SRT-Errors learning score was 

derived by calculating the difference between mean accuracy to probable trials and mean 

accuracy to improbable trials, excluding the first practice block (M = 3.05 %, SEM = 0.33 %). 
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 AGL 

The dependent variable was the percentage of test phase letter strings that had been 

correctly identified above the 50 % chance level. An answer that accurately classified a string 

(‘Yes’ to grammatical strings and ‘No’ to ungrammatical strings) was deemed correct. One-

sample t-tests demonstrated the basic learning effect (M = 10.60 %, SEM = 0.76 %, t(102) = 

13.87, p < .001, d = 1.42).  

 IFL 

Learning was measured using the percentage of test phase number strings that had been 

correctly selected above the 50 % chance level. A selection was correct if the number string with 

the invariant feature was selected. One-sample t-tests demonstrated the basic learning effect (M = 

6.28 %, SEM = 1.01 %, t(102) = 6.20, p < .001, d = 0.61).  

3.1.2. IQ 

The mean score on the Abstract Reasoning task was 27.97 (SD =7.21, and on the Verbal 

Reasoning task was 33.33 (SD = 5.86). Using the DAT norm conversion tables as an 

approximate index, it was estimated that these raw scores suggested a mean IQ in the range of 

105 to 117. However, given the sample was made up of adults, and who thus have relatively 

stable IQs, and was large in size, the variables in the study were more accurately related to one 

another by estimating an IQ factor through the extraction of a general factor from the raw scores 

(e.g., Cianciolo, et al., 2006; Kaufman, et al., 2009). Performance on the two subtests correlated 

(r = .52, p < .001, r2 = .27), and the general factor was extracted by a principal component 

analysis. Bartlett’s test of sphericity showed that the correlation matrix differed significantly 

from zero (χ2 = 31.40, p < .001). The general factor accounted for 75.86 % of the variance, as a 

consequence of correlating strongly with each of the original variables (r = .87). 

3.1.3. Explicit processing 

The mean number of errors that participants made in order to correctly reproduce all forty 

strings during the learning phase of the AGL task was 14.12 (SD = 9.99). The mean RT to 

improbable trials on the SRT task was 489.73 ms (SD = 81.74 ms). On both AGL memorisation 
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errors and SRT improbable RTs, better explicit processing was indicated by smaller scores, 

fewer errors and smaller (quicker) RTs respectively. Therefore, both indices were reflected for 

ease of interpretation in subsequent sections. 

3.1.4. Personality 

The scores on the different dimensions of the BFI (Extraversion: M = 3.37, SD = 0.77; 

Agreeableness: M = 3.81, SD = 0.66; Conscientiousness: M = 3.66, SD = 0.77; Neuroticism: M = 

2.84, SD = 0.95; Openness: M = 3.95, SD = 0.59), and the inter-correlations between these 

dimensions presented in Table 2, were similar to other large-scale studies (e.g., see Table 1 and 2 

in Benet-Martinez & John, 1998). 

Table 2. Correlation Matrix of the Dimensions of the Big Five Inventory 

Measure 1. 2. 3. 4. 5.  

1. Extraversion -      

2. Agreeableness .09 -     

3. Conscientiousness .01 .34* -    

4. Neuroticism -.33* -.33* -.19 -   

5. Openness .23 -.01 .00 -.22 -  

* p < .05       

3.1.5. Tacit Knowledge: Academic Psychology Inventory 

Senior-Academics scored higher than Junior-Academics, who in turn scored higher than 

Undergraduates (Undergraduates: M = 225.21, SEM = 3.92; Junior-Academics: M = 228.28, 

SEM = 2.72; Senior-Academics: M = 243.20, SEM = 4.46). A one-way ANOVA showed that 

there was indeed an effect of group (F(2, 100) = 6.44, p < .01, η2
p = .13); further, a planned 

contrast confirmed that Undergraduates differed from Senior-Academics (F(1, 100) = 11.35, p < 

.001, η2
p = .10). This replicated R. K. Wagner (1985, 1987) and R. K. Wagner and Sternberg’s 

(1985, 1986) work and added to the evidence that their scale measured expertise in academic 

psychology. Further validation and replication was provided by correlations within the Senior-

Academics group between some external criteria of success in academic psychology and 

performance on the inventory, see Table 3. 
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Table 3. Relationship of Tacit Knowledge Indices with Occupational Achievement in Academic 
Psychology (Senior-Academics, N = 30) 

 Academic 
Psychology 

General 
Occupational 

Common 
Sense IQ  

(SqRt) Publications .46* .40* -.02 -.27  

(SqRt) Conf. Papers .53* .42* -.03 -.26  

Job Title Rating .38 .31 .19 -.13  

Dept.’s RAE Outcome -.02 -.02 .03 -.02  

Time Spent Researching .00 -.07 .18 .05  

(SqRt) Salary (N = 29) .17 .09 -.06 -.29  

* p < .05      

3.2. Outstanding Issues in Tacit Knowledge 

3.2.1. Tacit Knowledge and Domain Generality 

The assessment of the relationship between performances on Tacit Knowledge 

Inventories for two different occupations across a whole range of expertise was performed in 

order to allow conclusions about the generality of tacit knowledge. 

 Business Management Inventory 

Senior-Academics scored higher than Undergraduates and Junior-Academics, while the 

Undergraduates and Junior-Academics performed similarly (Undergraduates: M = 269.06, SEM 

= 4.31; Junior-Academics: M = 263.85, SEM = 4.35; Senior-Academics: M = 277.50, SEM = 

4.07). A one-way ANOVA showed that there was indeed no evidence for an overall effect of 

group (F(2, 100) = 2.39, p = .10, η2
p = .05). However, a contrast confirmed that the performance 

of Senior-Academics was superior to the combined performance of Junior-Academics and 

Undergraduates (F(1, 100) = 4.09, p = .05, η2
p = .04). Therefore, expert academic psychologists 

had outperformed non expert-academic psychologists on both an Academic Psychology and 

Business Management Tacit Knowledge Inventory. This supported the claim that the tacit 

knowledge measured on these inventories is domain general. Moreover, expertise scores on the 

Academic Psychology-Tacit Knowledge Inventory correlated with the Business Knowledge 
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Inventory (r = .58, N = 103, p < .001, r2 = .34), and critically, this correlation remained even 

within just the expert group (r = .71, N = 30, p < .001, r2 = .51). This was particularly convincing 

evidence of domain generality because it replicated and extended the correlation found in 

undergraduates (R. K. Wagner & Sternberg, 1986) across the whole range of expertise. 

In order to further test this generality, a principal component analysis was performed on 

the correlation between AP-TKI and BM-TKI. Bartlett’s test of sphericity showed that the 

correlation matrix differed significantly from zero (χ2 = 41.75, p < .001). The general factor 

accounted for 79.15 % of the variance, as a consequence of correlating strongly with each of the 

original variables (r = .89). Since there were only two variables and one extracted component, 

obviously the solution could not be rotated. This ‘General Occupational Tacit Knowledge’ 

factor, which was general to the AP- and BM-TKIs, also correlated with external criteria of 

success in academic psychology (see Table 3). Altogether, this suggested that there was a large 

proportion of variance that was common to both inventories, and moreover, what was common 

to both was also important in achieving success in academic psychology. 

 Common Sense Questionnaire 

There was no evidence of a correlation between the factor of General Occupational Tacit 

Knowledge and Common Sense Tacit Knowledge (r = .00, p > .99, r2 < .01). This was also true 

when the inventories were correlated with the CSQ separately (AP: r = .03, p = .76, r2 < .01; BM: 

r = -.03, p = .76, r2 < .01). The lack of correlation between the CSQ and occupational tacit 

knowledge suggested that the domain generality of occupational tacit knowledge was limited. 

Since the CSQ asks genuinely generic questions unrelated to any specific occupations, the 

implication was that the generality of occupational tacit knowledge did not extend to knowledge 

unrelated to occupational performance. Therefore, the remaining issues were examined 

separately in occupational tacit knowledge and the CSQ. 

3.2.2. Occupational Tacit Knowledge and Practice 

In Study I, as reported above, there were differences in performance between groups 

selected for their experience in academic psychology. There were also correlations within the 

Senior-Academics between performance and (i) (SqRt) Years since Ph. D was acquired (r(30) = 

.52, p < .01, r2 = .27), (ii) Years in academic psychology (r (30) = .39, p = .04, r2 = .15). Further, 
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performance across all participants was correlated with Years in academic psychology (r = .40, p 

< .001, r2 = .16). A highly similar relationship emerged between practice and the General 

Occupational Tacit Knowledge factor. This general factor also correlated with (SqRt) Years 

since Ph. D was acquired (r = .39, p = .03, r2 = .16) and Years in academic psychology across all 

participants (r = .33, p < .01, r2 = .11). 

An important aspect of R. K. Wagner and Sternberg’s theorising and evidence on tacit 

knowledge was that tacit knowledge is at least moderately independent of practice (R. K. 

Wagner, 1985, 1987; R. K. Wagner & Sternberg, 1985, 1986). That is, although R. K. Wagner 

and Sternberg identified between-group differences in performance related to experience, there 

was independence within the groups (e.g., R. K. Wagner, 1985; R. K. Wagner & Sternberg, 

1986). Study I used more sensitive measures to test that claim, and did not replicate that finding. 

Instead, the results clearly implied that tacit knowledge is strongly related to practice.  

3.2.3. Occupational Tacit Knowledge and IQ 

The raw scores on the Abstract Reasoning task were similar between the groups (Senior-

Academics: M = 26.97, SD = 8.265; Junior-Academics: M = 29.26, SD = 6.315; Undergraduates: 

M = 27.38, SD =7.161; F(2, 100) = 1.03, p = .36, η2
p = .02). However, there was a group 

difference in the raw scores on the Verbal Reasoning task (Senior-Academics: M = 35.43 SD = 

3.92; Junior-Academics: M = 34.74 SD = 4.18; Undergraduates: M = 29.85 SD = 7.33; F(2, 100) 

= 10.79, p < .001, η2
p = .18). Specifically, a contrast demonstrated that the Senior-Academics and 

Junior-Academics scored higher than Undergraduates (F(1, 100) = 21.55, p < .001, η2
p = .18). 

The groups also differed on the IQ factor (F(2, 100) = 4.16, p = .02, η2
p = .08) with the IQ factor 

greater for Senior-Academics and Junior-Academics than Undergraduates (F(2, 100) = 7.83, p = 

.01, η2
p = .07). However, it seemed unlikely that the difference between the groups in the IQ 

factor underpinned the differences in tacit knowledge: as in R. K. Wagner’s studies (e.g., 1985, 

1987) there was no evidence that the IQ factor was related to Academic Tacit Knowledge (r = -

.11, p = .26, r2 = .01) or the factor of General Occupational Tacit Knowledge (r = -.14, p = .16, r2 

= .02) and this was the case in all three groups separately (rs = -.39 to .06, ps > .05, r2 < .16). 

Moreover, the addition of the IQ factor as a covariate did not remove the effect of Group on 

Academic Tacit Knowledge (F(2, 99) = 7.59, p < .01, η2
p = .13) or the factor of General 

Occupational Tacit Knowledge (F(2, 99) = 5.36, p = .01, η2
p = .10). 
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Also, the IQ factor did not correlate with indices of expertise in academic psychology 

(see Table 3). IQ is usually an excellent predictor of success, and the lack of evidence of its 

relationship with success stood in stark contrast with tacit knowledge. As discussed above, tacit 

knowledge correlated with some indices of expertise (see Table 3), and thereby demonstrated 

that the lack of correlation between the IQ factor and expertise was not simply an issue of range 

restriction. Further, this pattern of results was not simply a consequence of particularly unusual 

sample of participants with non-predictive IQs: the IQ factor correlated with educational 

achievement at sixteen (r = .30, N = 91, p < .01, r2 = .09) and eighteen years of age (r = .26, N = 

95, p = .01, r2 = .07), and thereby corroborated the extensive literature on the external validity of 

IQ.3 In contrast, there was no evidence of a correlation between the factor of General 

Occupational Tacit Knowledge and educational achievements at sixteen (r = -.13, N = 91, p = 

.21, r2 = .02) or eighteen years of age (r = .00, N = 95, p = .97, r2 < .01). This suggested that 

General Occupational Tacit Knowledge was particularly useful, relative to IQ, at predicting 

intelligent behaviour specifically in occupational domains. 

3.2.4. Occupational Tacit Knowledge and Personality 

 Personality differences between the groups varied according to the dimension, see Table 

4. Scores on Agreeableness, Conscientiousness and Extraversion were very similar between the 

groups (F < 2). There were, however, group differences on Neuroticism (F(2, 100) = 4.42, p = 

.02, η2
p = .08) and Openness (F(2, 100) = 3.63, p = .03, η2

p = .07). The Undergraduates and 

Junior-Academics scored more highly than Senior-Academics on Neuroticism (F(1, 100) = 8.83, 

p < .01, η2
p = .28), while the Undergraduates scored lowest on Openness, with scores increasing 

up to Senior-Academics (F(1, 100) = 7.23, p = .01, η2
p = .21). However, there was no reason to 

believe that these group differences in personality underpinned the differences in tacit 

knowledge. First, as in previous studies of tacit knowledge (Sternberg, 2003; Sternberg, et al., 

2000), there was no evidence that personality was related to Academic Tacit Knowledge or the 

factor of General Occupational Tacit Knowledge, see Table 5. Second, even when Neuroticism 

                                                 
3 Educational achievement was quantified by converting the grades that participants provided in the 

General Questionnaire; grades at sixteen were converted using the General Certificate of Secondary Education 

(GCSE) points system; and grades at eighteen were converted using the Universities and Colleges Admissions 

Service (UCAS) Tariffs. 
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and Openness were added as covariates, the effect of Group remained on both Academic Tacit 

Knowledge (F(2, 98) = 5.07, p = .01, η2
p = .09) and the factor of General Occupational Tacit 

Knowledge (F(2, 98) = 4.30, p = .02, η2
p = .08).Third, there was no evidence of correlation 

between personality and indices of expertise in academic psychology, see Table 6.  

Table 4. Scores on Big Five Inventory between Groups 

 Undergraduates Junior-Academics Senior-Academics  

 M SD M SD M SD  

Extraversion 3.27 0.88 3.39 0.67 3.45 0.78  

Agreeableness 3.89 0.71 3.71 0.61 3.84 0.66  

Conscientiousness 3.61 0.62 3.56 0.81 3.87 0.86  

Neuroticism 3.02 0.92 3.01 0.88 2.42 0.97  

Openness 3.76 0.62 3.96 0.58 4.15 0.53  
 

Table 5. Relationships between Tacit Knowledge and Personality 

 Academic Psychology General Occupational  

Extraversion .00 .08  

Agreeableness -.04 -.01  

Conscientiousness .04 .02  

Neuroticism -.17 -.15  

Openness .07 -.01  

* p < .05    
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Table 6. Correlations between Personality and Occupational Achievement in Academic 
Psychology 

 Extraver. Agreeable. Conscien. Neurotic. Openness  

(SqRt) Publications -.14 .03 -.25 .02 -.05  

(SqRt) Conf. Papers .15 .18 .15 -.26 .25  

Job Title Rating -.25 -.03 -.17 .10 -.13  

Dept.’s RAE Outcome .00 .19 .04 .02 -.06  

Time Spent Researching .24 .00 -.04 -.13 .24  

(SqRt) Salary (N = 29) -.21 .14 -.33 .20 .07  

* p < .05       

3.2.5. Occupational Tacit Knowledge Discussion 

The study replicated the finding that Tacit Knowledge Inventories measure occupational 

achievement. Moreover, the study also suggested a degree of domain generality: performance on 

Business Management and Academic Psychology Inventories were highly correlated across a 

range of expertise. This replicated and extended the correlation found in undergraduates by R. K. 

Wagner and Sternberg (1986), but here across the whole range of expertise. By considering only 

undergraduates, the correlation reported by R. K. Wagner and Sternberg (1986) may have arisen 

not as a consequence of domain generality but alternatively as a consequence of the inexpert 

undergraduates using domain general knowledge precisely because they lack expertise. This 

argument cannot be made about Study I which demonstrated that this correlation remained 

across both the whole range of expertise, and even in the expert group alone. Further to the 

evidence of domain generality, the General Occupational Tacit Knowledge factor was correlated 

with occupational achievement. However, there was a limit to this generality: the occupational 

Tacit Knowledge Inventories were not related to the Common Sense Questionnaire, which asked 

genuinely generic questions. 

More importantly, tacit knowledge appeared to be critically related to practice. As a 

consequence of a close relationship between tacit knowledge and practice, the Tacit Knowledge 

Inventories do not provide compelling evidence of individual differences in an ability, such as 

implicit learning or practical intelligence. This fact remained, even though the study did not find 

evidence of a relationship between tacit knowledge and IQ, or tacit knowledge and personality. 
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Instead, this latter finding reinforces the idea that Tacit Knowledge Inventories could be useful 

measures for predicting occupational achievement (e.g., McDaniel & Whetzel, 2005; Sternberg, 

et al., 2000). Even though relationships between tacit knowledge and both IQ and personality 

might emerge in larger studies (as in SJTs, e.g., McDaniel & Whetzel, 2005), the fact that Study 

I found relationships between tacit knowledge and occupational achievement, when IQ and 

personality did not, suggests that some of the prediction of occupational achievement by tacit 

knowledge would remain incremental to the prediction by IQ and personality. This also 

replicates research about Situational Judgment Tests, which has demonstrated Situational 

Judgment Tests provide incremental prediction over IQ and personality (McDaniel & Whetzel, 

2005). 

Finding measurement tools, such as occupational Tacit Knowledge Inventories and 

Situational Judgment Tests that predict occupational achievement incremental to IQ clearly does 

not devalue IQ as a measurement tool or construct. First, as established, it is likely that IQ would 

still be related to achievement in larger samples. Second, it is possible that when considering 

achievement within occupations the IQ-occupational achievement relationship is relatively 

modest and that other factors are relatively more important because IQ has already performed its 

role: it was a necessary cog in achieving the requisite educational qualifications (e.g, 

Mackintosh, 1998). 

3.2.6. Common Sense Questionnaire: Occupational Achievement, Practice, IQ and 

Personality 

Consistent with having found no evidence of a correlation between the CSQ and 

occupational tacit knowledge, there was no evidence of a correlation between performance on 

the CSQ and occupational achievement (see Table 2). In the case of Common Sense, the 

appropriate index of practice is ‘life experience’, or age. There was support of the questionnaire 

as a measurement of ability independent of practice: there was no evidence that performance on 

the CSQ was correlated with age (r = .11, p = .27, r2 = .01). Performance on the CSQ correlated 

with the IQ factor (r = .26, p = .01, r2 = .07). This was a similar magnitude of correlation as 

found by Cianciolo and colleagues (r = .17 to .19; 2006), and therefore provided further evidence 

that ‘practical intelligence’ as measured by the CSQ was not wholly independent of IQ. Finding 

a correlation between CSQ and the IQ factor, but not CSQ and indices of expertise were 
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consistent with one another, given that the study also failed to find a relationship between the IQ 

factor and indices of expertise. Finally, there was no evidence to suggest CSQ was a surrogate 

measure of personality (rs -.09 to .13, ps > .05, r2 < .02). 

3.2.7. Common Sense Questionnaire Discussion 

In addition to finding no evidence of a correlation between performance on the CSQ and 

Tacit Knowledge Inventories, there was no evidence of correlation with indices of expertise. 

This contrasted with one of the original studies that endorsed the CSQ (Cianciolo, et al., 2006). 

There are several possible reasons for the discrepancy between that study and the current one. 

First, the effect, when it is apparent, may not be very strong, and in line with this possibility, the 

original authors only found evidence of a correlation in one of their two studies. Thus, it may be 

that opportunity to observe such a weak effect was limited in Study I by the relatively smaller 

sample size. However, it should be noted, that in addition to the lack of correlations here, they 

were also not even all in the right direction (see Table 3). 

Second, the failure to replicate a correlation may be a consequence of the considerable 

expertise of the current sample. The relatively extensive expertise of the current sample stood in 

contrast with the fact that the participants in Cianciolo and colleagues’ (2006) study had spent 

just 1.3 years on average in their current position. It seemed plausible that the type of common 

sense measured in the questionnaire was more important in determining occupational 

achievement when expertise was low. Consistent with this, in the study in which Cianciolo and 

colleagues (2006) failed to find a correlation between the CSQ and occupational achievement, 

the sample had been in their positions for additional 2.7 years than in the sample in which that 

CSQ-occupational achievement correlation was found. 

Thirdly, although in Cianciolo and colleagues’ (2006) studies the participant IQs were 

not measured for the relevant sample, it was assumed that IQs for such a large sample (N = 228) 

of such a diverse population (the sample was recruited through newspaper flyers and included 

participants with a wide range of occupations see Cianciolo and colleagues, 2006) was close to 

100. This stood in contrast with the estimate of the current sample’s mean IQ, which was above 

average. This discrepancy in sample IQs may also explain the different findings; namely, such 

common sense would add more value for individuals with lower IQs. 
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While there was no evidence of a relationship between CSQ and personality, 

performance on the CSQ correlated with the IQ factor. That CSQ-IQ correlation (r = .26) was of 

a similar magnitude to that found by Cianciolo and colleagues (r = .17 to .19; 2006). In this 

study, the Common Sense Questionnaire was the only index of ‘practical intelligence’ as 

measured by these Common Sense/Everyday type inventories. However, when the general factor 

underpinning the inventories was extracted, the correlation with the IQ factor was found to be 

much stronger (r = 0.48, Cianciolo, et al., 2006). Given that the first-order correlations were of 

equivalent magnitude, it seemed likely that Study I would also have replicated this stronger 

correlation with a general factor. Regardless of this further assumption, the correlation between 

CSQ and IQ was replicated, and therefore provided further evidence that ‘practical intelligence’ 

as measured by ‘Common Sense’ and ‘Everyday’ inventories was not wholly independent of IQ. 

In Study I, there was support of the questionnaire as a measurement of ability 

independent of practice, insofar that there was no correlation of CSQ performance with age. This 

was not identified as important and thus not reported in the original study by Cianciolo and 

colleagues (2006), yet it is essential to the validity of the CSQ to have established whether or not 

CSQ performance was related to age. Without investigating the relationship, it was possible that 

the inventories were measuring a fund of ‘life’ knowledge acquired simply as a function of time. 

Yet, given the close relationship of the CSQ with IQ, this evidence of individual differences 

independent of time could plausibly be a consequence of IQ. 

In summary, as with the occupational Tacit Knowledge Inventories, the CSQ does not 

provide compelling evidence of individual differences in an ability, such as implicit learning or 

practical intelligence. Specifically, there is little evidence of its external validity, and little reason 

to suppose that differences in CSQ performance do not result from differences in IQ. However, 

the CSQ and occupational Tacit Knowledge Inventories measure different constructs. The CSQ 

appears to be related to IQ, and unable to predict occupational achievement once sufficient 

expertise and knowledge has been acquired. This stands in contrast with occupational Tacit 

Knowledge Inventories that appear to measure knowledge, acquired as a function of time, and 

predict occupational achievement incrementally to IQ and personality. 
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3.3. Individual Differences in Implicit Learning 

3.3.1. Inter-Relationships between Implicit Learning, IQ and Explicit Processes 

Table 7 showed that there was no evidence of significant correlations between implicit 

learning (SRT-RT; SRT-Errors; SRT factor; IFL; AGL) and the IQ factor. This finding stood in 

contrast with the evidence of correlations between the IQ factor and the indices of explicit 

processing (RT to improbable trials on SRT and Memorisation errors on AGL, see Table 7). 

Table 7. Correlation Matrix of Learning on Implicit Learning Tasks, IQ and Explicit Processes 

Measure 1 2 3 4 5 6 7 8 

1. IQ factor –        

2. Implicit SRT-RT .18 –       

3. Implicit SRT-Errors .11 .36* –      

4. Implicit SRT factor .18 .83* .83* –     

5. Implicit IFL .04 -.02 .00 -.01 –    

6. Implicit AGL .22 -.07 -.10 -.11 .04 –   

7. Explicit Improbable RTs .32* .05 .31* .22 -.09 .06 –  

8. Explicit Memorisation Errors .41* .17 .11 .17 .03 .23 .32* – 

* p < .05         

There were two indices of SRT learning, which correlated (r = .36, p < .001, r2 = .13). 

Therefore, in order to ensure that all the different implicit learning tasks were fairly represented, 

prior to analysing the inter-relationships between IQ, implicit and explicit processes, a general 

SRT factor was extracted by a principal component analysis. Bartlett’s test of sphericity showed 

that the correlation matrix differed significantly from zero (χ2 = 14.07, p < .001). The general 

factor accounted for 68.06 % of the variance, as a consequence of correlating strongly with each 

of the original variables (r = .83). 

Principal component analysis was performed on the correlation matrix for the measures 

of the IQ factor, implicit (SRT factor; IFL and AGL) and explicit processes (AGL memorisation 

errors and SRT RTs to improbable trials). Bartlett’s test of sphericity and the Kaiser-Meyer-

Olkin Measure of Sampling Adequacy (KMO) were conducted to ensure that the present data 

were suited to a principal component analysis. Bartlett’s test of sphericity showed that the 
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correlation matrix differed significantly from zero (χ2 = 52.27, p < .001) and the overall KMO 

value was satisfactory at 0.66 (this should be 0.5 or greater). The Kaiser-Guttman rule (which 

states that components with eigenvalues greater than one should be retained, Kaiser, 1960) 

suggested a 2-component solution that accounted for 51.05 % of the variance. Underlying factors 

were not assumed to be uncorrelated with one another, therefore oblique (direct oblimin) and not 

orthogonal rotation was performed. Table 8 shows the pattern matrix with the salient loadings 

displayed in bold. Measures of the IQ factor and explicit processing displayed their salient 

loading on component I, whereas the measures of implicit learning all displayed their salient 

loading on component II. This further reinforced the finding that measures of implicit learning 

were independent of IQ and explicit processes. 

Table 8. Principal Component Analysis of the Measures of IQ, Implicit Learning and Explicit 
Processes 

Measure I II  

IQ factor .76 .13  

Implicit SRT factor .41 -.61  

Implicit IFL .01 .41  

Implicit AGL .37 .71  

Explicit Improbable RTs .66 -.30  

Explicit Memorisation Errors .76 .15  
 

There was one further key finding implied by two results from this correlation matrix and 

principal components analysis. First, there was no evidence of any significant first-order 

correlations between three different measures of implicit learning. Second, although all three of 

the implicit learning tasks exhibited their salient loadings onto the same component, the loadings 

of the SRT and AGL were in opposite directions. Together, these findings strongly imply that 

these three implicit learning tasks show little common variance. While this was in contrast with 

Gebauer and Mackintosh (2010), this did replicate other large scale studies of implicit learning 

tasks (Gebauer & Mackintosh, 2007; Kaufman, 2009). Therefore, this supported the theory that 

individual differences in a ‘general’ implicit learning ability would be minimal (A. S. Reber, 

1993). However, this was further examined by a consideration of the correlations of the 

individual implicit learning tasks and the other variables collected in this study. 
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Finally, in order to examine whether the lack of correlations between the implicit learning 

tasks and other measures might have been caused by unreliable tasks Spearman-Brown split-half 

reliability estimates were calculated. The estimates were all either satisfactory or acceptable 

(SRT-RT = .63, SRT-Errors = .72, AGL = .73, IFL = .41; i.e., similar magnitudes to Gebauer 

and Mackintosh, 2009). 

3.3.2. Implicit Learning and Occupational Achievement 

As reported above in Results 3.1.1 of this chapter there was an overall effect of sequence 

learning. In order to investigate the influence of SRT learning on occupational achievement, the 

magnitudes of the SRT factor were analysed between three groups divided according to 

academic expertise (Undergraduates, Junior-Academics and Senior-Academics). The mean 

magnitude of the SRT factor was similar between the groups (Undergraduates: M = 0.05, SEM = 

0.17; Junior-Academics: M = 0.04, SEM = 0.16; Senior-Academics: M = -0.10, SEM = 0.18), and 

consistent with this, a one-way ANOVA between these three groups provided no evidence of 

differences (F(2, 100) = 0.22, p = .80, η2
p < .01). 

The SRT factor represented the variance that was general to the two different indices of 

SRT learning; the RTs and accuracy (see Results 3.1.1 of this chapter). However, there was a 

possibility that one of the two indices was actually a more accurate measure of the influence of 

the SRT on occupational achievement. If that were true, then the use of the general factor could 

have masked the relationship between occupational achievement and the more accurate, single 

index of SRT learning. Thus, further analyses were performed to consider the effect of 

occupational achievement on each of the two indices of SRT learning: a Group factor (3 levels, 

Undergraduates, Junior-Academics and Senior-Academics) was added to the ANOVAs on RTs 

and accuracy reported in Results 3.1.1 of this chapter. Only the additional results are reported 

here. In the RT analysis, the magnitudes of the difference scores were comparable between the 

three groups and therefore suggested that the sequence learning was similar between the groups. 

Consistent with such similarity, there was no evidence of an interaction between Trial-Type and 

Group (F(2, 100) = 0.34, p = .72, η2
p = .01) nor a three-way interaction (F(13, 660) = 1.26, p = 

.23, η2
p = .03). There was an interaction between Group x Block (F(7, 332) = 2.70, p = .01, η2

p = 

.05). However, this overall RT reduction across block reflected improvement in performance due 

to practice effects, rather than learning about the sequence because the effect is independent of 
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trial type. This interaction appeared to be a consequence of post-graduates having benefitted the 

least from practice, i.e. the improvement in postgraduate RTs independent of Trial-Type was 

smaller than the other two groups. There was no evidence of differences between the groups in 

overall speed (Group: F(2, 100) = 0.27, p = .77, η2
p = .01). 

This SRT-RT effect was also similar in the three groups as measured by the overall RT 

score (Undergraduates: M = 17.85 ms, SEM = 2.22 ms; Junior-Academics: M = 20.84 ms, SEM = 

2.17 ms; Senior-Academics: M = 20.87 ms, SEM = 15.76 ms). A one-way ANOVA between 

these three groups confirmed this interpretation: there was no evidence of a difference between 

them (F(2, 100) = 0.52, p = .60, η2
p = .01). 

In the accuracy, like the RT, analysis, there was no evidence of differences between the 

groups in the magnitudes of the differences scores in accuracy between trial-types (Trial-Type x 

Group, F(2, 100) = 2.15, p = .12, η2
p = .04; Trial-Type x Block x Group, F(15,771) = 1.07, p = 

.38, η2
p = .02). There was no evidence of a Block and Group interaction (F(15, 730) = 1.66, p = 

.06, η2
p = .03). Finally, there was evidence of group differences in overall accuracy (Group: F(2, 

100) = 3.47, p = .04, η2
p = .07). Fisher’s LSD t-tests provided no evidence of a difference 

between Junior-Academics and Senior-Academics (t(67) = 0.53, p = .60, d = 0.13) but did reveal 

that the Undergraduate group made significantly more overall errors than both Junior-Academics 

(t(71) = 2.02, p = .04, d = 0.47) and Senior-Academics (t(62) = 2.34, p = .04, d = 0.59). 

The SRT accuracy effect was also similar in the three groups as measured by the overall 

SRT-Errors score (Undergraduates: M = 3.81 %, SEM = 0.57 %; Junior-Academics: M = 3.02 %, 

SEM = 0.58 %; Senior-Academics: M = 2.24 %, SEM = 0.51 %). Consistent with this, a one-way 

ANOVA between these three groups provided no evidence of a difference between them (F(2, 

100) = 1.76, p = .18, η2
p = .03). 

There was an overall learning effect on the AGL task (see Results 3.1.2 of this chapter). 

This AGL effect was similar in the three groups (Undergraduates: M = 10.41 %, SEM = 1.47 %; 

Junior-Academics: M = 9.85 %, SEM = 1.16 %; Senior-Academics: M = 11.80 %, SEM = 1.37 

%). A one-way ANOVA between these three groups confirmed this interpretation: there was no 

evidence of a difference between the three groups (F(2, 100) = 0.55, p = .58, η2
p = .01). 

There was also an overall learning effect on the IFL task (see Results 3.1.3 of this 

chapter). Numerically, the Junior-Academics displayed the largest IFL effect of the three groups 

(Undergraduates: M = 4.31 %, SEM = 1.66 %; Junior-Academics: M = 9.06 %, SEM = 1.80 %; 
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Senior-Academics: M = 4.89 %, SEM = 1.65 %). However, a one-way ANOVA between these 

three groups provided no evidence of a difference between the three groups (F(2, 100) = 2.39, p 

= .10, η2
p = .05). 

Finally, it was possible that if implicit learning was related to occupational achievement, 

the relationship would only be revealed by more sensitive measures of achievement. Therefore, 

implicit learning performance was correlated with the occupational achievement measured in the 

Senior-Academics in the General Questionnaire (see Table 1). However, Table 9 demonstrated 

that there was still little evidence to relate implicit learning to occupational achievement, even 

using these more sensitive indices of achievement. The N for Senior-Academics was not huge; 

however, the N was not so small that indices of performance could not correlate with Academic 

Tacit Knowledge and General Occupational Tacit Knowledge. There were some negative, albeit 

non-significant, correlations between the measure of SRT learning and the different indices of 

expertise. However, these correlations were unlikely to have been a consequence of an inverse 

relationship between expertise and implicit learning ability. Instead, if there had been evidence 

of significant negative correlations, such correlations would have more likely reflected the 

influence of RTs (or ‘processing speed’, as indices of explicit processing and correlates of IQ) on 

this measure of implicit learning.  

Table 9. Relationship between Implicit Learning and Occupational Achievement in Academic 
Psychology (N = 30) 

 Implicit SRT Implicit IFL Implicit AGL  

(SqRt) Publications -.42 -.10 -.07  

(SqRt) Conf. papers .18 .03 -.10  

Job Title Rating -.23 -.12 .08  

Dept.’s RAE Outcome .05 .09 .16  

Time Spent Researching .12 .12 .05  

(SqRt) Salary (N = 29) -.41 -.13 -.08  

* p < .05     

Altogether, these analyses provided no evidence to relate implicit learning to 

occupational achievement. This was consistent with having already failed to find evidence of 

common variance between the implicit learning tasks.  
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3.3.3. Implicit Learning and Tacit Knowledge 

There was no evidence of correlations between tacit knowledge and indices of implicit 

learning (see Table 10). This failure was consistent with having already failed to find common 

variance between the implicit learning tasks, and also failing to demonstrate relationships 

between implicit learning tasks and occupational achievement.  

Table 10. Relationships between Implicit Learning and Tacit Knowledge 

 Academic Psychology General Occupational Common Sense  

Implicit SRT factor .08 .10 -.02  

Implicit IFL .04 -.02 -.01  

Implicit AGL -.12 -.05 .01  

* p < .05     

3.3.4. Implicit Learning and Personality 

The dimension of Openness has been related to intuitive aspects of personality in other 

theories of personality (e.g., John & Srivastava, 1999). Presented in Table 11, the correlations 

between implicit learning tasks and Openness provided no evidence of a relationship between 

implicit learning and intuitive aspects of personality. Indeed, there was no evidence that implicit 

learning was related to any aspects of personality (see Table 11). This was consistent with having 

already failed to find evidence of common variance between the implicit learning tasks, or any 

relationship between implicit learning tasks and occupational achievement. 
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Table 11. Relationships between Personality and Implicit Learning 

 Implicit SRT factor Implicit IFL Implicit AGL  

Extraversion -.13 -.04 -.09  

Agreeableness -.02 .01 .03  

Conscientiousness -.15 .15 .04  

Neuroticism .03 .02 -.05  

Openness .00 .03 .01  

* p < .05    
 

4. Chapter Discussion 

The main aim of the study was to provide a further test of the theory that there are 

meaningful individual differences in implicit learning. Critically, there was no evidence of 

common variance between the implicit learning tasks. Further, there was no evidence to relate 

performance on any of the implicit learning tasks to IQ, occupational achievement, personality or 

tacit knowledge. Altogether, this data supports the conclusion that there are not important 

individual differences in implicit learning, and instead supports the theory that individual 

differences in implicit learning are minimal (A. S. Reber, 1993). 

Consideration of these current findings along with the other three large-scale studies of 

individual differences in implicit learning discourages the conclusion that there are substantial 

individual differences in implicit learning. Three of the four studies, including the current one, 

have found no evidence for common variance between different implicit learning tasks (Gebauer 

& Mackintosh, 2007; Kaufman, 2009). Gebauer and Mackintosh (2010) found inter-relationships 

between several different learning tasks. However, the inter-relationships identified were 

sufficiently modest to prompt the authors to acknowledge that “further replications will be 

necessary in order to empirically establish the existence of above chance correlations between 

performance on different implicit learning tasks” (Gebauer & Mackintosh, 2010, p. 30). Perhaps, 

the critical aspect of Gebauer and Mackintosh’s (2010) study was the fact they used the largest 

number of implicit learning measures; fifteen different indices were inter-correlated. The 

identification of individual differences of implicit learning only when the number of implicit 
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learning tasks was large would be consistent with relatively minimal, rather than substantial, 

individual differences. 

Additionally, the evidence to relate implicit learning task performance to functional 

outcomes is limited. This study found no relationship between implicit learning and occupational 

achievement, personality, or tacit knowledge. Although Gebauer and Mackintosh (2010) and 

Kaufman and colleagues (in press) have been more successful than this, there are several ways to 

reconcile their findings with Study I. Kaufman and colleagues (in press) related SRT task 

performance, and not what was general to several implicit learning tasks, to second language 

acquisition and personality. Therefore, the relationships might stem from something that was 

more specifically measured by the SRT task than from general implicit learning. Gebauer and 

Mackintosh (2010) did relate the general component they identified to second language 

acquisition. However, as discussed the reliability of this general component is not clear and, 

more importantly, the relationship between that general component and second language 

acquisition was small (r = .15). A more general point is that second-language acquisition and 

personality are different to occupational achievement and tacit knowledge. It is possible that 

differences in implicit learning are uniquely critical in language acquisition, and related to 

intuitive aspects of personality that are independent of tacit knowledge. In the latter case, 

although Study I also measured personality, Kaufman and colleagues (in press) used different 

personality questionnaires that might have been more sensitive for the purposes of relating 

implicit learning and personality. Thus, altogether the literature on individual differences implies 

that individual differences in general implicit learning are minimal, and insofar that they do exist, 

they only have a modest effect on some aspects of behaviour. 

An additional aspect of the results of Study I was the replication of a feature of implicit 

learning that is critical to the retention of the implicit-explicit distinction. Specifically, 

performance on the implicit learning tasks was not correlated with IQ, which stood in contrast 

with the correlations between IQ and the indices of explicit processing taken from the same 

implicit learning tasks. This dissociation reinforces the idea that implicit and explicit-IQ 

mediated cognition are distinct. However, it is possible that this dissociation is a consequence of 

the explicit indices being more sensitive than the implicit ones. This remains a possibility even 

though the indices of explicit processing were taken from the same tasks as the implicit learning 

measures because all the indices are derived differently. However, given Gebauer and 
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Mackintosh’s (2007) previous dissociation, this possibility seems unlikely. Specifically, the 

identified dissociation was protected from the possibility of asymmetrically sensitive measures 

because the learning measures for implicit and explicit performance were derived using exactly 

the same measurement tools. Critically, participants performed exactly the same tasks in one of 

two conditions: either under typical implicit instructions or under explicit instruction to use 

explicit strategies to aid their performance. Although this instruction manipulation did not 

consistently change overall performance across the learning tasks, a relationship with IQ was 

consistently observed in the explicit condition. The contrasting relationships of IQ with implicit 

and explicit measures in Study I support, and are consistent with, Gebauer and Mackintosh’s 

(2007) compelling dissociation. 

In resolving outstanding issues relating to tacit knowledge, the study established that tacit 

knowledge was also unable to provide compelling evidence of individual differences in an ability 

that was independent of IQ, personality and practice (e.g., Gottfredson, 2003a; McDaniel & 

Whetzel, 2005; c.f., Sternberg, et al., 2000; R. K. Wagner & Sternberg, 1986). It was possible 

that if tacit knowledge was the intermediary between an individual’s implicit learning ability and 

its behavioural manifestation in performance differences, then the study would have only been 

able to find evidence to support the role of implicit learning in individual performance 

differences by also measuring that relevant intermediary. Instead, Study I demonstrated that 

occupational Tacit Knowledge Inventories, like Situational Judgment Tests (e.g., McDaniel & 

Whetzel, 2005), measure knowledge that is acquired primarily as a function of practice and 

experience, rather than individual differences in an ability (e.g., Gottfredson, 2003a; c.f., 

Sternberg, et al., 2000). The inventories, again like Situational Judgment Tests, remained 

practically useful because they appeared to measure knowledge that predicted occupational 

achievement incrementally to IQ and personality. Further, occupational Tacit Knowledge 

Inventories demonstrated some domain generality. However, importantly, sceptics of tacit 

knowledge as a measure of an ability were not necessarily sceptical of the importance and 

generality of experience-dependent occupational knowledge (e.g., Gottfredson, 2003a; McDaniel 

& Whetzel, 2005). The study also established a limit to the generality of tacit knowledge: the 

CSQ and occupational Tacit Knowledge Inventories measured different constructs. The CSQ 

appeared to be strongly related to IQ, and unable to predict occupational achievement once 

sufficient expertise and knowledge has been acquired (c.f., Cianciolo, et al., 2006). 



CHAPTER II  61   
 

 

In summary, there was no evidence of variance common to all the implicit learning tasks, 

nor was there any evidence to relate performance on any of the implicit learning tasks to IQ, 

occupational achievement, personality or tacit knowledge. I assert that an overall consideration 

of this study with the other relevant literature currently leads to the conclusion that, consistent 

with A. S. Reber’s prediction, there are minimal individual differences in implicit learning. The 

study did replicate another finding that is important to the distinction between implicit and 

explicit learning: indices of explicit processing, but not performance on implicit learning tasks, 

were correlated with IQ. Additionally, the study provided independent, empirical investigation of 

issues in tacit knowledge that have been subject to fierce debate (e.g., Gottfredson, 2003a, 

2003b; McDaniel & Nguyen, 2001; McDaniel & Whetzel, 2005; Sternberg, 2003). The study 

established that tacit knowledge was unable to provide compelling evidence of individual 

differences in an ability that was independent of IQ, personality and practice (e.g., Gottfredson, 

2003a; McDaniel & Whetzel, 2005; c.f., Sternberg, et al., 2000; R. K. Wagner & Sternberg, 

1986). Academic Psychology and Business Management Tacit Knowledge Inventories measured 

knowledge that predicted occupational achievement incrementally to IQ and personality, and was 

general to both occupations. Critically, however, tacit knowledge appeared to be acquired 

primarily as a function of practice and experience, rather than individual differences in an ability 

(e.g., Gottfredson, 2003a; c.f., Sternberg, et al., 2000). Notably, sceptics of tacit knowledge as a 

measure of an ability are not necessarily sceptical of the generality, nor the prediction 

capabilities, of primarily experience-dependent occupational knowledge (e.g., Gottfredson, 

2003a; McDaniel & Whetzel, 2005). Indeed, McDaniel and Whetzel (2005) happily 

acknowledged occupational Tacit Knowledge Inventories as a variety of Situational Judgment 

Test, which commonly exhibit these properties. Additionally, the study established a limit to the 

generality of tacit knowledge: the CSQ and occupational Tacit Knowledge Inventories measured 

different constructs. The CSQ was strongly related to IQ, and unable to predict occupational 

achievement once sufficient expertise and knowledge had been acquired (c.f., Cianciolo, et al., 

2006). 

Finally, the results from this study have an important implication for the direction of the 

functional analysis of differences in implicit learning pursued by this thesis. Specifically these 

results, in the context of the equivocal findings of previous studies (Gebauer & Mackintosh, 

2007, 2010; Kaufman, 2009; Kaufman, et al., in press), suggest that the idea of functional 
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individual differences in implicit learning is misplaced. There appears to be no general implicit 

learning ability that is critical to how much is learnt implicitly within a typical population. 

Instead, implicit learning might be better conceptualised as a description of the mode in which a 

variety of processes are marshalled, but how much is learnt is always dependent on differences in 

those processes rather than a central implicit learning capacity. There might be some general 

ability still, but its influence appears to be, at best, minimal (Gebauer & Mackintosh, 2010), and 

certainly not ubiquitously important to functional outcomes. 

However, an alternative framework to identifying functional differences in implicit 

learning still exists. Even in the absence of an overarching, general ability that determines how 

much is learnt implicitly, there might still be prerequisite processes that are always necessary for 

implicit learning. Insofar that those prerequisite processes are intact, the variance in how much is 

learnt implicitly is still dependent on a variety of other processes, such as selective attention, 

working memory, motor dexterity, perceptual processing. There is not yet empirical evidence for 

this theoretical position but it could be tested by considering relevant atypical populations. 

Specifically, if an atypical population consistently demonstrated profound deficits on all implicit 

learning tasks and skills associated with an implicit acquisition, then a case could be made for 

such prerequisite processes to implicit learning. Although, investigations into several atypical 

populations have not provided evidence to support this theory (see review at end of Chapter I), 

researchers have asserted that there is a general deficit in Autism Spectrum Condition, which 

contributes to diagnostic social, communicative and motor impairment (e.g., L. G. Klinger, et al., 

2007; Mostofsky, et al., 2000; Romero-Mungu a, 2008). While initial results appear to have 

supported that view (Gordon & Stark, 2007; L. G. Klinger & Dawson, 2001; L. G. Klinger, et al., 

2007; Mostofsky, et al., 2000), there are some reasons to believe that these demonstrations do 

not provide definitive evidence of a general implicit learning deficit. In order to provide a 

comprehensive assessment of the possibility of a general implicit learning deficit in ASC, Study 

II examined whether ASC individuals have a deficit across a range of implicit learning tasks. 



CHAPTER III  63   
 

 

III. Implicit Learning in Autism Spectrum Conditions: Study II 

1. Introduction 

Autism Spectrum Conditions (ASC) are characterized by social, communicative and 

motor impairments (American Psychiatric Association, 1994). Implicit learning is believed to be 

one important mechanism for acquiring social, communicative and motor skills (e.g., Kaufman, 

et al., in press; McLeod & Dienes, 1993; Meltzoff, Kuhl, Movellan, & Sejnowski, 2009; 

Perruchet, 2008; A. S. Reber, 1993), raising the possibility that social, communicative and motor 

impairments in ASC may arise, in part, from a general deficit in implicit learning (L. G. Klinger, 

et al., 2007; Mostofsky, et al., 2000; Romero-Mungu a, 2008). 

Testing the hypothesis that implicit learning is impaired in ASC requires a comparison of 

the performance of individuals with and without ASC on a range of implicit learning tasks. 

Several studies have claimed to find impairments in implicit learning in ASC, on some implicit 

learning tasks. For example, Mostofsky and colleagues (2000) and Gordon and Stark (2007) 

reported that individuals with ASC performed worse than typically developing (TD) individuals 

on one implicit learning procedure, the SRT task. However, there is some reason to question 

whether the procedure used by Gordon and Stark (2007) and Mostofsky and colleagues (2000) 

adequately assessed implicit learning. Subsequent research has shown that procedures involving 

slowly repeating, ‘deterministic’ sequences (i.e. sequences that follow a continually repeating 

sequence without interruption) are more likely to encourage the development and use of explicit 

strategies to solve the task (e.g., Destrebecqz & Cleeremans, 2001, 2003; Jiménez, et al., 1996; 

Norman, Price, Duff, & Mentzoni, 2007; Schvaneveldt & Gomez, 1998). Since Gordon and 

Stark (2007) and Mostofsky and colleagues (2000) used slowly repeating deterministic 

sequences (the response-to-stimulus interval was 500 ms and 1500 ms respectively), it is 

therefore hard to disentangle to what extent the reported differences in performance between the 

two groups are due to differences in implicit or explicit learning.  

Furthermore, neither of these studies completely matched the two participating groups for 

IQ. The issue of IQ is highly important: while implicit learning performance has been shown to 

be unrelated to IQ, explicit learning is strongly correlated (e.g., Carroll, 1993; Gebauer & 

Mackintosh, 2007, 2010; Kaufman, et al., in press; A. S. Reber, et al., 1991). Therefore if the 
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task procedures encouraged explicit learning, given the ASC-group had lower IQs, the ASC-

deficit would be expected and more likely attributable to explicit processes.4 This interpretation 

seems particularly feasible given that when researchers (Barnes, et al., 2008) compared an ASC 

group with a TD group well-matched for IQ and used a more complicated sequence with shorter 

response-to-stimulus intervals, then the conclusion was that sequence learning is intact in ASC 

individuals. In this study, Barnes and colleagues (2008) also found no evidence for differences 

between the groups on a CC task. 

There is also discrepancy between the findings of studies assessing the performance of 

individuals with ASC on another classic implicit learning procedure, the AGL task. While one 

study claimed to find ASC deficits (L. G. Klinger, et al., 2007), another found that individuals 

with ASC did no worse than controls on the task (reported in L. G. Klinger et al., 2007; L. G. 

Klinger, Lee, Bush, Klinger, & Crump, 2001, as cited in L. G. Klinger et al., 2007). It should be 

noted, however, that the tasks used in these studies were adapted versions of the classic AGL test 

(e.g., the tasks used shape rather than letter stimuli, and for the test phase required a two-

alternative forced-choice discrimination rather than a single-stimulus classification decision) 

raising the possibility that the adaptations allowed the use of explicit strategies to learn the task 

rather than providing stringent assessments of implicit processes. This interpretation was 

corroborated by the finding that the performances on those adapted AGL tasks correlated with IQ 

(L. G. Klinger et al., 2001, as cited in L. G. Klinger et al., 2007; L. G. Klinger et al., 2007). The 

difference in ASC performance between the two studies may therefore have arisen from 

differences in how the groups used explicit strategies. This possibility is particularly relevant in 

light of the fact that the study reporting the ASC deficit used an ASC group who had lower IQs 

than the TD group (L. G. Klinger, et al., 2007), and therefore would have been at a disadvantage 

on a more explicit task. Thus, if tasks used in studies of implicit learning in ASC lend themselves 

to explicit, IQ-related strategies, then it will be difficult to dissociate any performance deficit due 

                                                 
4 Also consistent with this interpretation, Müller, Cauich, Rubio, Mizuno, & Courchesne (2004) found 

differences between ASC and TD groups who were not matched for IQ on an SRT task that used slowly repeating 

deterministic sequences. Specifically, the authors found abnormal activity patterns in the premotor cortex in ASC. 

However, there was no statistical comparison of the ASC and TD performance data. It is probable that the data were 

not compared because such an analysis would have had very little power to detect any performance differences: 

there were only 48 learning trials and eight participants in each group. 
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to differences in a capacity to learn implicitly from differences in the IQ-mediated explicit 

contribution. 

Attempts have also been made to assess implicit learning on category learning tasks and 

some studies have claimed to show a deficit (e.g., L. G. Klinger & Dawson, 2001; L. G. Klinger, 

et al., 2007). However, all such studies used a deterministic, as opposed to a probabilistic, 

category learning task, which would be more likely to encourage the use of explicit strategies (L. 

G. Klinger & Dawson, 2001; L. G. Klinger, et al., 2007; Molesworth, Bowler, & Hampton, 

2005). This interpretation is corroborated by the correlation of deterministic category learning 

with IQ in the one study that reported this relationship (L. G. Klinger, et al., 2007). Further, 

although both the studies demonstrating a deficit matched the ASC and TD groups for verbal 

mental age, neither study matched the groups for IQ or chronological age (L. G. Klinger & 

Dawson, 2001; L. G. Klinger, et al., 2007). In another study (Molesworth, et al., 2005) that did 

match for chronological age, mental age and IQ, the deficit was not replicated: ASC performance 

was found to be intact. Thus, it is not clear that there are ASC differences in performance on 

non-probabilistic category learning tasks. Even if differences are established on this version of 

the task, it seems likely that they could be due to differences in cognitive processes other than 

implicit learning.  

This review suggests that although there may be a deficit in implicit learning in ASC, it is 

possible that performance deficits observed so far may arise as a consequence of the recruitment 

of other, particularly explicit, cognitive processes. This is especially important given that the 

studies reporting an ASC-deficit did not stringently match ASC and control groups for IQ, and 

explicit, in contrast to implicit, processes correlate strongly with IQ. Furthermore, it is known 

that the use of explicit strategies usually changes performance on implicit learning procedures 

(e.g., Gebauer & Mackintosh, 2007) and that differences between diagnostic groups on an 

ostensibly implicit task can be attributable to differences in the explicit rather than the implicit 

component of the task (Koenig, et al., 2008). Therefore, in order to identify more clearly whether 

the reviewed ASC differences relied on implicit or explicit learning processes, implicit learning 

procedures are needed that have not been specifically adapted for use with ASC children, and 

thus better avoid the use of explicit strategies. On such procedures, it is well established that the 
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underlying complexity of the information to be learned makes it much more difficult for explicit 

strategies to emerge. Study II used four such unadapted procedures (AGL, SRT, CC, and PCL).5 

The reason for using four, rather than just a single test as in many of the studies above, is 

that implicit learning tasks necessitate psychological processes in addition to learning, such as 

encoding and selective attention, and furthermore different implicit learning tasks make different 

demands of such processes (e.g., Seger, 1994; Squire, Knowlton, & Musen, 1993). Therefore, in 

order to control for variations in task demands and to allow conclusions about implicit learning 

in general, it is critical to compare the performance of the same individuals on a range of implicit 

learning procedures. To illustrate the point, there have been several disorders in which 

impairment has been reported on one implicit learning task, but has not been replicated on 

another, including dyslexia (e.g., Folia, et al., 2008); Huntington’s disease (e.g., Knowlton, 

Squire, et al., 1996); Parkinson’s disease (e.g., Knowlton, Mangels, et al., 1996; cf, P. J. Reber & 

Squire, 1999); and schizophrenia (Horan, et al., 2008; cf, Keri, et al., 2000). 

The two groups were also assessed on an explicit learning task, Paired-Associates 

Learning (PAL). It has been argued above that explicit learning was unintentionally measured in 

several previous attempts to assess implicit learning, and as a consequence of using groups that 

were unmatched for IQ it was the explicit processes that were responsible for an ASC 

performance deficit. The validity of this explanation can be explored by including an overtly 

explicit task, and then comparing the relative patterns of implicit and explicit learning 

performance in both matched and unmatched groups. Further, the inclusion of the PAL allowed 

the assessment of another feature in the theory of implicit learning deficits in ASC. Specifically, 

L. G. Klinger and colleagues (2007) have argued that children with ASC actually use explicit 

processes to compensate for deficits in implicit learning. Clearly this idea is predicated upon the 

relative preservation of the explicit over implicit learning, and is thereby tested through a 

comparison of the relative performances on implicit and explicit learning tasks. L. G. Klinger 

and colleagues (2007) have ostensibly made such a comparison. However, their measures of 

                                                 
5 A fifth task was also used – the IFL task. The specific procedure of this IFL task was the same as reported 

in Study I. However, the task appeared to be inappropriate for children - there was no evidence of learning. 

Consequently, the task was unable to address the question of whether there were implicit learning differences 

between ASC and TD children. Thus, for the sake of clarity, the task is not discussed further in this chapter (see 

Appendix B for the analysis of IFL task performance, which produced no evidence of learning). 
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explicit learning were actually IQ tests, which did not involve any learning during the course of 

their experiment. 

As discussed, the current literature on implicit learning in ASC highlights different 

findings between studies. Given this conflict, and in the context of preserved and enhanced 

abilities in ASC (Mottron, Dawson, Soulières, Hubert, & Burack, 2006), it is also necessary that 

analyses should properly consider the possibility that implicit learning is preserved in ASC. To 

this end, Study II employed equivalence analysis (Rogers, Howard, & Vessey, 1993; Stegner, 

Bostrom, & Greenfield, 1996) to consider all learning data, and consequently does not rely on a 

failure to reject a null hypothesis as a reason to suppose that performance is preserved in ASC. 

Finally, in order to conclude that implicit learning deficit plays a direct role in the social, 

language and motor deficits common to ASC, it would be necessary but not sufficient to 

demonstrate performance deficits on a variety of implicit learning tasks. Additionally, 

performance on implicit learning tasks would have to be related to an index of such diagnostic 

deficits (L. G. Klinger, et al., 2007). Therefore, in Study II the parents of participants were asked 

to complete the Social Communication Questionnaire (SCQ: Rutter, Bailey, Lord, & Berument, 

2003). The SCQ provided a reliable index of autistic symptomatology, which was related to 

implicit learning performance. 

The primary aim was to test the hypothesis that individuals with ASC would show 

performance deficits on a range of implicit learning tasks, which could not be attributed to other 

factors such as explicit strategies or task demands. In brief, the study found no support for this 

hypothesis; instead there was evidence of equivalence (Rogers, et al., 1993; Stegner, et al., 1996) 

between individuals with and without ASC on implicit learning procedures. This was not a 

consequence of compensation by explicit learning ability or IQ. Furthermore, there was no 

evidence to relate implicit learning to an index of ASC symptomatology. 

2. Method 

2.1. Participants 

31 children with ASC (referred to as the ASC group) and 31 Typically-Developing 

children (referred to as the TD group) were included in the study. All children in the ASC group 

met established criteria for ASC, such as those specified in DSM-IV (American Psychiatric 
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Association, 1994) and had previously received a diagnosis for ASC by trained clinicians using 

instruments such as the Autism Diagnostic Interview (Le Couteur, Lord, & Rutter, 2003). Any 

other psychiatric diagnosis acted as an exclusion criterion for both the ASC and TD group. The 

two groups of children were matched for sex (3 females) and chronological age (t(55) = .28, p = 

.78, d = 0.07) but differed on Verbal IQ (t(50) = 1.83, p = .07, d = 0.47), Performance IQ (t(52) = 

1.83, p = .07, d = 0.47) and Full Scale IQ (t(49) = 2.04, p = .05, d = 0.52) of the Wechsler 

Abbreviated Scale of Intelligence (WASI: Wechsler, 1999), see Table 12. A subgroup from each 

group of children was selected who were matched for IQ. The sub groups comprised 26 children 

with ASC and 26 children with TD. These children were matched for sex (2 females), 

chronological age (t(50) = .88, p = .39, d = 0.24), Verbal IQ (t(50) = .61, p = .55, d = 0.17), 

Performance IQ (t(45) = .51, p = .61, d = 0.14) and Full Scale IQ (t(44) = .71, p = .48, d = 0.20) 

of the WASI, and all had IQs within the typical range (the lowest score was 83), see Table 12. 

The main analyses were conducted on the data from these subgroups. However, a final analysis 

was conducted using the entire sample, in order to examine the role of IQ in explicit and implicit 

learning. Table 12 presents the participant characteristics for both the entire groups and the 

subgroups matched for IQ. 

Informed parental consent and the assent of the children were obtained, and ethical 

permission to conduct the study received from the Cambridge Psychology Research Ethics 

Committee. 18 of the parents of children with ASC (15 of the ASC-subgroup) and 23 of the 

parents of TD children (19 of the TD-subgroup) completed the SCQ (Rutter, et al., 2003). The 

SCQ is a screening tool for autism, which comprises 40 items derived from the ADI-R. The raw 

scores on the SCQ were converted into percentage scores. All the children in the TD group had 

scores below the cut-off score of 38.46 % specified by Rutter and colleagues (M = 10.43 %, SD 

= 7.14 %, range = 2.56 – 33.33 %; for the TD-subgroup M = 10.87 %, SD = 7.71 %, range = 2.56 

– 33.33 %). Further, the highest score for the TD group was 5.49 standard deviations (5.11 

standard deviations for the subgroup) below the mean of the ASC group (M = 72.59 %, SD = 

15.82 %, range = 30.77 % – 92.31 %; for the ASC-subgroup M = 72.75 %, SD = 17.24 %, range 

= 30.77 % – 92.31 %). 
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Table 12. Mean Age (in years) and WASI IQ Scores for the ASC and TD Groups 

Measure Entire sample 

 TD (N = 31)  ASC (N = 31)  

 M SD R  M SD R  

Chronological age 11.7 1.5 8.9 – 14.3  11.6 1.1 8.7 – 14.4  

Verbal IQ 106.9 11.6 81 – 127  99.7 18.5 65 – 147  

Performance IQ 107.0 12.3 81 – 135  99.5 18.9 62 – 136  

Full-scale IQ 107.8 11.5 88 – 135  99.6 19.2 66 – 147  

 IQ-matched sub-groups 

 TD (N = 26)  ASC (N =26)  

 M SD R  M SD R  

Chronological age 11.8 1.6 8.9 – 14.3  11.5 1.2 8.7 – 14.4  

Verbal IQ 104.3 10.5 81 – 122  102.2 13.5 76 – 122  

Performance IQ 104.1 10.9 81 – 127  102.2 15.7 74 – 132  

Full-scale IQ 104.7 9.4 88 – 122  102.4 14.1 83 – 126  

2.2. Apparatus 

A fourteen-inch LCD notebook computer was used for all computerised testing. For the 

SRT and CC tasks, timing accuracy was of the utmost importance, therefore these tasks were 

presented using DMDX software and participants recorded their responses using a four-button 

PIO12 response box (Forster & Forster, 2003). Other tasks were presented using: SuperLab Pro 

for the AGL Task; RealBasic for the PCL; and Inquisit for the PAL. For all these tasks, 

responses were recorded using the notebook’s keyboard. 

2.3. Tasks and Procedure 

2.3.1. Implicit Learning Tasks 

 Contextual Cueing (CC) task 

A continuous version of the CC task was used, in which successive trials followed each 

other with minimal delay (50 ms) and were not preceded by a fixation point. Jiménez and 



CHAPTER III  70   
 

 

Vázquez (in press) have shown that this procedure results in levels of learning similar to the 

usual discrete version developed by Chun and Jiang (1998). In addition, Jiménez and Vázquez’s 

(in press) procedure was followed by using four different responses instead of the usual two-

alternative task. This procedure was chosen to make the motor requirements of this task more 

comparable to those required by the SRT task (see below). Therefore, should specific deficits 

have emerged, those deficits could have been more confidently attributed to differences in 

learning rather than motor capabilities. 

Instead of using rotated Ts and Ls for target and distractor stimuli respectively, the 

participants were required to detect and identify as quickly and accurately as possible an even 

number presented among distractors, which were odd numbers. The target numbers (2, 4, 6 or 8) 

were presented among seven distractor stimuli of the same numerical identity (1’s, 3’s, 5’s or 

7’s). Participants responded by pressing buttons corresponding to the target’s numerical identity 

(2, 4, 6 or 8) on a four-button response box. Jiménez and Vázquez (2009) have also shown that 

learning is unaffected by replacing letter-stimuli with number-stimuli. 

 

Figure 3. Examples of the stimuli presented to participants in the CC task. On the left, the target 
is 8 and the distractors are 1s; on the right, the target is 2 and the distractors are 5s. 

As depicted in Figure 3, on each trial there were two stimuli of each colour, with stimuli 

evenly distributed over the four quadrants of the display and filling 8 of 16 possible stimuli 

locations from a 4 x 4 invisible matrix. Within a trial, all the distractors had the same numerical 

identity, however, the precise combination of location, identity and colour of distractors created a 

context for the location of a target on each trial. 40 such combinations were generated and each 

context was always associated with the same target location but a changing target identity. 8 
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high-frequency contexts were repeated frequently (24 times within each session) and 32 low-

frequency contexts were repeated infrequently (on average 6 times per session). Each high-

frequency context was associated with a unique target location, while sets of 4 low-frequency 

contexts were each associated with a different one of the remaining 8 possible target locations. 

Of the sets of 4 low-frequency contexts associated with a given target location, each context was 

characterized by a different distractor identity, as well as by a different distribution of locations 

and colours. Similarly, of the 8 high-frequency contexts, two contexts contained 1’s, two 

contained 3’s, two contained 5’s and two contained 7’s and were each characterised by a 

different distribution of distractor locations and colours. Thus, all target locations were equally 

cued, and all distractor identities, colours and locations were equally present. However, the 

precise combination of distractor location, identity and colour in the high frequency contexts 

provided greater opportunity than the combinations in the low frequency contexts for participants 

to be cued to the location of the target in order for the participant to determine its numerical 

identity.  

Each experimental block consisted of 48 trials. Half of all trials within a block contained 

high-frequency contexts and the remaining half low frequency contexts. These different trial-

types (high frequency and low frequency contexts) were randomly intermixed for every 

experimental block (1-8). The session began with a short practice block, consisting of 8 low-

frequency context trials, after which it was ensured that the participant had understood the 

demands of the task. Between each block, the experimenter provided the participant with 

feedback about their accuracy and reaction times (RTs). Feedback was provided following any 

trial on which a participant made an error, by presenting the word “Error” at the top of the 

screen for 150 ms before the next trial was presented. At the start of each session, the solid lines 

creating the quadrant (see Figure 3) were presented and remained on the screen for the entire 

block. Each trial begun with the presentation of distractors and target and was terminated 

following a response. Trials were separated from one another by a 50 ms response-to-stimulus 

interval, intended to minimise the development of explicit strategies. Learning was measured by 

comparing each participant’s RT in response to the high-frequency trials and the low-frequency 

trials. 
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 Serial Reaction Time (SRT) task 

The same SRT task was used as detailed in Chapter II.2.3.2. The one difference between 

the two tasks was that in this study participants pressed buttons on a four-button response box 

rather than a keyboard.  

 Artificial Grammar Learning (AGL) task 

The same AGL task was used as detailed in Chapter II.2.3.2.  

 Probabilistic Classification Learning (PCL) task 

A version of the PCL task developed by Aczél (2006) and Shohamy and colleagues 

(2004) was used. During a learning phase, participants were told that they would be selling ice 

cream in an ice cream shop and that ‘customers’ would come in to buy vanilla or chocolate ice 

cream cones (see Figure 4). Each time a customer would visit, they would have to try to guess 

whether the customer would like vanilla or chocolate. After each guess of vanilla or chocolate, 

participants received feedback on which flavour the customers would have preferred (outcome); 

the word “correct” in white or “wrong” in red were displayed at the bottom of the screen for 

600 ms, followed by a blank screen for 100 ms. The customers (stimuli) were displayed for 500 

ms before participants could respond; participants responded by pressing the ‘Z’ key to guess 

chocolate and the ‘.’ key to guess vanilla. Participants were prompted to “please respond now” 

after 1500 ms and the trial timed out with the message “no response” after 5000 ms. When 

participants responded correctly, a coin was added to their ‘tip jar’ in the ice cream shop. 
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Figure 4. Illustration of PCL task. Presented above are computer screengrabs from the moment 
after a participant had made their guess during the learning phase, either correctly (as depicted 
in the left screengrab) or incorrectly (as depicted in the right screengrab). The screengrabs show 
two different examples of stimuli (the stimulus on the left has Cue 1 and Cue 4 present, the 
stimulus on the right has Cue 2, Cue 3 and Cue 4 present – see Table 13). 

‘MrPotatoHead’ toy photographs (see Figure 4) were used as the stimuli that appeared on 

each trial. 14 different stimuli were created by changing the presence or absence of four discrete 

cues on the basic MrPotatoHead figure (e.g., moustache or glasses). The combination of cues 

used was identical to those used by Shohamy and colleagues (2004), and is shown in Table 13.  
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Table 13. The Stimuli and Probability Structure of the PCL Task 

Stimulus Cue 1 Cue 2 Cue 3 Cue 4 P (stimulus) P (vanilla|stimulus) 

A 0 0 0 1 .136 .143 

B 0 0 1 0 .079 .375 

C 0 0 1 1 .089 .111 

D 0 1 0 0 .079 .625 

E 0 1 0 1 .061 .167 

F 0 1 1 0 .061 .667 

G 0 1 1 1 .042 .250 

H 1 0 0 0 .136 .857 

I 1 0 0 1 .061 .333 

J 1 0 1 0 .061 .833 

K 1 0 1 1 .033 .333 

L 1 1 0 0 .089 .889 

M 1 1 0 1 .033 .667 

N 1 1 1 0 .042 .750 

Note: Cue 1 = brown moustache, cue 2 = red hat, cue 3 = blue glasses, cue 4 = bow tie. Each 
cue could be present (1) or absent (0) for each stimulus. The all-present (1111) and all-absent 
(0000) stimuli were never used. On any trial during the learning phase, there was a given 
probability of each of the 14 stimuli appearing (P(stimulus)), and a dynamic stimulus-outcome 
probability for each of these 14 stimuli. During the test phase, when feedback is removed, the 
stimulus-outcome probability is static (P(vanilla|stimulus)). All stimuli appeared equally often 
during the test phase. The overall probability of the vanilla outcome across all stimuli is 50 %. 

 Using the 14 stimuli, 214 trials were constructed for the learning phase. As a 

consequence of the feedback, each stimulus became probabilistically associated with an 

outcome. Across the entire learning phase the two outcomes (preference for vanilla or chocolate) 

were equally probable across all stimuli. Once participants completed the learning phase, they 

undertook the test phase, which was identical to the learning phase with the exception that 

feedback was no longer provided. With the removal of feedback about the outcome, participants 

were required to rely on the probabilities between the stimuli and outcomes (stimulus-outcome 

probabilities) that they had experienced during the learning phase. The stimulus-outcome 

probabilities between the stimuli varied from near chance (62.5 %) to almost certain (88.9 %), as 

detailed in Table 13. The test phase consisted of 70 trials with each of the 14 stimuli being 

shown 5 times. Trials presenting the 14 different stimuli were randomly intermixed during both 
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learning and test phases. Both the percentage of correct guesses, according to which outcome 

was more likely (above 50 %), and the extent to which this percentage correct matched with the 

stimulus-outcome probabilities were taken as indices of learning. 

2.3.2. The Explicit Task 

 Paired-Associates Learning (PAL) task 

Participants were instructed that they should try to learn a series of 3-letter word-pairs 

(e.g., bun-cab). During this learning phase, they were shown the first word of a pair for 2500 ms 

and then the second word such that both words were on screen for a further 2500 ms. Participants 

were shown a total of 15 word pairs in this way, with a response-to-stimulus interval of 200 ms. 

In the following test phase, participants were sequentially presented with the first word from 

each of the pairs and were instructed to provide the word with which it was paired, or to skip the 

trial if they had not learnt the pair. If the response was correct, the message ‘Correct!’ 

immediately appeared on the screen and remained together with the correct word pair for 2500 

ms. An incorrect response yielded the message ‘Wrong!’ with the simultaneous replacement of 

the incorrect word with the correct answer, and together the message and pair remained for 2500 

ms. This whole process was repeated 4 times. Pairs appeared in the same order between 

equivalent learning and testing blocks, but pair order was randomised across blocks (e.g., pair 

order was the same for learning 1 and testing 1 but different between learning and testing 1 and 

learning and testing 2). Learning is indexed by the number of pairs correctly reproduced in each 

test phase (B. J. Underwood, Boruch, & Malmi, 1978). All words were one-syllable, three-

lettered, not infrequent (Thorndike & Lorge, 1944), and regularly spelt, concrete nouns. All 

words had an age-of-acquisition of less than 7 years according to either Morrison and colleagues’ 

(1997) norms or acquired teacher-ratings (which correlated well with Morrison and colleagues’ 

(1997) limited norms, r = .82, p = .01, r2 = .67). 

2.3.3. General procedure 

All testing was conducted at the participants’ schools and participants were tested 

individually in quiet, unused classrooms. Each session lasted approximately 50 minutes with 

participants taking as many sessions as necessary to complete the tasks, with the constraint that 
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no session would break-up a task. Most participants completed the tests within 3 or 4 sessions, 

and a minority (2 children) completed testing within 5 sessions. For all the computerised tasks, 

participants were seated approximately 50 cm away from the laptop. Prior to each task, they 

were provided with written and oral instructions. The WASI was administered according to the 

standardised testing procedure. Task and trial order were fixed across participants because the 

between-group comparison was most important and such fixing minimises the relevant noise and 

facilitates the most accurate comparison. Further, the order in which the tasks were completed 

was carefully selected in order to minimise the possibility of priming participants into an explicit 

mind-set, as it has been demonstrated that explicit instructions increase the contribution of 

explicit processes on implicit procedures (e.g., Gebauer & Mackintosh, 2007). Therefore, 

participants completed the tasks in the following order: PCL, CC, AGL, SRT, WASI IQ Test, 

PAL, and Explicit Interview. The Explicit Interview consisted of a post-task questionnaire about 

the incidental structures in each of the implicit learning tasks. 

3. Results 

For all analyses, the alpha level was set at .05, two-tailed and extreme outliers (values 

either less than three times the interquartile range below the lower quartile, or greater than three 

times the interquartile range above the upper quartile) were excluded. Where relevant, the 

appropriate epsilon correction was used when sphericity was violated. Šidák corrections were 

used to control for familywise error rates during multiple comparisons (Cardinal & Aitken, 2006, 

pp. 87-90). Where significant interactions were found in mixed analyses of variance, separate 

ANOVAs on the levels of interest were conducted to establish simple effects. When conducting 

independent sample t-tests, equal sample variances were assumed unless Levene’s test for the 

equality of variances was significant. Cohen’s d is reported as a measure of effect size except 

where relative measures of effect size are more appropriate, and then partial eta-squared (η2
p) is 

reported. In all reported equivalence analyses (Rogers, et al., 1993; Stegner, et al., 1996), random 

within-subject variability in the TD group was used to determine the between-group equivalence 

threshold. 
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3.1. CC and SRT Analysis 

In the RT analyses for both SRT and CC, RTs on error trials were discarded. First trial 

data were excluded for the SRT, since meaningful assessment can only occur when the stimuli 

have been presented sequentially. Figure 5 represents the mean RT (ms) difference between trial-

types across blocks on CC (top panel) and SRT (bottom panel). A difference score greater than 

zero indicates that participants responded faster to the high-frequency contexts in CC and the 

probable trials in SRT. Clearly, there is evidence of learning: difference scores were above zero 

and, on average, difference scores after the first block tended to be greater than those on the first 

block. Mixed analyses of variance conducted on mean RTs supported this interpretation, each 

had one between-subject factor of Group (ASC vs. TD), and two within-subjects factors, Trial-

Type (High-frequency vs. Low-frequency in CC and Probable vs. Improbable in SRT) and Block 

(1-8 in CC and 1-9 in SRT). In both analyses, there was a main effect of Trial-Type (CC: F(1, 

50) = 27.74, p < .001, η2
p = .36; SRT: F(1, 50) = 57.25, p < .001, η2

p = .53), Block (CC: F(4, 219) 

= 18.24, p < .001, η2
p = .27; SRT: F(4, 211) = 18.04, p < .001, η2

p = .27), and an interaction 

between Trial-Type x Block (CC: F(7, 328) = 2.30, p = .03, η2
p = .04; SRT: F(7, 350) = 11.32, p 

< .001, η2
p = .19).  
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Figure 5. TD and ASC groups displayed similar learning on the CC and SRT tasks. Depicted are 
the mean RT differences between high and low-frequency contexts on the CC (top panel) and 
probable and improbable trials on the SRT (bottom panel) across training for different groups. 
The error bars show twice the standard error of differences between group means at different 
levels of block. 

Figure 5 demonstrates that the RT difference scores for both tasks were very closely 

matched between the groups. Indeed, there was no evidence of group differences in learning in 

either analysis: on both tasks there was no Group x Trial-Type interaction (CC: F(1, 50) = 1.52, 

p = .22, η2
p = .03; SRT: F(1, 50) = 0.12, p = .73, η2

p < .01), or between Group x Trial-Type x 

Block (CC: F(7, 328) = 1.37, p = .25, η2
p = .03; SRT: F(6, 298) = .50, p = .80, η2

p = .01). This 

was in spite of an actual power always more than .97 to detect even a medium effect (Cohen’s F 
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= .25) on these relevant Group interactions for both SRT and CC (calculated using G*Power, 

Faul, Erdfelder, Lang, & Buchner, 2007). However, regardless of this sizeable power, in order 

that the study did not rely on a failure to reject a null hypothesis as a reason to suppose that 

performance is preserved in ASC, equivalence analyses were employed to determine the 

equivalence of the learning (e.g., Rogers, et al., 1993). Equivalence analyses were performed on 

average proportional increase in RT differences across blocks for both tests; this learning index 

was used because the analysis necessitates an overall score. The analyses rejected the hypotheses 

of non-equivalence for both tests (CC: t(50) = 4.47, p < .001; SRT: t(50) = 4.44, p < .001; see 

Appendix B for more details of these equivalence analyses) and allowed the conclusion that the 

groups are statistically equivalent in their overall learning on each task. 

On the CC, there was a main effect of Group (F(1, 50) = 8.03, p = .01, η2
p = .14) with 

mean RTs slower in the ASC group, and no evidence of a Block x Group interaction (F(4, 219) = 

0.97, p = .43, η2
p = .02). Given that CC learning was equivalent between the groups, this main 

effect reflected an ASC difference in baseline speed. On the SRT, the effect of Group was not 

significant (F(1, 50) = 3.13, p = .08, η2
p = .06) but there was an interaction between Group x 

Block (F(4, 211) = 4.15, p < .01, η2
p = .08). Given that SRT learning was equivalent between the 

groups, this interaction reflected a differential effect of general practice on baseline speed. 

Inspection of the RTs averaged across Trial-Type implied that the ASC group took longer to 

benefit from practice on the SRT: during the initial blocks the ASC group had slower baseline 

speeds than the TD group but during the later blocks, once there had been sufficient opportunity 

for practice, the groups responded equally quickly. Consistent with this interpretation, there was 

a significant linear contrast for the differences between groups to become smaller as blocks 

progressed (F(1, 50) = 6.34, p = .02, η2
p = .11). 

The slowness in the baseline speed of the ASC group, throughout the CC and early in the 

SRT, is reflective of typical motor difficulties (e.g., G. Allen, Müller, & Courchesne, 2004; 

Dowell, Mahone, & Mostofsky, 2009). To examine whether such differences in baseline speed 

mask differences in learning, two transformations are possible: Barnes and colleagues (2008) 

have suggested transforming the dependent variable into a measure that expresses learning as a 

proportion of baseline speed (the difference in speed between trial-types/mean speed on low-

frequency or improbable trials); Jiménez and Vázquez (2008) have proposed a Z-score 

transformation as a means of better analysing group differences in learning on implicit RT tasks. 
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Analyses of both transformations provided exactly the same pattern of results, thereby 

reinforcing the conclusion that the groups were equivalent in their amount of overall learning on 

both the SRT and CC. 

There was a small percentage of errors on the SRT, and these errors were similar between 

the groups (TD: M = 8.42 %; ASC: M = 9.12 %; Standard Error of Difference (SED) = 1.03; 

t(50) = 0.67, p = .50, d = 0.17). Song, Howard and Howard (2007) have shown that errors on the 

SRT also index learning; fewer errors on the probable compared to the improbable trials indicate 

participants must have learnt about the sequence. Thus, a mixed ANOVA was conducted on the 

SRT error data, using the same factors as the RT analysis. These were entirely consistent with 

the RT analyses presented above: errors were greater on improbable trials and this difference 

tended to increase across blocks (Trial-Type (F(1, 50 = 27.67, p < .001, η2
p = .36; Block F(7, 

369) = 3.77, p < .001, η2
p = .07; Trial-Type x Block (F(8, 400) = 4.16, p < .001, η2

p = .08), while 

there was no evidence of any differences between the groups (Group x Trial-Type (F(1, 50) < 

0.01, p = .96, η2
p < .01; Group x Block Group x Block: F(7, 369) = 0.52, p = .83, η2

p = .01; 

Group x Trial-Type x Block (F(8, 400) = .63, p = .75, η2
p = .01.). An inspection of the data, 

together with a simple effects analysis of the Trial-Type x Block interaction, investigating the 

effect of block at each of the two levels of Trial-Type, revealed that the learning (i.e., increase in 

the difference between trial-types across block) was reflected by participants making more 

mistakes on improbable trials (F(8, 400) = 4.52, p < .001, η2
p = .08) rather than fewer mistakes 

on probable trials (F(6, 278) = 1.32, p = .25, η2
p = .03). A failure to detect increased accuracy on 

probable trials, in spite of SRT learning and general practice, is common on SRT tasks (Song, et 

al., 2007) and can be attributed to a ceiling effect: accuracy is high from the beginning of the 

task. In the context of this ceiling effect and the resulting insensitivity, it was unsurprising that 

there was no evidence from this analysis of errors to support the finding from the RT analysis 

that the ASC group benefitted from general practice more than the TD group. 

There was also a small percentage of errors on the CC with the ASC group making 

significantly fewer errors than the TD group (TD: M = 6.93 %; ASC: M = 2.95 %; SED = 0.94 

%; U = 134.00, p < .001, d = 1.18). However, the difference in errors between trial-types has 

been found not to index learning on the CC task (e.g., Chun & Jiang, 1998; Chun & Jiang, 2003). 

This finding was replicated (Mean difference between trial-type = -0.13 %, SED = 0.28 %, t(51) 

= 0.47, p = .64, d = 0.06), and there was also no evidence of a group difference in this tendency 
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(TD: M = 0.08 %; ASC: M = 0.18 %; SED = 0.56 %; t(50) = 0.18, p = .86, d = 0.05). Therefore, 

the superior overall accuracy of the ASC group provided no evidence of differences in learning, 

and was instead probably a reflection of the finding that ASC individuals sometimes display 

Enhanced Perceptual Functioning (Mottron, et al., 2006). 

3.2. AGL and PCL Analysis 

In both AGL and PCL, the dependent variable was the percentage of correct answers 

given above the 50 % chance level during their respective test phases. For the AGL, an answer 

that accurately classified a string (‘Yes’ to grammatical strings and ‘No’ to ungrammatical 

strings) was deemed correct. For the PCL, a guess that corresponded with the more likely 

outcome for that stimulus was judged correct. One-sample t-tests demonstrated the basic learning 

effect in both the PCL (M = 6.84 %, SEM = 1.36 %, t(51) = 5.05, p < .001, d = 0.70) and AGL 

(M = 3.28 %, SEM = 1.12 %, t(51) = 2.93, p = .01, d = 0.41). Independent sample t-tests on the 

group means provided no evidence of a difference between the groups for both the PCL (TD: M 

= 4.95 %; ASC: M = 8.74 %; SED = 2.68 %; t(41) = 1.41, p = .17, d = 0.39) and the AGL (TD: 

M = 3.35 %; ASC: M = 3.20 %; SED = 2.26 %; t(50) = 0.07, p = .94, d = 0.02). Furthermore, 

subsequent equivalence analyses (e.g., Rogers, et al., 1993) rejected the hypotheses of non-

equivalence (PCL: t(50) = 3.37, p < .01; AGL: t(50) = 4.49, p < .001; see Appendix B for more 

details of these equivalence analyses) and allowed the conclusion that the groups were 

statistically equivalent in their overall learning on each task. 

To consider the PCL performance in greater detail, percentage correct above chance was 

considered at different levels of stimulus-outcome probability. Figure 6 demonstrates that 

percentage correct increased with the stimulus-outcome probability, and that the two groups’ 

performance was closely matched. A mixed analysis of variance was conducted, with one 

between-subject factor of Group (ASC and TD) and one within-subject factor of Stimulus-

Outcome Probability (probabilities of .63, .67, .75, .83, .86 & .89). A main effect of Stimulus-

Outcome Probability (F(4, 185) = 3.72, p = .01, η2
p = .07) together with a significant linear 

contrast for percentage correct to increase with probability (F(1, 50) = 10.35, p < .01, η2
p = .17) 

established that participants learnt more about more likely outcomes, while there was no 

evidence of group differences (Group: F(1, 50) = 1.09, p = .30, η2
p = .02; Group x Stimulus-

Outcome Probability: F(4, 185) = 0.77, p = .54, η2
p = .02). The performance of participants 
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during the learning phase of the PCL was also considered, in order to investigate the 

development of the learning. Feedback was still provided during the learning phase, so stimulus-

outcome probability was not fixed and is not considered in this part of the analysis. However, for 

every trial included in this analysis, a stimulus was always more strongly associated with one 

outcome than the other, and therefore an assessment of performance during the learning phase is 

still meaningful. For this purpose, the learning phase was split into 4 blocks (excluding the first 

presentation of stimuli and any trial on which stimulus-outcome probability was 50 %): trials 1-

48, 49-96, 97-145, and 146-194. A mixed analysis of variance was conducted on the percentage 

correct above chance during the PCL learning phase, with one between-subject factor of Group 

(ASC and TD) and one within-subject factor of Block (Block 1-4). A main effect of Block (F(3, 

150) = 2.76, p = .04, η2
p = .05), together with a linear trend for performance to increase, showed 

that learning emerged across training. Again there was no evidence of any differences between 

the groups (Group: F(1, 50) = 0.76, p = .39, η2
p = .02; Group x Block: F(3, 150) = 0.02, p > .99, 

η2
p < .01). Additionally, a strategy analysis (e.g., Gluck, et al., 2002) was performed on this data, 

and demonstrated that the equivalent overall performance was also underpinned by a similarity 

in the implicit learning ‘strategies’ used by the groups (see Appendix B for details of this 

strategy analysis). 



CHAPTER III  83   
 

 

 

Figure 6. TD and ASC groups showed similar learning about more likely outcomes on the PCL 
task. Presented are mean percentage of correct guesses that were provided above chance by 
participants on the PCL test phase. This score is presented for the two groups at the different 
levels of stimulus-outcome probability. The error bars show twice the standard error of 
differences between group means at different levels of stimulus-outcome probability. 

3.3. PAL Analysis 

The dependent variable was the percentage of correct responses given during the test 

blocks. The provision of a word pair that corresponded with its cue constituted a correct 

response. Each test block was preceded by a learning block. Therefore, the increase in 

performance across test blocks represented an improvement in performance due to learning, see 

Figure 7. A mixed analysis of variance, with one between-subject factor of Group (ASC vs. TD) 

and one within-subject factor of Block (4 levels) supported this interpretation: a main effect of 

Block (F(2, 102) = 80.73, p < .001, η2
p = .62), together with a significant linear contrast with 

performance increasing across blocks (F(1, 50) = 133.90, p < .001, η2
p = .73), established that 

learning had occurred. While the TD group numerically outperformed the ASC group on every 

test block, see Figure 7, there was no evidence for an effect of Group, (F(1, 50) = 1.30, p = .26, 

η2
p = .03) nor for an interaction of Group x Block (F(2, 102) = .62, p = .54, η2

p = .01). However, 
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subsequent equivalence analysis on overall test performance revealed there was also no evidence 

of equivalence (t(50) = 0.76, p = .22; see Appendix B for more details of this equivalence 

analysis). 

 

Figure 7. The TD group displayed a numerically, but not statistically, superior performance to 
the ASC group on the PAL task. Depicted are mean percentage of correct responses that 
participants from different groups provided on test blocks in the PAL task. The error bars show 
twice the standard error of differences between group means at different levels of block. 

To address the ambiguity presented by finding no evidence of either difference or 

equivalence in the analyses of the PAL, the possible role of IQ in the current implicit and explicit 

learning tests was considered. Specifically, a series of further analyses were conducted on all the 

tests but this time including an additional 5 children per group. While the addition of these extra 

children resulted in the same mean age and sex between groups, the groups were no longer 

matched on IQ (see ‘Entire Sample’ in Table 12 for participant characteristics). The analysis of 

the PAL data revealed that the ASC group performed worse than the TD group (TD: M = 50.70 

%; ASC: M = 39.41 %; SED = 5.39 %; main effect of Group, F(1, 60) = 4.39, p = .04, η2
p = .07), 

with the TD group outperforming the ASC group at every level. However, in contrast, all 
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analyses of all implicit learning tests on the entire groups unmatched for IQ showed an identical 

pattern of preservation of implicit learning to those conducted on the matched groups. 

Finally, there was one further finding that also suggested that explicit processing may be 

more problematic than implicit processing in ASCs. During the learning phase of the AGL, the 

mean number of errors that participants made before correctly reproducing each letter string was 

significantly greater in ASC than TD participants (TD: M = 1.00; ASC: M = 1.48; SED = 0.20; 

t(36) = 2.47, p = .02, d = 0.68). Unsurprisingly, this result was the same, although the effect was 

more pronounced, when the groups were unmatched for IQ. These errors are indicative of a 

participant’s ability to explicitly remember and reproduce letter strings in the short-term, and 

have been used previously as a measure of explicit processing that is related to IQ (e.g., A. S. 

Reber, et al., 1991). These explicit processes are separate to those processes mediating implicit 

learning performance on the test phase of the AGL (e.g., A. S. Reber, et al., 1991). Indeed, the 

errors were not related to implicit learning on the AGL task in either group even when the two 

groups were considered as the entire sample (see Table 12; TD: r = -.40, N = 31, p = .06, r2 = .16; 

ASC: r = .02, N = 31, p = .99, r2 < .01). 

3.4. Explicit Interviews 

Post-task questionnaires indicated that participants of both groups could not freely report 

what they had learnt on the CC, SRT, AGL and PCL tasks. No further attempts were made to 

establish quantitatively the extent to which the products of learning were consciously retrievable 

because it was feared such post-task probing would encourage explicit strategies on subsequent 

implicit learning tasks (e.g., Gebauer & Mackintosh, 2007). Also, consistent with the 

interpretation that performance was implicit on these versions of the implicit learning tasks, there 

was no evidence of a correlation between performance on the implicit learning tasks and IQ in 

neither the TD nor ASC group. This was true even when each of the two groups were considered 

as entire samples, who were not matched for IQ, and therefore contained a large range of IQs 

(see Table 12; TD: range of Pearson’s r = -.08 to .32, N = 31, ps > .05, r2 ≤ .10; ASC: range of 

Pearson’s r = .08 to .40, N = 31, ps > .05, r2 ≤ .16). 
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3.5. SCQ Analysis 

The relationships were analysed between scores on the SCQ and overall indices of 

learning from each task (the average proportional increase in RT differences across blocks was 

used for CC and SRT; mean percentage correct above chance during test phase was used for the 

AGL and PCL; mean percentage of correct responses given during test was used for the PAL). In 

the IQ-matched sub-groups (see Table 12) there was no evidence of correlation between SCQ-

scores and any of the learning tasks in either group (TD: range of Pearson’s r = -.24 to .27, N = 

19, ps > .05, r2 ≤ .07; ASC: range of Pearson’s r = -.23 to .20, N = 15, ps > .05, r2 ≤ .05). 

Similarly, there was no evidence of correlation between SCQ-scores and learning tasks in the 

entire sample of children, who were not matched for IQ (see Table 12; TD: range of Pearson’s r 

= -.27 to .28, N = 23, ps > .05, r2 ≤ .08; ASC: range of Pearson’s r = -.17 to .18, N = 18, ps > .05, 

r2 ≤ .03).  

4. Chapter Discussion 

Performance on the implicit learning tasks reported here is preserved in ASC. Implicit 

learning was intact across a number of tasks that differed in surface features, each feature being 

in some way relevant to certain features of ASC: the PCL had a social element to it, involving 

cartoon faces and characters; the SRT required motor coordination; the CC task involved 

perceptual processing of context; and it has been argued that the AGL’s artificial grammar is 

related to language (Gebauer & Mackintosh, 2010; Gomez & Gerken, 2000; Kaufman, et al., in 

press).Thus, in contrast to previous studies, Study II found no deficits in implicit learning in ASC 

and suggests that a general deficit in implicit learning processes is not present in ASC. 

Furthermore, implicit learning was not related to an index of ASC symptomatology, the SCQ 

(Rutter, et al., 2003). Together, these findings undermine the argument that such a deficit might 

play a key role in the social, communicative or motor impairments (L. G. Klinger, et al., 2007; 

Mostofsky, et al., 2000; Romero-Mungu a, 2008).  

These findings converge with other recent reports of intact implicit learning in ASC. For 

example, Barnes and colleagues, (2008) found preservation on the SRT and CC; Kourkoulou, 

Findlay, and Leekam (2010) on the CC; Travers, Klinger, Mussey, & Klinger (2010) on the SRT. 

Further, it is consistent with intact performance on related incidental procedures such as implicit 
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memory and priming (Bowler, Matthews, & Gardiner, 1997; Gardiner, Bowler, & Grice, 2003; 

Renner, Klinger, & Klinger, 2000).  

This raises the question of possible reasons for the discrepancy with other studies that 

have reported implicit learning deficits (Gordon & Stark, 2007; L. G. Klinger & Dawson, 2001; 

L. G. Klinger, et al., 2007; Mostofsky, et al., 2000). One possibility that has been suggested by 

others is that the observation of intact implicit learning has been obscured in some studies as a 

consequence of poor matching of IQ between the group with ASC and comparison groups 

(Soulières, Mottron, Saumier, & Larochelle, 2007). For example, in those studies in which 

deficits have been reported, the groups of children with ASC had overall lower IQ scores 

(Gordon & Stark, 2007; L. G. Klinger & Dawson, 2001; L. G. Klinger, et al., 2007; Mostofsky, 

et al., 2000), raising the possibility that the deficit in implicit learning resulted from reduced 

overall general mental functioning. Interestingly, I did not find support for this possibility in 

Study II: when I included further individuals in the analysis, such that the ASC group’s average 

IQ score was lower than that of the typically developing group (see Table 12), the evidence of 

intact implicit learning in the ASC group remained. In direct contrast, comparing these two 

larger groups unmatched for IQ revealed deficits in ASC in explicit learning (PAL task). This 

observation suggests two important points. First, it reinforces the finding that IQ and explicit 

learning are intimately related, while implicit learning is relatively independent (e.g., Carroll, 

1993; Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in press; A. S. Reber, et al., 1991). 

Second, the intact implicit learning observed in this study cannot be accounted for by IQ or 

compensations for poor implicit learning by the use of explicit strategies (cf L. G. Klinger, et al., 

2007). 

Another strong possibility is that the discrepancy between recent studies and the earlier 

ones reporting a deficit in implicit learning results (at least in part) from differences in the 

particulars of the tasks and stimuli employed, rather than from genuine differences in implicit 

learning between children with and without ASC. In particular, studies that have documented 

impairment in implicit learning have used procedures that seemed to have allowed for the greater 

use of explicit strategies (e.g., long response-to-stimulus intervals and deterministic sequences on 

the SRT, Gordon & Stark, 2007; Mostofsky, et al., 2000; non-probabilistic category learning, L. 

G. Klinger & Dawson, 2001; L. G. Klinger, et al., 2007). When both children with ASC and TD 

children use explicit, rather than implicit strategies, to solve the tasks, then the impairments in 
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the groups with ASC may well be accounted for by a poorer explicit, rather than implicit, 

learning performance. This seems a particularly compelling explanation given that 1) explicit, 

but not implicit, learning is closely related to IQ, 2) these studies reporting deficits included 

groups of children with ASC with lower IQ than the comparison groups, and 3) the current 

finding that children with ASC with lower overall IQ than TD children showed deficits in 

explicit learning in the entire sample analysis of explicit learning. Further, the current results also 

demonstrate that when implicit learning procedures are used that better prevent explicit strategies 

from emerging, preservation is found regardless of whether the groups are matched for IQ. 

Whether or not there is a negative effect of explicit strategies on implicit learning tasks that is 

independent of IQ and unique to ASC is not clear. For example, particularly dysfunctional 

strategies or a dysfunctional propensity to use such strategies in ASC would cause such an effect. 

The worse ASC performance on the explicit processing measure taken from the training phase of 

the AGL task would be consistent with this possibility. In order to examine this issue directly, 

Study III compared ASC individuals with IQ-matched TD individuals on an implicit learning 

task that encouraged explicit strategies. 

An issue that is worth emphasising is that on average the current ASC participants were a 

high-functioning group, as defined by IQ. While all the current results, and other studies (e.g., 

Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in press; A. S. Reber, et al., 1991), 

emphasise the independence of IQ from implicit learning, it is acknowledged that the interaction 

of low IQ and autism may be an exceptional case. Furthermore, it is now broadly recognised that 

high functioning individuals with autism may constitute one of several subgroups of individuals 

with autistic symptoms, and that the generalizability of research results from this subgroup to 

another is an issue that can only be assessed empirically and cannot be assumed. Unfortunately, 

previous studies of implicit learning in autism cannot inform the issue. First, it is not the case 

that all studies reporting ASC deficits in implicit learning used low-functioning ASC participants 

(L. G. Klinger, et al., 2007; Mostofsky, et al., 2000). Second and most important, although the 

only two studies to have included low-functioning ASC groups did both report deficits, they 

were also among those to be confounded by the use of groups unmatched for IQ and tasks that 

promoted explicit learning (Gordon & Stark, 2007; L. G. Klinger & Dawson, 2001). 

Finally, the proposal that implicit learning is intact in ASC seems to contrast with the real 

world difficulties that ASC individuals have with skills associated with an implicit acquisition, 



CHAPTER III  89   
 

 

such as language, social and motor skills. However, there are, of course, many other processes 

that might be different in ASC, which would be sufficient to disrupt the implicit acquisition of 

those skills, in spite of otherwise intact implicit learning mechanisms. As discussed by Meltzoff 

and colleagues, (2009) what children learn implicitly in the real world is the product of a 

complex interaction between a variety of influences, and is therefore not simply contingent upon 

the functioning of learning mechanisms.  

For example, one possibility is that the real-world ‘implicit’ impairments may result from 

a greater propensity for individuals with ASC to use explicit strategies rather than rely on 

implicit processing. Indeed, there is evidence that for the implicit acquisition of skills to proceed 

normally, implicit learning must not be out-competed or obstructed by explicit strategies (e.g., 

Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Foerde, Knowlton, & Poldrack, 2006; 

Gebauer & Mackintosh, 2007; Hoyndorf & Haider, 2008; Lieberman, et al., 2004; Lleras & Von 

Mühlenen, 2004; Poldrack & Rodriguez, 2004). Therefore, an ASC propensity to approach 

problems using explicit strategies might be sufficient to cause real-world impairment. In line 

with this possibility, there is evidence that ASC individuals are prone to completing learning 

tasks more explicitly than TD individuals (Gidley Larson & Mostofsky, 2008; L. G. Klinger, et 

al., 2007). In addition to this direct evidence, there are many other studies showing that ASC 

individuals are more prone to solving tasks explicitly (e.g., Theory of Mind performance is 

mediated explicitly in ASC Happé, 1995; Hill & Frith, 2003). Therefore if, as I have suggested, 

explicit strategies are overused, then these strategies may interfere with the capacity to learn 

language, social and motor skills implicitly. This interference would be particularly pronounced 

if this imbalance was combined with the use of atypical explicit strategies during learning. I have 

argued above that atypical explicit strategies may exist in ASC and I directly examined the 

possibility in Study III. 

In conclusion, the current data together with that from a number of other researchers 

(Barnes, et al., 2008; Kourkoulou, et al., 2010; Travers, et al., 2010) suggest that individuals with 

ASC can learn implicitly, and that it is unlikely that such processes are directly responsible for 

related real-world impairments in language, social and motor skills. It was acknowledged that 

ASC deficits on implicit learning tasks have also been documented but it was argued that this 

was due to differences in task procedures, in particular, procedures that promoted the use of 

explicit strategies and therefore disadvantaged the ASC groups that were not matched for IQ. In 
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order to determine whether those previously identified implicit learning deficits in ASC resulted 

just from differences IQ, or whether there was also a contribution from an ASC difficulty in 

explicit learning, Study III compared ASC individuals with IQ-matched TD individuals on an 

implicit learning task that encouraged explicit strategies. 
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IV. Explicit Learning on a Simple ‘Serial Reaction Time’ Task in 
Autism Spectrum Conditions: Study III & IV 

1. Introduction 

Implicit learning is thought to be one important mechanism for acquiring social, 

communicative and motor skills (e.g., Kaufman, et al., in press; McLeod & Dienes, 1993; 

Meltzoff, et al., 2009; Perruchet, 2008; A. S. Reber, 1993). Since Autism Spectrum Conditions 

(ASC) are characterized by social, communicative and motor impairments (American Psychiatric 

Association, 1994) researchers have argued that those impairments in ASC may arise, in part, 

from a general deficit in implicit learning (L. G. Klinger, et al., 2007; Mostofsky, et al., 2000; 

Romero-Mungu a, 2008). Indeed, initial empirical studies supported the theory by reporting 

deficits on a number of implicit learning procedures, including SRT tasks, (Gordon & Stark, 

2007; Mostofsky, et al., 2000); Category Learning tasks, (L. G. Klinger & Dawson, 2001); and 

AGL tasks, (L. G. Klinger, et al., 2007). However subsequently, there have been several studies 

arguing that implicit learning is actually intact in ASC. Study II reported equivalent performance 

between TD and ASC groups on the AGL, CC, Probabilistic Classification Learning, SRT tasks, 

while other researchers have also reported intact ASC performance on the CC and SRT tasks 

(Barnes, et al., 2008); CC task (Kourkoulou, et al., 2010); and SRT task (Travers, et al., 2010). 

In Chapter III it was argued that one possible reason for the discrepancy between studies 

finding a deficit and those studies that did not was differences in the particulars of the tasks and 

stimuli employed, rather than from genuine differences in implicit learning between children 

with and without ASC. In particular, those studies documenting impairments in implicit learning 

tended to use procedures that allowed for the greater use of explicit strategies. For instance, some 

arranged deterministic sequences with long response-to-stimulus intervals on the SRT task 

(Gordon & Stark, 2007; Mostofsky, et al., 2000); asked participants to learn about non-

probabilistic categories (Klinger & Dawson, 2001); or used shape- rather than letter- stimuli on 

the AGL task (Klinger, et al., 2007; see Chapter III.1, for more a detailed discussion as to why 

these procedures encourage explicit strategies). The argument is that when both children with 

ASC and TD children use more explicit strategies to solve the tasks, then the impairments in the 
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groups with ASC may well be accounted for by a poorer explicit, rather than implicit, learning 

performance. This interpretation is supported by the fact that researchers found no performance 

differences between TD and ASC children when they used procedures that did not promote such 

explicit strategies (e.g., Study II , Barnes, et al., 2008; Kourkoulou, et al., 2010; Travers, et al., 

2010). 

Reviewing these studies establishes that ASC learning deficits have only resulted when 

explicit strategies were encouraged. The natural conclusion might be that there is an ASC 

explicit learning deficit. However before coming to that conclusion, it is critical to note that in all 

those studies reporting deficits the groups of children with ASC also had overall lower IQ scores 

(Gordon & Stark, 2007; L. G. Klinger & Dawson, 2001; L. G. Klinger, et al., 2007; Mostofsky, 

et al., 2000). Therefore, the ASC groups showing poorer performance were unduly 

disadvantaged by being of lower general mental ability than the comparison group. This is a 

particularly compelling explanation given that explicit (in contrast with implicit) learning is 

closely related to IQ (e.g., Carroll, 1993; Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in 

press; A. S. Reber, et al., 1991). Indeed, Study II found that performance on an explicit Paired 

Associates Learning task was not significantly different between the ASC and TD groups as far 

as they were matched for IQ, but that an ASC deficit in explicit learning performance emerged 

when the full (non-IQ-matched) samples were considered. Thus, the available evidence is at least 

consistent with the interpretation that performance differences simply resulted from differences 

in the IQs of the groups.  

However, there are, in fact, persuasive reasons for supposing there might be atypical 

explicit processing in ASC individuals that are independent of IQ, and which could impact 

negatively on certain implicit learning procedures. First, there is evidence of dysfunctional 

explicit strategies during explicit tasks. For example, in Study II an IQ-matched ASC group were 

significantly worse than the typical group on the explicit memorisation phase of the AGL task, 

and there was also a trend for those ASC participants to perform worse on the explicit Paired 

Associates Learning task.  

Second and more generally, there are findings and theories that suggest that the processes 

supporting explicit learning could be impaired in ASC. Explicit learning requires flexibility and 

intentional processing (Cleeremans & Jiménez, 2002), and a large body of research in ASC has 

reported impairments in executive planning (Hill, 2004; O'Hearn, Asato, Ordaz, & Luna, 2008; 



CHAPTER IV  93   
 

 

Russell, 1997a); action in accordance with goals (Crane & Goddard, 2008; Toichi, et al., 2002); 

integrating the larger context (Frith, 2003; Happé & Frith, 2006; Loth, Gómez, & Happé, 

2008b); using prior knowledge (Loth, Gómez, & Happé, 2008a; Mottron, et al., 2006); deploying 

intentional/voluntary attention (Leekam & Moore, 2001); and in understanding own and others’ 

minds and intentions, (Baron-Cohen, Tager-Flusberg, & Cohen, 2000; Frith, 2001).  

The aim of the present study was therefore to determine whether the differences arising 

between ASC and TD individuals in an implicit learning task that encourages explicit processes 

could be observed independently of IQ, and could be attributed to an atypical way of processing 

explicit knowledge. The study used a simple sequence learning procedure that has been found to 

result in a considerable amount of explicit knowledge. This SRT procedure was combined with a 

contextual cueing task that provides an indirect, ongoing index of the extent to which sequence 

learning is explicit (see below). The idea was that if previous ASC deficits on implicit learning 

procedures that encouraged explicit processing were due to lower IQ in the ASC groups, then 

there should be no difference in performance in the current IQ-matched groups. However, if 

those previous ASC deficits were due to atypical explicit processing while solving the implicit 

tasks, then the performance of the current ASC group should still show some deficits when 

compared with the current IQ-matched TD group.  

1.1. Sequence Learning and Contextual Cueing 

In order to determine whether ASC deficits on implicit learning tasks that encourage 

explicit processes can be observed independently of IQ, the SRT was an ideal task for three 

reasons. First, and most importantly, the literature on sequence learning in ASC conforms to the 

literature review above about implicit learning procedures, ASC deficits and explicit strategies. 

Specifically, there have been two studies that used SRT procedures that encouraged explicit 

processes (both used slowly repeating deterministic sequences) that have both identified a deficit 

(Gordon & Stark, 2007; Mostofsky, et al., 2000), but in those two studies participants were also 

not matched for IQ. In contrast, there are other studies that used quickly repeating probabilistic 

sequences, and which matched both groups for IQ, and none of them found significant deficits in 

ASC performance (Study II, Barnes, et al., 2008; Travers, et al., 2010). Therefore, it is necessary 

to determine whether the ASC deficits obtained in the first two studies of SRT, which 

encouraged explicit strategies, would have still arisen if the two groups were matched for IQ; in 
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other words, to determine whether there was an independent contribution to ASC deficits on 

SRT procedures encouraging explicit strategies from atypical explicit processing in ASC.  

Second, the conditions that make learning more explicit and less implicit, and vice versa, 

have been thoroughly researched: several studies have established that procedures involving 

slowly repeating, so-called ‘deterministic sequences’ (i.e. sequences that follow a continually 

and slowly repeating sequence without interruption) encourage the development and use of 

explicit strategies to solve the task (e.g., Destrebecqz & Cleeremans, 2001, 2003; Norman, et al., 

2007). 

The third reason for using the SRT task relies on the recent development of an adaptation 

to the SRT task. The adaptation can be used to provide an ongoing assessment of the extent to 

which the sequence learning is explicit. Jiménez and Vázquez (in press) recently demonstrated 

that the sequence learning effect can be acquired and expressed in the context of a search task. 

Further, they showed that, if the search contexts contain information about the location of the 

target, then a contextual cueing effect can be acquired and expressed alongside the sequence 

learning effect. Jiménez and Vázquez adapted the basic contextual cueing procedure to fit with a 

SRT task by using four different responses instead of the usual two-alternative task. In a series of 

experiments to investigate the dual contextual cueing and sequence learning effect, the authors 

established that when the sequence learning was implicit then both implicit contextual cueing 

and sequence learning effects emerged. The sequence learning was considered implicit because 

probabilistic sequences were used and this was verified by participants’ inability to explicitly 

generate examples of the sequence in a post-test generation task. In contrast, in another condition 

in which participants were required to learn deterministic sequences, the contextual cueing effect 

was substantially attenuated. Deterministic sequences were intended to encourage the use of 

explicit learning strategies. This was confirmed by the ability of the participants to explicitly 

generate the sequence that had occurred during a post-test generation task. Thus, only when the 

learning and use of sequence information had been more explicit was the contextual cueing 

effect suppressed. This interpretation was supported by the fact that the contextual cueing effect 

was reinstated in a test block when the relevant deterministic sequence was removed. The 

suppression of the contextual cueing effect therefore reflected the fact that participants were able 

to respond on the basis of their explicit sequence knowledge, and hence no longer needed to 

process the context.  



CHAPTER IV  95   
 

 

Study III used this same modification of the CC task to determine the stage at which the 

two groups explicitly learnt and applied sequence information, by comparing the stage at which 

the groups withdrew their processing of the context. Prior to learning the sequence information 

sufficiently explicitly, learning of the sequence will be implicit and should therefore be 

accompanied by unattenuated contextual cueing. Important to the validity of the use of this 

manipulation for Study III, it has previously been demonstrated that there is intact implicit 

learning performance in ASC individuals on the standard, unmodified CC-task (e.g., Study II, 

Barnes, et al., 2008; Kourkoulou, et al., 2010). It is predicted that if previous poor performance 

in tasks involving both implicit and explicit learning is due to a deficit in explicit learning, then 

the performance of children with ASC would take longer to be dominated by explicit processing, 

and would instead learn implicitly for an extended period. Therefore, I expected this weaker 

explicit learning and continued implicit learning to be manifest in ASC by a reduction in the 

typical attenuation of the contextual cueing effect. 

As already discussed, learning on certain implicit learning procedures can sometimes be 

more explicit than is typical and it is therefore important to include measures to assess the nature 

of the learning displayed. Study III included three means of assessing the extent to which 

knowledge was explicit: a sequence validity manipulation during the test block; generation tasks 

(Chun & Jiang, 2003; Jiménez & Vázquez, in press); and subjective measures, such as 

confidence ratings and judgments (Dienes, 2008; Dienes, et al., 1995).6 

In summary, Study III compared children with ASC and typical children closely matched 

for IQ on a hybrid SRT-CC task that assessed the extent to which performance was dominated by 

explicit processing. To anticipate the result, there was reduced attenuation of the contextual 

cueing effect at the outset of learning in the ASC group compared to the TD group, suggesting 

initially reduced explicit processing of the sequence. A second study, Study IV, replicated the 

difficulty in explicit processing while exploring possible reasons for its existence. Specifically, 

                                                 
6An exclusion generation task was designed and programmed, and it was intended that all participants 

would complete the task at the end of Study III as another assessment of the degree to which SRT knowledge was 

explicit. However, testing sessions were limited to one hour, and this task was presented last. Consequently, some 

participants did not reach that part of the experiment. Given the number of alternative explicit learning measures, the 

partial results were disregarded. A similar time constraint was envisaged for Study IV, and therefore the exclusion 

generation task was not included in the programme. 
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the study examined whether the difficulty resulted from slower explicit learning about the 

sequence or from difficulties in applying explicit knowledge of the SRT sequence.  

2. Study III 

2.1. Method 

2.1.1. Participants 

16 children with ASC (referred to as the ASC group) and 16 Typically-Developing 

children (referred to as the TD group) were included in the study. All children in the ASC group 

met established criteria for ASC, such as those specified in DSM-IV (American Psychiatric 

Association, 1994) and had previously received a diagnosis for ASC by trained clinicians using 

instruments such as the Autism Diagnostic Interview (Le Couteur, et al., 2003). Any other 

psychiatric diagnosis acted as an exclusion criterion for both the ASC and TD group. Table 14 

presents the participant characteristics for each group. The two groups of children were matched 

for sex (16 males), chronological age (t(30) = 1.85, p = .07, d = 0.66) and IQ (t(30) =0 .05, p = 

.96, d = 0.02) of the Wechsler Abbreviated Scale of Intelligence (WASI: Wechsler, 1999), see 

Table 14. Informed parental consent and the assent of the children were obtained, and ethical 

permission to conduct the study received from the Cambridge Psychology Research Ethics 

Committee. 12 of the parents of children with ASC and 14 of the parents of TD children 

completed the Social Communication Questionnaire (SCQ: Rutter, et al., 2003). The SCQ is a 

screening tool for autism, which comprises 40 items derived from the ADI-R. The raw scores on 

the SCQ were converted into percentage scores. All the children in the TD group had scores 

below the cut-off score of 38.46 % specified by Rutter and colleagues, see Table 14. Further, the 

highest score for the TD group was 8.35 standard deviations below the mean of the ASC group. 
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Table 14. Mean Age (in years), WASI IQ Scores and Social Communication Questionnaire 
(SCQ) Scores (percentage) for the ASC and TD Groups 

Measure Study III  

 TD (N = 16)  ASC (N = 16)  

 M SD R  M SD R  

Chronological age 12.3 0.9 10.8 – 13.4  12.9 0.9 11.9 – 14.7  

Full-scale IQ 105.4 10.1 84 – 119  105.2 11.6 86 – 128  

 TD (N = 14)  ASC (N = 12)  

SCQ Score  7.7 5.6 0 – 18.0  65.0 12.3 38.46 – 82.0  

2.1.2. Apparatus and materials 

A fourteen-inch LCD Windows notebook computer was used for all the computerised 

testing. Responses were recorded using the notebook’s keyboard. All parts of the computerised 

task were programmed using INQUISIT 2.0.6, which provides millisecond timing accuracy (De 

Clercq, Crombez, Buysse, & Roeyers, 2003). 

The stimuli consisted of a set of coloured digits printed in Garamond font, 1.3 cm high x 

0.8 cm wide, over a grey background, see Figure 8. Target stimuli were even numbers (2, 4, 6, 8) 

presented in one of four possible colours (red, blue, green, or yellow). The target appeared on 

each trial at one of the 16 locations defined by an invisible 4 x 4 matrix, 9.2 cm wide x 9.4 cm 

high, accompanied by seven distractors. Distractors were odd numbers (1, 3, 5, and 7) but within 

a trial, all had the same numerical identity. Distractor colour and location was chosen so that on 

each trial there were two stimuli of each colour, with stimuli evenly distributed over the four 

quadrants of the display and filling 8 out of 16 possible stimuli locations. Vertical and horizontal 

lines divided the matrix into four quadrants. Between neighboring slots there was a horizontal 

separation of 2.1 cm and a vertical separation of 1.5 cm. 
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Figure 8. Illustration of 8 successive trials from the SRT-CC hybrid task. The above sequence of 
8 even number targets was one of the training sequences used. 7 possible contexts (combinations 
of distractor position, colour and identity) are presented above. One context is repeated on the 
first and seventh trials presented. 

2.1.3. Design and Procedure 

 General 

Participants responded as quickly and as accurately as possible according to the identity 

of the even number (2, 4, 6, and 8) by pressing the keys V, B, N, M, respectively, with the 

middle and index fingers of each hand. Training consisted of 1152 trials, divided into 12 blocks 

of 96 trials. At the start of each block, the solid lines creating the quadrant (see Figure 8) were 

presented and remained on the screen for the entire block. Each trial then began with the 

presentation of distractors and target. The stimuli all remained on screen until the participant 

responded correctly; if a participant responded incorrectly the word “Error” appeared in red at 

the top of the screen and remained with the rest of the stimuli until the correct response was 

provided. The next trial began after a response-to-stimulus interval of 200 ms. Between blocks, 

the experimenter provided participants with feedback about their accuracy and reaction times 

(RTs). Training was preceded by a short practice block, after which it was ensured that the 

participant had understood the demands of the task.  

The location of the target was decided randomly without replacement over successive 

series of 16 trials. Therefore, effectively each block was comprised of 6 series of 16 trials. After 

a series of 16 trials, the next trial could appear at any other location except at the location 

sampled on the previous trial. Distractor identity was pseudo-randomly chosen for each trial 
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from the set so that each distractor-type appeared equally often. The seven distractors plus the 

target stimulus were coloured and located pseudo-randomly for each trial, so that two of them 

were drawn in each possible colour (red, blue, green, and yellow), and two items were located in 

each one of the four matrix quadrants, see Figure 8. 

 Sequence information 

With the exception of the 8-trial practice block, the identity of the target repeatedly 

followed a deterministic 8-digit sequence (either sequence-a: 2-6-4-8-2-6-8-4 or sequence-b: 2-4-

6-8-2-4-8-6) and therefore required a repeated sequence of responses. This was true of all blocks 

except for block 11. Block 11 was the test block; on half the trials of this block the sequence 

followed the control sequence. The control sequence was always the sequence to which 

participants had not previously been exposed during training. Which of the two sequences was 

the main and which was the control was counterbalanced, in order to prevent the possibility that 

one of the sequences would produce faster responses just because certain transitions (i.e. the 

movement between two required responses in a sequence,) were more comfortable than others. 

Further, both sequences were structurally analogous. Each sequence compromised two 

presentations of each digit and had only one unique transition, which allowed participants to 

predict the next event by considering the identity of the previous target (e.g., in sequence-a, the 

two presentations of target 2 were followed by 6, and in sequence-b, the two presentations of 2 

were followed by 4). The two repetitions of these unique transitions were separated by two 

intervening events, which gave rise to six ambiguous transitions (i.e., transitions in which a 

single event predicted a different successor on each of its occurrences, as it is the case, for 

instance, of target 6, which was followed by items 4 or 8 in sequence-a, and by items 2 or 8 in 

sequence-b). No immediate repetitions (e.g., 6-6) or reversals (e.g., 6-2-6) were allowed within 

either sequence. Sequences a and b had three transitions in common, but they differed in their 

unique transitions, and in half of their ambiguous transitions. 

During the 11 training blocks (i.e., blocks 1 to 10 and block 12) the training sequence 

repeated 12 times. Test block 11 contained six repetitions of the training sequence, randomly 

interspersed with six repetitions of the control sequence. To make sure that the transitions 

between training and control sequences were made in accordance with the second-order 

transitions stipulated by the upcoming sequence, the starting (and therefore the end) point of the 
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test block was not selected at random. Instead, the beginning was chosen so that the outgoing 

sequence ended on a digit (e.g., 4) such that the next digit created a transition that was legal for 

both sequences (e.g., 4-8). Therefore, the transition from one sequence to the other was legal 

according to the outgoing sequence and consistent with a second-order transition stipulated by 

the upcoming sequence. The order participants received the training and control sequence during 

the test block was fixed to allow a more accurate between-group comparison, but 

counterbalanced across participants to minimise any order effects. 

To assess sequence learning indirectly, RTs in response to control-sequence trials over 

test block 11 were compared with the average RTs in response to training-sequence trials over 

the neighboring training blocks 10 and 12. In a test phase design, this represents the fairest and 

most common assessment of learning because using the average performance from two blocks 

equally before and after the test block controls for the effects of practice (Jiménez & Vázquez, 

2008). Direct comparison with RTs on training-sequence trials within the same test block would 

not have been fair because the validity of the sequence information on that block has been 

compromised, and could have negatively impacted upon the application of the sequence 

knowledge (Jiménez, et al., 2006). However, a number of trials structured according to the 

training sequence were included within the test block for another reason: to assess the relative 

flexibility of the acquired knowledge. Jiménez and colleagues (2006) showed that only 

participants with explicit knowledge of a sequence noticed that their knowledge was no longer 

valid over such a test block. Participants with explicit sequence knowledge stopped using that 

knowledge to speed responding on trials in which the training sequence was presented in the test 

block, in order to avoid being misled by irrelevant knowledge when the training sequence was 

not present in that test block. Thus, the explicitness of knowledge was indirectly assessed by 

measuring the participants’ sensitivity to such a decrease in the validity of sequence information 

during the test block.  

 Contextual information 

The precise combination of location, identity and colour of distractors created a context 

for the location of the target on each trial. 40 such combinations were generated and each context 

was always associated with the same target location but a changing target identity. 8 ‘high-

frequency’ contexts were repeated frequently (6 times a block), while the remaining 32 ‘low-
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frequency’ contexts were repeated infrequently (on average 1.5 times a block). Each high-

frequency context was associated with a unique target location, while sets of 4 low-frequency 

contexts were each associated with a different one of the remaining 8 possible target locations. 

Of the sets of 4 low-frequency contexts associated with a given target location, each context was 

characterized by a different distractor identity, as well as by a different distribution of locations 

and colours. Similarly, of the 8 high-frequency contexts, two contexts contained 1’s, two 

contained 3’s, two contained 5’s and two contained 7’s and were each characterised by a 

different distribution of distractor locations and colours. Thus, all target locations were equally 

cued, and all distractor identities, colours and locations were equally present. However, only the 

precise combination of distractor location, identity and colour of a high frequency context 

provided a unique cue to a target location, which, in addition to the more regular occurrence of 

high-frequency contexts, helped participants to respond faster to the numerical identity of the 

targets among high, in contrast with low, frequency contexts. Which 8 of the 16 locations were 

predicted by the high-frequency contexts and which by the low-frequency contexts was 

counterbalanced, together with the corresponding exact composition of the 40 contexts (8 high 

and 32 low). Trials with high frequency and low frequency contexts were randomly intermixed 

across all trials but this order was then fixed to minimise the noise in the crucial between group 

comparisons. 

Learning was indirectly indexed by comparing reaction times on high vs. low frequency 

context trials. If participants were cued to the target location by the contextual information, then 

across the blocks participants would have responded progressively faster to high as compared to 

low frequency context trials. Also, the effect of contextual cueing over the sequence test block 

11 and neighboring blocks 10 and 12 was assessed separately, to ascertain whether the change of 

sequence over these blocks affected contextual cueing. 

 Post-task measures 

Subsequent to block 12, direct measures of contextual cueing and sequence learning were 

presented with the order counterbalanced across participants. To assess explicit contextual 

cueing knowledge, participants were instructed to guess the location of the target in a task in 

which the high-frequency contexts were presented, but in which the target was replaced by an 

additional distractor (Chun & Jiang, 2003; Jiménez & Vázquez, in press; c.f., Smyth & Shanks, 
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2008). If contextual cueing was implicit (or had not occurred), then participants should not be 

able to guess the correct location above the chance level. Following the suggestions of Smyth 

and Shanks (2008), two presentations of each repeated context were included, instead of a single 

one, so as to improve the sensitivity of the location guessing task. Additionally, 8 novel displays 

were also presented twice each. Rather than guessing the specific location of the removed target, 

participants were only instructed to guess the quadrant at which it would have appeared in that 

particular context. Responses were issued by pressing the keys F, V, K, M to indicate the upper 

left, lower left, upper right, and lower right quadrants respectively. To assess the extent of the 

explicit knowledge, the proportion of correct responses produced on high-frequency trials was 

compared with that on novel-context trials.  

For sequence learning, a cued generation task comprised of 24 generation blocks was 

included. Each generation block consisted of 3 trials. The first two trials of each block were 

exactly the same as those presented over training. On the third, however, the target was removed 

and replaced by another distractor. Participants were asked to guess the identity of the removed 

target by relying on the target identity of the previous two trials. The first two trials of each block 

constituted one of the 12 possible two-trial fragments that could have appeared during the 

training or test blocks, and participants were instructed to respond to them as they had in the SRT 

task. Each of the 12 possible two-trial fragments was presented twice, totaling 24 generation 

tests. The targets were presented in low-frequency contexts, in order to enhance task sensitivity 

by keeping the generation trials as similar as possible to the main task. To assess the extent of 

explicit sequence knowledge, the proportion of prediction trials on which participants correctly 

generated a successor corresponding to the training sequence was compared with that on the 

control sequence. At the start of this generation task, the importance of accuracy over RTs was 

emphasized for the third prediction trial, and no feedback was provided on the accuracy of their 

generation responses. Finally, at the end of all testing, children were asked to report the entire 

sequence as accurately as possible. 

For both SRT and CC generation tasks, the order was generated pseudo-randomly such 

that each trial had appeared once before any of the trials appeared for the second time, and was 

then fixed across participants to minimize noise for the between-group comparison. 

In accordance with the recommendations of Smyth and Shanks (2008), prior to each of 

the contextual cueing and sequence learning generation tasks, participants were asked direct 
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awareness questions about the presence of contextual and sequential information respectively. 

Before the contextual cueing generation task, participants were asked on-screen, “During the 

experiment, do you think that any of the displays of odd numbers were repeated?” Those who 

answered positively received a follow-up question: “Approximately, when did you begin to 

notice this repetition?” Using a slider labeled from 1 to 12, participants estimated the block in 

which awareness occurred before finally being asked, “After you realized particular displays of 

odd numbers were being repeated, did you try to memorize these displays?” Following these 

questions and before beginning the generation task, all participants were informed that “the 

displays of odd numbers were repeated”. Before the sequence learning generation task, 

participants were asked on-screen “During the experiment, do you think that there was any 

sequence or pattern to the order in which you pressed the keys?” Those who noticed a repetition 

received a follow-up question: “Approximately, when did you begin to notice this sequence or 

pattern?” Using a slider labeled from 1 to 12, participants estimated the block in which 

awareness occurred before finally being asked, “After you realized there was a sequence or 

pattern to the order in which you pressed the keys, did you try to memorize this sequence or 

pattern?” Following these questions and before beginning the generation task, all participants 

were informed that there was “a sequence to the order in which you pressed the even numbers”. 

There was also one direct question asked after both the generation tasks were completed: 

participants were told, if possible, to reproduce the sequence from the experiment. 

Finally, in accordance with Dienes and colleagues’ (Dienes, 2008; Dienes, et al., 1995) 

research on dissociating implicit and explicit performance, subjective measures of awareness 

were also included during the generation tasks. Following each generation response, participants 

classified their answer as either "A complete guess", "A feeling/intuition", "A 

memory/knowledge" and rated how confident they were their answer was correct using a 1 to 7 

confidence scale with the anchors 1 = "Completely uncertain", 4 = "Moderately certain", 7 = 

"Completely certain". According to Dienes’ ‘zero-correlation criterion’ implicit knowledge 

exists if there is no relationship between confidence and performance, while his ‘guessing 

criterion’ states that implicit knowledge exists if a participant’s performance is above chance 

even when they claim to be guessing. 
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2.2. Results 

First trial data were excluded from the main task (blocks 1-12) for all RT analyses of the 

SRT task because meaningful assessment can only occur when the stimuli have been presented 

sequentially. RTs on error trials were discarded for all RT analyses. For all analyses, the alpha 

level was set at .05, two-tailed and extreme outlying RTs (values either less than three times the 

interquartile range below the lower quartile, or greater than three times the interquartile range 

above the upper quartile) were excluded. Where relevant, the appropriate epsilon correction was 

used when sphericity was violated. Šidák corrections were used to control for familywise error 

rates during multiple comparisons. Where significant interactions were found in the mixed 

analyses of variance, separate ANOVAs were conducted on the levels of interest to establish 

simple effects. When conducting independent sample t-tests, equal sample variances were 

assumed unless Levene’s test for the equality of variances was significant. Cohen’s d is reported 

as a measure of effect size except where relative measures of effect size are more appropriate, 

and then partial eta-squared (η2
p) is reported.  

For the SRT task, both RT and accuracy provided indices of learning. RT and accuracy 

data were subjected to similar analyses. However, the results of the two analyses were entirely 

consistent with one another, and thus it was deemed unnecessary to report both analyses. Since 

accuracy is a relatively insensitive index of learning on the SRT (e.g., Study II), no analysis of 

the accuracy data is reported here beyond the finding that overall accuracy was similar between 

the groups (TD: M = 93.48 %, SEM = 1.24 %; ASC: M = 94.05 %, SEM = 1.02 %; t(30) = 0.36, 

p = .72, d = 0.13; see Appendix B for the full accuracy analysis). 

2.2.1. Sequence learning 

 Training: Block 1-10 

Figure 9 represents the mean RT at each level of block for each of the two groups. There 

was a decrease in RTs as participants progressed through the blocks. This improvement in 

performance could reflect increasing skill with general practice of the task together with 

acquisition of sequence learning. A mixed analysis of variance, with one between subject factor 

of Group (ASC vs. TD), and one within subject factor of Block (1-10), confirmed this effect of 

Block (F(3, 99) = 79.43, p < .001, η2
p = .73). There was no evidence of a Group effect (F(1, 20) 
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= 0.93, p = .34, η2
p = .03) and the interaction did not reach significance (F(3, 99) = 2.11, p = .10, 

η2
p = .07). The numerical difference between groups in early blocks of trials is consistent with 

the finding reported in Study II that ASC participants take longer than TD participants to benefit 

from the opportunity to generally practice the SRT task. Equally, the performance pattern in the 

ASC group may also reflect slower acquisition of the sequence learning. 

 

Figure 9. In Study III, TD and ASC groups displayed similar final sequence learning on the SRT 
task, as measured by the increase in RTs to the control sequence on the Test block compared 
with those on blocks 10 and 12. The final learning was also similarly explicit in the two groups, 
as measured by the increase in RTs to the training sequence presented with low global validity 
during the test block. There was an indication that the ASC group were initially slower than the 
TD group. Depicted are mean reaction times across the experiment for different groups. The 
error bars show twice the standard error of differences between group means at different levels 
of block. 

 Test: Block 10-12 

To specifically assess whether participants had learnt the sequence (without the 

additional effect of general practice that was also present during initial training blocks), 

performance was compared between training blocks 10 and 12 and in test block 11. Mean RTs to 

just the novel control sequences in test block 11 were compared with mean RTs to the training 

sequences averaged between the neighbouring blocks 10 and 12, in order to assess whether 

performance was disrupted on novel control sequences in test block 11. Indicative of sequence 

learning, responses were slower to control sequences on block 11 than across block 10 and 12. 
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The magnitude of this difference was comparable between the groups (TD: Mean difference (M) 

= 398.74 ms; ASC: M = 539.44 ms; SED = 137.45 ms). Consistent with this interpretation, a 

mixed ANOVA with factors of Group and Block (Control Sequences Block 11 vs. Block 10&12) 

confirmed the sequence learning effect with an effect of Block F(1, 30) = 46.59, p < .001). The 

ASC group were not significantly slower overall than the TD group (F(1, 30) = 3.79, p = .06, η2
p 

= .11). More importantly, there was a lack of evidence for an interaction between Group and 

Block (F(1, 30) = 1.05, p = .31, η2
p = .03), which was consistent with a final sequence learning 

effect that was similar between the groups.  

 Sequence validity: Block 10-12 

To assess whether this sequence learning was explicit, an indirect measure was taken 

comparing performance on the training sequence of Block 11 to that on the same training 

sequence in Blocks 10 and 12. If participants were explicitly aware of the sequence and thus 

surprised by the appearance of the novel control sequence in Block 11, then performance would 

be expected to be slower across all sequences in Block 11 relative to the familiar training 

sequence exclusively present in Blocks 10 and 12. Responses were indeed slower to the training 

sequence in Block 11 than in Block 10 and 12. The magnitude with which the RTs were slowed 

was similar between the groups (TD: Mean difference (M) = 281.69 ms; ASC: M = 207.26 ms; 

SED = 72.01 ms). A mixed ANOVA with factors of Group and Block (Training Sequences 

Block 11 vs. Block 10&12) revealed a main effect of Block F(1, 30) = 46.10, p < .001, η2
p = .61) 

and no significant effect of Group (F(1, 30) = 0.07, p = .80, η2
p < .01) nor interaction between 

Group and Block F(1, 30) = 1.07, p = .31, η2
p = .03). This analysis suggested that the learning 

was similarly explicit between the groups according to this indirect measure. 

 Post-task Tests: SRT Generation 

A direct measure of whether explicit sequence knowledge had been acquired was taken in 

an SRT generation task by comparing the percentage of correctly generated sequence fragments 

on training versus control sequences. Performance on the training sequence was superior to 

control sequence performance (Training: M = 67.19 %; Control: M = 47.10 %; SED = 4.55 %). 

This difference in performance between sequences was comparable between the groups (TD: 

Mean difference between Training and Control sequences (M) = 19.64 %; ASC: M = 20.54 %; 
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SED = 9.09 %). A mixed ANOVA with using factors of Group and Sequence (Training vs. 

Control) as factors revealed an effect of Sequence (F(1, 30) = 19.53, p < .001, η2
p = .39) but no 

significant effect of Group (F(1, 30) = 1.22, p = .28, η2
p = .04) nor interaction between Group 

and Sequence (F(1, 30) = 0.01, p = .92, η2
p < .01). This analysis suggested that the sequence 

learning of each group was explicit to the same extent. 

2.2.2. Contextual cueing  

 Training: Block 1-10 

Mean RTs to high- and low-frequency contexts were compared as a measure of 

contextual cueing. Figure 10 represents the mean difference between high- and low-frequency 

context trials in each block for both the groups. A difference score greater than zero indicates 

contextual cueing. In general, there appeared to be minimal contextual cueing during the training 

blocks 1-10, see Figure 10. A mixed ANOVA with factors of Group, Context (High vs. Low) 

and Block (1-10) as factors provided support for this interpretation. There was an effect of Block 

(F(3, 99) = 78.73, p < .001, η2
p = .72) but no significant effect of Context (F(1, 30) = 0.56, p = 

.46, η2
p = .02) or interaction between Context and Block (F(5, 152) = 1.26, p = .28, η2

p = .04). 

There was no significant effect of Group (F(1, 30) = 0.96, p = .34, η2
p = .03) or interaction of 

Group with any other factor (Group and Context: F(1, 30) = 0.11, p = .75, η2
p < .01; Group and 

Block: F(3, 98) = 2.11, p = .10, η2
p = .07). 
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Figure 10. In Study III, the ASC group showed an atypical attenuation of contextual cueing in 
the first two blocks of training. After this acquisition phase, both groups showed an extremely 
similar pattern and magnitude of contextual cueing; contextual cueing was attenuated in both 
groups until the test block, when training sequence knowledge was removed and invalidated, and 
consequently contextual cueing emerged. This re-affirmed the role of explicit sequence 
knowledge in suppressing contextual cueing throughout the rest of task. Presented are the RT 
differences between contexts across the task. The error bars show twice the standard error of 
differences between group means at different levels of block.  

Examination of Figure 10 indicated a numerical tendency for a lack of the typical 

attenuation of contextual cueing in the performance of the group with ASC in the earliest two 

blocks. Unsurprisingly, this was not supported by the presence of a three-way interaction (F(5, 

152) = 1.21, p = .31, η2
p = .04), as this difference was masked by the similarity of performance 

between the two groups in all later trial blocks. Given the prediction that atypical explicit 

processing in the ASC group may affect the typical attenuation of contextual cueing, the training 

data were separated into two groups of trial blocks and analysed further. The first group of trial 

blocks consisted of blocks 1 and 2; the second comprised trial blocks 3-10. 

For the first group of blocks (blocks 1 and 2), the TD group’s mean difference score was 

close to zero but the mean difference score in the ASC group was larger (TD: M = -8.21 ms; 

ASC: M = 34.12 ms; SED = 20.24 ms). This implied that there was contextual cueing in the ASC 

group, and that this was larger than the contextual cueing effect in the TD group who did not 

seem to have learnt about the contexts. This was supported by a mixed ANOVA with factors of 

-80

-60

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

R
T 

di
ffe

re
nc

e 
be

tw
ee

n 
co

nt
ex

ts
 (m

s)
 

Block 

TD

ASC



CHAPTER IV  109   
 

 

Group, Context and Block (1-2). The analysis yielded main effects of Group (F(1, 30) = 4.59, p 

= .04, η2
p = .13), Block (F(1, 30) = 23.96, p < .001, η2

p = .44) and an interaction between these 

two factors (F(1, 30) = 4.73, p = .04, η2
p = .14). There was no evidence of an effect of Context 

(F(1, 30) = 1.64, p = .21, η2
p = .05), or interaction between Context and Block (F(1, 30) = 0.79, p 

= .38, η2
p = .03). Of greatest importance was an interaction between Group and Context (F(1, 30) 

= 4.37, p = .05, η2
p = .13). Simple effects analysis, investigating the difference in responding to 

high vs. low frequency contexts in each group separately, established contextual cueing in the 

ASC group (F(1, 15) = 7.98, p = .01, η2
p = .35) in these initial two trial blocks, but provided no 

evidence for contextual cueing in the TD group (F(1, 15) = 0.26, p = .62, η2
p = .02). This analysis 

therefore confirmed that there was a contextual cueing effect over the first two blocks in the ASC 

but not the TD group. There was no evidence of a three-way interaction (F(1, 30) = 0.90, p = .35, 

η2
p = .03). 

The analysis of performance between blocks 3-10 examined contextual cueing during the 

main section of the task. On average, the differences between high- and low-frequency contexts 

were close to zero and this seemed true of both the groups (see Figure 10). This suggested that 

there was no contextual cueing effect in either group in this group of trial blocks. A mixed 

ANOVA, with factors of Group, Context and Block (3-10), confirmed this impression. There 

was no significant effect of Context (F(1, 30) = 0.10, p = .76, η2
p < .01), replicating the 

modulation of contextual cueing by the presence of explicit sequence learning demonstrated by 

Jiménez and Vázquez (in press), and the lack of evidence of an interaction between Group and 

Context (F(1, 30) = 1.24, p = .27, η2
p = .04) or Context and Block (F(5, 139) = 1.55, p = .18, η2

p 

= .05) suggested typical modulation of contextual cueing by explicit sequence knowledge in both 

groups during trial blocks 3-10. There was a main effect of Block (F(3, 101) = 27.11, p < .001, 

η2
p = .48), indicating that RTs (irrespective of high- or low-frequency context) decreased across 

trial blocks 3-10. There was no evidence of a Group effect (F(1, 30) = 0.56, p = .46, η2
p = .02), 

an interaction between Group and Block (F(3, 101) = 2.15, p = .09, η2
p = .07), or a three-way 

interaction (F(5, 139) = 0.18, p = .97, η2
p = .01). 

 Test: Block 10-12 

The analysis of performance in trial blocks 10-12 examined the effect of invalidating and 

removing sequence knowledge during Trial Block 11 on contextual cueing. Mean RTs between 
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contexts on Block 11 were compared with those in the two neighbouring blocks 10 and 12.There 

was an increase in contextual cueing on Block 11 relative to Block 10 and 12 (see Figure 10). 

The magnitude of this increase in contextual cueing was similar between the groups (see Figure 

10). A mixed ANOVA with factors of Group, Context and Block (10-12) revealed a main effect 

of Block (F(2, 57) = 41.41, p < .001, η2
p = .58), reflecting the sequence learning effect reported 

earlier. The overall effect of Context was not significant (F(1, 30) = 3.93, p = .06, η2
p = .12) but, 

more importantly for the present purposes, there was an interaction between Context and Block 

(F(2, 56) = 8.53, p < .01, η2
p = .22). Simple effects analysis of this interaction revealed a 

significant difference between RTs to high- and low-frequency contexts during block 11 (F(1, 

31) = 11.53, p < .01, η2
p = .27) but no such evidence of contextual cueing during block 10 and 12 

(F(1, 31) = 0.01, p = .93, η2
p < .01). Furthermore, a planned contrast comparing the difference 

between the contexts in block 11 with the differences in block 10 and 12 demonstrated that the 

contextual cueing effect was significantly larger in Block 11 (F(1, 31) = 12.14, p < .01, η2
p = 

.28). There was no main effect of Group (F(1, 30) = .68, p = .42, η2
p = .02) or interaction of 

Group with any other factor (Group x Context F(1, 30) = 0.06, p = .81, η2
p < .01; Group x Block 

F(2, 57) = 0.28, p = .75, η2
p = .01; Group x Context x Block F(2, 56) = 0.79, p = .45, η2

p = .03). 

Overall, these results indicated that contextual cueing emerged in test block 11 and that its 

emergence occurred comparably in both groups. In turn, the appearance of contextual cueing 

during block 11, when sequence knowledge was removed and invalidated, reconfirmed the 

critical role explicit sequence knowledge must have been playing in suppressing contextual 

cueing earlier in the rest of task. 

 CC Generation task 

Performance was analysed by comparing the percentage of correctly generated target 

locations on high-frequency contexts with the chance level of 25 %. There was no evidence that 

performance was above chance (M = -1.17 %, SEM = 2.01 %, t(31) = 0.58, p = .57, d = 0.10) or 

that there was a difference between the groups (TD: M = -1.56 %; ASC: M = -0.78 %; SED = 

4.09 %; t(30) = 0.19, p = .85, d = 0.07). This analysis implied that neither group had explicit 

knowledge about contexts and that all learning about context was implicit. 
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2.2.3. Subjective measures 

The above analyses demonstrated that participants had knowledge about the sequence 

capable of underpinning performance on the SRT generation task. Additionally, such 

performance implied that the sequence knowledge was explicit, to the extent that it was available 

for use in more than one context (see Chapter I.4 for more discussion of the theoretical 

underpinnings of generation tasks). As a further assessment of the degree to which the sequence 

knowledge was explicit, the subjective measures obtained during the SRT generation task were 

also analysed. Specifically, the analysis considered whether sequence knowledge was explicit in 

the sense that participants also had the subjective experience of knowing when they were 

accurately generating examples (Dienes, 2008; Dienes, et al., 1995). According to the guessing 

criterion for subjective measures, there was no evidence of implicit sequence knowledge: there 

was no evidence that training sequences could be generated more often than test sequences when 

participants claimed to be guessing (Mean difference = 10.48 %, SED = 8.55 %, t(26) = 1.23, p = 

.23, d = 0.24). There was no evidence of a group difference in this regard (TD: M = 13.15 %; 

ASC: M = 8.00 %; SED = 5.15 %; t(25) = 0.30, p = .77, d = 0.11). Similarly, there was a 

suggestion that sequence knowledge was not implicit because it did not appear to meet the zero-

correlation criterion. Specifically, there was an indication that participants generated more 

training than control sequences when their confidence was high than when it was low (High 

Confidence, ratings 5 to 7, = 21.74 %; Low Confidence, ratings 1 to 4, = 4.93 %; SED = 13.82 

%). However, a mixed ANOVA on generation performance with factors of Group, Sequence 

(Training vs. Control) and Confidence (High vs. Low) showed that the interaction between 

Sequence and Confidence was not significant (F(1, 22) = 1.36, p = .26, η2
p = .06). Further, there 

was no evidence that this interaction was different between the groups, as there was no evidence 

of three-way interaction with Group (F(1, 22) < 0.01, p = .98, η2
p < .01). However, there was an 

issue of power in this particular analysis of the zero-correlation criterion: six participants 

provided no low-confidence answers, and thus provided no data, while the number of generation 

trials (22) was already small before being split between into high and low confidence. 

The analyses of performance on the CC generation task provided no evidence of accurate 

generation performance, and thereby implied that any CC knowledge was not explicit. Since 

there was no evidence of accurate CC generation, it was impossible to determine whether 

accurate and inaccurate performances were accompanied by appropriate subjective experiences. 
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However, a comparison between the subjective measures taken from the two different generation 

tasks was appropriate because the comparison provided a more powerful test of the zero-

correlation criterion for sequence knowledge. Specifically, the analysis determined whether 

accurate SRT and inaccurate CC generation performances were accompanied with appropriate 

subjective experiences. Confidence on the SRT-generation task was greater than the confidence 

on the unseen contexts from the CC-generation task (SRT: M = 4.77; CC: M = 3.65; SED = 

0.15); this implied the knowledge underpinning performance on the SRT generation task was 

explicit. The two groups were quite similar in overall confidence across both generation-tasks 

(TD: M = 4.50; ASC: M = 3.92; SED = 0.38). Critically, the difference in confidence between 

the two tasks was similar between the groups (TD: M = 1.24; ASC: M = 1.01; SED = 0.30). This 

was confirmed by a mixed ANOVA on the mean confidence ratings using factors of Group and 

Generation Task (SRT vs. CC - Unseen Contexts). There was a main effect of Generation Task 

(F(1, 30) = 57.02, p < .001, η2
p = .66), and no evidence of an effect of Group (F(1, 30) = 2.44, p 

= .13, η2
p = .08) or interaction (F(1, 30) = 0.60, p = .45, η2

p = .02).  

Furthermore, both groups classified a greater number of answers as memories during the 

SRT as compared to the CC generation task (SRT: M = 45.60 %; CC: M = 21.68 %; SED = 4.63 

%); this also indicated that performance on the SRT generation task was determined by explicit 

knowledge. Overall, the groups classified a similar percentage of answers as memories (TD: M = 

35.60 %; ASC: M = 31.68 %; SED = 8.00 %) but more importantly, the difference percentage 

between the tasks was similar between the groups (TD: M = 28.23 %; ASC: M = 19.60 %; SED = 

9.27 %). This was confirmed by a mixed ANOVA on the mean percentage of answers classified 

as memories using Group and Generation-Task as factors. There was a main effect of Generation 

task (F(1, 30) = 26.64, p < .001, η2
p = .47), but no evidence of an effect of Group (F(1, 30) = 

0.24, p = .63, η2
p = .01) or interaction (F(1, 30) = 0.87, p = .36, η2

p = .03). This evidence of 

accurate subjective knowledge about generation performance reinforced the conclusion that both 

groups had explicit sequence knowledge. 

2.2.4. Direct awareness questions 

Subjective measures, RT analyses and generation performance all suggested that 

sequence knowledge was similarly explicit for both groups by the end of the task. Consistent 

with this finding, the majority of participants from both groups reported that they had noticed the 
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sequence (all 16 TD participants and 13 of the 16 ASC participants). Further, of those 

participants who noticed the sequence the majority of participants from both groups tried to 

memorise it (15 of the 16 TD participants and all 13 ASC participants). A majority of those 

participants demonstrated that they had memorised the entire sequence successfully by correctly 

producing the 8-digit training sequence at the end of the experiment (9 TD participants and 11 

ASC participants). The answers to the direct awareness questions were also consistent with the 

finding that contextual knowledge was not explicit, and that that absence of explicit knowledge 

was true for both groups: only a minority of participants from each group claimed to have 

noticed some regularity in the contexts (5 out of the 16 TD participants and 6 out of the 16 ASC 

participants), and only 4 participants from each group reported trying to memorise any of the 

contexts. Finally, there was consistency from these responses with the conclusion that the lack of 

contextual cueing attenuation in the first two trial blocks reflected slower acquisition of explicit 

sequence knowledge in the ASC participants: only 1 ASC participant reported noting the 

sequence in block 1 or 2 compared with 4 TD participants.  

2.2.5. Discussion  

The main aim of Study III was to assess whether there were differences in explicit 

sequence learning between ASC and TD individuals that were independent of IQ. The analyses 

reported here demonstrated both groups successfully achieved sequence learning, and that the 

magnitude of the effect, as measured by differences between mean RTs to control sequences on 

test block 11 and compared with mean RTs to training sequences on the neighbouring blocks 10 

and 12, was large and equivalent between the groups. Furthermore, there was a variety of 

evidence that the sequence learning was explicit, and the extent to which it was explicit was 

equivalent between the groups: there was a similarly detrimental effect of sequence invalidation 

to both groups, and both groups demonstrated successful generation performance and accurate 

subjective measures. This leads to the conclusion that the groups achieved a significant and 

similar final level of explicit sequence learning, and that there were no differences between ASC 

and TD individuals in final explicit learning when matched for IQ. 

However, there is also evidence that ASC individuals were slower to learn and/or apply 

the sequence explicitly, independently of IQ. This initial acquisition of explicit sequence learning 

has not been assessed before. First, there was a suggestion that the ASC group were initially 
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slower. This reduced explicit processing was corroborated by the atypical attenuation of implicit 

contextual cueing in the ASC group during the first two blocks of the task. Learning explicitly 

about the sequence typically leads to the selective attenuation of learning about the context 

(Jiménez & Vázquez, in press), as demonstrated by the current TD group. Therefore, the absence 

of the typical attenuation of contextual cueing in the ASC group is indicative of slowed explicit 

sequence learning. This interpretation, that the initial ASC contextual cueing effect is a 

consequence of the ASC group having not yet acquired and/or applied explicit sequence 

knowledge, is strongly supported by the interaction of contextual cueing and sequence 

knowledge for the rest of the task. The two groups show an identical use of explicit sequence 

knowledge to suppress contextual cueing during blocks 3-10, and both show equivalent 

contextual cueing when the sequence knowledge has been manipulated to be invalid during test 

block 11. Consistent with this interpretation, fewer ASC individuals reported noticing the 

sequence as early as the first or second block. 

In order to further corroborate this important finding, an additional analysis was 

conducted to compare the initial contextual cueing of the ASC and TD individuals in either the 

presence or absence of sequential information. The performance of two groups from this study 

was compared with the contextual cueing performance of a subset of the two groups from Study 

II. Subsets of the two groups in Study II were chosen in order that the four groups were matched 

for sex (all males), chronological age (F(3, 66) = 2.12, p = .11, η2
p = .09) and IQ (F(3, 66) = 

0.82, p = .49, η2
p = .04) of the Wechsler Abbreviated Scale of Intelligence (WASI: Wechsler, 

1999), see Table 15. The crucial difference between the two studies was that Study II used a non-

sequential CC design. Everything else about the design of the tasks in the two different studies 

was comparable (see III.2.3.1 for a comparison). There was one procedural difference: the length 

of the blocks in Study II was half the number of trials. While this would have made a complete 

analysis of RTs from the two studies inappropriate, the consideration of the learning index 

(difference scores) and the relative comparisons between the groups were valid. In Study II, there 

was evidence of similar contextual cueing in both the groups, named here as the ASC-Study II 

(Mean DS = 44.40 ms, SED = 6.54 ms) and TD-Study II groups (Mean DS = 25.93 ms, SED = 

12.13 ms). Consistent with this, a mixed ANOVA on RTs (Group x Context (High vs. Low) x 

Block (1-2)) yielded an effect of Context (F(1, 36) = 26.05, p < .01, η2
p = .42) but provided no 

evidence of any other effects or interactions relating to learning (all Fs ≤ 2.21, ps ≥ .15 and η2
p ≤ 
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.06). There was a Group effect for the ASC-Study II individuals to be slower overall (F(1, 36) = 

4.22, p < .05, η2
p = .11; see Chapter III.3.1 for more details). The contextual cueing effect in the 

ASC group from Study III (ASC-Study III: Mean DS = 34.12 ms, SED = 12.08 ms) and the 

absence of evidence for contextual cueing in the TD group from Study III (TD-Study III: Mean 

DS = -8.21 ms, SED = 16.24 ms), has already been established above. Therefore, separate 

analyses had provided evidence of contextual cueing in the ASC-Study III, ASC-Study II and 

TD-Study II groups but had provided no evidence in the TD-Study III group. Consistent with 

these analyses, a one-way ANOVA between all four Groups from the two studies (Group (ASC-

Study II; TD-Study II; ASC-Study III; TD-Study III) on the mean difference scores across the 

first 192 trials, yielded an effect of Group (F(3, 66) = 3.52, p = .02 η2
p = .14). Furthermore, two 

planned contrasts comparing (i) the TD-Study III group with the TD-Study II group, and (ii) the 

TD-Study III group with the three remaining groups (ASC-Study II; TD-Study II; ASC-Study 

III) demonstrated that the TD-Study III group’s contextual cueing effect was significantly 

smaller than (i) the TD-Study II group (F(1, 66) = 4.09, p = .05, η2
p = .06) and (ii) the average 

effect for the ASC-Study II; TD-Study II; ASC-Study III groups (F(1, 66) = 9.22, p < .01, η2
p = 

.12). Finally, a one-way ANOVA comparing just the three groups that had demonstrated a 

contextual cueing effect (ASC-Study II; TD-Study II; ASC-Study III) provided no evidence of 

group differences (F(2, 51) = 0.83, p = .44 η2
p = .03). Together, these analyses suggested that the 

presence of a sequence had inhibited contextual cueing in the first 192 trials in TD individuals. 

In contrast, there was no evidence that the sequence had any effect on the contextual cueing of 

ASC individuals during the first 192 trials. Thus altogether there is convincing evidence that 

there was a difference between the groups in initial explicit sequence learning. 
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Table 15. Mean Age (in years), WASI IQ Scores and Social Communication Questionnaire 
(SCQ) Scores (percentage) for ASC and TD Groups 

Measure Subset of groups from Study II  

 TD-Study II (N = 19)  ASC-Study II (N = 19)  

 M SD R  M SD R  

Chronological age 12.2 1.4 9.2 – 14.3  12.0 1.0 10.8 – 14.4  

Full-scale IQ 105.6 11.0 91 – 135  100.3 15.0 79 – 126  

 TD (N = 15)  ASC (N = 11)  

SCQ Score  11.6 8.1 2.5 – 32.5  69.9 16.9 30.0 – 85.0  

3. Study IV 

The findings of Study III indicate a difference in initial explicit sequence learning in 

ASC. However, the nature of the difference is not clear. It is possible that the reduced attenuation 

of contextual cueing in the ASC group may have been a consequence of either a difficulty in the 

initial stages of acquisition of the actual sequence information or poorer application of that 

acquired sequence knowledge. A second study attempted to tease apart whether the reduced 

effect of explicit processing on contextual cueing in the ASC group was due to slower explicit 

learning about a sequence or reduced ability to apply explicit sequence knowledge.  

In order to do so, precisely the same method was used but with a critical manipulation: 

the inclusion of a pre-task learning phase. In this pre-task phase, all participants memorised the 

sequence that would be present in their task to the same criterion performance level. As a 

consequence of such a pre-task manipulation, both groups would have demonstrably equivalent 

knowledge of the actual sequence information. Therefore, remaining performance differences 

would imply that ASC individuals are slower at explicitly applying sequence information to 

sequence learning task success. Additionally, remaining performance differences would provide 

a replication of the modest ASC difficulty identified in Study III. 
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3.1. Method 

3.1.1. Participants 

16 children with ASC (referred to as the ASC group) and 16 Typically-Developing 

children (referred to as the TD group) were included in the study. None of the children had 

participated in the previous study. All children in the ASC group met established criteria for 

ASC, such as those specified in DSM-IV (American Psychiatric Association, 1994) and had 

previously received a diagnosis for ASC by trained clinicians using instruments such as the 

Autism Diagnostic Interview (Le Couteur, et al., 2003). Any other psychiatric diagnosis acted as 

an exclusion criterion for both the ASC and TD group. Table 16 presents the participant 

characteristics for both the groups. The two groups of children were matched for sex (16 males), 

chronological age (t(21) = 1.13, p = .27, d = 0.40) and IQ (t(30) =0 .75, p = .46, d = 0.26) of the 

Wechsler Abbreviated Scale of Intelligence (WASI: Wechsler, 1999), see Table 16. Informed 

parental consent and the assent of the children were obtained, and ethical permission to conduct 

the study received from the Cambridge Psychology Research Ethics Committee. 13 of the 

parents of children with ASC and 9 of the parents of TD children completed the Social 

Communication Questionnaire (SCQ: Rutter, et al., 2003). The raw scores on the SCQ were 

converted into percentage scores. All the children in the TD group had scores below the cut-off 

score of 38.46 % specified by Rutter and colleagues, see Table 16. Further, the highest score for 

the TD group was 8.94 standard deviations below the mean of the ASC group. See Table 16 for a 

summary of the groups’ characteristics. 
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Table 16. Mean Age (in years), WASI IQ Scores and Social Communication Questionnaire 
(SCQ) Scores (percentage) for the ASC and TD Groups 

Measure Study IV  

 TD (N =16)  ASC (N =16)  

 M SD R  M SD R  

Chronological age 12.0 0.5 11.3 – 13.1  12.3 1.2 10.4 – 14.8  

Full-scale IQ 107.0 11.2 92 – 126  104.1 10.6 83 – 122  

 TD (N =11) ASC (N =15) 

SCQ Score  6.5 5.1 0 – 12.8  59.1 21.0 28.2 – 89.7  

3.1.2. Apparatus, materials, design and procedure 

Precisely the same apparatus and materials were used as in Study III. The same design 

and procedure were used with two modifications. First, following initial instructions and the 8 

practice trials but prior to start of the main task, participants were told that they would be 

presented with an 8-digit sequence. Further, they were instructed to memorise the sequence 

because it would present in the subsequent task, which they had just practised, and so 

memorising it would help them to press the buttons more quickly. Finally, they were told that 

once the sequence had disappeared after 3 seconds, they would be required to reproduce the 

sequence without making a mistake five times. When reproducing the sequence, upon typing an 

incorrect number, participants were instructed “That is not the right number - please start 

again”. Participants were then presented with the sequence for another 3 seconds before trying 

again to reproduce it. Second, blocks 3-10 were removed from the main task, since Study III had 

demonstrated that the differences of interest in explicit processing had occurred during the first 

two blocks, and by removing blocks 3-10, the other indices of explicit processing (the test block, 

the sequence validity manipulation, the generation task and subjective measures) would all be 

more appropriately placed and thus sensitive to detect such differences. 
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3.2. Results 

Exactly the same analysis techniques and procedures were applied as described for Study 

III. For the SRT task, the results of the two analyses of accuracy and RT were entirely consistent 

with one another. Thus as in Study III, the analysis of accuracy is not reported here beyond the 

finding that overall accuracy was similar between the groups (TD: M = 93.39 %; ASC: M = 

91.13 %; SED = 1.85 %; t(25) = 1.23, p = .23, d = 0.43; see Appendix B for the full accuracy 

analysis).  

3.2.1. Pre-task phase 

All participants memorised the sequence, which would be present in their task, to the 

same criterion performance level. Specifically, all participants correctly reproduced the sequence 

without errors 5 times. Further, there was no evidence of a difference between the groups in the 

number of mistakes made in achieving this (TD: M = 3.94; ASC: M = 4.25; SED = 1.41; t(30) = 

0.22, p = .83, d = 0.08) 

3.2.2. Sequence application learning 

 Training: Block 1-2 

Figure 11 represents the mean RT at each level of block for each of the two groups. There 

was a decrease in RTs as participants progressed from blocks 1 to 2. A mixed ANOVA with 

factors of Group, and Block (1-2), confirmed this effect of Block (F(1, 30) = 83.21, p < .001, η2
p 

= .74). There was no evidence of an effect of Group (F(1, 30) = 1.39, p = .25, η2
p = .04), 

however, importantly, there was an interaction between Group and Block (F(1, 30) = 4.95, p = 

.03, η2
p = .14). Inspection of Figure 11 and simple effects analysis revealed the source of this 

interaction: the performance of the groups was very similar in Block 1 (F(1, 30) = 0.32, p = .58, 

η2
p = .01), and although both groups’ performance improved significantly between blocks 1 and 

2, (TD: main effect of block, F(1, 15) = 58.69, p < .001, η2
p = .80; ASC: main effect of block, 

F(1, 15) = 26.34, p < .001, η2
p = .64), the performance of the TD group was numerically, though 

not quite significantly, better than that of the ASC group in Block 2 (F(1, 30) = 3.22, p = .08, η2
p 

= .10). Thus, the performance of the TD group improved to a greater extent compared to the 

ASC group. As discussed above, the improvement in performance over the first few blocks of 



CHAPTER IV  120   
 

 

SRT tasks reflects both general practice effects and sequence learning (both learning sequence 

information and applying it). In Study II, which used a task that allowed sequence learning to be 

dissociated from general practice effects, ASC participants were shown to benefit from general 

practice. Critically, ASC participants took longer to benefit from that practice effect, i.e. over 

time the practice effect decreased TD and ASC differences in RTs. In contrast, the interaction in 

the present study demonstrated that the difference between the ASC and TD performance 

increased over time – i.e. after the first block. Therefore, the interaction was highly suggestive 

that the difference emerged as a result of slower learning to apply the sequence in the ASC 

group. 

 

Figure 11. In Study IV, TD and ASC groups both displayed disruption on the test block, as 
measured by the increase in RTs to the control sequence on the Test block compared with those 
on blocks 10 and 12 and the increase in RTs to the training sequence presented with low global 
validity. To the extent that the two groups did not differ in this disruption, it might be assumed 
that the ASC group learnt to apply sequence knowledge typically. However, this conclusion was 
mitigated by several other pieces of evidence that demonstrated worse sequence application 
learning in the ASC group. Depicted are mean reaction times across training for different 
groups. The error bars show twice the standard error of differences between group means at 
different levels of block. 

300

500

700

900

1100

1300

1500

1 2 3 4

R
T 

(m
s)

 

Block 

TD (training)

ASC (training)

TD (control)

ASC (control)



CHAPTER IV  121   
 

 

 Test: Block 2-4 

Whether or not the participants had learnt to apply the sequence was assessed by 

comparing the mean RTs to control sequences in Test Block 3 to mean RTs to training sequences 

on the neighbouring Blocks 2 and 4. For both groups, there were faster RTs on blocks 2 and 4 

relative to test block 3, indicating that both groups had learnt to apply the sequence. The 

magnitude of these difference scores were comparable between the groups and therefore 

suggested that application of sequence knowledge was similar in both groups (TD: Mean 

difference (M) = 536.06 ms; ASC: M = 423.29 ms; SED = 93.79 ms). Consistent with these 

interpretations, a mixed ANOVA with factors of Group and Block (Control Sequences Block 3 

vs. Block 2&4) confirmed the effect of sequence application learning with a main effect of Block 

(F(1, 30) = 104.64, p < .001, η2
p = .78). The ASC group were numerically, but not significantly, 

slower overall than the TD group (Group F(1, 30) = 3.92, p = .06, η2
p = .12), but, the lack of an 

interaction provided no evidence of group differences in learning to apply the sequence (F(1, 30) 

= 1.45, p = .24, η2
p = .05).  

 Sequence validity: Block 2-4 

As an indirect measure of whether the application of the sequence was explicit, mean 

RTs to training sequences on test block 3 (during which the sequence validity was disrupted) 

were compared with mean RTs to training sequences on neighbouring blocks 2 & 4. Both groups 

had increased RTs on the test block 3 compared with neighbouring blocks 2 & 4, and the 

magnitude with which the RTs were increased was similar between the groups (TD: Mean 

difference (M) = 190.94 ms; ASC: M = 170.74 ms; SED = 53.36 ms). A mixed ANOVA using 

factors of Group and Block (Training Sequences Block 3 vs. Block 2&4) supported this 

interpretation: although, the group with ASC was overall slower than the TD group (F(1, 30) = 

4.60, p = .04, η2
p = .13), there was a main effect of Block (F(1, 30) = 45.94, p < .001, η2

p = .61) 

but no evidence of an interaction between Group and Block (F(1, 30) = 0.14, p = .71, η2
p = .01). 

The similarly detrimental effect of sequence invalidation to both groups suggested that the 

application of sequence knowledge was similarly explicit between the groups.  
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 SRT Generation task 

Performance was analysed by comparing the percentage of correctly generated sequence 

fragments on training and control sequences. Performance on the training sequence was superior 

to control sequence performance, and thereby implied the groups had learnt to apply the 

sequence (Training: M = 77.90 %; Control: M = 41.74 %; SED = 4.80 %). However, this 

superiority was smaller in the ASC group, as a consequence of the ASC group generating fewer 

correct sequence fragments of training sequences (TD: Mean difference between Training and 

Control sequences (M) = 45.98 %; ASC: M = 26.34 %; SED = 9.60 %). This interpretation was 

supported by a mixed ANOVA with factors of Group and Sequence (Training vs. Control) as 

factors. There was a main effect of Group (F(1, 30) = 5.21, p = .03, η2
p = .15) and Sequence 

(F(1, 30) = 56.77, p < .001, η2
p = .65), and an interaction between Group and Sequence F(1, 30) 

= 4.19, p = .05, η2
p = .12). Closer inspection of the data revealed the source of this interaction: 

while the groups were similar on control sequence generation (TD: M = 40.63 %; ASC: M = 

42.86 %; SED = 5.48 %), they were very different on training sequence generation (TD: M = 

86.61 %; ASC: M = 69.20 %; SED = 6.17 %). Simple effects, investigating the effect of Group 

for each of the training and control sequence generation separately provided statistical evidence 

of a difference between the groups on training (F(1, 30) = 7.96, p = .01, η2
p = .21) but not control 

sequences (F(1, 30) = .17, p = .69, η2
p < .01). Further simple effects, which considered the effect 

of Sequence in each group separately, established that an effect remained in each group (TD: 

F(1, 15) = 92.15, p < .001, η2
p = .86; ASC: F(1, 15) = 10.03, p = .01, η2

p = .40), and therefore 

implied that the interaction between Group and Sequence in the original analysis was the result 

of the sequence effect being greater in the TD than the ASC group, and not an absence of the 

ASC sequence effect altogether. In summary, this led to the conclusion that both groups were 

able to apply sequence knowledge explicitly, but the TD group were better able to do so, 

evidenced by their superior generation of training sequence fragments.  

3.2.3. Contextual cueing  

 Training: Block 1-2 

Mean RTs to high- and low-frequency contexts were compared as a measure of 

contextual cueing. Figure 12 represents the mean difference between high and low frequency 
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context trials in each trial block for both groups; a difference score greater than zero is evidence 

of contextual cueing. There appeared to be minimal contextual cueing during the training blocks. 

A mixed ANOVA with Group, Context and Block (1-2) as factors provided some support for this 

interpretation. There was a main effect of Block (F(1, 30) = 84.67, p < .001, η2
p = .74) and an 

interaction of Group and Block (F(1,30) = 4.42, p = .04, η2
p = .13), but no evidence of an overall 

effect of Context (F(1, 30) = 3.96, p = .06, η2
p = .12), Group (F(1, 30) = 1.40, p = .25, η2

p = .04) 

or interaction of Group and Context (F(1, 30) = 0.76, p = .39, η2
p = .03). However, there was an 

interaction of Context and Block (F(1, 30) = 4.50, p = .04, η2
p = .13). Inspection of Figure 12 

suggests that this interaction arose as a consequence of some contextual cueing in Block 2. 

Indeed, simple effects showed there was evidence of contextual cueing in Block 2(F(1, 31) = 

6.54, p = .02, η2
p = .17) but not in Block 1 (F(1, 31) < 0.01, p = .96, η2

p < .01). This appeared to 

arise chiefly as a consequence of the contextual cueing in the ASC group. The three-way 

interaction that would have supported this interpretation was not significant (F(1, 30) = 0.74, p = 

.40, η2
p = .02) but given the Study III finding of atypical attenuation in the ASC group, the 

evidence of contextual cueing in Block 2 was considered separately for each group. Indeed, there 

was evidence of contextual cueing in the ASC group (F(1, 15) = 6.89, p = .02, η2
p = .32) but not 

the TD group (F(1, 15) = 1.06, p = .32, η2
p = .07). 
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Figure 12. In Study IV, the ASC group showed an atypical attenuation of contextual cueing 
across blocks 2-4, as demonstrated by a greater contextual cueing effect. Overall, the effect of 
removing and invalidating sequence information in block 3 caused contextual cueing to increase 
in both groups. Crucially this increase was part of an overall effect of contextual cueing across 
the blocks 2-4 in the ASC, but not the TD, group. Presented are the RT differences between 
contexts across the task. The error bars show twice the standard error of differences between 
group means at different levels of block.  

 Test: Block 2-4 

The analysis of performance in trial blocks 2-4 examined the effect of invalidating and 

removing sequence knowledge during Trial Block 3 on contextual cueing. Mean RTs between 

contexts on Block 3 were compared with those in the two neighbouring blocks 2 and 4.There 

was an increase in contextual cueing on Block 3 relative to Block 2 and 4 (see Figure 12). While 

this pattern was common to both groups, the overall effect of Context appeared greater in the 

ASC group (see Figure 12). A mixed ANOVA with factors of Group, Context and Block (2-4) 

fully corroborated this interpretation. There were overall effects of Group (F(1, 30) = 4.72, p = 

.04, η2
p = .14), Context (F(1, 30) = 11.20, p < .01, η2

p = .27) and Block (F(2, 60) = 56.29, p < 

.001, η2
p = .65). There was no evidence of a Group and Block interaction (F(2, 60) = 0.79, p = 

.46, η2
p = .03), but critically, there was an interaction between Group and Context (F(1, 30) = 

4.22, p = .05, η2
p = .12). This Context by Group interaction reflected an overall greater 

contextual cueing effect in the ASC group and, consistent with this, simple effects showed an 

-80

-60

-40

-20

0

20

40

60

80

100

120

1 2 3 4

R
T 

di
ffe

re
nc

e 
be

tw
ee

n 
co

nt
ex

ts
 (m

s)
 

Block 

TD

ASC



CHAPTER IV  125   
 

 

overall context effect in the ASC (F(1, 15) = 12.04, p < .01, η2
p = .45) but not the TD group (F(1, 

15) = 1.06, p = .32, η2
p = .07). There was also a Context by Block interaction (F(2, 60) = 8.10, p 

< .01, η2
p = .21), reflecting the prominence of the contextual cueing effect in the test block when 

sequence information was removed and invalidated (see Figure 12). A linear contrast, comparing 

the difference between the contexts in Block 3 with the differences in Blocks 2 and 4, confirmed 

that the contextual cueing effect was significantly larger in Block 3 (F(1, 31) = 8.52, p = .01, η2
p 

= .22). The increase in contextual cueing appeared equally true for both groups (see Figure 12). 

However, in order to confirm there was a contextual cueing effect in the TD group in Block 3, 

and remove any doubt that might have been raised by the interaction between Group and 

Context, further simple effects demonstrated a significant contextual cueing effect in the TD 

group in Block 3 (F(1, 15) = 5.79, p = .03, η2
p = .28). There was no three-way interaction (F(2, 

60) = 0.04, p = .97, η2
p < .01). 

Overall, this CC analysis of the test blocks demonstrated that the effect of removing and 

invalidating sequence information in block 3 caused contextual cueing to increase in both 

groups. Crucially, this increase was part of an overall effect of contextual cueing across the 

blocks 2-4 in the ASC group. This overall contextual cueing effect was significantly larger than 

in the TD group, for whom there was no evidence of an overall contextual cueing effect across 

blocks 2-4. 

 CC Generation task 

Performance was analysed by comparing the percentage of correctly generated target 

locations on high-frequency contexts against the chance level of 25 %. There was no evidence 

that overall performance was above chance (M = 5.08 %, SEM = 2.77, t(31) = 1.83, p = .08, d = 

0.32) but there was a difference between the groups (TD: M = -0.78 %; ASC: M = 10.94 %; SED 

= 5.21 %; t(23) = 2.24, p = .03, d = 0.80). However, there was still no convincing evidence of 

above chance performance when each group was considered separately (TD: M = -0.78 %, SEM 

= 2.48, t(15) = 0.32, p = .94, d = 0.08; ASC: M = 10.94 %, SEM = 4.58, t(15) = 2.39, p = .06, d = 

0.60). While, this represented a hint of generation performance in the ASC group, critically, only 

41.37 % of the correct generations provided were answered correctly on both presentations of the 

context. Only these answers that were provided on both presentations of the context represented 

reliable evidence of explicit performance. Yet, there was no evidence that this proportion of 
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repeated responses was greater for correct than incorrect answers (Mean difference between 

percentage of repeated answers for correct and incorrect generations = 11.70 %, SED = 9.96 %, p 

= .26, d = 0.29). Therefore, it appeared that the ASC trend was not indicative of explicit 

generation performance. Correspondingly, participants were less confident about their answers, 

and classified fewer answers as memories, on high-frequency repeated contexts than to 

previously unseen contexts (Mean difference in confidence ratings = 0.19, SED = 0.08, t(15) = 

2.51, p = .02, d = 0.63; Mean difference in percentage of memories = 6.64 %, SED = 3.15 %, 

t(15) = 2.11, p = .05, d = 0.53). Overall, this analysis implied that neither group had strong 

explicit knowledge about contexts and that learning about context was largely implicit. 

3.2.4. Subjective measures 

The analyses of the SRT generation task demonstrated that participants had knowledge 

about the sequence that was explicit, to the extent that it was available for use in more than one 

context. There was further evidence that sequence knowledge was explicit from the subjective 

measures. Specifically, according to the guessing criterion there was no evidence of implicit 

knowledge: when the participants reported themselves to be guessing, there was no evidence that 

training sequences were generated more often than the test sequences (Mean difference = 0.40 

%, SED = 13.08 %, t(14) = 0.03, p = .98, d < 0.01). There was no evidence of a group difference 

in this regard (TD: M = -25.85 %; ASC: M = 23.36 %; SED = 23.52 %; t(13) = 2.09, p = .06, d = 

1.08). Additionally, there was evidence that the knowledge was not implicit because it failed the 

zero-correlation criterion: participants generated more training than control sequences if their 

confidence was high than when it was low (High Confidence, ratings 5 to 7, = 49.61 %; Low 

Confidence, ratings 1 to 4, = 10.66 %; SED = 10.40 %). This difference in generation 

performance depending on confidence was similar between the groups (TD: M = 56.08 %; ASC: 

M = 24.46 %; SED = 20.25 %). A mixed ANOVA on generation performance with factors of 

Group, Sequence (Training vs. Control) and Confidence (High vs. Low) confirmed the 

interaction between Sequence and Confidence (F(1, 22) = 15.81, p < .01, η2
p = .42), and was 

consistent with the lack of a three-way interaction with group (F(1, 22) = 2.44, p = .13, η2
p = 

.10). 

The analyses of performance in the CC generation task provided no evidence of accurate 

generation performance, and thereby implied that any contextual cueing knowledge was not 
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explicit. Since there was no evidence of accurate CC generation, it was impossible to determine 

whether accurate and inaccurate performances were accompanied by appropriate subjective 

experiences. However, a comparison of subjective measures between the two generation tasks 

allowed a further assessment of sequence knowledge in relation to the zero-correlation criterion. 

Specifically, there was an assessment of whether accurate SRT generation and inaccurate CC 

generation were accompanied with appropriate subjective experiences. Confidence on the SRT-

generation task was greater than the confidence on the unseen contexts from the CC-generation 

task (SRT: M = 5.22; CC: M = 4.11; SED = 0.16), which implied the knowledge that 

underpinned performance on the SRT generation task was explicit. Across both the generation 

tasks, overall confidence was very similar between the groups (TD: M = 4.49; ASC: M = 4.85; 

SED = 0.28). Critically, the difference in confidence between the two tasks was in the same 

direction for both groups, and as was expected given the TD group’s superior performance on the 

SRT-task, the difference was larger in the TD group (TD: M = 1.43; ASC: M = 0.79; SED = 

0.32). A mixed ANOVA on the mean confidence ratings with factors of Group and Generation-

Task (SRT vs. CC-Unseen Contexts) confirmed the greater confidence on the SRT task (F(1, 30) 

= 48.41, p < .001, η2
p = .62), and an interaction between Group and Generation-Task (F(1, 30) = 

4.07, p = .05, η2
p = .12) confirmed the interpretation that the TD group displayed a greater 

difference in confidence in favour of the SRT task. Simple effects analysis, looking at the 

difference in confidence between tasks in just the ASC group separately (ASC: F(1, 15) = 22.78, 

p < .001, η2
p = .60), confirmed that the ASC group was also more confident during the SRT, and 

that the interaction must have stemmed from a greater difference in the TD group. There was no 

evidence of a group difference in overall confidence (F(1, 30) = 1.71, p = .20, η2
p = .05). 

Furthermore, both groups classified a greater percentage of answers as memories during 

the SRT as compared to the CC generation task (SRT: M = 54.97 %; CC: M = 17.58 %; SED = 

5.39 %); this also indicated that performance on the SRT generation task was determined by 

explicit knowledge. Across both tasks, the percentage of memory classifications was similar 

between the groups (TD: M = 31.37 %; ASC: M = 41.18 %; SED = 6.74 %). More importantly, 

the difference between the two tasks was in the same direction for both groups, and that 

difference was larger in the TD group (TD: M = 46.34 %; ASC: M = 28.44 %; SED = 10.45). A 

mixed ANOVA with factors of Group and Generation-Task on the mean percentage of answers 

classified as memories corroborated the difference in that percentage between the tasks (F(1, 30) 
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= 51.19, p < .001, η2
p = .63). However, the interaction failed to reach significance (F(1, 30) = 

2.93, p = .10, η2
p = .09). There was no evidence of a group difference in overall memory 

classification (F(1, 30) = 2.11, p = .16, η2
p = .07). 

Altogether, this evidence of accurate subjective knowledge (confidence and 

classification) relating to generation performance reinforced the conclusion that both groups had 

explicit sequence knowledge. Additionally, the finding that the TD compared with the ASC 

group had a greater difference in confidence between tasks provided convergent evidence that 

the TD group had been better than the ASC group at generating sequence fragments explicitly. 

This latter conclusion was supported by the fact that in Study III, when there had been no 

evidence of differences in generation performance, there was no evidence of differences between 

the groups on the subjective measures. 

3.2.5. Direct awareness questions 

Subjective measures, RT analyses and generation performance all suggested that 

sequence knowledge was explicit for both groups by the end of the task. Consistent with this 

finding, all participants from both groups reported that they believed there was usually a 

sequence to the order in which they pressed the keys. Further, 15 of the 16 participants in both 

groups reported that they used the memorised sequence to help them to go faster. Of these 15, 14 

of the TD and 12 of the ASC, participants reported using it to help them within the first two 

blocks. A majority of the participants also demonstrated that they could still repeat the entire 

sequence by correctly producing the 8-digit training sequence at the end of the experiment (15 

TD participants and 13 ASC participants). However, there was no additional evidence from these 

direct questions that could distinguish a group difference in the success with which the sequence 

was applied. 

In contrast to sequence knowledge, there was no convincing evidence from any of the 

previous analyses that contextual knowledge was explicit. Correspondingly, only a minority of 

participants from each group claimed to have noticed some regularity in the contexts (4 out of 

the 16 TD participants and 6 out of the 16 ASC participants), and of those participants only 1 

ASC participant reported trying to memorise any of the contexts. 
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3.2.6. Discussion 

In general, Study IV intended to further elucidate ASC differences in explicit processing. 

Specifically, the aim was to determine whether the reduced attenuation of contextual cueing 

shown in the ASC group in Study III was a consequence of a difficulty in learning about the 

actual sequence or poorer application of acquired sequence knowledge. The same method was 

therefore used but with the inclusion of a critical manipulation: a pre-task learning phase in 

which all participants memorised the sequence to the same criterion performance level. 

Consequently, both groups had demonstrably equivalent knowledge of the actual sequence 

information prior to the start of the hybrid task. Thus, any performance differences during the 

hybrid task are attributable to differences in the extent with which the groups had learnt to apply 

that knowledge. Insofar that the two groups did not differ in the degree to which their 

performance was disrupted by the control sequences in the test block, it might be assumed that 

the ASC groups were able to apply the trained sequences typically.  

However, this conclusion is mitigated by several other pieces of evidence showing poorer 

application of sequence knowledge. In detail, the RT data indicated that the ASC group were less 

able to apply their sequence knowledge across blocks 1 & 2 compared to the TD group. This was 

corroborated by the fact that, even though the majority were able to report the entire sequence at 

the end of testing, thus demonstrating knowledge of the sequence, their ability to complete 

sequence fragments and their confidence in the generation task was significantly reduced. 

Finally, they showed evidence of atypical attenuation of contextual cueing. Therefore, these 

performance differences imply that ASC individuals are slower at explicitly applying sequence 

information to sequence learning task success. Additionally, these performance differences imply 

that the disruption by control sequences, on which there was no evidence of group differences, 

may not be a sufficiently sensitive measure of the application of sequence knowledge. 

Although clear evidence of greater contextual cueing in the ASC but not TD group was 

observed in Study IV, this evidence emerged in later trial blocks compared to Study III. Given 

that the only difference in procedure between the two studies was the training on the sequence to 

a criterion performance level prior to beginning the hybrid task in Study IV, the later emergence 

of contextual cueing in the ASC group suggests the explicit sequence knowledge did have an 

effect on contextual cueing in the ASC group early in the task. Presumably their atypical 

attenuation of contextual cueing was shifted to later trials because the explicit sequence 
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knowledge at the outset of the hybrid task slowed the rate at which the ASC group acquired 

implicit contextual cueing. However, complete and typical attenuation of the contextual cueing 

must also be contingent upon learning to apply the sequence knowledge: in Study IV, the group 

with ASC both demonstrated the greater contextual cueing effect in later trial blocks and were 

demonstrably worse in applying their sequence knowledge, as evidenced by inferior sequence 

fragment generation performance. In contrast, by the end of 12 blocks in Study III the ASC 

group had learnt how to apply the sequence as well as the TD group, since there was no evidence 

of a difference between the groups on any of the measures of sequence learning, and accordingly 

there was typical attenuation of contextual cueing. Presumably, the 12 blocks of Study III 

provided sufficient opportunity for the ASC participants to learn how to apply their sequence 

knowledge equivalently to the TD group. 

Also, in contrast to Study III, the groups were comparably fast in the first block. 

Presumably, this was also a consequence of the pre-task manipulation. That is, participants were 

both given the sequence information, and therefore considerable encouragement to apply it. Both 

groups successfully used the sequence knowledge to their advantage, and this therefore 

eliminated the difference between the groups in the first block. It was only with time across the 

blocks, that the TD group’s superior application learning came to cause a group difference.  

4. Chapter Discussion 

Study III used an implicit learning task that encouraged explicit processing to assess 

whether there were differences in explicit sequence learning between ASC and TD individuals 

that were independent of IQ. It was argued at the outset that if the poorer ASC performance on 

those implicit learning procedures that encouraged explicit processing was due simply to lower 

IQ in the ASC groups (Gordon & Stark, 2007; L. G. Klinger & Dawson, 2001; L. G. Klinger, et 

al., 2007; Mostofsky, et al., 2000), then we should see no difference in performance in the 

current IQ-matched groups. The findings of Study III demonstrated that final explicit sequence 

learning in ASC and TD individuals was similar in both magnitude and the extent to which it is 

explicit, thereby providing no evidence of final differences between the groups when matched 

for IQ. However, there was evidence that initial explicit sequence learning, which had not before 

been assessed, was atypical in ASC individuals independently of IQ.  
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The early RT slowness in the ASC group was consistent with the ASC group being less 

able to learn the sequence across the first two blocks, but the only conclusive evidence came 

from the atypical attenuation of implicit contextual cueing found in the ASC group during those 

early blocks. Learning explicitly about the sequence typically leads to the selective attenuation of 

learning about the context (Jiménez & Vázquez, in press), as demonstrated by the current TD 

group. Therefore, the absence of the typical attenuation of contextual cueing in the ASC group 

was indicative of slowed explicit sequence learning. Further, for the remainder of the task, once 

explicit sequence knowledge had been learnt, the sequence knowledge modulated performance in 

exactly the same fashion between the two groups: between blocks 3-10, explicit sequence 

knowledge suppressed contextual cueing in both groups, but during the test block when sequence 

knowledge was invalidated, a contextual cueing effect emerged equivalently between the groups.  

Study IV replicated the early RT slowness and atypical attenuation effect in the ASC 

group generally, and provided more evidence of these early explicit differences by revealing an 

ASC difficulty in the SRT generation task and correspondingly less insightful subjective 

measures. This provision of additional evidence arose through the use of a shortened task which 

thereby provided additional measures of sequence learning earlier in the task. Moreover, Study 

IV resolved whether ASC differences in explicit processing stemmed from difficulties in 

explicitly learning about the sequence or difficulties in learning to apply that explicit sequence 

knowledge. Specifically, Study IV demonstrated that there was a difficulty in applying explicit 

sequence knowledge: when learning about the sequence was controlled, such that both groups 

demonstrated equivalent knowledge about the sequence, differences between the groups 

remained. This demonstrated that the difference in explicit processing was a consequence of an 

ASC difficulty in applying explicit sequence knowledge. In contrast, the fact that both groups 

took the same number of attempts to achieve the sequence knowledge in a pre-task phase, 

suggested that explicitly learning about a sequence is not impaired. 

The finding that ASC groups find it more difficult to apply explicit knowledge to task 

success may reconcile some of the discrepancies in previous studies. Specifically, this difficulty 

may be part of the reason why in the past ASC groups have performed worse on implicit tasks 

that encouraged explicit processing, in contrast with those tasks that did not encourage such 

processing. Further, it is possible that this difficulty might also account for other findings 

concerning differences in tasks requiring the quick application of recently acquired explicit 
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knowledge to achieve task success. For example, Study II reported an ASC difficulty in the 

explicit memorisation phase of the Artificial Grammar Learning task. This required participants 

to memorise and then reproduce apparently random letter strings, which had only been shown to 

them for a short period of time. The study found that ASC participants made more errors than the 

TD participants before correctly reproducing a letter string. Similarly in an explicit 

reinforcement learning task, Yechiam, Arshavsky, Shamay-Tsoory, Yaniv, & Aharon (2010) 

found ASC differences in the capacity for recently learnt choice-outcomes to affect behaviour, 

with ASC performance instead dominated by a cognitive style that placed value on exploratory 

choices. 

 This finding of difficulties in applying explicit learning in ASC is perhaps not surprising. 

Explicit processing requires flexibility and intentional processing (e.g., Cleeremans & Jiménez, 

2002) and the current findings resonate with a body of literature concerning impairments in 

executive functions involving flexibility and intentional processing in ASC (e.g., Baron-Cohen, 

et al., 2000; Happé & Frith, 2006; Hill, 2004; Russell, 1997a). Furthermore, previous studies 

have documented an atypical propensity in ASC individuals to rely on explicit strategies when it 

is not typical to do so (e.g., on a Rotary Pursuit task, Gidley Larson & Mostofsky, 2008; on an 

Artificial Grammar Learning task, L. G. Klinger, et al., 2007; and, on Theory of Mind tasks, 

Happé, 1995; Hill & Frith, 2003). Such a propensity, together with the kind of impairment 

documented in Studies III and IV, could amount to considerable impairment over a large range 

of learnt skills. It is worth noting that although the Studies III and IV have not documented any 

ASC propensity for explicit strategies, this is not surprising. These studies had minimal 

sensitivity to measure such propensity for explicit strategy use because the simplicity of the 

sequence learning task strongly encouraged all participants to use explicit strategies. 

In addition to detecting difficulties in applying explicit learning, both Studies III and IV 

provided further demonstrations of intact implicit learning in ASC (Study II, Barnes, et al., 2008; 

Kourkoulou, et al., 2010; Travers, et al., 2010). The contextual cueing observed in the ASC 

group in both studies was demonstrably implicit in that the improved RTs were accompanied by 

an inability to perform on the generation task, together with appropriately implicit accompanying 

subjective measures. The current replication of intact implicit learning, together with the 

previous demonstrations (Study II, Barnes, et al., 2008; Kourkoulou, et al., 2010; Travers, et al., 

2010), pose a challenge to the common assumption that it is deficits in implicit learning that 
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underpin the difficulties observed in ASC in those real-world domains associated with implicit 

acquisition, such as language, social and motor skills. The solution lies in the obvious fact that 

intact implicit learning is necessary to the implicit acquisition of real-world skills but it is not 

sufficient. There are many other processes that might be different in ASC, which would be 

sufficient to disrupt the implicit acquisition of those skills, in spite of otherwise intact implicit 

learning mechanisms.  

One mechanism that has already been suggested is that there is an ASC overuse of 

atypical explicit strategies. Another candidate is the well-documented unusual attention 

allocation in ASC. Unusual attention may disrupt the appropriate sampling of the relevant 

features of the real world situation for implicit learning to proceed (Courchesne, et al., 1994; 

Happé & Frith, 2006; Klin, Jones, Schultz, Volkmar, & Cohen, 2002). Indeed, on an adapted 

version of the contextual cueing procedure, in which the local context was random and only the 

global context cued participants, ASC performance was found to be inferior to TD performance 

(M. R. Klinger, Klinger, Travers, & Mussey, 2008). This might be explained by an ASC 

attentional preference of the local over the global context (Happé & Frith, 2006) that obstructed 

the learning. Since this thesis documents preserved implicit learning in ASC, it predicts that there 

might be superior performance by individuals with ASC on implicit learning tasks in which the 

relevant features for learning are those to which individuals with ASCs have an attentional bias 

(Heaton & Wallace, 2004; Mottron, et al., 2006). In line with this speculation, Kourkoulou and 

colleagues (2010) demonstrated enhanced implicit learning of the local context in the contextual 

cueing paradigm. Further, in a more ecologically valid example, Grossman and Tager-Flusberg 

(2008) demonstrated enhanced performance on a task involving mouth expertise – an area of the 

face to which ASC individuals allocate an unusual amount of attention. 

Another possible explanation is that the knowledge derived from implicit learning is not 

applied successfully in the real world. This possibility cannot be assessed easily by the standard 

implicit procedures that demonstrate learning by indirect assessments or forced choices. In the 

real world the products of implicit learning must be utilised in ways above and beyond those 

demanded by these laboratory procedures. For example, according to a theory which understands 

implicit learning within a graded consciousness framework (Cleeremans, 2006; Cleeremans & 

Jiménez, 2002), there would be further utility from implicit learning when there is also potential 

for its products to emerge into awareness and under cognitive control. Equally, in line with ideas 
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and theorising on the role of implicit learning in intuition (Eraut, 2004; Hogarth, 2001), there 

would be further advantage from implicit learning if it exists in tandem with an ability to know 

when to act on the implicitly acquired knowledge. Thus, if individuals had difficulties with either 

of these related capacities, then they would present with difficulties in everyday abilities 

associated with implicit acquisitions, regardless of the learning mechanisms. Although, this is a 

unique hypothesis in relation to implicit learning in ASC, I am not the first author to allude to a 

relevant dissociation between capability and application in ASC (e.g., Minshew, Meyer, & 

Goldstein, 2002; Soulières, et al., 2007). Further, consistent with this discussion, ASC 

impairment in the successful application of implicitly acquired information would tessellate with 

“a recent shift toward understanding ASC in the context of dysfunctions in introspection or self-

referential processing” (Chiu, et al., 2008, p. 468; e.g., Ben Shalom, et al., 2006; Hill, Berthoz, 

& Frith, 2004; Iacoboni, 2006; Kennedy, Redcay, & Courchesne, 2006; Lind & Bowler, 2008; 

Rieffe, Meerum Terwogt, & Kotronopoulou, 2007; Russell, 1997b; Toichi, 2008; Williams & 

Happé, 2009).  

Additionally, there might be impairments in the long-term consolidation of skills 

associated with an implicit acquisition in ASC. Studies have emphasised the crucial importance 

of consolidation, or off-line learning, to further improvement after implicit learning, and the role 

of sleep for determining the relative improvement of implicit and explicit learning contributions 

(for a review, see Song, 2009). In particular, sleep seems particularly relevant to the subsequent 

development of insight from implicit learning episodes (U. Wagner, Gais, Haider, Verleger, & 

Born, 2004). ASC is highly associated with sleep difficulties (American Psychiatric Association, 

1994). Therefore, ASC differences in the consolidation of implicitly learnt information may 

account for some of the ASC deficits in everyday skills associated with implicit acquisition. 

Finally, I have already proposed that ASC attentional biases together with intact implicit 

learning predicts the possibility of ASC superiority in acquiring skills or information that appeals 

to those biases. Additionally, I propose that atypical explicit strategies can result in similar 

superiority. Indeed, Studies III and IV provide an empirical example of ASC superiority in what 

information is learnt implicitly about the context, but not as a consequence of characteristic 

attentional biases. Namely, the ASC group demonstrated contextual cueing, as a consequence of 

ASC differences in explicit use of sequence information and thus atypical attenuation of 

attention to the context. Clearly, the current finding can be regarded as an ASC superiority in the 
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implicit acquisition of contextual cueing compared to the TD group. By contrast, the TD group 

directed their attention towards the explicit component of the task, thereby preventing the TD 

group from acquiring implicit contextual cueing to the same degree as the ASC group. Rather 

than a deficit in implicit learning, it thus appears that there can be ASC superiority in what is 

learnt implicitly, as a consequence of differences in the information that is processed and 

attended. I can speculate further about the significance of a superior implicit acquisition of 

certain information: if it is the case that savant talent results, in part, from implicit learning 

(Mottron, et al., 2006), then it is clearly possible that the development of a savant skill results 

from the interaction between atypical explicit processing, attentional biases and typical, intact 

implicit processing. 
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V. General Discussion 

This thesis began with a review of the implicit learning literature, and concluded that an 

analysis of functional differences in implicit learning is a valid and important research topic. In 

particular, the evidence supporting the existence of functional differences is equivocal, and 

researchers argue that the issue could be resolved, or at least better understood, by further 

empirical exploration (Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in press; A. S. 

Reber, 1993; A. S. Reber & Allen, 2000). Therefore, this thesis analysed whether functional 

differences exist in two areas that have produced promising findings: individual differences in 

typical populations (Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in press) and group 

differences between Autism Spectrum Condition (ASC) and Typically Developing (TD) 

individuals (e.g., L. G. Klinger, et al., 2007; Mostofsky, et al., 2000). Overall, the results from 

four studies emphasised a lack of functional differences in implicit learning between individuals. 

In this final chapter, the key ideas and results already presented will be reiterated, and then 

discussed within a broader context.  

1. Final Summary 

The general aim of Study I was to test the claim that there are meaningful individual 

differences in implicit learning. In order to achieve that aim, it was first necessary to replicate the 

overlap between implicit learning tests identified by Gebauer and Mackintosh (2010). Similarly, 

it was necessary to re-establish the independence of implicit learning from IQ-mediated explicit 

processing (e.g., Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in press; A. S. Reber, et 

al., 1991), and investigate possible relationships between implicit learning and intuitive aspects 

of personality (Kaufman, et al., in press). Additionally, in order to establish whether implicit 

learning was related to meaningful differences in everyday performance other than second 

language acquisition (Gebauer & Mackintosh, 2010; Kaufman, et al., in press), the study 

investigated whether implicit learning was related to occupational achievement. It has been 

proposed that tacit knowledge may be the intermediary construct that mediates the influence of 

implicit learning influence on behaviour (Mackintosh, 1998). Therefore, the study also examined 

the relationship between occupational tacit knowledge and implicit learning. Finally, in order to 
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understand fully the implications of a tacit knowledge and implicit learning relationship, the 

study explored contentious issues in the tacit knowledge literature, such as the generality of tacit 

knowledge and its relationship with IQ, personality and practice (e.g., Gottfredson, 2003a, 

2003b; McDaniel & Nguyen, 2001; McDaniel & Whetzel, 2005; Sternberg, 2003). To address all 

these issues, data were collected from 103 academic psychologists, who completed three implicit 

learning tasks (SRT, AGL, IFL tasks), two IQ sub-tests (DAT verbal and analogical reasoning 

tests), one personality questionnaire (Big Five Inventory), three Tacit Knowledge Inventories 

(Academic Psychology, Business Management and CSQ) and one General Questionnaire 

pertaining to their educational and occupational histories.  

Critically, there was no evidence of inter-correlation between the implicit learning tasks, 

nor was there any evidence to relate performance on any of the implicit learning tasks to IQ, 

occupational achievement, personality or tacit knowledge. Therefore, the results implied that 

there are not substantial individual differences in implicit learning. The study did replicate a 

finding that is important to the distinction between implicit and explicit learning: indices of 

explicit processing, but not performance on implicit learning tasks, were correlated with IQ (e.g., 

Carroll, 1993; Gebauer & Mackintosh, 2007, 2010; Kaufman, et al., in press; A. S. Reber, et al., 

1991). Finally, Academic Psychology and Business Management Tacit Knowledge Inventories 

were found to measure knowledge that predicted occupational achievement in academic 

psychology incrementally to IQ and personality, and was general to both occupations. 

Importantly, however, tacit knowledge appeared to be acquired primarily as a function of 

practice and experience, rather than individual differences in implicit learning. 

Overall, Study I represents one of four large-scale studies to explore the possibility of 

individual differences in implicit learning. All four studies dissociated implicit performance from 

explicit, IQ related performance, while two of the studies also found individual relationships 

between implicit learning tasks and real-world measures (second language acquisition and 

personality). However, critically, three of the four studies have now failed to find inter-

relationships between implicit learning tasks (Study I, Gebauer & Mackintosh, 2007; Kaufman, 

2009). Gebauer and Mackintosh (2010) did find evidence of significant relationships between 

several implicit learning tasks, and related the general implicit component to second language 

acquisition. This represents the only evidence for the idea that implicit learning is a general 

ability in the typical population that underpins meaningful individual differences. Gebauer and 
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Mackintosh (2010) suggested that the shared variance was uniquely apparent in their study 

because of the large number of implicit learning measures employed; 15 different indices of 

implicit learning were inter-correlated. However, the authors still described the overlap between 

their tasks as “modest” (for example, only twenty-seven of the one-hundred and five correlations 

between the indices were significant) and noted that further replications were necessary to 

establish the result. Additionally, the relationship between the ability and second-language was 

small (r = .15). Thus, the evidence for important individual differences in implicit learning is 

weak. Instead, I assert that overall the evidence is consistent with A. S. Reber’s (1993) prediction 

that individual differences in implicit learning are minimal. 

Concurrently to the investigation in Study I, the issue of functional differences in implicit 

learning was explored using a group-differences approach, which compared implicit learning in 

ASC and TD children. The diagnosis of ASC is dependent on the presence of social, 

communicative and motor impairments, which are all areas of functioning considered to be 

acquired, at least in part, by implicit processes. Thus, if ASC individuals also demonstrated a 

general deficit on implicit learning tasks, then there would be evidence that general implicit 

learning differences have important, functional consequences for behaviour. In order to assess 

whether ASC individuals have a general deficit in implicit learning, it was necessary to compare 

groups of ASC and TD individuals on a range of implicit learning tasks. The range was 

important to control for variations in task demands and to allow conclusions about implicit 

learning in general. Additionally, it was important to compare the groups on an overtly explicit 

learning task. I argued that in several previous attempts to assess implicit learning in ASC 

explicit, rather than implicit, learning was unintentionally measured, and that in groups 

unmatched for IQ, it was the explicit processes that were responsible for the observed ASC 

performance deficits (e.g., Gordon & Stark, 2007; L. G. Klinger & Dawson, 2001; L. G. Klinger, 

et al., 2007; Mostofsky, et al., 2000). The validity of this alternative interpretation of previous 

studies’ results was tested by comparing the relative patterns of implicit and explicit learning 

performance in groups of children with ASC and TD children, both matched and unmatched for 

IQ. Lastly, in order to assess the possibility that any implicit learning deficit underpinned the 

poor social, communicative and motor abilities prominent in ASC, the study included a 

quantitative index of ASC symptomatology, which could have been correlated with any 

performance deficits. Therefore, in Study II data were collected from ASC and TD individuals, 
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who completed four implicit learning tasks (CC, SRT, AGL, and PCL tasks), one explicit 

learning task (PAL task), an IQ test (WASI) and an index of ASC symptomatology (SCQ). 

Most importantly, there was convincing evidence that implicit learning is intact in ASC: 

performance on each of the four implicit learning tasks was equivalent between the two groups. 

It was argued that deficits reported in previous studies must have resulted from the differences 

between their task procedures and those used here (e.g., L. G. Klinger, et al., 2007; Mostofsky, et 

al., 2000). In particular, I argued that those studies that had found deficits used procedures that 

encouraged explicit strategies, which specifically disadvantaged the ASC groups who had not 

been matched for IQ. Statistical comparisons of matched and unmatched groups from Study II 

supported this interpretation of previous studies. Specifically, performance on the explicit 

learning task was not significantly different between the ASC and TD groups as far as they were 

matched for IQ, but an ASC deficit in explicit learning performance was revealed when the full 

(non-IQ-matched) samples were considered. In direct contrast, the evidence of equivalent ASC 

and TD implicit learning performances remained. This contrast demonstrated that a lower IQ was 

a disadvantage to the ASC group on explicit but not implicit learning tasks.  

In order to determine whether the previous reports of implicit learning deficits in ASC 

resulted just from differences in IQ, or whether there was also a contribution from an ASC 

difficulty in explicit learning that was independent of IQ, Study III compared ASC individuals 

with IQ-matched TD individuals on an implicit learning task that encouraged explicit strategies. 

Specifically, the study used a simple sequence learning procedure that had been found to result in 

a considerable amount of explicit knowledge. This SRT procedure was combined with a 

contextual cueing task that provided an indirect, ongoing index of the extent to which sequence 

learning was explicit. Essentially, the contextual cueing effect is attenuated only when the 

learning and use of sequence information is explicit (Jiménez & Vázquez, in press). 

The two groups achieved a significant and similar final level of explicit sequence 

learning, and thereby implied that there were no differences between ASC and TD individuals in 

final explicit sequence learning when matched for IQ. However, there was also evidence that 

ASC individuals were slower to learn and/or apply the sequence explicitly, irrespective of IQ. 

Specifically, there was a suggestion that the ASC group were initially slower. This reduced 

explicit processing was corroborated by the atypical attenuation of implicit contextual cueing in 

the ASC group during the first two blocks of the task. In order to verify that the attenuation was 
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atypical, direct comparisons were made with the contextual cueing effects of the groups from 

Study II. Those analyses suggested that the presence of a sequence had inhibited contextual 

cueing in the initial, equivalent blocks in TD individuals. In contrast, there was no evidence that 

the sequence had any effect on the contextual cueing of ASC individuals during the initial, 

equivalent blocks. 

Overall, the findings of Study III indicated a difference in initial explicit sequence 

learning in ASC. However, the nature of the difference was not clear. It was possible that the 

reduced attenuation of contextual cueing in the ASC group was a consequence of either a 

difficulty in the initial acquisition of the actual sequence information or poorer initial application 

of that acquired sequence knowledge. Study IV attempted to tease apart whether the reduced 

effect of explicit processing on contextual cueing in the ASC group was due to slower explicit 

learning about a sequence or reduced ability to apply explicit sequence knowledge. In order to 

distinguish these possibilities, a similar procedure was used but with the critical inclusion of a 

pre-task learning phase, during which all participants memorised the sequence to the same 

criterion performance level. Having eliminated the possibility for differences in learning about 

the sequence with this manipulation, remaining performance differences would imply that ASC 

individuals are slower at explicitly learning to apply sequence information to sequence learning 

task success. Additionally, the differences between the groups had been identified early in the 

task in Study III. Thus, in Study IV, in order to provide additional measures of sequence learning 

earlier in the task, the task was shortened such that the third block was the test block, and the 

generation tasks were completed after the fourth block. 

Although the two groups did not differ in the degree to which their performance was 

disrupted by the control sequences in the test block, there were several measures that implied 

there was still an ASC difficulty. Study IV provided a general replication of the early RT 

slowness and atypical attenuation of the contextual cueing effect in the ASC group. Additionally, 

there was an ASC difficulty on the SRT generation task, and correspondingly less insightful 

subjective measures. Thus, several performance differences existed between the ASC and TD 

groups. The pre-task phase had controlled for any group differences in explicit learning about the 

sequence by enforcing a criterion performance level, which ensured that all participants had 

equivalent explicit sequence knowledge prior to beginning the task phase proper. Therefore, the 

performance differences during the task must have stemmed from an ASC difficulty in learning 
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to apply that explicit sequence knowledge. In contrast, the criterion performance level enforced 

in the pre-task phase was reached in a similar number of attempts by the two groups, which 

demonstrated that explicitly learning about sequence information was not impaired in ASC. 

Thus, Study IV had replicated the ASC difficulty identified in Study III, and elaborated the 

nature of that difficulty: ASC individuals were able to learn sequence information explicitly but 

they had a specific difficulty with learning to apply that explicit information. 

In addition to providing insight into explicit sequence learning in ASC, the contextual 

cueing effect in the ASC group in Studies III and IV also represented further evidence that 

implicit learning was intact. Therefore, Studies II, III and IV had all provided evidence of intact 

implicit learning in ASC. Some researchers have previously argued that ASC individuals use 

explicit, IQ-related strategies to compensate for their deficits in implicit learning (L. G. Klinger, 

et al., 2007), and thus might contend that the current demonstrations of intact implicit learning in 

ASC reflect explicit compensation. However, this argument is repudiated by three sets of results 

across the three studies. First, in two examples of intact implicit learning, the contextual cueing 

effects in Studies III and IV, the ASC individuals could not explicitly generate examples of the 

contexts on the CC generation task. Second in Study II, the introduction of additional 

participants into the analysis, which resulted in an ASC group with a lower IQ than the TD 

group, had a different effect on the group comparisons of the implicit and explicit learning 

performances. Insofar that the ASC implicit learning performance was actually underpinned by 

explicit strategies, this lack of IQ matching between the two groups should have resulted in 

poorer implicit and explicit task performance being observed in the ASC relative to the TD 

group. Instead, the ASC group were disadvantaged by a lower IQ on the explicit, but not 

implicit, learning tasks. Third, there are several pieces of evidence to suggest that explicit 

learning is actually worse in ASC, independently of IQ. For example, the IQ-matched ASC 

group was significantly worse than the typical group on the explicit memorisation phase of the 

AGL task. Moreover, in Studies III and IV the ASC groups had difficulty on the SRT task when 

the learning was more explicit, as a consequence of a difficulty with applying their explicit 

sequence knowledge. 

Thus, there is good evidence that implicit learning performance in ASC is not achieved 

by compensatory explicit strategies. Instead, implicit learning is intact in ASC and in fact ASC 

individuals appear to have some difficulties with explicit processing. At this point, it is worth 
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reflecting upon the ASC difficulty that was observed in applying explicit sequence knowledge in 

Studies III and IV. The fact that there was no evidence of this difficulty after 12 blocks of 

training in Study III shows that the initial difficulty was transient in this particular task. 

However, it clearly raises the possibility that in more complex contexts (e.g., on-going social 

interactions), subtle difficulties in applying explicit knowledge could have a much more 

detrimental effect on behaviour. Thus, this finding is relevant within a broader context because it 

insists that research attention should be shifted away from the possibility of difficulties in 

implicit learning and back towards how differences in more explicit, cognitive, executive 

strategies emerge and affect autistic behaviour. This idea that ASC individuals actually have 

more difficulty with explicit than implicit learning corresponds with ASC literature concerning 

impairments in executive functions, which require flexible and intentional processing (e.g., 

Baron-Cohen, et al., 2000; Happé & Frith, 2006; Hill, 2004; Russell, 1997a) 

An additional consequence of establishing that implicit learning is intact in ASC is that 

ideas about the role implicit learning might play in savant skills can be more deeply explored 

(e.g., Mottron, et al., 2006). Intact implicit learning combined with attentional biases towards a 

subset of information, which happen to be critical for task success, and atypical explicit 

strategies (which may produce such attentional biases) certainly present a plausible explanation 

for the unusual acquisition of skill in one particular area, i.e. a savant skill. In line with that 

possibility, Studies III and IV have demonstrated superior contextual cueing in the first two 

blocks as a consequence of atypical explicit strategies. Similarly, Kourkoulou and colleagues 

(2010) demonstrated enhanced implicit learning of features appealing to an ASC attentional bias. 

Specifically, ASC individuals learnt more than TD individuals about the local context in a 

contextual cueing paradigm. 

Finally, the finding that implicit learning is intact in ASC might appear incongruous with 

the observation that ASC individuals have diagnostic impairment in skills associated with an 

implicit acquisition such as language, social and movement skills. The two findings are 

reconciled by the idea that the implicit acquisition of skills depends on more than just an intact 

implicit learning. A number of additional factors have been discussed that might be particularly 

relevant in ASC: interference due to abnormal attentional biases or the overuse of explicit 

strategies; difficulties with the application of implicitly acquired knowledge; and atypical 

consolidation following the learning. It is hoped that this discussion will promote further 
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research into whether those factors do play a specific role in ASC difficulties in social, language 

and movement skills. Such research might also springboard a deeper understanding of the 

broader relationship between what people can learn implicitly and what they actually do learn 

implicitly in the real world. 

In summary, the thesis provided no evidence for the proposal that there are functional 

differences between individuals in implicit learning. Instead, the thesis was consistent with the 

idea that individual differences in implicit learning are minimal. 

2. Discussion 

2.1. The Generality of Implicit Learning 

Within the psychometric tradition, ability must be defined in reference to performance 

(e.g., Carroll, 1993). Whenever performance on a task varies between individuals, it would be 

valid to conclude that those individuals differed in their specific ability to perform that particular 

task at that given point in time. However, talking about a specific ability to perform a specific 

task at a specific point in time is of little explanatory value. The theoretical utility arises when it 

is believed there is an ability that refers to reliable performance on a variety of similar tasks. 

Therefore, the psychometric foundation for demonstrating the existence of general abilities is the 

inter-correlation between performances on multiple different tasks; a positive manifold. The 

finding that implicit learning performances in Study I did not inter-correlate, and my assertion 

that the wider literature implies that such inter-correlation is minimal, indicates that, according to 

psychometric principles, there is no general ability underpinning implicit learning. 

At the end of Chapter II, I discussed how general, prerequisite processes might be always 

necessary for implicit learning, but without those processes determining the variation in how 

much was learnt implicitly. Specifically, I argued that providing the prerequisite processes 

remained intact, the performance variance would depend on differences in other processes and 

factors relating to the specifics of the situation. Within such a framework, the prerequisite 

processes would not constitute a psychometric ability but could be conceptualised as general 

implicit learning processes. Finally, I argued that in order to make an empirical case for this 

theoretical position, it would be necessary to identify an atypical population who consistently 

demonstrated profound deficits on all implicit learning tasks and skills associated with an 
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implicit acquisition. However, there is currently no convincing evidence that such a group exists 

(see review at end of Chapter I). At the beginning of Chapter III, I argued that ASC was a 

plausible candidate. The three studies presented in Chapters III and IV, together with other recent 

research, has now established that ASC individuals can learn implicitly. The ASC population has 

become the latest in a long line of atypical populations to have been shown to be capable of 

implicit learning performance on at least one implicit learning task. Consistent with such 

findings, A. S. Reber predicted that general, prerequisite implicit learning processes would be so 

fundamental to life that they would be highly robust to all neurological impairment (A. S. Reber, 

1993). While this idea of prerequisite and robust processes for implicit learning might be true, 

insofar that no population has been identified without such processes, the idea is unsupported. 

Taken together with the evidence to suggest implicit learning performance does not inter-

correlate, it is parsimonious to conclude that there is neither a general implicit learning ability, 

nor general, prerequisite implicit learning processes. 

This conclusion should force some researchers to re-evaluate what it is they mean, or at 

least take more care, when they invoke the term implicit learning. I assert that insofar that 

implicit learning does not refer to a general ability or general processes it can only be a 

descriptive label of the manner in which a wide variety of processes are differentially engaged 

depending on the circumstances. Moreover, the key aspect of the description must be defined by 

the absence, or minimal influence, of explicit processing. If not defined by an absence, 

researchers should have found evidence of an ability or prerequisite process. 

Finally, within the psychometric exploration of mental ability, this absence of generality 

in implicit learning means that there is still little evidence of general mental abilities that are 

completely independent of IQ, and reliably related to differences in intelligent behaviour. This 

continuing lack of evidence reinforces IQ tests as the best, and maybe only, indicators of general 

cognitive abilities, which can successfully predict some differences in intelligent behaviour. This 

does not rule out a variety of other important factors in intelligent behaviour, such as motivation, 

personality, tacit knowledge, experiential learning and so on. Instead, the implication is focused 

on the lack of evidence for the conception of other factors as general abilities. 
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2.2. The Validity of the Implicit-Explicit Distinction 

In Chapter I, the implicit learning literature was reviewed. This thesis asserted that there 

is a consensus that people can learn when they are not primarily engaged in trying to learn 

explicitly and deliberately, and are consequently unable to report verbally on how or what they 

learnt. The inability of participants to provide insightful descriptions of how or what they learnt 

during the implicit learning tasks they completed in Study I, II, III, and IV was consistent with 

those earlier assertions about the implicit-explicit distinction. Additionally, the results from the 

CC task in Studies III and IV provided demonstrations of implicit contextual cueing without 

evidence of successful explicit generation performance. The power of any generation task can be 

questioned, and it is acknowledged that a more powerful generation task might have provided 

evidence of generation performance (e.g., Smyth & Shanks, 2008). Nonetheless, I assert, as I did 

in the general introduction, that while the counter-evidence from a variety of methodologies, 

such as a highly powerful generation task, might question the definitive absence of 

consciousness during learning, such evidence is indicative of something less than the actual 

definition of consciousness that inspired the methodologies. For example, generation tasks are 

inspired by the idea that a conscious mental state is critically defined by the “availability for use 

in reasoning and for rationally guiding speech and action” (Block, 1995, p. 227). The detection 

of generation performance only when the task is extremely powerful does not suggest that the 

knowledge is readily available to influence behaviour rationally; instead the result suggests that 

the influence on behaviour is probabilistic and not fully conscious. 

In addition to these arguments, this thesis asserted that functional differences between 

implicit and explicit learning provide further reason for retaining the distinction between them. 

In particular, this thesis identified the existence of plausible comparative and evolutionary 

frameworks; the differences in computational models that explain much of the different types of 

learning; different neural sites associated with the different modes of learning; and contrasting 

relationships of implicit and explicit learning with durability, age and IQ. In the empirical 

chapters, the contrasting relationship with IQ was replicated: specifically, in Studies I and II 

explicit, but not implicit, learning was related to IQ. Additionally, Studies II, III and IV provided 

another functional distinction between implicit and explicit learning: ASC individuals have 

difficulties with aspects of explicit but not implicit learning. 
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In summary, this thesis provides evidence in favour of retaining the distinction between 

implicit and explicit learning. When evaluated together with previous literature, which was 

reviewed in Chapter I, there should be no doubt that a descriptive distinction between explicit 

and implicit learning is both valid and useful. This remains true even when this thesis has 

asserted that implicit learning is defined by the absence, or minimal influence, of explicit 

processing rather than the general presence of an implicit learning ability or processes. 

2.3. Disagreements on Implicit Learning 

At the outset of the thesis, it was acknowledged that there is fierce debate within the 

implicit learning literature on a number of issues such as the role of awareness in learning, the 

nature of consciousness and the modularity of learning systems. However, it was asserted that 

there were also areas of agreement, such as the existence of a conservative definition of implicit 

learning and some functional distinctions from explicit learning, which therefore legitimised the 

functional analysis of differences in implicit learning adopted by this thesis. Nonetheless, I 

correctly anticipated that my functional investigation might also indirectly contribute to some 

areas of fierce debate. 

For example, the conclusion that implicit learning does not reflect a general ability or 

general processes, in contrast to the well-established generality underpinning explicit, IQ-

mediated learning, informs debate on the modularity of learning systems. Specifically, this 

conclusion argues against the strong position that there are two distinct, general-purpose 

learning systems (e.g., Gebauer & Mackintosh, 2010). However, the findings do not distinguish 

between several alternative ideas about the broad structures of learning systems. For example, 

the findings are consistent with the multifaceted proposal that learning occurs through 

connectionist-type networks; that explicit propositions can emerge from the basic operations of 

those networks; and that explicit propositions are capable of top-down influence on those 

networks (e.g., Shanks, 2009). In this scenario, whenever global, explicit propositions exert top-

down influence on a network, performance would correlate with other explicit performance and 

global characteristics, such as IQ. However, in scenarios in which explicit, top-down influences 

are relatively minimised, the relevant connectionist network would learn according to the 

specifics of the inputs into that system, and its basic pre-existing architecture, and would 

therefore vary substantially between different implicit learning tasks for the same individual. 
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Thus, the contrasting generality between implicit and explicit learning finding is consistent with 

this idea of a learning system: the idea retains distinctions between implicit and explicit learning 

but specifies only one source that causes similarities between performances. 

However, the finding of contrasting generality cannot rule out the possibility that learning 

could also occur according to reasoning/hypothesis-testing with explicit propositions, which 

could function independently of connectionist-type architectures (e.g., Scott & Dienes, in press). 

In this scenario there would still be only one source of generality: performance would inter-

correlate only when either the explicit-proposition based system was utilised or when there was a 

significant top-down influence from the explicit proposition based system onto connectionist 

architecture. 

Finally, another possibility that the finding of contrasting generality cannot completely 

dismiss is the primacy of a propositional learning system (e.g., De Houwer, 2009; Mitchell, et 

al., 2009). In this scenario, perhaps the complex information presented in implicit learning tasks 

is unsuited to reasoning with propositions, and that as a consequence learning is fragmentary and 

unsystematic. In combination with the lack of instruction about what, or even whether, to learn, 

the overall result is that performance is extremely idiosyncratic and noisy, and therefore 

uncorrelated across different implicit learning tasks. However, the success of connectionist 

models in simulating performance on implicit learning tasks argues against a framework that 

disregards the connectionist framework completely, such as this predominantly propositional 

approach to learning. 

In relation to the nature of consciousness, this thesis can only offer a modest contribution: 

the findings re-emphasised the global, pervasive nature of consciousness (e.g., Block, 1995). 

Specifically, in Study I of this thesis, when learning had been explicit and thus influenced by 

consciousness, performance had been related to other high-level, global characteristics such as 

IQ. Additionally, explicit learning was linked with ASC, which is associated with differences in 

global, cognitive functions. In contrast, when conscious input into learning was minimal, or 

absent, there seemed to be little relationship between performance and global characteristics. 

Thus, consciousness was emphasised as global and related to reliable, global characteristics, 

which are critical to mediating some important differences between people. 

Lastly, this thesis is unable to make a novel contribution to the debate about the role of 

awareness in learning. Instead, findings that have been cited as demonstrations of learning 
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without awareness were replicated. For example, performance on all the implicit learning tasks 

in this thesis demonstrated that people could learn when they were not primarily engaged in 

trying to learn, and that consequently they were unable to report verbally on how or what they 

learnt. Additionally, in Studies III and IV, individuals demonstrated contextual cueing effects but 

provided no evidence that they were able to perform above chance on the associated generation 

task. This result implied that the contextual cueing knowledge, which underpinned the contextual 

cueing effect, was learnt without awareness because it was not available to be used in another 

context. However, there is no novel evidence that might convince researchers who had been 

sceptical of such evidence in the past. In these particular cases, the argument still exists that tests 

more sensitive than verbal reports, and generation tasks more powerful than the task used in 

Studies III and IV, could provide evidence of some relevant knowledge. 

More generally, the broader arguments reviewed in Chapter I also persist. For example, 

what criteria should be used to evaluate whether a learning performance demonstrates the 

objective absence of consciousness; what is the definition of consciousness; and to what extent 

do methodologies actually embody those definitions? As a result of this thesis providing no new 

evidence to address these questions, I reiterate my earlier interpretation that a definitive 

demonstration of learning without awareness might be intractable until the field has a better idea 

and understanding of consciousness. However, I also reassert that this conclusion does not 

concede that all learning is fully conscious; I argue that all the counter-evidence, which questions 

the definitive absence of consciousness, demonstrates something less than the actual definitions 

of consciousness that inspired each of the related methodologies. This assessment implies that 

there is still a distinction between implicit and explicit learning; a position which is supported by 

the existence of functional differences between implicit and explicit learning. Perhaps, the idea 

of ‘fringe consciousness’ is useful to researchers willing to acknowledge a distinction but 

reluctant to classify implicit learning as completely unconscious (e.g., Norman, Price, & Duff, 

2006). 

2.4. Implications for Future Functional Investigations of Implicit Learning 

In the context of the limited importance of individual differences in general implicit 

learning, it is worth reflecting upon the value of further research into the possibility. This is a 

particularly relevant concern because of the large sample size and large number of tasks required 
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for this kind of investigation. If such research is pursued, then the use of subjective measures 

should be used to help provide a more accurate estimate of implicit learning (e.g., Dienes, 2008). 

These measures dissociate exactly which aspects of a performance reflect implicit knowledge by 

classifying answers according to subjective criteria of consciousness. However, this technique is 

only possible where performance and subjective measures can be provided simultaneously, such 

as the test phases of the AGL, PCL and IFL. 

Another important implication is that if implicit learning is investigated in atypical 

populations again, then researchers should be hesitant to talk about a general deficit in ‘implicit 

learning’. If there is a deficit in performance on one or two implicit learning tasks, there would 

be a strong possibility that the deficits were actually reflecting a difference in other cognitive 

processes, such as attention or perceptual processing. A conclusion relating to a general deficit in 

implicit learning would be justified only if performance on a large number of diverse implicit 

learning tasks was catastrophically impaired, and that the population were also associated with 

deficits in implicit skills. Additionally, such a finding would be sufficient to reconceptualise 

implicit learning. The finding would imply that a minimum number of prerequisite processes are 

always necessary for implicit learning, and are affected in the relevant patient group, but that 

once those prerequisite processes are intact, the variance in how much is learnt implicitly is 

dependent on a variety of other processes. 

However, these implications for both the individual- and group-differences approaches to 

implicit learning might be re-evaluated as new tasks are developed. Dienes, Baddeley and Jansari 

(2010) have argued that insofar that implicit learning does reflect any general parameters of a 

connectionist/neural network, such as learning rate, then implicit learning tasks are likely to 

provide poor estimations of such parameters. For example, neural network modelling has shown 

that different learning environments specify different optimal learning rates, and thus measuring 

and comparing overall performance across a number of different scenarios will not provide an 

estimation of parameters, such as learning rate, which might be more general. 

The authors have developed a task, and have argued that it measures learning rate, rather 

than overall performance. On the task participants have to make a series of binary predictions as 

to whether a stimuli will appear on the left or right. The stimuli actually appear randomly but 

where the stimuli have appeared on preceding trials affects participants’ predictions. A learning 

rate defines how much each trial changes the strength of prediction, and thus how much each 
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preceding trial influences the current prediction. The learning rate, rather than performance, is 

estimated by calculating the average correlations of the current prediction with where the 

stimulus was from one to ten trials backwards in time. If participants have a large learning rate, 

more distant trials have a relatively smaller influence. Correlations of the current prediction with 

recent trials would be relatively large and correlations of the current prediction with distant trials 

would be relatively small. In contrast, if a participant has a small learning rate each new trial has 

a small effect and distant trials (thus prior knowledge) have a relatively strong influence, and the 

pattern of correlation would be relatively reversed. 

The task was demonstrated to reflect implicit learning: on trials on which participants 

claimed to be guessing, there were correlations between the prediction and where the stimulus 

actually appeared ten trials previously. Additionally, differences in learning rate were argued to 

be important: both amnesia and negative mood were associated with large learning rates. 

However, it is important to note that learning rates themselves are unlikely to be completely 

general: people probably adjust learning rates to different situations (Dienes, et al., 2010). It is 

possible that there might be some meta-generality in which people have propensities to over- or 

under-estimate suitable learning rates, or have difficulties only in scenarios that optimally require 

high, middling or low learning rates. If this were true, then this would fit with my assertion that 

there are no individual differences in overall performance on implicit learning tasks: the different 

tasks are associated with a variety of optimal learning rates (Dienes, et al., 2010). 

Finally, in the event that there is little generality about implicit learning, even in 

parameters relating to learning rate, there would still be a case for understanding which real-

world skills are likely to have been learnt implicitly. Within that scenario, knowing about 

implicit skills could provide no general information about an individual’s ability to learn another 

skill implicitly. However, there would still be advantages: for example, it would be useful to 

know that low or high achievement in certain skills were unlikely to be related to differences in 

explicit, IQ-related potential. I only use the word ‘unlikely’ because information can be acquired 

implicitly but what and how much is learnt might actually be a function of differences in explicit 

strategy and attention. For example, Studies III and IV demonstrated that ASC individuals 

implicitly learnt more about the context as a consequence of initial difficulties in learning to 

apply explicit sequence knowledge. This idea resonates with Ackerman’s (1988) finding that the 
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initial stages of certain skill acquisitions correlated with IQ even when the advantage of a high 

IQ disappeared with continued practice. 

Generally, this type of approach, in which researchers try to establish whether a specific 

skill was learnt implicitly, has already been fruitfully exploited. For instance, researchers have 

established that ball-catching skills are learnt implicitly. When participants report how they 

know whether to move towards, or away, from a moving ball, they typically give an 

uninformative strategy, or one that would guarantee they would not catch the ball (Reed, 

McLeod, & Dienes, 2010). Additionally, when asked to consciously recognise a description of 

how their angle of gaze changed just after a catch, some participants confidently chose incorrect 

descriptions. 

3. Final Conclusion 

In conclusion, this thesis provided no evidence for the proposal that there are functional 

differences between individuals in implicit learning. I assert that taken together with equivocal 

evidence in the wider literature, it is parsimonious to conclude that there is neither a general 

implicit learning ability, nor general, prerequisite implicit learning processes. However, in line 

with previous literature, the thesis did support functional distinctions between implicit and 

explicit learning: explicit, but not implicit, learning was related to IQ; and ASC individuals have 

difficulties with explicit but not implicit learning. Therefore, I assert that a descriptive distinction 

between explicit and implicit learning is both useful and valid. This is true even though implicit 

learning seems to be defined by the absence, or minimal influence, of explicit processing rather 

than the general presence of an implicit learning ability or processes. Additionally, I argue that 

this thesis makes some modest, but not decisive, contributions to some of the fierce debates in 

the implicit learning literature. For example, the results suggested that there cannot be two 

distinct, completely general-purpose learning systems; re-emphasised the global, pervasive 

nature of consciousness; and replicated some findings that are cited as demonstrations of 

learning without awareness. In the latter case, I acknowledge that these replications do not 

represent definitive demonstrations of learning without awareness and would not convince 

researchers previously sceptical of such evidence. Finally, I identify some implications and make 

recommendations for future research into individual differences in implicit learning. First and 

foremost, I urge researchers to consider this research carefully given the required number of 
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tasks and sample sizes that would be required to identify any generality in implicit learning. 

Where possible, researchers should use subjective measures to help provide more accurate 

estimates of implicit learning performance (e.g., Dienes, 2008). Additionally, researchers should 

use a whole range of implicit learning tasks before identifying general differences in implicit 

learning. Otherwise, differences might reflect variation in other cognitive processes. Insofar that 

implicit learning reflects the operations of connectionist-type networks, new tasks, which 

measure learning rate directly rather than overall performance, might have much more success in 

estimating any truly general parameters or propensities relating to implicit learning (e.g., Dienes, 

et al., 2010). If there remains little that is truly general about implicit learning, in spite of new 

tasks, then approaches that identify which skills are learnt implicitly and investigate the specific 

details of the different acquisitions would still reveal much about human cognition and learning 

environments (e.g., Reed, et al., 2010). 
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Appendix A: Additional Materials Information 

1. General Questionnaire used in Study I 
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Note: Dr Francesca Greenford is a fictional person, and is included to demonstrate where the 
name of each participant appeared during their completion of the General Questionnaire. 
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2. Letter Strings from the AGL Task Used in Studies I and II 

Learning Phase Strings  

PVV PVPXVPS  

TXS TSSXXVV  

TSXS TSXXTVV  

PTTVV TXXTVPS  

PTVPS PVPXTVPS  

PVPXVV TSSSXXVV  

TSSSXS TSSXXVPS  

TXTVPS TSXXTVPS  

PTTTVPS TXXTTTVV  

PTVPXVV TXXVPXVV  
 

Test Phase Strings  

Correct Answer: Grammatical  

PVV TXXVV TSXXVV PTTTTVPS PTTVPXVV  

TXS PTTTVV TXXTVPS TSXXTTVV TSXXTVPS  

TPVV PTTVPS TSXXVPS TSSXXTVV PVPXTVPS  

PVPS TXXTVV TXXTTVV PTTTTTVV PTVPXVPS  

TSSXS PVPXVV TSSSSXS PVPXTTVV TSSXXVPS  

Correct Answer: Ungrammatical  

TXV PTTPS PTTTVT PTVPPPS PTTTVPVS  

TTVV XXSVT TSXXPV SVPXTVV TSSXXVSS  

PSXS TXXVX SXXVPS PVTTTVV PVXPVXPX  

TXPV TXVPS PTVVVV VSTXVVS PTVPXVSP  

PVTVV TPTXS VPXTVV TXXTVPT PXPVXVTT  
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3. Number Strings from the IFL Task Used in Studies I and II 

Learning Phase Strings   Test Phase Strings  

Correct Answer: 
Left Two Digits 

 Correct Answer: 
Right Two Digits 

  Correct Answer: 
Left String 

 Correct Answer: 
Right String 

 

1632  1232   2183 2717  2165 8361  

2823  1683   2391 5491  4819 6483  

3421  2137   2453 8419  5264 8375  

3541  2463   3641 8671  5419 3581  

3761  2838   3871 2461  5471 5735  

4723  3141   4736 9147  5487 6283  

5314  3158   5316 1581  5859 2351  
7434  4234   5463 4274  6561 7132  

8763  4329   5738 6814  7261 5783  

9643  7138   6394 2624  7421 5834  

     6513 5958  7494 7831  

     6863 4629  7691 9328  

     7583 5246  8721 2435  

     9234 7461  9242 2835  

     9536 5767  9412 1326  
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4. Tacit Knowledge Inventories Used in Study I 

4.1. Academic Psychology 
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4.2. Business Management 
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4.3. Common Sense Questionnaire 
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Appendix B: Additional Analyses 

1. Invariant Feature Learning task Analysis from Study II 

Learning was measured using the percentage of test phase number strings that had been 

correctly selected above the 50 % chance level. An answer that identified the string containing 

the invariant feature was deemed correct. Overall, the participants performed near chance and 

consistent with this, a one-sample t-test provided no evidence of learning (M = 0.51 %, SEM = 

1.15 %, t(51) = 0.44, p = .66, d = 0.06). Both groups performed near chance and there was no 

evidence of a significant difference between them (TD: M = 2.69 %; ASC: M = -1.67 %; SED = 

2.25 %; t(51) = 1.94, p = .06, d = 0.54). Although, the difference was not significant, there was a 

trend towards a larger score in the TD group. This trend difference might have masked a learning 

effect in the TD group. However, when considering just the TD-group, there was still no 

evidence of learning from a one-sample t-test (t(25) = 1.77, p = .09, d = 0.35). Thus, there was 

no evidence of learning on the IFL task. 

2. Full Equivalence Analyses of Learning Indices from Study II 

Equivalence analysis (Rogers, et al., 1993; Stegner, et al., 1996) necessitates the a priori 

specification of an equivalence threshold; this was specified as random within-subject variability 

in TD group. This threshold was chosen using the logic that an interesting between-group 

difference should be at least as large as the estimated random within-subject variability. To 

elaborate on the notion of random within-subject variability: if a test measures what it purports to 

measure perfectly, then the two split-half scores of that test would correlate perfectly with one 

another. Yet, in spite of no conceptual difference between two split-halves – they are randomly 

derived halves of the same test – usually such scores do not correlate perfectly. Consequently, 

the variability in one split half-score that cannot be explained by variability in the other split-half 

score is determined to be random within-subject variability. Therefore, the equivalence threshold 

= estimated random within-subject variability = [(1- r2) * Varx * (n - 1) / (n - 2)]0.5; Varx = 

variance on one split-half, r = correlation between the split halves. The null hypothesis would 

then be tested that the difference between the groups is at least as large as the equivalence 
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threshold by conducting two one-tailed t-tests. For example, consider the CC equivalence 

analysis reported below. 

 CC 

t(50) = [ x TD – (x ASC ± E)] / Sx TD – x ASC x

TD = 2.71 %; 

x

ASC = 3.05 %; Equivalence threshold (E) = random within-subject 

variability = [(1- 0.252 * 26.89 * (52 - 1) / (52 - 2)]0.5 = 5.13 % 

t(50) = [2.71 - (3.05 ± 5.13)] / [3.972 / 26 + 3.762 / 26)]0.5 

t(50) = 4.47 and t(50) = -5.10. 

Since an investigator is interested in whether the difference between the groups is at least 

as large, they just need to consider the t-test that yields the largest p-value (i.e. just need to test 

the possibility of finding the smallest difference between the actual difference and the threshold, 

given the null hypothesis that the difference is at least as large as the equivalence threshold). 

Therefore, equivalence analysis rejects the hypothesis of non-equivalence (CC: t(50) = 4.47, p < 

.001).7 The remaining four equivalent analyses are reported below. 

 SRT 

t(50) = [

x

TD – (

x

ASC ± E)] / S

x

TD – 

x

ASC 

x

TD = 4.82 %; 

x

ASC = 4.63 %; E = [(1 - 0.382 * 31.05 * (52 - 1) / (52 - 2)]0.5 = 5.25 % 

                                                 
7 This analysis used a revised estimate of within-subject variability compared with Brown and colleagues 

(2010). This revised estimate did not change the pattern of results; however, this means that the exact figures differ 

somewhat for the CC and SRT analysis. After publication of Brown and colleagues (2010), it was made clear to me 

that the method used in Brown and colleagues (2010) for calculating the split-half scores for the CC and SRT was 

too liberal. Specifically, the same baselines were used to calculate the two difference scores for each of the two split-

halves. The original rationale was that learning is measured by the decreases in RTs to high-frequency (or probable), 

trials, and is effectively ‘normed’ by the use of the baseline (low-frequency or improbable trials). Given the non-

split, and thus more reliable, baseline is always available for an SRT, or CC, task of that length, the logic was that 

the variability for the baseline did not need to be estimated. However, it was realised that the baseline is, of course, 

not the same between experiments and so when estimating reliability it is necessary to estimate all sources of 

measurement error. Thus, split-halves were calculated for both high-frequency and low-frequency (and probable and 

improbable) trials. Each half was randomly paired together with a half of the other trial-type, which were then used 

to calculate two split-half average proportional increases in RT differences across blocks. 
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t(50) = [4.82 - (4.63 ± 5.25)] / [3.382 / 26 + 4.732 / 26)]0.5 

t(50) = 4.76 and t(50) = -4.44, p < .001. 

 

 AGL 

t(50) = [ x TD – ( x ASC ± E)] / S x TD – x ASC 

x TD = 3.35 %; x ASC = 3.20 %; E = [(1 - 0.332 * 114.07 * (52 - 1) / (52 - 2)]0.5 = 10.31 % 

t(50) = [3.35 - (3.20 ± 10.31)] / [7.942 / 26 + 8.362 / 26)]0.5 

t(50) = 4.63 and t(50) = -4.49, p < .001. 

 

 PCL 

t(50) = [ x TD – ( x ASC ± E)] / S x TD – x ASC 

x TD = 4.95 %; x ASC = 8.74 %; E = [(1 - 0.302 * 173.66 * (52 - 1) / (52 - 2)]0.5 = 12.85 % 

t(50) = [4.95 - (8.74 ± 12.85)] / [7.012 / 26 + 11.752 / 26)]0.5 

t(50) = 3.37 p < .001 and t(50) = -6.20. 

 

 PAL 

t(50) = [ x TD – ( x ASC ± E)] / S x TD – x ASC 

x TD = 46.03 %; x ASC = 39.74 %; E = [(1- 0.872 * 431.39 * (52 - 1) / (52 - 2)]0.5 = 10.48 % 

t(50) = [46.03 - (39.74 ± 10.48)] / [15.072 / 26 + 23.642 / 26)]0.5 

t(50) = 3.05 and t(50) = -0.76 p = .22. 

 

3. PCL Strategy Analysis from Study II 

The full details of this analysis were not presented in the main body of the thesis because 

it was not an express aim of Study II to provide such in depth analysis of each individual implicit 

learning task performance. Study II had been designed to investigate the generality of any 

implicit learning deficit in ASC, and to determine whether any intact performance could be 
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attributed to other factors such as explicit-IQ related compensation. The study provided evidence 

of intact implicit learning on a range of tasks, which could not be accounted for by compensatory 

explicit strategies. However, in discussions about the study, it was suggested that although the 

overall ASC performances had been implicit and equivalent to the TD group, perhaps there were 

general differences between the groups in how they achieved those equivalent, implicit 

performances. Although this possibility was considered unlikely, such differences might be 

theoretically interesting for a functional analysis of differences in implicit learning and 

potentially useful to ASC research. Thus, a review was conducted into what analyses might 

reveal such differences in how the groups achieved their equivalent overall performances. Given 

the particular designs used for each of the tasks, it was concluded that a strategy analysis of the 

PCL dataset was most suited to such investigation (Gluck, et al., 2002). 

The two groups achieved equivalent overall performance on the PCL task, as reported in 

Study II. Gluck and colleagues (2002) have identified a number of different ‘strategies’ that 

participants tend to use during the PCL task (see also Lagnado, Newell, Kahan, & Shanks, 2006; 

Meeter, Myers, Shohamy, Hopkins, & Gluck, 2006; Price, 2009). Therefore, in order to 

determine whether the equivalent overall performance between the groups was achieved using 

similar learning strategies, a strategy analysis was conducted on the PCL data from both groups. 

Following the established method (e.g., Gluck, et al., 2002), response profiles were constructed 

that would be expected if a participant were reliably following a particular strategy and 

compared individually with each participant’s data. Gluck and colleagues’ (2002) Least Means 

Square procedure was used to determine the extent to which each strategy provided a fit for each 

participant’s dataset. A participant was classified as having utilised the strategy that provided the 

best fit for their data. In order to reflect the possibility that participants switched strategies, this 

process was conducted separately for each of the learning and test blocks. The different 

strategies that were modelled are described below and relate to the stimuli (A, B, C etc.) detailed 

in Table 17 (reproduced from Study III).  
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Table 17. The Stimuli and Probability Structure of the PCL Task 

Stimulus Cue 1 Cue 2 Cue 3 Cue 4 P (stimulus) P (vanilla|stimulus) 
A 0 0 0 1 .136 .143 
B 0 0 1 0 .079 .375 
C 0 0 1 1 .089 .111 
D 0 1 0 0 .079 .625 
E 0 1 0 1 .061 .167 
F 0 1 1 0 .061 .667 
G 0 1 1 1 .042 .250 
H 1 0 0 0 .136 .857 
I 1 0 0 1 .061 .333 
J 1 0 1 0 .061 .833 
K 1 0 1 1 .033 .333 
L 1 1 0 0 .089 .889 
M 1 1 0 1 .033 .667 
N 1 1 1 0 .042 .750 

Note: Cue 1 = brown moustache, cue 2 = red hat, cue 3 = blue glasses, cue 4 = bow tie. Each 
cue could be present (1) or absent (0) for each stimulus. The all-present (1111) and all-absent 
(0000) stimuli were never used. On any trial during the learning phase, there was a given 
probability of each of the 14 stimuli appearing (P(stimulus)), and a dynamic stimulus-outcome 
probability for each of these 14 stimuli. During the test phase, when feedback is removed, the 
stimulus-outcome probability is static (P(vanilla|stimulus)). All stimuli appeared equally often 
during the test phase. The overall probability of the vanilla outcome across all stimuli is 50 %.  

In addition to the stimulus-outcome probabilities detailed in Table 17, the constituent 

cues of the stimuli necessarily had a probabilistic relationship with the outcomes. Specifically, 

the final cue-outcome probabilities can be calculated from the table: P(vanilla|cue 1) = .733; 

P(vanilla|cue 2) = .600; P(vanilla|cue 3) = .450; P(vanilla|cue 4) = .222. 

3.1. Strategy Models 

Singleton strategies. These strategies modelled participants who only learnt about 

stimuli that were composed of only one of the four possible cues. In particular, one model 

assumed participants learnt about all four singleton stimuli (A, B, D and H), while the second 

assumed participants only learnt about the two singleton stimuli with the strongest probability of 
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an outcome (A &H). In both cases, it is assumed that participants guessed on the remaining 

trials. 

Single-Cue strategies. These strategies modelled participants who learnt about only one 

cue, and used that cue’s presence or absence to determine responding to all stimuli, regardless of 

the presence or absence of any of the other cues. This produced four models: one for each of the 

four cues. 

Intermediate strategies. These strategies modelled participants who learnt about and 

responded to stimuli on the basis of more than one cue, but in contrast to the integrative 

strategies described below, these participants did not learn about the relative likelihood of 

outcomes for cues, instead they learnt only about the direction of the outcome. Specifically, the 

singleton-prototype model assumed participants learnt the optimal response pattern for all four 

singleton stimuli, and generalised this responding to include the two stimuli with two singleton 

cues that were associated with the same outcome (C & L). The singleton-2vs1 model extended 

the prototype model and assumed responding was also generalised to stimuli where 3 singleton 

cues are present (G, K, M & N), with responding determined by the outcome associated with 2 of 

the 3 singleton cues present. 

Integrative strategies. These strategies modelled participants that learnt about and 

responded to stimuli on the basis of more than one cue and had to keep track of the relative 

strengths of associations of cues and/or stimuli. The optimal singleton model extended the 2vs1 

model such that responding was also generalised to stimuli where 2 singleton cues were present 

and each were associated with the opposite outcome but one more strongly than the other (E, J). 

The all-but-two-strong model was the same as the optimal singleton model except that it 

predicted guessing on the stimuli with 3 cues present including two cues strongly associated with 

opposite outcomes (M &K). The summing-all-single-cues model departed from the singleton 

assumption that participants learnt only about singleton stimuli, and instead assumed participants 

learnt the number of times each cue was associated with an outcome, and summed this 

probability for each of the 14 stimuli. The summing-two-strong-single-cues was the same as 

summing-all-single-cues except that it assumed participants only learnt about the two cues most 

strongly associated with an outcome, and therefore guessed on stimuli in which both cues were 

absent (B, D & F). The multi-cue model assumed that participants distinguished each of the 14 

stimuli, and learnt about each of the 14 stimuli’s association with an outcome. The multi-strong 
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model assumed that participants distinguished the stimuli holistically but only learnt about the 8 

stimuli that were associated strongly with one outcome (A, C, E, G, H, J, L, & N). 

Incorrect strategies. Participants that responded in a consistent but incorrect manner 

were modelled by incorrect strategies (Price, 2009). Three types of incorrect strategies were 

considered: (1) incorrect singleton strategies modelled participants that responded on singleton 

stimuli with the opposite response expected and then guessed on the remainder of stimuli; (2) 

incorrect one-cue strategies modelled participants that provided a response depending on the 

presence or absence of just one-cue but that the response was in opposition to the cue’s outcome-

association; (3) incorrect multi-cue strategies modelled participants that distinguished the 14 

stimuli but provided responses in opposition to each stimulus’s outcome-association. 

Random strategy. This strategy modelled participants that responded with the two 

outcomes equally often for each of the stimuli. 

In addition to the introduction of four novel strategies (described above as summing-all-

single-cues, summing-two-strong-singles-cues, multi-strong and incorrect multi-cue), three 

general improvements were applied to the modelling of all these strategies: 

1) The impact of the dynamic probabilities experienced throughout the task was 

modelled. The dynamic nature of the probabilities experienced by participants has been 

acknowledged previously, and addressed using other techniques such as rolling regression (e.g., 

Kelley & Friedman, 2002; Lagnado, et al., 2006; Speekenbrink & Shanks, 2009); however, it has 

not been previously addressed within a strategy analysis framework. In this strategy analysis, the 

impact of dynamic probabilities was modelled by generating response profiles for each block 

according to the outcomes a participant had cumulatively experienced up until that learning 

block. In contrast, previous strategy analyses appeared to use the same probabilities to model 

response profiles for each of the four learning blocks; probabilities that were only correct after 

the fourth learning block. Furthermore, Study II utilised a test block with feedback removed, and 

thereby provided responses that could be modelled according to static probabilities.  

2) Both maximising and matching behaviour were modelled for all strategies. Once a 

participant has learnt an outcome probability according to a given strategy, they might always 

select the more probable outcome (maximising) or they might distribute their responses in order 

to match the probability of the outcomes (matching). Lagnado and colleagues (2006) noted this 

distinction and implemented alternative profiles for the multi-cue model according to both 
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maximising and matching. Lagnado and colleagues (2006) found that the multi-matching model 

seemed to provide the best-fit of all the strategies. Surprisingly, however, matching behaviour 

was not applied to all the other possible strategies. In Study II, two sets of response profiles were 

generated for all of the strategies based on either maximising or matching behaviour. The 

maximising models were retained, in spite of the finding by Lagnado and colleagues (2006) that 

a matching model provided the best-fit, because the literature is divided: other researchers have 

reported the prominence of maximising behaviour (e.g., White & Koehler, 2007). 

3) The possibility of forgetting or disregarding old information was modelled for all 

strategies. Finally, another possibility relating to the dynamic experience of learning was 

acknowledged: participants may have utilised their strategies according to the most recent 

outcomes that they experienced, disregarding or forgetting earlier experiences. Therefore, two 

sets of response profiles were generated for all the strategies based on either a cumulative or 

recent use of information. The recent use of information assumed participants only used 

outcomes experienced within the current block. 

Together, these improvements combat some of the key criticisms aimed at previous 

strategy analyses, including the unrealistic assumptions of global, static probabilities (e.g., 

Lagnado, et al., 2006). In light of such improvement, strategy analysis is preferable to an 

alternative rolling regression analysis (e.g., Kelley & Friedman, 2002; Lagnado, et al., 2006; 

Speekenbrink & Shanks, 2008). Strategy analysis is preferable because it allows an assessment 

of a wide range of strategies, which is particularly important when analysing TD and ASC 

participants who may have attended to different aspects of the stimuli. In contrast, rolling 

regression analysis only assesses the strength with which individual cue weights were learnt, and 

thereby assumes that all participants learn only about the individual cue weights. This 

assumption does not allow for participants who learnt more holistically about the stimuli, which 

was particularly inappropriate presently because the MrPotatoHead stimuli used in Study II were 

expressly designed to be evaluated as integrated customers rather than a set of individual cues. 

Additionally, a great benefit of rolling regression analysis was not applicable in Study II. 

Specifically, a rolling regression analysis analyses a participant’s responses and predicts what 

cue-weights would produce those responses (under the assumption that the learner was learning 

and responding only on the basis of cue-weights), and thereby quantitatively estimates the cue-

weights of the learner. The great benefit arises from a comparison of those weights with the 
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participant’s ratings of the cue weights/cue usage, which thereby reveals whether their 

performance reflected their explicit judgement. However, such ongoing assessment was not 

included in this task in case its inclusion encouraged explicit processes (e.g., Gebauer & 

Mackintosh, 2007).8 

3.2. Strategy Use 

Figure 13 depicted the number of participants using each category of strategy between 

the two groups across the different phases of the PCL task. This figure demonstrated that the 

distribution of strategies was similar between the two groups. Accordingly, chi-square 

contingency table analyses provided no evidence that Group impacted upon the distribution of 

strategies in any of the blocks (for all blocks: χ2 ≤ 5.53, ps ≥ .27 and Φ2 ≤ .11). There were no 

obvious trends in the use of individual strategies, and further analyses of all six categories were 

inappropriate given the small number of participants in several of the categories. 

                                                 
8 Lagnado and colleagues (2006) found that the inclusion of ratings did not make the performance more 

explicit on their task. However, this may have resulted from the performance already being explicit prior to their 

inclusion of the ratings. Thus, there was still a risk associated with including ratings in Study II, and the ratings were 

omitted. The risk seemed particularly relevant given there is reason to suspect that the version of the PCL task used 

by Lagnado and colleagues encouraged explicit performance. Specifically, the stimuli in their Weather Prediction 

task are composed of particularly discrete cues (symbols on a Tarot Card), which is known to encourage explicit 

learning (Maddox & Ashby, 2004). Additionally, the PCL procedure used in Study II was designed to encourage 

implicit performance. Study II used holistic MrPotatoHead stimuli. Also, the feedback conditions were selected to 

minimise explicit learning: feedback was displayed immediately after the response and feedback processing time 

was minimised by allowing only 600ms between first receiving the feedback and beginning the next trial (Maddox 

& Ashby, 2004). The equivalent procedural details were not reported by Lagnado and colleagues (2006). 
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Figure 13. There was a similar distribution of strategy use between the TD (top panel) and the 
ASC group (bottom panel). Depicted are the numbers of participants selecting a particular 
strategy across the different stages of the PCL task for both groups. 

In line with Price (2009) and Shohamy and colleagues (2004), important comparisons 

were considered more sensitively by collapsing across some of the categories. Therefore, the 

categories of strategies were classified as either ‘incorrect’ or ‘correct’ (all strategies except 

incorrect strategies), and ‘integrated’ or ‘non-integrated’ (all strategies except integrated 

strategies). The number of incorrect and correct strategies appeared similar between the groups, 

see Figure 14. Chi-square contingency table analyses provided no evidence that Group impacted 

upon the distribution of correct and incorrect strategies in any of the blocks (for all blocks: χ2 ≤ 
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1.56, ps ≥ .35 and Φ2 ≤ .03). It was also evident from Figure 14 that the total number of 

participants using a correct or incorrect strategy appeared stable over the course of the task, and 

that the two groups were similar in this stability. In line with this interpretation, a Wilcoxon 

matched-pairs, signed ranks test provided no evidence of an increased use of correct strategies in 

the Test block relative to Block 1 (z = .69, p = .65, d = .09), and a Mann-Whitney U-test gave no 

evidence of a difference between the groups in this change across the blocks (z = .27, p = .72, d = 

.06). 
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Figure 14. There was a similar distribution in the use of correct and incorrect strategies 
between the TD (top panel) and the ASC group (bottom panel). Depicted are the numbers of 
participants selecting a correct or incorrect strategy across the different stages of the PCL task 
for both groups.  

The number of participants using integrated strategies appeared similar between the two 

groups, see Figure 15. Consistent with this interpretation, there was no evidence that Group 

affected the distribution of integrated and non-integrated strategy use from chi-square 

contingency table analyses (for all blocks: χ2 ≤ 2.56, ps ≥ .20 and Φ2 ≤ .05). Figure 15 also 

indicated that the total number of participants using an integrated or non-integrated strategy 

remained stable over the course of the task, and that this was true for both groups. In line with 
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this interpretation, a Wilcoxon matched-pairs, signed ranks tests provided no evidence of an 

increased use of integrated strategies in the Test block relative to Block 1 (z = 1.81, p = .12, d = 

.26), while a Mann-Whitney U-test supplied no evidence of a difference between the groups (z = 

0.83, p = .41, d = .22). 

 

 

Figure 15. There was a similar distribution in the use of integrated and non-integrated 
strategies between the TD (top panel) and the ASC group (bottom panel). Depicted are the 
numbers of participants selecting integrated or non-integrated strategies across the different 
stages of the PCL task for both groups. 
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3.3. Consistency of Strategy Use 

The general consistency of individual participants’ strategy use was considered using two 

novel indices. First, for each individual, the frequency with which each strategy fitted their 

responses across the 5 blocks of the PCL was calculated (0-5 was possible for any strategy). The 

strategy that fitted an individual most frequently was used as the individual’s score (1-5 was 

possible for each individual), and the mean score was calculated for each group. Both groups 

seemed to use their most-frequently-fit strategy relatively regularly across the blocks with the 

TD group using the same strategy 2.88 times (SD = 0.43), and the ASC group 2.76 times (SD = 

0.81). There was no evidence of a difference between the groups (t(38) = 0.64, p = .53, d = .18).  

Second, for each individual, the 4 transitions from each block of the PCL were scored: if 

the same strategy was used consecutively, the transition scored 1, if a different strategy was used, 

the transition scored 0 (0-4 was possible for each individual). The TD group used a strategy 

consecutively a mean number of 1.38 times (SD = 0.90), while the ASC group was 1.46 times 

(SD = 0.95), with no evidence of a difference between the groups (t(50) = 0.30, p = .77, d = .08). 

Insofar that both groups scored above 0, there was some consistency in their use of strategy. 

However, participants were clearly not completely consistent: on average, the most frequent 

strategy was used approximately 3 times during the task, but the consecutive strategy score was 

below 3. Thus, this difference between most-frequent and consecutive scores implied that 

individuals did not persist with their most-frequent strategy once it was identified. Instead, 

participants continued to show strategy-exploration, probably returning to their most-used 

strategy upon finding the new strategy inappropriate. Such individual behaviour was consistent 

with the earlier conclusion from the Group level analyses that there were no coherent trends 

towards the use of particular strategies over the course of the task.  

The consistency of an individual’s strategy use was further analysed by collapsing across 

categories to consider the most interesting comparisons with greater power. The mean frequency 

with which a correct or incorrect strategy was used (out of 5) was 4.00 times (SD = 0.89) for the 

TD group and 3.92 times (SD = 0.80) for the ASC group (t(50) = 0.33, p = .75, d = .08), while 

the mean frequency of either correct or incorrect consecutive strategy use (out of 4) was 2.65 

times (SD = 1.20) for the TD group and 2.62 times (SD = 1.17) for the ASC group (t(50) = 0.12, 

p = .91, d = .03). These analyses implied that the use of correct or incorrect strategies was 
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consistent. Again, such individual consistency fitted with the earlier finding that there were no 

trends towards using correct strategies over the blocks at the Group-level. 

The mean frequency with which an integrated or non-integrated strategy was used (out of 

5) was 4.23 times (SD = 0.82) for the TD group and 4.12 times (SD = 0.86) for the ASC group 

(t(50) = 0.50, p = .62, d = .14), while the frequency of either integrated or non-integrated 

consecutive strategy use (out of 4) was 3.08 times (SD = 0.98) for the TD group and 3.19 times 

(SD = 0.80) for the ASC group (t(50) = 0.47, p = .64, d = .13). These analyses implied individual 

consistency in the use of integrated or non-integrated strategies, and were therefore coherent with 

the earlier conclusion that there were no Group-level trends towards the use integrated strategies 

across the blocks. 

3.4. Impact of Strategy on Performance 

In order to assess the impact of strategy use on performance, and in particular differences 

between the groups in their capacity to utilise different strategies, percentage correct during the 

PCL was compared between different categories of strategies. It was not possible to conduct 

analyses using all six categories because the data was not sufficiently distributed among those 

categories. Therefore, the integrated-non-integrated and correct-incorrect categorisations were 

analysed. An inspection of Figure 16 showed that the use of correct strategies resulted in superior 

task performance. ANOVAs with two between-subject factors Categorisation (Correct vs. 

Incorrect) and Group (TD vs. ASC) were conducted separately within each level of block, and 

revealed that the use of correct strategies led to superior task performance in every block (all Fs 

≥ 9.00, ps ≤ .01 and η2
p ≥ .16). There was no evidence of any group differences or interactions 

(all Fs ≤ 1.20, ps ≥ .28 and η2
p ≤ .02). 
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Figure 16. In both the TD (top panel) and the ASC group (bottom panel), there was a similarly 
superior performance by participants using correct rather than incorrect strategies. Depicted 
are the mean accuracies of participants selecting correct or incorrect strategies across the 
different stages of the PCL task for both groups. The error bars show twice the standard error of 
differences between categorisation means separately for each of the two groups. 

Figure 17 demonstrated that the use of integrated strategies resulted in superior task 

performance. ANOVAs with two between-subject factors Categorisation (Integrated vs. Non-

Integrated) and Group (TD vs. ASC) were conducted separately within each level of block, and 

revealed that the use of integrated strategies led to superior task performance in every block 

except the first (Block 1: (F(1, 48) = 2.38, p = .13, η2
p = .05; for all other blocks: Fs ≥ 19.07, ps ≤ 
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.001 and η2

p ≥ .28). While there was a numerical trend for the ASC group to have utilised 

integrated strategies to achieve better PCL performance, there was no statistical evidence of such 

interactions (all Fs ≤ 3.81, ps ≥ .06 and η2
p ≤ .07). There was no evidence of overall Group 

differences (all Fs ≤ 2.96, ps ≥ .09 and η2
p ≤ .06). 

 

 

Figure 17. In both the TD (top panel) and the ASC group (bottom panel), there was a similarly 
superior performance by participants using integrated rather than non-integrated strategies. 
Depicted are mean accuracies of participants selecting integrated or non-integrated strategies 
across the different stages of the PCL task for both groups. The error bars show twice the 
standard error of differences between categorisation means separately for each of the two 
groups. 
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3.5. Implicitness of Strategies 

There is debate as to whether strategies reflect implicit or explicit learning (e.g., 

Lagnado, et al., 2006; Meeter, Radics, Myers, Gluck, & Hopkins, 2008; Price, 2009; cf, Gluck, et 

al., 2002; Shohamy, Myers, Kalanithi, & Gluck, 2008). For example, in two studies researchers 

have found correspondence between the estimates of cue weights and actual cue weights 

(Lagnado, et al., 2006; Price, 2009). However, Gluck and colleagues have found no 

correspondence between reported strategies and best-fit strategies (e.g., Gluck, et al., 2002). 

Therefore, it seems possible that whether strategies are used explicitly will depend upon the 

particulars of the task. The PCL task procedure used in Study II was designed to minimise 

explicit learning by following the recommendations of previous research, which has detailed the 

factors affecting the explicit contributions to categorisation performance. Therefore, Study II 

used configural, holistic stimuli, rather than stimuli with particularly discrete cues (Maddox & 

Ashby, 2004). Additionally, Study II used feedback conditions found to minimise explicit 

processing: feedback was displayed immediately after a response and feedback processing time 

was minimised by allowing only 600 ms between first receiving the feedback and beginning the 

next trial (Maddox & Ashby, 2004). 

Accordingly, there was evidence from the explicit interviews that implied the task 

procedures had been successful in minimising explicit processing. In particular, the verbal 

reports were blindly evaluated in order to determine which strategy each report resembled. Each 

report was classified as most-resembling either integrated/ intermediate (these two strategy 

categories could not be distinguished from the reports); single-cue; singleton; incorrect; or 

random. The number of times a reported strategy matched the best-fit strategy was calculated. 

This calculation was only carried out for the Test Block because participants were only asked 

about their final strategies. The number of participants who provided strategies that corresponded 

to their best-fit strategy was small (n = 14), and a two-tailed binomial test demonstrated that the 

number was not significantly above the chance level of 20 % (p = .28; a chance level of 20 % 

was used because 5 category classifications were possible). The number of matches was similar 

for both the TD (n = 6) and ASC groups (n = 8), and a chi-square contingency table analysis did 

not provide any evidence of an association between the number of matches and Group (χ2 = 0.39, 

p = .76, Φ2= .01).  
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Additionally, the verbal reports were blindly evaluated and rated on a 3-point scale of 

‘explicitness’ (1 = reported no knowledge of the relationships in the task; 2 = reported 

knowledge about the existence of relationships in the task but provided no details as to what they 

were and/or expressed doubt about their existence; 3 = reported knowledge about at least one 

relationship they believed to be present in the task). The reports received a variety of ratings (1-

rating, n =13; 2-rating, n =14; 3-rating, n =25), and while more participants appeared to have 

provided 3-ratings than anything else, a chi-square goodness-of-fit test failed to reject the null 

hypothesis that all ratings were chosen equally often (χ2 = 5.12, p = .08, w = .31). A chi-square 

contingency table analysis failed to provide any evidence of an association between Group and 

the Explicitness rating (TD: 1-rating, n =4; 2-rating, n = 8; 3-rating, n =14; ASC: 1-rating, n = 9; 

2-rating, n = 6; 3-rating, n = 11; χ2 = 2.57, p = .30, Φ2= .05). More important than this analysis of 

the distribution of the absolute ratings was whether the insight was related to performance. 

Therefore, the relationship between explicitness and performance was examined. If performance 

had been mediated explicitly, then those participants who were able to report explicitly the most 

information should have also performed the best. However, Figure 18 and a two-way ANOVA, 

with two between-subject factors of Group and Explicitness-rating, provided no evidence of an 

effect of Explicitness-rating on performance (F(2, 46) = 0.17, p = .85, η2
p = .01), nor of an 

interaction between Group and Explicitness-rating (F(2, 46) = 0.31, p = .74, η2
p = .01). This same 

pattern of results remained even after excluding the 12 participants who provided at least one 

incorrect piece of information about the relationships in the task (Explicitness-rating: F(2, 34) = 

0.39, p = .68, η2
p = .02; Group and Explicitness-rating F(2, 34) = 0.03, p = .97, η2

p > .01). 
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Figure 18. In both groups, PCL performance was not determined by the explicit knowledge 
participants had gained about the task. Presented are mean percentage of correct guesses that 
were provided above chance on the PCL test phase. This score is presented for the two groups 
depending upon the „explicitness‟ rating given to the post-task interviews. The error bars show 
twice the standard error of differences between group means at different levels of explicitness 
ratings. 

3.6. Modelling Improvements 

3.6.1. Modelling Maximising and Matching Behaviour 

Figure 19 demonstrated the importance of modelling probability-matching behaviour: 

maximising models rarely provided a better fit for the data when in competition with matching 

models. This seemed equally true for both groups and appeared to have remained stable across 

the blocks. Statistical analyses were not appropriate since the maximising category was always 

below 5. 
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Figure 19. In both the TD (top panel) and the ASC group (bottom panel), matching models 
provided a better fit for most participants. Depicted are the numbers of participants best 
modelled by matching or maximising choices across the different stages of the PCL task for both 
groups. 

3.6.2. Cumulative and Recent Use of Information 

Figure 20 depicted the number of participants best modelled by the recent or cumulative 

use of information models. The figure demonstrated that there were several instances in which 

the recent use of information models provided a better fit than the standard cumulative models. 

Thus, the analysis had been improved by including the recent use of information models. 
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Additionally, Figure 20 illustrated the similarity of the two groups in their use of cumulative and 

recent information. Chi-square contingency table analyses comparing the proportion of each 

group better modelled by recent or cumulative information in each block were consistent with 

this interpretation (for all blocks: χ2 ≤ 1.24, ps ≥ .40 and Φ2 ≤ .02). Figure 20 also showed that 

fewer participants relied on recent information as the task progressed. A Wilcoxon matched-

pairs, signed ranks test was consistent with the decreased use of recent information in the Test 

block relative to Block 2 (z = 2.94, p < .01, d = .50). It was also evident from Figure 20 that the 

decrease across the blocks in the use of recent information was similar in both groups. A Mann-

Whitney U-test was consistent with this interpretation, insofar that it provided no evidence of 

group differences in the number of participants changing to cumulative strategies in the Test 

block relative to Block 2 (z = 1.28, p = .24, d = .35). 
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Figure 20. In both the TD (top panel) and the ASC group (bottom panel), the recent use of 
information models provided a better fit for some participants. Depicted are numbers of 
participants best modelled by the recent or cumulative use of information across the different 
stages of the PCL task for both groups. There were no results for Block 1 because the two 
models made the same predictions and thus the models were indistinguishable. 

3.7. Discussion 

In Study II, analyses had indicated that the TD and ASC groups were equivalent in their 

overall performance on the PCL task. However, there was a possibility that the overall 

equivalence was achieved using notably different strategies. Overall, the analyses presented in 
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this appendix emphasised the similarity between the TD and ASC groups in their use of implicit 

learning strategies on the PCL task. Specifically, there was no evidence of differences between 

the groups using fine-grained analyses, which considered nuanced variations in strategy, such as 

which strategies were used, the consistency with which strategies were used and the success with 

which strategies were used. Additionally, there was evidence that the strategies were largely 

implicit: strategy insight appeared unrelated to both the strategies that the participants actually 

used and how successfully the participants performed. Thus, this strategy analysis has 

demonstrated that the equivalent overall PCL performance was underpinned by a similarity in 

the implicit learning strategies used by the groups. Additionally, this similarity on the PCL task 

implies that there cannot be general differences between the groups in how they achieve 

equivalent performances on implicit learning tasks. 

 More generally, this analysis described and demonstrated the benefits of two 

improvements to strategy analysis, specifically the inclusion of models to reflect both 

participants who preferred maximising to matching behaviour, and participants who preferred the 

recent use of information to the cumulative use. Additionally, it is proposed that the strategy 

analysis was improved both by the inclusion of new analyses, such as the analysis of the 

consistency with which strategies were used, and the avoidance of the unrealistic assumption that 

static probabilities were experienced by participants throughout the task. 

4. Accuracy Analysis of SRT from Studies III and IV 

4.1. Study III 

4.1.1. Training: Block 1-10 

Unlike RTs, accuracy did not appear to improve as a consequence of training. For 

example, mean accuracy between the first five and last five blocks was similar, and this appeared 

equally true of both groups (TD: Mean difference (M) = 0.07 %; ASC: M = - 0.71 %; SED = 0.87 

%). Consistent with this interpretation, a mixed analysis of variance with factors of Group and 

Block revealed no significant effect of Block (F(5, 137) = 1.22, p = .30, η2
p = .04) nor interaction 

with Group (F(5, 137) = 1.63, p = .16, η2
p = .05). There was also no evidence of an overall effect 

of Group (F(1, 30) = 0.15, p = .70, η2
p = .01). The failure of accuracy to index learning during 

the training stage of the task was a consequence of a ceiling effect – accuracy was high from the 
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beginning. This was consistent with findings from Study II: Study II demonstrated that accuracy 

indexes learning by measuring the deterioration of performance on relatively unexpected 

(irregular) trials rather than improvement on the sequenced trials. The deterministic version of 

the SRT used in this study had no unexpected trials until the test block. 

4.1.2. Test: Block 10-12 

The introduction of the control sequence during the test block made the task more 

difficult to the extent that accuracy became an index of learning. Specifically, accuracy was 

worse on the control sequences in block 11 as compared with the training sequences averaged 

between blocks 10 and 12, and this decrease was similar between the groups (TD: Mean 

difference (M) = 9.08 %; ASC: M = 9.52 %; SED = 2.68 %). A mixed ANOVA with factors of 

Group and Block (Control Sequences Block 11 vs. Block 10&12) produced a pattern of results 

equivalent to the RT analysis: there was an effect of Block indicative of sequence learning (F(1, 

30) = 48.12, p < .001, η2
p = .62) but no interaction with Group (F(1, 30) = 0.03 p = .87, η2

p < 

.01). There was no overall difference between the groups in accuracy (F(1, 30) = 0.01 p = .91, 

η2
p < .01). 

4.1.3. Sequence validity: Block 10-12 

As an indirect measure of whether the application of the sequence was explicit, mean 

accuracy on training sequences in test block 11 (during which the global validity of the sequence 

was disrupted) were compared with mean accuracy on training sequences in neighbouring blocks 

10 & 12. Both groups were more inaccurate on the training sequence in Block 11 than in Block 

10 and 12 (TD: Mean difference (M) = 4.09 %; ASC: M = 0.85 %; SED = 1.96 %). A mixed 

ANOVA with factors of Group and Block (Training Sequences Block 11 vs. Block 10&12) 

revealed a main effect of Block (F(1, 30) = 6.37, p = .02, η2
p = .18), which indicated that the 

sequence learning had been explicit to the extent that performance had been more inaccurate 

when there had been a global disruption to the validity of the sequence knowledge. There was no 

significant effect of Group (F(1, 30) = 0.53, p = .47, η2
p = .02) nor interaction between Group 

and Block (F(1, 30) = 2.74, p = .11, η2
p = .08). 
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4.2. Study IV 

4.2.1. Training: Block 1-2 

As in Study III, accuracy did not appear to improve as a consequence of training due to a 

ceiling effect. In both groups, mean accuracy was similar in the first and second block (TD: M = 

0.99 %; ASC: M = -2.83 %; SED = 2.51 %). Consistent with this, a mixed analysis of variance 

with factors of Group and Block revealed no significant effect of Block (F(1, 30) = 0.54, p = .47, 

η2
p = .02) nor interaction between Group and Block (F(1, 30) = 2.32, p = .14, η2

p = .07). There 

was no overall effect of Group (F(1, 30) = 1.92, p = .18, η2
p = .06). 

4.2.2. Test: Block 10-12 

Once again accuracy became sufficiently sensitive across the test block to index sequence 

learning. Accuracy was worse on the control sequences in block 11 as compared with the 

training sequences averaged between blocks 10 and 12, and this decrease was similar between 

the groups (TD: Mean difference (M) = 7.81 %; ASC: M = 8.52 %; SED = 2.24 %). A mixed 

ANOVA with factors of Group and Block (Control Sequences Block 11 vs. Block 10&12) 

produced a pattern of results equivalent to the RT analysis: there was effect of Block that 

indicated sequence learning (F(1, 30) = 53.35, p < .001, η2
p = .64) but there was no evidence of 

an interaction with Group (F(1, 30) = 0.10 p = .75, η2
p < .01). There was no overall difference 

between the groups in accuracy (F(1, 30) = 1.86 p = .18, η2
p = .06). 

4.2.3. Sequence validity: Block 10-12 

As an indirect measure of whether the application of the sequence was explicit, mean 

accuracy on training sequences in test block 11 were compared with mean accuracy on training 

sequences in neighbouring blocks 10 & 12. In both groups, there was a decrease in accuracy on 

the training sequences in Block 11 compared with Block 10 and 12 (TD: Mean difference (M) = 

3.48 %; ASC: M = 0.53 %; SED = 1.86 %). A mixed ANOVA with factors of Group and Block 

(Training Sequences Block 11 vs. Block 10&12) revealed a main effect of Block (F(1, 30) = 

4.66, p = .04, η2
p = .13), which was another indication that the sequence learning was explicit. 

There was no significant effect of Group (F(1, 30) = 0.52, p = .48, η2
p = .02) nor interaction 

between Group and Block (F(1, 30) = 2.53, p = .12, η2
p = .08). 


