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Abstract

We study the representative consumer’s risk attitude and efficient risk-sharing rules in

a single-period, single-good economy in which consumers have homogeneous probabilistic

beliefs but heterogeneous risk attitudes. We prove that if all consumers have convex ab-

solute risk tolerance, so must the representative consumer. We also identify a relationship

between the curvature of an individual consumer’s individual risk sharing rule and his

absolute cautiousness, the first derivative of absolute risk-tolerance. Some consequences

of these results and refinements of these results for the class of HARA utility functions

are discussed.
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1 Introduction

We consider an exchange economy under uncertainty with a single good and a single consump-

tion period, in which all consumers hold common probability assessments over the state space

and yet differing expected utility functions. Two well known properties hold for each Pareto

efficient allocation in such an economy. First, every consumer’s consumption level is uniquely

determined by the aggregate consumption level. Hence every consumer’s state-contingent

consumption levels can be specified as a function, called the risk sharing rule, of aggregate

consumption levels. Second, there exists a representative consumer, having an expected utility

function, in the sense that the support price of the single-consumer economy consisting solely

of the representative consumer is also the support price for the Pareto efficient allocation

of the original, multi-consumer economy. Hence, knowing the representative consumer’s risk

attitude is sufficient to price all assets in financial markets.

The benchmark result on this subject matter is the mutual fund theorem. Define absolute

risk tolerance as the reciprocal of the Arrow-Pratt measure of absolute risk aversion, and call

its first derivative absolute cautiousness. Then, hyperbolic absolute risk aversion, linear (or,

to be more precise, affine) absolute risk tolerance, and constant absolute cautiousness are all

equivalent properties of an expected utility function u, and mathematically boil down to the

existence of a τ ∈ IR and a γ ∈ IR such that

− u′(x)
u′′(x)

= τ + γx

for every x. In particular, this property is met if u exhibits constant absolute or relative risk

aversion. The mutual fund theorem states that if all consumers have a constant, common

absolute cautiousness γ, then the representative consumer also has the same constant abso-

lute cautiousness γ and all individuals’ risk-sharing rules are linear (affine). In this paper, we

drop the assumption of a constant, common absolute cautiousness and analyze the implica-

tion of heterogeneous absolute cautiousness on the risk-sharing rules and the representative

consumer’s risk attitude. As can be inferred from existing results dispersed in the wide range

of literature, the mutual fund theorem would not hold without the assumption. The contri-

bution of this paper is, in short, to provide a detailed description of the way in which the

representative consumer’s absolute cautiousness is not constant and the risk-sharing rules are

not linear in this environment.

It has been well perceived in the literature that the assumptions for the mutual fund
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theorem are so stringent that the applicability of the theorem is questionable in both economics

and finance. While there have been many contributions dealing with cases in which the

assumptions are not met,1 they tend to concentrate on rather special cases with regards to

consumers’ risk attitudes, the number of consumers in the economy, wealth distributions across

consumers, and probabilistic distributions of initial endowments and asset returns. Moreover,

they often appeal to numerical, as opposed to analytical, methods, without fully clarifying

the principles behind their results.

We find this situation rather unsatisfactory. The reason is that while the assumptions that

the mutual fund theorem imposes on consumers’ risk attitudes are stringent, the theorem does

not require any additional assumption on the number of consumers, wealth distributions, or

asset returns. In this paper, we obtain qualitative results concerning the risk sharing rules and

the representative consumer’s risk attitude that do not depend on these characteristic of the

economy. We do not obtain any calibration results or closed-form solutions, but we believe

that this paper is an important theoretical contribution to the literature, because it uncovers

some important phenomena arising exclusively from the nature (in particular, heterogeneity)

of the consumers’ risk attitude. Let us also remark that should the financial markets be

complete, the equilibrium allocations are Pareto efficient, and our results are therefore true

for all equilibrium allocations.

Throughout the paper we establish our results for the static, one-period model. It can be

shown (Hara, in preparation) that all the results can be extended to the multi-period case

provided all consumers have time-homogeneous and time-separable expected utility functions

and the same time-discount rate. Hence, our results are directly comparable with dynamic

models such as those of Mehra and Prescott (1985), Dumas (1989), Campbell and Cochrane

(1999), Wang (1996), Benninga and Mayshar (2000), and Chan and Kogan (2002), where there

are multiple (possibly continuous and infinite) consumption periods and a common discount

rate is assumed.

In Section 3, we establish results on the effect of heterogeneity of consumers’ risk atti-

tudes on the absolute cautiousness of the representative consumer. The formula of Theorem

5 expresses the derivative of the absolute cautiousness of the representative consumer as the

sum of two components. The first one is a weighted sum of the derivatives of the individual

consumers’ absolute cautiousness, and the second is a positive multiple of the weighted vari-
1We refer to some of these contributions in the rest of this introduction and Section 7.
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ance of the absolute cautiousness across all individual consumers. A corollary to this theorem

(Corollary 6) is that if every consumer exhibits convex risk tolerance (non-increasing cau-

tiousness), then so does the representative consumer; and that any heterogeneity in absolute

cautiousness leads to strictly convex risk tolerance. In Propositions 11 to 13, we show that

the representative consumer’s absolute cautiousness tends to the absolute cautiousness of the

most absolutely cautious individual consumer in the economy as the aggregate consumption

level tends to its upper bound (which may be finite or infinite); and that it tends to that of

the least absolutely cautious individual consumer as the aggregate consumption level tends

to its lower bound (which may be finite or negative infinite).

Our results indicate that the risk attitude of the representative consumer may well be

qualitatively different from the risk attitude of any individual in the economy. Implications

of this fact on asset pricing will be discussed in Section 7.

The crucial result about consumers’ risk-sharing rules (Proposition 4) builds on results of

Wilson (1968). It relates the curvature of an individual consumer’s risk-sharing rule to how

the individual’s cautiousness compares to the cautiousness of the representative consumer.

More specifically, a risk-sharing rule is locally convex, concave, or linear if and only if the

individual’s cautiousness is locally greater than, smaller than, or equal to the representative

consumer’s cautiousness. The result also allows us to rank the curvature of the individual

consumers’ risk-sharing rules according to their cautiousness.

The behavior of the risk-sharing rules as the aggregate consumption level tends to the

upper or lower bounds is described by Propositions 11 and 13. The results state that as the

aggregate consumption level tends to the upper bound, the most absolutely cautious con-

sumers’ share of consumption as well as their marginal increment in consumption converge

to one; and that as the aggregate consumption level tends to the lower bound, the same is

true for the least absolutely cautious consumers. Hence the distribution of the individual con-

sumers’ consumption levels are more biased when the realization of the aggregate endowment

is very large or very small than when it is of a modest value.

Much stronger results can be obtained when all individual consumers exhibit constant

cautiousness, and the constants differ across them. We show (Theorem 18) that an individual

consumer’s risk-sharing rule can then be only of three types, depending on the individual’s

absolute cautiousness. Each least absolutely cautious consumer has an everywhere strictly

concave risk-sharing rule. Each most absolutely cautious consumer has an everywhere strictly
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convex risk-sharing rule. Any of the other consumers has a risk-sharing rule that is initially

convex up to a unique inflection point and concave thereafter. The inflection points, fur-

thermore, are ordered according to the consumers’ absolute cautiousness, so that the more

absolutely cautious the consumer the lower the inflection point of his risk-sharing rule.2 This

is illustrated in Figure 1 in Section 6. Implications to the literature on portfolio insurance are

mentioned in Section 7.

This paper is organized as follows. Section 2 states the model and gives a few preliminary

results on the representative consumer’s risk attitude. In Section 3 the curvature of an indi-

vidual’s risk-sharing rule is related to the difference between his absolute cautiousness and the

representative consumer’s counterpart. Section 4 gives the formula expressing the derivative

of absolute cautiousness of the representative consumer in terms of those of the individual

consumers. Section 5 investigates the limiting behavior of the representative consumer’s risk

attitude and of the risk-sharing rules when aggregate consumption tends to the upper or lower

bounds. In Section 6 refinements of the previous results are obtained for the case when all

individual consumers exhibit linear absolute risk tolerance. Much of the discussion of the

consequences and implications of our results is deferred to Section 7 which also concludes.

2 Model

There are I consumers, i ∈ {1, . . . , I} . Consumer i has a von-Neumann Morgenstern (also

known as Bernoulli) utility function ui :
(
di, di

) → IR, where di ∈ IR ∪ {−∞}, di ∈ IR ∪ {∞},
and ui is infinitely many times differentiable and satisfies u′i(xi) > 0 and u′′i (xi) < 0 for every

xi ∈
(
di, di

)
.

The uncertainty of the economy is described by a probability measure space (Ω, F , P ).

The probability measure P specifies the common (objective) belief on the likelihood of the

states. Denote by E the expectation with respect to P . The aggregate endowment of the

economy and each consumer’s consumption are both random variables on the probability

measure space.

For each consumer i, we define his consumption set Zi to be
2We should also add that Kurosaki (2001) claimed that if all consumers exhibit constant relative risk aver-

sion, then the logarithmic risk-sharing rule, which assigns the mean of the logs of the consumers’ consumption

levels to each individual consumer’s consumption level, is linear with a slope proportional to his own relative

risk tolerance.
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{
ζi ∈ L1(Ω, F , P ) | di < ζi < di almost surely

}
. Define Z∗i =

{
ζi ∈ Zi | ui (ζi) ∈ L1(Ω, F , P )

}
.

Then Z∗i is the set of random variables ζi for which the expected utility E (ui (ζi)) is finite.

Note that since ui is strictly concave, Z∗i is a convex set. Moreover, for every xi ∈
(
di, di

)
,

ui (ζi) ≤ u′i (xi) (ζi − xi) + ui (xi). The right hand side of this inequality is integrable, and

hence the positive part ui (ζi)
+ of ui (ζi) is integrable for every ζi ∈ Zi. Hence, ζi ∈ Z∗i if and

only if the negative part ui (ζi)
− is integrable.

Define a binary relation %i on Zi by letting, for each ζi ∈ Zi and ηi ∈ Zi, ζi %i ηi if

and only if either of the following two conditions is met: ηi 6∈ Z∗i ; or ζi ∈ Z∗i , ηi ∈ Z∗i , and

E (ui (ζi)) ≥ E (ui (ηi)). Then %i is reflexive, transitive, and complete. Denote its strict part

by Âi and symmetric part by ∼i, then ζi Âi ηi for every ζi ∈ Z∗i and every ηi 6∈ Z∗i , and

ζi ∼i ηi for every ζi 6∈ Z∗i and every ηi 6∈ Z∗i . Thus the random variables ζi for which ui (ζi)

is not integrable are the least preferable ones. Since ui (ζi) is integrable if and only if the

negative part ui (ζi)
− is integrable, the way we have defined %i is intuitively consistent with

the expected utility calculation.

A consumption allocation (ζ1, . . . , ζI) ∈ Z1×· · ·×ZI is feasible for a aggregate endowment

ζ if
∑

ζi = ζ almost surely. A feasible consumption allocation (ζ∗1 , . . . , ζ∗I ) ∈ Z1 × · · · × ZI is

efficient (in the sense of Pareto) for an aggregate endowment ζ if there is no other feasible

consumption allocation (ζ1, . . . , ζI) ∈ Z1 × · · · × ZI for ζ such that ζi %i ζ∗i for every i, and

ζi Âi ζ∗i for some i. While we shall not give a formal proof, it is easy to check that, for

every aggregate endowment ζ, if there exists a feasible allocation (ζ1, . . . , ζI) for ζ such that

ζi ∈ Z∗i for some i and if (ζ∗1 , . . . , ζ∗I ) is an efficient allocation of ζ, then ζ∗i ∈ Z∗i for every i. In

short, if the aggregate endowment is sufficiently far away from the lower bound d so that some

consumer can attain a finite utility level, then every consumer attains a finite utility level at

every efficient allocation. This, in particular, implies that when the aggregate endowment

is sufficiently far away from the lower bound d, an allocation is efficient if and only if it is

efficient when the comparison is restricted to Z∗i .

It follows from the separating hyperplane theorem that a feasible allocation (ζ∗1 , . . . , ζ∗I ) ∈
Z∗1 × · · · ×Z∗I is efficient if and only if there exists a λ ∈ IRI

++ such that it is a solution to the

maximization problem

max
(ζ1,...,ζI)∈Z∗1×···×Z∗I

∑
λiE (ui(ζi)) ,

subject to
∑

ζi = ζ almost surely.

(1)

Furthermore, the assumption of a common probabilistic belief and expected utility allows the
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efficient allocations to be represented in terms of risk-sharing rules. Write d =
∑

di and

d =
∑

di. A risk-sharing rule is an infinitely many times differentiable function f :
(
d, d

) →
(
d1, d1

) × · · · × (
dI , dI

)
that satisfies

∑
fi(x) = x for every x ∈ (

d, d
)
, where fi is the i-th

coordinate function of f . Note that if ζ is an aggregate endowment with d < ζ < d almost

surely and if fi(ζ) ∈ L1(Ω, F , P ) for every i, then (f1(ζ), . . . , fI(ζ)) is a feasible consumption

allocation for ζ.

For each λ = (λ1, . . . , λI) ∈ IRI
++ and each x ∈ (

d, d
)
, consider the following maximization

problem:

max
(x1,...,xI)∈(d1,d1)×···×(dI ,dI)

∑
λiui(xi),

subject to
∑

xi = x.

(2)

By strict concavity for each x, there exists at most one solution to this problem, which we

denote by fλ(x). In general, there may not be any solution for some values of x and λ,

because the intervals
(
di, di

)
are open. In particular, it is possible that for every λ ∈ IRI

++

there exist some x for which the maximization problem has no solution. In such a case, there

may not exist any efficient allocation at all. However, if the ui satisfy the Inada condition,

that is, u′i (xi) → ∞ as xi → di and u′i (xi) → 0 as xi → di, then, for every λ and x,

there exists a solution. This is proved in Appendix A. Then, for every λ, the mapping

fλ :
(
d, d

) → (
d1, d1

) × · · · × (
dI , dI

)
is well defined. We shall assume this throughout the

paper. Since fλ is smooth by the implicit function theorem, it is a risk-sharing rule. It is

straightforward to show that (ζ∗1 , . . . , ζ∗I ) ∈ Z∗1 × · · · × Z∗I is a solution to the maximization

problem (1) if and only if ζ∗i = fλi(ζ) for every i. This argument establishes the following

lemma, which can be traced back to Borch (1962, p. 428) and Wilson (1968), and is nicely

explained in Kreps (1990, Section 5.4).

Lemma 1 If (ζ∗1 , . . . , ζ∗I ) ∈ Z∗1×· · ·×Z∗I is an efficient allocation of the aggregate endowment

ζ, then there exists a λ ∈ IRI
++ such that ζ∗i = fλi(ζ) for every i. Conversely, for every

λ ∈ IRI
++, if fλi(ζ) ∈ Z∗i for every i, then (fλ1(ζ), . . . , fλI(ζ)) is an efficient allocation of ζ.

As pointed out earlier, if the aggregate endowment ζ is sufficiently far away from the

lower bound d, then the conditions ζ∗i ∈ Z∗i and fλi(ζ) ∈ Z∗i are redundant.3 By virtue of

this lemma, we say that a risk-sharing rule f is efficient if there exists a λ ∈ IRI
++ such that

f = fλ.
3Dumas (1989) also investigated necessary and sufficient conditions for the welfare maximization problem

of the type (1) to have a solution in a dynamic model.
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Let f be an efficient risk-sharing rule. Denote the maximum attained in the problem

(2), with the same λ as corresponds to f , by u(x). We are thereby defining a function

u :
(
d, d

) → IR, which is the value function of the problem. Since

∑
λiE (ui(fi(ζ))) = E

(∑
λiui(fi(ζ))

)
= E (u(ζ))

if fλi(ζ) ∈ Z∗i for every i, the function u can be interpreted as the von-Neumann Morgenstern

utility function of the representative consumer corresponding to the efficient risk-sharing rule

f . Note that the assumption of the common probabilistic belief is crucial for this interpretation

of u. By the implicit function theorem, u is smooth. To contrast with the representative

consumer, we sometimes refer to the I consumers as individual consumers.

The Arrow-Pratt measure of absolute risk aversion of consumer i is defined as

ai(xi) = −u′′i (xi)
u′i(xi)

> 0.

The reciprocal of the absolute risk aversion, 1/ai (xi), is the absolute risk tolerance and denoted

by ti (xi). The Arrow-Pratt measure of relative risk aversion of consumer i is defined, for

xi > 0, as

bi(xi) = −u′′i (xi)xi

u′i(xi)
> 0.

The reciprocal of the relative risk aversion, 1/bi (xi), is the relative risk tolerance and denoted

by si (xi). All of these are smooth functions.

Wilson (1968, page 129) referred to the first derivative of the absolute risk tolerance,

t′i(xi), as cautiousness, but we shall call it the absolute cautiousness, to distinguish it from the

relative cautiousness, which is s′i(xi). According to this terminology, if two consumers exhibit

constant but differing relative risk aversion, then they are equally relatively cautious but the

one with the smaller relative risk aversion is more absolutely cautious. This might sound a

bit confusing, but we follow the path paved by Wilson.

The absolute risk aversion a(x), absolute risk tolerance t(x), relative risk aversion b(x),

relative risk tolerance s(x), absolute cautiousness t′(x), and relative cautiousness s′(x) are

similarly defined for the representative consumer’s utility function u. Bear in mind that

they depend on the choice of an efficient risk-sharing rule f and hence on the choice of the

weights λ, although none of our analytical results depends on the choice of λ. In particular, if

markets are complete, then the first welfare theorem implies that every equilibrium allocation

is efficient. Hence our results are applicable to equilibrium allocations. The values of λ are
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then determined by the individual consumers’ initial endowments as well as the choice of an

equilibrium in case there is more than one, but our analytical results always hold regardless

of the specification of initial endowments or the choice of an equilibrium.

The following lemma is due to Wilson (1968, Theorems 4 and 5).

Lemma 2 (Wilson (1968)) Let f be an efficient risk-sharing rule and t be the representa-

tive consumer’s absolute risk tolerance corresponding to f , then, for every i and x ∈ (
d, d

)
,

t(x) =
1

f ′i(x)
ti(fi(x)), (3)

t(x) =
∑

ti (fi(x)) , (4)

t′(x) =
∑

f ′i(x)t′i (fi(x)) . (5)

Here are some implications of this lemma. First, by (3), f ′i(x) > 0, so that fi is strictly

increasing for every x. This property is called comonotonicity. Also note that
∑

f ′i(x) = 1 and

hence that f ′i(x) can be interpreted as a probability mass function over the set of individual

consumers. Equation (5) then states that the representative consumer’s absolute cautiousness

is the expected absolute cautiousness of the individual consumers with respect to the this

probability mass function. Third, both the absolute risk tolerance and absolute cautiousness

are bounded by the individual consumers’ counterpart via

max
{

max
i

ti (fi(x)) , I min
i

ti (fi(x))
}
≤ t(x) ≤ I max

i
ti (fi(x)) , (6)

min
i

t′i (fi(x)) ≤ t′(x) ≤ max
i

t′i (fi(x)) . (7)

An immediate corollary of inequality (7) is a sufficient condition for the monotonicity of t,

and hence of a.

Corollary 3 1. If ti is non-decreasing for every i, then so is t.

2. If ai is non-increasing for every i, then so is a.

3. If ti is non-increasing for every i, then so is t.

4. If ai is non-decreasing for every i, then so is a.

3 Curvature of the Efficient Risk-Sharing Rules

The following proposition is rich in interpretations.
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Proposition 4 For every i and x ∈ (
d, d

)
,

f ′′i (x)
f ′i(x)

=
1

t(x)
(
t′i (fi(x))− t′(x)

)
. (8)

Proof of Proposition 4 By equality (3),

ti (fi(x)) = t(x)f ′i(x) (9)

for every x ∈ (
d, d

)
. Differentiating both sides with respect to x, we obtain

t′i (fi(x)) f ′i(x) = t′(x)f ′i(x) + t(x)f ′′i (x). (10)

Rearranging this, we complete the proof. ¥

The first implication of Proposition 4 is that for every x ∈ (
d, d

)
and every i, f ′′i (x) > 0

if t′i (fi(x)) > t′(x); f ′′i (x) = 0 if t′i (fi(x)) = t′(x); and f ′′i (x) < 0 if t′i (fi(x)) < t′(x).

This seems similar to Proposition II of Leland (1980) but in fact differs crucially from it in

that the absolute risk tolerance t is derived from the efficient risk-sharing rule f rather than

exogenously given.4 Its message is otherwise the same: an individual consumer’s risk-sharing

rule is (locally) convex if he is more absolutely cautious than the representative consumer;

(locally) concave if he is less so; and (infinitesimally) linear if they are equally absolutely

cautious. In the context of portfolio insurance, as in Leland (1980) and Brennan and Solanki

(1981), it implies that only those who are more absolutely cautious than the representative

consumer at every level x of aggregate consumption would purchase portfolio insurances.

The second, finer, implication of the proposition is that for every x ∈ (
d, d

)
and all i and

j,

t′i (fi(x)) R t′j (fj(x))

if and only if
f ′′i (x)
f ′i(x)

R
f ′′j (x)
f ′j(x)

.

To appreciate this, recall that the ratios of the first and second derivatives, such as f ′′i (x)/f ′i(x)

and f ′′j (x)/f ′j(x), often appear in expected utility theory. They measure the curvatures of the

individual risk-sharing rules fi and fj . For example, f ′′i (x)/f ′i(x) ≥ f ′′j (x)/f ′j(x) for every x

if and only if fi is a convex function of fj . Proposition 4 therefore implies that the degree

of convexity of fi is positively related to consumer i’s absolute cautiousness. That is, the
4See section 7 for a more detailed discussion.
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marginal consumption that consumer i receives as the aggregate endowment increases grows

at a rate higher than its counterpart for consumer j if consumer i is more absolutely cautious

than consumer j. What this means in the context of portfolio insurance is that consumer i

purchases more portfolio insurance (or options) relative to the size of the reference portfolio

he holds than consumer j does. Although both Leland (1980) and Brennan and Solanki

(1981) were concerned with the second derivatives f ′′i (x) and f ′′j (x), rather than the ratios

f ′′i (x)/f ′i(x) and f ′′j (x)/f ′j(x), we believe that the latter is a better notion of convexity, as it

allows comparisons of convexity which are unaffected by linear transformations of the risk-

sharing rules. Our result also shows that the levels of risk tolerance do not matter for the

curvatures of the risk-sharing rules, although they do matter for the slopes.5 This is an

important point, especially in the analysis of background risk, which was a topic included in

earlier version of this paper but is to be dealt with in a separate paper in preparation.6

4 Representative Consumer’s Risk Tolerance

Throughout this section, we let f be an efficient risk-sharing rule and denote by a, t, b, and

s the representative consumer’s absolute risk aversion, absolute risk tolerance, relative risk

aversion, and relative risk tolerance, corresponding to f .

We show that if every consumer exhibits convex absolute risk-tolerance (non-decreasing

absolute cautiousness), then so does the representative consumer. Moreover, even the slightest

heterogeneity in consumers’ absolute cautiousness would cause the representative consumer’s

absolute risk-tolerance to be strictly convex (that is, the representative consumer’s cautious-

ness would be strictly increasing). The following formula establishes these conclusions.

Theorem 5 For every x ∈ (
d, d

)
,

t′′(x) =
∑(

f ′i(x)
)2

t′′i (fi(x)) +
1

t(x)

∑
f ′i(x)

(
t′i (fi(x))− t′(x)

)2
. (11)

Recall that, by equality (5), the mean of the individual consumers’ absolute cautiousness

t′i(fi(x)) with respect to the probability mass function f ′i(x) equals the representative con-

sumer’s cautiousness t′(x). The sum of the second term on the right hand side of (11) is thus
5We thank Christian Gollier for clarifying this point.
6A drawback of equality (8), pointed out by Jan Werner, is that the absolute cautiousness t′i(fi(x)) depends

in general on the consumption level fi(x) at which it is evaluated, but which may, in turn, be difficult to

identify. However, in the case of constant cautiousness, to be covered in Section 6, it is not necessary to

identify it.
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the variance of the t′i(fi(x)) with respect to the same probability mass function. It represents

the contribution of heterogeneity in absolute cautiousness to the derivative of the representa-

tive consumer’s absolute cautiousness. As we will see in the subsequent analysis, this theorem

has many implications, but its proof is surprisingly simple.

Proof of Theorem 5 Differentiate both sides of equality (5), then we obtain

t′′(x) =
∑

f ′′i (x)t′i (fi(x)) +
∑(

f ′i(x)
)2

t′′i (fi(x)) . (12)

By
∑

f ′′i (x) = 0 and equality (10),

∑
f ′′i (x)t′i (fi(x))

=
∑

f ′′i (x)
(
t′i (fi(x))− t′(x)

)

=
∑

f ′i(x)
f ′′i (x)
f ′i(x)

(
t′i (fi(x))− t′(x)

)

=
1

t(x)

∑
f ′i(x)

(
t′i (fi(x))− t′(x)

)2
.

Plug this result into equality (12), then we obtain (11). ¥

A corollary of this theorem, in terms of the absolute risk tolerance, is:

Corollary 6 If ti is a convex function for every i, then so is t. If, moreover, the in-

dividual consumers’ absolute cautiousness are not completely equal at any aggregate con-

sumption level (that is, for every x ∈ (
d, d

)
, there exist two consumers i and j such that

t′i (fi(x)) 6= t′j (fj(x))), then t is strictly convex.

Formula (11) suggests that even if all consumers exhibit concave, rather than convex, risk

tolerance, the representative consumer may exhibit convex risk tolerance. We can therefore

say that the aggregation over heterogeneous consumers tends to induce the representative

consumer to exhibit convex risk tolerance.

Calvet, Grandmont, and Lemaire (1999) gave a similar result for the representative con-

sumer’s relative risk tolerance. Specifically, denote by si(xi) consumer i’s relative risk tol-

erance ti(xi)/xi and by s(x) the representative consumer’s relative risk tolerance t(x)/x .

Rewriting their equality (6.10), multiplying x/s(x) to both sides, and rearranging the terms,

we obtain the following formula.7

7We owe this proof to an anonymous referee
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Proposition 7 For every x ∈ (
d, d

)
, if fi(x) > 0 for every i, then

s′(x) =
∑ fi(x)

x
f ′i(x)s′i(fi(x)) +

1
s(x)x

∑ fi(x)
x

(si(fi(x))− s(x))2 . (13)

It can be derived from equality (4) that the mean of the individual consumers’ relative risk

tolerance si(fi(x)) with respect to the probability mass function fi(x)/x equals the represen-

tative consumer’s relative risk tolerance s(x). The sum in the second term on the right hand

side of (11) is thus the variance of the si(fi(x)) with respect to this probability mass function.

It represents the contribution of heterogeneity in relative risk tolerance to the representative

consumer’s relative cautiousness s′(x).

Denote the relative risk aversions by bi(xi) =
1

si(xi)
and b(x) =

1
s(x)

. A corollary to

Proposition 7, which is analogous to Corollary 6 is the following.

Corollary 8 Assume that di ≥ 0 for every i.

1. If si is a non-decreasing function for every i, then so is s. If, moreover, the individual

consumers’ relative risk tolerances are not completely equal at any aggregate consumption

level (that is, for every x ∈ (
d, d

)
, there exist two consumers i and j such that si (fi(x)) 6=

sj (fj(x))), then s is strictly increasing.

2. If bi is a non-increasing function for every i, then so is b. If, moreover, the individual

consumers’ relative risk aversions are not completely equal at any aggregate consumption

level (that is, for every x ∈ (
d, d

)
, there exist two consumers i and j such that bi (fi(x)) 6=

bj (fj(x))), then b is strictly decreasing.

The symmetry between formulas (11) and (13) is remarkable. The first derivative of the

representative consumer’s relative risk tolerance and absolute cautiousness are increased by

heterogeneity of individual consumers’ risk attitudes. Neither of the two formulas is strictly

more general than the other, as either accommodates some cases that the other cannot.

However, when all individual consumers exhibit constant relative risk aversion, (11) provides

a finer restriction on the representative consumer’s risk attitude. We shall come back to this

point in Section 6.

5 Limit Behavior

In this section, we investigate the limit behavior of the representative consumer’s absolute

cautiousness, relative risk tolerance (and hence relative risk aversion), and the risk-sharing
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rules. Roughly speaking, we show that the representative consumer’s absolute cautiousness

tends to the limit of the most absolutely cautious consumers’ counterpart as the aggregate

consumption level tends to its upper bound d (which may be infinite); and these consumers’

share of both the consumption levels, out of the aggregate consumption level, and of marginal

consumptions, converges to one. This result is particularly relevant in the analysis of a dy-

namic growing economy. We also provide an analogous result when the aggregate consumption

level tends to its lower bound d (which may be negative infinite), but the dominant consumers

are then the least absolutely cautious ones. This result is relevant in the analysis of a dynamic

contracting economy.8 We also make statements of the limit behavior of the representative

consumer’s relative risk tolerance (and hence relative risk aversion). All of these results will

be applied to the case where all consumers exhibit linear absolute risk tolerance in the next

section.

As a convention of this paper, we allow lim to be ∞ or −∞; max and min may be ∞ or

−∞ accordingly. From the outset, we impose the following assumption.

Assumption 9 For every consumer i, both lim
xi→di

t′i (xi) and lim
xi→di

t′i (xi) exist.

It is possible to generalize the following propositions by replacing lim by lim sup or lim inf, if

the limits do not exist.

5.1 Absolute Cautiousness and Risk-Sharing Rules

We first consider the following additional condition. It is intended to cover the case of in-

creasing absolute risk tolerance (and hence decreasing absolute risk aversion).

Assumption 10 For every consumer i, di > −∞, di = ∞, and lim
xi→di

ti (xi) = 0.

Define I as the set of consumers i such that lim
xi→∞

t′i(xi) ≥ lim
xj→∞

t′j(xj) for every j, and

I as the set of consumers i such that lim
xi→di

t′i(xi) ≤ lim
xj→dj

t′j(xj) for every j. The following

proposition states that the share of consumers in I in the aggregate consumption level, as well

as in the marginal consumptions, converges to one as the aggregate consumption level diverges

to infinity, and that the representative consumer’s absolute cautiousness eventually equals

these consumers’ absolute cautiousness. It also states that the share of extra consumption
8Dumas (1989) gave an analysis of this kind in a dynamic economy with two consumers exhibiting constant

relative risk aversion.
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in excess of the lower bound which is consumed by consumers in I converges to one as the

aggregate consumption level converges to the lower bound. Also the representative consumer’s

absolute cautiousness eventually equals these consumers’ absolute cautiousness.

Proposition 11 Under Assumptions 9 and 10,

1. lim
x→∞

∑

i∈I

fi(x)
x

= lim
x→∞

∑

i∈I

f ′i(x) = 1.

2. lim
x→∞ t′(x) = max

i∈{1,...,I}
lim

xi→∞
t′i(xi).

3. lim
x→d

∑
i∈I (fi(x)− di)

x− d
= lim

x→d

∑

i∈I

f ′i(x) = 1.

4. lim
x→d

t′(x) = min
i∈{1,...,I}

lim
xi→di

t′i (xi).

The proof of this proposition is given in Appendix B.

We next consider the following additional condition. It is intended to cover the case

of decreasing absolute risk tolerance (and hence increasing absolute risk aversion), such as

quadratic utility functions.

Assumption 12 For every consumer i, di = −∞, di < ∞, and lim
xi→di

ti (xi) = 0.

Define H as the set of consumers i such that lim
xi→di

t′i(xi) ≥ lim
xj→di

t′j(xj) for every j, and H

as the set of consumers i such that lim
xi→−∞

t′i(xi) ≤ lim
xj→−∞

t′j(xj) for every j.

Proposition 13 Under Assumptions 9 and 12,

1. lim
x→d

∑
i∈H

(
di − fi(x)

)

d− x
=

∑

i∈H

f ′i(x) = 1.

2. lim
x→d

t′(x) = max
i∈{1,...,I}

lim
xi→di

t′i (xi).

3. lim
x→−∞

∑

i∈H

fi(x)
x

= lim
x→−∞

∑

i∈H

f ′i(x) = 1.

4. lim
x→−∞ t′(x) = min

i∈{1,...,I}
lim

xi→−∞
t′i (xi).

The proof of this proposition is analogous to that of Proposition 11. We thus omit it.
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5.2 Relative Risk Tolerance and Relative Risk Aversion

The key observation for the analysis of the limit behavior of the representative consumer’s rel-

ative risk tolerance and relative risk aversion is that under suitable assumptions, lim
xi→∞

si(xi) =

lim
xi→∞

ti(xi)/xi = lim
xi→∞

t′i(xi) and lim
xi→0

si(xi) = lim
xi→0

ti(xi)/xi = lim
xi→0

t′i(xi) by L’Hôpital’s rule.

This allows us to apply Proposition 11 to the relative risk aversion. The additional assumption

we need for this argument is the following.

Assumption 14 For every consumer i, di = 0, and ti is a convex function.

This assumption can be satisfied by utility functions exhibiting constant relative risk aversion.

Along with other assumptions, it implies that t′i is a strictly positive, non-decreasing function.

Thus ti(xi) →∞ as xi →∞ and lim
xi→∞

si(xi) = lim
xi→∞

t′i(xi) and lim
xi→0

si(xi) = lim
xi→0

t′i(xi).

The following proposition generalizes Proposition 3 of Benninga and Mayshar (2000).

Proposition 15 Under Assumptions 9, 10, and 14,

1. lim
x→∞ s(x) = max

i∈{1,...,I}
lim

xi→∞
si(xi) and lim

x→0
s(x) = min

i∈{1,...,I}
lim

xi→0
si(xi).

2. lim
x→∞ b(x) = min

i∈{1,...,I}
lim

xi→∞
bi(xi) and lim

x→0
b(x) = max

i∈{1,...,I}
lim

xi→0
bi(xi).

Proof of Proposition 15 1. By Proposition 11, lim
x→∞ t′(x) exists and, by L’Hôpital’s rule,

equals lim
x→∞ s(x). By the same proposition, lim

x→∞ t′(x) equals lim
xi→∞

t′i(xi) for every i ∈ I, which

equals max
i

lim
xi→∞

si(xi). Hence lim
x→∞ s(x) = max

i∈{1,...,I}
lim

xi→∞
si(xi).

As for the limit as x → 0, note that as x → 0, fi(x) → 0 and hence ti(fi(x)) → 0. Thus

t(x) =
∑

ti(fi(x)) → 0. This shows that L’Hôpital’s rule is applicable and the rest of the

argument is as before.

2. This follows from part 1 and the definition of b and s. ¥

Now define J as the set of consumers i such that lim
xi→∞

si(xi) ≥ lim
xj→∞

sj(xj) for every

j, which is equivalent to lim
xi→∞

bi(xi) ≤ lim
xj→∞

bj(xj) for every j. Analogously, define J as

the set of consumers i such that lim
xi→0

si(xi) ≤ lim
xj→0

sj(xj) for every j, which is equivalent to

lim
xi→0

bi(xi) ≥ lim
xj→0

bj(xj) for every j. We have already seen that J = I and J = I under

Assumption 14. Proposition 11 thus implies the following:

Proposition 16 Under Assumptions 9, 10, and 14,

1. lim
x→∞

∑

i∈J

fi(x)
x

= lim
x→∞

∑

i∈J

f ′i(x) = 1.
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2. lim
x→0

∑

i∈J

fi(x)
x

= lim
x→0

∑

i∈J

f ′i(x) = 1.

6 Linear Absolute Risk Tolerance

Combining the preceding results and assuming that all consumers’ utility functions exhibit

linear absolute risk tolerance, we show in this section that an individual consumer’s risk-

sharing rule is either everywhere concave, everywhere convex, or has a unique inflection point

below which it is convex and above which it is concave.

Mathematically, a utility function ui :
(
di, di

) → IR exhibits linear absolute risk tolerance

if, for the corresponding absolute risk tolerance ti, there exist two numbers τi and γi such that

ti (xi) = τi + γixi. (14)

for every xi ∈
(
di, di

)
. This is equivalent to hyperbolic absolute risk aversion ai (xi) =

1
τi + γixi

and constant absolute cautiousness t′i(xi) = γi.

Note that the right hand side of equality (14) is of course positive for every xi ∈
(
di, di

)

but τi and γi may be positive, zero, or negative. However, if γi = 0, then τi > 0 and we take

di = −∞ and di = ∞. On the other hand, if γi > 0 then we take di = −τi/γi and di = ∞
and hence ti(xi) = γi (xi − di) and ti(xi) → 0 as xi → di. If γi < 0, then di = −∞ and

di = −τi/γi and hence ti(xi) = −γi

(
di − xi

)
and ti(xi) → 0 as xi → di. Indeed, although we

do not provide the proof here, these choices of di and di are the only ones that allows ui to

satisfy the Inada condition.

As in the previous sections, let f :
(
d, d

) → (
d1, d1

) × · · · × (
dI , dI

)
be an efficient risk-

sharing rule, and denote the representative consumer’s absolute risk aversion, absolute risk

tolerance, and relative risk aversion by a, t, and b, all corresponding to f .

The celebrated mutual fund theorem is documented in, for example, Wilson (1968), Huang

and Litzenberger (1988, Sections 5.15 and 5.26), Magill and Quinzii (1996, Proposition 16.3),

Gollier (2001a, Section 21.3.3), and LeRoy and Werner (2001, Section 15.6)). We do not

reproduce the statement of the theorem here. We just point out that if all consumers have

the same absolute cautiousness, that is, γ1 = · · · = γI , then the risk-sharing rule is affine and

the representative consumer has the same absolute cautiousness as the individual consumers.

Denote γ = max {γ1, . . . , γI} and γ = min {γ1, . . . , γI}. Then, according to the notation

in the previous section, I = {i | γi = γ} and I =
{
i | γi = γ

}
. Then I is the set of the most

absolutely cautious consumers and I is the set of the least absolutely cautious consumers. All
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consumers are equally cautious if and only if γ = γ. Of course, this case has been dealt with

by the mutual fund theorem, and we thus assume in the remainder of this section that γ > γ.

The first result of this section is concerned with the representative consumer’s absolute

risk tolerance.

Proposition 17 Assume that γ > γ. Then t′′(x) > 0 for every x ∈ (
d, d

)
, lim

x→d
t′(x) = γ, and

lim
x→d

t′(x) = γ.

Proof of Proposition 17 The first part of this proposition follows from Theorem 6. The

second and third parts follow from Corollary 11 or 13.

The main result of this section is the following classification of risk-sharing rules.

Theorem 18 Assume that γ > γ.

1. f ′′i (x) > 0 for every i ∈ I and x ∈ (
d, d

)
.

2. f ′′i (x) < 0 for every i ∈ I and x ∈ (
d, d

)
.

3. For every i /∈ I ∪ I, there exists a unique yi ∈
(
di, di

)
such that f ′′i (x) > 0 for every

x < yi and f ′′i (x) < 0 for every x > yi.

4. For the yi defined as in part 3, yi < yj if γi < γj; yi = yj if γi = γj; and yi > yj if

γi > γj.

Proof of Theorem 18 By Proposition 17, γ < t′(x) < γ for every x ∈ (
d, d

)
. Parts 1

and 2 then follow from Proposition 4. As for part 3, note that Proposition 17 implies that

t′ :
(
d, d

) → (
γ, γ

)
is strictly increasing and onto. Hence, for every i /∈ I ∪ I, there exists

a unique yi ∈
(
di, di

)
such that γi = t′(yi). Since γi = t′i (fi(x)) for every x, Proposition 4

implies that yi has the property of part 3. Part 4 also follows from this property of yi and

the fact that t′ is strictly increasing. ¥

The next proposition is concerned with the total proportion of consumption levels con-

sumed by those consumers with the largest or smallest absolute cautiousness. It immediately

follows from Propositions 11 and 13. We thus omit the proof.

Proposition 19

1. If γ > 0, then lim
x→∞

∑

i∈I

fi(x)
x

= 1 and lim
x→d

∑

i∈I

fi(x)− di

x− d
= 1.
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2. If γ < 0, then lim
x→−∞

∑

i∈I

fi(x)
x

= 1 and lim
x→d

∑

i∈I

di − fi(x)
d− x

= 1.

If we further assume that di = 0, τi = 0, and γi > 0 for every i, then bi (xi) = 1/γi and

hence ui exhibits constant relative risk aversion 1/γi. The following result, which follows from

Proposition 17, is concerned with this case.

Proposition 20 Assume that di = 0, τi = 0, and γi > 0 for every i, and that γ > γ.

1. lim
x→∞ s(x) = γ and lim

x→0
s(x) = γ.

2. lim
x→∞ b(x) = 1/γ and lim

x→0
b(x) = 1/γ.

Let us now come back to the point we made at the end of Section 4, that when the

individual consumers exhibit constant relative risk aversion, formula (11) provides a finer

restriction on the representative consumer’s risk attitude than (13) does. To see this, note first

that an immediate implication of the latter formula is that his relative risk aversion b is strictly

decreasing. On the other hand, an immediate implication of formula (11) is that his absolute

risk tolerance t is strictly convex. Since lim
x→0

t(x) = 0 by equality (4) or (6), this strict convexity

implies that the elasticity of t is strictly greater than one, which is equivalent to saying that

b is strictly decreasing. Note however that the strict convexity of t is a strictly stronger

property than its elasticity being greater than one. This argument therefore tells us that

although the heterogeneous constant relative risk aversion of the individual consumers leads

to strictly decreasing relative risk aversion for the representative consumer, not all strictly

decreasing relative risk aversion functions can be generated for the representative consumer

by such individual consumers. An additional necessary condition is that his absolute risk

tolerance be strictly convex.

Theorem 18 is illustrated in Figure 1, which shows the risk-sharing rules in a four-consumer

economy. Their first and second derivatives are also given. Consumers differ with respect to

their constant relative risk aversion. The risk-sharing rules of the most and least risk averse

consumers are concave and convex, respectively. Intermediate consumers have sharing rules

which turn from convex for lower aggregate consumption levels to concave for higher ones. The

inflection point of the individual risk sharing rule is higher for the less risk-averse intermediate

consumer. This is better seen in the graphs of the two derivatives of the risk-sharing rules.

Re-scaling the individual utility functions or choosing a different set of weights λi, here set

to one, would change the quantitative results but nothing of the qualitative results, except
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that the individual risk-sharing rules do not in general all intersect at exactly the same point.

The figures are numerically calculated and then plotted using the constrained optimization

package in GAUSS. The values of the relative risk aversion and weights are chosen to enhance

graphical effects, not to fit to empirical findings.

7 Discussion

We have presented detailed properties of the efficient risk-sharing rules and the representative

consumer’s risk attitude in an economy under uncertainty where individual consumers have

homogeneous probabilistic beliefs over the state space but heterogeneous risk attitudes. In

particular, we showed that heterogeneity in the consumers’ absolute cautiousness, which is

the derivative of the reciprocal of the Arrow-Pratt measure of absolute risk aversion, is a key

factor for the curvature of the risk-sharing rules. We also showed that the heterogeneity in the

individual consumers’ risk attitudes has a convexifying effect on the representative consumer’s

absolute risk tolerance. We now turn to a discussion of the consequences of our results.

7.1 Convex Absolute Risk Tolerance

Based on recent data on Italian households, Guiso and Paiella (2000) found that individual

consumers exhibit concave risk tolerance and that there is some heterogeneity in their risk

attitudes. Hence, by Theorem 5, the representative consumer may well exhibit convex absolute

risk tolerance. Now suppose that this is indeed the case, and yet we erroneously assumed

that the economy were to consist of individual consumers having the same risk attitude as

the representative consumer. We would then conclude that individual consumers exhibit

convex absolute risk tolerance, which has a few testable implications. One is that, according

to Gollier and Zeckhauser (2002), younger individual consumers invest more in risky assets

than wealth-equivalent older counterparts, but this contradicts the empirical findings of, for

example, Guiso, Jappelli, and Terlizzese (1996). While this contradiction would constitute

a puzzle under the erroneous assumption, it does not do so if the heterogeneity in absolute

cautiousness and their convexifying effect are taken into consideration, as exemplified by

formula (11).

Another implication of convex absolute risk tolerance for the representative consumer is

given by Gollier (2001b), who showed that if all consumers have the same utility function,

then wealth inequality (which would correspond to the biases in the utility weights λi in our
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maximization problem (2)) increases the equilibrium price of the aggregate endowment ζ if

and only if the absolute risk tolerance (of every consumer in this case) is convex. The effect

of wealth inequality in a model of consumers with heterogeneous risk attitudes is, however,

yet to be explored.

7.2 Risk-Sharing Rules

Parts 1 and 2 of Theorem 18, which dealt with the risk sharing rules for the most and least

cautious consumer, have been obtained by Leland (1980) and Brennan and Solanki (1981),

who considered the expected utility maximization problem of a consumer who chooses over

state-contingent claims of a reference portfolio. Holding the underlying asset and a put option

is equivalent to holding cash and a call option of the same exercise price, but these are also

equivalent to having a portfolio insurance as well. In all of these cases, the generated return

is a convex function of the values of the portfolio. They were thus led to identify conditions

on the consumer’s utility function for his optimal choice of return to be a convex function of

the value of the portfolio.

The most important differences between this work and theirs is that they took the represen-

tative consumer’s risk aversion as given, while we derive it as a result of efficient risk-sharing

among heterogeneous consumers. In fact, our result shows that the case Leland (1980) an-

alyzed on page 589, where the individual and the representative consumers exhibit constant

but differing relative risk aversion, is in fact impossible, if all the other consumers also exhibit

constant relative risk aversion.

Also, the importance of part 3 of Theorem 18, i.e. the fact that risk-sharing rules for inter-

mediate linearly risk tolerant consumers are initially convex and eventually concave, cannot

be overemphasized. It is exactly the point that is not present in the analysis of Leland (1980)

and Brennan and Solanki (1981). When individual consumers have differing degrees of abso-

lute cautiousness, the representative consumer’s absolute cautiousness is strictly increasing,

ranging from the smallest to the largest. If an individual consumer has neither the smallest

nor the largest absolute cautiousness, then his absolute cautiousness must be caught up with

by the representative consumer’s counterpart at some aggregate consumption level. Below

this level, his risk-sharing rule is convex, and, above this level, it is concave. An important

implication of this result in the context of portfolio insurance is that only consumers with the

smallest relative risk aversion (the largest absolute cautiousness) would buy portfolio insur-
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ance, as the others’ risk-sharing rules would eventually become concave. This significantly

undermines the applicability of the results of Leland (1980) and Brennan and Solanki (1981).

They are valid in a two-consumer economy, but do not generalize to an economy with a large

number of consumers with diverse levels of relative risk aversion. This confirms a conjecture

by Dumas (1989), who concentrated on a two-consumer economy but concluded by suggesting

that the equilibrium behavior of a three-consumer economy may be critically different from

that in his two-consumer economy.

Part 3 of Theorem 18 can be partially extended to the general case. Call an intermediate

consumer a consumer whose absolute cautiousness is neither the largest nor the smallest when

aggregate endowment tends to either of its limits. Then this intermediate consumer’s risk-

sharing rule must be initially convex and eventually concave. Given smoothness of all utility

functions, this consumer’s risk-sharing rule must have at least one inflection point.

7.3 Asset Pricing

As is well known, any positive multiple of the representative consumer’s marginal utility is

a state price deflator (also known as the state price density and as the pricing kernel). This

state-price deflator can be expressed as a function of the representative consumer’s absolute

risk tolerance. We now explore how assets may be mis-priced if a modeler ignores the issue

of aggregation and erroneously assumes that the representative agent behaves just as an

individual consumer in the economy.

To illustrate our first example of mis-pricing, assume that each consumer exhibits linear

absolute risk tolerance, but its first derivative, the absolute cautiousness, differs across them.

We then know from Corollary 6 that the representative consumer’s absolute risk tolerance is a

strictly convex function of aggregate consumptions. Yet, suppose that a modeler erroneously

assumed that the representative consumer would also exhibit linear absolute risk tolerance.

It can then be shown that even if the absolute risk tolerance and cautiousness are chosen

to match the true values at some aggregate consumption level,9 the price of any asset with

an increasing payoff function (of aggregate endowment) would be under-estimated. Since the

aggregate endowment is an increasing function of itself, this implies that the equity premium
9This is equivalent to saying that the absolute risk tolerance of the hypothetical representative consumer

is a linear approximation of that of the true representative consumer at some aggregate consumption level.

Since the absolute risk tolerance of the hypothetical representative consumer need not be equal to zero at zero

consumption, the resulting relative risk aversion need not be constant.
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is under-estimated. Hence a modeler would find it more difficult to match the observed equity

premium with reasonable risk preferences if she ignores the convexifying effect of aggregation

on the representative consumer’s absolute risk tolerance.

For our second example of mis-pricing, assume that each consumer exhibits constant rel-

ative risk aversion, but the constants differ across consumers. We then know from Corollary

8 that the representative consumer’s relative risk aversion is a strictly decreasing function

of aggregate consumption. Yet, suppose that a modeler erroneously assumed that the rep-

resentative consumer would also exhibit constant relative risk aversion. Franke, Stapleton,

and Subrahmanyam (1999) showed that even if the relative risk aversion is chosen such that

the theoretical equity premium is matched to the true equity premium (of the aggregate en-

dowment), the price of any asset with a convex payoff function (of aggregate endowment),

such as call and put options, is under-estimated. The consistency with empirical findings

should be noted: Aı̈t-Sahalia and Lo (2000) derived the representative consumer’s relative

risk aversion from option prices in a non-parametric, non-linear way. They find that it is

decreasing (almost) everywhere. This is exactly what we would expect and is not necessarily

in contradiction to individual consumers having constant relative risk aversion.

A Existence of a Solution to the Maximization Problem (2)

In this appendix, we prove that for every λ and x, there exists a solution to the maximization

problem (2), that is, fλ :
(
d, d

) → (
d1, d1

)× · · · × (
dI , dI

)
is well defined.

Indeed, for each i, the function λiu
′
i :

(
di, di

) → IR++ is strictly decreasing and onto.

Hence it has an inverse, which we denote by ϕi : IR++ → (
di, di

)
. Then ϕi is also strictly

decreasing and onto. Define ϕ : IR++ →
(
d, d

)
by ϕ =

∑
ϕi. Then ϕ is also strictly decreasing

and onto. Then the composite mapping ϕ ◦ (λiu
′
i) :

(
di, di

) → (
d, d

)
is well defined. It is

easy to check that the inverse of this mapping equals fλi. Note that we have also shown that

f ′λi (x) > 0 for every x and fλi (x) → d as x → d and fλi (x) → d as x → d.

B Proof of Proposition 11

To prove Proposition 11, we need two lemmas. The first one is concerned with the ratio of

two individual consumers’ risk-sharing rules and their derivatives.
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Lemma 21 Under Assumptions 9 and 10, if lim
xi→∞

t′i(xi) < lim
xj→∞

t′j(xj), then lim
x→∞

fi(x)
fj(x)

=

lim
x→∞

f ′i(x)
f ′j(x)

= 0.

Proof of Lemma 21 Let two real numbers δi and δj be such that

lim
xi→∞

t′i (xi) < δi < δj < lim
xj→∞

t′j (xj) .

Since di = ∞ and ti(xi) > 0 for every xi, lim
xi→∞

t′i (xi) ≥ 0. Hence δi > 0 and δj > 0. Then let

x > d be such that t′i (xi) < δi < δj < t′j (xj) for every xi ≥ fi (x) and xj ≥ fj (x). Then, for

such xi and xj ,

ti(xi) <δi (xi − fi (x)) + ti (fi(x)) ,

tj(xj) >δj (xj − fj (x)) + tj (fj(x)) .

By equality (3) and the fact that a consumer’s absolute risk aversion ai(·) is the reciprocal of

his absolute risk tolerance ti(·),
∫ x

x
ai (fi(z)) f ′i(z) dz =

∫ x

x
aj (fj(z)) f ′j(z) dz

for every x ≥ x. By integration by parts, this is equivalent to
∫ fi(x)

fi(x)
ai (z) dz =

∫ fj(x)

fj(x)
aj (z) dz. (15)

Thus ∫ fi(x)

fi(x)

dz

δi (z − fi (x)) + ti (fi (x))
<

∫ fj(x)

fj(x)

dz

δj (z − fj (x)) + tj (fj (x))
.

Take the integral and then the exponential of both sides, then we obtain
(

δi (fi(x)− fi (x)) + ti (fi (x))
ti (fi (x))

)1/δi

<

(
δj (fj(x)− fj (x)) + tj (fj (x))

tj (fj (x))

)1/δj

,

because 0 < δi < δj . Thus

fi(x)− fi (x) +
ti (fi (x))

δi
< k

(
fj(x)− fj (x) +

tj (fj (x))
δj

)δi/δj

,

where

k =
ti (fi (x))

δi

(
δj

tj (fj (x))

)δi/δj

> 0.

Since 0 < δi/δj < 1,

fi(x)− fi (x) +
ti (fi (x))

δi

fj(x)− fj (x) +
tj (fj (x))

δj

→ 0 (16)
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as x →∞. Hence fi(x)/fj(x) → 0 as x →∞.

By equality (2),

f ′i(x)
f ′j(x)

=
ti (fi(x))
tj (fj(x))

<
δi

δj

fi(x)− fi (x) +
ti (fi (x))

δi

fj(x)− fj (x) +
tj (fj (x))

δj

.

By (16), the far right hand side converges to 0. Hence f ′i(x)/f ′j(x) → 0. ¥

The next lemma is concerned with the limit behavior of the risk-sharing rules when the

aggregate consumption levels converge to the lower bound.

Lemma 22 Under Assumptions 9 and 10, if lim
xj→dj

t′i(xj) < lim
xi→di

t′i(xi), then lim
x→∞

fi(x)
fj(x)

=

lim
x→∞

f ′i(x)
f ′j(x)

= 0.

Proof of Lemma 22 Let two real numbers δi and δj be such that

lim
xj→dj

t′j (xj) < δj < δi < lim
xi→di

t′i (xi) .

Since tj (xj) ≥ 0 for every xj and tj (xj) → 0 as xj → dj , we have lim sup
xj→dj

t′j (xj) ≥ 0. Hence

δj > 0 and δi > 0. Then let x > d be such that t′j (xj) < δj < δi < t′i (xi) for every xi ≤ fi (x)

and xj ≤ fj (x). Thus, for such xi and xj , ti (xi) > δi (xi − di) and tj (xj) < δj

(
xj − dj

)
.

Since, for every x ∈ (d, x), ∫ fj(x)

fj(x)

dz

tj (z)
=

∫ fi(x)

fi(x)

dz

ti (z)
,

we have ∫ fj(x)

fj(x)

dz

δj

(
z − dj

) <

∫ fi(x)

fi(x)

dz

δi (z − di)
(17)

Thus (
fj (x)− dj

fj (x)− dj

)1/δj

<

(
fi (x)− di

fi (x)− di

)1/δi

.

Hence there exists a positive number k such that

fi (x)− di < k
(
fj (x)− dj

)δi/δj . (18)

Recall that both fi :
(
d, d

) → (
di, di

)
and fj :

(
d, d

) → (
dj , dj

)
are smooth, one-to-one, and

onto, and have strictly positive derivatives. Hence there exists a ϕ :
(
0, dj − dj

) → (
0, di − di

)

that is smooth, one-to-one, and onto, has strictly positive derivatives, and satisfies fi (x)−di =

ϕ
(
fj (x)− dj

)
. Thus, also by inequality (18), 0 < ϕ(z) < kzδi/δj for every z ∈ (

0, dj − dj

)
.
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Hence, by δj/δi > 1, ϕ(z)/z → 0 and ϕ′(z) → 0 as z → 0. If z and x satisfy z = fi(x) − di,

then z → 0 if and only if x → d. Hence (fi(x)− di) /
(
fj(x)− dj

) → 0 as x → d. Moreover,

since ϕ′(z) = f ′j(x)/f ′i(x), f ′j(x)/f ′i(x) → 0 as x → d. ¥

We can now turn to the proof of Proposition 11.

Proof of Proposition 11 To show the first two parts, let i ∈ I and j 6∈ I. Since

lim sup
x→∞

fi(x)/x ≤ 1,

0 ≤ lim inf
x→∞

fj(x)
x

≤ lim sup
x→∞

fj(x)
x

≤ lim sup
x→∞

fj(x)
fi(x)

lim sup
x→∞

fi(x)
x

≤ lim sup
x→∞

fj(x)
fi(x)

.

By Lemma 21, the far right hand side equals zero. Thus fj(x)/x → 0. Since this is true for

every j 6∈ I and
∑I

i=1 fi(x)/x = 1, we must have
∑

i∈I fi(x)/x → 1 as x →∞.

Also, since 0 < f ′i(x) < 1,

0 < f ′j(x) <
f ′j(x)
f ′i(x)

and, for such i and j as in the preceding paragraph, the far right hand side converges to zero

as x → ∞. Hence f ′j(x) → 0 as x → ∞. We must have
∑

i∈I f ′i(x) → 1 as x → ∞. Since

lim
xj→∞

t′j(xj) < lim
xi→∞

t′i(xi) ≤ ∞ for every i ∈ I and j 6∈ I, t′j (fj(x)) f ′j(x) → 0 as x → ∞ for

every j 6∈ I. Thus, by Lemma 2 and 0 <
∑

i∈I f ′i(x) ≤ 1, we have

lim sup
x→∞

t′(x)

= lim sup
x→∞

I∑

i=1

t′i (fi(x)) f ′i(x)

= lim sup
x→∞

∑

i∈I

t′i (fi(x)) f ′i(x)

≤ lim sup
x→∞

max
i∈I

t′i (fi(x))

≤ max
i∈{1,...,I}

lim
xi→∞

t′i (xi) .

The other inequality,

max
i∈{1,...,I}

lim
xi→∞

t′i (xi) ≤ lim inf
x→∞ t′(x),

can be shown analogously. This proves the first two parts of this proposition.

To prove part 3, let i ∈ I and j 6∈ I. Since 0 <
fi(x)− di

x− d
< 1 for every x,

0 ≤ lim inf
x→d

fj(x)− dj

x− d
≤ lim sup

x→d

fj(x)− dj

x− d
≤ lim sup

x→d

fj(x)− dj

fi(x)− di

lim sup
x→d

fi(x)− di

x− d
≤ lim sup

x→d

fj(x)− dj

fi(x)− di

.

26



By Lemma 22, the far right hand side equals zero. Hence

∑
i∈I (fi(x)− di)

x− d
→ 1 as x → d.

Part 4 can be shown in the same manner as for part 2. ¥
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Figure 1: The risk-sharing rules and their first and second derivatives in a four-consumer

economy. Consumers have differing constant coefficients of relative risk aversion βi = 1/γi > 0.

The weights λi in the maximization problem (2) are all set equal to one.
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