
EFFICIENT LATTICE RESCORING USING
RECURRENT NEURAL NETWORK LANGUAGE MODELS

X. Liu, Y. Wang, X. Chen, M. J. F. Gales & P. C. Woodland

Cambridge University Engineering Dept,
Trumpington St., Cambridge, CB2 1PZ U.K.

Email: {xl207,yw293,xc257,mjfg,pcw}@eng.cam.ac.uk

ABSTRACT

Recurrent neural network language models (RNNLM) have become

an increasingly popular choice for state-of-the-art speech recogni-

tion systems due to their inherently strong generalization perfor-

mance. As these models use a vector representation of complete

history contexts, RNNLMs are normally used to rescore N-best lists.

Motivated by their intrinsic characteristics, two novel lattice rescor-

ing methods for RNNLMs are investigated in this paper. The first

uses an n-gram style clustering of history contexts. The second ap-

proach directly exploits the distance measure between hidden history

vectors. Both methods produced 1-best performance comparable

with a 10k-best rescoring baseline RNNLM system on a large vocab-

ulary conversational telephone speech recognition task. Significant

lattice size compression of over 70% and consistent improvements

after confusion network (CN) decoding were also obtained over the

N-best rescoring approach.

Index Terms: recurrent neural network, language model, speech

recognition

1. INTRODUCTION

In order to handle the data sparsity problem associated with conven-

tional back-off n-gram language models (LM), language modelling

techniques that represent preceding history contexts in a continu-

ous and lower dimensional vector space, such as neural network lan-

guage models (NNLM) [2, 24, 22, 14, 27, 11], can be used. NNLMs

are widely used in state-of-the-art speech recognition systems due

to their inherently strong generalization performance. Depending

on the network architecture being used, they can be categorised into

two major categories: feedforward NNLMs [2, 24, 22, 11], which

use a vector representation of preceding contexts of a finite num-

ber of words, and recurrent NNLMs (RNNLM) [14, 15, 27], which

use a recurrent vector representation of longer and potentially vari-

able length histories. In recent years RNNLMs have been shown

to give significant improvements over conventional back-off n-gram
LMs and feedforward NNLMs, thus gaining increasing research in-

terest [14, 15, 4, 10, 27, 6, 28, 25].

One important practical issue associated with RNNLMs is the

suitable decoding method to use. As RNNLMs use a complex vec-

tor space representation of full history contexts, it is generally not

The research leading to these results was supported by EPSRC grant
EP/I031022/1 (Natural Speech Technology) and DARPA under the Broad
Operational Language Translation (BOLT) and RATS programs. The paper
does not necessarily reflect the position or the policy of US Government and
no official endorsement should be inferred. Xie Chen is supported by Toshiba
Research Europe Ltd, Cambridge Research Lab.

possible to apply these models in the early stage of speech recog-

nition systems, or to directly rescore the word lattices produced by

them. Instead, only a subset of the hypotheses encoded in a previ-

ously generated word lattice are used and converted into a linear, or

prefix tree structured [25], N-best list. This practical constraint lim-

its the possible improvements that can be obtained from RNNLMs

for downstream applications that favor a more compact lattice repre-

sentation, for example, when confusion network (CN) based decod-

ing techniques [8] are used [28]. Several recent attempts have been

made to address this issue [4, 5, 10, 6]. A sampling based approach

was used to generate text data from an RNNLM to train a back-off

n-gram LM as an approximation [4, 6]. A discrete quantization of

RNNLMs into a weighted finite state transducer (WFST) [18] repre-

sentation was proposed in [10]. Unfortunately neither of these two

schemes were able to produce error rates that are comparable with

the conventional N-best rescoring approach.

This paper aims to derive alternative decoding methods for

RNNLMs that are more closely related to their modelling char-

acteristics. First, the recursion through the full history produces

a gradually diminishing effect of the information represented by

the most distant contexts on the RNNLM probabilities. This al-

lows complete histories that are partially overlapped or similar in

the more recent contexts to share a similar distribution. It is thus

possible to approximate RNNLMs based on truncated histories of

sufficient length, similar to feedforward NNLMs. Second, in a

more general case, RNNLMs internally cluster different histories

encoded by the most recent word and hidden vector representing the

remaining context via the similarity measure between them. Hence,

it is also possible to explicitly use a history context vector distance

measure to determine the sharing of RNNLM probabilities.

Motivated by the above hypotheses, two novel RNNLM lattice

rescoring methods are investigated in this paper. The first uses an n-
gram style approximation of history contexts. The second approach

explicitly exploits the distance measure between hidden history vec-

tors. The rest of the paper is organized as follows. Recurrent neural

network LMs are reviewed in section 2. Two history contexts cluster-

ing schemes for RNNLMs are proposed in section 3. A generalized

lattice rescoring algorithm for RNNLMs is presented in section 4.

In section 5 the proposed RNNLM lattice rescoring techniques are

evaluated on a state-of-the-art conversational telephone speech tran-

scription task. Section 6 is the conclusion and future work.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [14] represent

the full, non-truncated history hi−1
1 =<wi−1, . . ., w1> for word

wi using the 1-of-k encoding of the most recent preceding word

wi−1 and a continuous vector si−2 for the remaining context. For

an empty history, this is initialized, for example, to a vector of all

ones. The topology of the recurrent neural network used to compute

LM probabilities PRNN(wi|wi−1, si−2) consists of three layers, as

is shown in figure 1. The full history vector, obtained by concatenat-

ing the those of wi−1 and si−2, is fed into the input layer. The

hidden layer compresses the information of these two inputs and

computes a new representation si−1 using a sigmoid activation to

achieve non-linearity. This is then passed to the output layer to pro-

duce normalized RNNLM probabilities using a softmax activation,

as well as recursively fed back into the input layer as the “future”

remaining history to compute the LM probability for the following

word PRNN(wi+1|wi, si−1).

Input layer

...

Class node for

 OOS word

Output layer

...
... ...

...

Hidden layer

OOV input node

sigmoid

softmax

softmax

wi−1

si−2

si−1

si−1

P (wi|ci, si−1)

×

P (ci|si−1)

PRNN(wi|wi−1, si−2)

Fig. 1. An RNNLM with an OOS output node.

To reduce computational cost, a shortlist based output layer vo-

cabulary limited to the most frequent words can be used. This was

previously used for feedforward NNLMs [24, 7]. A similar approach

may also be used at the input layer when a large vocabulary is used.

In order to reduce the bias to in-shortlist words during NNLM train-

ing, two alternative network architectures that model a full vocab-

ulary at the output layer can be considered. The first uses a class

based factorized output layer structure [17]. Each word in the output

layer vocabulary is attributed to a unique class based on frequency

counts. The LM probability assigned to a word is factorized into two

individual terms, for example, for the RNNLM shown in figure 1, as

PRNN(wi|wi−1, si−2) = P (wi|ci, si−1)P (ci|si−1). (1)

As the number of classes are normally significantly smaller than

the output layer vocabulary size, training time speed-ups can be

achieved for both feedforward NNLMs [17] and RNNLMs [15].

The second explicitly models the probability mass of out-of-shortlist

(OOS) words using an additional output node [22, 11]. This ensures

that all training data are used in training, and the probabilities of in-

shortlist words are smoothed by the OOS probability mass to obtain

a more robust parameter estimation. Drawing from both, this pa-

per considers an RNNLM architecture that uses a factorized output

layer for in-shortlist words and a separate output node to represent

the probability mass of OOS words, as is shown in figure 1. This

form of RNNLMs is used in the rest of this paper.

RNNLMs can be trained using an extended form of the standard

back propagation algorithm, back propagation through time [23],

where the error is propagated through recurrent connections back

in time for a specific number of time steps. This allows the recurrent

network to record information for several time steps in the hidden

layer. A modified version of the RNNLM toolkit [16] supporting the

above modified architecture with an output layer OOS node is used.

In state-of-the-art speech recognition systems, NNLMs are often

linearly interpolated with n-gram LMs to obtain both a good cover-

age of contexts and strong generalisation ability [24, 7, 22, 14, 27,

11]. The interpolated LM probability is given by

P (wi|h
i−1
1) = λPNG(wi|h

i−1
1) + (1− λ)PRNN(wi|h

i−1
1) (2)

λ is the weight assigned to the back-off n-gram LM distribution

PNG(·), and kept fixed as 0.5 in all experiments of this paper. In the

above interpolation, the probability mass of OOS words assigned by

the RNNLM component needs to be re-distributed among all OOS

words [22, 11].

3. HISTORY CONTEXT CLUSTERING FOR RNNLMS

Efficient use of language models in speech recognizers [21, 20, 18]

requires that the context dependent states representing different his-

tories during search can be appropriately shared among multiple

paths. This applies to both conventional back-off n-gram and feed-

forward NNLMs. For these models, the underlying LM context state

used to predict the current word is represented by a truncated, fixed

length history of a maximum N − 1 preceding words,

ΨNG(h
i−1
1) = h

i−1
i−N+1 = <wi−1, . . ., wi−N+1> . (3)

The resulting n-gram LM distribution shared among multiple paths

is thus PNG(·|ΨNG(h
i−1
1)) ≡ P(·|wi−1, . . ., wi−N+1).

In contrast, the context state of an RNNLM to predict a given

word is represented by an ordered pair that encodes the full, com-

plete history hi−1
1 =<wi−1, . . ., w1>.

ΨRNN(h
i−1
1) = h

i−1
1 ≡ <wi−1, si−2> (4)

For this reason, the number of distinct RNNLM context states can

grow exponentially as the search space is widened. Hence, it is

generally non-trivial to apply RNNLMs in the early stage of speech

recognition systems, or to directly rescore word lattices previously

generated using these systems. Instead, previous research has been

focused on using N-best list rescoring for RNNLM performance

evaluation [14, 15, 27, 28, 25].

A general solution to the above problem is to derive appropriate

history clustering methods for RNNLMs to allow a compact sharing

of context states. Once a suitable form of equivalence between

different complete histories is established, a discrete, finite state rep-

resentation of RNNLMs becomes possible. Inspired by the entropy

based pruning of back-off n-gram LMs [26], an optimal clustering

method that merges two full histories, hi−1
1 =<wi−1, . . ., w1>

and h̃
j−1
1 =<w̃j−1, . . ., w̃1> together, is expected to minimize

the KL divergence between the associated RNNLM distributions

PRNN(·|h
i−1
1) and PRNN(·|h̃

j−1
1).

As discussed in section 1, both the decaying effect from the

most distant history contexts and the similarity between hidden his-

tory vectors are exploited by RNNLMs during model estimation to

achieve good generalization. These underlying modelling character-

istics allow statistics to be distributed among different sequences that

are “similar” or “related” by either their surface form or hidden vec-

tor representations. Both useful features can be also be exploited to

derive suitable history clustering schemes for RNNLMs in decoding.

3.1. n-gram Based History Clustering

This intuitive clustering method is motivated by the fact that the re-

cursion through the full preceding history can gradually diminishes

the effect of the information represented by the most distant end of

the contexts on the RNNLM probabilities. It is thus possible to clus-

ter histories based on the common, most recent truncated contexts of

N − 1 words maximum. The approximated RNNLM state for the

complete history hi−1
1 is given by

Ψ̃RNN(h
i−1
1) =





ΨRNN(h̃
j−1
1) if ∃ h̃

j−1
1 and

hi−1
1 ∩ h̃

j−1
1 = ΨNG(h

i−1
1)

ΨRNN(h
i−1
1) otherwise

(5)

where the shared n-gram style truncated history based LM state

ΨNG(h
i−1
1) was previously defined in equation (3), and is equiv-

alent to the intersection between hi−1
1 and h̃

j−1
1 . As the truncation

history length increases, the approximated RNNLM probabilities are

expected to be increasingly closer to the true ones.

The above history clustering algorithm in practice operates as

a LM state cache that stores the RNNLM probabilities associated

with distinct truncated n-gram histories derived from ΨNG(·). By

default, if a particular truncated history based stateΨNG(h
i−1
1) is not

found in the cache, the full history hi−1
1 that subsumes the truncated

context is used to create a new entry in the cache. As this algorithm

uses the surface form information, it can be easily adapted and used

by both beam search decoders [21, 20] where RNNLM probabilities

can be computed on-the-fly by request and accessed via the cache,

and WFST [18] style lattice rescoring where a previously generated

network can be used to extract and explicitly build all possible shared

RNNLM states into a WFST.

3.2. History Vector Based Clustering

For both feedforward and recurrent NNLMs, their strong generaliza-

tion power is rooted from a continuous vector representation of his-

tory contexts in these models. When clustering histories, it is thus

possible to directly exploit the similarity in their vector representa-

tion. The clustering method proposed here for RNNLMs aims to

find the equivalence between two complete histories hi−1
1 and h̃

j−1
1

by comparing the identity of the most recent word wi−1 and w̃j−1,

and the distance measure D(si−2, s̃j−2) between their respective

hidden history vectors si−2 and s̃j−2. A related beam pruning ap-

proach was previously used for variable length category based n-
gram LMs [19]. The approximated RNNLM state for the complete

history hi−1
1 is

Ψ̃RNN(h
i−1
1) =





ΨRNN(h̃
j−1
1) if ∃ h̃

j−1
1 , wi−1 = w̃j−1

and D(si−2, s̃j−2) ≤ γ

ΨRNN(h
i−1
1) otherwise

(6)

where γ is a distance measure beam and can be tuned. When shar-

ing the common most recent word, full histories that have a min-

imum vector difference below the beam are considered equivalent.

The trade-off between modelling precision and the compactness of

RNNLM state representation can be flexibly adjusted by the tun-

ing of γ. In common with the n-gram history based scheme, this

clustering method can also be implemented as a cache, and can be

integrated into beam search based decoders [21, 20]. However, due

to the introduction of the distance beam γ, it is not trivial to be used

in generic WFST [18] based decoding approaches.

A range of distance measures may be considered for the dis-

tance measure D(si−2, s̃j−2). As discussed above, the selection

of the appropriate metric to use in general can be determined based

on the correlation between the underlying candidate metric and the

KL divergence between the two RNNLM distributions to be merged.

As the use of sigmoid activation at the hidden layer provides a well

bounded dynamic range for the hidden history vector representation,

the distance measure used is based on the Euclidean distance be-

tween si−2 and s̃j−2. This is given by

D(si−2, s̃j−2) =

∑
k

√
(si−2,k − s̃j−2,k)2

d
(7)

where d is the dimensionality of the hidden history vectors.

4. LATTICE RESCORING USING RNNLMS

All the lattice rescoring experiments in this paper used an on-the-fly

lattice expansion algorithm [13] suitable for a wide range of lan-

guage models including back-off n-grams, feedforward NNLMs, re-

current NNLMs and their interpolated form [12]. A central part of

the algorithm requires the LM state representation for the underly-

ing model being used. For example, for back-off n-gram and feed-

forward NNLMs, this was given in equation (3). For approximated

RNNLMs, this was based on equation (5) or (6) depending on the

history clustering technique being used. The interpolated LM’s state

representation is derived from a union of those of component LMs.

The corresponding pseudo-code algorithm for is given below.

1: for every node ni in the network do

2: initialize its expanded node list N ′

i = {};
3: initialize its expanded outbound arc list A′

i = {};
4: end for

5: add n0 to its expanded node list, N ′

0 = {n0};
6: add all n0’s outbound arcs to its expanded arc list, A′

0 = A0;

7: Start depth first network traversal from the initial node n0;

8: for every node ni being visited do

9: for every expanded node n′

j ∈ N ′

i of node ni do

10: for every outbound arc ak from ni do

11: find the destination node nk of arc ak;

12: find the LM state Ψ(h
n′

j
n0

) of expanded node n′

j ;

13: compute LM probability P (nk|Ψ(h
n′

j
n0

));
14: find a new LM stateΨ(h

nk
n0

) for node nk;

15: if ∃ node n′

l ∈ N ′

k representing stateΨ(h
nk
n0

) then

16: return the found node n′

l;

17: else

18: add a new node n′

l to N
′

k to represent stateΨ(h
nk
n0

);
19: end if

20: create a new arc a′

l from n′

j to n
′

l;

21: assign score lnP (nk|Ψ(h
n′

j
n0

)) to a′

l;

22: add arc a′

l to the expanded outbound arc list A′

i.

23: end for

24: end for

25: end for

26: Rebuild new network using {N ′

i} and {A′

i}.

The above on-the-fly lattice expansion algorithm was imple-

mented as an extension to the CU-HTK lattice processing tools.

5. EXPERIMENTS AND RESULTS

In this section performance of RNNLM lattice rescoring methods are

evaluated on the CU-HTK LVCSR system for conversational tele-

phone speech (CTS) used in the 2004 DARPA EARS evaluation.

The acoustic models were trained on approximately 2000 hours of

Fisher conversational speech released by the LDC. A 59k recogni-

tion word list was used in decoding. The system uses a multi-pass

recognition framework. A detailed description of the baseline sys-

tem can be found in [9]. The 3 hour dev04 data, which includes 72

Fisher conversations and contains on average 10.8 words per seg-

ment, was used as a test set.

The baseline 4-gram back-off LM “w4g” was trained using a to-

tal of 545 million words from 2 text sources: the LDC Fisher acous-

tic transcriptions, Fisher, of 20 million words (weight 0.75), and

the University Washington conversational web data [3], UWWeb,

of 525 million words (weight 0.25). The 20M words of Fisher data,

which contains on average 12.7 words per sentence, was used to train

a feedforward 4-gram NNLM “nnw4g” using the OOS architecture

proposed in [22], and an RNNLM “rnn” using the modified architec-

ture described in section 2 with 500 output layer classes. The same

38k word input layer vocabulary and 20k word output layer short-

list were used for both feedforward and recurrent NNLMs both with

500 hidden layer nodes. A total of 1 billion words of text data was

generated from this RNNLM “rnn” using the sampling technique de-

scribed in [4] to train a 4-gram back-off LM “rnn.sample.4g” as an

approximation to the original RNNLM. These three LMs were then

interpolated with the baseline 4-gram LM “w4g”.

dev04 LatDensity

LM 1-best CN (Arcs/Sec)

1. w4g 16.7 16.1 421

2. w4g+nnw4g 16.3 15.8 555

3. w4g+rnn.50best 15.4 15.4 188(97)

4. w4g+rnn.100best 15.3 15.3 365(175)

5. w4g+rnn.1000best 15.3 15.1 3416(1298)

6. w4g+rnn.10000best 15.3 15.0 32277(10212)

7. w4g+rnn.sample.4g 16.2 15.9 462

8. w4g+rnn.approx3g 15.8 15.4 428

9. w4g+rnn.approx4g 15.7 15.2 555

10. w4g+rnn.approx5g 15.6 15.1 1266

11. w4g+rnn.approx6g 15.4 15.0 3025

12. w4g+rnn.approx7g 15.4 15.0 7140

13. w4g+rnn.hvd0.00450 15.8 15.4 465

14. w4g+rnn.hvd0.00300 15.6 15.2 539

15. w4g+rnn.hvd0.00200 15.6 15.1 699

16. w4g+rnn.hvd0.00100 15.6 15.1 1345

17. w4g+rnn.hvd0.00075 15.5 15.1 1842

18. w4g+rnn.hvd0.00050 15.4 15.0 2818

19. w4g+rnn.hvd0.00025 15.4 15.0 4725

20. w4g+rnn.hvd0.00001 15.4 15.0 6836

Table 1. 1-best, CN performance and HTK lattice density mea-

sured in arcs per second obtained using LMs on dev04. “w4g”

is a 4-gram back-off LM and “w4g+nnw4g” an interpolated LM

combining “w4g” with a 4-gram feedforward NNLM. “w4g+rnn”
interpolates “w4g” with an RNNLM “rnn”. “w4g+rnn.∗best”
used N-best rescoring. “w4g+rnn.sample.4g” combines “w4g”

with a 4-gram back-off LM trained on texts sampled from “rnn”.
“w4g+rnn.approx∗g” and “w4g+rnn.hvd∗” used n-gram and hid-

den vector distance based RNNLM history clustering respectively.

The 1-best and CN word error rates (WER) of various baseline

LMs are shown from the 1st to the 7th line in table 1. These in-

clude the back-off 4-gram LM “w4g”, the feedforward NNLM sys-

tem “w4g+nnw4g”, the RNNLM system “w4g+rnn.∗best” evaluated
by re-ranking N-best lists of various depth from top 50 up to 10k en-

tries, and the RNNLM sampled data trained 4-gram LM baseline

“w4g+rnn.sample.4g”. The RNNLM re-ranking N-best lists were

then converted to prefix tree structured lattices [25] and used for CN

decoding. The HTK formatted lattice density (Arcs/Sec) measure

for all the above baseline systems are also shown in the last col-

umn of table 1. For the RNNLM N-best rescoring baseline systems,

the lattice density measure before and after prefix tree structuring of

N-bests lists are both given. As expected, prefix tree structuring of

N-bests lists significantly reduced the size of the converted lattices

(shown in brackets in the same column). As discussed in section 1,

CN decoding favors a more efficient lattice representation that en-

codes rich alternative hypotheses. To achieve the same improve-

ments from CN decoding, RNNLM rescored N-best list need to be

as deep as 10k. This 10k-best RNNLM rescoring baseline gave the

lowest 1-best and CN WER of 15.3% and 15.0% respectively, with

a density of 10.2k arcs/sec measured on the lattices converted from

the prefix tree structured N-bests lists.

The performance of using the n-gram approximation based

RNNLM lattice rescoring methods presented in section 3 are shown

in the 5th section of table 1 from line 8 to 12. When the truncated

history is increased to 5 words, the resulting 6-gram approximated

RNNLM system produced 1-best and CN error rates of 15.4% and

15.0%, both comparable with the standard RNNLM 10k-best rescor-

ing baseline, and a significant 70% reduction in lattice size from 10k

to 3k arcs/sec. Further increasing the truncated history length to

6 words via a 7-gram approximation gave no further improvement

while only increased the size of the resulting lattices. This confirms

the hypothesis raised in sections 1 and 3 over the decaying effect

from remote history contexts on RNNLM probabilities.

The performance of using the hidden history vector distance

based RNNLM lattice rescoring method proposed in section 3 are

shown in the bottom section of table 1. By adjusting the hid-

den vector distance beam γ in equation (6), a range of approxi-

mated RNNLM comparable in error rates with the truncated history

based approach but more compact lattices were produced. For

example, setting γ = 0.002 produced equivalent 1-best and CN

error rates of 15.6% and 15.1% as the 5-gram history approxi-

mated “w4g+rnn.approx5g” system, and a 45% reduction in lattice

size from 1266 down to 699 arcs/sec. The best performance was

obtained by setting γ = 0.00050 (3rd line from bottom in ta-

ble 1), which gave 1-best and CN error rates of 15.4% and 15.0%,

with a 72.4% and 7% reduction in lattice size over the 10k-best

rescoring baseline, and the best n-gram history clustering rescor-

ing system “w4g+rnn.approx6g” respectively. In practice, this

“w4g+rnn.hvd0.00050” system can be used to rescore more heavily

pruned lattices at 0.9 time real time (RT) while producing compara-

ble 1-best and CN error rates of 15.4% and 15.1%. In contrast, the

1k-best and 10k-best rescoring systems used 1.8 and 17 times RT.

6. CONCLUSION AND RELATION TO PRIOR WORK

Two efficient lattice rescoring methods for RNNLMs were investi-

gated in this paper. Both methods produced 1-best and CN decoding

performance comparable with a 10k-best rescoring RNNLM base-

line as well as over 70% compression in lattice size. In contrast, pre-

viously research on approximation of NNLMs in decoding [4, 10]

were not able to either produce comparable error rate as the N-best

rescoring, or produce lattices that are suitable for CN decoding [28].

Future research will focus on improving history clustering methods

and efficiency in lattice rescoring using NNLMs.

7. REFERENCES

[1] E. Arisoy, S. F. Chen, B. Ramabhadran, and A. Sethy (2013),

“Converting neural network language models into back-off

language models for efficient decoding in automatic speech

recognition,” in Proc. ICASSP, Vancouver, Canada, 2013, pp.

8242–8246.

[2] Y. Bengio and R. Ducharme (2003), “A neural probabilistic

language model,” Journal of Machine Learning Research,

vol. 3, pp. 1137–1155, 2003.

[3] I. Bulyko, M. Ostendorf, and A. Stolcke (2003), “Get-

ting more mileage from web text sources for conversational

speech language modeling using class-dependent mixtures,”

in Proc. HLT, Edmonton, Canada, 2003.

[4] A. Deoras, T. Mikolov, S. Kombrink, M. Karafiat, and S. Khu-

danpur (2011), “Variational approximation of long-span lan-

guage models for LVCSR,” in Proc. ICASSP, Prague, Czech

Republic, 2011, pp. 5532–5535.

[5] A. Deoras, T. Mikolov and K. Church (2011), “A fast

re-scoring strategy to capture long-distance dependencies”,

Proc. EMNLP, Edinburgh, UK, 2011, pp. 1116–1127.

[6] A. Deoras, T. Mikolov, S. Kombrink, and K. Church (2013),

“Approximate inference: A sampling based modeling tech-

nique to capture complex dependencies in a language model,”

Speech Communication, vol. 55, no. 1, pp. 162–177, January

2013.

[7] A. Emami and L. Mangu (2007), “Empirical study of neural

network language models for Arabic speech recognition,” in

Proc. ASRU, Kyoto, Japan, 2007, pp. 147–152.

[8] G. Evermann and P. C. Woodland (2000), “Posterior proba-

bility decoding, confidence estimation and system combina-

tion,” in Proc. Speech Transcription Workshop, College Park,

MD, 2000.

[9] G. Evermann, H. Y. Chan, M. J. F. Gales, B. Jia, D. Mrva,

P. C. Woodland, and K. Yu (2005), “Training LVCSR systems

on thousands of hours of data,” in Proc. ICASSP, Philadel-

phia, PA, 2005, vol. 1, pp. 209–212.

[10] G. Lecorvé and P. Motlicek (2012), “Conversion of recur-

rent neural network language models to weighted finite state

transducers for automatic speech recognition,” in Proc. ISCA

Interspeech, Portland, OR, 2012.

[11] H.-S. Le, I. Oparin, A. Allauzen, J. Gauvain, and F. Yvon

(2013), “Structured output layer neural network language

models for speech recognition,” IEEE Transactions on Audio,

Speech and Language Processing, vol. 21, no. 1, pp. 197–206,

2013.

[12] X. Liu, M. J. F. Gales, J. L. Hieronymus, and P. C. Woodland

(2010), “Language model combination and adaptation using

weighted finite state transducers,” in Proc. ICASSP, Dallas,

TX, 2010, pp. 5390–5393.

[13] X. Liu, M. J. F. Gales, and P. C. Woodland (2013), “Use

of contexts in language model interpolation and adaptation,”

Computer Speech & Language, vol. 27, no. 1, pp. 301–321,

January 2013.

[14] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khu-

danpur (2010), “Recurrent neural network based language

model,” in Proc. ISCA Interspeech, Makuhari, Japan, 2010,

pp. 1045–1048.

[15] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and

S. Khudanpur (2011), “Extensions of recurrent neural net-

work language model,” in Proc. ICASSP, Prague, Czech Re-

public, 2011, pp. 5528–5531.

[16] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky and

S. Khudanpur (2011), “RNNLM - Recurrent neural net-

work language modeling toolkit”, in demo session of IEEE

ASRU2011, Hawaii.

[17] F. Morin and Y. Bengio (2005), “Hierarchical probabilistic

neural network language model,” in Proc. International work-

shop on artificial intelligence and statistics, Barbados, 2005,

pp. 246–252.

[18] M. Mohri (1997), “Finite-state transducers in language and

speech processing,” Computational linguistics, vol. 23, no. 2,

pp. 269–311, 1997.

[19] T. R. Niesler and P. C. Woodland (1996), “A variable-length

category-based n-gram language model,” in Proc. ICASSP,

Atlanta, GA, 1996, vol. 1, pp. 164–167.

[20] H. Ney and S. Ortmanns (1999), “Dynamic programming

search for continuous speech recognition,” IEEE Signal Pro-

cessing Magazine, vol. 16, no. 5, pp. 64–83, 1999.

[21] J. J. Odell, V. Valtchev, P. C. Woodland, and S. J. Young

(1994), “A one pass decoder design for large vocabulary

recognition,” in Proc. HLT, Stroudsburg, PA, 1994, pp. 405–

410.

[22] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland (2010),

“Improved neural network based language modelling and

adaptation,” in Proc. ISCA Interspeech, Makuhari, Japan,

2010, pp. 1041–1044.

[23] D. E. Rumelhart, G. E. Hintont, and R. J. Williams (1986),

“Learning representations by back-propagating errors,” Na-

ture, vol. 323, no. 6088, pp. 533–536, 1986.

[24] H. Schwenk (2007) , “Continuous space language models,”

Computer Speech & Language, vol. 21, no. 3, pp. 492–518,

2007.

[25] Y. Si, Q. Zhang, T. Li, J. Pan, and Y. Yan (2013), “Prefix

tree based n-best list re-scoring for recurrent neural network

language model used in speech recognition system,” in Proc.

ISCA Interspeech, Lyon, France, 2013, pp. 3419–3423.

[26] A. Stolcke (1998), “Entropy-based pruning of backoff lan-

guage models,” in Proc. DARPA Broadcast News Transcrip-

tion and Understanding Workshop, Landsdowne, VA, 1998,

pp. 270–274.

[27] M. Sundermeyer, R. Schlüter, and H. Ney (2012), “LSTM

neural networks for language modeling,” in Proc. ISCA In-

terspeech, Portland, OR, 2012.

[28] M. Sundermeyer, I. Oparin, J. L. Gauvain, B. Freiberg,

R. Schluter, and H. Ney (2013), “Comparison of feedfor-

ward and recurrent neural network language models,” in Proc.

ICASSP, Vancouver, Canada, 2013, pp. 8430–8434.

