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ABSTRACT

Dialogue promises a natural and effective method for users to interact with and obtain in-
formation from computer systems. Statistical spoken dialogue systems are able to disam-
biguate in the presence of errors by maintaining probability distributions over what they
believe to be the state of a dialogue. However, traditionally these distributions have been
derived using generative models, which do not directly optimise for the criterion of interest
and cannot easily exploit arbitrary information that may potentially be useful. This thesis
presents how discriminative methods can overcome these problems in Spoken Language
Understanding (SLU) and Dialogue State Tracking (DST).

A robust method for SLU is proposed, based on features extracted from the full poste-
rior distribution of recognition hypotheses encoded in the form of word confusion networks.
This method uses discriminative classifiers, trained on unaligned input/output pairs. Perfor-
mance is evaluated on both an off-line corpus, and on-line in a live user trial. It is shown
that a statistical discriminative approach to SLU operating on the full posterior ASR output
distribution can substantially improve performance in terms of both accuracy and overall
dialogue reward. Furthermore, additional gains can be obtained by incorporating features
from the system’s output.

For DST, a new word-based tracking method is presented that maps directly from the
speech recognition results to the dialogue state without using an explicit semantic decoder.
The method is based on a recurrent neural network structure that is capable of generalis-
ing to unseen dialogue state hypotheses, and requires very little feature engineering. The
method is evaluated in the second and third Dialog State Tracking Challenges, as well as
in a live user trial. The results demonstrate consistently high performance across all of the
off-line metrics and a substantial increase in the quality of the dialogues in the live trial. The
proposed method is shown to be readily applied to expanding dialogue domains, by exploit-
ing robust features and a new method for online unsupervised adaptation. It is shown how
the neural network structure can be adapted to output structured joint distributions, giving

an improvement over estimating the dialogue state as a product of marginal distributions.
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CHAPTER 1

INTRODUCTION

Research on spoken dialogue systems seeks to create computer systems that can hold a
conversation using natural language, just like a real human conversational partner. This is
an attractive proposition, particularly with the increasing pervasiveness of smart phones and
ubiquitous smart systems such as wearable devices, in-car computers, and smart homes.
These systems do not necessarily have large screens or conventional keyboard and mouse
input methods, but often have microphones and speakers (Cohen and Oviatt, 1994).

In his Discourse on the Method, Descartes predicted that such a computer system could
never be possible, asserting that “it is not conceivable that such a machine should produce
different arrangements of words so as to give an appropriately meaningful answer to what-
ever is said in its presence, as the dullest of men can do.” Turing’s imitation game seeks
to test this hypothesis by asking human participants to judge whether they are speaking to
another human or a computer system (Turing et al., 1952).

The Loebner Prize (Epstein, 1992), an instantiation of Turing’s imitation game for text-
based dialogue systems, has not yet had a successful claimant. Futurist Ray Kurzweil pre-
dicts there will be no winner until the 2020’s (Kurzweil, 2006). The current state of the art
is so far from this point that work on this topic has faced serious criticism (Sundman, 2003).
This thesis focusses on spoken dialogue systems in much more constrained domains, whose
purpose is to help the user with a specific and well defined task.

Such constrained task-oriented systems have been deployed for a variety of tasks. Ap-
plications include travel itinerary information (Norton et al., 1990), in-car information and
navigation (Becker et al., 2006), robot tour guides (Faber et al., 2009), and even robot bar
tenders (Foster et al., 2012). This thesis uses tourist information as an example application,
where users of the system can search for and ask about venues like restaurants in a city
according to their constraints (e.g. by cuisine or part of town).

When exposed to the public, a spoken dialogue system may encounter a variety of dif-
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ficulties. The system may see large variation in the users of the system, such as differing
levels of familiarity with dialogue systems and varying ways of speaking. Systems may also
be subject to high noise compared to lab environments, especially those deployed on mobile
devices. The task of a dialogue system to understand what the user wants at any point in a
conversation is consequently difficult, but still essential for a successful dialogue.

A statistical framework is used in this thesis, where the system maintains a probability
distribution over what the user wants (the state of the dialogue). This thesis argues that
discriminative modelling is an effective technique for estimating these distributions, and

shows dialogue systems can benefit from these improved estimations.

Utterance Spoken Language Understanding

System How may I help you?
train-station 0.2
User Where are the petrol stations petrol-station 0.1
in Cambridge? Other 0.7

System Could you please repeat that?
train-station 0.2
User Where are the petrol stations petrol-station 0.1
in Cambridge? Other 0.7

System Could you please repeat that?

Table 1.1: An example scenario with a fictional in-car dialogue system where statistical
dialogue theory could help. The rightmost columns present the output of a Spoken Language
Understanding component, which takes the noisy speech of the user and attempts to discern
what type of destination the user is seeking. Here at each turn the key word ‘petrol’ is not
recognised. A conventional dialogue system might only consider the top scoring hypothesis,
train-station, but reject it as it has a low confidence score (0.2). The scenario is detailed
further in the text.

Table 1.1 presents a scenario where using a distribution rather than a single top hy-
pothesis could help in a dialogue. Faced with identical inputs, the computer system in this
scenario gives identical outputs, bringing the interaction into what is termed a downward
spiral of errors (Bohus, 2007). A statistical dialogue system maintains uncertainty about
everything the user has said, and exploits the sequential nature of dialogue to disambiguate
in the presence of errors. In the example scenario, the noisy input might lead to some weight
in the system’s distribution over internal states being assigned to two competing hypotheses
— petrol station and train station. Perhaps the system asks, “You are looking for the train
station?” and the driver replies “No.” The only remaining valid hypothesis, petrol station,

2
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would then be correctly identified.

Previously proposed methods for estimating the dialogue’s state generally have applied
highly application-specific models to dialogue systems, for example generative probabilistic
models to jointly model the hidden dialogue state and the observations (Horvitz and Paek,
1999; Williams and Young, 2005; Young, 2000). This kind of approach has advantages, but
crucially these models cannot easily be used to exploit arbitrary information or features. The
key in finding significant improvements is the use of discriminative modelling. Discrimi-
native models directly estimate the probability distribution of the important variables in a
problem, such as dialogue acts or dialogue states, given a potentially large set of arbitrary
features. Well understood and general models such as Support Vector Machines (SVMs)

and artificial neural networks can then be exploited.

1.1 Thesis Outline and Contributions

Once a user has spoken to a dialogue system, the audio signal is then passed through a
speech recogniser to give a distribution over words. A Spoken Dialogue System (SDS)
attempts to understand the words and how they affect the current state of the dialogue.
Typically, this task is split into two steps — Spoken Language Understanding (SLU) converts
the words from the speech recognition into a semantic representation, and Dialogue State
Tracking (DST) takes the output of the SLU and estimates the new state of the dialogue.

After an introductory chapter (chapter 2), which lays the foundations of statistical spo-
ken dialogue systems and sets the context of the work, this thesis is split into two main
sections. Chapters 3 and 4 focus on SLU, and chapters 5, 6, 7, and 8 look at DST. Below is
a description of each of these chapters and their contributions.

Chapter 3, Spoken Language Understanding. This chapter presents and compares
three methods for SLU, contrasting a grammar-based method to two discriminative statisti-
cal approaches. The two discriminative approaches demonstrate a contrast between treating
SLU as a sequential labelling problem over sequences of words, and alternatively as a flat
labelling problem. A corpus of noisy in-car dialogues is presented, which is labelled for the
purpose of evaluating the three methods. After the analysis of an off-line evaluation, the
Semantic Tuple Classifier (STC) method is selected as a promising method for extension in
the following chapter.

Chapter 4, Understanding Speech Recogniser QOutput. This chapter investigates how
SLU can be configured to understand the output of a speech recogniser, and to give distribu-
tions over dialogue acts that are useful for statistical dialogue systems. The main contribu-
tion is a robust method for SLU called the CNet decoder. The method is based on features
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extracted from the full posterior distribution of recognition hypotheses encoded in the form
of word confusion networks. Performance is evaluated on both in an off-line corpus-based
evaluation, and on-line in a live user trial. It is shown that a statistical discriminative ap-
proach to SLU operating on the full posterior Automatic Speech Recognition (ASR) output
distribution can substantially improve performance in terms of accuracy and overall dia-
logue reward. Furthermore, additional gains can be obtained by incorporating features from
the previous system output.

Chapter 5, Dialogue State Tracking. This chapter presents a selection of methods for
DST, including baseline approaches, the previous state of the art, and methods proposed
recently by other research groups. The main contribution of this chapter is a discriminative
method for DST using Recurrent Neural Networks (RNNs). This is applied directly to the
speech recognition results to perform DST without the need for an explicit semantic decoder.

Chapter 6, Evaluation of Dialogue State Tracking. The Dialog State Tracking Chal-
lenges (DSTCs) are introduced, which were blind evaluations of DST methods using stan-
dardised datasets and evaluation metrics. These are used to evaluate the proposed methods
for DST relative to a large selection of competing techniques. Discriminative DST using
RNN:ss, including word-based trackers (which do not use any explicit SLU), are also evalu-
ated in a live user trial.

Chapter 7, Unsupervised Learning for RNN Dialogue State Tracking. This chapter
presents a method for improving DST by exploiting unlabelled dialogue data. This can be
used to improve the parameters of the RNNs in adaptation to tracking new slots. This is
evaluated using data from the third DSTC.

Chapter 8, Structured Output for RNN Dialogue State Tracking. This chapter
presents a method for combining multiple RNNs trained on sub-components of the dia-
logue state, so that they output structured joint predictions. This is evaluated using data
in a tourist information domain, where certain correlations and dependencies between slots
exist.

Finally, chapter 9 concludes the thesis, giving a critical analysis of the benefits and
limitations of the proposed approaches for SLU and DST. Some discussion is given to how
these approaches may help in creating systems that can be used in expanding domains, so
that they may understand and talk about an expanding scope of topics.



CHAPTER 2

OVERVIEW OF SPOKEN DIALOGUE
SYSTEMS

This chapter gives an overview of Spoken Dialogue System (SDS) theory. Figure 2.1
presents the components of a typical SDS arranged in a pipeline. There is no consensus
in the literature on the architecture of a dialogue system, but this is a representative refer-
ence (Pieraccini and Huerta, 2005). One cycle through this pipeline is one dialogue turn, i.e.
one utterance from each participant, the user and the system. The following sections look

at each of these components. An alternative overview is given in e.g. Jurafsky and Martin
(2008).

user

audio signal
Automatic Speech
SpeeCh. . words Synthesis
Recognition
Spoken Natural
Language dialogue acts Language
Understanding Generation

Dialogue
State
Tracking

Dialogue
Management

Figure 2.1: The pipeline architecture of a typical dialogue system.
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This thesis focusses on task-oriented dialogue systems, where the domain can be repre-
sented using a specification of slots. Slots are variables which the user can either specify
or ask about in the domain. For example, in a flight ticket buying system the user might
specify destination and departure city slots, and ask for the value of the ticket price slot.
Appendix A discusses slot-based dialogue domains further.

2.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the first component in the pipeline. This thesis is
concerned with the steps in the pipeline that use the output of the Automatic Speech Recog-
nition (ASR), specifically Spoken Language Understanding (SLU) and Dialogue State Track
ing (DST).

Many state of the art systems for ASR use Hidden Markov Models (HMMs) to model

the acoustics of speech (a review is given in e.g. Gales and Young (2007)). In recent years

discriminative neural networks have been used to estimate the HMM state probabilities
(Bourlard and Morgan, 1993; Deng et al., 2013; Hinton et al., 2012), and there is even work
on doing end-to-end ASR using Recurrent Neural Networks (RNNs) (Graves and Jaitly,
2014; Robinson et al., 1996).

The form of the output of an ASR component is particularly important for the research
on SLU presented in chapter 3. An ASR component essentially assigns a posterior probabil-
ity to the words of an utterance given its acoustics. A typical form of output expected would
be an N-best list of hypotheses with corresponding probabilities. This approximates the full
distribution over all sentences with just the top N most probable, which is a limited approx-
imation. Typically the variations in the top hypotheses involve mostly minor differences in
articles and other short function words, with the result that many of the top hypotheses have
the same meaning. Furthermore, words with low probability are likely to be omitted from
the N-best list altogether. See the example in figure 2.2.

Intuitively a dialogue system should be able to benefit from all the information it can get
from the ASR about the posterior distribution over words. Word lattices and word confusion
networks provide a more informative summary of the distribution, without pruning the lower
scoring words as in the N-best list. A word lattice is a directed graph that efficiently encodes
possible word sequences, as shown in figure 2.2 (Murveit et al., 1993). Possible sentences
are possible paths from the start node to the end node. Not depicted in the figure are the
probability weightings on the edges, which allow for calculation of the probability of a path.
Start and end time information for each word is also usually included.

Word confusion networks, like word lattices, are directed graphs that enumerate pos-

6



2.1. Automatic Speech Recognition

N-best list

Rank Hypothesis Log probability
1 it’s an area that’s naturally sort of mysterious -7497.28
2 that’s an area that’s naturally sort of mysterious -7508.93
3 it’s an area that’s not really sort of mysterious -7505.33
4 that scenario that’s naturally sort of mysterious -7520.39
5 there’s an area that’s naturally sort of mysterious -7518.45
Word lattice

an area sort of mysterious

Word confusion network

it’s

naturally really,

77/73-171\ area
30 W @ @ S o @ or @ mysterious @
T not NULL o - -

scenario NULL

Figure 2.2: N-best lists, word lattices and word confusion networks are all structures that
summarise the posterior distribution over sentences found by the ASR component. These
examples are from Jurafsky and Martin (2008).
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sible paths; however, they are more restricted in their structure (Mangu et al., 2000). As
shown in figure 2.2, word confusion networks consist of a linear series of nodes represent-
ing word boundaries, with a set of mutually exclusive word hypotheses connecting each
pair of consecutive nodes. Note that extra paths are added in the creation of the confusion
network from the word lattice in figure 2.2, e.g. “the scenario area” is a possible path in
the word confusion network but not the word lattice. However, every path that exists in the
word lattice also exists in the word confusion network. The creation of a word confusion
network may require arcs labelled with NULL, which are used to denote transitions that do
not correspond to any word.

The restricted structure of the word confusion network allows for efficient calculations
of quantities like the posterior probability of a given word sequence. Say there are nodes
no, ..., ny connected by sets of edges Wy, ..., Wr_;. Write p(w) for the probability weight
of a given edge, i.e. word w € W; for some i. Then an ASR hypothesis is a choice from each
set of edges, wy, ..., wr—1 with w; € W; with posterior probability:

o p(wi)
I]lT:_()1 ZW’EW,' p(wl>

where the denominator is the sum over all possible paths, and is equal to 1 if the p(w) are

P(W(), ...,WT_l): (21)

normalised over each edge set, i.e. Y,,cw, p(w) = 1. The probability of any subsequence
can be similarly calculated. In section 4.1.2, such word sequence probabilities are used to

summarise the whole posterior distribution for statistical SLU.

2.2 Spoken Language Understanding

Spoken Language Understanding (SLU), the next step in the pipeline after ASR, is the task
of discerning the semantics of an utterance given the output of the ASR. Many spoken
dialogue systems use a shallow level of semantics called dialogue acts, akin to the concept
of a speech act (Searle, 1970). Dialogue act taxonomies are designed to capture just enough
meaning in an utterance to facilitate a dialogue (de Mori, 2007). An SLU component, or
semantic decoder, takes a sentence as input and gives a dialogue act as output.

Appendix B summarises the dialogue act taxonomy used in this thesis. Dialogue acts
consist of a dialogue act type, which defines the general action of the utterance (e.g. re-
questing information, informing constraints, saying good-bye..), as well as a set of slot-
value bindings that specify arguments of the act. For example inform(food=chinese) is a
dialogue act of type inform, where the user is informing the system that they would like to
constrain their search to venues serving Chinese food. This might be realised in English as
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“A Chinese place please” or “Somewhere serving Chinese food.”

Many spoken dialogue systems use semantic template grammars to extract semantic
concepts and discern the dialogue act (Ward, 1994; Young and Proctor, 1989; Zue et al.,
2000). These generate parse trees for the sentence using a set of hand-written rules that map
words and phrases to semantic concepts, and can group semantic concepts together to form
sentences. Though often an effective technique, the rules are domain specific and require
multiple iterations of user-testing before achieving adequate coverage (Young, 2002).

More complex grammar formalisms, such as Combinatory Categorial Grammars (CCGs),
are able to model a wide range of complex linguistic phenomena (Steedman, 2000). These
have been applied to SLU, where the grammars are relaxed so they may learn to parse un-
grammatical spontaneous speech and erroneous speech recognition output (Kwiatkowski
et al., 2011; Nguyen et al., 2006; Zettlemoyer and Collins, 2007). Other models that inter-
nally parse the input sentence include generative probabilistic models (He and Young, 2006;
Miller et al., 1996) and those based on inductive logic programming (Zelle and Mooney,
1996). In contrast to techniques that represent the input sentence as a set of short phrases,
or that use a finite window of context in a sentence, these parsing-based methods can read-
ily model long range dependencies. This is important when applied to complex language,
where concepts may be split up in the sentence, e.g. by relative clauses.

In some spoken dialogue domains, the possible dialogue acts may be enumerated to
a small enough list to enable treating the SLU task as multi-class classification, where a
single multi-class classifier is trained (Gupta et al., 2006; Schapire et al., 2005). This thesis
however focusses on SLU tasks where the target annotation has some structure. While
a single classifier would have to enumerate all the possible structures, causing sparsity in
training examples, the following approaches attempt to exploit the structure in various ways.

One major difference among methods for SLU is whether they internally label sentences
sequentially at the word level, or label the entire sentence. Methods that do sequential
labelling often require aligned data, while methods that label the entire sentence can use
unaligned data. Aligned labelling provides an alignment between the words in the input
utterance and the target semantics, while unaligned labelling does not. Figure 2.3 gives
an example to illustrate the difference between aligned and unaligned training data, and
introduces BIO tags for aligned labelling. BIO tags provide a method of aligning spans of
a sequence with labels, for example identifying the third to fifth words of “I want Cocum
Indian restaurant.” as corresponding to a restaurant name ‘Cocum Indian restaurant’. This

is clarified in the example.

Methods for SLU can generally be further split into two categories; generative and dis-
criminative models. Generative models learn a joint probability distribution P(x, y) between

9



Chapter 2. Overview of Spoken Dialogue Systems

Aligned Labelling
show flights  going from Boston to
B-action I-action 0] B-from-city I-from-city B-to-city

New York today
I-to-city I-to-city B-date

Unaligned Labelling

show flights going from Boston to New York today
action=show flights; date = today; from city = Boston; to city = New York

Figure 2.3: An example of aligned and unaligned labels in the Air Travel Information
System (ATIS) dataset (Dahl et al., 1994). BIO tags label the Beginning, Inside and Outside
of sequential labels, allowing for labels spanning multiple words.

the input x and the labels y. The conditional distribution P(y | x) is then calculated using
Bayes’ rule, and used to assign labels to input examples. Discriminative methods directly
model the conditional distribution P(y |x). This definition of discriminative should not be
confused with discriminative training of generative models. Discriminative training of gen-
erative models is a technique for optimising parameters of an underlying generative model,
while here discriminative is a property of the underlying probabilistic model.

Generative dynamic Bayesian networks can be defined to model the semantics of an
utterance as a hidden structure jointly with the observed words (Acero and Wang, 2005;
He and Young, 2006; Levin and Pieraccini, 1995; Schwartz et al., 1996). The Markovian
assumption presents a challenge for modelling long-range dependencies between words,
which can be solved by using a hierarchical hidden state (He and Young, 2006; Miller et al.,
1996) — these models essentially parse the input sentence into a parse tree. A robust gen-
erative probabilistic grammar can also be learnt from data (Zettlemoyer and Collins, 2007).
Machine translation has also been adapted to the task of learning SLU (Ramaswamy and
Kleindienst, 2000), as has the formalism of transformation rules (Kate et al., 2005).

Discriminative models directly learn the conditional probabilities of the labels given a
feature representation of the input utterance. Unlike generative models, such models do not
make independence assumptions over the feature set. It is therefore easy to include arbitrary
potentially useful features. Studies have shown that for this reason discriminative models
can significantly outperform generative models in SLU tasks (Wang and Acero, 2006).

Discriminatively trained Markov Logic Networks have been applied to SLU with some
success (Meza-Ruiz et al., 2008). Support Vector Machines (SVMs) have been used as dis-
criminative classifiers for classifying syntactic tree features and semantic production rules
(Kate and Mooney, 2006; Pradhan et al., 2004). Mairesse et al. presented the Semantic Tu-
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ple Classifier (STC), which uses a set of discriminative SVM classifiers trained on unaligned
data (Mairesse et al., 2009). This is presented in more detail in chapter 3.

Using a Conditional Random Field (CRF) (Lafferty et al., 2001) to do sequential la-
belling of input sentences is a particularly popular discriminative technique (Wang and
Acero, 2006; Zhou and He, 2011) for SLU. The structure of the CRF can be adapted to
jointly classify the topic of an utterance, using a triangular CRF (Jeong and Geunbae Lee,
2008). CRFs have also been used to create alignments from the word confusion network
(Tur et al., 2013). Decoding with CRFs is described in more detail in chapter 3.

Recently there has been some work in applying neural network techniques to SLU. Con-
volutional neural networks, recurrent neural networks and long short-term memory recur-
rent neural networks have all been studied (Xu and Sarikaya, 2013; Yao et al., 2013, 2014).
Similar to decoding with CRFs, these models treat SLU as a sequential labelling task.

2.3 Dialogue State Tracking

The term dialogue state loosely denotes a full representation of what the user wants at any
point from the dialogue system. The dialogue state comprises all that is used when the
system makes its decision about what to say next. For example, in a slot-based dialogue
system the dialogue state includes the list of constraints the user has given so far in the
dialogue.

An effective SDS must include a method of Dialogue State Tracking (DST) capable of
accurately accumulating evidence over the sequence of a dialogue, and adjusting its pre-
diction of the dialogue state according to the observations and context. A distribution over
dialogue states is sometimes referred to as the belief state in the literature (Rapaport, 1986).

There has been an increase of interest in DST following the three Dialog State Tracking
Challenges (DSTCs) (Henderson et al., 2014b,d; Williams et al., 2013), with a substantial
number of papers published on the subject in the past two years. Many of the techniques
mentioned here were evaluated in the Dialog State Tracking Challenges (DSTCs) alongside
the methods proposed in chapter 5, and so appear in the results of the evaluation in chapter 6.

Similar to SLU, one key distinction in characterising techniques for DST is whether the
model used is generative or discriminative. Generative models for DST jointly model both
the inputs (typically the SLU hypotheses) and the dialogue state. Discriminative models di-
rectly capture the conditional probability over dialogue states, having observed the dialogue
up to a certain point.

Generative approaches for DST are generally derived from the Hidden Information State
model (Young et al., 2010), and use a dynamic Bayesian network to model observations
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from the SLU jointly with the dialogue state. A set of hidden random variables represents
the dialogue state, and the whole model is referred to as the user model. Chapter 5 describes
a representative member of this class of models, the Bayesian Update of Dialogue State
(BUDS) system (Thomson and Young, 2010). Other such methods employing a dynamic
Bayesian network include Kadlec et al. (2014a,b); Williams (2010). Typically these use pa-
rameters optimised by the system designer, though there are techniques to exploit dialogue
data to optimise the parameters (Lee et al., 2014; Thomson et al., 2010a). Another proposi-
tion is to use a secondary step to post-process the output of a generative model (Kim et al.,
2013).

Rule-based approaches have also been proposed for the task of DST, which use a small
set of hand-crafted rules to update the dialogue state given observations from the SLU
(Smith, 2014; Wang and Lemon, 2013). The focus baseline tracker presented in chapter 5 is
a simple example. Sun et al. (2014a) generalise this class of models and present a method

for learning sets of rules.

Discriminative approaches to DST are generally machine learnt, i.e. their parameters
are optimised using labelled dialogue data. A more detailed description of discriminative

methods for DST is presented in chapter 5, but a summary is given below.

An early discriminative method is presented in Bohus and Rudnicky (2006), which uses
a Maximum Entropy linear model. In work following the start of the DSTCs, Maximum
Entropy and neural network classifiers have been popular models (Henderson et al., 2013;
Lee and Eskenazi, 2013; Metallinou et al., 2013; Ren et al., 2014b,a; Sun et al., 2014b;
Williams, 2012, 2013).

Top accuracies in the second DSTC were obtained using a discriminative ranking model,
similar to that employed for competitive ranking of web documents in document retrieval
and search (Williams, 2014).

All of the discriminative methods mentioned so far make use of a static classifier that
is activated at each turn in the dialogue. The probability over dialogue states in a given
turn is conditioned on a feature representation of the whole dialogue history up to that
point. In order to classify arbitrary length sequences of dialogue states, which may change
from turn to turn, special feature vectors must be designed to capture the sequence while
remaining of a fixed dimension. For example Henderson et al. (2013) use a sliding window
and accumulation of features over turns. Metallinou et al. (2013) use a set of history features
that e.g. give the sum and average of stationary features of the SLU, or count specific events

in the SLU history (such as the number of times a hypothesis has appeared at a certain rank).

Other discriminative methods directly model the sequential nature of the inputs. Condi-
tional Random Fields have been used to model arbitrary length dialogues, with a fixed num-
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ber of features for every turn in the dialogue (Kim and Banchs, 2014; Lee, 2013). However
these models must use features with a finite number of possible values, and so continuous

features must be quantised into discrete features.

2.4 Dialogue Management

Once the dialogue state has been estimated by the DST component, the SDS must decide
what to say next. This process is called dialogue management. This thesis focusses on
estimating the input to the dialogue manager rather than the dialogue management itself.
However, when the proposed approaches to SLU and DST are evaluated in a live user trial,
dialogue management is very important. In particular, the live evaluation of chapter 5 uses
online Gaussian process reinforcement learning. This section gives a brief summary of
approaches to dialogue management.

Conventional dialogue systems typically maintain one hypothesis for the dialogue state,
effectively making the assumption that the state is known. Various frameworks have been
proposed to interact with this state and select the next system action, for example approaches
based on flow-charts (Lucas, 2000; McTear, 1998; Sutton et al., 1996), form filling systems
(Goddeau et al., 1996), and systems that use logical inference and planning (Larsson and
Traum, 2000).

None of these approaches suggests a way of learning which actions should be taken,
leaving this to be hand-crafted by the system designer. Casting the problem as a Markov
Decision Process (MDP) allows learning of the action selection model (Biermann and Long,
1996; Levin and Pieraccini, 1997; Singh et al., 1999). Though the single hypothesis for the
state can be augmented to include details of the uncertainty (Bohus and Rudnicky, 2005),
an approach that is more theoretically well-founded is to instead use a Partially Observable
Markov Decision Process (POMDP).

2.4.1 Statistical Dialogue Systems

The statistical approach to dialogue management maintains a distribution over dialogue
states (Young, 2002). By explicitly modelling the uncertainty in dialogue, statistical sys-
tems can better deal with the ambiguities inherent in natural language and arising from
uncertain speech recognition (Thomson, 2009).

In the statistical framework, the ASR is configured to output a distribution over sentences
using e.g. an N-best list, or word confusion network (figure 2.2). The SLU then uses this
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distribution to output an M-best list! of dialogue acts (methods for doing this are discussed
in chapter 4). The DST then uses the M-best list to update the distribution over the dialogue
state.

Dialogue management can then be cast as a POMDP, which considers the distribution
over the dialogue state when selecting the next action (Roy et al., 2000; Williams and Young,
2005). The POMDP-based BUDS framework presented in Thomson and Young (2010)
gives a baseline statistical system, which is used in the evaluations of this thesis.

In a POMDP, the policy © makes the selection of which action to take given a distribu-
tion over dialogue states P(s). Writing b = P(s) (for the belief state), the policy is a function
7(D) that selects the next user action. Learning of the policy is facilitated by defining a re-

ward r(s, a) for every state s and action a. The total reward over a dialogue is therefore:

T-1

R= Z r(se, ar) (2.2)

=0
where 7' is the number of turns in the dialogue. The policy is learnt by maximising the
expected reward E(R). Note that the states s, are not exactly known, so the P(s;) estimations
from the DST are used in this expectation. This type of learning is called reinforcement
learning, as good decisions in learning are reinforced by good rewards. An important entity
in reinforcement learning is the Q(s, a) function, defined as the expected future reward for
taking action a in state s.

Gaussian processes can be used to model the Q function in Gaussian process reinforce-
ment learning. This technique has proven efficient enough to use for learning a policy in
direct interaction with users (Gasi¢ et al., 2010, 2013), while previous approaches have re-
lied heavily on simulated interactions. In the live trial of section 6.5, reinforcement learning
using Gaussian processes is used to quickly learn a policy for dialogue managers in a variety
of conditions.

2.5 Natural Language Generation and Speech Synthesis

Generation of the text corresponding to a system’s chosen dialogue act (Natural Language
Generation (NLG)), and then synthesising this text into audio (Speech Synthesis (SS)) are
both steps that are not studied in detail in this work. Nevertheless they are essential for a
complete dialogue system, and so this section briefly describes common approaches found
in the literature.

M is chosen when referring to SLU output throughout this thesis to avoid confusion with the N-best output
of the ASR.
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In the literature on NLG for dialogue systems, there are a variety of proposed approaches
falling roughly into three categories. The first category is simple template-based generation.
This method is used for the studies in this work, and operates by using a fixed set of simple
hand-written templates. For example, the template:
inform(name=x, food=y) — “x is a nice place serving y food”
could generate sentences like “Cocum is a nice place serving Indian food.”

Learnable techniques for NLG also exist, constituting the second category of methods.
Supervised learning approaches allow for adapting the language generated according to sets
of example outputs (Stent et al., 2004; Walker et al., 2001). The NLG problem has also
been cast as a Markov Decision Process (MDP) so that the model may be learnt using rein-
forcement learning (Rieser and Lemon, 2011, 2010). Another technique treats generation in
dialogue systems as a search for the most likely sequence of semantic concepts and words
using Factored Language Models (Mairesse and Young, 2014).

Lastly, the third category of methods employs conventional NLG, as it is developed in
the text generation literature (Reiter and Dale, 2000). This is a pipeline architecture that
builds up sentence plans to be mapped to text realisations. Such methods have been used to
tailor output to users (Moore et al., 2004) and the dialogue context (Isard et al., 2003).

In the next step, termed Speech Synthesis (SS), the system’s chosen text is converted
into speech. Unit selection is used in many systems, constructing a waveform by concate-
nating segments of recordings held in a database. This is implemented in e.g. the Festival
synthesiser (Taylor et al., 1998).

Another widely used approach, used in this work, is HMM-based SS. This is a statistical
method using a generative model of speech (Zen et al., 2007). These models can learn
dialogue context sensitive behaviours, giving more natural speech (Tsiakoulis et al., 2014).

Neural networks have also been applied with success to the problem of SS (Zen et al.,
2013). Most recently, researchers have found improvements in using RNNs to model the
generation of speech from text (Zen et al., 2014).
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CHAPTER 3

SPOKEN LANGUAGE UNDERSTANDING

Spoken Language Understanding (SLU) is the process of converting spoken words into a
semantic representation more readily processed by the next components in the pipeline of a
dialogue system. An SLU component must be able to deal with a variety of natural language
expressions and distill these into the important details, such as which slot-value constraints
the user is giving in a slot-based dialogue system. This is a core capability of most spoken
dialogue systems.

The SLU discussed in this chapter outputs dialogue acts in the format described in ap-
pendix B. For example a sentence such as “What is the number of a Chinese place” must be
mapped to request(phone, food=chinese) by the SLU.

This chapter presents three methods for SLU in a slot-based dialogue system, contrasting
a grammar-based approach with two discriminative statistical models. One discriminative
method employs a Conditional Random Field (CRF) to do sequential labelling, and requires
training data where words are aligned to labels. The other discriminative method, the Se-
mantic Tuple Classifier (STC), does not treat the input as a sequence and does not require
labelled alignments.

A dataset for SLU is presented, composed of dialogues with a restaurant information
dialogue system in noisy conditions (in an automobile). The dialogues are labelled with the
correct dialogue acts, including alignments from the words to the sub-components of the
dialogue acts. This dataset allows a side-by-side evaluation of these three SLU methods,

and is then used in the following chapter for further analysis.
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3.1 Methods for Spoken Language Understanding

Section 2.2 gave a review of methods used for SLU in spoken dialogue systems. This
section will present in more detail three methods, which are evaluated on a common set of
dialogue data. Details of a grammar-based decoder are given in section 3.1.1, which is the
previous state of the art used in research by the Cambridge dialogue group. Section 3.1.2
presents a CRF model for solving SLU as a sequential labelling task. This approach is
widely adopted in the literature. This gives a contrast for the approach in section 3.1.3,

which uses discriminative classifiers trained on unaligned data.

3.1.1 Using a Robust Grammar

Phoenix is a robust semantic decoder that uses manually constructed grammars designed
to detect keywords and phrases, and converts them into semantic tags (Ward, 1994). The
Phoenix parser is designed to be robust to word errors and searches to find the best possible
parse of the input according to a metric that seeks to find the longest spanning phrases. The
grammar used in this evaluation has been specially written for the restaurant information
domain over a period of several years, and has been refined to work effectively on the Au-
tomatic Speech Recognition (ASR) hypotheses generated by the CUED Dialogue Systems
group’s speech recogniser!.

For decoding in a dialogue system, the Phoenix decoder runs on each of the top ASR
hypotheses in the N-best list, producing a single dialogue act for each. Each dialogue act is
weighted by the corresponding posterior probability assigned by the ASR in the N-best list.
Duplicates are merged to give the final distribution over dialogue acts. This configuration is

termed N-best semantic decoding.

3.1.2 Using a Conditional Random Field

Semantic decoding may be considered a sequential labelling task (Wang et al., 2005a). In
this formulation, the words in the input sentence must be labelled with BIO tags, which
encode the slot bindings in the dialogue act. Figure 3.1 gives examples of BIO tag encodings
in the restaurant information domain and how these relate to the Cambridge dialogue act
format (appendix B). To recover the full dialogue act it is also necessary to identify the
dialogue act type.

'An HTK-based recognition system, with a vocabulary of around 3000 words and a trigram language
model (Young et al., 2006)
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Words:
Labels:

Act type:
Dialogue act:

Words:
Labels:

Act type:
Dialogue act:

Words:
Labels:

Act type:
Dialogue act:

Words:
Labels:

Act type:
Dialogue act:

Figure 3.1:

okay  what is the price range
o O O O B-unbound-slot I-unbound-slot
request
request(pricerange)

cheap north  american food
B-pricerange B-food  I-food 0)
inform

inform(pricerange=cheap, food=“North American”)

where is the Chinese place
B-unbound-slot I-unbound-slot O  B-food 0]
request
request(area, food=Chinese)

thank you good bye
O O O O
bye
bye()

Example BIO tag encodings in the restaurant information domain (see ap-

pendix A). Values in the sequence of words are labelled with the slots they correspond to.
Unbound slots (slots that are being requested) are labelled with a special unbound-slot cat-
egory. The dialogue act format can be recovered from the alignment and the act type. Note
in the third example it is necessary to resolve ‘where is’ to the area slot.
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Linear chain CRFs (Lafferty et al., 2001) have been successfully applied to the sequence
labelling task (Raymond and Riccardi, 2007; Wang and Acero, 2006; Wang et al., 2005b).
This remains a popular method, used in recent studies e.g. Li et al. (2014). Other mod-
els have since been proposed for performing sequence labelling, such as Recurrent Neural
Networks (RNNs) (Yao et al., 2013, 2014). The CRF method is presented here as a repre-
sentative approach to SLU that treats the problem as sequence labelling. This is compared
with a method using binary discriminative classifiers, which take the entire sequence as

input to solve the same problem (presented in the next section).

A CREF is used to obtain the most likely sequence of BIO tag labels ¥ given the input

word sequence:

Y = argmax P(Y | X) (3.1)
Y

where X = (xo, ..., xy—1) is the input word sequence and Y = (yo, ..., yr—1) is a sequence
of labels. The joint distribution of ¥ and X takes the form of a linear chain with first order
Markov property, and the conditional probability is given as:

1
P(Y|X)=—exp| ) Afi(vi-1,yr, X) (32)

7 P\ L
where the f; are feature functions and A; are learnt weights of the model. Z(X) is a nor-
malisation term. The weights can be learnt by e.g. using a gradient descent algorithm. The
Viterbi algorithm can then be used to find the optimal sequence of labels Y.

Note that as the conditional distribution is being learnt directly, rather than the joint dis-
tribution, this is a discriminative model. Arbitrary and potentially correlated features f; can
be used in the model, for example those that use the identity of neighbouring words. Wang
and Acero (2006) found that for this reason CRFs are able to outperform generative models,
which model the joint distribution P(X, Y). Such generative models were the previous state
of the art (Wang et al., 2005a). An example of such generative models is the Hidden Markov
Model (HMM):

T-1

P(X,Y)= Z P(ye | yi—1)P(x¢ | yr) (3.3)
t=0

Following Jeong and Geunbae Lee (2008), the feature functions used in this work are
binary indicator functions that output either 1 or 0:
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« Transition features for every pair of labels y/_, and y;, a binary indicator function

1 ify, =y§_1 and y; :)’;

fk(ylflayl‘): (34)

0 otherwise

* Neighbouring word features for every label, word pair y/, x; and every T € —2,—1,0, 1,2,

a binary indicator function

1 ify, =y, andx, =x]
oo, X) = ! o (3.5)
0 otherwise

note that at T = 0 this gives the identity of the current word.

A linear chain CRF such as described above can be used to tag the word sequence, but

it is also necessary to classify the dialogue act type in order to recover the whole dialogue

act. This can be done with a complementary model in multiple configurations, but using an

altered CREF structure, the Triangular CREF, to jointly classify the dialogue act type and label

the sequence is found to perform best (Jeong and Geunbae Lee, 2008).

The triangular CRF model introduces another variable z, the fopic. In this context z is

the dialogue act type. The optimal sequence ¥ and topic (dialogue act type) £ are jointly

selected:

Y,%=argmaxP(Y, z|X) (3.6)
Y,z

the full dialogue act can be recovered from ¥ and 2.

The conditional probability in a triangular CRF is of the form:

P<Y= < |X) - Z(lxv) eXp (Z)“kfk(za Yt—1, Y1, xl‘)) exXp (Z)’kfk(z7 X)) (37)
kit k

i.e. the factors that are functions of ¥ and X are allowed to further depend on z, and the

last term introduces a series of factors depending on X and z. The f;(z, X) feature functions

are binary indicator features for every word in X and possible dialogue act type z. The

fi(z, yi—1, y1, x;) features are the same binary indicator features as above, but expanded to

also depend on z — i.e. for every possible dialogue act 7/ and feature function f; from the
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linear CREF there is a new feature function:

fe(ye—1, 3, %) ifz=7
Jie@ ye—1, yi, %) = ' (3.8)
0 otherwise

The parameters of the model {A;} are learnt as in Jeong and Geunbae Lee (2008)?. The
TriCRF? implementation of triangular CRFs is used, with all the recommended configura-

tions.

3.1.3 Using Discriminative Classifiers

This section presents the Semantic Tuple Classifier (STC) decoder, which uses a set of
discriminative classifiers to discern the dialogue act from the n-gram counts in the input
sentence (Mairesse et al., 2009).

Support Vector Machines (SVMs) are used for classification, with linear kernels, and
outputs are converted to probabilities using a sigmoid function whose shape is learnt from
cross-validation (Platt, 1999).

The STC decoder requires a set of classifiers to be trained. One multi-class classifier is
used to predict the dialogue act type, and a binary classifier is used to predict the existence
of each possible slot-binding. The training data for these classifiers does not need to be
aligned, as with the CRF approach of the previous section.

The classifiers take an utterance u as input, and give the probability of each dialogue act
type, P(d-type; | u) as well as the probability of each possible slot binding x, P(x|u). The
probability of a dialogue act D with type d-type and slot-bindings X is approximated by:

P(D|u) = P(d-typelu) [ Plxle) [T (1~ Plafw) (39)

xeX x¢X
The vector representation of an utterance u as presented in (Mairesse et al., 2009) is
fi = Cy(n-gram;) where C,(ng) counts how many times the n-gram ng occurs in utterance
u. n is allowed to range from 1 to 3, i.e. words and sequences of two and three words are
counted (unigrams, bigrams, and trigrams). Only a small number of n-grams present in the
training data occur in any single utterance, meaning this is a sparse representation. This
allows for fast training and classification with Support Vector Machines (SVMs).

2The parameters are first initialised by individually optimising P(Y |z, X) and P(z|Y, X), before going on to
optimise P(Y z| X). Optimisation is performed using the limited memory Broyden—Fletcher—Goldfarb—Shanno
algorithm.

3 Available at http://github.com/minwoo/TriCRF
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3.2. In-Car Spoken Language Understanding Corpus

The informable slots in the domain S;,r, those which the user may give constraints on
(see appendix A), are split into two categories — enumerable and non-enumerable slots.
Non-enumerable slots are those with a large number of possible values, where there may be
certain slot bindings with very few or no examples in the training data. For an enumerable
slot s, a classifier is learnt for the slot-bindings s = v and s # v for every v € V;. For non-
enumerable slots, occurrences of values in the input string are replaced with generic tags,
and a generic classifier is learnt for s =<tagged-s-value> and s #<tagged-s-value>.

In the restaurant information domain, the area and pricerange slots are considered enu-
merable while the food and name slots are non-enumerable. There are 91 possible values
for food, and 113 for name, so learning a classifier for each value would be infeasible with
realistic amounts of training data. For example, consider the input string:

“Does Seven Days serve Chinese food?”

The instances of possible values for name and food are replaced with generic tags:

“Does <tagged-name-value> serve <tagged-food-value> food?”

This then becomes a positive instance in training for the food=tagged-food-value and
name=tagged-name-value classifiers (as well as an instance of d-type = confirm). For non-
enumerable slots, slot-bindings that are very frequent in the data and the Donfcare binding
are still learnt individually.

Mairesse et al. evaluated the performance of the STC model on the Air Travel Infor-
mation System (ATIS) dataset (Dahl et al., 1994). STC was found to outperform the state
of the art in generative models (the Hidden Vector State model (He and Young, 2006)) and
perform competitively with respect to the state of the art in grammar-based decoding (Zettle-
moyer and Collins, 2007). No direct comparison was possible with CRF decoding, due to
inconsistent training and testing splits used in the literature. Section 3.3 however presents
an evaluation of the Phoenix grammar, triangular CRF decoding and STC decoding on a
common set of dialogue data.

The STC decoder is extended in chapter 4 to better handle uncertainty in the ASR hy-

potheses.

3.2 In-Car Spoken Language Understanding Corpus

The methods for SLU described in the previous sections are evaluated in an off-line corpus-
based evaluation. This section introduces the Cambridge In-Car SLU corpus, presented
in Henderson et al. (2012) and made available for download online*. The corpus has since

4The corpus may be downloaded at http://www.repository.cam.ac.uk/handle/1810/248271
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Train set Test set

Dialogues 1522 644
Utterances 10571 4882
Male : Female 28 : 31 15:15

Native : Non-Native 33 : 26 21:9

Table 3.1: Statistics of the in-car Spoken Language Understanding Corpus

been used by other research groups to evaluate techniques for dialogue act type classification
(Chen et al., 2013a) and unsupervised slot induction (Chen et al., 2013b, 2014).

The dialogue corpus data for off-line evaluation was collected using a restaurant in-
formation system for the city of Cambridge. Users can specify restaurant suggestions by
area, pricerange and food type and then can then query the system for additional restaurant
specific information such as phone number, post code, signature dish and address.

To achieve a range of differing noise conditions, participants were asked to interact
with different systems operating in a variety of conditions related to in-car dialogues; in a
stationary car with the air conditioning fan on and off, in a moving car and in a car simulator
(Gasic et al., 2012; Tsiakoulis et al., 2012). The average Word Error Rate (WER) obtained
by the speech recognition in this corpus was 37.0%.

Each section of the corpus has an equal distribution of the different in-car conditions.
Some basic statistics of the corpora are given in Table 3.1.

3.2.1 Labelling

Each utterance in the dialogue data is labelled with the correct dialogue act, as well as a
BIO tag encoding aligning the words to slot-bindings.

To facilitate labelling of the dialogue acts, the raw audio was first transcribed using
crowd-sourced workers. A Phoenix grammar was run on these transcriptions, to give fairly
reliable initial dialogue act labels. These initial labels were then corrected by hand.

The alignments between slot-bindings and the word sequences (required for the CRF
model) were then created automatically. To facilitate finding slot-bindings, a set of possible
text realisations, or aliases, for each slot-binding was created. This set of aliases, for exam-
ple says that food = “north american” can be expressed by the words american or north
american. Full details of the aliases used can be found in appendix C.

Finding the alignments is not trivial. For sentences like “where is it” and “how much
is it”, it is necessary to decide which words correspond to the unbound-slot category for
the area and pricerange slots respectively. Figure 3.1 gives an example that uses the alias
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‘where is’ to identify the area slot. The Dontcare values also need some consideration, for

example aligning “anywhere” with area = Dontcare.

The set of aliases created for this domain allows for finding alignments from the tran-
scriptions with all but 131 of the total 10,816 slot-bindings (98.8%) in the training data.
When applied to the ASR hypotheses only 73.2% of alignments can be found, due to miss-

ing words.

For CRF decoding, the aliases must be used to resolve the alignment given on testing

utterances with slot-bindings.

3.2.2 Metrics

For conventional non-statistical dialogue systems, an important metric to assess the quality
of the output of a semantic decoder is the F-score, the harmonic mean of the precision and

recall of true semantic items in the top semantic hypothesis.

Let the true reference dialogue act for an utterance be D, given by the dialogue act
type d-type,.; and the set of slot bindings X,.r. Suppose the top scoring hypothesis output
by the semantic decoder is Dy, with dialogue act type d-typehypo. Then the F-score of this

output is:
_ 2]/AnB|
F = &mm
where A = (XeerU{d-type,s}) (3.10)

and B = (Xpyp, U {d-type}lypO 13

As noted in section 2.3 , in a statistical dialogue system the distribution over all possible
dialogue acts is used to update the distribution over dialogue states. It is therefore impor-
tant that the distribution output by the SLU component accurately reflects the underlying
uncertainty. The Item Cross Entropy (ICE) between the hypotheses and the true semantics
measures the overall quality of a distribution and is shown to correlate strongly with the
performance of a statistical Spoken Dialogue System (SDS) as measured by the dialogue
reward (Thomson et al., 2008).

Suppose the full distribution output by a semantic decoder is a list of hypotheses Dyyp,
with corresponding probabilities p; for i =0, ..., M — 1, such that Z?i 61 pi=1and pg >
P1 > D22 ... 2 pm—1, Where Dy, is given by the dialogue act type d-typehypi and the set of
slot bindings Xp,yp, . The ICE score is calculated from the confidences, c(-), of each dialogue
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act type and slot binding as given by this M-best list:

M1 | 5. if d-type = d-type
c(d-type) = Z Pi yp YPChyp,

i=0 | 0 otherwise

(3.11)
M1 i 1f x € Xhyp.
C(X) _ Z p .hyp,
i=0 | 0 otherwise
These are compared with the true distribution of the semantics, c*(-),
1 if d-type = d-type
c*(d—type) _ yp YPCret
0 otherwise
(3.12)
1 ifxeX,
o* (x) _ ref
0 otherwise
to give the ICE score:
ICE = ——— Y log(c(y)c*(y) + (1 —c(»)(1 = c*())) (3.13)
I+ |Xref | yeY

where Y is a set containing all the possible dialogue act types and slot value pairs, and the
arguments to the log function are floored to remain positive.

In evaluations, the training corpus is used to train a semantic decoder, then the whole
test corpus is decoded. The F-score and ICE for each test utterance are then calculated and

averaged.

3.3 Evaluation of Spoken Language Understanding Methods

The Phoenix grammar, triangular CRF decoder, and STC decoder were evaluated on the
in-car SLU data. Table 3.2 presents the F-scores achieved by the decoders on the test set
when trained and tested on the transcriptions (not using ASR). The three methods perform
similarly, though the triangular CRF performs slightly worse than the STC and Phoenix
grammar.

Performance on ASR output is of more interest when deploying a spoken dialogue sys-
tem. Table 3.3 presents the results of evaluating the decoders on ASR output. Each decoder
is configured to output a single dialogue act for each ASR hypothesis in the N-best list
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Method F-score

Phoenix grammar 0.954 + 0.005
Triangular CRF 0.945 £ 0.005
STC 0.953 £ 0.005

Table 3.2: Training and testing on transcriptions. Results are written y 4+ 1.966 where
is the mean over all the test utterances and o is the standard error in the estimation of the
mean.

Method Trained on F-score ICE
Phoenix grammar — 0.694 £0.012 2.784 £0.116
Triangular CRF transcriptions  0.704 £ 0.012  2.539 + 0.104

top hypotheses 0.674 + 0.012 2.747 £ 0.112

Semantic Tuple transcriptions  0.707 £ 0.012  2.621 +0.113
Classifier top hypotheses 0.691 +0.012 2.561 4+ 0.108

Table 3.3: Training either on transcriptions or the top ASR hypothesis, then testing on the
top ASR hypothesis. Results are written y + 1.960 where u is the mean over all the test
utterances and o is the standard error in the estimation of the mean.

(N =10). The STC decoder selects the dialogue act that maximises the probability given by
equation (3.9). These are then weighted by the corresponding probabilities from the ASR
and duplicates are merged to give an M-best list of dialogue acts (M < N).

The discriminative statistical methods, triangular CRF and STC decoders, can either
be trained on the clean transcriptions or on noisy ASR output. Both configurations are
evaluated here. In the case of training on ASR output, only the top ASR hypothesis from
the N-best list is used.

Table 3.3 gives the F-scores and ICE scores for each system. All three systems perform
similarly, with few contrasts being statistically significant. The notable exception is the
triangular CRF decoder trained on the noisy ASR output. The triangular CRF performs
better when trained on clean data and then applied to the noisy data. Recall only around
73% of alignments can be found between the slot-bindings and the noisy word sequences.
The lack of training examples may hinder the performance of the CRF in this case. In terms
of ICE, the STC decoder benefits from being trained on noisy data.

Other than the CRF trained on noisy data, all systems achieve a similar F-score, meaning
that the top SLU hypotheses are of similar quality across systems. The ICE score shows
more variability, with the discriminative statistical systems able to improve on the Phoenix

grammar. This implies the statistical decoders are able to extract more useful information
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when applied to the more noisy ASR hypotheses lower down the N-best list.

3.4 Conclusions

This chapter has presented three methods for SLU, comparing a non-statistical but robust
grammar to two discriminative methods. The discriminative triangular CRF model treats the
task as sequential labelling and outputs an alignment, while the STC model extracts features
from the whole utterance and does not use any alignments.

These methods were evaluated side-by-side on a set of dialogue data, the in-car SLU
corpus. The three methods performed similarly, though the statistical methods were able
to extract more information from the ASR N-best list and the CRF model had difficulty
training on the ASR output.

In the following chapter, the STC framework is chosen as a basis to develop a decoder
that better exploits the information in the posterior distribution over words as given by the

ASR. The STC decoder is chosen over a CRF approach for two main reasons:

1. The STC approach does not require aligned data. This means that arbitrary feature
functions can be explored, which are not necessarily aligned with the labels in any
way. As discussed in section 3.2.1, finding the alignments is not trivial and requires
further work by an expert (such as creating a set of aliases). The results here suggest
that well aligned training data is important for the CRF model, but it is particularly
difficult to find alignments when using noisy inputs.

2. The STC model easily supports continuous features. CRFs as presented in the SLU
literature are used with discrete features such as those used in this chapter. Continuous
features may be converted into discrete features by quantisation, and CRFs may be
adapted to deal with continuous features, but learning CRFs is best understood for
discrete features (Feng et al., 2006). For example Tur et al. (2013) look at applying
CREF decoding to word confusion networks, using discrete features that do not depend
on the transition probabilities given by the network.
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CHAPTER 4

UNDERSTANDING SPEECH
RECOGNISER OUTPUT

A deployed dialogue system may be exposed to noisy conditions and a wide variety of
speakers, adversely affecting the performance of the Automatic Speech Recognition (ASR).
For example, in the in-car dialogues presented in section 3.2.1 the average Word Error Rate
(WER) was 37.0%, meaning that more than one in every three words is expected to be
misidentified by the recogniser. It is therefore important that the Spoken Language Under-
standing (SLU) is robust to this noise and fully exploits the output of the ASR.

A statistical dialogue system can exploit a distribution of hypotheses from an SLU com-
ponent, given by an M-best list of the top M dialogue acts and associated probability scores.

The previous chapter introduced a method to allow any conventional semantic decoder
to output a distribution over dialogue acts given an ASR N-best list. In N-best semantic
decoding, each of the N ASR hypotheses is individually mapped to a single dialogue act,
then duplicates are merged to give a M-best list of dialogue acts (M < N). This is a simple
way of handling the distribution output over words by the ASR employed in several dialogue
systems in the literature (He and Young, 2003; Thomson, 2009; Williams et al., 2010).
One critical limitation of N-best semantic decoding is that unless very long N-best lists are
used, the final pruned lists of semantic hypotheses are often very short! and the resulting
approximation is quite poor. Secondly each element of the M-best list is being computed
from a single element of the N-best word list even though elements of the list are highly
correlated.

It is possible to use word-level confidences from the ASR word confusion network to
improve the quality and robustness of outputs in related problems, such as call classification
(Hazen et al., 2002; Tur et al., 2004, 2002) and spoken utterance retrieval (Saraclar, 2004).

'Frequently less than 4 for the tourist information domain, and N = 10.
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Joint models have been proposed for ASR and slot filling so that the two processes can
be optimised together (Deoras et al., 2012, 2013). Alternatively, a Conditional Random
Field (CRF) decoder can be adapted and applied to the word confusion network to provide
improvements relative to N-best decoding (Tur et al., 2013). This chapter finds similar gains
from exploiting the word confusion network for SLU in the Semantic Tuple Classifier (STC)
framework.

The main contribution of this chapter is the CNet decoder, which extracts features from
the full posterior distribution of recognition hypotheses, as encoded in the form of a word
confusion network. Its performance is evaluated on both an off-line corpus and on-line in
a live user trial. It is shown that this statistical discriminative approach to SLU operating
on the full posterior ASR output distribution can substantially improve performance both
in terms of accuracy and overall dialogue reward. Furthermore, additional gains can be
obtained by incorporating features from the system’s output.

Williams (2014) and Sun et al. (2014b) reimplemented the CNet decoder using data
from the second Dialog State Tracking Challenge (DSTC) (Henderson et al., 2014b), in the
restaurant information domain (also used in this chapter for evaluation). They confirmed the
findings of the following sections — that features derived from the word confusion network

give improved performance over features derived from the N-best list for SLU tasks.

4.1 Semantic Decoder Configurations

Figure 4.1 illustrates three alternative methods for generating an M-best list of dialogue acts
given the output of the ASR. N-best semantic decoding (figure 4.1a) was used in chapter 3
to convert the output of conventional semantic decoders, which output a single dialogue act
for a given sentence, into an M-best list. This chapter investigates two alternatives in an
attempt to extract higher quality SLU M-best lists- N x M-best semantic decoding and one
run semantic decoding.

In N x M-best semantic decoding, a statistical semantic decoder is used that can output
an M-best list of dialogue acts for a single input sentence, such as the STC decoder. An
M-best list is generated for every hypothesis in the ASR N-best list, the probability scores
are then weighted by the corresponding ASR probabilities, and the collection of N M-best
lists are then merged. In contrast to N-best semantic decoding, M may be chosen freely and
is not constrained above by N. It is expected that this method will output a more varied
distribution by generating multiple SLU hypotheses per ASR hypothesis.

When training the STC model for use in N x M-best semantic decoding, a data point is
created for each of the top k hypotheses of each training utterance with the same semantic
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Figure 4.1: Semantic decoder configurations for generating an M-best list of dialogue act

hypotheses:

a) Each ASR hypothesis is decoded to give a single dialogue act. These are then weighted
by the corresponding probabilities from the ASR, and duplicates are merged.

b) Using a statistical semantic decoder, each ASR hypothesis generates an M-best list of
dialogue acts. The semantic decoders extract features from the individual hypotheses, and
optionally the dialogue context. The M-best lists are weighted by the ASR probabilities and

then merged to give a single M-best list.

¢) Features are extracted from the whole ASR N-best list or word confusion network, and
optionally the dialogue context. A statistical decoder uses these features and outputs an
M-best list of dialogue acts.
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reference label (dialogue act type or slot binding). To take account of the confidence scores
of the hypotheses, each data point in the Support Vector Machine (SVM) training algorithm
is assigned a misclassification cost proportional to the posterior probability of the hypothe-
sis. A major limitation of this approach is that the size of the training set is multiplied by k.
The training time of an SVM depends on the training set size R roughly as O(R?), so k must
be kept small.

In one run semantic decoding, the SLU component is run once, rather than N times as
in the previous configurations. Here the STC model is used. Rather than extracting features
from individual ASR hypotheses, features are extracted from the entire N-best list or word
confusion network. These features are then used to directly output an M-best list of the top
dialogue acts in rank order according to equation (3.9). The following two sections describe
weighted sum features to represent the N-best list, and word confusion network features to

represent the confusion network for use in one run semantic decoding.

4.1.1 Weighted Sum Features

The n-gram features from each of the top N ASR hypotheses are weighted by their posterior
probability and then summed, in an attempt to summarise the information in the N-best list.

This representation can be written as:

N—1
fi= Z Chyp,(n-gram;) - p;
j=0

where f; is the i element of the feature representation, p j 18 the posterior probability of the
Jj'th ASR hypothesis in the N-best list Ziyp;, and Cpy), (n-gram;) is the count of how many

times n-gram; occurs in hypothesis hyp ;.

4.1.2 Word Confusion Network Features

Recall from section 2.1, the word confusion network is a representation of the full posterior
distribution from the ASR. Word confusion networks allow for efficient calculation of the
quantities E (C, (n-gram,)), the expected frequency of n-gram,; in the utterance (if the n-gram
only appears in one path in the graph, then this is just its probability of occurrence) (Mangu
et al., 2000).

The CNet decoder uses features derived from the word confusion network:

fi = E(Cy(n-gram,)) "/ Im-erami|
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where |n-gram;| is the number of words in n-gram;. The exponentiation is a normalisation
included to compensate for the fact that longer word sequences are always less likely than
their subsequences. Without this normalisation, weights for the longer n-grams would have
to be higher to have equal influence in classification. The weight penalisation in the SVM
quadratic program would then tend to avoid placing weight on potentially useful longer

n-grams.

4.1.3 Dialogue Context Features

The STC framework can easily incorporate arbitrary features that may be relevant to decod-
ing a spoken utterance. There may be some useful information in the context of the dialogue
that could be exploited by these models. For example if the system has just requested a slot,
then it is more likely for the user to inform this slot over others.

To investigate the effectiveness of using the dialogue context in improving the robustness

of the semantic decoder, context features f; are extracted from the last system act, D,,:

1 ifx;eD
= e (4.1)

0 otherwise

where xg, X1, ... is an enumeration of all possible system dialogue act types and slot bind-
ings. The final representation of a user utterance when using this context is then a concate-
nation of the original features and the context features. This allows the models to learn a

dependence on the last act generated by the machine.

4.2 Off-line Evaluation

The in-car SLU corpus presented in section 3.2.1 is again used to evaluate different seman-
tic decoder configurations in an off-line evaluation. Table 4.1 presents the results of this
evaluation, giving the F-score and Item Cross Entropy (ICE) scores achieved on the test
corpus.

The N x M-best and one run semantic decoding configurations in all cases give sub-
stantially improved ICE scores when compared to N-best semantic decoding. This suggests
that these methods do indeed provide higher quality M-best lists. It is expected that N x M
semantic decoding with the triangular CRF decoder could show a similar improvement.
However, the implementation used (7riCRF) does not readily allow for outputting M-best
lists of dialogue acts for single input word sequences.
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Features Trained on Context F-score ICE

a) N-best semantic decoding

Phoenix - X 0.694 +0.012 2.784 £0.116 (1)

Triangular CRF  top hypothesis X 0.674 £0.012 2.747 £0.112 (2)

STC top hypothesis X 0.691 +£0.012 2.561 £0.108 (3)

b) N x M-best semantic decoding

n-grams from top hypothesis X 0.692 £0.012 1.790 £ 0.065 (4)

N-best list top 2 hypotheses X 0.703 £0.012 1.719 £0.068 (5)

hypotheses top hypothesis v 0.725 £0.011 1.529 £ 0.062 (6)
top 2 hypotheses v 0.740 £ 0.011  1.499 +£0.064 (7)

c) One run semantic decoding

Weighted sum F}sll_l\fl-(l))est list X 0.708 + 0.012  1.760 £+ 0.074  (8)
V= 10) v 0742 £ 0.011 1.497 +0.066 (9)

Word confusion  Full confusion X 0.730 £0.011 1.680 £0.062 (10)

network network v 0.767 + 0.011  1.431 £ 0.063 (11)

Table 4.1: Off-line evaluation of semantic decoders on ASR output. Results are written g +
1.960 where u is the estimate of the mean over the utterances in the test corpus and ¢ the
standard error. Results are split according to the three decoding configurations described in
figure 4.1. N-best semantic decoding results are reproduced from table 3.3 for comparison.

Row 8 is the CNet decoder.
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Standard n-gram features are evaluated with k& (the number of ASR hypotheses used
for training) set at 1 and 2. Training complexity becomes an issue for higher values of
k, and the increase in performance is negligible. The pay-off for increasing k& was found
to be higher for smaller training corpora. The systems trained on these features (rows 4
and 5) achieve F-scores comparable to Phoenix, and significantly smaller (i.e. better) ICE
scores. The decrease in ICE score resulting from increasing k from 1 to 2 is quite substantial.
Incorporating the last system act context features (rows 6 and 7) increases the F-scores to

be higher than the Phoenix result.

The one run decoders trained on weighted sum features (rows 8 and 9) perform sim-
ilarly to the k = 2 system (rows 5 and 7), suggesting that this is a reasonable method of
summarising the information in the N-best list. Recall this representation avoids the prob-

lem of multiplying the size of the training set.

The decoders using word confusion network features (rows 10 and 11) perform well in
comparison to the others. The F-score of the context independent decoder (row 10) is better
than that of any other context independent decoder. The context dependent decoder (row 11,
the CNet decoder) scored better than any other system for the F-score and ICE metrics. The
word confusion network features are comparable to weighted sum features in the limit of
increasing k, the number of top ASR hypotheses used. Intuitively, there is more information
in these features, as they may pick out n-grams that do not appear in the top N hypotheses
and furthermore assign all n-grams weights that more accurately reflect the estimate of the

expected n-gram counts.

Figure 4.2 shows an example where the keyword ‘west’ is not in the top 10 ASR hy-
potheses, causing the hand-crafted grammar and CRF decoder to fail. The word ‘west’ is
found (although with a low weight) in the confusion network, and the statistical models
have learnt typical confusions of the speech recogniser, allowing it to give some weight to
the correct hypothesis inform(area=west). The last system act in the dialogue was asking
the user to select between the west area and any area, so the model with context puts an even
higher weight on the correct hypothesis.

To demonstrate that the CNet decoder (row 11) is more robust to noise and poor ASR
performance than the Phoenix baseline, polynomial regressions were run for the two sys-
tems predicting ICE and F-score from the utterance Word Error Rate (WER) in the test set.
Figure 4.3 plots these regressions. For the F-score, a degree 2 polynomial was found to
model the data best, and for ICE a linear regression was found to be best using F-tests. The
regressions suggest that the statistical decoder degrades significantly more gracefully when
faced with speech recognition errors than the hand-crafted grammar.
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Last system output: Sorry, do you want something in the west or you don’t care?

Last system act: select(area=west, area=Dontcare)
User response: west side of town please
ASR N-best list: what kind of town please, what what kind of town please,

kind of town please, etc.

M-best dialogue acts:

CNet decoder: CNet decoder, without context features:
0.37 null()
0.79 inform(area=west) 0.32 inform(area=west)
0.15 inform(area=north) 0.14 inform(area=north)
0.05 request(food, area=west) 0.09 reqalts()
0.01 null() 0.07 request(food)
0.01 inform(area=centre)
Phoenix grammar: Triangular CRF:
0.96 null() 0.87 null()
0.04 request() 0.13  request()

Figure 4.2: Illustrative example of semantic decoder output.

4.3 Live User Evaluation

A user trial was run to investigate the effect of using the best statistical decoder found in
the previous section, the CNet decoder (table 4.1, row 11), in the context of an end-to-end
dialogue system. The hand-crafted Phoenix grammar (Table 4.1, row 1) was used to provide
a baseline.

4.3.1 Experimental Setup

One hundred native speakers of American English were recruited using Amazon Mechani-
cal Turk™ . Each was asked to use the dialogue system to find a restaurant in Cambridge
matching a set of constraints, and to then request some details. Some tasks involved speci-
fying constraints that should be relaxed in case no matching restaurant was found, and tasks
could also require the user to seek alternatives beyond the first restaurant offered by the
system. An example of a typical task was: ‘Try to find a Chinese restaurant in the west,
if there is none then try Thai food. Get the phone number and address.” After a dialogue,
the participant was asked whether or not they got the information they needed, and if they
agreed then the dialogue was recorded as being successful.

Participants were randomly allocated either a system using the Phoenix grammar, or one
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Figure 4.3: Regressions of F-score and ICE against WER. Grey lines show margins of 2
standard errors. CNet decoder is shown to degrade significantly more gracefully as the noise
as measured by the WER increases.
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using the CNet decoder. Both dialogue systems use the Bayesian Update of Dialogue State
(BUDS) framework to track the dialogue belief state, treating the dialogue planning process
as a Partially Observable Markov Decision Process (POMDP) (Thomson and Young, 2010).
The dialogue policy for each system was optimised to maximise the dialogue reward R,

R =20 - success — Number of user turns 4.2)

where success = 1 if the dialogue is successful according to the participant, and O otherwise.
This reward function provides a measure of dialogue quality reflecting the design objective
of achieving a high success rate and short dialogues. Each policy was trained using the Nat-
ural Actor Critic learning algorithm with a simulated user and a built-in error model. Each
error model was separately trained to reflect the type of confusions each decoder makes,
using real example confusions and the technique described in Thomson et al. (2012).

Note that unlike the off-line corpus, which used noisy in-car dialogues, the live trial
was conducted using relatively clean telephone calls and a different set of acoustic models
optimised for this domain. The WER over the 924 trial dialogues was 20.1%, while the
WER in the off-line corpus was 37.0%.

4.3.2 Results

The results of the trial are shown in table 4.2. The F-scores, ICE scores and Dialogue
Reward achieved by the CNet decoder are significantly better than the Phoenix grammar.
The raw success rate is also higher for the CNet decoder although the difference is not
statistically significant. The average dialogue length is shorter by half a turn on average,
and this is significant.

Figure 4.4 presents a logistic regression of success rate against the WER for the two
evaluated dialogues in the user trial, as well as linear regressions of the dialogue reward and
number of turns against the WER for successful dialogues. There is no significant difference
in the correlation of success rate and WER. However, the CNet decoder dialogue system is
found to degrade in performance more gracefully when faced with poor speech recognition
results as measured by the dialogue reward and number of turns in successful dialogues.

Overall the differences between the two decoders are not as pronounced as in the off-line
evaluation because the dialogues in the trial were at much lower word error rates. The high
success rates achieved in the user trial are indicative of this. Given the evidence of the off-
line evaluation, it is hypothesised that the advantages of the CNet decoder would become
more pronounced in more challenging scenarios such as in a car using an open far-field
microphone.

38
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Figure 4.4: Logistic regression of success rate against WER, and linear regressions of
dialogue reward and number of turns against WER for CNet and Phoenix decoders in suc-
cessful dialogs. Regressions are done on successful dialogues as both systems performed at
almost identical success rates, and the turns and dialogue reward are distributed bi-modally,
split by dialogue success. Grey lines show margins of 2 standard errors.
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Chapter 4. Understanding Speech Recogniser Output

Phoenix CNet
Dialogues 456 468
F-score 0.795 + 0.01 0.822 + 0.01
ICE 2.016 +£0.114 1.264 £ 0.077
Success Rate (%) 943+1.0 947+ 1.1
Dialogue length (turns)  6.25 £ 0.15 5.79 £ 0.13
Dialogue Reward 12.61 £ 0.28 13.14 £ 0.28

Table 4.2: Results of user trial. Errors are the standard error in the mean. Note that the
turns are 2.0 less than reported in Henderson et al. (2012), as here the two final turns of
the dialogue are not counted, where the system provides a code for the Amazon Mechanical
Turk™ feedback form.

4.4 Conclusions

While the semantic decoders evaluated in chapter 3 all performed roughly equally on clean
text, this chapter has found benefits from exploiting more information from the ASR output
when the decoders are used in a spoken dialogue system. Although N-best semantic de-
coding provides a simple way to use conventional decoders in a statistical dialogue system,
significant gains are found by using N X M-best and one pass semantic decoding configura-
tions.

Building on the STC framework proposed by Mairesse et al., this chapter has described
a statistical Confusion Network (CNet) semantic decoder, which is applied directly in a sin-
gle run to features extracted from a word confusion network. It has been shown through
off-line evaluation on a dialogue corpus collected in noisy conditions that the CNet decoder
approach outperforms both a hand-crafted Phoenix-based decoder and an STC decoder op-
erating in N-best mode. Furthermore it does this for both a 1-best F-measure metric and
a full distribution cross-entropy metric, demonstrating that the approach improves both the
quality of individual semantic interpretations and the full distribution over all interpreta-
tions. It has also been shown that the addition of context is both simple to implement in this
framework and effective in further improving performance. Finally, it has been shown via a
user trial that the performance advantages indicated by off-line evaluation do translate into

improved overall performance when used in a live dialogue system.
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CHAPTER 5

DIALOGUE STATE TRACKING

In a statistical dialogue system, Dialogue State Tracking (DST) promises to provide robust-
ness to speech recognition and Spoken Language Understanding (SLU) errors by providing
a well calibrated distribution over possible dialogue states at each turn in the dialogue (see
section 2.3). SLU gives a local classification of a spoken utterance at each turn, specify-
ing e.g. a distribution over slot-value constraints being given by the speaker. On the other
hand, a dialogue state tracker must use the history of the dialogue up to the latest turn to
keep track of the dialogue state. This includes remembering constraints given earlier in the
dialogue, dealing with confirmations from the system (“Did you want Indian food?”), and
understanding how different dialogue acts affect the state.

After formulating the task, this chapter presents a selection of methods for DST. Note
that a full review of methods for DST was given in section 2.3. The main contribution of this
chapter is a discriminative model for DST called the word-based Recurrent Neural Network
(RNN) tracker, which uses an RNN to model dialogue sequences. The tracker maps directly
from the posterior distribution over words provided by the Automatic Speech Recognition
(ASR) to a distribution over dialogue states. Word-based tracking is the first method for
DST that avoids the need for an intermediate semantic representation, the need to develop a
separate SLU component, and any inherent bottleneck from the SLU step.

Chapter 6 will then present an evaluation of these methods both off-line in a corpus-

based setting and online in a live user trial.
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Chapter 5. Dialogue State Tracking

5.1 Formulation of Dialogue State Tracking

This section defines the problem of DST as it is presented in the Dialog State Tracking Chal-
lenge (DSTC) 2 and 3 evaluations (Williams et al., 2014). The DSTCs are blind evaluations
of DST, using common data and evaluation suites, described further in section 6.1. The
following formulation of the DST task is adopted for the remainder of this thesis.

In this thesis, DST is evaluated using dialogues in the restaurant and tourist information
domains (see appendix A). Users search for venues by specifying constraints, and may ask
for information such as the phone number of already offered venues. The dialogue state is
formulated in a manner that is general to information browsing tasks such as this.

The dialogue state at each turn consists of three components:

* The goal constraint for each informable slot s € S;,r (see appendix A for notation).
This is either an assignment of a value v €V that the user has specified as a constraint,
or is a special value — either Dontcare, which means the user has no preference, or

None, which means the user is yet to specify a valid goal for this slot.

» A set of requested slots, i.e. those slots whose values have been requested by the user,

and should be informed by the system. This is a subset of ;..
* The current dialogue search method. This is one of

— by constraints, if the user is attempting to issue a constraint,

— by alternatives, if the user is requesting alternative suitable venues,

— by name, if the user is attempting to ask about a specific venue by its name,
— finished, if the user wants to end the call,

— or none otherwise.

These dialogue state components combine to give everything that a dialogue manager
should require in order to select its next action. Indeed the marginal distributions over these
state components are used as the input for the dialogue policy in the Bayesian Update of
Dialogue State (BUDS) system (see section 2.4). Note that the set of possible dialogue
states is fully specified by the domain (the sets of slots and their possible values).

Figure 5.1 gives an illustrative example dialogue with the dialogue state labelled at each
turn. In the example dialogue, turn 2 demonstrates an addition to the goal constraints. In
turn 3, the goal constraint for the area slot changes, and the search method changes from
by constraints to by alternatives. The last turn demonstrates a non-empty set of requested
slots.
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5.1. Formulation of Dialogue State Tracking

Actual System and User turn SLU output Dialogue State Labels
Turn 1
S:  What part of town did you 0.7 null() goal constraints
have mind? 0.2 inform(food= ‘north area=north
request(area) african’) requested slots

U: The North uh area
inform(area=north)

0.1 inform(area=north)

search method
by constraints

Turn 2
S:  Which part of town?
request(area)

0.8 inform(area=north,
pricerange=cheap)

goal constraints
area=north

0.2 inform(area=north) pricerange=cheap
U: A cheap place in the North requested slots
inform(area=north, —
pricerange=cheap) search method
by constraints
Turn 3
S: Da Vinci Pizzeria is a 0.7 reqalts(area=west) goal constraints

cheap place in the North of

town.
inform(name=‘Da  Vinci
Pizzeria’, area=north,

pricerange=cheap)

U: Do you have anything else,

0.3 reqalts()

area=west

pricerange=cheap
requested slots
search method

by alternatives

but in the West?
reqalts(area=west)
Turn 4
S:  Cocum is a cheap place in 0.6 request(phone, goal constraints
the West. address) area=west
inform(name=cocum, 0.3 request(phone) pricerange=cheap
area=west, 0.1 request(address) requested slots

pricerange=cheap)

U: What is their phone num-
ber and address?
request(address, phone)

address
phone

search method
by alternatives

Figure 5.1: Example dialogue with dialogue state labels. The left column shows the actual
system output and user input. The second column shows example SLU M-best hypotheses
and their scores. In practice, up to 10 SLU M-best hypotheses are output.

43



Chapter 5. Dialogue State Tracking

A tracker must use information up to a given turn in the dialogue, and output a probabil-
ity distribution over dialogue states for the turn. Trackers output separately the distributions
for goal constraints, requested slots and the search method. The distribution over a compo-

nent of the dialogue state is sometimes referred to as the tracker’s belief .

5.2 Baseline Methods for Tracking

Three baseline dialogue state trackers are presented. These simple rule-based approaches
provide a comparison to the trackers described in the following sections. Many approaches
for DST proposed in the literature are by contrast statistical models learnt from data (includ-
ing the approach presented in this thesis using RNNs). The baseline trackers proved strong
competition in the DSTCs, with only around half of the entries in DSTC 3 beating the top
baseline approach in terms of joint goal constraint accuracy (Henderson et al., 2014d).

Source code for all the baseline systems has been made public on the DSTC website!.

5.2.1 SLU Evidence Observations

The baseline trackers take as input the distribution of dialogue acts given by the SLU at each
turn. This distribution is first converted into a set of observations o; for each component of

the dialogue state i:

* 0g,(v) for each informable slot s € Siyr and v €V — the observation of the user provid-
ing the goal constraint s = v.

* oy, for each requestable slot s € Seq — the observation of the user requesting the slot.
* 0, (method;) — the observation of the user specifying the search method as method;.

Following the notation of chapter 3, suppose the output of the SLU is the distribution
over dialogue act hypotheses Dyy,. with corresponding probabilities p; fori =0, ..., n—1,
where Dyyp. is given by the dialogue act type d-typey,y,,, and the set of slot bindings Xpyp, -

The observations are then calculated as follows:

pi ifs=v & Xnyp,
n—1 !
0g, (V) =Y, or d-typey,y,, = affirm and last system act confirmed s=v ~ (3.1)
=0
l 0 otherwise

'http://camdial.org/~mh521/dstc/
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5.2. Baseline Methods for Tracking

Last system act, a
confirm(area=east)

SLU M-best list

0.6 inform(food=indian)

0.3 request(phone, food=italian)
0.2 affirm()

0.1 reqalts()

gy, (Indian) = 0.6
Ogjo0q italian) = 03
Ogurea (€0ST) = 02
om(by constraints) = 0.9
om(by alternatives) = 0.1

= 03

Orphone

Figure 5.2: Example demonstrating the calculation of the SLU observation quantities, o;.
The observations not listed above are all 0. The top two acts in the SLU output contribute
evidence for the indian and italian hypotheses for the food goal constraint. In the con-
text of the last system act, the affirm() hypothesis from the SLU provides evidence for the
area=east goal constraint hypothesis. All the hypotheses imply a search method of by con-
straints apart from the reqalts() act, which implies by alternatives.

for each value v €V.

if d-type = request and s € Xpvp.
yp hypl- q hypz (52)
i—0 | O otherwise

n=1 | p. if d-type,.. implies search method ;
om(method ;) = Z P YPChyp, TP /
i=0 | O otherwise

(5.3)

for each search method, method;.

A worked example is given in figure 5.2 to illustrate the calculations. The o; quantities
are identical to the p™ quantities calculated in Sun et al. (2014b).

5.2.2 One-best Baseline

The one-best baseline gives a single hypothesis for each component of the dialogue state,
whose value is the top scoring suggestion so far in the dialogue.
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Chapter 5. Dialogue State Tracking

For slot s €8jyy, it reports the value for the goal constraint at turn ¢ to be:

argmax max o, ,(v) (5.4)
v <t ’

with score the value of the max. The remaining probability mass is assigned to the None
hypothesis. Here the observation o; at turn ¢ is written o; ;. Similarly the one-best baseline
reports the search method as

argmax maxo,, ,(method) (5.5)
method  '<?

again with score the value of the max. Lastly for requested slots, the tracker assigns a score
of:

max oy (5.6)

lastInf(s, 1) <r'<t "

to each requestable slot s €Sreq, Where lastInf(s, ¢) is the last time the system informed the
slot s, previous to turn 7.

The one-best tracker implements a traditional non-statistical approach to DST, which
does not make use of the full distribution given by the SLU. Note that this tracker does not
account well for goal constraint changes; the hypothesised value for a slot will only change
if a new value occurs with a higher confidence. It also does not accumulate evidence from
the SLU over time.

5.2.3 Focus Baseline

The focus baseline includes a simple model of evidence accumulation and changing goal
constraints (the user changing their focus of attention). This tracker outputs a distribution
over dialogue states at each turn.

The probability over goal constraints at turn ¢, P(gs = v); is initialised with P(gs; =
v)_1 =0 Vv € V; (so the probability of None is initialised to 1). It is then updated as
follows:

P(gs=v) =P(gs=v)—1 (1 - Z oght(v/)> +0g,.1(v) (5.7)

VeV
This interpolates between not changing the distribution in the case that there is no infor-

mation about the goal constraint in turn #, and copying the SLU observations o, if the SLU
is certain the constraint has been given.
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5.3. Generative Tracking with Dynamic Bayesian Networks

The search method is tracked in the same manner. The initialisation is P(m = method;)_| =

0 for every search method except P(m = none)_; = 1. The update equation is:

P(m = method; ), = P(m = method;); (1 — Zomyt(methodj)> + 0m,(method;) (5.8)
J

Lastly for requested slots, the focus tracker outputs a probability score P(r); for each

§ €S8yeq at turn ¢. This is initialised so P(rs)_1 = 0, and updated with:

0 if machine action at turn ¢t informs slot s
P(rs)e = or, 1+ P(rs)i—1(1 — 0, 1) )
1 otherwise

(5.9)
This implements the same type of interpolation between previous output and new SLU
observations, with the added behaviour that the output is reset to O if the machine has in-

formed the slot.

5.2.4 HWU Baseline

Another baseline tracker, based on the rule-based tracker presented in Wang and Lemon
(2013), is also included in the evaluation of the DSTCs. This tracker uses a selection of
domain independent rules to update its outputs, similar to the focus baseline. One rule uses
a simple learnt parameter called the noise adjustment, to adjust the SLU scores.

5.3 Generative Tracking with Dynamic Bayesian Networks

This section summarises the approach taken for DST in the BUDS system (Thomson and
Young, 2010; Thomson, 2009). This has been the state of the art used for research in sta-
tistical Spoken Dialogue Systems (SDSs) in the Cambridge dialogue group for the past 4
years. BUDS defines a generative Bayesian network, which models how the hidden dia-
logue state produces noisy observations from the SLU, and changes from turn to turn. The
notation presented here is slightly adapted from Thomson and Young (2010) and Thomson
(2009) to better match the formulation of DST used in the DSTCs. A detailed introduction
to Bayesian networks is presented in chapter 6 of Bishop (2006).

The Bayesian network used in BUDS models the evolution of the goal constraints g ;,
the requested slots 7y ; and the search method m;. For each of these hidden random variables
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Chapter 5. Dialogue State Tracking

there is a corresponding true user act variable, which represents the underlying action that
the user took for that component of the dialogue state (ug,/, Uy, and u, ;). Figure 5.3 shows
the structure of the network. The structure of the distributions has been slightly simplified
in the following text, but full details of the exact structure used can be found in Thomson
and Young (2010); Thomson (2009). The framework also allows for adding dependencies
between the g variables in the network.

The network is a dynamic Bayesian network, meaning that the structure is identical
inside individual time steps, there are no connections spanning more than one time step, and
the structure connecting adjacent time steps is constant.

The observed variables in the network, the system actions a and the SLU observations
o; (see section 5.2.1), are shaded grey. The goal constraints, requested slots and search
method random variables are connected to their values in the previous time step, as well as
the system action. The corresponding conditional probability for the goal constraints is of

the form:

1— 6class(a,s) ifv="

Pgi=V|gs=v,a)= (5.10)

Oclass(a, s) ifv#£y/
where 0 < 6,;445(4,5) < 1 is the probability of the user goal changing dependent on class(a, s),
the class of the machine action with respect to slot s. The classes used are: a is informing
slot s, a is requesting slot s, a is a hello act, and other. This allows for learning that the user
is more likely to change their goal in certain contexts. Similar conditional probabilities are
used for the requested slots and search method.
The true user act variables are connected to the variables for their respective state com-

ponents, with corresponding conditional probability:

1—6;, ifv=y
Plu;=v|gi=V)= (5.11)
0; ifv£y
where 0 < 6; < 1 is the probability of the user not disclosing their true goal and is typically
set to a small value.

Lastly the observations o; are connected to the u; variables. This is a deterministic
connection forcing the marginal distribution of the u; to be set to the observations from the
SLU.

The 0 parameters are parameterised by Beta distributions. The hyperparameters of these
beta distributions, as well as other hyperparameters that parameterise the priors for the first
time slice are hand-crafted to sensible values by the system designer. The hyperparameters
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for each s E€Sins

~

for each 5 €Seq

=

for each s €Seq

for each s ESjy¢

Figure 5.3: Dynamic Bayesian network structure for DST, showing two consecutive time
steps. For brevity the ¢ subscript is omitted and variables in the 7 + 1 time step are marked
with a prime (/). Observed nodes are shaded grey. The connections in the graph encode
the conditional independency relationships in the joint distribution of the random variables.
The conditional probabilities are given in the text.
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can also be learnt using expectation propagation and unlabelled dialogue corpora. Expecta-
tion propagation is used to infer marginal distributions over the g, ry and m variables (the
required output of the dialogue state tracker). This is an approximate Bayesian inference
technique, which can be optimised to run quickly and accurately for these networks. More
details on expectation propagation for parameter learning and inference is given in Thomson
et al. (2010b).

5.4 Discriminative Dialogue State Tracking

There are several deficiencies of generative models, some of which were identified in Williams
(2012). Generative approaches must model all the correlations in the input features, so they
cannot easily exploit arbitrary but potentially useful features of the dialogue history. Any
such features must be included into the user model requiring new structures and dependen-
cies to be learnt or specified.

The generative models used for DST make many independence assumptions in order to
make the models tractable, in terms of both computational complexity and the number of
parameters that must be learnt. In particular, the current implementations do not model ASR
and SLU error correlations, instead assuming independence for simplicity.

The assumption made by the generative models used for DST that the ASR and SLU
errors are uncorrelated is unrealistic, and can lead to poor performance. Any given speaker
will cause certain misrecognition patterns in the ASR that cannot currently be exploited. For
example, a key concept may be consistently misinterpreted by the SLU. A generative model
might accumulate more and more evidence for the wrong interpretation in a dialogue as the
user repeats themself and the same misinterpretation is made. Ideally the system would learn
to not trust certain concepts so readily, and to identify when a misinterpretation is likely to
have been made. For example, if a certain word is always misinterpreted as another, then
existing generative models will consistently make the same mistake. However, an ideal
dialogue state tracker would learn this confusion and track the dialogue state accordingly. It
would be possible to address this in generative models by e.g. increasing the complexity of
the generative model’s distribution of observations given the true user action P(o |u). Note
that this may cause issues of data sparsity when learning the new parameters.

Discriminative models address these issues by directly modelling the distribution over
the dialogue state given arbitrary and possibly correlated input features. A remaining ad-
vantage of generative approaches is that their internal processes remain relatively easy to
understand and inspect. The user model generally defines a generative story of how an

internal hidden dialogue state generates observations. Some discriminative models can be
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somewhat opaque, particularly the huge networks of interconnected neurons used in RNNs
and neural networks. There are however techniques for inspecting a learnt RNN, such as
looking at gradients of key neurons with respect to particular input patterns. Other discrim-
inative approaches are easier to inspect, for example human-understandable decision trees
are the key building block of the discriminative ranker used in Williams (2014).

This section will describe some discriminative methods for DST. The following sec-
tion will then present how RNNs can be applied to discriminative DST, which is the main

contribution of this chapter.

5.4.1 Using Static Classifiers

DST can be considered as specifying the distribution:

P(s¢| 00, ..., 0) (5.12)

where s; is the dialogue state at the current turn ¢, and oy, ..., o; is the sequence of obser-
vations from the SLU and machine actions up to and including the current turn. One key
issue with this approach is that it is necessary to extract a fixed dimensional feature vector
to summarise a sequence of arbitrary length observations oy, ..., o;.

Given a feature representation, this distribution has been modelled using a variety of
discriminative models including maximum entropy linear classifiers (Bohus and Rudnicky,
2006; Lee and Eskenazi, 2013; Metallinou et al., 2013; Williams, 2012, 2013), neural net-
works (Henderson et al., 2013; Ren et al., 2014b,a; Sun et al., 2014b) and ranking models
(Williams, 2014).

This section presents in some detail the method used in Metallinou et al. (2013), which
is fairly representative of this class of techniques. Consider tracking the correct value for
the user’s goal constraint for a given slot s. Metallinou et al. extract a feature vector f from
the observation and a set of vectors f, for each v that has appeared in the SLU so far. The f,
features are intended to convey information about the correctness of the v hypothesis for the
goal constraint on slot s. The f features are of general interest, and are also used to calculate
the probability of the None hypothesis.

The general f provide aggregate information about the dialogue history, including:

* the size of the SLU M-best list in the latest turn
* the entropy of the SLU M-best list in the latest turn
* the posterior scores from the ASR in the latest turn
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* the mean and variance of the SLU M-best list lengths in the dialogue history

* the number of distinct SLU results obtained so far and the entropy of the correspond-
ing probabilities

For a value v, the value specific features f, include:

¢ information about the latest turn:

— the rank and probability score of the s = v hypothesis in the SLU list
— the difference between the probability score of the s = v hypothesis and the top
scoring hypothesis in the SLU list

* information from the dialogue history:

— the number of times the hypothesis s = v has appeared in the SLU so far

— the number of times the hypothesis s = v has appeared in the SLU so far at each

particular rank
— the sum and average of the confidence scores of SLU results containing s = v

— the number of possible past user negations or confirmations of s = v
* information about likely ASR errors and confusability:

— estimates for the likelihood of s = v being correctly identified by the SLU, esti-
mated on held-out training data

— a similar estimate for the prior probability of s = v appearing in an SLU M-best
list, and at specific rank positions in the list

— similar estimates for how likely s = v is to be confused with other hypotheses s

:V/

The approach of looking at sums and averages of features to summarise the dialogue
history in a fixed length vector is typical of these methods. In Henderson et al. (2013) an
alternative approach is used, involving a sliding window that runs over features f, ;, which
depend on the value v and turn ¢.

Though the features f, are of a fixed dimension, there is a dynamic number of such
features calculated at each turn as more values v appear in the SLU hypotheses. This is
dealt with in the static classifier by tying the parameters that interact with the f, vectors.
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5.4.2 Using Conditional Random Fields

The use of static classifiers essentially ignores the sequential nature of the input, using fea-
ture functions that attempt to summarise the sequence. A Conditional Random Field (CRF)
can be used to do sequential labelling of the dialogue (Kim and Banchs, 2014; Lee, 2013).
A linear-chain CREF is used (very similar to the CRF method described in section 3.1.2 for
SLU), which learns the conditional distribution:

P(so, -, 8|00, ---,01) (5.13)

This is then marginalised to give the distribution for the latest state s;,. Features like
those used in section 5.4.1 to extract information about hypotheses for the current turn are
used, except these are calculated for all turns in the history.

One key issue with using CRFs for DST is that continuous features must be quantised, as

the CRF modelling techniques in all published work on DST so far require discrete features.

5.5 Discriminative Tracking with Recurrent Neural Networks

RNNs are discriminative models that can deal with the sequential nature of the dialogue
without requiring features to summarise the history. Unlike the proposed CRF models, they
can easily deal with continuous features.

This section describes a Recurrent Neural Network (RNN) model for DST, a discrimi-
native approach to state tracking first presented in Henderson et al. (2014a). The RNN takes
as input at each turn a feature representation of the last machine action and the SLU output
from the user. The RNN updates an internal memory and outputs a new distribution over the

dialogue states. The following section provides a definition of this model.

5.5.1 Feature Representation

Extracting n-gram type features from dialogue acts provides the feature representations
needed for input into the RNN. The process of converting a dialogue act to a list of n-grams
is outlined in table 5.1.

This provides a method of representing the dialogue acts output by the system. The
SLU M-best dialogue act list is encoded in the same way except that the n-grams from each
hypothesis are weighted by the corresponding probabilities, and summed to give a single
feature vector.

A combined feature representation of both the SLU M-best list and the last machine act
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SLU M-best list

Machine act

inform(area=east) 0.9 confirm(area=east)
inform(area=west) 0.1
inform area east 0.9 confirm area east 1.0
inform area west 0.1 confirm area 1.0
inform area 1.0 area east 1.0
area east 0.9 confirm 1.0
f area west 0.1 area 1.0
inform 1.0 east 1.0
area 1.0
east 0.9
west 0.1
inform <slot> <value> 1.0 confirm <slot> <value> 1.0
<slot> <value> 1.0 confirm <slot> <value> 1.0
<slot> 1.0 <slot> <value> 1.0
<value> 1.0 <slot> 1.0
¢ inform area <value> 1.0 <value> 1.0
S area <value> 1.0 confirm area <value> 1.0
<slot> east 0.9 area <value> 1.0
<slot> west 0.1 confirm <slot> east 1.0
inform <slot> east 0.9 <slot> east 1.0
inform <slot> west 0.1
inform <slot> <value> 0.9 confirm <slot> <value> 1.0
<slot> <value> 0.9 <slot> <value> 1.0
f, <value> 0.9 <value> 1.0
inform area <value> 0.9 confirm area <value> 1.0
area <value> 0.9 area <value> 1.0

Table 5.1: Extracting n-gram features from the dialogue acts in the SLU M-best list and the
machine act, showing f, f_ ., and £, For all v ¢ {east, west} f, = 0.
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is obtained by concatenating the vectors. This means that in table 5.1 the area feature from
the SLU and the area feature from the machine act contribute to separate components of the

final vector representation f.

5.5.2 Generalisation to Unseen Dialogue States

One key issue in applying machine learning to the task of dialogue state tracking is being
able to deal with states that have not been seen in training. For example, the system should
be able to recognise any obscure food type that appears in the set of possible food types
(Vfooa)- A naive neural network structure mapping dialogue act n-gram features to an up-
dated distribution for the food slot, with no tying of weights, would require separate exam-
ples of each of the food types to learn what dialogue acts are associated with each. In reality
however, dialogue act n-grams such as ‘inform <value> food’ and ‘<value>food’ are likely
to correspond to the hypothesis food=‘<value>’ for any food-type replacing ‘<value>’.
The approach taken here is to embed a network that learns a generic model of the updated
belief of a slot-value assignment as a function of tagged (or delexicalised) features, i.e.
features that ignore the specific identity of a value. This can be considered as replacing all
occurrences of a particular value with a tag like ‘<value>’. Table 5.1 shows the process of

creating the feature vectors, f; and f, from the untagged vector f.

5.5.3 Recurrent Neural Network Structure

This section describes an RNN structure for tracking the goal constraint for a given in-
formable slot s € Sj,¢ throughout the sequence of a dialogue. The RNN can be thought of as
a combination of Elman and Jordan types (see appendix D); at each turn it takes the previous
output as input, but it also uses a hidden layer as a recurrent internal memory.

In what follows, the notation a®b is used to denote the concatenation of two vectors, a
and b. The i component of the vector a is written a;.

The RNN takes the most recent dialogue turn (user input plus last machine dialogue
act) as input, updating its internal memory and calculating an updated distribution over the
values for the slot.

The RNN holds an internal memory, m € RMnem | which is updated at each step. If there
are N possible values for slot s (i.e. N = |V;l), then the probability distribution output p is
in RV*!, with the last component py giving the probability of the None hypothesis. Recall
the None hypothesis is that no value has been mentioned yet by the user for this slot’s goal
constraint.

Figure 5.4 provides an overview of how p and m are updated in one turn to give the new
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) [m
softmax logistic

for each slot, s
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1
/

Figure 5.4: Calculation of p’ and m’ for one turn. This is an illustration of equations (5.14-
5.17).

belief and memory, p’ and m’. An alternative summary of the RNN structure is presented in
figure 5.5, which uses a more conventional layout. In both diagrams, the slot s runs over all

slots in Sj,r and the value v over all values in V.

One part of the neural network is used to learn a mapping from the untagged inputs, full

memory and previous beliefs to a vector h € RV, which goes directly into the calculation of
/

P:

h = NNet(fopom) € RY (5.14)

where NNet(-) denotes a neural network function of the input. In this chapter all such net-
works have one hidden layer with a sigmoidal activation function. Appendix D explains this
notation further.

The sub-network for h requires examples of every slot value in training, and is prone
to poor generalisation as explained in section 5.5.2. By including a second sub-network
for g that takes the feature vectors f; and f, as input, it is possible to learn behaviours that
generalise across values. For each value v, a scalar component of g is calculated using the
neural network:

gy = NNet(fof;of,&{p,, py}Em) € R (5.15)

56



5.5. Discriminative Tracking with Recurrent Neural Networks
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Figure 5.5: Recurrent Neural Network structure for DST. Inputs to the network are given
along the bottom, and the network proceeds upwards. This is an illustration of equa-
tions (5.14-5.17), and is equivalent to figure 5.4. The f, f;, and f, input vectors are the
untagged, slot-level delexicalised and value-level delexicalised features respectively (see ta-
ble 5.1). The output distribution of the tracker in the previous turn is p, and p’ is the output
in the current turn. The network’s memory m has a recurrent connection. The g and h
vectors are internal hidden layers of the network. Note that the output p’ becomes an input
in the following turn. Hidden layers between the inputs to h and g, have been omitted for
space.
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| | (concatenation)
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Figure 5.6: Delexicalised Recurrent Neural Network structure for DST. This is the same
structure as given in equations (5.14-5.17), and figures 5.4 and 5.5, with the exception that
the sub-network for h is omitted.
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5.5. Discriminative Tracking with Recurrent Neural Networks

By using regularisation (see appendix D), the learning will prefer where possible to use
the sub-network for g rather than learning the individual weights for each value required in
the sub-network for h. This sub-network is able to deal with unseen or infrequently seen
dialogue states, so long as the state can be tagged in the feature extraction. This model can
also be shared across informable slots since f; is included as an input, see section 5.7.2.

The sub-networks applied to tagged and untagged inputs are combined to give the new
belief:

p’ = softmax([h+g|®{B}) c RV*! (5.16)

where B is a parameter of the RNN, contributing to the None hypothesis (learnt as part of
the Stochastic Gradient Descent (SGD) learning procedure). The definition of the softmax

function is given in appendix D.

The contribution from g may be seen as accounting for general behaviour of tagged
hypotheses, while h makes corrections due to correlations with untagged features and value
specific behaviour e.g. special ways of expressing specific goals and fitting to specific SLU
confusions.

Finally, the memory is updated as follows:

m = o (Wyf+W,m)e RVnem (5.17)

where the W, are parameters of the RNN, and o (x) = ¢'/1+¢".

5.5.4 Requested Slots and Search Method

A similar RNN structure is used to track the requested slots. Here the v runs over all the
requestable slots s €Sreq, and requestable slot names are tagged in the feature vectors f;,.
This allows the neural network calculating g to learn general patterns across slots just as in
the case of goals. The equation for p’ is changed to:

p = o(h+g) (5.18)

(rather than the softmax) so each component of p’ represents the probability (between 0 and

1) of a slot being requested.

For search method classification, the same RNN structure as for a goal constraint is used.
No tagging of the feature vectors is used in the case of search methods.
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5.5.5 Key Parameters

There are several parameters of the RNN structure and SGD learning algorithm that must be
specified. This section lists the key parameters, and gives default values for the parameters,
which are used for the evaluations in this thesis unless it is specified otherwise in the text.

In learning, SGD is used to maximise the log probability of batches of N = 20 training
dialogues at each step. An 12 regularisation term is used, weighted by A = 1.0. Each
learning step uses a fixed learning rate of 7 = 0.1. Gradients are clipped to lie between —1
and 1. See appendix D for more information on the learning procedure.

The structure and size of the RNNs is specified by a few key dimensions. Firstly the size
of the memory |m| is set to 5. The sub-network used to calculate h has one hidden layer,
of size Hy, say, set to 32 for the RNNSs used to track the search method and requested slots.
For the RNN tracking the goal constraint for slot s, Hy, is set to |Vi| 4 10 (recall V; is the
set of possible values for s), i.e. the size of the hidden layer scales linearly with the size of
the output layer for the sub-network. The sub-network used to calculate g, has one hidden
layer, of size Hy = 32.

5.6 Direct Word-based Tracking

Instead of using n-gram features extracted from the SLU as input to the RNNs, it is possible
to directly use n-gram features extracted from the ASR output. Mapping directly from the
ASR to the dialogue state is termed word-based DST. Doing so removes the need for an
explicit SLU component, and directly estimates the dialogue state given the distribution
over words output by the ASR. This results in high dimensional feature vectors (growing
with the size of vocabulary), but neural networks are able to reduce high dimensional vectors
into meaningful lower dimensional representations (Hinton and Salakhutdinov, 2006).

While tagging values in the SLU-derived n-grams to calculate f, is trivial, this needs
some thought for ASR-derived n-grams. The simplest method is to do direct string match-
ing on the ASR hypotheses, comparing the value in the database with the word string. For
example “serving italian” is tagged to become “serving <value>. This is a very similar
problem to the task of finding alignments in SLU data discussed in section 3.2.1. A similar
approach is adopted here, where a hand-written set of aliases is used to identify text reali-
sations of slots and values in input sentences. Appendix C gives a full specification of the
aliases used.

Relying on n-gram features may adversely affect the model’s ability to scale to new do-
mains. Though n-gram features are shown to be sufficient in understanding the user’s speech
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in the limited restaurant information domain (chapter 3), their limited representational pow-
ers may not be so effective in other domains. Unigrams, bigrams and trigrams may fail to
represent adequately sentences in domains where complex grammar is used introducing e.g.
long range dependencies between words.

However, the RNN framework may accept arbitrary features, and so more complex rep-
resentations of the input could be considered for more complex domains. For example, it
could be beneficial to exploit features extracted from grammatical parse trees, using para-
phrase databases, and semantic relations from resources like Wordnet (Fellbaum, 1998).
This is not studied in this thesis.

Word-based DST has two key features that make it an attractive method. The first is that
it does not require any intermediate semantic format. This means that there is no need to
design a dialogue act format such as given in appendix B. The model has the potential to
outperform conventional DST, as it skips the inherent information bottle neck resulting from
compressing the information in an SLU M-best list. By solving the problem in one step,
there is no need to separately train an SLU on disjoint training data. The second advantage
is that the RNN structure allows for pooling training data across slots, by removing the sub-
network for h. Such a network is termed a delexicalised word-based RNN, and is illustrated
in figure 5.6. This means that models can be applied directly to new slots in new domains.

There is a special Dontcare value for each slot’s goal constraint, which means the user
has specified they do not wish to constrain the slot. To allow modelling of this value, a
special value-dependent feature is introduced f, ;, which is 1 if v = Dontcare and 0 other-
wise. This allows the model to specifically learn the phrases that correspond to the Dontcare
value.

Figure 5.7 demonstrates feature extraction for a word-based RNN tracker, a process
analogous to SLU feature extraction described in section 5.5.1. The representation used
is essentially the weighted sum representation of an ASR N-best list introduced in sec-
tion 4.1.1. It would also be possible to use n-gram features derived from the word confusion
network, but this is not investigated here.

5.7 Training Recurrent Neural Network Trackers

This section discusses training techniques for RNN-based DST. The training and develop-
ment datasets from the second DSTC (dstc2_train and dstc2_dev) are used to evaluate the
training techniques. For a full description of this data and the evaluation metrics, refer to
chapter 6. The accuracy metric measures the correctness of the top dialogue state hypothe-
sis, and the L2 metric measures the quality of the entire dialogue state distribution. A lower
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Figure 5.7: Example of feature extraction for one turn, giving f, f; and f,. Here s =food.

all v ¢{indian, jamaican}, f, = 0.
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5.7. Training Recurrent Neural Network Trackers

Shared init. dA init. Accuracy L2

0.686 0.477

v 0.688 0.466

v 0.680 0.479
v v 0.696 0.463

Baseline: 0.612 0.632

Table 5.2: Performance for the joint goal constraint subtask on the DSTC 2 dev set when
varying initialisation techniques for word-based tracking. Full details of the dataset and
evaluation metrics are given in section 6.1.2. For each row, 6 trackers are trained and then
combined using score averaging. The final row shows the performance of the focus baseline
tracker.

L2 score is better.

The Recurrent Neural Networks (RNNs) for DST are trained using back propagation
through time and SGD, maximising the log probability of the sequences of observed beliefs
in the training data for a fixed number of training epochs. Gradient clipping is used to avoid
the problem of exploding gradients. A regularisation term is included, which penalises the

[2 norm of all the parameters. Further details are given in appendix D.

When using the ASR N-best list in word-based tracking, f is typically of dimensionality
around 4,000. With so many weights to learn, it is important to initialise the parameters well
before starting the SGD algorithm. Two initialisation techniques have been investigated, the
denoising autoencoder and shared initialisation. These were evaluated by training trackers

on the dstc2_train set, and evaluating on dstc2_dev (see table 5.2).

5.7.1 Denoising Autoencoder Initialisation

A denoising Autoencoder (dA) is used to initialise the parameters of the RNN that multiply
the high-dimensional input vector f, following the technique presented in appendix D.

An /1 regularisation term is added to the cross-entropy cost when learning the dA to
encourage the learning of sparse weights. As the ASR features are likely to be very noisy,
dense weights would be prone to overfitting the examples.

When initialising the weights in the RNN with weights learnt in a dA, training is ob-
served to converge faster. Table 5.2 shows that dA initialisation leads to better solutions.
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5.7.2 Shared Initialisation

It 1s possible to train a slot-independent delexicalised RNN, using training data from all
slots, by not including h in the model (the dimensionality of h is dependent on the slot). In
shared initialisation, such an RNN is trained for a few epochs, then the learnt parameters
are used to initialise slot-dependent RNNs for each slot.

Table 5.2 suggests that performance is optimised by using a combination of shared ini-

tialisation with dA initialisation.

5.7.3 Model Combination

Model combination, combining the output of multiple RNNs trained with varying param-
eters, can help provide top accuracies. The technique for model combination used here
is score averaging, where the final probability for each component of the dialogue state is
computed as the mean of the probabilities output by all the trackers being combined. This
is one of the simplest methods for model combination, and requires no extra training data.
It is guaranteed to improve the accuracy if the outputs from the individual trackers are not
correlated, and the individual trackers operate at an accuracy > 0.5.

Multiple runs of training the RNNs were found to give results with high variability and
model combination provides a method to exploit this variability. In order to demonstrate the
effect, 10 trackers with varying regularisation parameters A (see section 5.5.5) were trained
on dstc2_train and used to track dstc2_dev. Figure 5.8 shows the effects of combining these
trackers in larger groups. The mean accuracy in the joint goal constraints from combining
m trackers is found to increase with m. The single output from combining all 10 trackers

outperforms any single tracker in the group.

5.7.4 Training Set Size

Figure 5.9 presents an investigation into how much training data is needed to train the RNNS.
The trackers are trained including the sub-network for h. Performance on the test set is found

to be stable after roughly 1,200 training dialogues have been provided.

5.8 Conclusions

This chapter has presented a variety of techniques for DST, including rule-based baseline
methods, generative models, and discriminative models. Discriminative models are moti-

vated by the fact that they can incorporate arbitrary features of the dialogue without making
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Figure 5.8: Joint goal constraint accuracy on dstc2_dev from system combination. Ten
word-based RNN trackers are trained with varying regularisation parameters. For each m =
I, ..., 10, all subsets of size m of the 10 trackers are used to generate 19¢,, (the binomial
coefficient) combined results, which are plotted as a boxplot. Boxplots show minimum,
maximum, the interquartile range and the median. The mean values are plotted as connected
points.

i I/x/x\_x/x——x\x——k—”\x pricerange
0.90 F area
?>> : food
i 00
S o085
= i
5 r
a
< 080
075 joint
0.70 -
[ |

L L L L L | L L L L | L L L L | L
500 1000 1500 2000
Number of training dialogs

Figure 5.9: Goal constraint accuracy on the DSTC 2 test set for word-based RNN with
varying amounts of training data. The mean and standard error of the accuracies of three
trained RNNSs are plotted.
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any independence assumptions. An RNN-based framework is presented, which explicitly
models the sequence of the dialogue while allowing for continuous high dimensional inputs.

Word-based tracking with RNNs is proposed, which avoids the need for any interme-
diate semantic interpretation, consolidating SLU and DST into one step that can be jointly
optimised. By exploiting delexicalised inputs and pooling training data across slots, this
technique should help in applying models to expanding domains (see section 6.3 and chap-
ter 7).

The proposed RNN structure is factored over slots, classifying each slot’s goal constraint
separately. The dynamic Bayesian network is factored similarly, though any structure in the
slots could be modelled in the network. Chapter 8 introduces an adaptation to the neural
network structure to output a joint distribution over all slots concurrently.

The delexicalisation used here is simple string matching between the ASR hypotheses
and the list of possible values and their aliases for a slot. In more complex domains or other
languages this may not be sufficient, and other tagging processes should be investigated
(some discussion of this is given in chapter 9).

The field of deep learning provides a plethora of structures for RNNs (such as long short-
term memory gates (Hochreiter and Schmidhuber, 1997)) and techniques for learning the
parameters of networks (such as ADAGrad (Duchi et al., 2011)). Use of these may improve
the performance of the learnt networks. In particular, an improved model of memory might
be helpful for more complex domains, for example those where the users’ language involves
more dependencies with earlier turns.

Chapter 6 presents an evaluation framework for DST, and evaluates the methods pre-
sented here in an off-line corpus-based trial. Results of an online user trial will also be

presented.
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CHAPTER 6

EVALUATION OF DIALOGUE STATE
TRACKING

Chapter 5 introduced a variety of methods for Dialogue State Tracking (DST), and this
chapter seeks to evaluate them in an off-line corpus evaluation. A live user trial is also
carried out to compare discriminative Recurrent Neural Network (RNN)-based trackers with
a generative tracker.

Until recently, different research groups have used data from disparate domains, preclud-
ing direct comparisons of DST methods. The Dialog State Tracking Challenges (DSTCs)
have provided common corpora and a standardised evaluation framework for DST (Williams
et al., 2014). This has opened the problem to new researchers and smaller research groups
in the field; developing a whole dialogue system, collecting the large number of dialogues
required, and then labelling them is cumbersome, expensive, and time-consuming. As a
result of the DSTCs evaluations, there is a considerable collection of competing meth-
ods with which RNN-based tracking can be directly compared, populating the rows of ta-
bles 6.2 and 6.3 in the evaluations presented here.

This chapter presents in detail the second and third DSTCs (DSTC 2 and 3), of which
the author was the lead organiser. These are used to evaluate the methods for DST presented
in chapter 5.

A live user trial is also presented in section 6.5, which is the first analysis of deploying

discriminative DST in a live dialogue system.
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6.1 Dialog State Tracking Challenges

As mentioned above, common dialogue corpora labelled with the dialogue state provide a
useful resource for researchers in the field. The DSTCs have released such corpora and
conducted blind evaluations on unlabelled test sets. The first Dialog State Tracking Chal-
lenge (DSTC), referred to as DSTC 1, released annotated dialogue corpora in the bus route
information domain (Black et al., 2011; Williams et al., 2013). Here the dialogue state was
composed of the user’s preferences for a variety of slots — route number, departure and
arrival bus stops, time of day etc.

This section describes two follow-up challenges, DSTC 2 and DSTC 3. The author was
the lead organiser for both of these challenges. The DST tasks in these challenges differ
from DSTC 1 in several interesting ways. The most important is that it requires a more
dynamic dialogue state; while in DSTC 1 the user goal was fixed and unchanging, users
are allowed to change their mind in DSTC 2 and 3. DSTC 3 introduces the challenge of
adapting models trained on one domain so that they may be applied to an expanded domain,
1.e. a domain that has new slots and values.

The corpora for DSTC 2 and 3 were collected using subjects recruited via Amazon Me-
chanical Turk™ and consist of dialogues in two domains: restaurant information, and
tourist information (see appendix A). Tourist information subsumes restaurant information,
introducing coffee shops and pubs. This expanded domain contains the same 9 slots as
restaurant information (type, area, food, name, pricerange, address, phone, postcode and
signature) but introduces new values for these slots, and also includes several new slots
(children allowed, has internet, has tv, near and price). The two challenges were arranged

as follows:

DSTC 2 released a large number of training dialogues in the restaurant information domain.
Compared to DSTC 1, DSTC 2 introduced changing user goals, tracking requested
slots, search methods as well as the new restaurants domain. Results from the blind
evaluation of DSTC 2 were presented in SIGdial 2014 (Henderson et al., 2014b).

DSTC 3 introduced the problem of adaptation to an expanded domain, tourist information.
DSTC 3 released only a small amount of labelled data (11 dialogues) in the tourist
information domain; participants could then use this data plus the restaurant data
from DSTC 2 for training, and trackers were evaluated on a large test set in the tourist
information domain. Results from the blind evaluation of DSTC 3 were presented at
SLT 2014 (Henderson et al., 2014d).
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6.1.1 Data

A large corpus of dialogues with various telephone-based dialogue systems was collected
using subjects recruited via Amazon Mechanical Turk™ , and divided into sets for the DSTC
2 and 3 research challenges.

DSTC 2

The DSTC 2 data consists of 3,235 dialogues in the restaurant information domain (see
appendix A for descriptions of the dialogue domains). These dialogues were collected as
part of a study comparing statistical and non-statistical approaches to dialogue management
(Young et al., 2013). The paid Amazon Mechanical Turk™ crowd workers were assigned
tasks and asked to call the dialogue systems. Callers were asked to find restaurants that
matched particular constraints on the slots area, price range and food type. To elicit more
complex dialogues, including changing goals, the users were sometimes asked to find more
than one restaurant. In cases where a matching restaurant did not exist they were required
to seek an alternative, for example finding an Indian instead of an Italian restaurant.

The dialogues come from 6 conditions; all combinations of 3 dialogue managers and 2
speech recognisers, with roughly 500 dialogues in each condition.

The 3 dialogue managers are:

DM-HC a simple tracker maintaining a single top dialogue state, and a hand-crafted policy

DM-POMDPHC a dynamic Bayesian network for tracking a distribution of dialogue states,
and a hand-crafted policy

DM-POMDP the same tracking method as DM-POMDPHC, with a policy learnt using
Partially Observable Markov Decision Process (POMDP) reinforcement learning
The 2 speech recognisers are:

ASR-degraded speech recogniser with artificially degraded statistical acoustic models

ASR-good full speech recogniser optimised for the domain

These give two acoustic conditions, the degraded model producing dialogues at higher
Word Error Rates (WERs). The degraded models simulate in-car conditions and are de-
scribed in Young et al. (2013).

When a tracker is deployed in an end-to-end dialogue system, it will inevitably alter the
performance of the dialogue system it is part of, and change the distribution of dialogues
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Dataset

Slot dstc2_train dstc2_dev dstc2_test dstc3_seed dstc3 test
area 2.9% 1.4% 3.8% 0.0% 4.5%
food 37.3% 34.0% 40.9% 9.1% 8.0%
name 0.0% 0.0% 0.0% 0.0% 0.0%
pricerange 1.7% 1.6% 3.1% 9.1% 3.3%
children allowed - - - 0.0% 0.2%
has tv - - - 0.0% 0.1%
has internet - - - 0.0% 0.3%
near - - - 9.1% 0.8%
type - - - 9.1% 2.6%
any 40.1% 37.0% 44.5% 27.3% 16.5%

Table 6.1: Percentage of dialogues that included a change in the goal constraint for each
informable (and any slot) in the DSTC 2 and 3 data. Almost no users asked for venues by
name.

relative to any previously collected. To simulate this, and to penalise over-fitting to known
conditions, the test set (dstc2_test) contains dialogues using a dialogue manager that is not
found in the training data. The dstc2_test set consists of all calls with DM-POMDP, in both
speech recognition configurations. All calls with the other two dialogue managers are used
for the training and development sets, dstc2_train and dstc2_dev. Specifically, the datasets

are arranged as follows:

dstc2_train labelled dataset released in October 2013, with 1,612 dialogues from DM-HC
and DM-POMDPHC, and both ASR conditions.

dstc2_dev labelled dataset released at the same time as dstc2_train, with 506 dialogues
under the same conditions as dstc2_train. No caller in this set appears in dstc2_train.

dstc2_test set used for evaluation. Released unlabelled at the beginning of the evaluation
week in January 2014. This consists of all 1,117 dialogues with DM-POMDP.

For one week in January 2014, the dstc2_test set was released without labels. At the end
of the week, participants submitted their dialogue state tracker output. This allowed for a
fair and blind evaluation of the trackers. The results were anonymised, but participants were
allowed to identify their own submissions.

A breakdown of the frequency of goal constraint changes is given in table 6.1, show-
ing around 40% of all dialogues involved a change in goal constraint. For each dataset
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Dataset Number of Average number of Number of
dialogues turns per dialogue callers
dstc2_train 1,612 7.24 138
dstc2_dev 506 7.77 41
dstc2_test 1,117 8.85 174
dstc3_seed 11 9.09 11
dstc3_test 2,264 8.27 162

Table 6.2: Simple statistics of the DSTC 2 and 3 datasets.

Dataset ASR WER F-score

degraded 30.7% 72.4%
dstc2_train good 22.4%  T78.7%
all 264%  75.7%

degraded 40.4% 67.3%
dstc2_dev good 252% 75.2%
all 319% 71.6%

degraded 33.6% 70.0%
dstc2_test good 23.5% T77.8%
all 28.7%  73.8%

dstc3_seed - 19.3% 81.5%
dstc3_test - 31.5% 78.1%

Table 6.3: WER and F-score statistics for DSTC 2 and 3 data. The F-score is calculated as
in section 3.2.2. DSTC 2 datasets are split by the ASR condition (there is no ASR contrast
in the DSTC 3 data).

and speech recogniser, table 6.3 gives the WER for the top Automatic Speech Recognition
(ASR) hypothesis, and F-score for the top Spoken Language Understanding (SLU) hypothe-
sis. The F-score and WER are calculated from the recorded performance of the live dialogue

systems.

DSTC 3 Data

The DSTC 3 dialogues were collected using paid crowd-sourced workers, as part of a study
into the Natural Actor and Belief Critic algorithms for parameter and policy learning in
POMDP dialogue systems (Jurcicek et al., 2011). In total, 2,275 dialogues in the tourist
information domain were collected. The dialogues are split into 2 sets as follows:
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dstc3_seed A setof only 11 dialogues, released in April 2014 for debugging purposes.

dstc3_test A large test set of 2,264 dialogues, released unlabelled at the beginning of the
evaluation week in June 2014.

As in DSTC 3, participants had one week with the unlabelled test data, at the end of
which they were asked to submit their dialogue state tracker output for evaluation. Par-
ticipants could exploit the dstc2_train, dstc2_dev and dstc2_test datasets (all fully labelled
at this point) in the smaller restaurant information domain when developing their trackers
for the tourist information domain in DSTC 3. Recall that the tourist information domain
subsumes the restaurant information domain, adding 5 new slots (see appendix A).

One key mis-match between the DSTC 2 and 3 datasets is the frequency of goal changes
in the data. Table 6.1 shows that 16.5% of the dstc3_test dialogues contained a change of
goal, which is less than half of the percentage in the DSTC 2 data. Table 6.3 gives the WER
and F-score statistics calculated from the live performance of the recorded dialogues for the
DSTC 2 and 3 data. The ASR performance was similar to the DSTC 2 data, but the SLU

performed slightly more accurately.

Labelling

The dialogue state labels were collected by first labelling each user utterance with its se-
mantic representation, in the dialogue act format described in appendix B (some example
semantic representations are shown in figure 5.1). The semantic labelling was achieved by
first crowd-sourcing the transcription of the audio to text. Next a semantic decoder was run
over the transcriptions, and the author corrected the decoder’s results by hand.

Given the sequence of machine actions and labelled user actions, both represented se-

mantically, the true dialogue state is computed deterministically using a simple set of rules.

6.1.2 Evaluation Metrics

The full results of the DSTC 2 and 3 evaluations include a large bank of metrics, which
measure performance in multiple dimensions for different parts of the dialogue state. In
DSTC 2, there are a total of 815 metrics calculated per tracker. Although each metric has
its own particular motivation, many of the metrics are highly correlated. From the results
of DSTC 1 it was found the metrics could be roughly split into 3 independent groups — one
measuring 1-best quality, another measuring probability calibration, and the last measuring
discrimination (Williams et al., 2013).
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6.1. Dialog State Tracking Challenges

This motivates the official featured metrics of DSTC 2 and 3 — accuracy to measure the
1-best quality and L2 to measure the probability calibration. The third group mentioned
above, of metrics measuring discrimination, is of less interest — as it only makes sense to
compare trackers based on their discrimination if they are competing at similar accuracies
(Henderson et al., 2014b). Participants in the challenge competed to perform top for these
featured metrics, and these metrics will be used to report DST performance in the remainder

of this chapter.

The accuracy metric measures the fraction of turns where the top hypothesis for a com-
ponent of the dialogue state is correct. The L2 metric is the square of the L2 norm between
the distribution reported by a tracker and the correct label, indicating quality of the whole

reported distribution. It is calculated for one turn as:

L2=(1-p)*+ Y p; 6.1)
J#i
where p is the reported distribution, and p; is the probability assigned to the correct hypoth-

esis. Note a lower L2 score is considered better.

The accuracy and L2 metrics are reported for the joint goal constraints, search method

and requested slots — giving 6 metrics in total.

The metrics are calculated only on turns where there is some information about the dia-
logue state component in question from the SLU or system output so far (schedule 2 in the
terminology of the DSTCs). For example, the joint goal constraints metrics are calculated
for all turns in a dialogue after a constraint has appeared in an SLU hypothesis or is part of

the system’s output dialogue act.

6.1.3 Oracle Tracker

The results of an oracle tracker, with access to the labels, are included in these evaluations.
The oracle tracker reports the correct label with score 1 for each component of the dia-
logue state, but only if it has been suggested in the dialogue so far by the SLU (only if the
corresponding SLLU observation o; is non-zero at some point in the dialogue history).

The performance of this tracker gives an upper-bound for the DST performance of track-
ers using only the hypotheses suggested by the SLU. Note that the RNN trackers that include
the h component have the capacity to beat this oracle in terms of accuracy in at least some
turns, as they can output hypotheses that are not included in the SLU output.
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6.2 The Second Dialog State Tracking Challenge Evalua-
tion

Nine research teams, one of which was the author, participated in the strict blind evalua-
tion of the DSTC 2 challenge. In total 31 trackers were evaluated. This blind evaluation
procedure was used to investigate the performance of the RNN approach to DST under two

contrasts:

* Input features — contrasting word-based DST (using ASR features), with conven-

tional tracking based on SLU features.

* Inclusion of h — contrasting including and omitting the sub-network for h in the
RNN. Recall h is the part of the model that allows learning special behaviours for
particular dialogue state hypotheses, and correlations with untagged features (see fig-
ures 5.4 and 5.5).

These two binary contrasts resulted in a total of 4 system variants being entered in the
challenge. Two further variants were evaluated after the official evaluation of the challenge,
using combined ASR and SLU features with and without h.

For each variant, the final tracker is the averaged output of 12 RNN trackers trained with
varying parameters (see section 5.7.3). The regularisation weight A (see section 5.5.5) is
set at 0.1 or 1. For models using h, the parameters corresponding to the sub-network for h
are weighted in the regularisation term by a factor of 0.1, 1 or 10. All combinations of the
two values for A and the 3 values for this factor give 6 parameter settings, each of which
is used to train 2 RNNs trackers for the final ensemble of 12 trackers. For models that do
not use h, the parameter H, (see section 5.5.5) is set at 10, 32 or 40, in place of varying the
regularisation factor.

In this evaluation, no aliases are used to aid in delexicalisation (see appendix C). Instead,
delexicalisation simply looks for exact string matches of the slot values and slot names as
they appear in the domain specification.

The results of the evaluation are given in table 6.4. Full results and further analysis can
be found in Henderson et al. (2014b).

It should be noted that the live SLU used the word confusion network, not made avail-
able in the challenge. The word confusion network is known to provide stronger features
than the N-best list for language understanding (Henderson et al. (2012); Tur et al. (2013);
section 3.1.3), so the word-based trackers using N-best list ASR features were at a disadvan-
tage in that regard. Nevertheless, despite this handicap, the best results were obtained from
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Features Joint Goals Search Method Requested

ASR SLU Acc. L2 Acc. L2 Acc. L2
RNN, with h v 0.768 0.346 0.940  0.095 0.978 0.035
RNN, no h v 0.746 0.381 0.939  0.097 0.977 0.038
team?2 entry2! v 0.668 0.505 0944 0.095 0.972 0.043
team7 entry(0? v 0.750 0.416 0.936  0.105 0.970 0.056

0.742 0.387 0.922 0.124 0.957 0.069
0.737 0.406 0922 0.124 0.957 0.069

RNN, with h
RNN, no h

0.675 0.550 0.880  0.210 0.885 0.197
0.619 0.738 0.879  0.209 0.884 0.196
0.719 0.464 0.867 0.210 0.879 0.206
0.711 0.466 0.897 0.158 0.884 0.201
0.601 0.648 0.904  0.155 0.960 0.073
0.729 0.452 0.878 0.210 0.889 0.188
0.718 0.437 0.871  0.210 0.951 0.085
0.735 0.433 0910 0.140 0.946 0.089
0.699 0.498 0.899 0.153 0.939 0.101
0.499 0.760 0.857 0.229 0.905 0.149

Bayesian net.
1-best baseline
focus baseline
HWU baseline?
team1 entry0*
team3 entry0?
teamo6 entry2
team7 entry4?
team§ entry1°

AN N N N N N N NN

team9 entry(

*RNN, with h
*RNN, no h

0.770 0.341 0.941 0.091 0.978 0.036
0.762 0.366 0.941  0.092 0976 0.039

0.784 0.735 0.947  0.087 0.957 0.068
0.771 0.354 0.947  0.087 0.941 0.090
0.695 0.610 0.927  0.147 0.974 0.053

team?2 entryl'
team?2 entry3!

NN
NN

team5 entry4

SLU-based oracle 0.850 0.300 0.986 0.028 0.957 0.086

Table 6.4: Results of DSTC 2 evaluation, showing performance of RNN trackers alongside
other teams ( !Williams (2014), 2Sun et al. (2014b), *Wang and Lemon (2013), “Kim and
Banchs (2014), >Smith (2014) and ®Lee et al. (2014)). The top performing trackers from
each team are selected. Results are split by the input features used, with bold indicating
the top result in the group. The RNN trackers were submitted under team4 (Henderson
et al., 2014a). An asterisk (*) indicates results from systems not submitted to the DSTC
evaluation.

75



Chapter 6. Evaluation of Dialogue State Tracking

word-based tracking directly on the ASR output, rather than using the word confusion net-
work generated SLU output. Including h always helps, though this is far more pronounced
for the word-based trackers.

The RNN trackers performed very competitively in the context of the challenge. The
word-based tracker including h (h-ASR), was top for joint goal constraints L2 as well as
requested slots accuracy and L2 among all trackers in DSTC 2. It was close to the top for
the other featured metrics, following closely entries from team 2 (Williams, 2014), which
used a static classifier approach (section 5.4.1). Williams used a discriminative ranker,
which performed well in terms of accuracy, but was among the worst for the L2 metric. The
ranker learns to put the correct hypothesis near the top in many cases, but it is not trained to
output well-calibrated probability scores. The quality of the probability scores is important
for statistical dialogue systems.

There are hundreds of metrics reported in the DSTC 2 and 3 evaluations, and it was
found that the h-ASR tracker ranked top on many of them. Considering L2, accuracy,
average probability, equal error rate, log probability and mean reciprocal rank across all
components of the dialogue state, these give a total of 318 metrics. The h-ASR tracker
ranked top of all trackers in the challenge in 89 of these metrics, more than any other tracker.
The ASR tracker omitting h came second, ranking top in 33 of these metrics.

The RNN trackers using SLU features ranked top in all of the featured metrics among
the trackers that used only the SLU output. Using both ASR and SLU features gave a modest
improvement in performance for tracking the goal constraints and search method.

Note that the word-based RNN trackers were able to improve on the SLU-based oracle
for tracking the requested slots, as they were able to propose suggestions not found in the
SLU output.

The generative technique using a dynamic Bayesian network (section 5.3) performs rel-
atively poorly in the evaluation. Though it does better than the one-best baseline, it performs

worse than the other baseline methods in tracking the goal constraints.

6.3 The Third Dialog State Tracking Challenge Evaluation

Recall the third DSTC studied the ability of trackers to adapt to an expanded domain. Train-
ing data was available in the smaller domain of DSTC 2 concerning restaurant information,
while the test data included coffee shops and pubs as well as restaurants. The set of possible
values for each slot was different in the test set, which also included 5 new slots. A summary
of the difference between the smaller training domain and expanded test domain of DSTC
3 is given in appendix A.
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6.3. The Third Dialog State Tracking Challenge Evaluation

As with DSTC 2, variant RNN trackers were submitted for the blind evaluation of DSTC
3. Seven research teams contributed a total of 23 trackers to the evaluation. The submitted
RNN trackers varied in the features they used. The first was a word-based tracker using
ASR features (ASR) and the second used both ASR and SLU features (ASR+SLU). After
the official evaluation, a tracker using only SLU features (SLU) was evaluated using the
same procedure.

For the challenge of tracking an expanded domain, it is useful to exploit delexicalised
RNNS s trackers, i.e. those that do not include the sub-network for h. As discussed in sec-
tion 5.7.2, such trackers are capable of learning across slots and can be applied to new slots

and values not found in the training data.

In all cases slot-independent delexicalised RNNs, which did not include the sub-network
for h, were first trained on the labelled data for all slots in the training set. The slot-
independent models were used to track the new slots in the expanded test domain. For
slots existing in the training set, slot-dependent models were trained by starting from the

slot-independent model and continuing training using only the labelled data for that slot.

For each tracker, an ensemble of six separate RNNs were trained with varying parame-
ters, and then combined using score averaging. The six variants arose from all combinations
of H, (the size of the hidden layer for the sub-network for g,) being set at 32, 50 or 100 and
the memory size |m| being set at 5 or 10 (see section 5.5.5). The word-based delexicalised
RNN trackers used a set of aliases to help in the delexicalisation process. Appendix C

provides a full specification of the aliases used.

Note that word-based systems using only ASR features are attractive as they do not
require an SLU system for the new domain. A tracker using SLU features leaves open the
question of how to design SLU systems for expanding domains, while word-based trackers
avoid the need for this and require no intermediate semantic representations or taxonomy of
dialogue acts.

The performance in the DSTC 3 evaluation is presented in table 6.5. The full evaluation
and further analyses are given in Henderson et al. (2014d).

The delexicalised RNN trackers performed consistently well across all tasks and evalu-
ation metrics. The ASR+SLU tracker obtained the top accuracy and L2 scores for tracking
the joint goal constraints in the challenge. Among the trackers that did not use the SLU, the
word-based ASR tracker obtained the top joint goal constraint accuracy. The SLU tracker
also performed strongly, particularly in the quality of its probability scores as measured by
the L2 metrics. Higher accuracies in this setting were obtained in the Conditional Random
Field (CRF)-based model of team7 (Ren et al., 2014b).

Note that the Bayesian network tracker performed more competitively than in the DSTC
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Features Joint Goals Search Method Requested

ASR SLU Acc. L2 Acc. L2 Acc. L2
RNN v 0.616 0.565 0.966  0.061 0.939 0.100
team5 entry0! v 0.610 0.556 0.968 0.091 0.949 0.090
*RNN v 0.570 0.611 0.965 0.062 0.938 0.104
Bayesian net. v 0.565 0.741 0.923 0.153 0.778 0.394
1-best baseline v 0.555 0.860 0.922 0.154 0.778 0.393
focus baseline v 0.556 0.750 0.908 0.134 0.761 0.435
HWU baseline* v 0.575 0.744 0.967 0.062 0.767 0.417
teaml entry3 v 0.561 0.733 0.963  0.097 0.774 0.401
team6 entryQ v 0.507 0.736 0.927  0.120 0.907 0.157
team7 entry12 v 0.576 0.652 0.957 0.116 0.938 0.101
RNN v v 0.646 0.534 0.966  0.061 0.943 0.091
team2 entryQ v v 0.585 0.697 0.965 0.114 0.929 0.121
team2 entry3 v v 0.582 0.639 0.970 0.065 0.938 0.138
team4 entry03 v v 0.630 0.627 0.853 0.272 0.923 0.136
SLU-based oracle 0.717 0.565 0.988 0.02 0.946 0.107

Table 6.5: Results of DSTC 3 evaluation, showing performance of RNN trackers alongside
other teams ('Sun et al. (2014a), ZRen et al. (2014b), 3Kadlec et al. (2014b) and 4Wang
and Lemon (2013)). The top performing trackers from each team are selected. Results are
split by the input features used, with bold indicating the top result in the group. The RNN
trackers were submitted under team3 (Henderson et al., 2014¢). An asterisk (*) indicates
results from systems not submitted to the DSTC evaluation.
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Accuracy L2

All dialogues
Bayesian network 0.630 0.618
focus baseline 0.665 0.563
SLU-based oracle 0.801 0.398

No change in goal
Bayesian network 0.694 0.519
focus baseline 0.681 0.541
SLU-based oracle 0.824 0.351

At least one change in goal
Bayesian network 0.523 0.785
focus baseline 0.642 0.600
SLU-based oracle 0.733 0.453

Table 6.6: Breakdown of performance on joint goal constraint accuracy and L2 for dia-
logues with and without at least one change in the goal constraints. There are 1,627 dia-
logues with at least one change in the goal constraints, and 2,750 with no change.

2 evaluation, outperforming the baseline trackers across all metrics. The difference in per-
formance is thought to be due to the much lower percentage of changing goal constraints in
the DSTC 3 data (see table 6.1). This is explored further in section 6.4.

6.4 Changing Goal Constraints

This section investigates the hypothesis that the focus baseline is outperforming the Bayesian
network tracker specifically in dialogues with changing user goal constraints. A collection
of 4,377 dialogues in the restaurant information domain (see appendix A), which contains
as a subset the DSTC 2 data, was split into two subsets — those containing a change in the
true goal constraint for some slot, and those for which the goal constraint does not change.

Table 6.6 shows the performance on these two subsets for the two trackers. Results of
the SLU-based oracle are also given. The oracle tracker performs more accurately in the
dialogues with no change in goal, suggesting these dialogues are inherently easier to track
than the dialogues containing changes of goal. The table confirms that while the generative
Bayesian network tracker does slightly better in dialogues with no change in goal, the focus
baseline is able to deal with goal changes far better.

Table 6.7 presents a similar analysis on the DSTC 2 test set, which is a smaller set
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consisting of 1,117 dialogues. Using this set allows for the inclusion of trackers from the
DSTC 2 evaluation (see section 6.2). Three discriminative trackers are included, two RNN-
based trackers and the ranking method of Williams (2014), which achieved the top joint goal
constraint accuracy in the evaluation. The results again show that the performance of the
Bayesian network tracker degrades substantially in dialogues containing a change in goals.
On the other hand, the discriminative trackers and focus baseline tracker do not degrade to

the same extent.

Accuracy L2

All dialogues
Bayesian network 0.675 0.550
focus baseline 0.719 0.464
RNN with SLU input 0.742 0.387
RNN with ASR input 0.768 0.346
(Williams, 2014) 0.784 0.735
SLU-based oracle 0.850 0.300

No change in goal
Bayesian network 0.751 0.428
focus baseline 0.753 0.411
RNN with SLU input 0.761 0.354
RNN with ASR input 0.788 0.319
(Williams, 2014) 0.807 0.711
SLU-based oracle 0.878 0.244

At least one change in goal
Bayesian network 0.607 0.657
focus baseline 0.689 0.511
RNN with SLU input 0.725 0.416
RNN with ASR input 0.751 0.371
(Williams, 2014) 0.764 0.756
SLU-based oracle 0.826 0.349

Table 6.7: Breakdown of performance on joint goal constraint accuracy and L2 for dia-
logues with and without at least one change in the goal constraints, for the DSTC 2 test set.
There are 497 dialogues with at least one change in the goal constraints, and 620 with no
change. The two RNN-based trackers are the trackers evaluated in section 6.2 that include
the sub-network for h. Also included is the discriminative ranking approach of Williams
(2014), chosen as it achieved the top goal constraint accuracy in the DSTC 2 evaluation.

To demonstrate the problem, an example dialogue is given in figure 6.1. The focus base-
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line is able to forget quickly the previous hypothesis for the food goal, while the generative
model needs multiple informs for the goal to change to the new correct value. This is due to
the parameter for how likely a goal is to change from one turn to the next. If this probability
were higher, then the goal would change quicker, but then the distribution would flatten out
as the dialogue progresses and the goal is not mentioned. When modelling the evolution of
goals in a generative model it is difficult to simultaneously model goal changes and permit
long lasting memory of the goal from one turn to the next.

This issue has been addressed to some extent in recent work on improving generative
models for DST. Kadlec et al. (2014b) introduce a parameter called the durability to explic-
itly model and control how easily users change goals through the evolution of the dialogue.
Including this parameter into a generative Bayesian network model improves tracking per-
formance to be comparable to the baselines and machine-learnt models that use SLU input.
However discriminative models that are trained on ASR input (such as the word-based RNN

tracker presented in this section) still outperform this approach.

6.5 Live User Evaluation

Discriminative Dialogue State Tracking (DST) with RNNs performed strongly in the oft-
line evaluations of the second and third Dialog State Tracking Challenges (DSTCs), obtain-
ing top scores in many of the metrics. In general, the DSTCs have brought DST into focus
in recent years, and many research teams have made improvements over the previous state
of the art as measured by the metrics on off-line corpus-based evaluations.

It is important to assess the performance in an end-to-end dialogue system. No published
result to date confirms the expected hypothesis that improvements on the off-line metrics
translate to an improvement in overall dialogue quality when deployed in an end-to-end
system!. Deploying a new dialogue state tracker may affect performance in an unpredicted
manner, e.g. by skewing the distribution of dialogues seen by the system relative to the
training corpora. It might also be possible for a tracker to do well on the off-line metrics
that are calculated as averages over many dialogues and turns, while not doing well enough
in specific key situations.

The proposed RNN-based method for DST is evaluated in an end-to-end dialogue sys-
tem. Gaussian process reinforcement learning is used to first learn a policy (mapping from
dialogue state to actions) for each tracker in the evaluation, in interaction with real users.

The resulting policies are then evaluated in further interaction with callers.

'A trial using simulated users presented by Kim et al. suggests that improvements in the off-line metrics
should be expected to translate to improved dialogues.
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1
Hello, welcome to the Cambridge SLU Focus
restaurant system. You can ask for — 0.95 inform(food-unusual 0.95 food=unusual v/
restaurants b’y area, p'f'Z‘C@ range or inform(pricerange=cheap)
fOOd tupe How ma I h@l Ou? 0.05  inform(food=unusual)
ype. y p you: Bayesian network
True semantics 0.95 food-unusual /
inform(food=unusual, pricerange=cheap)
2
I'm sorry but there is no restau-  SLU Focus
rant SGTUing unusual fOOd- 0.66  reqalts(food—european) 0.01 food=unusual
0.16  inform(food=curopean) 0.99 food=european
0.07  reqalts ()
0.04  affiirm(food=curopean) Bayesian network
0.03  hello(food=european,) 0.64 food—unusual
0.02 confirm(food=european) X
0.32 food=european
0.02  negate(food=european )
True semantics
reqalts(food=european)
3
I'm sorry but there is no restau-  SLU Focus
rant 867"’07:7719 unusual fOOd- 0.26  reqalts() 0.01 food=unusual
0.06 ack() 0.99 food=european
0.05 repeat()
0.04  afiirm() Bayesian network
0.04  thankyou() 0.64 food—unusual o
0.03 negate() 0.32 food=european
0.02  hello() : P
True semantics
reqalts(food=european)
4

I'm sorry but there is no restau-
rant serving unusual food.

SLU

0.91
0.02
0.02
0.02
0.01

inform(food=european)
deny(food=european)
reqalts(food=european)
confirm(food=european)

affirm(food=european)

Focus

0.01 food=unusual
0.99 food=european

Figure 6.1: Example dialogue, taken from DSTC 2 data, illustrating a change in goal con-
straint. This shows the output of the focus baseline and Bayesian network trackers for the
food slot. The remaining sum of the SLU M-best list is assigned to null() hypothesis. A tick
or cross indicates whether the top hypothesis is correct. In this example the focus baseline

True semantics

inform(food=european)

Bayesian network

0.01 food=unusual
0.99 food=european

gets an accuracy of 1.0 while the generative Bayesian network tracker gets 0.5.
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The results of the live evaluation show that a word-based RNN tracker performs top
in every measurement of dialogue quality, outperforming a generative Bayesian network
tracker and another RNN tracker that relies on the output of an SLU component.

Section 6.5.1 describes the setup of the experiment, explains the online policy learning
procedure, and presents the evaluation metrics. Section 6.5.2 presents and analyses the

results.

6.5.1 Experimental Setup

Participants were employed using Amazon Mechanical Turk™ to interact with multiple
dialogue systems in the restaurant information domain. When calling, participants would
be redirected randomly to one of 6 variant dialogue systems, arising from all combinations
of 3 dialogue state trackers and 2 acoustic conditions.

The three dialogue state trackers evaluated are:

* BN - a Bayesian network tracker, i.e. the state of the art before the DSTCs (described
in section 5.3). This uses the CNet decoder (section 3.1.3) for Spoken Language
Understanding (SLU).

e RNNSLU - an RNN tracker that uses SLU features from the CNet decoder.

* RNNASR - a word-based RNN tracker that works directly on the ASR N-best list,

without using any semantic decoder.

These are the dialogue state trackers exactly as evaluated in the DSTC 2 evaluation
(section 6.2). The two RNN trackers both include the sub-network for h, i.e. this is not
evaluating delexicalised DST. Recall in this off-line evaluation, the RNNASR tracker out-
performed the other two trackers, and came top in most of the metrics in the challenge.

Each of the three trackers is evaluated in two acoustic conditions:

* Full ASR - using speech recognition models fully trained on in-domain data.

* Degraded ASR - using under-trained speech recognition models, which closely sim-

ulate the effect of poor acoustic conditions.

These are the two acoustic conditions used to generate the DSTC 2 data (see sec-
tion 6.1.1). Recall the degraded models result in dialogues at higher WERs, simulating
poor acoustic conditions similar to those in a moving automobile (Young et al., 2013).

The participants are given tasks such as “Try to find a Chinese restaurant in the West

of town, if there is no such place try any part of town. Make sure you get the address and
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phone number.” These tasks included goal changes, and for the user to sometimes ask for
alternative suggestions.

All the variant dialogue systems use a POMDP as with the Bayesian Update of Dialogue
State (BUDS) system (Thomson and Young, 2010) so that a dialogue policy can be learnt.
However the policy, the mapping from the dialogue state tracker’s output to the next system
action (see section 2.4), should be adapted to the acoustic conditions and dialogue state
tracker of the dialogue system. Any fixed policy could arbitrarily be better suited for some
of the dialogue state tracker or acoustic conditions.

Online policy learning provides an ideal solution for learning a suitable policy in any
given dialogue state tracker and acoustic condition.

Online Policy Learning

A dialogue policy can be optimised in direct interaction with users using online policy learn-
ing. The approach taken here is to use Gaussian process reinforcement learning, which in-
ternally uses Gaussian processes to model the Q function, a key function in reinforcement
learning. Recall from section 2.4, the Q function Q(s, @) is a function of the dialogue state s
and each possible next system action a, and is an estimate of the expected future cumulative
dialogue reward if the action a is to be taken in state s.

Gaussian process reinforcement learning has recently been shown to provide a frame-
work for efficiently learning an optimal policy for a statistical Spoken Dialogue System
(SDS). The method learns a policy that outperforms those learnt in simulated interactions,
while requiring orders of magnitude fewer dialogues (Gasi¢ et al., 2013).

Fast learning is facilitated by the use of a robust dialogue reward, which compares sub-
jective and objective measures of the dialogues. At the end of each dialogue, the user is
asked whether or not they found the information they were looking for — answering ‘yes’
provides a subjective success of 1 and ‘no’ a subjective success of 0. As the task given to
the user is known to the system, an objective measure of success can also be calculated. If
the user is able to find a venue matching the given constraints, and obtain all the required
information from the system, then the objective success is 1, otherwise it is 0. Dialogues
for which the subjective and objective success measures are not equal are then filtered, and
do not take part in the policy learning. For dialogues where the success measures are equal,
the reward R is used:

R =20 - success — Number of user turns (6.2)

which favours successful yet concise dialogues. Dialogues for which the two success mea-
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sures agree, and which are used in policy learning, are termed learning dialogues.
Gasic et al. find that an optimal policy can be learnt using Gaussian process reinforce-
ment learning after 1,200 such learning dialogues. The evaluation of each of the 6 variant

dialogue systems is done in two phases:

* Online policy learning phase - each of the 6 systems (3 trackers and 2 acoustic
conditions) is initiated with a random policy, and Gaussian process reinforcement
learning is used to learn a policy in interaction with real users. In total 1,200 dialogues
are used to train each policy.

* Learnt policy evaluation phase - After policy learning, the policies are frozen and
the 6 systems take part in roughly another 500 dialogues each.

Each of these two phases is carried out concurrently for all 6 systems. In total, 10,169

dialogues are collected.

Evaluation Metrics

A variety of metrics are reported in the evaluation phase.

As mentioned above, after each dialogue the user declares whether they thought the
dialogue was successful. This gives the subjective reward which is 1 if successful or 0
otherwise.

Recall the automatically calculated objective success metric is 1 if the user is able to
find a venue matching the given constraints and obtain all the required information from the
system, otherwise it is 0.

Two dialogue reward scores are included in the evaluation. The first is called the Sub-
Jjective reward, and is the same metric included in the live evaluation of section 4.3. This is

calculated as:

Subjective reward = 20 - (subjective success) — Number of turns (6.3)

The above metrics are reported as averages over all of the evaluation dialogues. So
for example the binary success metrics become success rates, given as percentages. The
second dialogue reward score reported is the filtered reward. This score is identical to the
subjective reward, except it is calculated only over evaluation dialogues for which the two
success metrics are equal. The filtered reward is the metric that the online policy learning is
designed to optimise.
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The participants are also asked a question “The system understood me well,)” with 5
answers ranging from “strongly disagree” to “strongly agree”. This gives a metric ranging

from 0-4, which is also presented in the results.

6.5.2 Results

Table 6.8 presents the results from the evaluation dialogues. Some statistical significance
results are given in table 6.9, which pools the dialogue state trackers across acoustic condi-
tions in order to give fewer comparisons. Figure 6.2 gives learning curves for the 6 systems
during the online policy learning phase.

In general it seems that the RNN methods for DST do indeed improve end-to-end dia-
logue system performance. In table 6.9, all of the metrics place the dialogue state trackers
in the order of RNNASR, RNNSLU then BN from best to worse, and almost all of these
comparisons are statistically significant. This agrees with the ordering of the off-line evalu-
ation.

The RNN trackers show strong robustness to the noise of the degraded ASR condition.
The subjective and objective success rates of the RNNASR system in the degraded condi-
tions are higher than those obtained by the BN system with the full acoustic models. The
relative difference between the BN and RNNASR subjective success rates is quite large,
almost 10% absolute in both acoustic conditions.

Recall the dialogue policies were trained to maximise the filtered reward. For this metric
the RNN trackers significantly outperform the Bayesian network tracker. The system with
the word-based RNNASR tracker is able to score around 3 more points in the dialogue
reward than the BN system. This is a substantial improvement compared to the gain of 0.5
points found by using a more accurate SLU component in section 4.3.

In conclusion, the live evaluation has found significant and substantial gains in employ-
ing the RNN based dialogue state trackers in every metric evaluating end-to-end dialogue
quality. The off-line evaluation results were reflected in the ordering of the systems, with

the word-based RNN performing particularly strongly.

6.6 Conclusions

The proposed RNN-based framework for DST performed competitively in the off-line eval-
uations. Word-based tracking performed particularly well, a configuration that avoids the
need for any intermediate semantic interpretation, consolidating SLU and DST into one step
that can be jointly optimised. This model was found to produce high quality dialogue state
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ASR condition
Full Degraded
Sublective BN  855+16 826+17 U -
o iess e () ENNSLU = 842416  B66£15 -
" RNNASR 940+11 913+13 ©
Obiective suceess BN 669 +2.1 623+22 W
rati p” )V RNNSLU ~ 746+19 631422 % ==
? RNNASR  79.6+18  71.8+2.0 -
BN 602+0.15 6.61+014 °
Number of turns RNNSLU  5.69 £0.14  6.11 £0.15 e, e
RNNASR  530+£0.12 604014 7|
Subjective BN 11.09+0.38 991 4 0.41 o —
rew;rd RNNSLU 11.15+039 11214039 2w o™
RNNASR 13.49 +0.29 12.23 + 0.33 s
BN 10.76 044 887+049 ° —
Filtered reward ~ RNNSLU 11.54+040 1041+048 2, = L
RNNASR 13.64 + 0.30 12.39 + 0.36 5 S
“The system BN 299+005 282+006
understood me RNNSLU  3.06 +0.05 3.12 + 0.05 :;.0[1 S
well” (0-4) RNNASR  3.38+0.04 3.09+005
BN 498 493
2].”’;”’” of RNNSLU 512 485
tatogues RNNASR 496 485
Table 6.8: Results for the 6 systems using policies learnt online. Errors are the stan-

dard error in the mean. A small visualisation of the results is given for each metric in the
last column, where the systems are plotted from left to right — BN, RNNSLU, RNNASR,
BN_degraded, RNNSLU_degraded, RNNASR_degraded. Top results are made bold in each

group.
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BN RNNSLU RNNASR
(S(‘;I;JSC“VC success rate 841+12 854+1.1 927408
(0]
p-values BN - 0.4 2x107?
RNNSLU - - 2x1077
g’;eenve success rate 646415 69.0+L15 757414
(0}
p-values BN - 0.04 6x1078
RNNSLU - - 8§x 104
Number of turns 6.3+ 0.1 59+0.1 5.6 +0.1
p-values BN - 2x1074 1x10°8
RNNSLU - - 0.06
Subjective reward 105403 112403 129+02
p-values BN - 9x10°4 2x 10712
RNNSLU - - 5x10°4
Filtered reward 98+03 11.0+£03 13.0+02
p-values BN - 1x104 4x10717
RNNSLU - - 8§x10°°
The system understood 290+ 004 3.08+004 3244003
me well.” (0-4)
p-values BN - 2x1074  5x107U
RNNSLU - - 5%1073

Table 6.9: Results for the 3 dialogue state trackers using policies learnt online, pooling
across acoustic conditions. Results of Kruskal Wallis rank sum tests are given for each
metric and all three pairs of values. A p-value (of rejecting the null-hypothesis that the
values are indistinguishable) is made bold if it is lower than 3 x 1073, This threshold (<
0.05/15) is the typical 5% with Bonferroni correction as there are 15 comparisons in total.
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Figure 6.2: Moving average reward, success, and number of turns during the 1,200 learning
dialogues for each of the 6 systems starting from a random policy. x-axis is number of
learning dialogues, and grey area shows the standard error in the estimation of the moving
average, estimated using 400 dialogues.
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distributions (as measured by the L2 metric), possibly as a result of the joint optimisation,
and by avoiding any information bottle neck arising from summarising the dialogue turn
as a finite list of dialogue act hypotheses. Furthermore this method is readily applied to
expanded domains by exploiting delexicalised inputs.

The promising results in the off-line evaluations were validated in a live user trial. A
policy was learnt online for each DST configuration, optimising performance relative to
the resulting dialogue state estimations. The use of discriminative DST is seen to give
significant and substantial gains in end-to-end dialogue quality as measured by a variety of

metrics.
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CHAPTER 7

UNSUPERVISED ADAPTATION FOR
RNN DIALOGUE STATE TRACKING

Though the discriminative Recurrent Neural Network (RNN)-based Dialogue State Track-
ing methods were shown in chapter 6 to outperform Bayesian networks in the off-line and
live evaluations of the previous sections, there remains at least one advantage obtained by
defining state tracking as a generative process. By running the expectation propagation al-
gorithm over unlabelled dialogues, the parameters of a dynamic Bayesian network can be
adapted in an off-line and unsupervised manner (Thomson et al., 2010a). Updating the pa-
rameters of an RNN on the other hand requires labelled training data, as the log-likelihood
cost function used in Stochastic Gradient Descent (SGD) uses the identity of the true labels.

This chapter presents an approach to adapt the RNN parameters in a live dialogue sys-
tem, without explicit labels, when deployed in a new domain. This is applied to word-based
trackers that work directly on the words from the Automatic Speech Recognition (ASR),
so that they might adapt to the language used to express constraints on the slots in the new
domain.

Relevant fields in machine learning include semi-supervised learning (Zhu and Gold-
berg, 2009), which attempts to learn from unlabelled in-domain data, and transfer learning
(Pan and Yang, 2010), which tries to exploit labelled out-of-domain examples. The tech-
niques presented in those fields are typically designed for static classification tasks. The
approach defined here however exploits specific patterns of dialogue sequences, and is for-

mulated specifically for use in live Dialogue State Tracking.
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7.1 Online Adaptation

In this context, models are initialised with a set of reasonable parameters Wit obtained by
training on data for which labels are available. Adaptation is then the process of updating
the parameters W* having observed dialogues in the new domain. In online adaptation, W*
may be updated after each dialogue, but the parameters may not be updated using any data
from any dialogue before the tracker has output its distributions for that dialogue.

Let f; denote the input features to the RNN at turn ¢, and define F as the sequence
of inputs for a dialogue: F = (fy, ..., fr_1) where T is the length of the dialogue. An
RNN of a given structure can be considered as a function that takes a set of values for the
weight and bias parameters, W, and maps F to a sequence of distributions over the labels,

Y = (yo, ..., yr—1). In particular, for the set of initial parameters Winit

ynt = RNN (W™ F) (7.1)

Also define Y* = (yg, ey y}_l) by the following relation:

Y* = RNN(W*,F) (7.2)

Unsupervised adaptation is facilitated by defining a scoring criterion that evaluates the

adapted parameters W* without requiring any labels.

7.1.1 Ciriterion for Unsupervised Adaptation

The proposed criterion C (W*) used to score a set of parameters W* (without requiring

labels) is defined as follows:

Til . . . . . .
C(W*) = <Z H(y")H(y;, y}‘fﬁﬁ)) + AW —win| (7.3)
t=0

where H(y) = — Y yilogy; is the entropy of the distribution y and H(y, y') = — Y ; yilog(y)
is the cross-entropy between y and y'. ||W|| is the norm of the parameters W, e.g. the [2 or
/1 norm.

The regularisation term multiplying A > 0 enforces that W* should stay close to W,
In the sum, the only terms that change with W* are the cross-entropies H(y7}, y}ﬂ‘;‘l) As
y™™ is fixed, the cost is minimised if y}nfl =y; at each 7. Therefore in minimising C the
parameters W* receive a learning signal to adapt y; towards yi‘fl, weighted by H (y}nit).

At turns where the initial model is uncertain (high entropy), minimising C will attempt
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init

Dialogue Turn y Notes

Turn 1 Chinese . .
Here an initial model is likely to output a con-

System: What t f food e )
e at type o1 100 fident low entropy distribution correctly iden-

would you like?

tifying the food goal as Chinese.

ok

User: Chinese food.

The system has requested the food slot, and the
user’s response included the term ‘serving’.
This gives evidence that the user has informed

Turn 2
System: There are no
matching Chinese
restaurants.

the food slot, but the system does not under-
stand that ‘pizza’ implies Italian food. There-
fore it is likely that an initial model would
output a high entropy distribution for the food

uuu

User: Any serving pizza?

slot.

Turn 3 Italian|  If the user explicitly says ‘Italian’, which the
System: Sorry, what type of
food would you like?

system is able to match in the domain, then an
initial model can predict with high confidence
the correct value for food is Italian.

.

User: Um, Italian food.

Figure 7.1: Example dialogue where user guidance can be exploited in unsupervised learn-
ing. The entropy of the food slot is high in the second turn, and low in the third peaking at
‘Italian’. Therefore minimising C (equation (7.3)) leads to a learning signal that correlates
the n-grams in the second turn (‘Something serving pizza’) with the ‘Italian’ hypothesis for
food. The low entropy of the slot in the first turn causes the corresponding term in C to
diminish, so the signal does not lead to a correlation with the n-grams in the first turn.

to find parameters that can predict the next turn’s label according to the output of the initial
model. To illustrate this, figure 7.1 gives an example dialogue sequence where this leads to
improved parameters, W*. In general the minimisation of C works to propagate a learning
signal from later turns in the dialogue, where an initial model should be more sure about the
user’s goal, to earlier turns. The term H (y;‘f]) ensures that this signal should stop at turns
where the initial model is confident about its prediction.
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7.1.2 Schedule for Online Adaptation

The following procedure performs online adaptation of the parameters while classifying a
set of dialogues. This is used for tracking dialogues in the Dialog State Tracking Challenge
(DSTC) data, and could also be used in a live system. It works by collecting dialogues in
batches of size N, and updating the parameters using these batches.

1. Set W* = Winit and D = 0.

2. Track the next dialogue using parameters W*. Append the dialogue (represented by
the input feature sequence F) to the batch, D — DU{F}. If |D| = N, then enter step

3, otherwise return to step 2.

3. Update W* using SGD to minimise C(W™) over the dialogues in D. Reset D to (), and
return to step 2.

Note that this algorithm uses a fixed WMt that is not updated. It is possible to convert
this into an incremental algorithm, by setting W™t to W* after each batch, or after every n
batches. Empirically, it seems that the parameters diverge too far if W is updated after
every batch. Preliminary testing suggests that reasonable results are obtained if Wiy is
updated after a larger number of batches. However, for simplicity, Wjy;; is considered fixed
in the work reported here, and an analysis of incremental adaptation is left for future work.

7.2 Evaluation

This section evaluates the proposed method for online and unsupervised adaptation to ex-
panded domains in Dialogue State Tracking. The method is initially validated using data
from DSTC 2, emulating an expanded domain by removing the labels for the food slot dur-
ing training. Results on testing in an expanded domain are then presented on the DSTC 3
data.

7.2.1 Adaptation with Missing Labels

Here adaptation is evaluated using data from a single domain. A set of initial trackers is
trained without the labels for the goal constraint of slot s, which are then adapted to the task
of tracking the slot s. Though this is a fairly artificial setup, it may give some confidence
that adaptation will be beneficial during actual deployment in an expanded domain (see
next section). It is also conceivable that only partially labelled data may be available in
some cases during training due to e.g. the prohibitive cost of obtaining labels for slot s.
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Figure 7.2: Accuracy and L2 scores on the food slot for trackers trained using only la-
bels for area and pricerange. Note lower L2 scores are better. The results for individual
RNNs are shown as outlined shapes. Squares show the performance for initial RNN track-
ers (Unadapted) connected to circles showing the performance using unsupervised adapta-
tion (Adapted). The performance for combining the groups using score averaging are also
shown. The focus baseline was the strongest baseline in DSTC 2. This baseline assumes a
semantic decoder for the food slot, which the other trackers are not given.

This study investigates training delexicalised word-based RNNs for the food slot using
only labels for area and pricerange in the DSTC 2 training sets. Though the RNNs are never
exposed to labels for the food slot, they are used to classify the food goal constraint in the
DSTC 2 test set. The food slot is chosen as it is an outlier in the domain; while area and
pricerange have cardinalities 5 and 3 respectively, there are 91 possible food types. This
contributes to the food slot being the hardest to track (in the DSTC 2 evaluation, trackers
consistently scored lowest on food of all slots), and the most challenging to label.

An ensemble of six delexicalised RNNs, with varying parameters as described in sec-
tion 6.3, were trained using ASR features and the labels for area and pricerange. Each of
these can immediately be used to track the food slot without any unsupervised adaptation,
which is called the Unadapted condition. Each of the six RNNs can also be adapted online
during the classification of the test set using the procedure described in section 7.1, which

is called the Adapted condition.

Figure 7.2 illustrates the performance of the six trackers with and without online unsu-
pervised adaptation at test time. In all cases, adaptation improved accuracy on the test set.
On average the accuracy improved by 1.4% and in the best case by 3.0%. The L2 score,
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New slots OIld slots Joint
mean
Unadapted 0.866 0.877 0.552
Adapted 0.869 0.890 0.566
combined
Unadapted 0.893 0.900 0.616
Adapted 0.892 0.900 0.623

Table 7.1: Goal constraint tracking accuracies on the DSTC 3 test set for word-based RNN
trackers, with and without unsupervised adaptation. Accuracy is reported on the Old slots
and New slots, i.e. slots found and not found in the training set respectively. The joint goal
constraint accuracy is also given. In each condition, a group of six RNNs are trained. Mean
accuracies for the group are reported, as well as the accuracies of the groups combined using
model averaging. For mean results, bold denotes a difference of over 2 standard errors.

which measures the quality of the probability scores, was on average improved but in certain
individual cases the L2 score deteriorated slightly.

The two groups of six were combined using score averaging. The combined results
also demonstrate a slight improvement using adaptation, with the combined Adapted group
giving the best tracking performance. The performance is comparable with many of the
entries in DSTC 2 including the focus baseline (the strongest baseline), and is achieved

without any training labels for the slot.

7.2.2 Adaptation to New Domains

This section shows results in applying unsupervised adaptation to the delexicalised word-
based RNN tracker described in section 6.3. This tracker is trained on the DSTC 2 data in
the restaurant information domain, then evaluated on the DSTC 3 test set in the tourist infor-
mation domain. Recall the tourist information domain is considered an expanded domain,
which subsumes restaurant information. It introduces two new types of venue (hotels and
coffee shops) and contains 5 additional slots.

Table 7.1 summarises the results on the DSTC 3 test set. Unsupervised adaptation is
shown to give an improvement in the mean accuracy for the old slots (those in the training
data) and the joint. After combination using score averaging, the top joint goal constraint
accuracy of 0.623 among the word-based ASR trackers is obtained by the combined adapted
tracker.

No gain from adaptation is found on the new slots for the combined trackers. Table 7.2
gives the performance on each slot for the combined trackers. These results suggest that the
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Slot Unadapted Adapted
Old slots
area 0.845 0.848
food 0.896 0.897
name 0.890 0.890
pricerange 0.925 0.921
New slots
children allowed 0.644 0.660
has internet 0.793 0.818
has tv 0.788 0.762
near 0.834 0.801
type 0.935 0.936

Table 7.2: Performance of the combined unadapted and adapted trackers of table 7.1, in
terms of goal constraint accuracy for each slot in the domain.

adapted combined tracker performs similarly to the unadapted tracker on all of the old slots.
Adaptation is able to improve the accuracy in some cases for new slots such as children
allowed and has internet, while compromising performance on other slots such as has tv
and near.

Note that on average the individual trackers give improved performance on the old slots
(the mean results of table 7.1), but this improvement does not carry over to the results after
model averaging (the combined results).

Though the overall joint goal constraint accuracy is improved, the resulting L2 score
is 0.586. Comparing this to table 6.5, it seems there is some trade-off between accuracy
and the quality of the scores as probabilities, as measured by the L2 score, when using the

unsupervised adaptation.

7.3 Conclusions

This chapter has proposed a criterion for unsupervised adaptation that, when optimised with
SGD, serves to propagate information from later on in a dialogue to earlier turns. This gives
a technique for improving the parameters of the RNN without requiring training labels.
Though this technique for online unsupervised adaptation gives somewhat promising
results in the evaluation, the improvements in tracking accuracy are small. Other forms for
the unsupervised training criterion can also be imagined. For example an explicit model
for how likely a dialogue state is to persist from turn to turn could be used, rather than the
cross-entropy term in equation (7.3) (perhaps similar to the durability term in Kadlec et al.
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(2014b)).

Partial labels may also be useful for adaptation. For example, if the dialogue state is
known in a subset of turns in a dialogue, conventional SGD on the log probability of the
whole sequence can be used to improve the parameters of an RNN. This suggests an active
learning approach (Settles, 2009; Tur et al., 2003), where individual dialogue turns are se-
lected for labelling. As dialogue state labelling is an expensive task, learning from carefully
selected dialogue turns may be worthwhile.
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CHAPTER 8

STRUCTURED OUTPUTS FOR RNN
DIALOGUE STATE TRACKING

In the proposed Recurrent Neural Network (RNN)-based framework for dialogue state track-
ing, an independent RNN is trained for each individual slot. To obtain the joint distribution
over goal constraints, the outputs from each RNN are simply multiplied. In this way, the
dialogue state is approximated as a product of marginal distributions over sub-components
of the dialogue state.

It may not always suffice to make this approximation; certain domains may benefit from
a full structured joint distribution over the sub-components of the dialogue state. For exam-
ple, there may be two mutually exclusive goal constraints so = vo and s; = v;. A structured
joint prediction could specify that either the user wants sog = vg or s; = v, while this cannot
be expressed as a product of two marginal distributions over sg and s;. In the tourist infor-
mation domain (see appendix A), it only makes sense to specify the food type if the correct
venue type is restaurant, which is an example of this kind of dependency between slots.

In general, learning a joint model may allow for better modelling of the correlation
between slots. As well as hard constraints, as mentioned above, this might improve tracker
accuracy by exploiting observations such as users looking for expensive food in Cambridge
are perhaps more likely to ask for French cuisine than Chinese.

This chapter introduces a method to allow the RNN-based dialogue state trackers to out-
put a single full structured joint distribution over multiple sub-components of the dialogue
state. Section 8.1 presents how this has been achieved in other frameworks for dialogue
state tracking. Section 8.2 presents the additional neural network structure used to join mul-
tiple independent RNNs to output a single structured joint distribution. An evaluation of
the proposed method is given in 8.3 using data from the Dialog State Tracking Challenge
(DSTC) 2 evaluation.
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8.1 Related work

Dependencies between slots can be easily incorporated in generative models, such as the
Bayesian Update of Dialogue State (BUDS) system described in section 5.3, by connecting
slots in the Bayesian network. For the tourist information domain, certain slots are only
applicable for venues of certain types. For example food is only applicable for restaurants,
and has internet is only applicable for pubs and coffee shops. The Bayesian network is
configured so that the goal constraint for the fype slot is a parent for all other slots. A simple

hand-crafted distribution is then specified, for example of the form:

1 —6 if sisan applicable slot for viype
P(gs = Vs | 8type = Viype) > § 1 — O if 5 is not an applicable slot for Viype but vy = None

0 otherwise
(8.1)

Other dependencies between slots could also be included, though the parameters of the
new conditional probability distributions would have to be either learnt or specified by hand.

The ranking approach for Dialogue State Tracking (DST) presented in Williams (2014)
is one of the few entries in the DSTCs to use a structured joint distribution for the goal con-
straints, rather than calculating the joint distribution as a product of independent marginals
(Henderson et al., 2014b). In this approach, a set S of possible joint hypotheses for the
goal constraints is generated using the hypotheses suggested by the Spoken Language Un-
derstanding (SLU). An element of S would be for example {food=Chinese, area=west}.
Features are extracted for each of these hypotheses, and each is scored with a discriminative
ranking classifier. More details of the feature extraction is given in section 5.4. The output is
then a distribution over structured joint predictions for the goal constraints (the elements of
S). Williams finds gains in accuracy from using structured output over independent outputs,

though at the expense of worse L2 scores.

8.2 Structured Joint Predictions

Consider a set of discrete random variables X = {xo, ..., x,_1 }, each with a finite set of
possible values. Each random variable x; has possible values {0, 1, ..., |x;| — 1}. The joint
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distribution can be written as:

n—1
P(xo =X0, .- X1 =%,_1) = P(xo = x0) [ [ P(xi =} | x0 =, ..., xic1 = %) (8.2)
i=1

which is just one expansion of the full joint distribution. Note that the conditional probabil-
ities in the product require learning Hi‘:o |x;| individual probabilities. This does not scale
well with the number of variables and their dimensions. If each random variable takes m
values, this gives O(m") parameters to learn.

Bengio and Bengio (2000) present a method of modelling such structured joint probabil-
ity distributions, which scales more favourably. This method uses a neural network structure

to model the joint distribution in analogy to equation (8.2) as follows:

n—1

P(x0 = X0, -+, Xn—1 = X,_1) = py | | softmax (NNet(zo& .. ®2i-1))y (8.3)
i=1

where p is a learnt vector of size |xg|, and z; is a vector encoding of the assignment x; = xg.

The notation follows appendix D. In this work, z; is a |x;| dimensional /-hot encoding:

1 if xg =]
Zij = (8.4)
0 otherwise

The sub-networks NNet(zo®. . .z, ) output a vector of size |x;|, which is then input to
a softmax function to give a probability distribution over the |x;| possible values for x;. Each
of these sub-networks (indexed by 7) has an input of size Z;._:IO |xj| ~ O(im), and an output
of size m. If each has one hidden layer of fixed size &, then the number of parameters for

the neural network is O(imh -+ hm), so the total number of parameters is O(hmn?).

This model is therefore an efficient way of modelling joint distributions, which Bengio
and Bengio found to be effective for several datasets. Note that the definition of the model
relies on an ordering of the random variables. In this work, random orderings are used, and

the ordering is not found to affect results.

Equation (8.3) provides a method of learning joint distributions using neural networks,
but DST requires learning a joint distribution conditioned on the evidence of the dialogue
so far. This requires an adaptation of this model, given in the next section.
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8.2.1 Conditional Structured Joint Predictions

For tracking goal constraints, the random variables xo ¢, . .., X,—1,; are the informable slots in
the domain at each turn . In the notation of section 5.3, these are the variables g, ¢, ..., &, | ,-

Assume an RNN structure for each slot. So for a dialogue consisting of T turns, the RNNs

give outputs PI"*P = (p;ngep, . p;ngep ,) for each slot x;. The joint distribution for turn 7 is
then modelled as:
P(X0.t =Xy« -+ Xn—1,1 = X, 1|dialogue up to turn t)

1ndep H softmax <10g(pmtdep) —|—NNC'[(ZO@ - @Zi71)>x{ (8.5)

Po1,x |

where the logarithm acts component-wise, and z; is again a vector encoding of the assign-
ment x; ; = xg. This is an adaptation of equation (8.3) to include the output of the RNNs
at turn 7. Note that if the sub-networks NNet(zo®...@z;—1) output 0, then this equation

reduces to the independent case:

P(xo; = Xy -+ Xn—1.r = X),_; | dialogue up to turn ¢)

— mdep Hsoftmax (log(pintd ep)))){/

. indep
= Hpi,t,x; (8.6)
i=0

and so regularisation of the parameters of the network, which drives the output of the
NNet(zo® . .. Dz;_1) sub-networks to 0, encodes a preference for defaulting to the indepen-
dent case, where the joint is calculated as a product of marginals. The NNet(zo®...®z;_1)
sub-networks modify the approximation to allow modelling a structured joint distribution.

This method can be considered as a joint prediction output network, which connects the
outputs of the independent individual RNNs at each turn.

The log probability of the correct joint hypothesis as given by equation (8.5) gives a new
objective to maximise in the Stochastic Gradient Descent (SGD) algorithm. This objective
can be used not only to optimise the parameters of the sub-networks NNet(zo® ... Dz;_1),
but also the RNNs for each slot. Therefore after training with this criterion, the (pintd P)
predictions may change.
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8.2. Structured Joint Predictions

In training, the parameters of the RNNs for each slot are first optimised using the inde-

pendent log probabilities (equation (8.6)) until the parameters have converged. The struc-

tured joint probability (equation (8.5)) is then used for optimisation until convergence, learn-

ing the new parameters and adapting the RNN parameters jointly. It would also be possi-

ble to optimise equation (8.5) directly from a random initialisation, however the outlined

scheme is found to be more efficient in terms of computational time required for conver-

gence.

For tracking, this chapter only considers outputting a single best hypothesis. A beam

search is performed to find the assignment that maximises equation (8.5), by selecting as-

signments to each slot in turn. The beam search operates as follows:

1.

Set P = 0, the beam of partial hypotheses for the joint assignment to X. A beam width
N is chosen, the maximum size of P at each step. A partial hypothesis in P is a tuple
(J, p), where J is a sequence of integers representing an assignment to the first |J|
variables in X (x; = J;), and p is the probability score computed from equation (8.5).
The notation J@(j) denotes the sequence obtained from appending the integer j to
the sequence J.

. Calculate pgfep. Write jo, ..., jy—1 for the indices of the top N elements of pgj‘ziep.
Let P = {((jx), po,s.j.) |k=0,...,N—1}.
. Leti=1.
. Calculate p;ntd P Let P =0.
. For each partial hypothesis (J, p) € P:
(a) Encode the assignment in J as vectors zg, ..., z;_1, 1.e. zj, =l ifk=J; or 0

otherwise for k =0, ..., (|x;| —1).

(b) Calculate p = softmax (log(pi-?tdep) + NNet(zo® ... Dz )) Write jo, ..., jN—1

for the indices of the top N elements of p. Add to P’ the corresponding new
partial hypotheses, P’ <— P"U{(J&(jx), px pj,) |k=0,...,N—1}.

Set P to the top N partial hypotheses in P', i.e. the (J, p) € P’ with the highest values
for p.

. Increment i by 1 (i <— i+ 1). If i < n, then return to step 4.

Select the top partial hypothesis in P as the chosen assignment for X, i.e. (J, p) € P

with maximum p.
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Chapter 8. Structured Outputs for RNN Dialogue State Tracking

In this work, a beam search with N = 1 is performed, as this is found to identify the top

scoring hypothesis in the vast majority of cases.

8.3 Evaluation

This section presents an evaluation of the proposed approach for joining multiple indepen-
dent RNN classifiers to output a structured joint distribution at each turn. The DSTC 3 data
is split into a training set of 2,049 dialogues and an evaluation set of 226 dialogues.

The DSTC 3 data is chosen because structured joint predictions are more likely to be
important in the tourist information domain than in the restaurant information domain of
DSTC 2. For example, specifying a food type should only make sense if type = restaurant,
and people should not ask for has internet = true if they also require type = restaurant. Such
rules do not exist in the restaurant information domain.

On the evaluation set, the focus baseline (see section 5.2.3) achieves a joint goal con-
straint accuracy of 0.558, while the Bayesian network obtains an accuracy of 0.579.

Table 8.1 presents the results for both word-based and conventional SLU input RNN-
based tracking. An ensemble of six RNNs were trained for each condition, with varying
parameters as described in section 6.3. A single hidden layer is used for the sub-networks in
equation (8.5) of size 64. A modest improvement is seen in all cases from using a structured
model for the joint distribution. This is more pronounced in the case of using SLU input

features.

Mean Combined

SLU features
Independent  0.585 0.607
Structured 0.599 0.622

ASR features
Independent  0.679 0.711
Structured 0.685 0.717

Table 8.1: The joint goal constraint accuracy on the 226 evaluation dialogues achieved
by independent and structured RNN models. In total 6 trackers are trained for each input
type — SLU features and ASR features (word-based tracking). Each of the 6 trackers uses a
randomly selected ordering of the slots. The mean metrics among the 6 trackers are shown
as well as the results from combining the 6 trackers using majority voting.

In the majority of cases where the structured joint predictions improve performance, it
is found that the structured output differs from the independent output in that it correctly
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8.3. Evaluation

identifies the None hypothesis for a slot. Recall the None hypothesis means that the user is

yet to specify a constraint for the slot.

None accuracy

Slot Independent Structured
area 0913 0.975
children allowed 0.988 0.996
has internet 0.988 0.993
has tv 0.996 0.999
food 0.963 0.991
name 1.000 1.000
near 0.982 0.996
type 0.800 0.800

Table 8.2: None accuracy of the output of SLU-based RNNs for both independent and
structured joint outputs.

None accuracy

Slot Independent Structured
area 0.970 0.985
children allowed 0.989 0.999
has internet 0.992 0.992
has tv 0.948 0.991
food 0.947 0.986
name 0.999 1.000
near 0.984 0.992
type 0.823 0.823

Table 8.3: None accuracy of the output of word-based RNNs for both independent and
structured joint outputs.

Tables 8.2 and 8.3 investigate the None accuracy for the RNN trackers with independent
and structured outputs. The None accuracy is the fraction of turns where a tracker correctly
identifies the None hypothesis for the given slot. In all cases the structured output improves
this metric, in particular for the area, near, and food slots.

The improvement for area and near slots may be due to the inherent correlation between
the two slots. It only makes sense to ask for a venue in a certain area and located near
another point if that point is in the same area. Therefore the structured model may learn
to change the less reliable hypothesis to None if the two are conflicting. The improvement
for the food slot may be principally explained by its correlation with the other slots. For
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Chapter 8. Structured Outputs for RNN Dialogue State Tracking

example certain cuisines are only available in certain areas, and only for venues with type =

restaurant.

8.4 Conclusions

This chapter has presented a method of extending classifiers trained to classify individual
random variables to a single joint model outputting a structured joint distribution over the
variables. This is applied to the RNNs used for DST, though it could be useful in other
classification tasks.

The technique gave small improvements in the quality of the top hypothesis for the
user’s goal constraints in dialogue data in the restaurant information domain. In particular,
the structured model improved on the independent model by better learning when goal con-
straint hypotheses should be changed to None for particular slots. The benefit from learning
a joint model may be more substantial in more complex domains where slot correlations are
more important.

One key disadvantage of this method is that it requires all the slots to be present in
the training data when optimising the joint probability. It is therefore more challenging to
extend this model to expanding domains than it is for individual independent classifiers.

Bengio and Bengio found improvements in excluding some z; from the input to the
sub-networks of equation (8.3). This effectively excludes dependencies between pairs of
variables, and the exclusions can be selected using standard statistical analyses or by the
system designer. It is possible that such pruned neural networks might be useful for equa-
tion (8.5).

It was found that using a structured output improved the model’s ability to correctly
identify the None hypotheses, i.e. which slots have not yet been specified by the used.
This suggests that limiting the output of the sub-networks of equation (8.5) to only adjust
the None hypotheses may result in a network with far fewer parameters and comparable
performance.

This chapter has looked at outputting only a single hypothesis for the joint goal con-
straints. However, an N-best list of DST hypotheses could be generated using equation (8.5).
Many implementations of Partially Observable Markov Decision Process (POMDP) for spo-
ken dialogue systems summarise the dialogue state as the marginal distributions over each
goal constraint (Gasi¢ et al., 2010; Thomson, 2009). In this case the N-best list would then
have to be marginalised for each slot. Though this would inherently lose some information,
it is still possible that the marginalised distributions would be more accurate than if they
were the direct output of classifiers as in independent models.
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8.4. Conclusions

It may be advantageous to adapt equation (8.5) so that the sub-networks in the product
also take the independent marginals p;n?ep as input. This would allow for more complex

interactions with the marginal distributions when modelling the structured joint distribution.
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CHAPTER 9

CONCLUSIONS

This thesis has shown that discriminative methods can significantly improve the perfor-
mance of a statistical dialogue system. Unlike traditional generative models for the tasks of
Spoken Language Understanding (SLU) and Dialogue State Tracking (DST), discriminative
models are able to incorporate arbitrary potentially useful features. They directly optimise
the quantities that are important in statistical dialogue systems, the conditional probabilities

over the outputs of a component given the output of the previous component in the pipeline.

The original contributions of this thesis include the CNet decoder for SLU operating
directly on the word confusion network, and applying Recurrent Neural Networks (RNNs)
models to DST, including word-based tracking, unsupervised adaptation, and methods for

learning structured outputs.

The proposed CNet decoder enables improved performance in SLU. Discriminative
models allow for the use of arbitrary features, and top performance is achieved by using
features derived from the full posterior distribution of the Automatic Speech Recognition
(ASR), as well as dialogue context features. Both off-line evaluations and live user trial
show the discriminative method for SLU outperforms conventional methods.

For DST, the word-based RNN tracker is shown to perform well relative to approaches
proposed by other research teams in the Dialog State Tracking Challenges (DSTCs). Dis-
criminative DST using RNNs is shown in a live evaluation to give significant and substantial
improvements in end-to-end dialogue quality. The word-based RNN tracker fuses SLU and
DST into one discriminative model that can be learnt jointly. In mapping directly from
words to the dialogue state, it has the advantage of not requiring any intermediate semantic
representations. This removes the need to define taxonomies of dialogue acts. Experiments
show that the RNNs can be readily applied to new dialogue domains, by using special delex-
icalised features, which generalise across slots and values. An algorithm is presented that
shows how the RNN parameters can be adapted during interactions without any labels, so
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that unlabelled dialogue data can still be exploited. It is also shown how these networks can

be adapted to output structured joint distributions over possible dialogue states.
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9.1 Current Limitations and Future Work

One of the major issues with applying discriminative methods to the tasks of SLU and DST
is obtaining the labelled data required to train the models. This has amounted to labelling
utterances with true dialogue acts. This process can be facilitated by using crowd-sourced
transcriptions and using accurate hand-crafted grammars on the first pass (see section 3.2.1).
However, in the author’s experience, hand labelling hundreds of utterances with dialogue
acts is required. As it stands, this job requires an expert in the field, and is not possible
to crowd-source completely. Another issue with this technique for labelling is that it still
relies on dialogue acts, while word-based tracking promises to eradicate the need for such
intermediate semantic forms. Improvements to labelling may include formulating the task
in a manner suitable for crowd-sourcing. Future work may also include cleverly selecting
turns in the dialogue data for which labels would be most useful using techniques from
Active Learning (Settles, 2009).

Some work has been presented in applying and adapting trackers to expanded domains,
i.e. domains that subsume the domain used for training but include multiple new slots. In
this case, the expanded domain is assumed to be fully specified. It would be interesting to
investigate methods for learning from data which expansions to an existing domain could be
beneficial, in work similar to Chen et al. (2014), before learning how to track the expanded
dialogue state in the learnt expanded domain.

This thesis has used a very simple method of deriving delexicalised features for word-
based DST, performing exact string matching against a set of aliases (see appendix C). This
method has two key deficiencies. The first is that the aliases are defined by the system
designer. Future work may investigate automatically learning sets of possible expressions
for slots and their values. The second issue is that exact string matching is potentially a
brittle method to employ. There may be benefit in using soft string comparisons, which
compare the similarity of phrases using lexical, syntactic, semantic, and phonetic distance

measures.

The CNet decoder and word-based RNN tracker presented here have relied heavily on
n-gram features, phrases consisting of 1, 2, or 3 words. These have provided an adequate
representation for discerning the meaning of user utterances in the tourist information sys-
tems used for evaluation. However, n-gram representations may not be sufficient in more
complex domains, where syntax is more important and users must express their goals with
more complex language. In particular, the feature representations used provide limited in-
formation about the ordering of the words in the input sentence. Models that internally use a
parse tree to understand language (see section 2.2) are psycholinguistically well-motivated
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and promise to model many complex linguistic phenomena (Zettlemoyer and Collins, 2007).

For more complex domains, it may be necessary to use a model that deals with the
sentence as a sequence. This could be achieved using a similar RNN-based model to that
presented in section 5.5, whose recurrent time steps are at each word in the input (or perhaps
each node in a word confusion network), as well as at each dialogue furn. A variety of
RNN architectures could be employed, including bidirectional RNNs that can incorporate
information from earlier and later words in the input sentence (Mesnil et al., 2013). In order
to simulate the process of grammatically parsing the input sentence in the hidden structure of
the RNN, it may be necessary to employ more complex models of memory such as deep long
short-term memory gates (Hochreiter and Schmidhuber, 1997). Recent work has defined
RNN models that can read and write from structured external memory resources (Graves
et al., 2014). These models are able to learn simple algorithms such as copying, sorting,
and associative recall using Stochastic Gradient Descent (SGD) and datasets of examples.
A similar model could be imagined that defines differentiable versions of the data structures
and operations required to parse a sentence using a grammar, with the advantage that this

could be a sub-network of a larger RNN directly trained to track the dialogue state.

Alternatively, the idea of parsing could be exploited without adapting the model, but by
designing feature representations. This is an advantage of discriminative methods, which
allow the system designer to focus on improved feature representations rather than having to
design more complex models (and derive new learning algorithms). Future work might look
at improved representations for more complex tasks, e.g. exploiting parse trees (Kambhatla,

2004) and external resources such as paraphrase tables (Ganitkevitch et al., 2013).

This thesis has focussed on slot-based dialogue systems, where the dialogue can be mod-
elled almost entirely by specifying constraints on slots and values (see appendix A). This
formulation may not be possible for more open conversational dialogue systems. However,
DST using RNNs could be viewed as a method of robustly tracking arbitrary random vari-
ables of interest in decision making (such as the search method), throughout the course of
a dialogue sequence. Conversational systems might be able to exploit a set of accurately
tracked and useful variables, such as the general topic of conversation. It seems likely that
an altogether different approach than the slot-based framework may be needed to allow for

open conversational systems that are not task-oriented and that can talk about anything.

Another limitation of the dialogue systems studied in this thesis is that they model di-
alogue as a strict turn-by-turn process between two participants (the user and the system).
The boundary between turns in these systems is decided by a Voice Activity Detection clas-
sifier, which decides when the user has started and finished speaking. Multi-party dialogues

are of interest, as are systems which have a more flexible notion of turn taking. Systems
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may benefit from being able to interrupt the user or by giving back-channels while the user
is talking. An RNN may still be an appropriate model to deal with such dialogues, where the
time steps are more frequent than whole turns, and potentially labelled with the speaker’s
identity. Future work may involve applying RNN tracking for such dialogues, and might
require reinforcement learning to allow the model to make turn taking decisions.

Despite current limitations, the proposed word-based RNN tracker may be particularly
useful for system designers looking to apply their systems to new or expanding domains.
Shared learning across slots and values, facilitated by the delexicalised features, gives a
method for creating an initial dialogue system in a new domain using out of domain training
data. As dialogues are collected in the new domain, these models can be rapidly improved
to give state-of-the art performance. It is the hope that easily extensible models like this
will allow for spoken interfaces whose capabilities will naturally grow as they are exposed

to more interactions and knowledge of the world.
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SLOT-BASED DIALOGUE DOMAINS

The slots of a slot-based dialogue system specify its domain, i.e. the scope of what it can
talk about and the tasks that it can help the user achieve. The slots inform the set of possible
actions the system can take, the possible semantics of the user utterances (see appendix B),
and the possible dialogue states (see section 5.1).

The following definitions assume the domain of the dialogue system is to allow the user
to search a database of entities by specifying constraints. In this case the slots correspond
to attributes of entities in the database.

The set of all slots S, is composed of two not-necessarily disjoint subsets — the re-
questable slots S;.,, and the informable slots S;,r, such that § = Seq U Siys. Informable slots
are attributes of the entities in the database that the user may use to constrain their search.
Requestable slots are attributes that users may ask the value of, but may not necessarily be
allowed to specify a value as a constraint. A typical example of a requestable slot that is
not informable is the phone number, which the user may ask for but would not give as a
constraint ("I’m looking for somewhere with the phone number 01223 715 715"). For each
slot s € S, the set of possible values for the slot is denoted V.

The two domains used for evaluations in this thesis are the restaurant information and
tourist information domains. The restaurant information domain was the domain used in
the second Dialog State Tracking Challenge (Henderson et al., 2014b) and concerns finding
restaurants in Cambridge, and the tourist information domain is the domain of the third
Dialog State Tracking Challenge (Henderson et al., 2014d), which includes restaurants, pubs
and coffee shops. The slots in tourist information are a superset of those in restaurant
information, though the possible values V; are different between the two domains even for

slots present in both. A summary of the two domains is given in table A.1.
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\4
Slot Restaurant Tourist
Sinf
type 1 3
area 5 15
food 91 28
name 113 163
pricerange 3 4
children allowed - 2
has internet - 2
has tv - 2
near - 52
Sreq\Sinf
address 113 163
phone 113 163
postcode 113 163
signature 113 163
price - 163

Table A.1: Slots in the restaurant information and tourist information domains. All the
informable slots are also requestable. The second group, Sreq \ Sint, Shows the requestable
slots that are not informable. Note the type slot in the restaurant information domain has
one value, and is always equal to restaurant. The possible values for type in the tourist
information domain are V;y,, = {restaurant, pub, coffee shop}.
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DIALOGUE ACT FORMAT

A dialogue act is a shallow representation of the semantics of either a user’s utterance or
the system’s prompt. In the case of the system prompt, the dialogue act is input to a Nat-
ural Language Generation component, which generates text to be synthesised. Multiple
formats have been proposed and are used for representing dialogue acts (Traum, 2000).
This appendix describes the dialogue act format used in the Cambridge University Dialogue
Systems group (Young, 2007), which is a relatively general format for representing the se-
mantics of slot-based task driven dialogs.

Consider a dialogue domain that has requestable slots S,., and informable slots S, and
write § = Sreq. U Sinf.. Let V denote the set of possible values for a slot s € S. (Appendix A
explains this terminology and describes the domains studied in this thesis).

A dialogue act consists of two components — a dialogue act type, d-fype, and a set, X of

slot bindings. There are three types of slot bindings:

Bound slots: slots bound to values, written “s = v’
Negated bound slots: slots bound to values and negated, written “s # v”

6 9

Unbound slots: slots not bound to any value, written “s

where each slot s is in S, and slots are bound to values v € V.

Consider an example dialogue act with d-type = request and X = {phone, address, food
= indian, area = west}. A full description of all dialogue acts follows, but this particular act
corresponds to an utterance like, “What is the address and phone number of somewhere in
the West serving Indian food?" This dialogue act is written in shorthand notation as follows:
request(phone, address, food = indian, area = west). The unbound slots in this act are phone
and addpress.

Different dialogue act types impose restrictions on what must be contained in X, and
are used differently depending on whether they are a user act or a system prompt. Ta-
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bles B.1 and B.2 describe the dialogue acts for user utterances and system prompts respec-
tively, grouped by the restrictions imposed on X. Table B.3 clarifies the formal definitions

by giving examples of dialogue acts and corresponding English sentences.
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Restrictions on X

Act Type

Description

X must be empty.

bye
thankyou
null

ack
repeat
restart
help

Saying good-bye.

Saying thank you.

An act that is not understandable by the sys-
tem.

A back-channel such as ‘okay’ or ‘uh-huh’.
Requesting the system to repeat itself.
Requesting the system start over.

Asking for help.

X may contain bound slots
and negated bound slot. X
may not contain any
unbound slots. All bound
slots must be informable

(in Sinf).

inform

hello
affirm

negate

The bound slots are interpreted as constraints
from the user in the search for an entity.
The user is informing the system that an
entity is required whose attributes match
the bound slots in X. For example in-
form(food=chinese, area # west) might cor-
respond to “I want a chinese place that is not
in the west.”

As with inform, but also greeting the system.
As with inform, but also replying affirma-
tively to the last system prompt.

As with inform, but also replying negatively
to the last system prompt.

X must contain at least
one unbound slot, and may
optionally contain bound
slots or negated bound
slots involving informable
slots.

request

Asking the value of the unbound slots for an
entity that currently matches the user’s goal,
and also optionally giving constraints as in
inform.

Table B.1: Description of dialogue act types for user actions. A slot binding is allowed, this
= Dontcare, to give the constraint that the user does not care about the slot s, where s must
be inferred from the last system prompt.
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Restrictions on X Act Type Description
hello Giving a welcome message to initiate the di-
alogue.
reqmore Asking if the user needs any more informa-
X must be empty. tion.
canthear Informing the user that they cannot be heard.
X may contain bound slots inform Offering an entity and informing its slot at-
but may not contain any tributes as given in X.
unbound slots.
X={s=v}, ie. X con- confirm Confirming that the user wants a venue
tains just one bound slot. matching the constraint given by the bound
slot.
X= {s}, i.e. X contains request Requesting what the user wants for the un-
just one unbound slot. bound slot.
X contains at least one confreq Implicitly confirming the constraints given
bound slot and exactly one by the bound slots, and requesting what the
unbound slot. user wants for the unbound slot.
X={s=vp,s=v},i.e. X select Asking the user to select between the two

contains exactly two bind-
ings for one slot.

suggested values for the slot.

Table B.2: Description of dialogue act types for system prompts. An optional special
slot binding count = n is allowed for the confreq action to specify that there are n venues
that match the other slot bindings. A special binding name = none is allowed for the inform
action to inform the user there is no entity matching the given slot bindings. Another binding
other = true is used in conjunction with this to further specify that there is no matching entity
other than those mentioned.
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User actions

inform(area=east,
food=Dontcare)

inform(this=Dontcare,
pricerange=cheap)

inform(food=chinese,
food+#thai)

hello(area=north)
negate(area=Dontcare)

affirm(area=Dontcare,
food=thai)

request(phone, address)

request(phone, area=north)

I’'m looking for something in the East of town serving any type of
food.

I don’t mind but it should be cheap.

No, I want Chinese food, not Thai.

Hi, do you have a place in the North?
No, in any part of town.

Yes, Thai food anywhere.

What'’s their address and phone number?

Do you know the phone number of one in the North?

System prompts

hello()

reqmore()
inform(name=cocum,
area=west, food=indian)
inform(name=cocum,
address= ‘71 Castle Street’,
postcode=‘CB3 0AH’)
inform(name=none,
area=west, food=chinese)
inform(name=none,
other=true,
food=japanese)
confreq(food=indian, area)
confreq(food=indian,
pricerange=Dontcare,
count=13, area)
request(food)
confirm(food=indian)

select(food=indian,
food=italian)

Hello, welcome to the Cambridge restaurant information system.
You can ask for restaurants by area, pricerange or food type. How
may I help you?

Can I help you with anything else?

Cocum is a nice place serving Indian food in the West of town.

Sure, Cocum is on 71 Castle Street and its postcode is CB3 OAH.

I’'m sorry there is no restaurant serving Chinese food in the West
of town.

There is no other restaurant that serves Japanese food.

Okay, an Indian place. What part of town did you have in mind?

There are 13 Indian restaurants if you don’t care about the
pricerange. What part of town would you like?

What type of food would you like?
You would like Indian food, is that right?

I’'m sorry, would you like Indian or Italian food?

Table B.3: Examples of dialogue acts with corresponding realisations in English, in the
Cambridge restaurant information domain.
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MATCHING STRINGS TO THE DOMAIN
WITH ALIASES

Sequential labelling techniques for Spoken Language Understanding (SLU), such as the
Conditional Random Field (CRF) model presented in section 3.1.2, require alignments be-
tween words in the input sentence and the slot values and slot names in the dialogue act. It
is also necessary to identify occurrences of slot values and slot names in the input sentences
for creating delexicalised features in Dialogue State Tracking (DST) (see section 5.6).

This thesis uses a simple approach to find occurrences in the input sentence string of slot
names and slot values by exploiting sets of aliases. A slot name or slot value is identified
in the input string if it exactly matches the string as it appears in the domain specification,
or one of the aliases specified by the system designer. For example, the slot value area =
east would be identified in the sentence “Something in the east”, as the string east exactly
matches the slot value in the domain specification. If eastern is chosen as an alias for area
= east, then similarly this slot value would be identified in the sentence “Something in the

eastern part”.

C.1 Aliases

This section presents the sets of aliases used in this thesis both for labelling the SLU data of
section 3.2.1, and creating delexicalised features in section 6.3.

C.1.1 Aliases for DSTC 3 evaluation

The following aliases were used for training delexicalised Recurrent Neural Network (RNN)
trackers on the Dialog State Tracking Challenge (DSTC) 2 data in the restaurant information
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domain, which are then applied to the DSTC 3 data in the tourist information. This is an
example of training on one domain, and testing on an expanded domain that contains several
new slots. A full specification of these domains is given in appendix A. Using aliases in
this context allows the trackers to more readily identify slot names and slot values in the
expanded domain without requiring in-domain training data.

These aliases are generated from the Phoenix grammar (Ward, 1994) used in the data
collection for DSTC 3. The aliases consist of alternative expressions such as children al-
lowed and children permitted. Many of the aliases are shorter versions of the phrases that
appear in the domain specification, such as tex mex for mexican tex mex.

The list below omits slots and values for which no aliases are used.

Slot names e food:

e area: location, part, part of town, region, — mexican tex mex: mexican, tex mex

side — north american: american

* food: cuisine, kind of food, type of food .
* has internet:
e name: called

* near: a view of, a view over, adjacent, — true: broadband, broadband access,

around, close to, closer to, facing, near to, broadband connection, internet, inter-

next to, opposite, part of net access, internet connection, wifi,

* phone: number, phone number, telephone wifi access, wifi connection

number

. e has tv:
* postcode: postal code, zip code
* pricerange: price, price range — true: has a television, has a tv, has

* signature: signature dish television, televison, tv

® name.:
Slot values

— anatolia turkish restaurant: anatolia

* area. — arundel house hotel: arundel
— centre: central, city centre, middle — b bar and restaurant: b bar
— riverside: river, river cam, river side, — browns restaurant: browns
the cam — carringtons cafe restaurant: carring-

t
e children allowed: 01‘.lS ) ) ) )
— chiquito mexican bar and grill: chig-

— false: children forbidden, kids forbid- uito

den — courtyard cafe at the fitzwilliam mu-

— true: children, children permitted, seum: courtyard cafe

children welcome, kids, kids allowed, — de luca cucina and bar: de luca

kids permitted, kids welcome
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don pasquale restaurant: don
pasquale

edwinns bar and restaurant: edwinns
efes restaurant: efes

fitzbillies restaurant: fitzbillies

hotel du vin and bistro: hotel du vin
kymmoy noodle bar and restaurant:
kymmoy

la margherita: margherita

loch fyne restaurant: loch fyne

lucky star chinese buffet restaurant:
lucky star

maharajah restaurant: maharajah
milton park english and thai restau-
rant: milton park

panahar tandoori restaurant: panahar
tandoori

peking restaurant: peking
pipasha restaurant: pipasha
rainbow vegetarian cafe: rainbow
cafe

river bar and kitchen: river bar

royal cambridge hotel: royal cam-
bridge

sala thong restaurant: sala thong
sesame restaurant and bar: sesame
spice merchants indian restaurant:
spice merchants

stazione restaurant and coffee bar:
stazione

tang chinese: tang

the agora at the copper kettle: agora
the alma: alma

the anchor: anchor

the avery: avery

the bakers: bakers

the baron of beef: baron of beef

the

brasserie

bombay brasserie:  bombay
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¢ near:

the cambridge chop house: cam-
bridge chop house

the cow: cow

the curry house: curry house

the curry king: curry king

the curry queen tandoori: curry queen
the eagle: eagle

the fleur bar and bistro: fleur bar and
bistro

the fountain inn: fountain inn

the gandhi: gandhi

the golden curry: golden curry

the golden palace: golden palace

the kohinoor tandoori restaurant: ko-
hinoor tandoori

the lion and lamb: lion and lamb

the oak bistro: oak bistro

the old crown: old crown

the phoenix chinese restaurant:
phoenix

the punter: punter

the red bull: red bull

the rice boat: rice boat

the saffron brasserie: saffron
brasserie

the sorrento hotel and restaurant: sor-
rento

the tram depot: tram depot

the unicorn steak and ale house: uni-
corn steak and ale house

the vaults: vaults

the wrestlers: wrestlers

varsity restaurant: varsity

yippee noodle bar: yippee

broughton house gallery: broughton
house

cambridge and county folk museum:
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county folk museum, folk museum
cambridge artworks: art space, art
works, artworks

cambridge book and print gallery:
book and print gallery
cambridge contemporary art: con-
temporary art

cambridge museum of technology:
museum of technology, technology
museum

cambridge university botanic gar-
dens: botanic garden, botanic gar-
dens, botanical garden, botanical gar-
dens

churchill college: churchill
magdalene college: magdelene
museum of classical archaeology:
museum of archaeology

pembroke college: pembroke

sheeps green and lammas land park
fen causeway:lammas land, lammas
land park, sheeps green

sidney sussex college: sidney sussex
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whipple museum of the history of sci-

ence: whipple museum

* pricerange:

* type:

cheap: basic, cheapest, inexpensive,
simple

expensive: luxurious, posh, upmarket
moderate: average price, average

priced, average pricerange, aver-
age range, medium price, medium
priced, medium pricerange, medium
range, mid price, mid priced, mid
pricerange, mid range, moderate
price, moderate pricerange, moderate
range, moderately priced, reasonable
price, reasonable priced, reasonable
pricerange, reasonable range, reason-

ably priced

coffeeshop: cafe, cafes, coffee, cof-
fee shop, coffee shops
pub: pubs

restaurant: place to eat, restaurants
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C.1.2 Supplementary Aliases for CRF Tagging

The set of aliases presented in section C.1.1 is supplemented with a small set of additional
aliases for labelling the SLU corpus of section 3.2.1. These additional aliases were chosen
by iterating on the SLU data until all alignments were found.

These aliases include alternative phrasings for the Dontcare value, which means that the
user does not wish to constrain a particular slot. Note that no delexicalisation is done for the

Dontcare value in RNN-based DST, so these are not necessary in the aliases of section C.1.1.

Slot names whichever
¢ address: where, where is ¢ area:
* food: serve, serves — Dontcare: anywhere
— east: eastern
Slot values — north: northern

— Dontcare: any, anything, do not
, , * food:
care, doesn’t matter, don’t care,

don’t mind, i don’t know, whatever, — asian oriental: asian, oriental
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APPENDIX D

LEARNING NEURAL NETWORKS

Artificial neural networks define complex functions of input streams that can be learnt from
data. Inspired by biological neural networks, they are composed of interconnected neurons
whose activations are dependent on the activations of their inputs. This appendix briefly
presents the definition of the Multi-layer Perceptron (MLP) and the concept of Recurrent
Neural Networks (RNNs), and discusses how these can be learnt from data.

The first work on artificial neural networks used electrical circuits to model how small
networks of biological neurons might work (McCulloch and Pitts, 1943). The 1980s saw a
revival of interest in these models, with e.g. a paper presented to the national Academy of
Sciences by Hopfield (1982). By 1985 the American Institute of Physics had begun Neural
Networks for Computing, now an annual meeting. Since then there has been an explosion
in research on neural network techniques and applications.

Fuelled by advances in computer architectures, the availability of data and new learning
techniques, there has more recently been another burst in interest applying neural networks
in machine learning, particularly for applications in speech and language technology (Deng
et al., 2013; Hinton et al., 2012).

D.1 Multi-layer Perceptrons

The Multi-layer Perceptron (MLP) approximates a function from R”"input — R"eutput i e, from
real-valued vectors of size njypyc to real-valued vectors of size noygpue. The function is written
NNet(-).

The input vector, x € R"nmut js mapped into a series of m hidden layers, and the last
hidden layer is mapped into the output y € R"uwrut. The hidden layers are simply vectors,
hg, ... h,_;, whose components represent the activation levels of neurons in the model.
The mapping between layers models biological neural connections, where the activation for
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each neuron is a function of a weighted sum of the neurons it is connected to in the previous
layer.
The MLP function, y = NNet(x), is as follows:

hy = go(Wox” +by)
h, = g(WhI  +b)  forO<i<m (D.1)
Yy = gm(Wmhza—l—f—bm)

where the W; weight matrices and b; bias vectors are parameters of the model. The dimen-
sionality of the hidden layers must be chosen by the system designer. The g; activation
functions are differentiable functions from R"” — R". Commonly used activation functions

are:

* tanh, the hyperbolic tangent, with tanh(h); = ¢"i—e™"i/¢hi =4, This most commonly
used activation function maps the activations to the range (-1, 1).

* 0, the sigmoid function, defined as o (h); = ¢"i/1+¢". This is similar to tanh but maps
to the range (0, 1).

* softmax, a function whose output is a categorical probability distribution, softmax(h); =
(:‘hi /Z] (,’h j

The final output activation g,, must be chosen so that the outputs lie in the correct range
for the function being approximated. For example if a categorical probability distribution is
required, a softmax output activation should be chosen.

Note that the final composed function NNet(x) is differentiable with respect to all the
parameters W; and b;. This means that it can be learnt using gradient descent methods to

optimise a cost function of the output y, see section D.4.

D.2 Parameter Initialisation

Prior to optimising the parameters using gradient descent methods, it is important to ini-
tialise the parameters well. Two methods are used for initialisation in this thesis, random
initialisation and denoising Autoencoder (dA) initialisation.

D.2.1 Random Initialisation

With random initialisation, the components of the W; and b; parameters are sampled from
uniform random distributions in the range (-1, 1). When using tanh activations, Glorot and
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Bengio (2010) recommend scaling the components of each of the weight matrices W; by a

6
- (D.2)
Nrows + Reols

where 71,05 and n.,;; are the number of rows and columns of W;. This ensures that the

factor of

expected initial activations of the neurons is within a reasonable domain for the activation

function. This type of initialisation is used in this thesis unless otherwise specified.

D.2.2 Denoising Autoencoder Initialisation

Parameters can also be initiated to informative values using a denoising Autoencoder (dA).
The definition given here applies to an MLP with one hidden layer, but can be generalised
to multiple layers. This unsupervised method for learning meaningful underlying represen-
tations of the input has been found effective as an initialisation technique in deep learning
research (Vincent et al., 2008).

The dA learns a matrix Wya, which reduces the input x to a lower dimensional hidden
layer vector such that the original vector may be recovered with minimal loss in the presence
of noise.

For learning the dA, x is first normalised such that feature values lie between 0 and
1. The dA takes as input Xpeisy, a noisy copy of x where each component is set to 0 with

probability p. This is mapped to a lower dimensional hidden representation h:

h = 6 (WsXuoisy +baa,0) (D.3)

A reconstructed vector, X, iS then calculated as:

Xrec = O (Waah +byga 1) (D.4)

The cross-entropy between X and Xrec, H (X, Xrec) = — Y Xi log Xrec, i, 15 used as the ob-
jective function in gradient descent to optimise Wya, bga o and bya 1. In dA initialisation,

the first layer of the MLP is initialised with the parameters Wya and bya o.

D.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural networks that take a series of inputs x; and
produce a series of outputs y; forr =0, ..., T — 1. Connections between the hidden layers
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in adjacent time steps allow the network to model sequences. This section will describe two
of the most commonly used recurrent neural network structures, Jordan and Elman RNNs.

An Elman-type RNN (Elman, 1990) has recurrent connections between hidden lay-
ers of the neural network. The outputs y; are calculated as an MLP of the inputs x;, so
y: =NNet(x;) but the equation for the j™ hidden layer h j,¢ 18 altered from the original given
in equation (D.1):

hj, =gj(W hj_1,+b)) (D.5)
to:
by =g;i(W/ hj1+Wi hj1+bj) (D.6)

which introduces a recurrent connection, i.e. a dependency on the previous time step.
A Jordan-type RNN (Jordan, 1986) feeds the output of one time-step into the network
for the following time step. The equation for the first hidden layer becomes:

ho s = g0(Wi X; 4+ WeeeY)_1 +bo) (D.7)

where y, are the outputs of the RNN.

Given an example sequence (X;, ¥t ), both types of RNN can be unrolled to give a single
MLP-type network with 7" outputs. The parameters of this network can then be optimised
with standard gradient descent methods. This technique is termed back propagation through
time (Mozer, 1988).

Back propagation through time can lead to a problem with vanishing or exploding gradi-
ents when using sigmoid or tanh activation functions. One simple method for avoiding this
problem is to clip the gradient calculations so they lie in a reasonable range. Other RNN
structures have been developed that avoid this problem, such as long short term memory
networks (Hochreiter and Schmidhuber, 1997).

D.4 Stochastic Gradient Descent

When training an MLP, y = NNet(x), assume there is a list of example inputs and outputs
x; and y;. Let y;' = NNet(x;), the estimation of y; given by the MLP. To train this network
using Stochastic Gradient Descent (SGD), a cost function is required to compare y’ with y
for any set of parameters {W;} and {b;}:

cost(y;, yi, {W;}, {b;}) (D.8)
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In the case of estimating a probability distribution, the target output vectors y; are delta
distributions, i.e. y; is identically 0 except in the position of the correct index where its value

is 1. The cost might then be the negative log probability of the true label:

—Y i jlogy; ; (D.9)
J

Gradients of the cost function with respect to each of the parameters 6 (W; or b;) can then
be computed, %cost. In this work it has been useful to exploit methods for automatically
calculating the gradients for arbitrary neural network structures such as Theano (Bergstra
et al., 2010).

SGD uses small batches of m training examples to update the parameters by moving in

the direction of the gradient calculated using each batch. It works as follows:
1. Initialise {W;} and {b;} using e.g. a technique in section D.2
2. Select m random training examples, call these x; and y; fori =0, ..., m—1.
3. For each parameter 6, a scalar component of W; or b; for some j, let gg = 0.
4. For each example x;, y; and parameter 6:

(a) Calculate the gradient of the cost with respect to 0 for this training example.

: d
gle = d_QCOSI(yév yi, {Wj}7 {bj})

(b) Optionally clip the gradient so that it lies in a reasonable range. This is particu-
larly important for models with many layers or RNNs.

gh « max{—G, min{G, gh}}

where G > 0.

(c) Update the gradient calculation for the batch of examples:
80 < 80+ &0

5. Update each parameter 0, by moving in the direction of decreasing cost according to
the gradient calculation:
0« 0—ngo

where 11 > 0 is the learning rate.
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6. Return to step 2.

This procedure can either run for some fixed number of loops, or can continue until
learning has converged. One typical heuristic used to decide whether learning has converged
is to always train for n loops, but consider increasing n at step 6 if the error on a set of held

out examples improves by a certain threshold.

D.S Regularisation

When learning neural networks, it is useful to include a term in the cost function that pe-
nalises large parameters, called a regularisation term. Learning parameters with regularisa-
tion is observed to improve generalisation of the learnt network. Preferring smaller weights
can be regarded as preferring simpler models.

The regularisation term for a neural network with parameters {W;} and {b;} is:

A Y (Wil + o) (D.10)

where A > 0 is a scaling factor, and | - | is typically either the 11 or 12 norm of the vector or

matrix. This work uses 12 regularisation.
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accuracy
evaluation statistic for dialogue state tracking. How often the 1-best hypothesis is
correct. 44, 61, 63-65, 73, 76, 77, 79, 80, 95-97, 100, 104

alias

an alternative phrasing for a slot name (such as ‘area’) or slot value (such as ‘east’).
24,25, 28, 60, 66, 74, 77, 111, 123, 124, 127

Bayesian network
a directed acyclic graph whose nodes are random variables. The joint distribution of
the variables decomposes into factors of the form P(v | pa(v)) where pa(v) is the set
of parents of v. 47, 75, 77-83, 86, 91, 100, 104

belief
the distribution a dialogue state tracker reports over a particular component of the
dialogue state. 11, 14, 44

BIO tag

Beginning Inside or Outside tag. An encoding for labelling sequences. 9, 10, 18-20,
24

CNet decoder

semantic decoder using the Semantic Tuple Classifier method, utilising features ex-
tracted from the word confusion network and last machine action. 3, 30, 34-40, 83,
109, 111

decoder
a spoken language understanding component, which converts sentences in natural
language to a dialogue act format. 8, 18, 22, 23, 25-31, 33-35, 40

delexicalised

(to describe an input utterance to a dialogue state tracker) an utterance where words
representing possible slot values in the domain have been replaced with generic tags.
A delexicalised dialogue state tracker is one that operates on such input. 55, 57, 58,
61, 66, 77, 83, 90, 95, 96, 109, 111, 113, 123
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Dialog State Tracking Challenges
a series of research challenges in dialogue state tracking. Spelling of dialog follows
the official name. 4, 11, 30, 42, 67, 68, 81, 94, 99, 109, 123, 139

dialogue reward

a real number score assigned to a dialogue, such that higher scores correspond to
better dialogues. This is the metric optimised when learning a dialogue policy during
reinforcement learning. 4, 25, 30, 38, 39, 84-86

discriminative

to describe a probabilistic model that directly models the conditional probability of
the outputs of a system given the inputs. 2—4, 6, 9-12, 17, 20, 22, 27, 28, 30, 41, 50,
51, 53, 64, 67, 76, 80, 81, 90, 100, 109, 111, 112

dynamic Bayesian network

a Bayesian network that relates random variables to each other over adjacent timesteps.
10-12, 48, 49, 66, 69, 76, 91

F-score

geometric mean of the recall and precision of semantic items in the top hypothesis
from a spoken language understanding component. 25-27, 33-35, 37, 38, 40, 71, 72

generative

to describe a probabilistic model that jointly models the inputs and required outputs
of a system. Often the required outputs are modelled as hidden random variables,
which can be inferred from observing the inputs. 3, 9—12, 15, 20, 47, 50, 64, 67, 76,
79, 81-83, 91, 109

goal constraint

a constraint for a particular slot that the user has given. 42-44, 4648, 51, 55, 59-61,
63-66, 73, 76,77, 79, 80, 94-97, 99, 100, 102, 104, 106

Item Cross Entropy

the cross entropy between the true semantic labels and the reported probabilities from
a spoken language understanding component. 25, 33, 139

L2
evaluation statistic for dialogue state tracking. The square of the L2 norm between
the reported dialogue state distribution and the true (delta) label distribution. 61, 63,
73,76,77,79, 80, 90, 95-97, 100

N-best list

the top N scoring hypotheses from the automatic speech recognition. 6, 7, 13, 18,
26-32, 34, 36, 61, 63, 74, 83
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policy

a mapping from the dialogue state, or distribution over dialogue states, to the next
system action. 14, 42, 69, 71, 81, 83-85, 89

requested slot

a slot that has been requested by the user, and must be informed by the system. 4244,
4648, 59, 60, 68, 73, 76

search method

the method by which the user is trying to interact with the dialogue system at a given
point in the dialogue. This is one of by constraints, by name, by alternatives or fin-
ished. 4248, 59, 60, 68, 73,76, 112

turn

a dialogue turn, i.e. one system prompt and user utterance. 5, 12—14, 38—44, 46, 47,
51, 53, 55-57, 62,73, 81, 87-90, 92,93, 97, 112

word confusion network
representation of the full posterior distribution from the automatic speech recognition
component. 4, 6-8, 11, 13, 28-32, 35, 40, 61, 74, 76, 109, 112

word-based

(to describe a dialogue state tracker) directly operates on the output of the speech
recognition, with no explicit intermediate semantic spoken language understanding

step. 4, 41, 60, 61, 63, 65, 66, 74, 76, 77, 81, 83, 86, 91, 95, 96, 104, 105, 109, 111,

113
a
the last action taken by the system, a dialogue act. 45, 48, 49
D
the concatenation operator. If a and b are vectors, then a ® b is the concatenation
of a and b, i.e. its components are all of the components of a followed by all the
components of b. 55, 56, 59, 101-103
d-type
the type of a dialogue act. 22, 23, 25, 117
NNet
a Multi-layer Perceptron function. 56, 129, 130, 132
Ogy

the observation from the SLU of the goal constraint for slot s. This is a vector giving
a value between O and 1 for each possible value for the slot, summing to at most 1.
44, 49
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i

Sinf

S req

the observation of component i of the dialogue state given by the SLU. 44-46, 48, 73

the observation from the SLU of the search method. This is a vector giving a value
between 0 and 1 for each possible method (including none), summing to 1. 44, 49

the observation from the SLU of the slot s being requested. A scalar between 0 and 1.
44, 49

the set of all slots in a slot-based dialogue domain. 115, 117

the set of informable slots. 23, 42, 44, 46, 49, 55, 56, 115-117, 119

the set of requestable slots. 42, 44, 46, 47, 49, 59, 115-117

the set of possible values for slot s. 23, 42, 44-46, 55, 56, 115, 117

the set of slot-bindings belonging to a dialogue act. 22, 25, 117-120

138



ACRONYMS

ASR

Automatic Speech Recognition. 4, 6-8, 13, 16, 21, 22, 24, 25, 27-30, 32, 33, 38, 39,
49-51, 57, 58, 60, 63, 68-70, 7277, 80, 82, 83, 87, 90, 92, 99, 103

ATIS

Air Travel Information System. 9, 20

BUDS
Bayesian Update of Dialogue State. 11, 13, 34, 40, 46, 80, 96

CRF
Conditional Random Field. 10, 15-22, 24-26, 28, 31-33, 51, 52, 75, 115

dA
denoising Autoencoder. 60, 122, 123
DST
Dialogue State Tracking. 3, 4, 6, 10-13, 39, 40, 42, 45-47, 49, 51, 52, 56-58, 62, 63,
65, 66,71, 72,717,79, 80, 82, 86, 96, 101, 103, 104, 115, 119
DSTC
Dialog State Tracking Challenge. 4, 10, 11, 28, 40, 42, 46, 58, 60, 62, 65-76, 7880,
89-92, 95, 96, 99, 103, 115, 116, Glossary: Dialog State Tracking Challenges
HMM
Hidden Markov Model. 6
ICE
Item Cross Entropy. 23-25, 31-33, 35, 36, Glossary: Item Cross Entropy
MDP

Markov Decision Process. 12, 14
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MLP
Multi-layer Perceptron. 121-124

NLG

Natural Language Generation. 14

POMDP
Partially Observable Markov Decision Process. 12, 13, 34, 67, 70, 80, 101

RNN
Recurrent Neural Network. 4, 6, 14, 17, 39, 42, 49, 52, 54, 57, 58, 60-63, 65, 71-77,

79, 80, 82, 86-88, 90-93, 95, 98-101, 103-105, 115, 119, 121, 123, 124

SDS
Spoken Dialogue System. 3, 5, 10, 12, 23, 46

SGD
Stochastic Gradient Descent. 58, 60, 87, 90, 92, 93, 98, 124, 125

SLU

Spoken Language Understanding. 3, 4, 6, 7, 9-13, 15-17, 21, 23-25, 27, 28, 30, 31,
39, 41, 42, 4446, 48-53, 55, 57, 58, 62, 68, 70-80, 86, 96, 99, 100, 103, 104, 115,
119

SS
Speech Synthesis. 14

STC
Semantic Tuple Classifier. 3, 10, 15, 19-21, 24, 25, 28, 30-32, 38

SVM
Support Vector Machine. 3, 10, 19, 20, 30, 31

WER
Word Error Rate. 21, 27, 33, 35-37, 67-70, 80
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