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1 Introduction

The literature on forecast evaluation in econometrics has been primarily con-
cerned with statistical accuracy measures of point forecasts, and little atten-
tion has been paid to the economic importance of these forecasts. Forecasts
are not made in isolation but are designed for use in decision mking and so
there is need for consideration of the interaction between the modeler who
produces forecasts and the decision maker who consumes them. It would
generally be considered inappropriate for a model to be built specifically for
a single user, such as a think-tank building a macro model for a particular
political party, then forecasts may be biased in ways that the buyer would like
to hear. Clearly this could happen with a forecasting model built “in-house”
for a company. Rather, we will consider a model built by an independent
provider whose forecasts may potentially be used by many decision makers.
A decision theoretical approach is then appropriate for forecast evaluation by
each decision maker. This approach will be particularly useful for comparing
the relative usefulness of forecasts from different models. Although the idea
of using decision theory for forecast evaluation appears early in the dynamic
stochastic programming literature, White (1966), and has continued to be
used with meteorological forecasts, as discussed by Katz and Murphy (1997)
and possibly elsewhere, it is hardly mentioned in standard academic texts
on forecasting such as Box and Jenkins (1970), Granger and Newbold (1977,
1986), and Clements and Hendry (1998, 1999). The only clear exception is
the book by Theil (2nd edition, 1960) whose Sections 8.4 and 8.5 are similar
in spirit to our discussion although quite different in technique. There are, of
course, many books on decision theory but they are rarely phrased in terms
of forecasting. There are also a number of exceptions in the application of
statistical techniques to financial time series. Leith and Tanner (1991), for
example, argue that in evaluation of stock market forecasts profits (losses)
generated from using the forecasts are more appropriate than the conven-
tional statistical measures of forecast accuracy. Similar arguments are also
made in Pesaran and Timmermann (1994, 1995).

This paper, which will largely consist of a simple example considered in
detail, illustrates the advantages of taking a decision theoretic approach to
forecast evaluation. In particular it will be suggested that point forecasts
are often less appropriate than predictive distributions and that evaluation
need not be based on cost functions using forecast errors. The paper also
discusses some of the relationships that exist between statistical and economic
methods of forecast evaluation. It establishes useful links between Kuipers
score used as a measure of forecast accuracy in the meteorology literature
and the market timing tests used in finance. In particular, it shows that the



market timing test statistic advanced in Pesaran and Timmermann (1992) is
in fact a standardized version of the Kuipers score (defined as the difference
between the hit and the false alarm rates) used extensively in the meteorology
literature. The paper also provides an empirical application to the problem
of stock market predictability and discusses the conditions under which such
predictability could be exploited in the presence of transaction costs.

The plan of the paper is as follows: Section 2 sets up a slightly generalized
version of the two-state, two-action decision problem and derives the opti-
mal decision rule. The problem of evaluation and comparison of forecasts is
addressed in Section 3. This section reviews a number of statistical measures
used in the meteorology literature for evaluation of probability forecasts,
establishes links between economic and statistical measures of forecast accu-
racy, and derives the algebraic relationship that exists between the Kuipers
score and the market timing test statistic. Section 4 considers a simple port-
folio decision problem, derives switching rules between stocks and bonds in
the presence of transaction costs and provides some empirical evidence on
the statistical and economic importance of stock market predictability using
data from U.S. stock market. Section 5 reconsiders the problem of forecast
evaluation in the context of a more general decision model. Section 6 provides
some concluding remarks.

2 Event and Probability Forecasts in the Con-
text of a Simple Model

Consider a situation in which there are two “states” of the world, which for
ease will be called “Bad” and “Good”. A forecast will be made on day t—1 of
the situation on day t, for any ¢. Let 7; denote the forecast probability that
the Bad event will occur on day ¢. Thus the forecast probability of the Good
event is 1— 7;. Note that 7; and 1— 7; are not point forecasts or even an
interval forecast but the whole distribution is given for all possible outcomes.
One could think of an applied economist constructing a model from which the
forecast probabilities are generated. We presume the existence of an actual
generation process for the events and let 7w, be the probability of the Bad
event occurring on day t according to this process. As an alternative to the
probability forecasts, a point forecast z; could be provided with 2; = 1 if the
Bad state is forecast to occur or z; = 0 otherwise. Similarly, z; = 1 denotes
the situation when the Bad event actually occurs and z; = 0 otherwise. The
economists might have some “rule of thumb” which gives 2, = 1 if 7; exceeds
some specified probability threshold, p, € (0,1). An obvious value is p; = 0.5



but, as will be seen, other values could be used. The economic forecaster thus
has two alternative forms of forecast to announce, either 7;, which takes some
value in the region 0 < 7; < 1, and represents a probability forecast; or Z,
which corresponds to the point (or event) forecast. Note that as presented
Z; can be derived from 7; but not vice versa. The relationship between the
event and probability forecasts can also be written as 2, = I(7; — p;), where
the indicator function I(-), is defined by [() = 1 if A > 0, and I(A) = 0,
otherwise.

A decision maker will use the forecasts to decide whether or not to take
some action. As an example, if the forecast is that prices will rise by more
than 2.5% over the next quarter (the Bad event), a central bank may decide to
raise interest rates. In another simple example, provided by Stewart (1997),
a building contractor has to decide whether or not to pour concrete for a
foundation and the decision will be based on a forecast of whether it will
rain tomorrow (Bad) or not. A similar example is a local government’s road
authority which has to either sand/salt local roads to counter icing problems
in the evening depending on a forecast of a very low temperature (Bad) or not
during the night. To consider the interactions of the states and the decisions,
there will be a payoff matrix of “values” or “utilities” of the form

Table 1: Payoff Matrix for a Two-State, Two-Action Decision

Problem
States (st)

Bad (s =1) Good (s, =0)
Decisions (d;) Yes (dy = 1) Upy(t) Uygy(t)
No(d,=0) |  Um(t Up(?)

where Uy, (t) is the economic value to the decision maker at time ¢ if the Bad
state occurs after the Yes decision was taken, Uy, (t) is the value in the Bad
state when no action is taken and so forth. These values could be utilities but
in practice it is often easier to think of them as measurable quantities such
as benefits or costs. If the convention is used that a larger U is preferred
to a smaller one, that a Good State produces higher values than a Bad one,
and that a Yes decision produces some benefit in the Bad state one gets the
following inequalities:

Taking correct action is beneficial: ~ Upy(t) > U (2),

Taking false action is costly: Uy, (t) > Uy (?).



We shall refer to Uy, (t) — U,y (t) as the cost of taking false action, Uy, (t) —
Upn(t) as the benefit of taking correct action, and denote the ratio of the cost
of taking false action to the benefit of taking correct action by ¢,

Ugn (t) — Ugy (t)

== > 0, for all ¢.
Usy(t) = Ubn(2)

Ct

We refer to ¢; as the cost-benefit ratio.! To complete the characterization
of the decision process, we need to specify the following four conditional
probabilities:

Ht gy = P’I"Ob(st = Oydt = 1, Qtfl),
I, gy, = Prob(s,=0|d, =0,9Q;_4)
Ht by = P?"Ob(St = ]_|dt = ]_, Qt—l)

( )

thn = P'I"Ob St:Hdt:O,Qt,l,

Y

where €2, is the information available to the decision maker at time ¢ — 1,
and d; and s; are defined in Table 1. In many situations the probability of
the Bad (or Good) state at time ¢ is invariant to whether action is taken by
the decision maker at time ¢ — 1. For example, we do not expect that our
decision to carry an umbrella will alter the probability of rain, or the sale of
our individual (small) holdings of stocks is likely to change the probability
of a stock market crash. In decision theory these are known as games played
against nature and simplify the matrix of conditional probabilities to

T = Ht,by = Ht,bn =1- Ht,gy =1- Ht,gn- (]-)

However, there are clearly circumstances where the probability of the Bad
state occurring does depend on whether action is taken. All strategic game
problems fall in this category and are subject to the additional uncertainty
of the effect of actions on outcomes. In this paper we shall confine our
analysis to the former type of decision problems and assume that the decision
maker computes expected values of a “yes” and a “no” decision using an
estimate of m;, which we denote by 7;. This estimate could be based on
an econometric model, could be purely subjective, or could be estimated
unconditionally using sample frequencies known as climatological frequency
in the metrological literature.

INotice that c; is invariant to affine transformations of the utilities U;;(t), i = y, n,
j = g, b; suggesting that utilities are at best measurable from observations on the decision
maker’s actions only up to an affine transformation.



Under the above set up the expected value (utility) of taking action is
given by?

Uby(t)%t + Ugy(t) (1 - %t) )
and the expected value of not taking action by
Ubn(t)%t + Ugn(t) (1 - %t) ’

and so action is taken if

~ an(t) — qu(t) Ct
T > ‘ ‘ == = q. 2
U0 U+ Ul 1he @
Alternatively, this condition can be written as
s >0 (3)
1-— Tt

Namely, action will be taken if the predicted odds of the bad event occur-
ring exceeds the cost-benefit ratio, ¢;, associated with taking action. In the
meteorology literature a simple version of the above decision problem is used
where ¢; (taken to be fixed) is referred to as the “cost-loss” ratio. In the
more general set up of this paper we shall refer to ¢; as the “payoft” ratio. It
is clear that 0 < ¢; < 1. The extreme values of ¢; = 0 and ¢; = 1 correspond
to the cases where cost-benefit ratio of the decision is either zero or infinitely
large. Action will always be taken if ¢ = 0. On the other extreme action
will never be taken if ¢, = 1. Neither of these extremes are of much practical
interest. So in what follows we focus on situations where 0 < ¢; < 1.

The above framework can be readily extended to decision problems with
3 or more states and/or actions. An m-state, two-action generalization is
considered in Granger and Pesaran (1996). An example with two states and
three actions is discussed in Section 4.

2.1 Economic Value of Forecasts

The time ¢ realized value of the economic benefit of the decision based on
the probability forecast 7, is given by

v () = Upy(t)zel (T — qr) (4)
FUgy () (1 = 2)I (70 — q1)
FUn (D)2 {1 = I (7 — @)}
+Ugn(t)(1 - Zt) {1 —1 (%\t - Qt)} )

2Here for simplicity of exposition we are assuming that U;;(t) are known to the decision
maker with certainty. But it is relatively easy to relax this assumption.
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which can also be written equivalently as

() = ar + b(z — @) I (Tr — @), (5)
where
ar = 2:Upy (t) + (1 — 2¢) Uy (2), (6)
and
by = Upy(t) — Upn(t) + Ugn(t) — Ugy(t) > 0. (7)

The ex ante economic value of using the probability forecast 7; is given by?®

Ev(m) [u-1] = mUp(t) + (1 — m)Ugn(t) + (8)
by (ﬂ't - C]t) I(%t - Qt)'

where only the last term, b, (7, — ¢;) I(7; — q¢), varies across different fore-
casts, 7;. It is clear that this term can be negative for some values of m, 7,
and ¢, unless 7; = m;. Due to the discreteness of the event space the op-
timum solution for a particular realization is not unique. There exists an
optimum solution set defined by all 7;, with values 7, > ¢, if 7, > ¢, or
T < q¢ if m < ¢;. In this solution set the solution 7; = 7y, if it can be
achieved, has the particular advantage that it does not depend on the payoff
ratio, ¢;, and therefore is superior to all the other solutions. For this reason
we refer to the solution 7; = 7, as the “supreme” solution.*

It should be noted that the supreme solution provides the complete fore-
cast distribution, conditional on a particular information set. If there are
several users, with different values of ¢;, they can all use the supreme fore-
casts, but this is not true for other solutions in the optimal set. To obtain the
supreme solution one will need to know the “true” conditional probability
distribution function of the event; and the above analysis suggests that the
forecaster should attempt to obtain a good estimate of this probability. One
can view the forecasters as producers of goods and the users of forecasts as
the consumers of these goods. Without a precise knowledge of the payoff
functions of the users of the forecasts, the most appropriate course open to
the forecasters is to do their best to obtain the supreme solution.

3Recall that the payoffs Uy, (t), Upy(t), etc. are known in period t—1, and E(z; |Q; 1) =
T¢.
For further details see Granger and Pesaran (1996).



3 Evaluation and Comparison of Forecasts

In this section we establish the link between forecast evaluation and the
simple decision problem set out above. We can imagine having a span of
dates t = 1,2,...,T for which z; is observed and also probability forecasts
from two competlng models giving 7T( ) and 7r§ ). The aim is to evaluate and
compare these probability forecasts.

It is widely recognized that evaluation and comparison of forecasts crit-
ically depends on the choice of the loss function, L(z;,7;).> A number of
different loss functions have been used in the literature, but by far the most
popular is the quadratic loss function, L(z, #;) = (2;— #¢)?. This loss func-
tion is routinely used for evaluation of point forecasts, but it has also been
applied extensively in the meteorology literature for evaluation of probability
and event forecasts. The resultant accuracy measure is known as the Brier
score (Brier, 1950) which is defined by®

1
Zt — 7Tt . (9)

Mq

t=1

As with the conventional mean squared forecast errors (MSFE) for point
forecasts, the Brier score is identically zero only in the case of perfect deter-
ministic forecasts and has a maximum value of unity in the case of forecasts
that are consistently wrong. An interesting decomposition of the Brier score
into measures of “reliability”, “resolution” and “uncertainty” has been de-
rived by Murphy (1973). This decomposition is based on the classification
of the forecast probabilities into m (say) groups with each group containing
T; observations. Denoting these groups by T; and the corresponding group-
specific forecast probabilities by y; (where y; = 0, and y,, = 1) Murphy’s
decomposition can then be written as

= > Tl - =) ——ZT Pzl-z). (10

where

T

_— ZteTi <t _—— thl 2t

zi=—=1— and z=="2—
T; T

5See, for example, West et al. (1993), Diebold and Mariano (1995), Weiss (1996), and
Granger and Pesaran (1996).

6See, for example, Wilks (1995, Ch. 7) and Katz and Murphy (1997, Ch. 2). As Wilks
(1995, p. 260) points out the ordinal measure proposed by Brier (1950) was in fact twice
the measure commonly used.




In this decomposition only the first two terms (known as reliability and res-
olution) depend on forecast probabilities. The third term, z(1 — z), depends
only on the sample observations and in the present setup is not affected by
the forecasts. Based on Murphy’s decomposition the following forecasting
skill score (SS), which measures the skill of the forecaster relative to the
climatological (unconditional) forecasts, is routinely used in practice:

55, = Re solution-Reliability _1 B

Uncertainty z(1-2)

5SSy, lies between 1 — 1/[z(1 — )] and unity, and clearly can be negative if
the Brier score is larger than the uncertainty component, zZ(1 — z). Only
forecasts with a positive skill score (S5, > 0) are said to be skillful.

Other measures of forecast accuracy, arguably more suited to evaluating
probability (or event) forecasts, are also considered in the metrology liter-
ature. Most of these measures are derived from the contingency table of
realizations and forecasts as in Table 2. A prominent example of such mea-
sures is the Kuipers score (KS) defined by’

KS = H(q) — F(q), (11)

where q = (¢1,¢2, ..., qr)’, H(q) is the proportion of Bad events that were
correctly forecast to occur, and F'(q) is the proportion of Good events that
were incorrectly forecast (or were acted upon). These two proportions are
known as the “hit rate” and the “false alarm rate”, respectively.

Table 2: Contingency Matrix of Realizations and
Forecasts/Actions

Realizations (z;)
Bad (z; = 1) Good (z = 0)

Forecasts/Actions  Yes (7 > q;)
No (7ATt < Qt)

Hits (Tyy) False Alarms (1)
Misses (Ty,) Correct Rejections (Ty,)

In terms of the information summarized in the above contingency matrix
we have

Tby Tgy

H(q) = —— F(q) = —%
(a) Ty + Tt (@ Toy +Tyn

(12)

"Kuiper’s score, also known as the Hanssen-Kuipers discriminant or Kuiper’s perfor-
mance index, was orginally proposed by Peirce (1884). For an account of this and other
measures of forecasting skill see Murphy and Dann (1985) and Wilks (1995, Ch. 7).
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Clearly, T' = Ty, + Ti, + Ty + Tyn.® In Table 2, the probability forecasts, 7,
t=1,...,T, are in effect converted into deterministic or event forecasts, z; =
I(7y —pt), using the payoff ratio, ¢;, as the appropriate threshold probability.
Without reference to the decision problem it is difficult to decide what value
should be chosen for p;. This also sheds doubt on the usual practice of using
a “rule of thumb” such as setting 2z, = 1, if 7; > 0.5. Also, in general, there
is no reason for p; to be the same for forecasts obtained at different time
periods and/or for different individuals.

The Kuipers score has the desirable feature that random forecasts or fore-
casts that consistently predict Bad or Good events will score zero; while the
same need not be true of Brier score. This is known as the “equitability”
property, see Gandin and Murphy (1992). For example, a doomsday fore-
caster who systematically predicts Bad events will have a hit rate of 100 per
cent, but will also have a false alarm rate of 100 per cent; scoring zero on the
Kuipers measure. The Brier score of a doomsday forecaster could be quite
respectable as compared to forecasters with non-zero skills on the Kuipers
scale. Nevertheless, the KS measure is also somewhat arbitrary and does not
fully relate to the decision problem. Given the realizations and forecasts, z;
and 7y, t = 1,2,...,T, it is possible to compute the average economic value
of the probability forecasts to the decision maker using (5), namely

T
Vif,q)=a+T" Z be(ze — qi) I (T — qr) (13)
=1

where # = (71, 72,...,77)', and @ = T7! ZtT:l as, is the same across all
probability forecasts and therefore can be normalized to zero without loss of
generality. Also recall that b; > 0.

Based on (13), a value-based forecasting skill score, SS,, can also be
constructed:

_ > bilz — @) [ (@ — a) — 1 (7] — q4)]
23:1 be(ze — qe) [ (2 — @) — 1 (7} — )]

where 7 is the reference probability forecast, often taken to be the cli-
matological probability of the Bad event As with other skill scores we
have 55, < 1, and S5, attains its maximum in the unlikely event where
(e — qi) (2 — ) > 0 for all t.

The average economic value, V (7, q), can also be used to directly compare

two or more probability forecasts. For example, the probability forecasts %El),

SS,

?

8Strictly speaking all the four components of T" also depend on q. But this is suppressed
for notational convenience.
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t=1,2,...,T, are preferable to the alternative forecasts %,52) if

T T
T! Z bt(zt - Qt)I (/7%151) - Qt> >T1 Z bt(zt - Qt)j (%?) - Qt> ) (14)
t=1 t=1

and vice versa. A comparison of particular interest is the one between prob-
ability forecasts, 7, and the associated event forecasts 2, = I(7; — p;). Ap-
plying the above criterion, 7; will be preferred to Z; if

T T
T Z be(ze — qi) 1 (Ty — q¢) > T! Z be(ze — )1 (2 — qu) -
=1

t=1

But since 0 < ¢ < 1, I (I(m¢ —p1) — @) = I(m; — p;) and the condition
becomes:

T T
T bz —q)] (Fe—q) > T bz — @) (7 —pe).- (15)
t=1 t=1

Clearly the two methods of reporting forecasts will be equivalent if the thresh-
old probability, p;, is chosen to be the same as the payoff ratio g, for all t. But
since ¢; differs across different decision makers and event forecasts are typ-
ically generated by a forecaster using the same probability threshold value,
in general probability and event forecasting can lead to different outcomes.
To obtain conditions under which probability forecasts are superior to event
forecasts consider the following decomposition of (15):

71 Z be (e — qi) L (7e — q¢) — I(Te — o)) +

T th (2t —7e) I(Ts — q) — I(7We —pe)] >0

Since b; > 0, and 0 < p;, ¢ < 1 it is then easily established that all the
elements in the first sum are non-negative. The elements in the second sum,
have ambiguous signs and for a finite 7" the sign of the second term will also
be ambiguous. It is therefore not possible to rank the probability and event
forecasts in finite samples. But for sufficiently large 7" probability forecasting
is superior to event forecasting under the condition

T
plim, , T7! Z b (2 — ) ([ (T — @) — I(7e — pi)] = 0.
=1
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This condition can be simplified further by noting that

I7e—q)—I(m—p) = 1 if pe>7 > q,
=1 if g >7 > py,

0, otherwise.

Therefore,

T th 2t — 7Tt (7Tt - C]t) - I(%t —pt)]
Z bt Zt—7Tt Z bt Zt—7Tt
Pe>Te>qe q>TL>pe
and for the superiority of 7; over 2, it is sufficient that
plim; _ T71 >~ by (2 —7) =0,
De>T>qe

and

phmT*)ooTil Z bt (Zt — /ﬂ\'t) = 0.

@ >TE>pe

In the standard case discussed in the literature where b; is a fixed con-
stant these conditions reduce to asymptotic unbiasedness conditions of the
probability forecasts, 7, grouped according to whether p; > 7 > ¢, or

Q> T > D

The economic valuation approach to forecast comparisons can also be ap-
plied to the problem of combining probability forecasts. The two probability
forecasts could be combined in any relevant fashion, such as linearly

9=V ra-07? o0<o<1,

giving an average economic value

T
V0TSt (5005 )
t=1

and one could search over 6 € [0,1] to obtain the maximum average value
available from such combinations. Clearly, from its method of construction,

the optimum average value will be no less than Max (V(ﬁ'(l), qQ), V(&®, q)),

as one could select 8 =0 or 1.
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3.1 Relationship Between Economic and Statistical Mea-
sures of Forecast Accuracy

In general, a simple one-to-one relationship between the purely statistical
measures of forecast accuracy such as the Brier or the Kuipers scores, and
the value-based measures such as V(#,q) does not exist. However, in the
case where by = b and ¢, = ¢ for all ¢ (the standard case considered in
the literature) a simple relation between the average economic value of the
Kuipers score can be derived.” From the definitions of the hit rate given by
(12) it is easily seen that

() = 2 20 0

Similarly,

F(q) = Zt:l(szlzt_)Iz()th - Q)‘

Therefore,

T 2l (f, —q) = zH(q), and T~ > " I(#, — q) = (1= 2)F(q) + 2H(q).

t=1

Using these results in (13), we have
V(#,q) =b[(1 - q)zH(q) — ¢(1 = 2)F(q)]. (16)

There is a one-to-one relationship between V' (#,q) and the Kuipers score
only in the case where the payoff ratio is constant over time and equal to the
unconditional forecast probability, namely if ¢ = z. In this case

V(#,q) = bz(1 - 2)KS, (17)

and the use of Kuipers’ score as an indicator of economic value is justified.
In practice where the same probability forecasts are used by many differ-
ent decision makers with different payoff ratios the economic value of forecasts
varies across individuals and comparison of alternative forecasts needs to take
this into account. Suppose there are N individual decision makers indexed
by i, and denote the individual-specific economic values by V;(#, ¢;), where

9See also Palmer et al. (1998) and Richardson (1998) for a discussion of such relation-
ships in the meteorology literature.
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¢; is individual i’s payoff ratio. The average economic value to the society of
using the probability forecasts 7, issued by a forecasting agency is given by

N

V(&) =N bi[2(1 — q:)Hr(g:) — (1 — 2)a:Fr(g)].-

=1

Characterizing the distribution of the payoff ratios across individuals by the
density function f(q) on ¢ € [0, 1], and assuming that b; and ¢; are indepen-
dently distributed across 7, for sufficiently large N, we have

V(&) ~b {2/01(1 —q)Hr(q)f(q)dg — (1 - 2) /01 qFT(CJ)f(Q)dQ} ,

where b = E(b;). A good choice for f(q) is the Beta distribution, which could
be calibrated to match the in-sample mean and variance of the payoff ratios
across individuals.

3.2 Relationship Between Statistical Measures of Fore-
cast Accuracy and Tests of Market Timing

Despite their attractive features statistical measures such as the Brier and
Kuipers scores do not seem to have been used in the econometrics or finance
literature. This is partly explained by economists’ pre-occupation with point
forecasts. But even when the focus of the analysis is on forecasting turn-
ing points or direction of market changes the tendency has been to employ
model-based approaches such as probit or logit models or market timing tests
originally developed by Henriksson and Merton (1981). In this section we in-
vestigate the relationship between the Kuipers score and a particular version
of the market timing test statistic advanced in Pesaran and Timmermann
(PT, 1992). The PT test statistic applied to the probability forecasts, 7,
and the associated realizations, z;, for t = 1,2, ..., T is given by

p - P* a
PT = - 4 N(0,1), (18)

e -ve)

where P is the proportion of events (Bad or Good) that are correctly pre-
dicted, P, is the estimate of the probability of correctly predicting the events
assuming predictions and realizations are independently distributed, \7(]5)
and ‘7(]5*) are consistent estimates of the variances of P and P*, respec-
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tively.!? In terms of z; and I(#; — ¢;) we have

T

p=1"1 Z 2l (7 — q) + T Z(l —z)[1 = I(7 — q)],

t=1 t=1

A

V(P) = T Y 2P, —1)*P,(1— P,)+T7'(2P, —1)*P.,(1 - P.)
FAT 2P, P(1— P,)(1 - P,),
where P, = z, and P, = T-* 3. I(7; — ¢;). Tt is now easily seen that"!

T

T Z 2l (7 — q) = zH(q),

t=1

Ty (1= 2)I(f — q) = (1 - 2)F(q),

T
t=1

where the hit and the false alarm rates, H(q) and F(q), are defined by (12).
Using the above results we have

= zH(q) + (1 - 2)[1 — F(q)],

= ZP+(1-2)(1 - FPy),

= zH(q) + (1 - 2)F(a),

which establishes the following exact relationship between the numerator of
the PT test statistic and the Kuipers score (KS) defined by (11):

P—P,=2z(1-2)[H(q) — F(q)] = 22(1 — 2)KS.

YN,

The PT test, however, goes one step further and asks whether the Kuipers
score is statistically significant. Keeping only terms of order 7! in V(P,)
and after some algebra we have

PT — _ VTKS (19)

pa-p) M2
Z(1-2)
10Tt is interesting to note that P — P, is in fact identical to the Heidke score (Heidke,

1926). For a discussion of the use of the Heidke score see Wilks (1995, pp. 248-249).
I'Notice that in this sub-section we are allowing the payoff ratio, ¢;, to vary over time.
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Since P, varies with the probability forecasts, 7, it is possible for two sets
of probability forecasts to have identical Kuipers scores but different PT test
statistics.

4 An Application to the Stock Market

There now exists a substantial empirical literature showing that a statistically
significant part of the variations in monthly or quarterly stock market returns
are predictable.'? This evidence naturally raises the question of the economic
importance of such predictability. In this section we consider this issue in the
case of an investor who wishes to decide between holding stocks or bonds. To
simplify the analysis and to ensure that the simple two-state decision model
of Section 2 is directly applicable to the present problem we shall assume that
the investor’s utility function is logarithmic. It is well known that in the case
of log-utility a multi-period decision problem can be reduced to a sequence
of independent single period decision problems.!'®* We further assume that
sales and purchases of stocks and bonds are subject to transaction costs. The
marginal cost of transactions for stocks and bonds will be denoted by £, and
&y, respectively. The transaction cost of trading in stocks is composed of
a commission fee and the implied costs associated with the bid-ask spread.
It varies with the size of the transaction and could even differ depending on
whether stocks are sold or bought. But here we assume the same rate applies
to all transactions but allow the transaction costs to vary over time.

4.1 Derivation of the Switching Rules in the Presence
of Transaction Costs

In the context of the above setup consider an individual investor who at the
beginning of period ¢ owns N; units of a portfolio of stocks with a unit price
of P, that closely tracks a market index and wishes to decide whether to
stay in stocks or to switch his/her portfolio into government bonds paying
per period holding return of r;. To simplify the analysis we confine our
attention to an all-or-nothing strategy where the investor decides to stay

12Gee, for example, Campbell (1987), Fama and French (1989), Breen et al. (1990),
and Pesaran and Timmermann (1994, 1995) on predictability of stock returns in the
US, and Clare, Thomas and Wickens (1994), Black and Fraser (1995) and Pesaran and
Timmermann (1999) for evidence of stock market predictability in the UK.

13The solution to the problem of optimal portfolio weights in a multi-period context in
the case of the power utility function is considered in Campbell and Viceria (1998) and
Brandt (1998). These authors consider alternative approximate solution approaches and
do not allow for transaction costs.
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either fully in stocks or switch completely into bonds. The payoff matrix
of this decision problem is laid out in Table 3, where the rate of return on
stocks over the period ¢t to ¢ + 1, in the event of market falling is denoted by
R,{ = (Ptil + D'tf+1 — P,)/P,, and in the event of market rising is denoted by
Rl = (P, +Dj,—P)/P. D], and Dy, are dividends paid per share
(net of transaction costs) in the two market states.

Table 3: Return Payoffs for the Decision Problem of Converting
Stocks to Bonds

Market at the Beginning of Period ¢ 4 1
Falls Rises
Convert Stocks | Yes | Ny Pp(1 — &) (1 — &) (1 +14) | NePe(1— &) (1 — &) (1 + 1)
to Bonds | No N,P,(1+ R},)) N,P,(1+Rr,))

Denoting the forecast probability of a market fall (namely R;.; < 0) by
71 (formed at the beginning of period t) and using the logarithm of the
payoffs in Table 3, the investor will decide to convert stocks into bonds if

In [(1 +Ri,)/(1+ Tt)] —In[(1 = &,)(1 = &,)]

7¢‘.t+1 > = (ts- (20)
In | (1+ Ry, )/((1+ B

To utilize this decision rule the investor also needs to predict the extent to
which market is likely to rise or fall. We assume that historical averages of
positive and negative stock returns are used to predict the values of Rf
and R{ 11, respectively. In the case of most market portfolios these historical
averages have been remarkably stable. The sample means of R] and R{
computed recursively using monthly returns, R;, on Standard and Poor 500
over the period 1954(1) to 1992(12) are displayed in Figure 1. In the light
of these estimates and for purpose of illustration we set R, ; = 0.035 and
R,{H = —0.030. For given values of i, , and R{H, the payoff ratio, g, is
decreasing in 7, and increasing in £, and &;,,. In general, ¢;; > 0, but for
sufficiently high transaction costs it could be larger than unity. As in Pesaran
and Timmermann (1995) we consider two transaction cost scenarios; a low-
cost scenario where £, = .005 and &,, = 0.001, and a high-cost scenario with
&, = -01 and &, = 0.001. Using monthly observations on the Treasury Bill
rate for r;, the values of the payoff ratio, ¢;s, show considerable variations
over time ranging from 0.51 to 0.68 for the high-cost scenario and 0.43 to 0.59
for the low cost scenario. This clearly shows that in periods of high interest

14The source of the data used in this Section is Pesaran and Timmermann (1995).
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rates even relatively low probability of a stock market fall could initiate a
switch from stocks to bonds. But the same need not be true in periods where
the interest rate is low.
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Consider now the problem of an investor who holds government bonds,
B;, and wishes to decide whether to stay in bonds or to switch into stocks.
The payoffs for this decision problem are set out in Table 4.

Table 4: Return Payoffs for the Decision Problem of Converting
Bonds to Stocks

Market at the Beginning of Period ¢ 4 1
Falls Rises
Comvert Bonds | Yoo | Bl B ) (1 —€)(1— &) | Bl + By )(L— E,0(1— €2)
to Stocks No Bt(l + Tt) Bt(l + Tt)

Therefore, the investor will decide to switch from bonds into stocks if

In [(1+ R7,0)/(r)] 0l — 6,00 — &)
In [(1 + Ry q)/((1+ R{-&-l)

7Al't+1 < = Qip- (21)

The two decision problems are equivalent only under zero transaction costs.
But in the presence of transaction costs we have ¢;; > qu, and the investor
is faced with a third possibility, namely to do nothing if

G < Tep1 < Qs (22)
The width of this no-transaction band is given by

Gis — Qi = —2In[(1 —&,)(1 - &,)] < 0.

In |(1+ Ry.q)/((1+ R]y)

Figure 2 shows the values of ¢;s and ¢ under the low-cost scenario, &, =
0.005 and &,, = 0.001, and using the recursive estimates of the historical
means of Ry, and R{ 41 displayed in Figure 1. According to these esti-
mates on average forecast probabilities, 7;,1, should lie outside the range
(0.34,0.53) before it is worthwhile for the investor to make any transactions.
This is an example where probability forecasts, even if accurate, may have
little economic value to a decision maker.!®

15The issue of the economic value of predictability of returns in the presence of transac-
tion costs is discussed recently by Luttmer (1997) who also shows that when transaction
costs are sufficiently large investors may have little incentives to exploit predictable pat-
terns in stock returns in setting of their portfolio weights.
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4.2 Statistical Measures of Performance

To get some idea of the empirical importance of the transaction costs in
switching trading strategies we computed recursive forecast probabilities of
a fall in the U.S. stock market using monthly observations on the SP 500
market index, PSP, and a number of standard factors used in the literature
to forecast stock returns. In particular, we estimated the following return
regression recursively over the period 1954(1)-1992(12).

Rt+1 = ag; + Q¢ YSPt + CLQtAflt + Clgtpflzg_l + CL4tA[P12t_1 + Eitr1 = ﬂgxt + Et+1,
(23)

where YSP is the dividend yield based on 12-month moving average of divi-
dends paid on SP 500, A1 is the first-difference of the 1-month T-Bill rate,
PI12 is the inflation rate (computed using the 12-months moving average of
producer price index), and AIP12 is the rate of change of industrial produc-
tion (again based on 12 months moving average of the index of industrial
production).! Denoting the recursive forecasts of Ry, (formed at time t)
and their associated standard errors by f?tﬂ and .1, respectively, we com-
puted the probability forecasts, 7;,1, assuming the conditional distribution
of the errors, €;.1, is approximately normal. Normality is clearly rejected
in the case of high frequency (daily or intra-daily) data, but the evidence
against normality is less clear cut in the case of quarterly and monthly ob-
servations. As can be seen from Figure 3, overall the normal curve provides
a reasonably good fit to the recursive residuals; the major exception being
the October 1987 crash.

16For further details and data sources see Pesaran and Timmermann (1994, pp. 363-
356).
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Under the normality assumption the probability forecast of a fall in the
stock market in month ¢ 4+ 1, based on information available in month %, is
given by

Pr(Rij1 < 0] Q) =t = (= Risr /6141)- (24)

The estimates of 7.1 together with the payoff ratios, ¢;s and gy, computed
under the low cost scenario are displayed in Figure 4.1 According to these
estimates in 34 months out of the total number of 396 monthly observations
(or just over 8.6% of the periods) 7,1 will fall within the no transaction band
(Gts, @tv), and on these occasions the investor lacks the necessary economic
incentive to trade. The number of such periods rises to 15.7% of the total
observations when the payoff ratios are computed for the high transaction
cost scenario. The number of cases for which the probability forecasts fall
inside and outside the range (qss, ), cross-tabulated according to whether
Ri.1 < 0 or not, are summarized in Table 5. Over the sample period the
market fell in 40% of the months, while based on probability forecasts and
the payoff ratios the investor would have acted decisively to leave the market
in only 26.5% of the times in the case of zero transaction costs and even less
under the low and the high transaction cost scenarios, namely 21.5% and
20.5%, respectively

Table 5: Contingency Matrix of Realizations and Actions Under
Different Transaction Costs Scenarios

Falls (R;;1 < 0) | Rises (Ry1 > 0) Totals
Actions Transaction Costs | Transaction Costs | Transaction Costs
Zero | Low | High | Zero | Low | High | Zero | Low | High
Tl > Gis 56 47 46 49 38 35 105 85 81
Qo < Tev1 < Qs 0 15 24 0 19 38 0 34 62
Ter1 < G 102 96 88 189 | 181 | 165 | 291 | 277 | 253
Totals 158 238 396

Various statistical measures of fit discussed in Section 4 can also be com-
puted using the results in Table 5. It is, however, important to note that in
the presence of transaction costs we need to distinguish between cases where

I7In order to avoid the excessive uncertainty associated with the forecasts at the start
of the sample period the forecast probabilities for the initial period 1954(1)-1959(12) are
dropped only probability forecasts over the subsequent period shown in Figure 4.
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Ter1 > Qs and i1 < g. Only under zero transaction costs the 3 x 2 con-
tingency matrix will be reduced to the standard 2 x 2 matrix of the previous
sections. In this case the hit and false alarm rates are equal to 35.4% and
20.6%, respectively, yielding a Kuipers score of KS=14.8%. In comparison to
the Kuipers scores typically obtained in short-term weather forecasting this
is small, but statistically significant.!® The associated value of the market
timing test statistic (which is equivalent to a test based on the Kuipers score)
is 3.28 which is substantially above the critical value of a one-sided normal
test even at the 0.01% level. When transaction costs are taken into account
the KS measures and the PT statistics associated with switches out of the
market (namely when 7,1 > ¢ at time t) are 13.8% and 3.27, respectively.
The corresponding statistics for switches from bonds into stocks (711 < gsp)
are 15.3% and 3.25. Therefore, there is statistically significant evidence of
market timing in both directions. Increasing the transaction costs from the
low to the high scenario does not qualitatively change this conclusion. See
Table 6.

18For example, the KS measures reported in Richardson (1998, Table 3) for prediction
of temperature anomalies for January and February 1998 over Europe lie in the range
0.367-0.468.
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Table 6 : Statistical Performance Measures for the Probability
Forecasts of Stock Returns
Transaction Costs | Statistics Falls(Rt+1 < 0) Rises (Rt+1 > 0)
Zero
Hits(%) 35.4 79.4
False(%) 20.6 64.5
KS(%) 14.9 14.9
PT 3.28 3.28
Low
Hits(%) 20.7 76.1
False(%) 16.0 60.8
KS(%) 13.7 15.3
PT 3.27 3.25
High
Hits(%) 29.1 69.3
False(%) 14.7 55.7
KS(%) 14.4 13.6
PT 3.48 2.77

H and F refer to the hit and the false alaram rates, KS is the Kuipers score
defined as H — F', and PT's the Pesaran-Timmermann market timing test

defined by (19).

4.3 Economic Measures of Performance

Statistical measures of performance such as the Kuipers score or its associ-
ated market timing test statistic (PT) at best provide a general indicator
of the economic value of the probability forecasts, and a more satisfactory
approach, whenever possible, would be to directly compute measures of eco-
nomic performance associated with the use of probability forecasts in decision
making. In the context of the present application, an appropriate measure is
the logarithm of the investor’s terminal wealth obtained using the probabil-
ity forecasts as compared to being fully invested in the market at all times,
(namely a buy-and-hold strategy). Under the active strategy the investor
decides to switch from stocks to bonds if 74,1 > ¢, from bonds to stocks if
i1 < G, and stay put if g < 701 < qis. Let hy take the value of unity if
the investor is in stocks at time ¢ and zero otherwise. It is then easily seen
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that

hovs = (1= dret — jeot)he + joon, £=0,1,2, .. (25)
where

i1 = I(Fey1 — @s) and Jeyr = I(qw — Fep1).

Notice that 7;.1 and j;; both are known at time ¢. Also since ¢, < qus they
cannot both be zero or unity at the same time. Suppose that initially the
funds available to the investor at time ¢t = 0 is given by W} which is held in
cash, so that hg = 0. Then the realized return (net of transaction costs) of
the switching investment strategy is given by

1 ‘I— Rt5+1 == WtJrl/m == htXtJrl ‘I— (1 - ht)Y%Jrl, t= 0, 1, (26)
where

Xt+1 = Z.t+1(1 - fat)(l - gbt)(l + Tt) + (1 - Z'tJrl)(l + Rt+1)7 (27)

and

Yirr = Jir1(1 = o) (1 + Reqn) + (1 = Jer) (1 = &) (1 +10). (28)

It is assumed that costs are paid at the time of the transaction. To allow for
costs incurred when dividends are re-invested in stocks the nominal return
on stock holdings is computed as Ry, = [Py — B+ (1 — €,,)Dy11]/ P, Y
Using the recursive forecasts 7;,1, and the payoff ratios ¢;; and ¢ we
computed R;, t = 1960(1),...,1992(12), under the three transaction costs
scenarios: Zero ({, = 0,&,, =0), Low (§,, = 0.005,&,, = 0.001), and High
(&, = 0.01,&, = 0.001). For purposes of comparison we also computed two
other sets of recursive probability forecasts and switching portfolio returns;
one without the inflation variable, P112;_;, and another without the output
growth variable, ATP12, ;. We shall refer to these as models M; and M,
respectively. The base model containing all the four variables will be called
M. The logarithm of the terminal wealth, In(WW7), generated by these port-
folios, their mean returns as well as the mean return of the buy and hold
strategy together with a number of other related statistics are summarized
in Table 7. These results generally favour model M, and at the same time
show the importance of allowing for transaction costs when evaluating the

Y9These recursive relations generalize the results in Pesaran and Timmermann (1994,
pp. 350-351) derived for the simple switching strategy where j;11 = 1 —iz41 for all ¢.
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economic value of stock market forecasts. The results also show that drop-
ping the inflation and the output growth variables from the basic model is
not justifiable from an economic viewpoint, with inflation being relatively
more important than the output growth variable over the period under anal-
ysis. Similar conclusions are reached if one considers the statistical measures
of performance such as the Kuipers score or the market timing test statistic.
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Table 7 : Performance Measures for Alternative Forecasting
Models of U.S. Stock Returns (1960(1) — 1992(12))
Forecasting Models Market
Transaction My M, M, Portfolio
Costs
Zero Mean Return (%) | 13.43 | 12.07 | 12.65 10.91
S.D. of Return (%) | 43.67 | 47.34 | 42.71 51.75
Sharpe Ratio 0.176 | 0.133 | 0.162 0.100
In(Wr) 8.7541 | 8.2658 | 8.5124 7.8254
Out of Stocks (%) 26.5 12.9 194 0.0
Low Mean Return (%) 12.11 10.28 11.24 10.88
S.D. of Return (%) | 44.52 4943 | 42.73 91.77
Sharpe Ratio 0.143 | 0.092 | 0.128 0.099
In(Wr) 8.3111 | 7.6505 | 8.0516 7.8142
Out of Stocks (%) 22.7 12.1 18.2 0.0
High Mean Return (%) 10.91 9.98 10.91 10.85
S.D. of Return (%) | 43.92 | 48.96 | 43.09 51.80
Sharpe Ratio 0.117 | 0.087 | 0.120 0.098
In(Wr) 7.9258 | 7.7559 | 7.9393 7.8030
Out of Stocks (%) 24.7 12.1 18.2 0.0

*Model My is defined by (23). Models Mjand Mo

are obtained from My by dropping the inflation and the output

growth variables, respectively. “Mean Return” is the arithmetic

mean of asset returns over the switching portfolio

based on the recursive forecasts. “S.D. of Return”

is the standard deviation of the returns. “Sharpe Ratio” is computed

as the ratio of the mean of the excess return (return on the

portfolio minus return on T-Bill) divided by its standard error.

W is the value of the terminal wealth, measured at the end of December 1992.
“Out of Stocks” is the proportion of periods that the portfolio

is not in stocks.
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5 The General Case

The approach to forecast evaluation advocated in this paper can be readily
extended to multi-period decision problems with a general utility (loss) func-
tion. To simplify the exposition we focus on a single period decision problem
where at time ¢ the decision variable d; is chosen so that E[U(d;, ziy1) | 4]
is maximized, where U(-) is a globally concave utility function, and z;.q
is a state variable with the conditional probability distribution function
Fy(z) = Prob(zy < x| ). As before, €, is the information set available
at time ¢, and includes at least past observations on z, namely z,,_;, 7 > 0.
It is assumed that the choice of F' influences d;, but not wvice versa. This
is equivalent to the assumption (1) made in the case of the simple decision
problem discussed in Section 2. At time ¢ a forecaster provides a predictive
distribution F}(z) as an estimate of Fy(z). A decision, d; = ¥,(F}), is then
made at time ¢, based on F}(x), and at time ¢t 4+ 1 when the realization
becomes known, a value is generated for the decision maker that depends

on x;.q, and on the decision made at time ¢, namely U [\Ifu(ﬁt),xtﬂ}. A
decision rule, ¥, (F}), is said to be optimal if for all feasible decision values,
dy, it satisfies the following condition

EU(YW(F), mes1) | ] = E[U(de, mey1) | Q]

In general, the “optimal” decision rule, df = ¥, (F}), depends on the whole of
the predictive distribution function and knowledge of point forecasts would
not be sufficient for a complete solution to the decision problem; unless, of
course, the utility function is quadratic in d; and ;..

When a run of decisions and realizations {d;, x;,1; t = 1,2,...,T} are
available the “closeness” of actual decisions, d;, to the optimal decisions, dj,
can be measured in terms of the utility-based criterion:

T
Su(d” = d) =T {U(d}, w111) = U(d, m1)}-
=1

On average, we would expect S, (d* : d) > 0. This result follows immediately
from the optimality of d;. Notice that

E[S,(d":d)]=T"" ZE{E [U(d, e41) | ] — E[U(dy, x011) | ]},

and by virtue of the optimality of dJ,
EU(df, z11) | 4] = E[U(dy, mei1) | €]
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Hence, it must be that E[S,(d*:d)] > 0. This is an interesting result,
although by itself is of little practical use since the derivation of d; requires
perfect knowledge of the predictive distribution function, Fi(z), and this is
not usually known, either to the decision maker or to the econometrician.
However, S, can be used to discriminate between two sets of decisions based
on two different estimates of Fi(z). Denote these estimates by Ft(l) and
Ft(2) and the corresponding optimal decisions by JP = \Ifu(ﬁt(l)) and cz?) =
\Ifu(f?t@)), respectively. The mean loss (in utility terms) associated with the
use of these probability forecasts are given by

A

T
Suld” d(l =T Z{ (df, zey1) — U(\I’u(ﬂ(l))aﬂftﬂ)};

t=1

and

A

T
Suld' +d®) =T 1Y {U(dr,2010) = U@ (BP), 2101) |
t=1

Although S, (d* : dV) and S,(d* : d?) are not separately observable, from
the above results it is reasonable to select the estimate which yields the lowest
mean utility loss relative to the optimal decision. Namely, select Ft(l) over

EP it (for sufficiently large T')
Sy(d* - dV) < S, (d* : d?),

or equivalently if

T T

T Z U [\I’u(pt(l)), 37t+1] >T! Z U [‘I’u(Ft(Q))a Tiy1

t=1 t=1

This is a generalization of (14) which no longer depends on d}, and contrasts
the normal practice where aAl,El) and 6252) are compared directly using purely
statistical measures.?’ It is also worth noting that since different decision
makers will have different value functions, they need not rank the models (or
forecasts) the same. However, if one model produces the true data generating
process, it will be preferred by all decision makers over any alternatives,
regardless of their value functions.

20For an exception see West, Edison and Cho (1993) who consider a utility-based com-
parison of a number of volatility models. The use of cost/utility based comparisons of
statistical models has also been emphasized by Christofferson and Diebold (1996) and
Weiss (1996).

30



6 Conclusions

In this paper we have argued in favour of a closer link between the decision
and the forecast evaluation problems. We have also emphasized the need for
producing and reporting predictive distribution functions rather than point,
or even interval forecasts. Point forecasts are sufficient only in relatively
simple cases where the utility /loss function is quadratic and the constraints
(if any) are linear. We have illustrated some of the main issues involved
both in the context of a two-state, two-action decision problem as well as in
more general settings, investigated the relationships that may exist between
statistical and economic methods of forecast evaluation, and provided an
empirical application to the problem of stock market predictability and the
conditions under which such predictability can be exploited in the presence
of transaction costs.

However, we are aware that in general economies, it is unusual to have
estimates of the values arising from correct decisions, based on forecasts. An
exception is in finance where in some cases estimates of values are possible.
An area that has made progress in this field is meteorology. For example,
the California Applications Project, organized by the Scripps Institution of
Oceanography, San Diego, is determining the value to water managers, in
dollars, of a specific improvement in weather forecasts. It seems that even-
tually these techniques will be usable more generally, until then the idea of
presenting a forecast as a predictive distribution, instead of mere summary
statistics and measuring the value in terms of the effect on a decision maker
are worth keeping in mind when undertaking a forecasting project.
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