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Abstract

We discuss various examples and rami�cations of the conjecture
that there exists a maximum force (or tension) in general relativistic
systems. We contrast this situation with that in Newtonian gravity,
where no maximum force exists, and relate it to the existence of nat-
ural units de�ned by constants of Nature and the fact that the Planck
units of force and power do not depend on Planck�s constant. We dis-
cuss how these results change in higher dimensions where the Planck
units of force are no longer non-quantum. We discuss the changes that
might occur to the conjecture if a positive cosmological constant exists
and derive a maximum force bound using the Kottler-Schwarzschild-
de Sitter black hole.

1



1 Introduction

Some time ago it was conjectured (Gibbons 2002) that in general relativ-
ity there should be a maximum value to any physically attainable force (or
tension) given by

Fmax =
c4

4G
; (1)

where c is the velocity of light and G is the Newtonian gravitational constant.
The sharp factor of 1=4 is supported by considering the maximum de�cit
angle of a cosmic string (Gibbons, 2002). This gives rise to the closely related
conjecture that there is a maximum power de�ned by

Pmax = cFmax =
c5

4G
; (2)

the so-called Dyson Luminosity (Dyson, 1963), or some multiple of it to ac-
count for geometrical factors O(1). This would be the maximum possible
luminosity in gravitational waves, or indeed other forms of radiation that an
isolated system may emit (Schiller 1997, 2006, Sperhake et al 2013, Cardoso
2013). Schiller (1997, 2006) has come to the same conclusion and proposed a
stronger thesis: that the existence of a maximum force implies general rela-
tivity, just as a maximum velocity characterises special relativity. This claim
is much less clear since it requires in e¤ect a proof of cosmic censorship. It is
also necessary to choose quite subtle energy conditions in order to avoid the
formation of sudden singularities (Barrow, 2004) where unbounded pressure
forces will occur. As we will see below, it would probably be speci�c to 3+1
dimensional spacetime.
These conjectures provoke a number of comments and a discussion of

some further rami�cations of bounded forces in gravitating systems.

1.1 Newtonian gravity

First, there is no corresponding principle of maximum force in Newtonian
gravity. Point particle masses can get arbitrarily close to one another and so
the forces between them are unbounded in principle. An important example
was constructed by Xia (1992). He considered a 5-body system consisting
of two counter-rotating binaries systems of equal mass points with zero net
angular momentum, between which a lighter point mass oscillates back and
forth along the line joining the mass centres of the two binaries. For a Cantor
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set of initial conditions, the system expands to in�nite size in �nite time and
the lighter particle undergoes an in�nite number of oscillations during that
period. This totally unexpected behaviour is facilitated by the arbitrarily
large gravitational forces that are possible between the point particles as their
separations tend to zero and the absence of any speed limit for information
transmission. This unusual Newtonian behaviour has no general relativistic
counterpart: two particles of mass M whose centres approach closer than
d = 4GM=c2 will �nd themselves inside a black hole horizon. This is a
simple form of �cosmic censorship�whereby horizon formation prevents the
e¤ects of an arbitrary strong in�nite force being visible.

1.2 Cosmic strings

Interesting circumstantial evidence for the maximum force conjecture can
be seen in the general-relativistic metrics for line sources (Marder, 1959) or
cosmic strings (Vilenkin, 1981). A static source with � +

P3
i=1 pi = 0 for

its density, �, and principal pressures, pi, which has a constant mass per
unit length; �; has no Newtonian gravitational source (r2�N = 0 for the
Newtonian potential, �N). Yet, it supports a conical metric which is �at
spacetime with a missing wedge angle �� = 8�G�c�2 which will exceed 2�
and encompass the entire spacetime if F > Fmax. Thus the maximum force
conjecture is linked to the structure of static cosmic strings even though
they exert no forces on themselves or other particles. This example supports
the correctness of the 1=4 factor in eq.(1), noted in Gibbons (2002.. The
dimensionless factor in eq.(2) does not seem to be so precisely determined
at present due to possible dependence on geometrical factors associated with
power generating con�gurations involving many bodies.

1.3 Natural units

The maximum force conjecture also shows how dimensional analysis can still
provide fundamental insights. If we seek to construct natural units for various
physical quantities from the constants c;G and } then we can form basic
Planck units (Planck, 1899) of mass, length, and time in the usual way:
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Lpl =

�
G}
c3

�1=2
; (3)

Tpl =

�
G}
c5

�1=2
; (4)

Mpl =

�
~c
G

�1=2
: (5)

These examples of a fundamental length, mass and time all contain G; c
and } and so have a quantum signi�cance. However, there are associated
quantities, like the Planck force, Fpl = c4=G; and power Ppl = c5=G, that
do not contain } and so are entirely classical. Whenever Planck units can
be found for a quantity that does not contain }; this implies that it plays a
fundamental role in classical gravity.
Planck�s units of 1899 (Planck, 1899) were not the �rst set of natural units

to be proposed (see Barrow and Tipler, 1986). In 1881, Johnson Stoney pro-
posed a set of fundamental units involving c;G and e (Stoney, 1881, Barrow
1983, 2002). This was far sighted in that c did not yet have its fundamental
relativistic signi�cance and the electron, whose existence and charge e were
predicted by Stoney in 1874 was not discovered by Thomson and colleagues
until 1897 (Thomson, 1879). Stoney�s natural units were

LS =

�
Ge2

c4

�1=2
; (6)

TS =

�
Ge2

c6

�1=2
; (7)

MS =

�
e2

G

�1=2
: (8)

The �ne structure constant e2=}c can be used to convert between Stoney
and Planck units and their magnitudes just di¤er by approximately

p
137;

(Barrow, 2002).
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1.4 Higher dimensions

In N space dimensions there are generalisations of these natural units. By
Gauss�s theorem we have [G] = M�1LNT�2 and [e2] = MLNT�2; but [c] =
LT�1 and [}] = ML2T�1 as before. hence the dimensionless quantity that
generalises the �ne structure constant when N = 3 to arbitrary dimensions
is (Barrow and Tipler, 1986)

}2�NeN�1G(3�N)=2cN�4: (9)

Only whenN = 3 is gravity excluded. If we con�ne attention to combinations
of G; c and } then we �nd that in N dimensions the physical quantity that
does not include a dependence on } is only a force (or power) when N = 2:
For general N; the fundamental non-quantum quantity is

Q � mass� (acceleration)N�2: (10)

This reduces to force in three dimensions and suggests a generalised con-
jecture that in N -dimensional general relativity there will be an upper bound
on the magnitude of Q determined by

Qmax =
c2(N�1)

G
: (11)

A calculation using the N -dimensional Schwarzschild metric gives the di-
mensionless factor. The horizon radius of the N -dimensional Schwarzschild
metric is

r =

�
16�GM

(N � 1)
N�1c2

� 1
N�2

; (12)

where


N�1 =
2�N=2

�(N
2
)
:

We can calculate the quantity QN which generalises this to N > 3 black
holes, using Emaparan and Reall (2008), to be

MAN�2 = c2(N�1)
�
(N � 2)8�G
(N � 1)
N�1

�N�2 �
(N � 1)
N�1

16�G

�N�1
: (13)
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For the case of N = 3 we check that (when the spherical area factor
reduces to 
2 = 4�)

MA = c4
�
4�G


N�1

�
�
�

N�1
8�G

�2
=
c4

4G
: (14)

1.5 Cosmological evolution

There is also a cosmological aspect to the maximum force and power conjec-
tures. Consider the standard Newtonian cosmological picture of an isotropic
and homogeneous universe modelled by an expanding spherical ball of mate-
rial with radius proportional to an expansion scale factor a(t). If we assume
a(t) / tn then the force generated is proportional to �a / tn�2. Thus F will
grow as F = Fpl(t=tpl)

n�2 for t > tpl if n > 2. Likewise, the power associ-
ated with this expansion is proportional to _a�a / t2n�3 and grows with time
as P = Ppl(t=tpl)

2n�3 when t > tpl under the weaker condition n < 3=2; it
is constant when n = 3=2, (Barrow and Cotsakis, 2013) 1. Here, we see a
decoupling of the force and power conditions. An example of a cosmological
evolution with divergent force is given by the formation of a �nite-time sud-
den singularity in an isotropic and homogeneous Friedmann universe where
�a (and the �uid pressure, p) diverges even though a; _a and the �uid density
� remain �nite, even though �+ 3p > 0 always.

2 The e¤ect of the cosmological constant

Recently, David Thornton (private communication) has raised the question of
how the inclusion of a cosmological constant a¤ects these conclusions about
a maximum force. Recall that Einstein�s theory of general relativity states
that matter curves spacetime and spacetime moves matter according to the
Einstein equation

R�� �
1

2
g��R�� g�� =

8�G

c4
T�� � �g�� ; (15)

1Recently it has been claimed (Dolgov et al, 2014) that the n = 3=2 expansion, which
would be our example of expansion at constant power, gives a preferred �t to supernovae
data in an accelerating zero-curvature universe in the recent past.
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where the dimensions of the quantities involved are [x�] = L ; [g�� ] = 1 ;
�
R��

�
=

L�2 and the energy-momentum tensor T�� has the dimensions of force per
unit area,

�
T��
�
=ML�1T�2 and the cosmological constant � has dimensions

[�] = L�2. The inverse of Einstein�s constant, c4

8�G
, has the dimensions of

force [MLT�2], and allows us to convert from curvature to energy density or
stress.

2.1 New units and bounds

The cosmological constant � adds a universal repulsion � > 0 (or attraction
if � < 0) to the Newtonian gravitational attraction on a mass M that is
proportional to the distance r (Milne and McCrea, 1934)

F� =M
�c2

3
r; (16)

and introduces an additional dimensionful constant into physics. A linear
combination of F� and the inverse-square force law of Newton is the general
force law which allows spherical masses to be replaced by point masses of the
same mass (Laplace, 1825, Barrow and Tipler,1986). If � > 0, as indicated
by observations, this may be used to de�ne another set of fundamental �de
Sitter�units of length, time and mass by dimensional analysis:

Lds =

r
1

�
; (17)

Tds =
1

c

r
1

�
; (18)

Mds =
}
c

p
�: (19)

We see that it is not possible to create classical quantities from de Sitter
units that are independent of } if they include Mds and so there is no new
classical counterpart of eq. (1) involving �, but we can investigate whether
this bound (or one similar) still holds in the presence of �.
Discussions of the physical signi�cance of the constants of nature often

make use of a mass-radius diagram (Carr and Rees, 1979, Barrow and Tipler,
1986). All bodies, at rest, may be assigned a mass M and a radius or size R.
Since inertial mass, passive gravitational mass, and active gravitational mass
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are equal to a high degree of precision, the de�nition of mass is unambiguous.
The precise de�nition of radius is not completely clear (radius of gyration,
mean half-diameter, ...), but we will ignore that small ambiguity here. It
follows that all bodies may be assigned a point in the positive quadrant of
the M �R plane.
Large regions of the M � R plane are unoccupied by observable objects

because the Heisenberg Uncertainty Principle gives the lower bound on ob-
servability of real quantum states

M �R > ~
c
; (20)

and the black-hole existence condition gives the constraint 2

R=M >
2G

c2
: (21)

Most celestial objects crowd around the lines of constant (atomic or
nuclear) density in the M � R plane where M / R3.The bounding rectan-
gular hyperbola (20) and the straight line (21) intersect close to the point
(Mpl; Rpl):
One may strengthen these conditions by making more restrictive assump-

tions about the body. For example, Buchdahl (1959) obtained the bound

R >
9

4

GM

c2
(22)

for isotropic �uid spheres in the case of vanishing cosmological constant.
Inclusion of the cosmological constant modi�es this to, (Mak et al, 2000)

R >
2GM

c2
1�

1� �R2 � 1
9
(1� c2�R3

GM
)2
� : (23)

Cosmic repulsion from a positive cosmological constant will blow apart a
body (Hayward et al, 1994, Maeda et al , 1998, Cissoko et al, 1998, Nakao et
al 1991, 1993), unless its representative point lies below the horizontal line

R =

r
3

�
: (24)

2For simplicity we restrict attention to spherically symmetric metrics. For non-
spherically symmetric metrics one might replace R by Thorne�s Hoop radius, (Gibbons,
2009, Cvetic et al, 2011).
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The representative points of all ordinary bodies must lie below the line (24).
and are thus con�ned inside a triangular region bounded by the curves (20),
(24) and (24). The intersection of (20) and (24) gives a lower bound for the
mass of any body:

M >
~
c

r
�

3
; (25)

while the intersection of (21) and (24) is gives an upper bound for the mass
of any body:

M <
c2

G

r
3

�
: (26)

2.2 Kottler-Schwarzschild-de Sitter black holes

In order to obtain a maximum force estimate in the presence of a cosmological
constant, consider the Kottler-Schwarzschild-de Sitter solution of Einstein�s
equations. This is the spherically symmetric vacuum solution with non-zero
cosmological constant:

ds2 = �c2�(r)dt2 + dr2

�(r)
+ r2

�
d�2 + sin2 �d�2

�
: (27)

with

� = 1� 2GM
c2r

� 1
3
�r2 : (28)

In order to have a static region, �(r) must have two positive roots, The
smaller, at r = rB; gives the radius of a black hole event horizon and the
larger, at r = rC ; of a cosmological event horizon. The condition for two
roots is (Gibbons and Hawking, 1977)

3M
p
� <

c2

G
: (29)

The limiting case was originally found by Nariai (1951) and occurs when

rC = rB =
1p
�
; (30)

and the solution is the metric product dS2 � S2
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Thus, we see that

2GM

c2
� rB �

1p
�
;

1p
�
� rC �

r
3

�
: (31)

In terms of a force we have

F� =
Mc2

3
�r ; (32)

and so

F�(rB) <
1

3
Mc2

p
� <

c4

9G
: (33)

and can be compared with the conjectured maximum force in the absence of
a � term given in eq. (1).

3 Conclusions

We have extended the evidence for the existence of a maximum force, in
general relativity in various ways. We showed how the existence of such
a fundamental bound is linked to the existence of natural units of force
that exclude Planck�s constant. Extensions to arbitrary space dimensions
reveal a new quantity that is a candidate for a universal upper bound in
general relativity. We also discussed why a maximum force cannot exist
in Newtonian gravity and how counterexamples describing gravitating with
arbitrarily large forces are avoided by the presence of event horizons. We
discussed the development of strong forces in cosmology and at sudden �nite-
time singularities. Finally, we extended the discussion of the maximum force
conjecture to include a cosmological constant. This leads to an additional
system of natural units and new bounds on the maximum and minimum
masses of bodies in the universe. Using the Kottler-Schwarzschild-de Sitter
black hole solution in general relativity we derived a new maximum force
bound in the presence of a positive cosmological constant.
Acknowledgements We would like to thank Christoph Schiller and
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