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ABSTRACT 13 

Supraglacial meltwater lakes trigger ice-shelf break-up and modulate seasonal ice-14 

sheet flow, and are thus agents by which warming is transmitted to the Antarctic 15 

and Greenland ice sheets. To characterize supraglacial lake variability we perform a 16 

comparative analysis of lake geometry and depth in two distinct regions, one on the 17 

pre-collapse (2002) Larsen B Ice Shelf, and the other in the ablation zone of 18 

Paakitsoq, a land-terminating region of the Greenland Ice Sheet.  Compared to 19 

Paakitsoq, lakes on the Larsen B Ice Shelf cover a greater proportion of surface area 20 

(5.3% vs. 1%), but are shallower and more uniform in area. Other aspects of lake 21 

geometry, such as eccentricity, degree of convexity (solidity) and orientation, are 22 

relatively similar between the two regions. We attribute the notable difference in 23 

lake density and depth between ice-shelf and grounded ice to the fact that ice shelves 24 

have flatter surfaces and less distinct drainage basins. Ice shelves also possess more 25 

stimuli to small-scale, localized surface elevation variability due to the various 26 

structural features that yield small variations in thickness and which float at 27 

different levels by Archimedes’ principle. 28 



1. INTRODUCTION 29 

Supraglacial lake dynamics have become an increasingly important factor in ice sheet 30 

response to climate change because lakes have been implicated in ice shelf 31 

disintegration (e.g., Scambos and others, 2003) and influenced grounded ice sheet 32 

flow through their impact on subglacial hydrology. When lakes on ice sheets 33 

suddenly drain (e.g., Das and others, 2008; Doyle and others, 2013; Tedesco and 34 

others, 2013), the subglacial drainage system receives a pulse of water that, in turn, 35 

contributes to both temporary and longer-term changes in ice velocity (Bartholomew 36 

and others, 2011; Hoffman and others, 2011; Banwell and others, 2013; Joughin and 37 

others, 2013). Within the ablation zone of the Greenland Ice Sheet (GrIS), 38 

supraglacial lakes form in surface depressions controlled by the interplay between 39 

bedrock topography and ice flow (Echelmeyer and others, 1991; Sergienko, 2013; 40 

Darnell and others, 2013). This means that processes unrelated to climate change 41 

(i.e., bedrock characteristics and ice flow physics) determine the areal distribution, 42 

maximum depth and volume of the lakes.  43 

In contrast, lakes on floating ice shelves do not depend on ice/bedrock interaction to 44 

define their location, geometry and volume. Instead, lakes on ice shelves inhabit 45 

various surface depressions that arise from a variety of processes, e.g., basal 46 

crevassing (McGrath and others, 2012), grounding zone flow-stripe development 47 

(Glasser and Gudmundsson, 2012), and intermittent suture-zone voids (Glasser and 48 

others, 2009). Lakes on ice shelves are also products of the viscoelastic flexure of the 49 

ice, and can represent a surface load that can suddenly change when fractures 50 

develop through the ice shelf causing lake drainage through hydrofracture (Van der 51 

Veen, 1998; MacAyeal and Sergienko, 2013).  52 

Among the impacts of supraglacial lakes on both grounded and floating ice, none are 53 

so powerfully linked to ice sheet change as those leading to the sudden collapse of the 54 

Larsen B Ice Shelf (LBIS) in 2002 (e.g., Scambos and others, 2000; 2003; van den 55 

Broeke, 2005; Vaughan, 2008). During the decades leading up to the collapse, the 56 



number of lakes on the central portion of the ice shelf gradually grew from near zero 57 

to ~3000 (Scambos and others, 2000; Glasser and Scambos, 2008). However, just 58 

days prior to the disintegration, the majority of the ~3000 lakes drained, suggesting 59 

that the sudden, coordinated movement of surface water to the ocean below may 60 

have been a contributing proximal trigger to the collapse (Scambos and others, 61 

2003). The loss of the majority of the LBIS resulted in a reduction of buttressing 62 

forces that act to reduce ice flow across grounding lines shared with the ice shelf. 63 

Following the break-up event, a sustained speed-up of land-to-sea ice flow of glaciers 64 

that were previously buttressed by the ice shelf was observed (Scambos and others, 65 

2000; 2004; Sergienko and MacAyeal, 2005; van den Broeke, 2005; Glasser and 66 

Scambos, 2008; Glasser and others, 2011; Rott and others, 2011). Thus, as with the 67 

acceleration of GrIS flow, the inland ice of Antarctica can also accelerate in response 68 

to lake drainage, but by a different mechanism. 69 

However, while ground-based study of supraglacial lakes on the GrIS is increasing in 70 

abundance, relatively little ground-based research has been directed toward study of 71 

supraglacial lakes on Antarctic ice shelves. Antarctic lakes are harder to study 72 

because they are either more remote (relative to logistics centres) or have themselves 73 

disappeared as the ice shelves on which they resided no longer exist.  74 

In the present study, we endeavour to strengthen the link between the relatively 75 

plentiful research directed to lakes on the GrIS and the relatively unstudied lakes on 76 

the present and recently collapsed ice shelves of Antarctica. The first step in 77 

establishing this link is to determine parallels and contrasts between spatial patterns, 78 

shapes, surface areas, and depths of lakes on the land-terminating Paakitsoq region 79 

of the GrIS and on the former LBIS. Our study is conducted through the analysis of 80 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery acquired for both 81 

regions.    82 

In addition to improving our overall understanding of supraglacial lakes on ice 83 

shelves, this study will help to establish whether or not surface routing and lake 84 



filling models which are already in existence for the GrIS (e.g., Banwell and others, 85 

2012a; Leeson and others, 2012) are transferable to Antarctic ice shelves. Finally, our 86 

work will establish idealized properties of supraglacial lake geometries; an important 87 

first step in the development of numerical model studies of lakes on ice sheets and ice 88 

shelves. 89 

2 METHODS  90 

In this section we describe the analytical process that was undertaken for both the 91 

LBIS, and for a similar sized (~3000 km2 area) of grounded ice in the Paakitsoq 92 

region of the GrIS, north-east of Jakobshavn Isbrae (see Banwell and others (2012b), 93 

their Figure 1). Two Landsat-7 ETM+ images were analyzed as part of this study. 94 

For the LBIS, we chose the image dated 21 February 2000 (Scene ID: 95 

L71216106_10620000221) as this is the most cloud-free image available within two 96 

years of the break-up event. This image also forms the basis of a prior study of lake 97 

patterning and morphology on LBIS (Glasser and Scambos, 2008), and thus serves as 98 

a fiduciary representation of the state of LBIS two years prior to its collapse. For 99 

Paakitsoq, Greenland, we used the cloud-free image dated 7 July 2001 (Scene ID: 100 

L71009011_01120010707). We note that the two images are from periods of time 101 

during the melt season that do not coincide with either ‘time of maximum lake 102 

volume’ or ‘end of season’, or any other benchmark, but are rather snap-shots of 103 

time that represent the best available information. 104 

2.1. Lake boundaries and area 105 

Image pixels were classified into ‘lake covered’ or ‘bare ice/snow’ using Landsat 106 

image reflectance data following Box and Ski (2007). Each Landsat band was first 107 

converted from digital numbers to radiance and then from radiance to reflectance 108 

using the equations of Chander and others (2009). Then, to make this classification, 109 

the blue/red ratio of reflectance (involving Landsat bands 1 and 3; 450–515 nm and 110 

630-690 nm, respectively) was evaluated from the Landsat image. As this ratio 111 

increases toward the lake centres, where water is deepest, and decreases towards the 112 



edges, where water is most shallow, it was necessary to carefully identify the value of 113 

this ratio corresponding to bare ice at lake edges. Based on experimental results, and 114 

on known areas of lakes on the GrIS, Box and Ski (2007) suggest that the threshold 115 

value of blue/red ratio of reflectance should be in the range of 1.05-1.25 at the edges 116 

of lakes. Further to the study by Box and Ski (2007), we found that the algorithm 117 

needed to be adapted to avoid problems associated with floating lake ice on lake 118 

surfaces. Unless these areas were masked, negative lake depths were found due to the 119 

high reflectance of the ice compared to the open water.  120 

Once the pixels representing flooded areas had been established, the ‘bwboundaries’ 121 

function in MATLAB was used to identify lake boundaries. Subsequently, the 122 

‘regionprops’ function in MATLAB was used to identify the number of pixels (i.e., 123 

surface areas of lakes) within the closed edges as a means of determining lake area. 124 

2.2. Lake depth 125 

Supraglacial lake depths were estimated using a method developed by Sneed and 126 

Hamilton (2007), originally applied to Advanced Spaceborne Thermal Emission and 127 

Reflection Radiometer (ASTER) (VNIR1, 520–600 nm) imagery, but also applicable 128 

to Landsat 7 ETM+ imagery (Band 2; 525–605 nm) (Sneed and Hamilton, 2011). 129 

The approach for extracting water depth and lake-bottom albedo is based on the 130 

Beer-Lambert law (Ingle and Crouch, 1988), which describes the attenuation of 131 

radiation through a water column: 132 

,ݖ)ܫ (ߣ ൌ ,0)ܫ    133 (Eqn. 1)                                     ,(௭)(௄ಓ)– ݁(ߣ

where I(z,λ) is the water-leaving spectral intensity at some depth, I(0,λ) is the 134 

spectral intensity at zero depth, Kλ is the spectral attenuation, and z is depth. 135 

Written in terms of reflectance, and inverted to logarithmic form (Philpot, 1989), z is 136 

determined by 137 

z ൌ ሾln (ୢܣ െ ܴஶ) െ  ln(ܴ୵ െ  ܴஶ)ሿ/(1 െ ݃)    (Eqn. 2) 138 



where Ad is the bottom or substrate albedo (reflectance), R∞ is the reflectance for 139 

optically deep water, Rw is the reflectance of some pixel of interest, and g is given by 140 

݃ ൎ ൅ ୢܭ  ௨                                                (Eqn. 3) 141ܦܽ

where Kd is the diffuse attenuation coefficient for downwelling light,  ܽ is the beam 142 

absorption coefficient, and Du is an upwelling light distribution function or the 143 

reciprocal of the upwelling average cosine (Mobley, 1994).  144 

To determine Ad, the bottom or substrate albedo, we took the mean reflectance value 145 

of the ring of pixels around the lake that are barely covered with water (i.e. those 146 

adjacent to the water-covered pixels, as detected by the blue/red ratio of 147 

reflectance). Although Sneed and Hamilton (2007) used the same Ad for their entire 148 

region of interest, as our region is larger, we chose to calculate a unique Ad for each 149 

lake. For the LBIS, values for Ad ranged from 0.30 to 0.79 (with a mean value of 150 

0.68), and for Paakitsoq, values for Ad ranged from 0.17 to 0.76 (with a mean value 151 

of 0.66). 152 

To determine R∞, the reflectance from optically deep water where the influence of 153 

bottom reflectance is nil, we used the value of reflectance from water that is deeper 154 

than ~40 m in the image. It was necessary to take care when selecting pixels that 155 

were far from shorelines to insure that R� estimates were not biased by water that 156 

was too shallow, turbid water, or pixels containing floating ice.  157 

This approach assumes that the substrate (bottom) of the lake is homogeneous, the 158 

impact of suspended or dissolved organic or inorganic matter in the water column is 159 

negligible on absorption, there is no inelastic scattering (e.g., Raman scattering or 160 

fluorescence), and that the lake surface is not significantly rough due to wind (Sneed 161 

and Hamilton, 2007). Once the depth of each ‘flooded’ pixel had been calculated, the 162 

‘regionprops’ function in MATLAB was again used to determine the ‘MaxIntensity’ 163 

(i.e., the maximum lake depth), and the ‘MeanIntensity’ (i.e., the mean lake depth) 164 

for each of the identified lakes. 165 



2.3. Lake shape, orientation and eccentricity 166 

Once lake edges, and thus areas, had been delineated (following Box and Ski, 2007), 167 

and depths had been established (following Sneed and Hamilton, 2007), the 168 

MATLAB ‘regionprops’ function was used to obtain other lake properties. As 169 

illustrated in Figure 1, this function works by best-fitting ellipses to the identified 170 

lakes. Lake properties which this function is able to diagnose include: (i) eccentricity 171 

(i.e., the ratio from 0-1 of the distance between the foci of the ellipse and its long 172 

axis length; where 0 indicates that the ellipse is a circle, and 1 indicates a line 173 

segment); (ii) orientation (from 0° to 90° from the average ice flow direction on the 174 

ice shelf/sheet in either a clockwise or anti-clockwise direction); and iii) solidity 175 

(from 0-1; denoting the proportion of the pixels in the convex hull of the lake that 176 

are also bound within the lake itself, lakes with sinuous boundaries tend to have low 177 

solidity, circular lakes have a solidity of 1). 178 

2.4. Algorithm validation 179 

Using the same 21 February 2000 image, Glasser and Scambos (2008) produced a 180 

detailed structural glaciological analysis of overall changes in surface structures on 181 

the LBIS prior to its collapse in late February 2002. Although this study, which used 182 

manual digitization, identified general patterns of lake positions, areas and shapes of 183 

supraglacial lakes, it did not perform a quantitative analysis of these properties, and 184 

importantly did not analyze lake depth. Thus, in our study, we also statistically 185 

analyze the shape files of lakes used in the Glasser and Scambos (2008) study in 186 

order to compare, and thus validate, the results of our study using an automated 187 

algorithm. 188 

3. RESULTS 189 

3.1. Larsen B lake patterns and characteristics  190 

The most appropriate value for the blue/red band threshold for the LBIS to 191 

appropriately discriminate bare ice/snow from water is found to be 1.2, which results 192 



in the identification of 3227 lakes, as shown in Figure 2. This threshold value is 193 

chosen because it produces a pattern of lakes on the ice-shelf surface that is most 194 

similar to the pattern of lakes identified visually on the Landsat image, and 195 

documented by Glasser and Scambos (2008) (also see Section 3.2 below). If a slightly 196 

lower threshold value of 1.1 is chosen, only 272 separate flooded areas are identified 197 

as the majority of the entire surface of the LBIS is erroneously classified as lake-198 

covered. If a slightly higher threshold value of 1.3 is chosen, only 1419 lakes are 199 

identified, and the small lakes, in particular, are no longer identified.  200 

As also recognized by Glasser and Scambos (2008), we identify a variety of different 201 

‘domains’ on the ice-shelf surface, each displaying different lake characteristics. We 202 

have highlighted lakes within three areas of these domains in Figure 2. In area ‘a’ of 203 

Figure 2, we see fairly linearly shaped lakes, with their long axis diverging from the 204 

mean ice flow direction from west to east. This is indicative of ice flow divergence 205 

where fast-flowing glaciers enter the ice shelf from the west. Although lake depths 206 

generally vary from ~1 to ~4 m here, the deepest identified lake on the ice shelf also 207 

falls within this region; calculated to be 6.8 m at it’s deepest point. In area ‘b’ of 208 

Figure 2, longitudinal features, which are aligned roughly parallel with ice flow, 209 

dominate. These features are up to 30 km in length and 2 to 3 m in depth. Thus, 210 

compared to area ‘a’, ice flow in this region is likely to be convergent rather than 211 

divergent along the flow direction. In area ‘c’ of Figure 2, we see lakes that are fairly 212 

circular (i.e., their eccentricity is close to 1) and have a larger mean area compared 213 

to the majority of lakes on the ice shelf. We suggest that these characteristics are 214 

due to slower ice flow in this region (for additional information on structural features 215 

of the LBIS related to flow, as well as the area of the LBIS that disintegrated, refer 216 

to Glasser and Scambos, 2008). Through an increased lifespan, lakes would be able to 217 

undergo more enlargement by bottom ablation than other lakes on the ice shelf. The 218 

majority of the lakes in this area are also covered with floating ice (seen as white 219 

areas in Figure 2c). Although the outer rings of open, lake-ice-free water of the lakes 220 

are calculated to be from ~0.5 to ~1.5 m in depth, we cannot calculate the depth of 221 

the central, likely deepest, regions because of the ice cover.  222 



Over the entire ice shelf, we calculate the mean lake area to be 0.10 km2 (standard 223 

deviation = 0.29 km2), and the total surface area covered by lakes to be 315 km2. 224 

This is 5.3% of the total area of ice shelf analyzed, with a mean lake density of 0.55 225 

km-2. Of the 3,200 km2 of ice shelf area which disintegrated in a 35-day period 226 

beginning on 31 January 2002 (Scambos and others, 2004), we calculate that lakes 227 

covered ~10% of this.  As we will discuss below, this larger percentage of lake cover 228 

constitutes one of the most important differences between lakes on the LBIS and 229 

lakes on the GrIS. 230 

The mean lake depth on the LBIS is calculated to be 0.82 m (standard deviation = 231 

0.56 m), and the mean maximum lake depth is 1.6 m (standard deviation = 0.99 m) 232 

(Figure 3). The mean eccentricity is 0.84 (standard deviation = 0.13 m), the mean 233 

solidity is 0.80 (standard deviation = 0.14), and the average mean orientation of the 234 

long axis of ellipses (best-fitted to the lakes) is 46° away from the flow direction 235 

(standard deviation = 28°). The latter assumes that the average flow direction is 236 

from west to east (Vieli and others, 2006, their Figure 5). 237 

Using the mean lake depth (0.82 m), the total number of lakes on the LBIS (3227), 238 

the average lake area (0.1 km2), and the assumption that the ice shelf has a uniform 239 

thickness of 200 m (Sandhäger and others, 2005), we calculate that there are 5.2 x 240 

108 MJ of potential energy stored on the surface as free water (equivalent to 8.7 x 104 241 

MJ per km2).  This calculation is useful as it gives an indication of the amount of 242 

energy available for the drainage of lakes by hydrofracture; the process that was 243 

likely the main driver behind the disintegration of the ice shelf (Scambos and others, 244 

2003; 2009). 245 

3.2. Comparison to results of the Glasser and Scambos (2008) study 246 

Glasser and Scambos (2008) identified 2696 supraglacial lakes (their ‘meltwater 247 

ponds’); 16% fewer than the number of lakes identified in our study. Glasser and 248 

Scambos (2008) also calculated that individual lakes had a slightly higher mean area 249 

of 0.13 km2, and in total, they calculated that lakes on the LBIS covered a slightly 250 



higher surface area of 365 km2. However, although we calculate that lakes are on 251 

average ~30% smaller than the lakes identified by Glasser and Scambos (2008), as we 252 

identify ~16% more lakes on the LBIS than Glasser and Scambos (2008), we 253 

calculate that the total surface area of lake coverage is only ~12% less than that 254 

calculated by Glasser and Scambos (2008).  255 

3.3. Comparison with a land-terminating region of the GrIS 256 

Compared to the threshold value for the blue/red ratio for the LBIS, a slightly 257 

higher threshold value of 1.4 is required for the Paakitsoq region of the GrIS. Using 258 

this threshold value, we identified 239 lakes, as shown in Figure 4 (note the different 259 

scale to Figure 1). Threshold values <1.4 for Paakitsoq result in large, dispersed 260 

areas of the ablation zone to be erroneously classified as lakes. Threshold values >1.4 261 

for Paakitsoq meant that the wispy, linear water features, observed to link lakes in 262 

the areas of higher elevation within the region studied (see Figure 4, area ‘b’), were 263 

no longer identified as flooded areas.  264 

Figure 3 compares the values of key lake properties between the LBIS and the 265 

Paakitsoq region. Compared to lakes on the LBIS, lakes in the Paakitsoq region have 266 

a larger mean area of 0.15 km2 (standard deviation = 0.24 km2). However, we 267 

calculate that lakes only cover ~1% of the ice surface compared to 5.3% for the 268 

LBIS. The mean lake density in the Paakitsoq region is thus only 0.07 km-2. This 269 

constitutes one of the major differences between lakes on grounded ice and floating 270 

ice we have identified in the comparison. 271 

Lakes in the Paakitsoq region are also generally deeper than lakes on the LBIS with 272 

a mean depth of 1.3 m (standard deviation = 0.97 m) and a mean maximum depth 273 

of 2.5 m (standard deviation = 1.9 m) (Figures 3 and 4). The deepest identified lake 274 

in the region, calculated to have a maximum depth of 9.0 m, is shown in area ‘a’ 275 

within Figure 4. Overall, lake depths across the Paakitsoq region show more 276 

variation than the lakes on the LBIS (Figure 3). With regard to the lake 277 

orientations, LBIS lakes are on average orientated 51° away from the dominant ice 278 



flow direction, whereas the average orientation of Paakitsoq lakes from the dominant 279 

flow direction (east to west) is 37° (standard deviation = 24°). The calculated 280 

solidity for the Paakitsoq lakes is 0.83 (standard deviation = 0.15), which is 4% 281 

higher than the value for the LBIS lakes (i.e., Paakitsoq lakes are more convex than 282 

LBIS lakes).  283 

4. DISCUSSION  284 

When average values for lake properties identified in our study are compared to 285 

those of lakes identified by Glasser and Scambos (2008), it is encouraging that the 286 

total number of lakes and the average area of those lakes are of the same order of 287 

magnitude for both studies. There are, however, some minor discrepancies. For 288 

example, we identify 16% more lakes than Glasser and Scambos (2008), and those 289 

lakes are on average 30% smaller. Thus, it is likely that Glasser and Scambos’ (2008) 290 

analysis may have grouped together into one large lake what our automated 291 

algorithm identified as a collection of nearby smaller lakes.   292 

The automated algorithm used in our study extends the Glasser and Scambos (2008) 293 

study by also calculating lake depths. Glasser and Scambos (2008) state that 294 

although supraglacial lakes are generally aligned along the local topographic slope 295 

(which is roughly aligned perpendicular to the general ice flow direction), some 296 

surface water features are longitudinal in form and are aligned parallel to the 297 

downslope direction. Although they suggested that these features could be 298 

interpreted as meltwater streams, as have been observed on the Amery Ice shelf 299 

(Phillips, 1998), such a deduction does not agree with all other observations. For 300 

example, as we calculate these features to be ~2 m or more deep (Figure 2, area ‘b’, 301 

displayed in a light green colour), we suggest that they are unlikely to all be 302 

meltwater streams as many do not reach the eastern edge of the ice shelf and thus 303 

there is not an obvious outflow point for a large quantity of water to leave the ice 304 

shelf (unless outflow is accommodated by a moulin). Additionally, as the ice shelf 305 

surface slope is minimal (i.e., the ice thickness change from grounding line to ice 306 



front is roughly 50 m (Sandhäger and others, 2005, their Figure 2), implying a 5 m 307 

change in ~50 km, or a slope of 10-4), it seems unlikely that there could be a 308 

substantial volume of flowing water across the ice shelf surface.  Thus, although 309 

some meltwater has been observed to leave the LBIS as waterfalls (T. Scambos, pers. 310 

comm.), this runoff into the ocean is likely to be only a small fraction of the summer 311 

surface melt volume. 312 

The standard deviations of mean lake depth, maximum lake depth, and lake area are 313 

generally higher in the Paakitsoq region, indicating that Paakitsoq lakes have more 314 

variable depths and areas than LBIS lakes. The reason for this is likely to be 315 

primarily related to the substantial elevation gradient in the Paakitsoq region; from 316 

about 400 m at the ice margin to 1500 m inland, compared to an almost negligible 317 

elevation gradient on the floating LBIS. Consequentially, on the GrIS, increased melt 318 

as summer progresses not only causes existing lakes to grow, but it also results in 319 

lake formation at higher elevations as the ablation zone expands (Liang and others, 320 

2012; Fitzpatrick and others, 2013). Conversely, the standard deviations of 321 

eccentricity, orientation, and solidity are found to be comparable between the two 322 

regions. This is because these lake properties are affected by elevation to a much 323 

lesser extent than lake depth and area.  324 

The mean depth of Paakitsoq lakes is calculated to be 0.48 m more than for lakes on 325 

the LBIS, and the mean maximum depth of Paakitsoq lakes is calculated to be 0.90 326 

m more than LBIS lakes (Figure 3). Additionally, Paakitsoq lakes are on average 327 

0.05 km2 larger than LBIS lakes. A less striking difference between lakes in the two 328 

regions concerns their average orientation. We calculate that Paakitsoq lakes are 329 

orientated at a lower angle (37°) to the average ice flow direction than LBIS lakes 330 

are (46°). These differences are thought to be due to a variety of different reasons, 331 

discussed below.  332 

We suggest that the differences in average lake depth and area are partially due to 333 

the higher surface melt rates on the GrIS. Owing to its sheer size and elevation, the 334 



Antarctic Ice Sheet creates its own climate with an important influence on the 335 

surrounding ocean (Rignot and Thomas, 2002; Bromwich and others, 2012). 336 

Furthermore, once a lake exists, it enlarges not only by receiving meltwater from the 337 

surrounding ice surface, but also due to a positive albedo feedback process whereby 338 

bottom-lake ablation is enhanced by up to 170% compared to bare ice, as modelled 339 

by Luthje and others (2006), and up to 135%, as observed by Tedesco and others 340 

(2012).   341 

The other reason for the differences in average lake depth, area, and orientation 342 

between the two locations relates to the two fundamentally different ways in which 343 

supraglacial lakes on land-terminating regions of the GrIS and on Antarctic ice 344 

shelves initially form and subsequently interact with one another. At Paakitsoq, 345 

supraglacial lakes form in surface depressions that are controlled by the underlying 346 

bedrock topography (Box and Ski, 2007; Lampkin and Vanderberg, 2011) and by 347 

spatial variations in the degree of basal ice lubrication and sliding velocity 348 

(Gudmundsson, 2003). This causes the majority of lakes on the GrIS to remain in 349 

fixed locations interannually (Thomsen and others, 1988; Echelmeyer and others, 350 

1991; Selmes and others, 2011), and thus the average orientation and volume of lakes 351 

in a specific region of the GrIS will depend on the average patterns of bed 352 

topography and basal friction in that region. Additionally, if lakes on the GrIS 353 

overflow, lakes in downstream catchments may receive extra water, and thus surface 354 

catchment areas of lakes on the GrIS may enlarge through the melt season (Banwell 355 

and others, 2012a). 356 

Conversely, undulations and depressions on ice shelves, which may fill to form lakes, 357 

are produced and influenced by an entirely different combination of processes. To 358 

date, only a few previous studies have focused on improving our understanding of 359 

lake formation processes on ice shelves. One such study is that by LaBarbera and 360 

MacAyeal (2011) who suggest that supraglacial lakes on ice shelves form in the 361 

depressions of a viscous-buckling wave associated with compressive ice shelf stresses. 362 

This idea is thought to be associated with a previously described ice shelf 363 



phenomenon known as ‘pressure rolls’ (Hattersley-Smith, 1957; Collins and McCrae, 364 

1985). As various studies have also concluded, when supraglacial lakes accumulate 365 

water, they begin to flex the ice shelf downward, causing further deepening and 366 

attraction of surrounding meltwater runoff patterns (Hattersley-Smith, 1957; 367 

MacAyeal and Sergienko, 2013). However, due to the minimal surface slope of ice 368 

shelves compared to the steep surface slope of the GrIS, only relatively small 369 

catchment areas are likely to develop on ice shelves.  370 

Further to these ideas, we speculate that surface undulations on ice shelves may form 371 

as ice crosses the sudden break in slope at the grounding line, as here it is likely to 372 

experience some degree of flexure, buckling, or fracturing. For example, ice-covered 373 

lakes and dolines were observed near the grounding line of the Lambert/Amery Ice 374 

Shelf by Hambrey and Dowdeswell (1994). It is also here (i.e. near the Antarctic 375 

Peninsula mountains) where surface melting is likely to be highest, owing to a fohn 376 

effect and/or runoff from darker, ice-free areas. As the ice subsequently converges 377 

away from the grounding line and out onto the ice shelf and towards the ice front, 378 

these undulations, which were likely parallel to the grounding line (if the ice flow 379 

direction was perpendicular to the grounding line), may undergo strain and thus 380 

rotation in response to the convergence of ice flow and the resultant stress field. We 381 

suggest that it is the combination of these processes that assist in producing lakes on 382 

the LBIS which are relatively shallow and uniform in depth, and have an average 383 

orientation of 46° to the general ice flow direction. 384 

5. CONCLUSIONS 385 

Compared to lakes at Paakitsoq, a land-terminating region of the GrIS, lakes on the 386 

floating LBIS show less variance in their mean depths and areas. It is therefore 387 

conceivable that the majority of lakes on the LBIS all reached a critical volume to 388 

drain by hydrofracture at a similar time, enabling the rapid break-up of the ice shelf 389 

in March 2002. Compared to lakes at Paakitsoq, lakes on the LBIS have a greater 390 

spatial density, and also cover a greater proportion of the total surface area of the ice 391 



on which the lakes are localized (~5.3 % vs. ~1.0 %). This greater density is likely 392 

due to the almost negligible large-scale elevation change across the surface of the ice 393 

shelf (~25 m) compared to a change on the order of ~1100 m at Paakitsoq. As a 394 

consequence of the low variability of the surface elevation of the LBIS, it seems 395 

feasible that supraglacial lakes are hydrologically isolated (i.e., where water does not 396 

overflow from basins of different elevation) and simply grow in place by enhanced 397 

surface ablation associated with the reduced albedo of standing water.  398 

Finally, if we consider the transferability of existing surface routing and lake filling 399 

models (e.g., Banwell and others, 2012a; Leeson and others, 2012), to Antarctic ice 400 

shelves, we conclude that ice shelves are likely to be too flat to enable the widespread 401 

movement of meltwater across the surface and the filling of surface depressions to be 402 

coherently modelled. This likely means that lakes on ice shelves can be modelled 403 

more simplistically as features that derive their water from local drainage basins that 404 

are relatively static in size and shape. Additionally, existing surface routing and lake 405 

filling models assume static ice topography. Although this is a suitable assumption 406 

for the GrIS where lake positions are relatively constant interannually, this is not a 407 

suitable assumption for Antarctic ice shelves where lakes move concurrently with ice 408 

flow and where lake water constitutes a surface load that introduces vertical flexure.  409 
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FIGURES 578 

Figure 1: Schematic of optimal fit of an ellipse to the outline of a previously 579 

identified lake. The ellipse and original lake are equal in area. The angle between the 580 

long axis of the ellipse and the flow direction (either clockwise or anti-clockwise) 581 

determines the ellipse orientation.  582 

Figure 2: Depth (in metres) of lakes on the Larsen B Ice Shelf using reflectance of 583 

the 21 February 2000 Landsat image. Although some lake depths are greater than 4 584 

m, for visualization purposes, 4 m is plotted as the maximum depth here. Three 585 

areas, ‘a’, ‘b’ and ‘c’, are highlighted to show varying lake characteristics and 586 

patterns across the ice shelf surface. Marginal areas, which can be grounded ice, bare 587 

land surface or ocean surface, are shaded grey.  588 



Figure 3: Plots showing: i) maximum depth; ii) mean depth; iii) mean area; iv) 589 

eccentricity; v) solidity; and vi) orientation from the mean flow direction, of lakes on 590 

both the LBIS (N=3227) and at Paakitsoq, W Greenland (N=239) in order to clearly 591 

capture the scale and differences of the two lake systems. On each box, the red mark 592 

is the median and the edges of the box are the 25th and 75th percentiles (q1 and q3, 593 

respectively). The length of the whiskers (dotted lines) are equal to q3 + 1.5(q3 – q1). 594 

Figure 4: Depth (in metres) of lakes in the Paakitsoq region, W Greenland (see 595 

Banwell and others, 2012b for location figure) using reflectance of the 7 July 2001 596 

Landsat image. Two areas, ‘a’ and ‘b’, are highlighted in order to show varying lake 597 

characteristics and patterns across the ice sheet surface. Marginal areas of bare land 598 

surface are shaded grey. 599 
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