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Abstract

The paper presents an analysis of the effects of irreversibility on the performance

of a reverse Joule-Brayton cycle heat pump for domestic heating applications. Both

the simple and recuperated (regenerative) cycle are considered at a variety of op-

erating conditions corresponding to traditional (radiator) heating systems and low-

temperature under-floor heating. For conditions representative of typical central

heating in the UK, the simple cycle has a low work ratio and so very high com-

pression and expansion efficiencies and low pressure losses are required to obtain a

worthwhile COP. An approximate analysis suggests that these low loss levels would

not necessarily be impossible to achieve, but further investigation is required, par-

ticularly regarding irreversible heat transfer to and from cylinder walls. In principle,

recuperation improves the cycle work ratio, thereby making it less susceptible to

losses, but in practice this advantage is compromised when realistic values of recu-
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perator effectiveness are considered.
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1 INTRODUCTION

Current concerns over energy resources and CO2 emissions have led to re-

newed interest in the use of heat pumps for domestic heating. Tradition-

ally, ground-source devices have been favoured for this purpose since stable

ground temperatures offer the potential for a higher coefficient of performance

(COP) compared with air-source heat pumps. However, relatively few residen-

tial properties have sufficient land space to install the extensive underground

heat exchange loop required for ground source devices and so their uptake has

been limited. (Borehole ground loops can overcome this problem, but instal-

lation costs are still very high.) Despite the theoretically lower values of COP,

air-source devices may therefore have greater potential for exploitation. Cock-

roft and Kelly [1], for example, conclude that air-source heat pumps offer the

greatest potential to reduce CO2 emissions amongst a variety of competing

technologies for domestic heating and power.

The present paper explores the thermodynamic performance of an open air-

cycle heat pump, based on the reverse Joule-Brayton cycle (henceforth referred

to as the RJB cycle). This cycle was first proposed for heating applications in

1852 by Kelvin, who referred to his device as a ’heat multiplier’ [2]. The equiva-

lent refrigeration cycle (which is known variously as the Brayton refrigeration

cycle, the reverse Brayton cycle and the gas refrigeration cycle), also dates
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back to the nineteenth century when it was employed as a means of cooling

on board cargo ships [3]. More recently, heat pumps based on both the simple

[4] and regenerative [5] forms of the RJB cycle have been proposed, whilst

Braun et al. [6] have analysed an air cycle heat pump for drying applications.

The RJB cycle also finds application in aircraft cooling and air liquefaction,

either as an open or a closed cycle device, and a number of studies have been

published in this context. Of particular note is the work by Chen, Wu and

co-workers [7–14] in which so-called finite-time thermodynamics is applied to

analyse and optimise simple and regnerative RJB cycles operating in con-

junction with fixed and variable temperature thermal reservoirs. Other cycle

analyses have been undertaken in the context of some novel applications in-

cluding cryogenic refrigeration (e.g., [15,16]) and lunar base cooling [17]. None

of the above publications, however, addresses directly the issues relevant to a

domestic heating application, which is the focus of the present work.

Sisto [18] undertook cycle calculations for a turbomachinery-based RJB cycle

aimed at heating applications and concluded that a COP of about 2 could be

achieved. However, even state-of-the-art turbomachines cannot achieve com-

pression and expansion efficiencies that are required to provide a competitive

COP. The use of reciprocating devices is therefore assumed in the present

study and the method of treating losses is accordingly modified. A prototype

“Brayton” domestic water heating system based on reciprocating devices was

in fact built and tested in the 1970s [19], but achieved a COP of just 1.26.

This poor performance would appear to stem from high pressure losses through

valves and from stray heat losses. These issues are also addressed in the present
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work.

As a heating device, the open-loop reverse Joule-Brayton cycle has a number

of attractive features when compared to traditional vapour compression de-

vices. Since the working fluid is ambient air, there are no refrigerant leakage

problems, and there is no requirement for a low-temperature heat exchanger.

(By contrast, a ground source heat pump usually employs two levels of heat

exchange on the low temperature side.) The cycle is therefore very simple and,

in its ideal (i.e., reversible) form, its COP matches that of a reverse Carnot

cycle operating between temperature limits of the ambient air temperature

and the radiator supply water temperature. Against these potential advan-

tages, air-cycle devices have a tendency to be bulky due to the low density

and thermal capacity of air, and at conditions typical of central heating sys-

tems the cycle has a very low work ratio, making it particularly susceptible to

irreversibilities.

The objectives of the present study are to investigate the performance of both

a simple and a recuperated (or “regenerative”) RJB cycle and to determine

the levels of thermodynamic loss that can be tolerated if a worthwhile COP is

to be obtained for heating applications (i.e., above ∼ 3.5, excluding electrical

and mechanical losses). Some initial consideration is also given to the opti-

mum operating conditions, but overall system optimisation (which requires

details of the radiator “load line” and integration of performance over a typi-

cal heating season) has not been undertaken. The analysis presented is based

on simple cycle calculations, assuming the working fluid (air) to behave as a

perfect gas. This is a reasonable assumption with the possible exception of
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within the expansion process where moisture or ice precipitation may occur.

Thermodynamic losses within the cycle are quantified by polytropic expansion

and compression efficiencies and by pressure loss factors, estimates of which

are obtained by considering an outline design for the heat pump.

2 CYCLE DESCRIPTION AND OPERATING POINT

Figure 1 shows a simplified layout of a reverse Joule-Brayton heat pump.

Ambient air is drawn into the compressor at 1 and compressed to state 2,

typically at about twice atmospheric pressure. The hot compressed air then

enters a heat exchanger where it is cooled to state 3, thereby delivering heat to

the radiator circulating water (and / or the hot water system). Finally, the air

is expanded through the reciprocating expander to atmospheric pressure and

exits to the atmosphere at state 4. The throttles T1 – T4 represent pressure

losses in the compressor and expander inlet and exit valves, and in the heat

exchanger and pipework.

For an electrically driven heat pump the overall COP is defined as the ratio

between the thermal output and the electrical work input. Clearly this will be

affected by mechanical (frictional) losses and electrical (motor and switching)

losses, but since the focus here is upon thermodynamic behaviour, the COP

will be computed on the basis of an ideal mechanical work input. The overall

COP will be some 10 to 20% below this value.
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2.1 Specification of Operating Point

It is well-known that the maximum COP that can be achieved by a heat pump

depends on the ratio between the source and sink temperatures. In the current

context, the relevant temperatures are the outside air temperature, T1, and

the compressor delivery temperature, T2, the latter being a few degrees above

the radiator (or hot water) supply temperature. Except in the limiting case of

the reversible cycle, the COP also depends on the temperature after the heat

exchanger, T3, which is dictated by the water temperature drop that can be

achieved in the radiator system. In dimensionless terms, the operating point

of the cycle is thus defined by the two parameters:

τ =
T2

T1

and θ =
T3

T1

.

There is some scope for varying these parameters independently, but in prac-

tice they are linked by the “load line” of the heating system.

For the purposes of estimating pressure losses and providing an initial indi-

cation of performance, it is convenient to specify a reference operating point

and this is taken as τ∗ = 1.216 and θ∗ = 1.180. This corresponds to the con-

ditions listed in table 1 and is approximately representative of what might be

achieved with a typical central-heating radiator system operating at reduced

thermal output, and with a constant air-water temperature difference of 5 oC

in the heat exchanger. (Note that the geometry described in table 1 is based

on two compression and two expansion cyclinders, each pair being coupled on

a single shaft, as in fig. 1.)
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3 PERFORMANCE OF THE IDEAL CYCLE

Figure 2 shows ideal and real reverse Joule-Brayton cycles plotted on a T-s

diagram. For either cycle, provided all components (except the heat exchanger)

are adiabatic, the COP is given by,

COP =
q

wc − we

=
cp(T2 − T3)

cp(T2 − T1) − cp(T3 − T4)
. (1)

The maximum COP will be achieved if all processes are also reversible (dashed

line in the figure), in which case the temperature ratios across the compressor

(τc = T2/T1) and expander (τe = T3/T4) are the same and equal to τ . Eq.(1)

then simplifies to:

COPi =
(

1 −
1

τ

)

−1

. (2)

This, as expected, is simply the reciprocal of the efficiency for an ideal gas

turbine cycle, and it is notable that the expression is independent of the heat

exchanger temperature drop, and hence of the thermal output, q = cp(T2−T3).

For the reference operating conditions (table 1), the maximum COP is about

5.6 and requires a pressure ratio of roughly 2:1.

4 DEPARTURES FROM IDEAL BEHAVIOUR

Before embarking on a detailed analysis of how the various losses affect the

COP, it is worth making a few general comments. The net work input per kg

of air for the ideal cycle is equal to the area enclosed by the p-v diagram, as

shown in fig. 3. The striking feature of this diagram is that the enclosed area

is very slender - i.e., the cycle has a very low work ratio (defined as the ratio
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between the net work input and the compression work input). This means

that small fractional changes in either wc or we have a large impact on the

net work input and hence on the COP. To put this into perspective, at the

reference operating point (at which wc and q will be fixed), a 1% reduction

in the expansion work results in the COP falling by almost 25%. As shown in

fig. 3, the work ratio is improved by increasing the temperature drop in the

heat exchanger such that, unlike the ideal cycle, the COP of the real device is

quite strongly dependent on θ.

4.1 Quantification of Losses

The principal departures from ideal thermodynamic behaviour are caused by:

(i) Non-adiabatic compression and expansion.

(ii) Pressure losses in valves, pipework and the heat exchanger.

(iii) Irreversibility during compression and expansion.

Some of these effects are shown on the T-s diagram of fig. 2 (solid line), and

the associated loss factors are defined below. Note that, since valve pressure

losses are treated separately here, the main source of irreversibility during

compression and expansion is thermal dissipation, as described in appendix

B.

Polytropic Compression and Expansion

Compression and expansion irreversibilities are traditionally quantified by

isentropic efficiencies. This is the approach adopted in, for example, [9,12,17],
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and is suitable for adiabatic compression and expansion with turbomachinery.

For reciprocating devices, it is advantageous to separate out the pressure losses

associated with the various valves. Furthermore, isentropic efficiencies are not

properly defined if the processes concerned involve heat transfer. For example,

it is quite possible during a compression process for the effects of heat loss and

irreversibility to cancel each other, giving a process that is isentropic but in

no sense ideal. A means of simultaneously accounting for both heat losses (or

gains) and irreversibility is therefore required.

In the present analysis, compression heat losses are quantified by a fractional

heat loss factor, αc, defined by:

dqc = αcdwc, (3)

where dqc is the heat lost and dwc is the work input (both per unit mass of

air) during an infinitesimal compression process. The reversible work input for

such a process is equal to dp/ρ, irrespective of whether or not the process is

adiabatic. Irreversibility may therefore be quantified by writing:

dwc =
dp

ηcρ
, (4)

where ηc is the compression (polytropic) efficiency.

Combining equations (3) and (4) and integrating (assuming αc and ηc remain

constant) gives a polytropic relationship of the form,

τc = βφc

c , (5)

where τc and βc are the compression temperature and pressure ratios respec-
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tively, and φc is a polytropic exponent, given by:

φc =
γ − 1

γ

(

1 − αc

ηc

)

. (6)

The compression work input is then found by applying the steady flow energy

equation in conjunction with eq.(3), giving:

wc =
cpT1(τc − 1)

1 − αc

. (7)

Equivalent expressions to eq.(5) and eq.(7) may be derived for the expansion

process, but in this case:

φe =
γ − 1

γ
(1 − αe)ηe, (8)

and αe must be interpreted as a fractional heat gain factor.

Pressure Losses

Pressure losses in the valves, pipework and heat exchanger all contribute to the

expander seeing a lower pressure ratio than the compressor. These losses are

represented here by fractional pressure loss factors, fi – e.g., for the compressor

inlet valve,

P1a = (1 − f1)P1. (9)

Similar expressions apply for other components, and the overall effect can be

represented by a global pressure loss factor, F , defined by,

βe = βc

4
∏

i=1

(1 − fi) = βc(1 − F ), (10)

To a good approximation, F is given by summing the individual values of fi,

provided these are small.
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4.2 Quantitative Effect of Losses on the COP

By straightforward application of the steady flow energy equation to each

component and incorporating eq.(7) and a similar expression for we, the COP

for the irreversible cycle may be written as

COP =
q

wc − we
=

τ − θ
(

τ − 1

1 − αc

)

− θ

(

1 − 1/τe

1 − αe

) . (11)

(Note that the cycle temperature ratio, τ is equal to the compressor temper-

ature ratio τc for the simple, unrecuperated cycle.) Combining eq.(10) with

eq.(5) and an equivalent expression for the expander, gives the following rela-

tion between τe and τc:

τe = (1 − F )φeτ ηcηe(1−αe)/(1−αc)
c . (12)

This shows how pressure losses and polytropic efficiencies of less than unity

result in the expander temperature ratio falling below that of the compressor,

whereas heat losses and heat gains only have a significant effect if αc and αe

differ.

The Effect of Heat Losses

For a reversible cycle in which the fractional heat losses and heat gains in

the compressor and expander are balanced (i.e., αc = αe = α), eq.(12) shows

that the compression and expansion temperature ratios remain equal and so

eq.(11) reduces to:

COP = (1 − α)COPi. (13)
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Thus each 1% of heat loss in the compressor (and 1% heat gain in the ex-

pander) causes a 1% reduction in COP. However, if αc and αe differ, then

changes to the COP may be much greater. Figure 4 shows T-s diagrams for

reversible cycles with (a) no heat loss, (b) αc = αe = 0.05 (i.e., 5% heat loss

in the compressor and 5% heat gain in the expander) and (c) αc = 0.05 but

αe = −0.05 (i.e., 5% heat loss in both compressor and expander. Since these

cycles are reversible, the areas enclosed by the T-s diagrams are equal to the

net work input, whilst the heat delivered in each case is the same. It is clear

from the figure that the reduction in COP will be very significant for case (c).

It is also clear that the average compression and expansion temperatures are

both likely to be above T1 so that there is a tendency for heat loss from both

devices (i.e., αc > 0 but αe < e). It is therefore important to fully insulate

the compressor and the expander, and henceforth it is assumed that sufficient

insulation is used to make both devices adiabatic.

The Effect of Irreversibilities

Figure 5 shows the cycle COP plotted as a function of overall pressure loss

factor, F , at the reference operating conditions, and for different values of

compression and expansion efficiency. Bearing in mind that electrical and me-

chanical losses will cause a further reduction in performance, it is clear that

only very small losses can be tolerated if a worthwhile COP is to be achieved at

these conditions. For example, to obtain a thermodynamic COP of 3.5 would

require compression and expansion efficiencies of 99.5% and pressure losses

of less than 1%, or some similar combination. Rudimentary estimates of F

and η are presented in appendices A and B respectively, based on the outline
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geometry given in table 1. Although subject to considerable uncertainty, these

estimates suggest that such low levels of loss would be difficult to achieve at

the specified values of θ and τ . However, less stringent limits apply if θ can be

reduced and if the operating point is optimised, as described in the following

section.

5 DESIGN POINT SELECTION

The key to improving the cycle performance is to increase the cycle work ratio

by increasing the air temperature drop in the heat exchanger, as described in

section 4. Ideally this would be achieved by reducing the radiator water return

temperature, and hence reducing θ, but whether or not this is possible depends

on the type of radiator system; radiators designed for traditional central heat-

ing systems would probably have insufficient surface area to allow a significant

reduction in θ and simultaneously provide the required thermal output. How-

ever, even at fixed θ, improvements in performance may still be possible by

increasing τ , either by increasing the radiator water supply temperature, or

by allowing the air and water temperatures to diverge in the heat exchanger.

The purpose of this section is therefore to explore cycle optimisation on this

basis. The results presented here are intended only to give an approximate in-

dication of trends since the variation of F , ηc and ηe with operating conditions

is not known with any certainty. In particular, no dependence of ηc and ηe on

operating conditions is included in the calculations.
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5.1 Optimisation at Fixed θ

For a specified thermal output, increasing the temperature drop in the heat

exchanger leads to a lower air mass flow rate. Increasing τ at fixed θ there-

fore has a twofold effect: the cycle work ratio is improved, and pressure losses

are also reduced due to the lower air velocities. It is assumed here that pres-

sure losses scale approximately as the square of the mass flow rate and hence

inversely with the square of the heat exchanger temperature drop. Thus,

F

F∗

≈

(

τ∗ − θ∗
τ − θ

)2

, (14)

where the asterisk denotes the reference conditions. Based on the estimates in

appendix A, a value of 2.6% is used for F∗, except where otherwise stated.

Figure 6 shows the variation of COP with τ for θ = θ∗ = 1.18, corresponding

to a radiator water return temperature of about 50 oC. Curves are plotted

for polytropic efficiencies of 98, 99 and 100%, and for F∗ = 1.25, 2.5 and

5%. These results demonstrate that the maximum COP is very sensitive to

polytropic efficiency, but much less dependent on F∗. This is because as F∗

increases, the optimum operating point shifts to a higher value of τ (and hence

a lower air mass flow rate) at which pressure losses are smaller. It should be

borne in mind, however, that polytropic efficiencies may well decrease with

decreasing air mass flow (since there is then more time for heat transfer),

thereby counteracting this trend. Nonetheless, by judicious selection of the

operating point, lower values of polytropic efficiency can be tolerated than

initially suggested by fig. 5.
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5.2 Contours of COP in the τ − θ Plane

By use of underfloor heating or larger area radiators, it is possible to sub-

stantially reduce θ below the reference value of 1.18, and it is therefore of

interest to explore how the COP varies with both τ and θ. Figure 7 shows

contours of COP in the τ − θ plane, for F∗ = 2.6% and ηc = ηe = 99%. With

an underfloor heating system, values of θ as low as 1.12 should be possible

(corresponding to T3 = 38 oC at an outside air temperature of 5 oC), and the

optimum value of τ is then 1.21 (corresponding to T2 = 63 oC for the same

outside air temperature). This would give a thermodynamic COP of 4.5 based

on the assumed loss parameters, as shown by the open circle plotted in the

figure. Overall system optimisation would however require superimposing the

radiator “load-line” on fig. 7.

It is worth noting that if the heat pump is used to provide domestic hot water,

then careful design of the hot water tank would permit T3 to be reduced

yet further. For at least part of the water heating process, values of T3 of

∼ 20 oC should be possible, giving θ = 1.054 and a maximum COP of about

6, assuming the same loss parameters.

6 THE RECUPERATED CYCLE

An alternative approach to improving the cycle work ratio is to “recuperate”

heat from the air prior to expansion and transfer it to the compressor intake

air, as shown in the T-s diagram of fig. 8. This may be achieved either by a

direct (air-to-air) heat exchanger, or by first cooling the radiator return water
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with the inlet air and then exploiting this cooler water to obtain a lower air

temperature prior to expansion. The latter method has the advantage that

air pathways are less complex but requires two levels of heat exchange and

thus results in a lower overall heat exchange effectiveness, ǫ. For the ideal

recuperated cycle (no losses, ǫ = 1) the COP is the same as for the simple

reverse Joule-Brayton cycle (eq. 1), but the sensitivity to losses is much less:

a 1% reduction in we at the reference operating point results in only a 5%

reduction in COP; one fifth of that for the simple cycle.

For the real cycle, with losses and ǫ < 1, eq.(12) relating τe and τc still applies,

but τc and τ are no longer the same since part of the temperature rise (T1 to

T1b) occurs by recuperation. Assuming an overall (air-to-air) heat exchange

effectiveness of ǫ:

T1b − T1 = T3 − T3b = ǫ(T3 − T1). (15)

The compressor temperature ratio is therefore given by:

τc =
T2

T1b

=
τ

1 − ǫ + ǫθ
. (16)

By reference to fig. 8, the COP of the recuperated cycle is simply:

COP =
q

wc − we

=
cp(T2 − T3)

cp(T2 − T1b) − cp(T3b − T4)
, (17)

which by straightforward manipulation may be expressed in terms of dimen-

sionless temperatures as:

τ − θ

(τ − 1) − θ + (θ − ǫ{θ − 1})/τe

. (18)

(Note that the unrecuperated cycle expression may be recovered from eq.(18)

by setting ǫ = 0.)
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Eq.(18) is plotted in fig. 9 as a function of τ and shows that (for the specified

loss parameters) a recuperator effectiveness of at least 90% would be required

for the recuperated cycle to offer any advantage over the simple cycle. Such a

high effectiveness would be difficult to obtain in practice because the hot and

cold streams in the heat exchanger have the same heat capacity. (Under these

circumstances, an NTU of 9 would be needed (see, for example, [20]), implying

a very large heat exchanger.) For lower compression and expansion efficiencies,

the benefits of recuperation are more pronounced, but the performance is

probably then too poor for the device to be worthwhile. (In this respect,

Sisto [18] and Dieckmann et al [19] both reported improved performance with

recuperation, but in cases where COPs were about 2 and 1.3 respectively.)

Nonetheless, one obvious advantage of the recuperated cycle is that lower

pressure ratios are required since part of the temperature rise (T2−T1) occurs

within the recuperator.

Recuperation also has a greater effect for lower radiator water return tem-

peratures (i.e., lower θ) and so might prove useful if the heat pump is inte-

grated with an underfloor heating system. However, the improvements remain

marginal for practical values of ǫ and may well be nullified by the additional

pressure losses that would result from the larger heat exchange area and the

increased flow complexity.

7 CONCLUSIONS

Cycle calculations have been presented for a recuperated and a simple cycle

reverse Joule-Brayton heat pump at conditions appropriate for domestic cen-
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tral heating. Due to its inherently poor work ratio, the simple cycle suffers

a dramatic deterioration in performance for small pressure losses and other

irreversibilities. Recuperation renders the cycle less sensitive to such losses

but, for realistic values of recuperator effectiveness, the improvement is only

significant when losses are already high and the COP low.

As with all heat pumps, the performance depends on the temperature ratio

over which the device operates and, in particular, the return water temperature

from the heat distribution system (radiators, underfloor heating etc.) plays a

dominant role in controlling the maximum COP that can be obtained.

In order to achieve a worthwhile performance, losses must be contained to

within very low levels; typically compression and expansion efficiencies of

about 99% are required, whilst overall pressure losses need to be less than

∼ 1%. A preliminary consideration of the loss mechanisms suggests that these

values may not be impossible, but further investigation is needed, particularly

in connection with thermal dissipation losses. Heat losses and gains to and

from the surroundings may also severely impair the COP, especially if the

fractional heat gain in the expander falls below the fractional heat loss from

the compressor.

APPENDIX A: ESTIMATION OF PRESSURE LOSSES

Accurate computation of pressure losses is a complex matter, requiring de-

tailed information on the heat exchanger, valve and pipework geometries, to-

gether with consideration of Reynolds number effects and the pulsating nature
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of the flow. The intention here, however, is to provide approximate estimates

based on dynamic head and frictional losses. The outline geometric details

required to make these estimates are listed in table 1.

Valve Losses

Valve losses will be minimised if the valves open and close rapidly and are

actuated when there is zero pressure difference across them. If this can be

achieved then pressure losses will be limited to the loss in dynamic pressure

of the valve flow, which may be estimated as:

∆p = 1
2
ρv2

p/σ
2 (19)

where vp is the maximum piston velocity and σ is the ratio of valve free-

flow area (including the effects of venae contractae) to piston area. Assuming

sinusoidal piston motion,

vp =
πṁ

ρAp
. (20)

where Ap is the piston cross-sectional area and ṁ is the air mass flow rate. By

locating valves in the cylinder end-walls and in the pistons, it is possible to

obtain high values of σ, thereby keeping peak velocities to low levels. Using

the figures listed in table 1, the following loss factors are obtained:
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Compressor inlet valve: 0.79%

Compressor exit valve: 0.24%

Expander inlet valve: 0.23%

Expander exit valve: 0.77%

Heat Exchanger and Pipework Losses

In order to estimate heat exchanger pressure losses, data for a compact heat

exchanger of surface type 8.0-3/8T has been employed, as described in Kays

and London [21]. Based on this data, an overall heat transfer coefficient of

U = 50W/m2 has been assumed, with a corresponding friction factor of fv =

0.03. The required heat exchange surface is given by,

Ax =
Q̇

U∆Tm
≈ 20m2,

which can be achieved within a cubic volume of approximately 0.33m side.

The pressure drop associated with flow across the finned tube banks is:

∆P = 1
2
ρv2

xfv(Ax/Aff),

where vx is the maximum air velocity in the heat exchanger occurring at the

minimum free-flow area, Aff . Inserting values for the are ratios for surface

8.0-3/8T gives a fractional pressure loss of ∼ 0.1% at the reference operating

conditions. A further pressure drop results from losses within the pipework

connecting the compressor, heat exchanger and expander, but this cannot be

computed without precise geometric details. It is assumed instead that this
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pressure drop is equal to the loss in dynamic pressure associated with the

minimum flow area. Based on an estimated minimum pipework diameter of

0.1m, this gives a fractional pressure drop of a further 0.5%.

For accurate calculations at conditions away from the reference operating

point, values of f should be recomputed taking account of changes in den-

sity, pressure and temperature. To a good approximation, however, the overall

pressure loss factor may be written as:

F ≈
∑

fi ∝ ṁ2

where the summation is over all pressure loss factors. Using the above esti-

mates, the overall pressure loss factor at the reference conditions is F∗ ≈ 2.6%.

Since this figure is clearly subject to considerable uncertainty, the sensitivity

of results to F∗ is considered in section 5.1.

APPENDIX B: COMPRESSION AND EXPANSION EFFICIENCY

Most applications of reciprocating compression and expansion devices relate

to internal combustion engines operating at high speeds and high pressure

ratios, or situations where the aim is to minimise compression work without

regard for the final air temperature (and thus where cooled compression is ben-

eficial). It is therefore difficult to obtain published data on compression and

expansion efficiencies relevant to the current application. Moss et al [22] have

estimated that (isentropic) efficiencies of 97.5% and 99.3% can be achieved

for compression and expansion respectively for their design of a reciprocating

Joule-Brayton CHP plant, but these are estimates rather than measurements

21



and include a number of mechanical loss mechanisms not relevant in the cur-

rent context.

The polytropic efficiencies used in the current work serve chiefly to repre-

sent thermal dissipation effects, since valve losses are included in the pressure

losses discussed above. Thermal dissipation occurs even if the cylinders are

externally insulated, since heat transfer will still take place to and from the

cylinder walls. A number of studies have been undertaken to quantify this ef-

fect (e.g. [23,24]), particularly in connection with so-called gas springs. These

comprise a quantity of gas trapped within a reciprocating piston and cylinder

arrangement. The ideal gas spring would be fully reversible giving coincident

compression and expansion lines on the p-V diagram, but in reality a hystere-

sis loss results from thermal dissipation such that there is a net work input per

cycle. An analytical expression for the hysteresis loss was developed by Lee

[23] and has proved to fit experimental data well [24]. Lee’s result is shown

in fig. 10, expressed as an approximate decrement in polytropic efficiency by

attributing half the loss to compression and half to expansion. The horizontal

axis in this figure is the Peclet number, Pe = ωD2
h/2αt, where ω is the angular

frequency of the piston motion, Dh is the cylinder mean hydraulic diameter,

and αt is the mean value of thermal diffusivity for air. Based on the dimensions

and conditions listed in table 1, the Peclet number is approximately 8000, sug-

gesting an efficiency loss of well below 0.5%. However, there are two principal

reasons why the thermal dissipation loss in a real compressor or expander (as

opposed to a gas spring) may be substantially different:

(i) Flow through inlet valves will generate eddying motion and turbulence
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which will enhance the effective thermal diffusivity and thereby reduce

the Peclet number.

(ii) The analysis leading to fig. 10 assumes a constant wall temperature.

This is valid in the case of metal walls, but if the internal surfaces of

the cylinder are constructed from insulating materials then the analysis

should be extended to account for non-isothermal wall conditions.

Given these uncertainties, the calculations presented in sections 4.2 and 5.1

have been undertaken for a range of polytropic efficiencies, which are assumed

equal for compression and expansion and independent of the mass flow rate.

NOTATION

A area, [m2]

COP coefficient of performance, q/w

cp isobaric specific heat capacity, [J/kgK]

D, Dh diameter, hydraulic diameter (4V̄ /Ā), [m]

f, F pressure loss factors

q specific thermal output, [J/kg]

T temperature, K

w specific work input, [J/kg]

α heat loss / gain factor

αt thermal diffusivity for air, [m2/s]

β pressure ratio

γ isentropic index

ǫ heat exchanger effectiveness
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θ temperature ratio, T3/T1

φ polytropic index

η polytropic efficiency

ρ density, [kg/m3]

τ temperature ratio, T2/T1

τc, τe compressor, expander temperature ratio

τc, τe angular frequency of piston motion, [rad/s]

subscripts

c, e compressor, expander

i ideal cycle

1 heat pump intake

2 compressor delivery

3 main heat exchanger exit

4 heat pump exit
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TABLES

Number of compression cylinders 2

Piston diameter 0.3 m

Valve open area : piston area σ 0.25

Thermal output Q̇ 5 kW

Air-water log-mean temperature difference ∆Tm 5 oC

Air mass flow rate ṁ 0.5 kg/s

Ambient air temperature T1 5 oC

Maximum cycle temperature T2 65 oC

Post heat-exchange air temperature T3 55 oC

Table 1
Reference operating conditions and outline geometry used to estimate pressure
losses.
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