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On Particle Methods for Parameter
Estimation in State-Space Models
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Abstract. Nonlinear non-Gaussian state-space models are ubiquitous in
statistics, econometrics, information engineering and signal processing. Par-
ticle methods, also known as Sequential Monte Carlo (SMC) methods,
provide reliable numerical approximations to the associated state inference
problems. However, in most applications, the state-space model of interest
also depends on unknown static parameters that need to be estimated from
the data. In this context, standard particle methods fail and it is necessary to
rely on more sophisticated algorithms. The aim of this paper is to present a
comprehensive review of particle methods that have been proposed to per-
form static parameter estimation in state-space models. We discuss the ad-
vantages and limitations of these methods and illustrate their performance on

simple models.
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1. INTRODUCTION

State-space models, also known as hidden Markov
models, are a very popular class of time series mod-
els that have found numerous of applications in fields
as diverse as statistics, ecology, econometrics, engi-
neering and environmental sciences; see [11, 30, 34,
87]. Formally, a state-space model is defined by two
stochastic processes {X,},>0 and {Y,},>0. The pro-
cess {Xp}n>0 is an X-valued latent Markov process
of initial density wg(x) and Markov transition density
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fa(x'|x), that is,
Xo ~ we(xo0),

Xnl(X0:n—1=%0:n—1) ~ fo(xnlxn—1),

whereas the Y-valued observations {Y,},>¢ satisfy

(1.1)

Yl (X0:n =%0:n, Y0:n-1 =Y0:n-1)
(1.2)

~ 80 (YnlXn),

where gp(y|x) denotes the conditional marginal den-
sity, 0 € © the parameter of the model and z; . ; denotes
components (z;, Zi+1, - .., ;) of a sequence {z,}. The
spaces X' and ) can be Euclidean, but what follows
applies to more general state spaces as well.

The popularity of state-space models stems from
the fact that they are flexible and easily interpretable.
Applications of state-space models include stochastic
volatility models where X, is the volatility of an asset
and Y, its observed log-return [52], biochemical net-
work models where X, corresponds to the population
of various biochemical species and Y, are imprecise
measurements of the size of a subset of these species
[93], neuroscience models where X,, is a state vector
determining the neuron’s stimulus—response function
and Y;,, some spike train data [77]. However, nonlinear
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non-Gaussian state-space models are also notoriously
difficult to fit to data and it is only recently, thanks to
the advent of powerful simulation techniques, that it
has been possible to fully realize their potential.

To illustrate the complexity of inference in state-
space models, consider first the scenario where the
parameter 6 is known. On-line and off-line inference
about the state process {X,} given the observations
{Y,} is only feasible analytically for simple models
such as the linear Gaussian state-space model. In non-
linear non-Gaussian scenarios, numerous approxima-
tion schemes, such as the Extended Kalman filter or
the Gaussian sum filter [1], have been proposed over
the past fifty years to solve these so-called optimal
filtering and smoothing problems, but these methods
lack rigor and can be unreliable in practice in terms
of accuracy, while deterministic integration methods
are difficult to implement. Markov chain Monte Carlo
(MCMC) methods can obviously be used, but they are
impractical for on-line inference; and even for off-line
inference, it can be difficult to build efficient high-
dimensional proposal distributions for such algorithms.
For nonlinear non-Gaussian state-space models parti-
cle algorithms have emerged as the most successful.
Their widespread popularity is due to the fact that they
are easy to implement, suitable for parallel implemen-
tation [60] and, more importantly, have been demon-
strated in numerous settings to yield more accurate es-
timates than the standard alternatives, for example, see
[11, 23, 30, 67].

In most practical situations, the model (1.1)—(1.2)
depends on an unknown parameter vector 6 that needs
to be inferred from the data either in an on-line or oft-
line manner. In fact inferring the parameter 6 is often
the primary problem of interest; for example, for bio-
chemical networks, we are not interested in the popu-
lation of the species per se, but we want to infer some
chemical rate constants, which are parameters of the
transition prior fy(x'|x). Although it is possible to de-
fine an extended state that includes the original state
X, and the parameter 6 and then apply standard par-
ticle methods to perform parameter inference, it was
recognized very early on that this naive approach is
problematic [54] due to the parameter space not being
explored adequately. This has motivated over the past
fifteen years the development of many particle meth-
ods for the parameter estimation problem, but numeri-
cally robust methods have only been proposed recently.
The main objective of this paper is to provide a com-
prehensive overview of this literature. This paper thus
differs from recent survey papers on particle methods

which all primarily focus on estimating the state se-
quence Xo., or discuss a much wider range of topics,
for example, [32, 55, 58, 65]. We will present the main
features of each method and comment on their pros and
cons. No attempt, however, is made to discuss the in-
tricacies of the specific implementations. For this we
refer the reader to the original references.

We have chosen to broadly classify the methods as
follows: Bayesian or Maximum Likelihood (ML) and
whether they are implemented off-line or on-line. In
the Bayesian approach, the unknown parameter is as-
signed a prior distribution and the posterior density of
this parameter given the observations is to be charac-
terized. In the ML approach, the parameter estimate is
the maximizing argument of the likelihood of 6 given
the data. Both these inference procedures can be car-
ried out off-line or on-line. Specifically, in an off-line
framework we infer 0 using a fixed observation record
yo: 7. In contrast, on-line methods update the param-
eter estimate sequentially as observations {y,},>0 be-
come available.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the main computational challenges
associated to parameter inference in state-space mod-
els. In Section 3 we review particle methods for fil-
tering when the model does not include any unknown
parameters, whereas Section 4 is dedicated to smooth-
ing. These filtering and smoothing techniques are at the
core of the off-line and on-line ML parameter proce-
dures described in Section 5. In Section 6 we discuss
particle methods for off-line and on-line Bayesian pa-
rameter inference. The performance of some of these
algorithms are illustrated on simple examples in Sec-
tion 7. Finally, we summarize the main advantages and
drawbacks of the methods presented and discuss some
open problems in Section 8.

2. COMPUTATIONAL CHALLENGES ASSOCIATED
TO PARAMETER INFERENCE

A key ingredient of ML and Bayesian parameter in-
ference is the likelihood function pg(yg.,) of & which
satisfies

(2.1 p@(yO:n)=/p9(x0:n»y0:n)dx0:n»

where pg(x0:,, yo.n) denotes the joint density of
(X0:n, Yo:n) which is given from equations (1.1)—(1.2)
by

Po(X0:n, Y0:n)
2.2)

= po(xo) [ T foCeklxr—1) TT go elx).

k=1 k=0
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The likelihood function is also the normalizing con-
stant of the posterior density pg(xo:,|y0:n) of the la-
tent states Xo., given data yg. .,
Po(X0: 15 Y0:n)

Po(Yo:n)

This posterior density is itself useful for computing the
score vector V¢, (6) associated to the log-likelihood
£,(0) =log pe(yo: 1), as Fisher’s identity yields

wn@:/% 1og Po (X0: s Y0: )

(2.3) Po(X0:nlY0:n) =

2.4)
“Po(X0:nlY0:n) dX0: n-

The main practical issue associated to parameter in-
ference in nonlinear non-Gaussian state-space mod-
els is that the likelihood function is intractable. As
performing ML parameter inference requires maxi-
mizing this intractable function, it means practically
that it is necessary to obtain reasonably low-variance
Monte Carlo estimates of it, or of the associated
score vector if this maximization is carried out using
gradient-based methods. Both tasks involve approx-
imating high-dimensional integrals, (2.1) and (2.4),
whenever n is large. On-line inference requires addi-
tionally that these integrals be approximated on the fly,
ruling out the applications of standard computational
tools such as MCMC.

Bayesian parameter inference is even more challeng-
ing, as it requires approximating the posterior density

Po(y0:n)p(0)
[ po(yo:n)p(0)db’

where p(0) is the prior density. Here not only pg(yo: )
but also p(yo:») = [ Po(y0:n)p(0)dO are intractable
and, once more, these integrals must be approximated
on-line if one wants to update the posterior density se-
quentially. We will show in this review that particle
methods are particularly well suited to these integra-
tion tasks.

2.5 p®lyo:n) =

3. FILTERING AND PARTICLE APPROXIMATIONS

In this section the parameter 6 is assumed known
and we focus on the problem of estimating the la-
tent process {X,},>0 sequentially given the observa-
tions. An important by-product of this so-called fil-
tering task from a parameter estimation viewpoint is
that it provides us with an on-line scheme to compute
{Po(¥0:n)}n>0. As outlined in Section 2, the particle
approximation of these likelihood terms is a key ingre-
dient of numerous particle-based parameter inference
techniques discussed further on.

3.1 Filtering

Filtering usually denotes the task of estimating re-
cursively in time the sequence of marginal posteri-
ors {po(xn|Y0:n)}n>0, known as the filtering densities.
However, we will adopt here a more general definition
and will refer to filtering as the task of estimating the
sequence of joint posteriors {pg (xo:,|Y0:n)}n>0 recur-
sively in time, but we will still refer to the marginals
{Po(x11Y0.n)}n>0 as the filtering densities.

It is easy to verify from (2.1) and (2.3) that the poste-
rior pg(x0:n|yo:n) and the likelihood pg(yo-:,) satisfy
the following fundamental recursions: for n > 1,

Po(x0:n|Y0:n)

3.1
Joenlxn—1)86 (Ynlxn)

Po(YnlY0:n—-1)

= po(X0:n—11Y0:n—1)
and

(3.2)  po(yo:n) = Po(Yo:n—1)PoYulY0:n-1),

where

Po(Ynlyo:n-1)
(3.3) - f 26V lxn) fo GonlXa1)

“PoXn—11Y0:n—1)dxp_1:n.

There are essentially two classes of models for which
Po(x0:nly0:n) and pg(yo:,) can be computed exactly:
the class of linear Gaussian models, for which the
above recursions may be implemented using Kalman
techniques, and when X is a finite state space; see, for
example, [11]. For other models these quantities are
typically intractable, that is, the densities in (3.1)—(3.3)
cannot be computed exactly.

3.2 Particle Filtering

3.2.1 Algorithm. Particle filtering methods are a set
of simulation-based techniques which approximate nu-
merically the recursions (3.1) to (3.3). We focus here
on the APF (auxiliary particle filter [78]) for two rea-
sons: first, this is a popular approach, in particular,
in the context of parameter estimation (see, e.g., Sec-
tion 6.2.3); second, the APF covers as special cases a
large class of particle algorithms, such as the bootstrap
filter [46] and SISR (Sequential Importance Sampling
Resampling [31, 69]).

Let

B4 qgoxn, yulxn—1) = qoXnlyn, Xn—1)q6 (Yn1Xn—-1),

where gg (x| Yn, Xn—1) is a probability density function
which is easy to sample from and gy (y,|x,—1) is not
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necessarily required to be a probability density func-
tion but just a nonnegative function of (x,_1, y,) €
X x )Y one can evaluate. [For n = 0, remove the de-
pendency on x,_1, i.e., g (x0, y0) = go (x0|Y0)q6 (y0).]

The algorithm relies on the following importance
weights:

80 (yolxo) g (x0)

(3.5) wo(xp) =
g6 (xo0ly0)
__ 89 (Ynlxn) fo (xXnlxn—1)
Wy (Xp—1:n) = 26 Con, Yl )
(36) 0\Xns Ynlrn—1

forn > 1.

In order to alleviate the notational burden, we omit the
dependence of the importance weights on 6; we will
do so in the remainder of the paper when no confusion
is possible. The auxiliary particle filter can be summa-
rized in Algorithm 1 [12, 78].

One recovers the SISR algorithm as a special case of
Algorithm 1 by taking gg (y,|x,—1) =1 [or, more gen-
erally, by taking go (v, |xn—1) = ho(ys), some arbitrary
positive function]. Further, one recovers the bootstrap
filter by taking gg (X |yn, Xn—1) = fo(xulxp—1). This
is an important special case, as some complex mod-
els are such that one may sample from fo(x;|x,—1),
but not compute the corresponding density; in such a
case the bootstrap filter is the only implementable algo-
rithm. For models such that the density fy(x,|x,—1) is
tractable, [ 78] recommend selecting gg (x| yn, Xn—1) =
P (Xnlyn, Xn—1) and gg (Yulxn—1) = po(ynlxn—1) when
these quantities are tractable, and using approxima-
tions of these quantities in scenarios when they are not.
The intuition for these recommendations is that this
should make the weight function (3.6) nearly constant.

The computational complexity of Algorithm 1 is
O(N) per time step; in particular, see, for example,

[31], page 201, for a O(N) implementation of the
resampling step. At time n, the approximations of

Po(x0:n1Y0:n) and pg(yu|yo:n—1) presented earlier in
(2.3) and (3.3), respectively, are given by

N
G3.7) poldxo:nlyo:n) =Y Wadyi (dxo:n),
i=1 ‘

N
ﬁe(ynlyo:n—1)=< Z Hel: n)

(3.8)

(Z 190 (] X, 1)>,

where Wi ocw,(XE 1), SN Wi=1and pp(yo) =
N Z — wo(XO) In practice, one uses (3.7) mostly to
obtain approximations of posterior moments

N . .
> Wip(Xp.,) ~
i=1

but expressing particle filtering as a method for ap-
proximating distributions (rather than moments) turns
out to be a more convenient formalization. The likeli-
hood (3.2) is then estimated through

E[@(XO:n)lyO:n]a

n
(3.9)  Po(o:n) = Po(o) [ Poklyo:k-1)-
k=1

The resampling procedure is introduced to replicate
particles with high weights and discard particles with
low weights. It serves to focus the computational ef-
forts on the “promising” regions of the state space. We
have presented above the simplest resampling scheme.
Lower variance resampling schemes have been pro-
posed in [53, 69], as well as more advanced particle

Algorithm 1 Auxiliary particle filtering

o Attimen =0, foralli e {l,..., N}:
1. Sample X}, ~ go(xoly0)-

2. Compute Wi ocwo(X)ge(y11XE), SN, Wa =1.

3. Resample X~ YN | W) 8xi (dxo).

e Atrtimen > 1,foralli e{l,...,N}:

1. SampIeXing(xnlyn,_ 1) and set X,

2. Compute Wn+1 (Xwn(Xn 1: n)QQ()’n+1|X ) Z
3. Resample X,,., ~¥N, Wn+16X, (dxo n)-

n+1

<—(X0n I,X ).

=1.
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algorithms with better overall performance, for exam-
ple, the Resample-Move algorithm [44]. For the sake
of simplicity, we have also presented a version of the
algorithm that operates resampling at every iteration 7.
It may be more efficient to trigger resampling only
when a certain criterion regarding the degeneracy of
the weights is met; see [31] and [68], pages 35 and 74.

3.2.2 Convergence results. Many sharp convergen-
ce results are available for particle methods [23]. A se-
lection of these results that gives useful insights on the
difficulties of estimating static parameters with particle
methods is presented below.

Under minor regularity assumptions, one can show
that for any » > 0, N > 1 and any bounded test
function ¢, : X"t — [—1, 1], there exist constants
Ag n,p < 00 such that for any p > 1

/| [ 0.

(3.10) ’{ﬁﬂ(dxo:n|y0:n)_pQ(de:nb’O:n)}

]
< AG,n, p
- Np/2°

where the expectation is with respect to the law of the
particle filter. In addition, for more general classes of
functions, we can obtain for any fixed n a Central Limit
Theorem (CLT) as N — +o0 ([17] and [23], Propo-
sition 9.4.2). Such results are reassuring but weak, as
they reveal nothing regarding long-time behavior. For
instance, without further restrictions on the class of
functions ¢, and the state-space model, Ag , , typi-
cally grows exponentially with n. This is intuitively
not surprising, as the dimension of the target density
Po(X0:n|Y0:n) 1s increasing with n. Moreover, the suc-
cessive resampling steps lead to a depletion of the
particle population; pg(xg:m|yo.,) Will eventually be
approximated by a single unique particle as n — m
increases. This is referred to as the degeneracy prob-
lem in the literature ([11], Figure 8.4, page 282). This
is a fundamental weakness of particle methods: given a
fixed number of particles N, it is impossible to approxi-
mate pg(xo:n|yo: ) accurately when n is large enough.

Fortunately, it is also possible to establish much
more positive results. Many state-space models pos-
sess the so-called exponential forgetting property ([23],
Chapter 4). This property states that for any xo, x;, € X
and data yg.,, there exist constants Bg < oo and A €
[0, 1) such that

| po(dxnly1:n. x0) — Po(dxnly1:n. X0) |1y

3.11)
< ByA",

where || - ||Tv is the total variation distance, that is,
the optimal filter forgets exponentially fast its initial
condition. This property is typically satisfied when the
signal process {X,},>0 is a uniformly ergodic Markov
chain and the observations {Y,},>0 are not too in-
formative ([23], Chapter 4), or when {Y,},>0 are in-
formative enough that it effectively restricts the hid-
den state to a bounded region around it [76]. Weaker
conditions can be found in [29, 90]. When exponen-
tial forgetting holds, it is possible to establish much
stronger uniform-in-time convergence results for func-
tions ¢y, that depend only on recent states. Specifically,
for an integer L > 0 and any bounded test function
Wy : XL — [—1, 1], there exist constants Co,L,p <00
such that forany p>1,n> L — 1,
]

i

/ Wt r1:m) Abn(dXnt41:m)
XL

(3.12)
0,L,p
where
A9,n(dxn—L—|—l n)
ey =/ { 5o (dxo:]y0:n)
x0:p—p €X" LI

- pG(dXO:nlyO:n)}-

This result explains why particle filtering is an effec-
tive computational tool in many applications such as
tracking, where one is only interested in pg (x,—141: x|
Y0:n), as the approximation error is uniformly bounded
over time.

Similar positive results hold for pg(yq.,). This esti-
mate is unbiased for any N > 1 ([23], Theorem 7.4.2,
page 239), and, under assumption (3.11), the relative
variance of the likelihood estimate pg(yo: ), that is the
variance of the ratio pg(yo:n)/pe(yo:n), is bounded
above by Dgn/N [14, 90]. This is a great improve-
ment over the exponential increase with n that holds for
standard importance sampling techniques; see, for in-
stance, [32]. However, the constants Cy, 1, , and Dy are
typically exponential in n,, the dimension of the state
vector X,,. We note that nonstandard particle methods
designed to minimize the variance of the estimate of
po(yo: ) have recently been proposed [92].

Finally, we recall the theoretical properties of parti-
cles estimates of the following so-called smoothed ad-
ditive functional ([11], Section 8.3 and [74]),

Sy = /XnH L; Sk(xk—lzk)}

“Po(X0:nlY0:n) dX0: n.

(3.14)
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Such quantities are critical when implementing ML pa-
rameter estimation procedures; see Section 5. If we
substitute pg(dxo:nly0:n) 0 po(x0:nlY0:n) dxo:n to
approximate Sf , then we obtain an estimate 3\2 which
can be computed recursively in time; see, for exam-
ple, [11], Section 8.3. For the remainder of this paper
we will refer to this approximation as the path space
approximation. Even when (3.11) holds, there exists
0 < Fy, Gy < oo such that the asymptotic bias [23] and
variance [81] satisfy

2
(15 |ES) -S| <Foe. V(S)) = Gy
N N
for s : X% — [—1, 1] where the variance is w.r.t. the
law of the particle filter. The fact that the variance
grows at least quadratically in time follows from the
degeneracy problem and makes 3:? unsuitable for some
on-line likelihood based parameter estimation schemes

discussed in Section 5.

4. SMOOTHING

In this section the parameter 6 is still assumed known
and we focus on smoothing, that is, the problem of es-
timating the latent variables X¢. 7 given a fixed batch
of observations ygp. 7. Smoothing for a fixed parame-
ter 6 is at the core of the two main particle ML pa-
rameter inference techniques described in Section 5, as
these procedures require computing smoothed additive
functionals of the form (3.14). Clearly, one could un-
fold the recursion (3.1) from n =0 to n = T to obtain
po(xo-7|yo: 7). However, as pointed out in the previ-
ous section, the path space approximation (3.7) suf-
fers from the degeneracy problem and yields poten-
tially high variance estimates of (3.14) as (3.15) holds.
This has motivated the development of alternative par-
ticle approaches to approximate pg(xo.7|yo:7) and its
marginals.

4.1 Fixed-lag Approximation

For state-space models with “good” forgetting prop-
erties [e.g., (3.11)], we have

4.1)  po(x0:nlyo:7) = po(x0:nlY0: (n4+-L)AT)

for L large enough, that is, observations collected at
times k > n 4+ L do not bring any significant additional
information about Xy.,. In particular, when having to
evaluate Sg of the form (3.14) we can approximate the
expectation of s, (x;,—1:,) W.I.t. pg(Xp—1:n|Y0: 7) by its
expectation w.r.t. pg(xp—1:n|yo: (n+L)/\T)-

Algorithmically, a particle implementation of (4.1)
means not resampling the components X 6 ., of the par-
ticles Xéz « obtained by particle filtering at times k >
n—+ L. This was first suggested in [56] and used in [11],
Section 8.3, and [74]. This algorithm is simple to im-
plement, but the main practical problem is the choice
of L. If taken too small, then pgy(x0:n|y0: (n+L)AT))
is a poor approximation of py(xp:,|yo:7). If taken
too large, the degeneracy remains substantial. More-
over, even as N — oo, this particle approximation
will have a nonvanishing bias since pg(xo:,|yo:T7) 7#
Po(X0:n|Y0: (n+L)AT)-

4.2 Forward—-Backward Smoothing

4.2.1 Principle. The joint smoothing density
po(xo:-7|yo-7) can be expressed as a function of the
filtering densities {pg (x| yO:n)},{:() using the follow-
ing key decomposition:

po(x0:71y0: 1)
4.2) 1
= po(xrlyo:1) [ | poxnlyo:n. Xng1),
n=0
where pg(x,|Y0:n, Xn+1) is a backward (in time) Mar-
kov transition density given by

JoGng11x) po(Xnlyo:n)
Po(Xn+11Y0: 1)

(4.3) po(xulyo:n, Xny1) =

A backward in time recursion for {pg(x,|yo: T)}Z:O
follows by integrating out xq.,—1 and x,41. 7 in (4.2)
while applying (4.3),

Pe(xn|)’0: T)
4.4) = po(Xn|Y0:n)
[ SoGant11X0) Po (Knt11y0: 7)

Po(Xnt11Y0:n)

This is referred to as forward-backward smoothing, as
a forward pass yields {pg (x,|y0: ,,)},f:O which can be
used in a backward pass to obtain {pg(x,|yo: T)}I{ZO.

dxpy1.

Combined to {pg (x,|Y0: 5, x,hLl)},{:_Ol , this allows us to
obtain S.. An alternative to these forward-backward
procedures is the generalized two-filter formula [6].

4.2.2 Particle implementation. The decomposition
(4.2) suggests that it is possible to sample approxi-
mately from py(xg.7|yo.7) by running a particle fil-
ter from time n = 0 to 7T, storing the approximate
filtering distributions {pg(dx;| yo;,,)},f:o, that is, the
marginals of (3.7), then sampling X7 ~ pg(dxt|yo:T)
and for n =7 — 1,T — 2,...,0 sampling X, ~
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Po(dxy|y0:n, Xn+1) where this distribution is ob-
tained by substituting pg (dx,|yo:») for pg(dx,|yo:n)
in (4.3):

Po(dxn|y0:ns Xnt1)
lNzl ersz (Xn—HlXIil)SX,’; (dxy)
SN W fo(Xppr X))

This Forward Filtering Backward Sampling (FFBSa)
procedure was proposed in [45]. It requires O(N (T +
1)) operations to generate a single path Xy.r7, as
sampling from (4.5) costs O(N) operations. How-
ever, as noted in [28], it is possible to sample us-
ing rejection from an alternative approximation of
Po(xXn1Y0:n, Xnt1) in O(1) operations if we use an
unweighted particle approximation of pg(x,|y0:n)
in (4.3) and if the transition prior satisfies fp(x'|x) <
C < 00. Hence, with this approach, sampling a path
Xo.T costs, on average, only O(T + 1) operations.
A related rejection technique was proposed in [48]. In
practice, one may generate N such trajectories to com-
pute Monte Carlo averages that approximate smooth-
ing expectations E[¢(Xo:7)|yo:7]. In that scenario,
the first approach costs O(N 2(T + 1)), while the sec-
ond approach costs O(N (T + 1)) on average. In some
applications, the rejection sampling procedure can be
computationally costly as the acceptance probability
can be very small for some particles; see, for example,
Section 4.3 in [75] for empirical results. This has moti-
vated the development of hybrid procedures combining
FFBSa and rejection sampling [85].

We can also directly approximate the marginals
{po(xnlyo: T)}Zzo- Assuming we have an approxi-

mation pg(dx+1ly0:7) = Yiv, W;i+1|T5le+1 (dxn+1)
where W;|T = W}, then by using (4.4) and (4.5),
we obtain the approximation pg(dx,|yo:17) =
Ly W pdxi (dxy) with

4.5)

N WJ (X Xl)
T X W fa(X +1|Xl)

This Forward Filtering Backward Smoothing (FFBSm,
where “m” stands for “marginal”) procedure requires
O(N 2(T 4+ 1)) operations to approximate {pg(x;]|
Y0 T)},{:0 instead of O(N (T + 1)) for the path space
and fixed-lag methods. However, this high computa-
tional complexity of forward—backward estimates can
be reduced using fast computational methods [57]. Par-
ticle approximations of generalized two-filter smooth-
ing procedures have also been proposed in [6, 38].

4.3 Forward Smoothing

4.3.1 Principle. Whenever we are interested in
computing the sequence {Sﬁ}nzo recursively in time,
the forward—backward procedure described above is
cumbersome, as it requires performing a new back-
ward pass with n 4 1 steps at time n. An important but
not well-known result is that it is possible to implement
exactly the forward—backward procedure using only a
forward procedure. This result is at the core of [34],
but its exposition relies on tools which are nonstandard
for statisticians. We follow here the simpler derivation
proposed in [24, 25] which simply consists of rewriting
(3.14) as

@7n &= / VO () po Conl Y0: ) i,

where
VO (xy) = /{Zsk(xk—l:k)}
k=1

(4.8)
“Po(X0:n—11Y0: n—1,Xn) dXx0: n—1.

It can be easily checked using (4.2) that V,? (x,) satis-
fies the following forward recursion for n > O:

Vn9+1(xn+l) = /{Vn@(xn) + Sn+l(xn:n+l)}
4.9)
“Po(Xn|Y0:ns Xnt1) dXn,
with V(? (x0) = 0 and where pg(x,,1Y0: n, Xn+1) 1s given
by (4.3). In practice, we shall approximate the function
VY on a certain grid of values x,, as explained in the
next section.

4.3.2 Farticle implementation. We can easily pro-
vide a particle approximation of the forward smooth-
ing recursion. Assume you have access to approx-
imations {V,f(Xfl)} of {V,?(Xﬁl)} at time n, where
Po(dxnlyo:n) = Y11 Widyi (dx,). Then when updat-
ing our particle filter to obtain pg(dx,+1]y0:n+1) =

W’ 1) Xi, (dxn+1) we can directly compute the

n+1
partlcle approx1mat10ns (v +1(Xn +1)} by plugging

(4.5) and pg(dx,|yo:n) in (4.7)—(4.9) to obtain

Vn+1 nt1) (ZW fo(X +1|X£)
@.10) P (X) 501 (X Xn+1)})

/ (JX: ! fe(Xi;HlX,{)),
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N
@1 8= wivi(xi).
This approach requires O(N2(n + 1)) operations to
compute S, at iteration n. A variation over this idea
recently proposed in [75] and [88] consists of approxi-
matmg \% +1(X +1) by sampling X5 o Po(dxn]y0:n,

) for j=1,..., K to obtain

n—H

% i
(4'12) n+1( n—H)

_Z (VIX0) + s (X7 X))
j=1

When it is possible to sample from pg (dx,|yo:n, X ; +1)
in O(1) operations using rejection sampling, (4.12)
provides a Monte Carlo approximation to (4.10) of
overall complexity O(NK).

4.4 Convergence Results for Particle Smoothing

Empirically, for a fixed number of particles, these
smoothing procedures perform significantly much bet-
ter than the naive path space approach to smoothing
(i.e., simply propagating forward the complete state
trajectory within a particle filtering algorithm). Many
theoretical results validating these empirical findings
have been established under assumption (3.11) and ad-
ditional regularity assumptions. The particle estimate
of S,f based on the fixed-lag approximation (4.1) has
an asymptotic variance in n/N with a nonvanishing
(as N — o0) bias proportional to n and a constant de-
creasing exponentially fast with L [74]. In [25, 24, 28],
it is shown that when (3.11) holds, there exists 0 <
Fy, Hy < oo such that the asymptotic bias and vari-
ance of the particle estimate of Sg computed using the
forward—backward procedures satisfy

4.13) [ES) -8 < FQ%, V(&) < Hg%.

The bias for the path space and forward—backward es-
timators of Sg are actually equal [24]. Recently, it has
also been established in [75] that, under similar regu-
larity assumptions, the estimate obtained through (4.12)
also admits an asymptotic variance in n/N whenever

K >2.

5. MAXIMUM LIKELIHOOD PARAMETER
ESTIMATION

We describe in this section how the particle filter-
ing and smoothing techniques introduced in Sections 3
and 4 can be used to implement maximum likelihood
parameter estimation techniques.

5.1 Off-Line Methods

We recall that £7(6) denote the log-likelihood func-
tion associated to data yg. 7 introduced in Section 2. So
as to maximize £7(0), one can rely on standard non-
linear optimization methods, for example, using quasi-
Newton or gradient-ascent techniques. We will limit
ourselves to these approaches even if they are sensi-
tive to initialization and might get trapped in a local
maximum.

5.1.1 Likelihood function evaluation. We have seen
in Section 3 that £7(6) can be approximated using
particle methods, for any fixed 6 € ®. One may wish
then to treat ML estimation as an optimization prob-
lem using Monte Carlo evaluations of £7(6). When
optimizing a function calculated with a Monte Carlo
error, a popular strategy is to make the evaluated func-
tion continuous by using common random numbers
over different evaluations to ease the optimization. Un-
fortunately, this strategy is not helpful in the parti-
cle context. Indeed, in the resampling stage, particles

{X }N | are resampled according to the distribution

lN:l_n +18xi (dx,) which admits a piecewise con-

stant and hence discontinuous cumulative distribution
function (c.d.f.). A small change in 8 will cause a small
change in the importance weights {W; 11 }lN: | and this
will potentially generate a different set of resampled
particles. As a result, the log-likelihood function esti-
mate will not be continuous in 6 even if £7(0) is con-
tinuous.

To bypass this problem, an importance sampling
method was introduced in [49], but it has computa-
tional complexity O(N?(T + 1)) and only provides low
variance estimates in the neighborhood of a suitably
preselected parameter value. In the restricted scenario
where X' C R, an elegant solution to the discontinu-
ity problem was proposed in [72]. The method uses
common random numbers and introduces a “continu-
ous” version of the resampling step by finding a per-
mutation o such that X2 < x9@ < ... < x9M™ a4nd
defining a piecewise linear approximation of the result-
ing c.d.f. from which particles are resampled, that is,

ok—1)

o (i) —o(k) X — Xn
Fp(x) = (Z Wn+l) + Wt X0 _ xo®=1
Xa(k 1) <x< Xa(k)

This method requires O(N(T + 1)log N) operations
due to the sorting of the particles, but the resulting
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continuous estimate of £7(6f) can be maximized us-
ing standard optimization techniques. Extensions to the
multivariate case where X C R"x (with n, > 1) have
been proposed in [59] and [22]. However, the scheme
[59] does not guarantee continuity of the likelihood
function estimate and only provides log-likelihood es-
timates which are positively correlated for neighboring
values in the parameter space, whereas the scheme in
[22] has O(N?) computational complexity and relies
on a nonstandard particle filtering scheme.

When 6 is high dimensional, the optimization over
the parameter space may be made more efficient if pro-
vided with estimates of the gradient. This is exploited
by the algorithms described in the forthcoming sec-
tions.

5.1.2 Gradient ascent. The log-likelihood £7(0)
may be maximized with the following steepest ascent
algorithm: at iteration k + 1

(5.1 Ok+1 =0k + Yk+1Volr (0)|9=0,>

where Vglr(0)]g—=g, is the gradient of £7(0) w.r.t. 0
evaluated at 0 = 6 and {yx} is a sequence of posi-
tive real numbers, called the step-size sequence. Typ-
ically, yx is determined adaptively at iteration k using
a line search or the popular Barzilai-Borwein alterna-
tive. Both schemes guarantee convergence to a local
maximum under weak regularity assumptions; see [95]
for a survey.

The score vector Vgl (6) can be computed by using
Fisher’s identity given in (2.4). Given (2.2), it is easy to
check that the score is of the form (3.14). An alternative
to Fisher’s identity to compute the score is presented in
[20], but this also requires computing an expectation of
the form (3.14).

These score estimation methods are not applicable in
complex scenarios where it is possible to sample from
fo(x"|x), but the analytical expression of this transition
kernel is unavailable [51]. For those models, a naive
approach is to use a finite difference estimate of the
gradient; however, this might generate too high a vari-
ance estimate. An interesting alternative presented in
[50], under the name of iterated filtering, consists of de-
riving an approximation of Vg7 (0)|g=s, based on the
posterior moments {E(J,|yo: 1), V(J,|yo- ,1)}520 of an
artificial state-space model with latent Markov process
{Zn = Xn, 9} o

(5.2) Pup1 =0 + g1, Xng1 ™~ fl?n_H (|xn),

and observed process Y,i11 ~ gp,.,(-|xy+1). Here
{en}n>1 1s a zero-mean white noise sequence with vari-
ance 022, E(@,41|9:) = Oy, E(0) = 6, V() =

2%, It is shown in [50] that this approximation im-
proves as 2,72 — 0 and 02/t> — 0. Clearly, as
the variance o2 of the artificial dynamic noise {g,}
on the #-component decreases, it will be necessary to
use more particles to approximate Vo1 (6)|g=¢, as the
mixing properties of the artificial dynamic model dete-

riorates.

5.1.3 Expectation—-Maximization. Gradient ascent
algorithms can be numerically unstable as they require
to scale carefully the components of the score vec-
tor. The Expectation Maximization (EM) algorithm is
a very popular alternative procedure for maximizing
£7(0) [27]. At iteration k + 1, we set

(5.3) Ok+1 = arg max 0k, 0),
where

06, 6) =/10gpe(x0:7,y0:r)
(5.4)
- pe, (xo:Tlyo: ) dx0: T.

The sequence {£7(6x)}r>0 generated by this algorithm
is nondecreasing. The EM is usually favored by prac-
titioners whenever it is applicable, as it is numerically
more stable than gradient techniques.

In terms of implementation, the EM consists of com-
puting a ns-dimensional summary statistic of the form
(3.14) when pg(x0-: T, yo: 7) belongs to the exponential
family, and the maximizing argument of Q (6, 6) can
be characterized explicitly through a suitable function
A:R" — ©, that is,

(5.5) O = A(T'S%).

5.1.4 Discussion of particle implementations. The
path space approximation (3.7) can be used to approx-
imate the score (2.4) and the summary statistics of the
EM algorithm at the computational cost of O(N (T +
1)); see [11], Section 8.3, and [74, 81]. Experimentally,
the variance of the associated estimates increases typ-
ically quadratically with 7" [81]. To obtain estimates
whose variance increases only typically linearly with 7
with similar computational cost, one can use the fixed-
lag approximation presented in Section 4.1 or a more
recent alternative where the path space method is used,
but the additive functional of interest, which is a sum
of terms over n =0, ..., T, is approximated by a sum
of similar terms which are now exponentially weighted
w.r.t. n [73]. These methods introduce a nonvanishing
asymptotic bias difficult to quantify but appear to per-
form well in practice.
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To improve over the path space method without in-
troducing any such asymptotic bias, the FFBSm and
forward smoothing discussed in Sections 4.2 and 4.3 as
well as the generalized two-filter smoother have been
used [82, 25, 24, 81, 6]. Experimentally, the variance
of the associated estimates increases typically linearly
with 7" [81] in agreement with the theoretical results
in [25, 24, 28]. However, the computational complex-
ity of these techniques is O(N%(T + 1)). For a fixed
computational complexity of order O(N?(T + 1)), an
informal comparison of the performance of the path
space estimate using N2 particles and the forward—
backward estimate using N particles suggest that both
estimates admit a Mean Square Error (MSE) of or-
der O(N~2(T + 1)), but the MSE of the path space
estimate is variance dominated, whereas the forward—
backward estimates are bias dominated. This can be
understood by decomposing the MSE as the sum of the
squared bias and the variance and then substituting ap-
propriately for N2 particles in (3.15) for the path space
method and for N particles in (4.13) for the forward—
backward estimates. We confirm experimentally this
fact in Section 7.1.

These experimental results suggest that these parti-
cle smoothing estimates might thus be of limited in-
terest compared to the path based estimates for ML
parameter inference when accounting for computa-
tional complexity. However, this comparison ignores
that the O(N?) computational complexity of these par-
ticle smoothing estimates can be reduced to O(N) by
sampling approximately from pg(xo.7|yo.7) With the
FFBSa procedure in Section 4.2 or by using fast com-
putational methods [57]. Related O(N) approaches
have been developed for generalized two-filter smooth-
ing [7, 38]. When applicable, these fast computational
methods should be favored.

5.2 On-Line Methods

For a long observation sequence the computation of
the gradient of £7(6) can be prohibitive, and more-
over, we might have real-time constraints. An alterna-
tive would be a recursive procedure in which the data
is run through once sequentially. If 6, is the estimate
of the model parameter after the first n observations, a
recursive method would update the estimate to 6,4 af-
ter receiving the new data y,. Several on-line variants
of the ML procedures described earlier are now pre-
sented. For these methods to be justified, it is crucial
for the observation process to be ergodic for the lim-
iting averaged likelihood function £7(6)/T to have a
well-defined limit £(0) as T — +o0.

5.2.1 On-line gradient ascent. An alternative to
gradient ascent is the following parameter update
scheme at time n > 0:

(5.6)  Opy1 =64+ Yusr1VI10g po(¥ulyo: n—1)l6=6,

where the positive nonincreasing step-size sequence
{Ynlnz1 satisfies 3, y, = 00 and 3, ;2 < o0 [5, 64],
for example, y,, = n~ for 0.5 < « < 1. Upon receiv-
ing yy, the parameter estimate is updated in the direc-
tion of ascent of the conditional density of this new ob-
servation. In other words, one recognizes in (5.6) the
update of the gradient ascent algorithm (5.1), except
that the partial (up to time n) likelihood is used. The
algorithm in the present form is, however, not suitable
for on-line implementation, because evaluating the gra-
dient of log pg(yn|y0:n—1) at the current parameter es-
timate requires computing the filter from time O to time
n using the current parameter value 6,,.

An algorithm bypassing this problem has been pro-
posed in the literature for a finite state-space latent pro-
cess in [64]. It relies on the following update scheme:

(57) en—i-l = Qn + )/n+1V10g Poy.,, (yn|y01n—l)a
where Vlog pg,., (yn|y0:n—1) is defined as

Vlog pgy.,, (Ynlyo:n—1)
(5.8)

= Vlog pg,., Y0:n) — V1og pay., , (¥0:n—1),

with the notation Vlog py,., (yo.,) corresponding to a
“time-varying” score which is computed with a filter
using the parameter 6,, at time p. The update rule (5.7)
can be thought of as an approximation to the update
rule (5.6). If we use Fisher’s identity to compute this
“time-varying” score, then we have for 1 < p <un,

Sp(xpfl:p) = Vlog f9(xp|xp71)|9:9p
(5.9

+ Vloggo(yplxp)lo=o,-

The asymptotic properties of the recursion (5.7) (i.e.,
the behavior of 6,, in the limit as n goes to infinity) has
been studied in [64] for a finite state-space HMM. It is
shown that under regularity conditions this algorithm
converges toward a local maximum of the average log-
likelihood £(60), £(6) being maximized at the “true” pa-
rameter value under identifiability assumptions. Simi-
lar results hold for the recursion (5.6).

5.2.2 On-line Expectation—Maximization. It is also
possible to propose an on-line version of the EM al-
gorithm. This was originally proposed for finite state-
space and linear Gaussian models in [35, 42]; see [9]
for a detailed presentation in the finite state-space case.
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Assume that pg(xg: 5, Yo:,) 1S in the exponential fam-
ily. In the on-line implementation of EM, running av-
erages of the sufficient statistics n_lS,f are computed
[8, 35]. Let {6,}0<p<n be the sequence of parameter
estimates of the on-line EM algorithm computed se-
quentially based on yg.,—1. When y, is received, we
compute

890;,1 :Vn—i-l/sn(xn—l:n)

) p@o;n(xn—la Xn|Y0:n) dXp—1:n

+(1 - y,m)Z( [T a- m)ykﬂ

k=0 \i=k+2

(5.10)

'/Sk(xk—l:k)PGo;k(xk—lkuO:k)dxk—l:k,

where {y,},>1 needs to satisfy ), y, = oo and
>on ynz < 00. Then the standard maximization step
(5.5) is used as in the batch version

(5.11) Ont1 =N (Sy,.,)-

The recursive calculation of S, ., is achieved by setting
Vg, = 0, then computing

V@Q;n(xn) :/{Vn—&—lsn(xn—l,xn)

(5.12) + (1 = Y1) V., (n—1)}

POy Xn—11Y0: n—1, Xn) dxn—1

and, finally,

(5.13) Sp,., = f Voo, (o) Pé., Cinl Y0:m) doX

Again, the subscript 6. , on pg,., (x0:»|Y0: ») indicates
that the posterior density is being computed sequen-
tially using the parameter 6, at time p < n. The filter-
ing density then is advanced from time n — 1 to time
n by using fo, (xn|xn—1), &0, (¥nlxn) and pg, (yulyo:n)
in the fraction of the r.h.s. of (3.1). Whereas the con-
vergence of the EM algorithm toward a local max-
imum of the average log-likelihood £(6) has been
established fori.i.d. data [10], its convergence for state-
space models remains an open problem despite empir-
ical evidence it does [8, 9, 24]. This has motivated the
development of modified versions of the on-line EM
algorithm for which convergence results are easier to
establish [4, 62]. However, the on-line EM presented
here usually performs empirically better [63].

5.2.3 Discussion of particle implementations. Both
the on-line gradient and EM procedures require ap-
proximating terms (5.8) and (5.10) of the form (3.14),
except that the expectation is now w.r.t. the posterior
density pg,.,(X0:n1y0:n) Which is updated using the
parameter 6, at time p < n. In this on-line framework,
only the path space, fixed-lag smoothing and forward
smoothing estimates are applicable; the fixed-lag ap-
proximation is applicable but introduces a nonvanish-
ing bias. For the on-line EM algorithm, similarly to the
batch case discussed in Section 5.1.4, the benefits of
using the forward smoothing estimate [24] compared
to the path space estimate [8] with N? particles are
rather limited, as experimentally demonstrated in Sec-
tion 7.1. However, for the on-line gradient ascent algo-
rithm, the gradient term V log pg,., (¥ |Y0:n—1) in (5.7)
is a difference between two score-like vectors (5.8)
and the behavior of its particle estimates differs signifi-
cantly from its EM counterpart. Indeed, the variance of
the particle path estimate of Vlog pg,., (yn1y0:n—1) in-
creases linearly with n, yielding an unreliable gradient
ascent procedure, whereas the particle forward smooth-
ing estimate has a variance uniformly bounded in time
under appropriate regularity assumptions and yields a
stable gradient ascent procedure [26]. Hence, the use
of a procedure of computational complexity O(N?)
is clearly justified in this context. The very recent
paper [88] reports that the computationally cheaper
estimate (4.12) appears to exhibit similar properties
whenever K > 2 and might prove an attractive alter-
native.

6. BAYESIAN PARAMETER ESTIMATION

In the Bayesian setting, we assign a suitable prior
density p(0) for 6 and inference is based on the
joint posterior density p(xg.r,6|yo.7) in the off-line
case or the sequence of posterior densities {p(xg:,, 6|
Y0:n)}n>0 in the on-line case.

6.1 Off-Line Methods

6.1.1 Farticle Markov chain Monte Carlo meth-
ods. Using MCMC is a standard approach to ap-
proximate p(xo.7,0|yo: 7). Unfortunately, designing
efficient MCMC sampling algorithms for nonlinear
non-Gaussian state-space models is a difficult task:
one-variable-at-a-time Gibbs sampling typically mixes
very poorly for such models, whereas blocking strate-
gies that have been proposed in the literature are typi-
cally very model-dependent; see, for instance, [52].
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Particle MCMC are a class of MCMC techniques
which rely on particle methods to build efficient high-
dimensional proposal distributions in a generic man-
ner [3]. We limit ourselves here to the presentation of
the Particle Marginal Metropolis—Hastings (PMMH)
sampler, which is an approximation of an ideal MMH
sampler for sampling from p(xg.r1,6|y0:7) which
would utilize the following proposal density:

q((xg.7.0")(x0:7,0))

=q(0'10) por (xq. 71y0: 7).

(6.1)

where ¢(60|0) is a proposal density to obtain a can-
didate 6" when we are at location 6. The acceptance
probability of this sampler is

por(Yo: 7)p(0")q(616")
po(yo:T)p©)q©H'16)

Unfortunately, this ideal algorithm cannot be imple-
mented, as we cannot sample exactly from py(xo. 7|
vo.7) and we cannot compute the likelihood terms
po(yo.7) and py/(yo.7) appearing in the acceptance
probability.

The PMMH sampler is an approximation of this
ideal MMH sampler which relies on the particle ap-
proximations of these unknown terms. Given 6 and
a particle approximation pg(yo:7) of pg(yo.r), We
sample 0’ ~ g(0'|0), then run a particle filter to ob-
tain approximations pyr(dxo: 71yo:7) and pg:(yo: 1)
of per(dxo:7|yo:7) and pg (yo:7). We then sample
XE): T por(dxo-T|yo0: 1), that is, we choose randomly
one of N particles generated by the particle filter, with
probability W for particle i, and accept (¢, X{. 1)
[and pg/ (yo: 7)] with probability

por(Yo: 1) p(0")q(016")
Pe(yo:T)p(0)q(0'16)

The acceptance probability (6.3) is a simple approxi-
mation of the “ideal” acceptance probability (6.2).
This algorithm was first proposed as a heuristic to
sample from p(0|yo. ) in [39]. Its remarkable feature
established in [3] is that it does admit p(xg.7,0|y0:T)
as invariant distribution whatever the number of par-
ticles N used in the particle approximation [3]. How-
ever, the choice of N has an impact on the performance
of the algorithm. Using large values of N usually re-
sults in PMMH averages with variances lower than the
corresponding averages using fewer samples, but the
computational cost of constructing pg(yo. ) increases
with N. A simplified analysis of this algorithm sug-
gests that N should be selected such that the standard

(6.2) 1A

(6.3) 1A

deviation of the logarithm of the particle likelihood es-
timate should be around 0.9 if the ideal MMH sampler
was using the perfect proposal ¢(6'|10) = p(0'|yo:»)
[79] and around 1.8 if one uses an isotropic normal
random walk proposal for a target that is a product of d
i.i.d. components with d — oo [83]. For general pro-
posal and target densities, a recent theoretical analysis
and empirical results suggest that this standard devi-
ation should be selected around 1.2-1.3 [33]. As the
variance of this estimate typically increases linearly
with T, this means that the computational complexity
is of order O(T?) by iteration.

A particle version of the Gibbs sampler is also avail-
able [3] which mimicks the two-component Gibbs
sampler sampling iteratively from p(0|xq. 7, yo- 7) and
po(xo-7|yo. 7). These algorithms rely on a nonstan-
dard version of the particle filter where N — 1 par-
ticles are generated conditional upon a “fixed” parti-
cle. Recent improvements over this particle Gibbs sam-
pler introduce mechanisms to rejuvenate the fixed par-
ticle, using forward or backward sampling procedures
[89, 66, 91]. These methods perform empirically ex-
tremely well, but, contrary to the PMMH, it is still un-
clear how one should scale N with T'.

6.2 On-Line Methods

In this context, we are interested in approximating
on-line the sequence of posterior densities {p(xg:, 0|
Y0:n)}n>0. We emphasize that, contrary to the on-
line ML parameter estimation procedures, none of the
methods presented in this section bypass the particle
degeneracy problem. This should come as no surprise.
As discussed in Section 3.2.2, even for a fixed 0, the
particle estimate of pg(yg.,) has a relative variance
that increases linearly with n under favorable mixing
assumptions. The methods in this section attempt to ap-
proximate p(6|yo:n) X pg(yo:»)p(6). This is a harder
problem, as it implicitly requires having to approxi-
mate pyi (o: ) for all the particles {#'} approximating
p(9|y0: n)-

6.2.1 Augmenting the state with the parameter. At
first sight, it seems that estimating the sequence of
posterior densities {p(xo:,,0|Y0:n)}n>0 can be easily
achieved using standard particle methods by merely
introducing the extended state Z, = (X,,6,), with
initial density p(6p)ue,(xo) and transition density
fo, (xnlxn—1)d9, ,(6,), that is, 6, = 6,_1. However,
this extended process Z,, clearly does not possess any
forgetting property (as discussed in Section 3), so the
algorithm is bound to degenerate. Specifically, the pa-
rameter space is explored only in the initial step of the
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algorithm. Then, each successive resampling step re-
duces the diversity of the sample of 6 values; after a
certain time n, the approximation p(d@|yo.,) contains
a single unique value for 6. This is clearly a poor ap-
proach. Even in the much simpler case when there is
no latent variable Xy.,, it is shown in [17], Theorem 4,
that the asymptotic variance of the corresponding par-
ticle estimates diverges at least at a polynomial rate,
which grows with the dimension of 6.

A pragmatic approach that has proven useful in some
applications is to introduce artificial dynamics for the
parameter 0 [54],

(6.4) On+1 =0n + €ny1,

where {e,},>0 is an artificial dynamic noise with de-
creasing variance. Standard particle methods can now
be applied to approximate {p(xo:n, f0: ly0: ) }n0-
A related kernel density estimation method also ap-
peared in [67], which proposes to use a kernel density
estimate p(@|yg.,) from which one samples from. As
before, the static parameter is transformed to a slowly
time-varying one, whose dynamics is related to the
kernel bandwidth. To mitigate the artificial variance
inflation, a shrinkage correction is introduced. An im-
proved version of this method has been recently pro-
posed in [41].

It is difficult to quantify how much bias is introduced
in the resulting estimates by the introduction of this ar-
tificial dynamics. Additionally, these methods require
a significant amount of tuning, for example, choosing
the variance of the artificial dynamic noise or the ker-
nel width. However, they can perform satisfactorily in
practice [41, 67].

6.2.2 Practical filtering. The practical filtering ap-
proach proposed in [80] relies on the following fixed-
lag approximation:

(6.5) PX0:n—1,01Y0:n-1) = p(x0:n—1,01y0:1)

for L large enough; that is, observations coming after
n — 1 presumably bring little information on xg.,—y.
To sample approximately from p(6|yg.,), one uses the
following iterative process: at time n, several MCMC
chains are run in parallel to sample from

P(xn—L—i-l:n» 01y0:n, X{):n—L)
= p(xn—L—i—l:n, O1Yn—L+1:n» X;l:l_L)s

where the Xﬁh ; have been obtained at the previous

iteration and are such that (approximately) XZ_ L~
P(Xn—L1¥0:n-1) X p(Xn—L|yo:n). Then one collects

the first component XL 141 of the simulated sample
Xih Lil:n increments the time index and runs sev-
eral new MCMC chains in parallel to sample from
p(xn—L-I-Z:n-i—la9|yn—L+2:n+1,X,I17L+1) and so on.
The algorithm is started at time L — 1, with MCMC
chains that target p(xo.r—1/y0:1—1). Like all meth-
ods based on fixed-lag approximation, the choice of
the lag L is difficult and this introduces a nonvanishing
bias which is difficult to quantify. However, the method
performs well on the examples presented in [80].

6.2.3 Using MCMC steps within particle methods.
To avoid the introduction of an artificial dynamic
model or of a fixed-lag approximation, an approach
originally proposed independently in [36] and [44]
consists of adding MCMC steps to re-introduce “diver-
sity” among the particles. Assuming we use an auxil-
iary particle filter to approximate { p(x0: », 0|Y0:1)}n>0,
then the particles {Xé:n, G,i} obtained after the sam-
pling step at time n are approximately distributed ac-
cording to

P(X0:1,01Y0:n)
X p(x0:n—1,01Y0: n—-1)90 (X, YnlXn-1).

We have p(xo:n,01Y0:1) = p(x0:1,01Y0:n) if qo(xn]
Yns Xn—1) = Po(Xp|yn, Xn—1) and qo (Yn|Xn—1) = po(ynl
Xxn—1)- To add diversity in this population of particles,
we introduce an MCMC kernel K, (d(x;. ,,, 0)|(x0: n,
0)) with invariant density p(xo:»,0|y0:,) and replace,
at the end of each iteration, the set of resampled parti-
cles, (X;.,,0!) with N “mutated” particles ()N(é: n 0)
simulated from, fori =1,..., N,

(iézn’ érlz) ~ K"(d(x():n’ 9)|(Y6:n’ érlz))

If we use the SISR algorithm, then we can alternatively
use an MCMC step of invariant density p(xo: 5, 0|y0:»)
after the resampling step at time 7.

Contrary to standard applications of MCMC, the
kernel does not have to be ergodic. Ensuring ergod-
icity would indeed require one to sample an increas-
ing number of variables as n increases—this algorithm
would have an increasing cost per iteration, which
would prevents its use in on-line scenarios, but it
can be an interesting alternative to standard MCMC
and was suggested in [61]. In practice, one there-
fore sets )?é):n—L = Xz):nfL and only samples 6 and
§27L+1:n, where L is a small integer; often L = 0
(only 6 is updated). Note that the memory require-
ments for this method do not increase over time if
Do (x0:n, Yo:n) is in the exponential family and thus
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can be summarized by a set of fixed-dimensional suf-
ficient statistics s"(xg:,, yo:»). This type of method
was first used to perform on-line Bayesian parame-
ter estimation in a context where pg(xo:,, Yo:n) i
in the exponential family [44, 36]. Similar strategies
were adopted in [2] and [84]. In the particular sce-
nario where gg(xn|yn, Xn—1) = po(xnlyn, xn—1) and
q9 (Yn|xn—1) = po(yn|xn—1), this method was men-
tioned in [2, 86] and is discussed at length in [70] who
named it particle learning. Extensions of this strategy
to parameter estimation in conditionally linear Gaus-
sian models, where a part of the state is integrated out
using Kalman techniques [15, 31], is proposed in [13].

As opposed to the methods relying on kernel or arti-
ficial dynamics, these MCMC-based approaches have
the advantage of adding diversity to the particles ap-
proximating p(€|yo.,) without perturbing the target
distribution. Unfortunately, these algorithms rely im-
plicitly on the particle approximation of the density
p(x0:nlyo.n) even if algorithmically it is only neces-
sary to store some fixed-dimensional sufficient statis-
tics {s" (Xf): .» Y0:n)}. Hence, in this respect they suf-
fer from the degeneracy problem. This was noticed as
early as in [2]; see also the word of caution in the
conclusion of [4, 36] and [18]. The practical implica-
tions are that one observes empirically that the result-
ing Monte Carlo estimates can display quite a lot of
variability over multiple runs as demonstrated in Sec-
tion 7.2. This should not come as a surprise, as the
sequence of posterior distributions does not have ex-
ponential forgetting properties, hence, there is an accu-
mulation of Monte Carlo errors over time.

6.2.4 The SMC?* algorithm. The SMC? algorithm
introduced simultaneously in [19] and [43] may be
considered as the particle equivalent of Particle
MCMC. It mimics an “ideal” particle algorithm
proposed in [16] approximating sequentially {p(€]
Y0:n)}n>0 where Ny particles (in the §-space) are used
to explore these distributions. The Ny particles at time
n are reweighted according to pg (¥o: n+1)/po (Yo:n) at
time n + 1. As these likelihood terms are unknown,
we substitute to them pg(yo:n+1)/po(Yo:n) Where
Po(¥o. ) is a particle approximation of the partial like-
lihood pg(yo:n), obtained by a running a particle fil-
ter of N, particles in the x-dimension, up to time n,
for each of the Ny O-particles. When particle degen-
eracy (in the 8-dimension) reaches a certain threshold,
f-particles are refreshed through the succession of a
resampling step, and an MCMC step, which in these
particular settings takes the form of a PMCMC update.

The cost per iteration of this algorithm is not constant
and, additionally, it is advised to increase N, with n
for the relative variance of pg(yp.,) not to increase,
therefore, it cannot be used in truly on-line scenarios.
Yet there are practical situations where it may be useful
to approximate jointly all the posteriors p(0|y;.,), for
1 <n < T, for instance, to assess the predictive power
of the model.

7. EXPERIMENTAL RESULTS

We focus on illustrating numerically a few algo-
rithms and the impact of the degeneracy problem on
parameter inference. This last point is motivated by the
fact that particle degeneracy seems to have been over-
looked by many practitioners. In this way numerical
results may provide valuable insights.

We will consider the following simple scalar linear
Gaussian state space model:

(7.1) Xp=pXn_1+tWy, Yo=Xn+0Vy,

where V,, W, are independent zero-mean and unit-
variance Gaussians and p € [—1, 1]. The main rea-
son for choosing this model is that Kalman recursions
can be implemented to provide the exact values of the
summary statistics S¢ used for ML estimation through
the EM algorithm and to compute the exact likeli-
hood pg(yo.,). Hence, using a fine discretization of
the low-dimensional parameter space, we can compute
a very good approximation of the true posterior density
p(B|yo: ). In this model it is straightforward to present
numerical evidence of some effects of degeneracy for
parameter estimation and to show how it can be over-
come by choosing an appropriate particle method.

7.1 Maximum Likelihood Methods

As ML methods require approximating smoothed
additive functionals Sg of the form (3.14), we be-
gin by investigating the empirical bias, variance and
MSE of two standard particle estimates of SY, where
we set si(xr_1, xr) = xx_1xy for the model described
in (7.1). The first estimate relies on the path space
method with computational cost O(N) per time, which
uses pg(dxg:n|yo:n) in (3.7) to approximate Sf as 3\3;
see [11], Section 8.3, for more details. The second es-
timate relies on the forward implementation of FFBSm
presented in Section 4.3 using (4.7)—(4.11); see [24].
Recall that this procedure has a computational cost that
is O(N?) per time for N particles and provides the
same estimates as the standard forward—backward im-
plementation of FFBSm. For the sake of brevity, we
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will not consider the remaining smoothing methods
of Section 4; for the fixed-lag and the exponentially
weighted approximations we refer the reader to [74],
respectively, [73] for numerical experiments.

We use a simulated data set of size 6 x 10* obtained
using 0% = (p*, 2", 62") = (0.8,0.1, 1) and then gen-
erate 300 independent replications of each method in
order to compute the empirical bias and variance of
:9\,? " when 6 is fixed to 6*. In order to make a com-
parison that takes into account the computational cost,
we use N2 particles for the O(N) method and N for
the O(N?) one. We look separately at the behavior of
the bias of 3;? and the variance and MSE of the rescaled
estimates 3\3 /+/n. The results are presented in Figure 1
for N =50, 100, 200.

For both methods the bias grows linearly with time,
this growth being higher for the O(N?) method. For

O(N) method
200

1501

1001

Bias (S,)

50

0.3r

0.2r

MSE ($2)

0.1}

time n

the variance of 32 /+/n, we observe a linear growth
with time for the O(N) method with N2 particles,
whereas this variance appears roughly constant for the
O(N?) method. Finally, the MSE of 32 /A/n grows
for both methods linearly as expected. In this partic-
ular scenario, the constants of proportionality are such
that the MSE is lower for the O(N) method than for
the O(N?) method. In general, we can expect that the
O(N) method be superior in terms of the bias and the
O(N?) method superior in terms of the variance. These
results are in agreement with the theoretical results in
the literature [25, 24, 28], but additionally show that
the lower bound on the variance growth of SY for the
O(N) method of [81] appears sharp.

We proceed to see how the bias and variance of the
estimates of S¥ affect the ML estimates, when the for-
mer are used within both an off-line and an on-line EM

O(N?) method
200

150
100

50

x104

0.4

0.3

0.2

0.1

time n X 104

F1G. 1. Estimating smoothed additive functionals: empirical bias of the estimate of S,(f (top panel), empirical variance (middle panel) and
MSE (bottom panel) for the estimate of Sf/ﬁ. Left column: O(N) method using NZ = 2500, 10,000, 40,000 particles. Right column:
O(N?) method using N = 50, 100, 200 particles. In every subplot, the top line corresponds to using N = 50, the middle for N = 100 and

the lower for N = 200.
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FI1G. 2.  Off-line EM: boxplots of b1 for various T using 25 iterations of off-line EM and 150 realizations of the algorithms. Top panels:

O(N) method using N = 1502 particles. Bottom panels: O(N 2y with N = 150. The dotted horizontal lines are the ML estimate for each
time T obtained using Kalman filtering on a grid.

algorithm; see Figures 2 and 3, respectively. For the
model in (7.1) the E-step corresponds to computing Sg
where si(x—1, %) = (e — X% X2_q, Xe— 1%k, X7)
and the M-step update function is given by

23 Zz

3
A(z1,22,23,24) = (z_ 24— —=, Z1>-
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We compare the estimates of 6* when the E-step
is computed using the O(N) and the O(N?) meth-
ods described in the previous section with 150% and
150 particles, respectively. A simulated data set for
0* = (p*,t*,0%) = (0.8, 1,0.2) will be used. In ev-
ery case we will initialize the algorithm using 6y =
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F1G. 3.  On-line EM: boxplots of O forn =5 x 104 using 150 realizations of the algorithms. We also plot the ML estimate at time n

obtained using Kalman filtering on a grid (black).
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(0.1,0.1,0.2) and assume o* is known. In Figures 2
and 3 we present the results obtained using 150 inde-
pendent replications of the algorithm. For the off-line
EM, we use 25 iterations for 7 = 100, 1000, 2500,
5000, 10,000. For the on-line EM, we use T = 10°
with the step size set as y, = n=08 and for the first 50
iterations no M-step update is performed. This “freez-
ing” phase is required to allow for a reasonable esti-
mation of the summary statistic; see [8, 9] for more de-
tails. Note that in Figure 3 we plot only the results after
the algorithm has converged, that is, for n > 5 x 104,
In each case, both the O(N) and the O(N?) methods
yield fairly accurate results given the low number of
particles used. However, we note, as observed previ-
ously in the literature, that the on-line EM as well as
the on-line gradient ascent method requires a substan-
tial number of observations, that is, over 10,000, be-
fore achieving convergence [8, 9, 24, 81]. For smaller
data sets, these algorithms can also be used by going
through the data, say, K times. Typically, this method
is cheaper than iterating (5.1) or (5.4)—(5.5) K times
the off-line algorithms and can yield comparable pa-
rameter estimates [94]. Experimentally, the properties
of the estimates of Sf discussed earlier appear to trans-
late into properties of the resulting parameter esti-
mates: the O(N) method provides estimates with less
bias but more variance than the O(N?) method.

For more numerical examples regarding the remain-
ing methods discussed in Section 5, we refer the reader
to [50, 51] for iterated filtering, to [24, 25, 81] for com-
parisons of the O(N) and O(N?) methods for EM and
gradient ascent, to [8] for the O(N) on-line EM, to [72]
and [59], Chapter 10, for smooth likelihood function
methods and to [11], Chapters 1011, for a detailed ex-
position of off-line EM methods.

7.2 Bayesian Methods

We still consider the model in (7.1), but simplify it
further by fixing either p or t. This is done in order
to keep the computations of the benchmarks that use
Kalman computations on a grid relatively inexpensive.
For those parameters that are not fixed, we shall use
the following independent priors: a uniform on [—1, 1]
for p, and inverse gamma for 72, o> with the shape and
scale parameter pair being (a, b) and (c, d), respec-
tively, with a = b =c¢ =d = 1. In all the subsequent
examples, we will initialize the algorithms by sampling
6 from the prior.

We proceed to examine the particle algorithms with
MCMC moves that we described in Section 6.2.3. We

focus on an efficient implementation of this idea dis-
cussed in [70] which can be put in practice for the
simple model under consideration. We investigate the
effect of the degeneracy problem in this context. The
numerical results obtained in this section have been
produced in Matlab (code available from the first au-
thor) and double-checked using the R program avail-
able on the personal web page of the first author
of [70, 71].

We first focus on the estimate of the posterior of 6 =
(2, 0?) given a long sequence of simulated observa-
tions with T = o = 1. In this scenario, pg(x0:n, Y0:1n)
admits the following two-dimensional sufficient statis-
tics, 5" (X0: n, Y0:n) = (Cp—y (k — xk—1)2, X —o Ok —
x%)?), and @ can be updated using Gibbs steps. We
use T =5 x 10* and N = 5000. We ran the algo-
rithm over 100 independent runs over the same data
set. We present the results only for 2 and omit the
ones for o2, as these were very similar. The top left
panel of Figure 4 shows the box plots for the estimates
of the posterior mean, and the top right panel shows
how the corresponding relative variance of the estima-
tor for the posterior mean evolves with time. Here the
relative variance is defined as the ratio of the empir-
ical variance (over different independent runs) of the
posterior mean estimates at time n over the true poste-
rior variance at time n, which in this case is approxi-
mated using a Kalman filter on a fine grid. This quan-
tity exhibits a steep increasing trend when n > 15,000
and confirms the aforementioned variability of the es-
timates of the posterior mean. In the bottom left panel
of Figure 4 we plot the average (over different runs) of
the estimators of the variance of p(‘rzl v0:n). This av-
erage variance is also scaled/normalized by the actual
posterior variance. The latter is again computed using
Kalman filtering on a grid. This ratio between the av-
erage estimated variance of the posterior over the true
one decreases with time n and it shows that the sup-
ports of the approximate posterior densities provided
by this method cover, on average, only a small portion
of the support of the true posterior. These experiments
confirm that in this example the particle method with
MCMC steps fails to adequately explore the space of 6.
Although the box plots provide some false sense of se-
curity, the relative and scaled average variance clearly
indicate that any posterior estimates obtained from a
single run of particle method with MCMC steps should
be used with caution. Furthermore, in the bottom right
panel of Figure 4 we also investigate experimentally
the empirical relative variance of the marginal like-
lihood estimates {p(yo:,)}n>0. This relative variance
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FIG. 4. Top left: box plots for estimates of posterior mean of 2 at n = 1000, 2000, . . .,50,000. Top right: relative variance, that is,
empirical variance (over independent runs) for the estimator of the mean of p(12| Y0: n) using particle method with MCMC steps normalized
with the true posterior variance computed using Kalman filtering on a grid. Bottom left: average (over independent runs) of the estimated
variance of p(t 2|y(); n) using particle method with MCMC normalized with the true posterior variance. Bottom right: relative variance of
the {p(¥0: n)}n>0: All plots are computed using N = 5000 and over 100 different independent runs.

appears to increase quadratically with n for the parti-
cle method with MCMC moves instead of linearly as it
does for state-space models with good mixing proper-
ties. This suggests that one should increase the number
of particles quadratically with the time index to obtain
an estimate of the marginal likelihood whose relative
variance remains uniformly bounded with respect to
the time index. Although we attribute this quadratic
relative variance growth to the degeneracy problem,
the estimate p(yp:,) is not the particle approximation
of a smoothed additive functional, thus there is not
yet any theoretical convergence result explaining rig-
orously this phenomenon.

One might argue that these particle methods with
MCMC moves are meant to be used with larger
N and/or shorter data sets 7. We shall consider
this time a slightly different example where 7 = 0.1
is known and we are interested in estimating the
posterior of # = (p,o?) given a sequence of ob-
servations obtained using p = 0.5 and o0 = 1. In
that case, the sufficient statistics are s" (xg:,, Y0:n) =
(g X1k, p 20 %71 ko — x1)?), and the
parameters can be rejuvenated through a single Gibbs
update. In addition, we let 7 = 5000 and use N = 10*
particles. In Figure 5 we display the estimated marginal
posteriors p(p|yo.,) and p(02| Yo:n) obtained from
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F1G. 5. Particle method with MCMC steps, 0 = (p, o2); estimated marginal posterior densities for n = 103,2 x 103, ..., 5 x 103 over 50

runs (red) versus ground truth (blue).

50 independent replications of the particle method.
On this simple problem, the estimated posteriors seem
consistently rather inaccurate for p, whereas they per-
form better for o> but with some nonnegligible vari-
ability over runs, which increases as T increases. Sim-
ilar observations have been reported in [18] and re-
main unexplained: for some parameters this methodol-
ogy appears to provide reasonable results despite the
degeneracy problem and for others it provides very un-
reliable results.

We investigate further the performance of this meth-
od in this simple example by considering the same
example for 7 = 1000, but now consider two larger
numbers of particles, N = 7.5 x 10*and N =6 x 10,
over 50 different runs. Additionally, we compare the
resulting estimates with estimates provided by the par-
ticle Gibbs sampler of [66] using the same computa-
tional cost, that is, N = 50 particles with 3000 and
24,000 iterations, respectively. The results are dis-
played in Figures 6 and 7. As expected, we improve
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the performance of the particle with MCMC moves
when N increases for a fixed time horizon T. For
a fixed computational complexity, the particle Gibbs
sampler estimates appear to display less variability.
For a higher-dimensional parameter 6 and/or very
vague priors, this comparison would be more favor-
able to the particle Gibbs sampler as illustrated in [3],
pages 336-338.

8. CONCLUSION

Most particle methods proposed originally in the lit-
erature to perform inference about static parameters in
general state-space models were computationally in-
efficient as they suffered from the degeneracy prob-
lem. Several approaches have been proposed to deal
with this problem by either adding an artificial dynamic
on the static parameter [40, 54, 67] or introducing a
fixed-lag approximation [56, 74, 80]. These methods
can work very well in practice, but it remains unfor-
tunately difficult/impossible to quantify the bias intro-
duced in most realistic applications. Various asymptot-
ically bias-free methods with good statistical properties
and a reasonable computational cost have recently ap-
peared in the literature.

To perform batch ML estimation, the forward filter
backward sampler/smoother and generalized two-filter
procedures are recommended whenever the O(N 2T)
computational complexity per iteration of their direct
implementations can be lowered to O(NT) using, for
example, the methods described in [7, 28, 38, 57]. Oth-
erwise, besides a lowering of memory requirements,
not much can be gained from these techniques com-
pared to simply using a standard particle filter with
N? particles. In an on-line ML context, the situation
is markedly different. Whereas for the on-line EM al-
gorithm, the forward smoothing approach in [24, 81]
of complexity O(N?) per time step will be similarly
of limited interest compared to a standard particle fil-
ter using N2 particles; it is crucial to use this ap-
proach when performing on-line gradient ascent as
demonstrated empirically and established theoretically
in [26]. In on-line scenarios where one can admit a ran-
dom computational complexity at each time step, the
method presented in [75] is an interesting alternative
when it is applicable. Empirically, these on-line ML
methods converge rather slowly and will be primarily
useful for large data sets.

In a Bayesian framework, batch inference can be
conducted using particle MCMC methods [3, 66].
However, these methods are computationally expen-
sive as, for example, an efficient implementation of

the PMMH has a computational complexity of order
O(T?) per iteration [33]. On-line Bayesian inference
remains a challenging open problem as all methods
currently available, including particle methods with
MCMC moves [13, 36, 84], suffer from the degeneracy
problem. These methods should not be ruled out, but
should be used cautiously, as they can provide unreli-
able results even in simple scenarios as demonstrated
in our experiments.

Very recent papers in this dynamic research area
have proposed to combine individual parameter esti-
mation techniques so as to design more efficient infer-
ence algorithms. For example, [21] suggests to use the
score estimation techniques developed for ML parame-
ter estimation to design better proposal distributions for
the PMMH algorithm, whereas [37] demonstrates that
particle methods with MCMC moves might be fruit-
fully used in batch scenarios when plugged into a par-
ticle MCMC scheme.
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