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Abstract: We present a new method for solving the BFKL evolution applicable at both

leading and next-to-leading logarithmic accuracy, and tailored to the study of QCD multi-

jet events at colliders. We utilise this to discuss corrections to the standard analysis. There

are known, large corrections from energy and momentum conservation. We show that,

despite claims to the contrary in the literature, these are unrelated to the next-to-leading

logarithmic corrections to the evolution kernel.
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1. Introduction

One of the many immediate challenges for QCD is to provide a reliable description of the

multiple hard jet environment of the LHC. Besides posing a very interesting problem in

itself, the QCD dynamics will provide signals similar to that of many sources of physics

beyond the standard model, and so is very important to understand in detail. An intriguing

alternative to the standard approach of calculating the production rate of a few hard

partons by fixed order perturbation theory is to use the framework arising from the BFKL

(Balitskii–Fadin–Kuraev–Lipatov) equation to calculate the emission of gluons (and quarks

at next-leading logarithmic accuracy) from the evolution of an effective, Reggeized gluon

(Reggeon) propagator. The starting point here is the observation that for e.g. 2→ 2, 2→

3, . . . gluon scattering, the partonic cross section in the limit where the rapidity span

of the two leading gluons is increased is dominated by the contribution from Feynman

diagrams with a t-channel gluon exchange. This t-channel gluon is then evolved according

to the BFKL equation, and will emit partons accordingly. Starting from the 2 → 2–

gluon exchange, the 2 → 2+n gluon scattering process can be calculated in the limit of

large rapidity spans ∆, thanks to the Regge factorisation of the colour octet exchange.

Obviously, this means that the formalism is relevant only if there is sufficient energy at

colliders to have multiple emissions spanning large rapidity intervals. In this high energy

limit, the partonic cross section (p′a, p
′

b → pa, {pi}, pb) factorises as

dσ̂(pa, pb) = Γa(pa) f(pa,−pb,∆) Γb(pb), (1.1)

where pa, pb is the momentum of the partons furthest apart in rapidity, Γa,b are the process

dependent impact factors, describing here the gluon–gluon–Reggeised-gluon–coupling, and

f(pa,−pb,∆) is the process independent gluon Green’s function, which is the object evolv-

ing according to the BFKL equation. We use bold face vectors to denote the transverse

components. This is the same gluon Green’s function that would enter calculations of the
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small-x evolution of parton density functions. The evolution of the gluon Green’s function

can of course be discussed generally without reference to specific impact factors, and so the

conclusions of this study should impact all applications of the BFKL formalism for colour

octet or inelastic studies. In Eq. (1.1), the partonic cross section has been integrated over

any number of gluons emitted in this evolution, so only the dependence on the momenta of

the leading jets have been retained. The BFKL approach should give a good approximation

to the full 2→2+n calculation, when the hard jets are well separated in rapidity.

The BFKL equation governing the evolution of the t–channel Reggeised gluon was

solved iteratively in Ref. [1–3] using the evolution at leading logarithmic accuracy [4–6],

and more recently in Ref. [7, 8] at full next-to-leading logarithmic accuracy [9, 10]. The

present paper has three purposes. Firstly, to present a new method for obtaining the QCD

evolution according to the BFKL equation. Secondly, to discuss the implications of this

new formalism on our understanding of the sources of corrections. And thirdly, to announce

the availability of a computer code that calculates the exclusive multi-parton production

rate expected at the LHC or Tevatron according to the BFKL evolution.

2. Iterative Solution of the BFKL Equation

Our starting point for the discussion is the fully inclusive BFKL equation describing the

evolution of the gluon Green’s function f(ka,kb,∆)

ω fω(ka,kb) = δ(2+2ǫ) (ka − kb) +

∫

d2+2ǫk Kǫ(ka,k + ka) fω(k + ka,kb) , (2.1)

where w is the Mellin-conjugated variable to ∆, and the BFKL kernel Kǫ(ki,kj) is presently

known to next-to-leading logarithmic accuracy, where the logarithm is ln(sij/|ki||kj |), and

sij the invariant mass of partons i and j. The solution to the evolution from a momentum

kb at rapidity yb to ka at rapidity ya according to this integral equation can be written on

the form

f(ka,kb,∆) =

∞
∑

n=0

∫

dPn Fn,

∫

dPn =

(

∫ n
∏

i=1

dki

∫ y0

0
dy1

∫ y1

0
dy2 · · ·

∫ yn−1

0
dyn

)

δ(2)

(

ka +
n
∑

l=1

kl − kb

)

(2.2)

Fn =

(

n
∏

i=1

eω(qi)(yi−1−yi) V (qi,qi+1)

)

eω(qn+1)(yn−yn+1)

with y0 = ya ≡ ∆, yb = yn+1 = 0, qi = ka +
∑i−1

l=1 kl, and, crucially, the real production

vertices V (qi,qi+1) and trajectories ω(qi)(yi−1 − yi) are regularised and finite at LL [1–3]

and NLL [7, 8] in order to facilitate a direct numerical evaluation. The correctness of the

procedure at NLL was proved in Ref. [11] by comparing to analytic results for the evolution

in N =4 Super Yang-Mills theory, since the analytic solution to the BFKL equation is only

known for conformal invariant theories (please see Ref. [12] for a discussion of the analytic

methods at NLL).
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kb, yn+1 = 0
kn, yn k1, y1 ka, ∆ = y0

Figure 1: The 2 → 2+n gluon scattering process described using Regge factorisation, with the

initial state at the bottom. The shaded blobs are the gluon-gluon–Reggeon impact factors Γa,b,

and the hatched blobs are the (regularised) gluon-Reggeon-Reggeon vertices. The Reggeized gluon

(Reggeon) propagators are marked with zigzag lines. Gluon emission is generated in the rapidity

span between the impact factors by the evolution described by the BFKL equation of the Reggeized

gluon. At NLL the vertices can emit one or two gluons, or a quark-anti-quark pair.

The formulation of the solution to the BFKL evolution in Eq. (2.2) allows in principle

for the calculation of the fully exclusive 2→ 2+n cross section, i.e. the expression of the

differential cross section in Eq. (1.1) as dσ̂(pa, {pi}, pb). It is reassuring that this picture

is fully consistent with recent results on the multi-Regge form of QCD amplitudes at the

next-to-leading logarithmic level [13–15].

3. Direct Solution of the BFKL Evolution

Starting from Eq. (2.2) it is possible to construct a new method of evolving according to

the BFKL kernel by first performing a simple change of variables in the nested integration

over rapidities, followed by the introduction of another integral and delta functional, in

order to make the integration over rapidity separations independent

∫ y0

0
dy1

∫ dy1

0
dy2 · · ·

∫ dyn−1

0
dyn

(

n
∏

i=1

eω(qi)(yi−1−yi)

)

eω(qn+1)(yn−yn+1) (3.1)

=

∫ ∆

0
dδyn

∫ ∆−yn

0
dδyn−1 · · ·

∫ ∆−yn−···−y2

0
dδy1

(

n
∏

i=1

eω(qi)δyi

)

eω(qn+1)δyn+1 (3.2)

=

∫

∞

0
dδyn+1

∫

∞

0
dδyn · · ·

∫

∞

0
dδy1 δ(∆ −

n+1
∑

i=1

δyi)
n+1
∏

i=1

eω(qi)δyi , (3.3)

so the gluon Green’s function f(ka,kb,∆) in Eq. (2.2) can be written as

f(ka,kb,∆) =

∞
∑

n=0

∫

dPn Fn,

∫

dPn =

(

n
∏

i=1

∫

dki

∫

∞

0
dδyi

)

∫

∞

0
dδyn+1 δ(2)

(

ka +
n
∑

l=1

kl − kb

)

δ

(

∆ −
n+1
∑

i=1

δyi

)

(3.4)

Fn =

(

n
∏

i=1

eω(qi)δyi V (qi,qi+1)

)

eω(qn+1)δyn+1
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Using this, we see that f(ka,kb,∆) is simply the value at ∆ ≡
∑n+1

i=1 δyi of the phase space

integral of the product of real–emission vertices V (qi,qi+1) at rapidity yi =
∑i

j=1 δyj

connected with Regge factors eω(qi)δyi describing the probability of no (resolved) emission

between two adjacent (in rapidity) vertices1. In this case, it is clear that the virtual and

unresolved corrections encoded in ω(qi) lead to a decrease with increasing ∆, while any

increase in f(ka,kb,∆) is due to the integration over phase space of the resolved emission

from the vertices V (qi,qi+1). The BFKL evolution can then be found by the following

algorithm :-

1. Choose a random number of vertices for the evolution, n ≥ 0

2. Generate a set {ki}i=1,...,n of transverse momenta (the outgoing momenta are {−ki}i=1,...,n)

3. Calculate the corresponding set of trajectories {ω(qi)}i=1,...,n+1, and vertex factors

{V (qi,qi+1)}i=1,...,n, qi = ka +
∑i−1

l=1 kl

4. Generate the inter-vertex rapidity separations {δyi} according to the distributions

eω(qi)δyi

5. Calculate the corresponding ∆ =
∑n+1

i=1 δyi and return
∏n

i=1 V (qi,qi+1)

6. Repeat until required Monte Carlo accuracy is obtained

This algorithm is vastly superior to the immediate Monte Carlo implementation of the

phase space integrals in Eq. (2.2). This is because that instead of calculating, for a given

∆, the contribution from any number of emissions and any momentum configuration of

these, this new method calculates a representative rapidity span for a given number of

emissions and their configurations of momenta. Furthermore, this method is explicitly

symmetric in ka ↔ kb and evolution direction (increasing or decreasing rapidities), and it

offers a more direct way of implementing the necessary study at colliders of any length of

the rapidity interval ∆, since this is automatically achieved by just a single sum over any

number of emissions. Unweighting of the Monte Carlo is also significantly more efficient,

since part of the integrand in the previous formulation contributing to the variance of the

integrand is now used to determine a representative value for ∆. We stress that both

approaches provide the same correct solution to the BFKL evolution.

4. Phase space restrictions from energy and momentum conservation

Besides leading to a more efficient implementation of the BFKL evolution, the new for-

mulation of the solution to the BFKL evolution is also useful for discussing sources of

corrections to the standard BFKL analysis. The phase space restrictions from energy and

momentum conservation can be implemented simply by adding a step in the algorithm

rejecting events prohibited by phase space considerations. We see that the discussion of

the region of integration for real emission is completely independent of the logarithmic

1This interpretation holds for ω(qi) < 0, which can always be fulfilled in the regularisation procedure of

Ref. [1–3] at LL and Ref. [7,8] at NLL.
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accuracy of the evolution kernel expressed in terms of the vertices V (qi,qi+1) and Regge

trajectories ω(qi). This clearly shows that, despite what is often claimed in the literature

(see e.g. Ref. [16] and references therein), phase space restrictions in terms of e.g. energy

and momentum conservation are completely independent of the logarithmic accuracy to

which the BFKL evolution is performed. Specifically, the NLL corrections to the evolution

kernel do not implement energy and momentum conservation. Furthermore, the standard

solution of the LL and guestimate of the NLL evolution based on a Mellin transform in

the transverse momentum of the kernel will always fail to take such considerations into

account, by its very nature as fully inclusive both in number of emissions and as an inte-

gral to infinity of the transverse momentum. This is simply a result of the fact that the

BFKL evolution is local, while energy and momentum conservation depends on the full

final state configuration. Such considerations should be implemented by modifications to

the evolution beyond the discussion of the logarithmic accuracy of the evolution. Please

note that this discussion of energy and momentum conservation goes beyond the discussion

of longitudinal momentum in collinear splittings at small-x, implemented by ensuring the

vanishing of the first moment (see e.g. Ref. [17]).

While it is not our job to guess the cause of the confusion in the literature over

the rôle of energy and momentum conservation and higher logarithmic corrections to the

evolution kernel, it is perhaps beneficial to discuss the differences and similarities between

the multi-particle generating colour-octet exchange and the colour-singlet exchange relevant

for diffractive studies. The evolution in rapidity ∆ of the gluon Green’s function for

both cases is described by a BFKL equation. In the case of diffractive 2 → 2 processes,

the rapidity span of the BFKL evolution is given by ∆ ≈ ln s/s0, when the Regge scale

s0 = |ka||kb| is the product of the transverse momentum of the two (massless) scattered

particles. However, the impact factors depend on s0 only at NLL accuracy, and so it can

be argued that only at NLL accuracy does the prediction gain a correct dependence on the

centre of mass energy (although of course the evolution can (and should!) be discussed

without reference to specific impact factors). While this is true, care has to be taken when

discussing instead colour-octet exchange with multiple emissions. First of all, there is

no one-to-one correspondence between the rapidity span of the evolution and the centre of

mass energy, although obviously the centre of mass energy tends to increase with increasing

rapidity span. Note specifically that if one sets s = s0e
∆ with the Regge scale s0 = |ka||kb|,

then any additional emission from the BFKL evolution is kinematically excluded. The

error2 in ignoring the contribution from the BFKL emission to the centre of mass energy

is significant [18,19]. Secondly, any constraint on the real emission will significantly lower

the expected BFKL signatures, e.g. the expected rise in F2 at small-x, and the increasing

jet azimuthal decorrelation with rapidity at hadron colliders. In fact, the effect of correctly

implementing energy and momentum conservation on top of the LL BFKL evolution has a

larger impact on the jet azimuthal decorrelation even at LHC energies than the inclusion

of the NLL corrections to the evolution kernel (compare e.g. Fig. 10 of Ref. [8] with Fig. 5

of Ref. [3]).

2It is often argued that this correction is logarithmically subleading. However, as we have demonstrated

this is not part of the subleading corrections to the evolution kernel.
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5. Conclusions

We have presented a new method for solving the BFKL evolution very effectively for the

study of multi-partonic final states at hadron colliders. We have furthermore demonstrated

that the discussion of energy and momentum conservation and phase space constraints

of the evolution in general is completely separate to the discussion of the logarithmic

accuracy of the evolution kernel, contrary to the claims found in the literature. We have

demonstrated how energy and momentum conservation can be implemented.

A program implementing the new algorithm for the BFKL evolution in the case of

multi-jet production at Tevatron and LHC energies is available at the URL

http://www.hep.phy.cam.ac.uk/~andersen/BFKL

The current version implements energy and momentum conservation, and the BFKL evo-

lution kernel at LL supplemented by the running coupling terms from NLL.
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