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Abstract 

 

The problem of design optimisation of thin film direct current Superconducting QUantum 

Interference Device (SQUID) magnetometers made of YBCO (YBa2Cu3O7-x) was considered. The 

inductances and effective areas were calculated using the software package 3D-MLSI. Resolution 

and reliability issues were first tested on simple superconducting systems, showing good agreement 

with analytical formulae and experimental results, and demonstrating that a remarkable precision 

can be obtained though at the expense of CPU time and memory. The software was then used to 

simulate a SQUID magnetometer fabricated in the Device Materials Group of the Department of 

Materials Science and Metallurgy, proving that 3D-MLSI can be used to predict the parameters of 

real systems with acceptable accuracy. 
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1. Introduction 

 

Superconducting QUantum Interference Devices are used in a broad range of applications, 

from geophysics to the life sciences. They are used to measure very small signals, either directly (by 

quantifying the magnetic flux that links them) or indirectly (by transforming the signal into a 

current that is then coupled to the SQUID). The main advantage of a SQUID is the possibility to 

relate very small changes in the current circulating in it to the magnetic field the SQUID is 

subjected to. This possibility arises from the dynamics of electromagnetic fields in superconductors 

combined with the Josephson effect, and appropriate coupling schemes can be used to measure 

quantities that are not necessarily electromagnetic in nature [1]. 

Because its purpose is the measurement of very small magnetic fields, the sensitivity of a 

SQUID is the key factor in the fabrication process. Much work has been devoted to the 

understanding of the operational characteristics of SQUIDs and to the development of these 

devices. The motivation for this project was the application of computational techniques to the 

design optimisation of SQUIDs, a task that involves significant effort in terms of time and costs if 

carried out experimentally. Using the finite element computer program 3D-MLSI, developed by Dr. 

Mikhail Khapaev of Moscow State University, simulations were performed on simple systems, in 

order to identify the salient characteristics of superconducting devices and, by comparing the results 

with experimental data, to test the limits and accuracy of the software. The knowledge thus gained 

was used to simulate SQUID magnetometers that have actually been produced in the lab. 

This report describes the background and outcome of the project in detail. In Chapter 2, an 

overview of the theory behind SQUID sensors is presented, with a brief digression on the subject of 

superconductivity and the Josephson effect, and an outline of some of the most common SQUID 

designs. Chapter 3 is dedicated to the computational method that has been employed in the 

simulations, along with the mathematical formalism adopted and the analytical formulae that have 

been used to verify the validity of 3D-MLSI. In Chapter 4, all the results of the simulations are 

presented and analysed to determine the precision and range of applicability of the program. 
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2. Theoretical Background 

 
2.1 Superconductivity 

Superconductivity is a macroscopic manifestation of a quantum mechanical phenomenon 

[2]-[5]. It arises from the fact that for some metals at very low temperatures, the electrons near the 

Fermi surface form bound pairs, known as Cooper pairs, which propagate in an electromagnetic 

field without any resistive loss. The attractive interaction between the electrons is stronger than the 

Coulomb repulsion. As the temperature increases the number of superconducting pairs decreases, 

until at a critical temperature Tc (the transition temperature) the superconductive property of the 

metal disappears, and the metal behaves as a normal resistive material. 

Another basic feature of superconductors is the Meissner effect: magnetic flux cannot 

penetrate a metal in its superconductive state apart from a very small region near the surface, where 

all the induced current is concentrated. If a magnetic field is applied and then the temperature 

decreased below Tc, flux is expelled from the bulk; if the superconductor is in the form of a ring, 

after removal of the external magnetic field some of the flux inside the hole of the ring is trapped in 

multiples of a fundamental flux unit, the flux quantum. 

The Meissner effect is destroyed when the applied magnetic field exceeds a critical value, 

Bc. The response of a superconductor to this phenomenon places it into one of two categories: type I 

superconductors show a transition from the superconducting to the normal state at Bc. For type II 

superconductors, there are a lower and an upper critical field, Bc1 and Bc2. In the intermediate 

domain, known as the mixed state, the superconductor has zero resistance, but quantised flux lines 

are allowed to enter some regions of the material. At Bc2 there is a transition to the normal state. 

Although the absence of electrical resistance was first observed in 1911 and the exclusion of 

magnetic flux from a superconductor in 1932, it wasn’t until 1957 that a satisfactory microscopic 

theory was achieved to explain the discoveries. This theory, the Bardeen-Cooper-Schrieffer (BCS) 

theory, is based on the idea that superconductivity involves an underlying ordering of electrons that 

overcomes their Coulomb repulsion and thermal disorder. The ordering is created when electrons 

organise themselves in pairs with antisymmetric spin states (i.e. the total pair spin is zero), because 

this lowers the energy of the Fermi gas [5]. The pairs of electrons form bosons, which statistically 

prefer to be in the same state, with the same energy and the same momentum. We therefore have a 

situation in which a large number of electrons can be described by a common wavefunction ΨΨΨΨ(r) 
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with a specified momentum ss mvp = . In other words, the Cooper pairs take part in a collective 

motion with velocity vs, forming a charged superfluid that generates a current density Js: 

 

sss en vJ −=       (2.1) 

 

where ns is the number density of superconducting electrons, and e is the electronic charge [3]. 

The fact that the system of superconducting electrons can be described by a collective 

wavefunction ΨΨΨΨ(r) means that we can write the Schrödinger equation for the superfluid and get all 

the electrodynamics of a superconductor from this simple description [2]. The result of this 

quantum mechanical treatment is three equations, which contain all the information we need about 

currents and fields in a superconductor. The first equation relates the current density to the vector 

potential A and the phase θ of the superfluid wavefunction: 

 

θ∇−=+Λ
��

es 2
AJ      (2.2) 

 

where 
2en

m

s

e≡Λ  is the London parameter. The two other equations can be derived directly from 

equation (2.2), using vector identities and Maxwell’s equations [3]. First we have: 

 

E
J

=
∂

∂
Λ

t
s       (2.3) 

 

This is known as the first London equation. It is an acceleration equation describing the 

motion of superconducting electrons in an external electric field. If a short pulse of electric field is 

applied, a supercurrent is set up and the superfluid will flow without decay indefinitely. This is the 

property of zero electrical resistance. For stationary currents, no electric field exists at any point in 

the superconductor. From equation (2.2), it follows that it is the magnetic field that determines the 

current flowing in the superconductor, unlike normal conductors where EJ σ= . The electric field 

only determines the time derivative of the current [4]. The last of the three fundamental equations 

describing superconductivity is: 

 

( ) BJ −=Λ×∇ s

�
     (2.4) 
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Equation (2.4) is known as the second London equation. From Ampère’s law for a static 

electric field ( JB 0µ=×∇
�

), this result can be written as: 

 

BB
2

2 1

Lλ
=∇       (2.5) 

 

where ( ) 21
0µλ Λ≡L  is the London penetration depth. Equation (2.5) tells us that each component 

of the magnetic field B decays exponentially from its value at the surface. This is the Meissner 

effect: the magnetic field can only penetrate the bulk of a superconductor a very short distance, of 

the order of Lλ , which depends on the material and is usually in the nanometer range. In this 

narrow region at the boundary of the superconductor flows all the induced current that is required to 

expel the external field from the bulk. The penetration depth has a temperature dependence of the 

form [4]: 

 

( ) ( ) ( )[ ] 21410
−

−= cLL TTT λλ      (2.6) 

 

where ( )0Lλ  is the penetration depth at absolute zero (a property of the material) and Tc is the 

transition temperature. 

In introducing the vector potential A and the phase θ of the superfluid wavefunction in 

equation (2.2), we have passed over a rather formal but important point [3]. A and θ are quantities 

that cannot be measured, and are only defined in terms of their derivatives (e.g. AB ×∇=
�

), which 

are related to observable quantities. So if we make the transformation (called a gauge 

transformation): 

 

χ∇+→′
�

AA       (2.7) 

χθθ
�

e2−→′ ,     (2.8) 

 

the observable physical variables (the magnetic field B and the current density Js) remain 

unchanged, and they are said to be gauge invariant (we can see this by substituting A′  and θ ′  into 

equation (2.2), and by remembering that the curl of a gradient is always zero). This means that we 

can select the definition of A and θ arbitrarily (by choosing the appropriate value of χ, which must 
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be a single-valued and differentiable scalar function of space and time) without any loss of physical 

meaning or validity. 

In the theory of superconductivity the gauge takes on a significant role, as it becomes 

apparent by looking at equation (2.2). By setting the appropriate definition of the gauge, we can 

simplify the mathematics of a particular problem considerably. For example, if our superconductor 

is simply connected, the superfluid wavefunction is single-valued and it is convenient to choose χ 

so that the phase θ is zero everywhere (this is known as the rigid gauge, or London gauge if the 

additional condition 0=⋅∇ A
�

 is assumed). It follows from equation (2.2) that: 

 

AJ −=Λ s       (2.9) 

 

and that outside the superconductor (where the supercurrent density vanishes): 

 

02 =∇ A       (2.10) 

 

Also, from (2.9) and Ampère’s law ( JB 0µ=×∇
�

), it is straightforward to show that inside the 

superconductor: 

 

22
LλAA =∇      (2.11) 

 

The last two equations (the Laplace and Poisson equation respectively), subject to 

appropriate boundary conditions and the London equations, can be solved numerically or in some 

cases even analytically to obtain the current and field distribution in a superconductor. 
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2.2 The Josephson effect 

A Josephson junction consists of two superconductors separated by a thin barrier (in the 

form of an insulator, a normal metal, or a grain boundary) and connected to a circuit. Quantum 

tunnelling of Cooper pairs through the barrier generates a current I whose magnitude depends on 

the phase difference of the two wavefunctions across the junction. The analytical solution of the 

coupled Schrödinger equations yields [2],[4]: 

 

φsincII =       (2.12) 

 

φ being the phase difference across the junction. So the supercurrent through the barrier has a 

maximum value, Ic, known as the critical current. A voltage appears across the junction when a 

supercurrent cII >  is applied to the circuit; then the phase difference evolves in time linearly with 

voltage: 

 

V
e

t �

2=
∂
∂φ

      (2.13) 

 

The voltage readout reveals information on the current and magnetic field across the junction [4]. 

For zero applied voltage, a constant dc current flows in the circuit whose maximum value Ic 

depends on the properties of the junction, on temperature, and on the applied magnetic field. For a 

non-zero applied dc voltage, φsin  oscillates very rapidly ( 11510~2 −HzVe � ) and the net 

supercurrent averaged over a cycle is zero. Note that the rigid gauge introduced in section 2.1 

cannot be used in the presence of a junction, as it would require the phase to be zero everywhere 

and thus the phase difference φ to vanish, contrary to our predictions and to physical evidence. 

In the presence of an external magnetic field, the phase difference φ is changed. This can be 

seen from equation (2.2), taking a line integral of both sides normal to the junction and far from the 

surfaces (so that the current density is close to zero). This extra phase difference term, 

 

∫∫ ⋅=⋅∇=
dd

d
e

d sAs
�

� 2φδφ      (2.14) 

 

is responsible for the modification of the current I in equation (2.12). 
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Now, if two Josephson junctions are connected in parallel, a supercurrent driven through the 

circuit experiences interference – like a wave diffracting through a double slit. This is because the 

phase changes differently (in general) according to the path chosen, and when the currents add up 

again they are out of phase. For example, in a circuit threaded by a magnetic flux Φ, two identical 

junctions give rise to a phase difference: 

 

02
22 ΦΦ=Φ=⋅=∆ ∫

Γ⋅

πφ
��

e
d

e

loop

sA    (2.15) 

 

eh 20 ≡Φ  is the flux quantum. So the interference pattern has peaks when the flux is a whole 

number of flux quanta; then πφ n2=∆  and constructive interference occurs. We have seen that if 

we drive a bias current greater than the junctions’ critical current through the circuit, a voltage will 

appear. The external flux will modulate the voltage in a measurable fashion; hence the flux itself 

can be measured [4]. 

Note that magnetic flux is not excluded from the hole in the loop (i.e. the parallel circuit) 

because the latter is not a single superconductor. The two tunnelling barriers attenuate the 

supercurrents, which cannot act as screening currents in those regions and allow flux to penetrate. 

Hence the Meissner effect does not apply in this case. 

In our treatment of the Josephson effect, we have omitted displacement currents (due to the 

surface charge densities building up on both interfaces of the barrier) and currents due to the 

conduction of normal electrons. A way to correct this imprecision is to represent the displacement 

current as a capacitance, and the conduction of normal electrons as a shunt resistance, both in 

parallel with the Josephson junction [4]. With these corrections for the tunnelling current the results 

obtained above still hold. 
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2.3 The SQUID 

A SQUID consists of two Josephson junctions connected in parallel in a superconducting 

loop of small inductance L, as shown in Figure 2.1 below. A circuit is connected to the device to 

drive the bias current and measure the voltage. Its use as a sensor of signals (as imperceptible as 

those of the brain and the heart) requires dimensions in the micron range. The best performance is 

obtained by low-transition-temperature SQUIDs; nevertheless, these have to operate at liquid 

helium temperatures (below 4.2 K), difficult and expensive to achieve and maintain. So with the 

discovery of high-transition-temperature superconductors in 1986, new relatively cheap technical 

solutions were made available. Thin superconducting films with a high crystalline quality and a 

thickness of the same order as the London penetration depth (~10-100 nanometers) are the scheme 

of choice for high-Tc SQUIDs. The compound most often used as a thin film superconductor is 

YBCO (YBa2Cu3O7-x), which has a transition temperature above 90K and therefore behaves as a 

superconductor at liquid nitrogen temperatures (77K). The Josephson junctions in thin film designs 

are usually bicrystal grain boundaries: the film is produced by epitaxial growth on a bicrystal 

substrate with a misorientation angle θ [1]. 

 

Figure 2.1: Simplified diagram of a SQUID. 

 

 

We have mentioned above that a Josephson junction can be seen as a resistively and 

capacitively shunted junction. When two such junctions are connected in parallel, hysteresis (i.e. 

irreversibility of the I-V characteristics of the circuit) can become a problem. This is avoided if the 

McCumber condition, 

 

0
2

02 Φ≡ CRIc πβ �1    (2.16) 

I  bias 

Josephson junctions 

I  bias 
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is satisfied (here, I0 is the Josephson critical current, R the resistance and C the capacitance of the 

junctions) [1]. 

When dealing with very small signals, flux noise deeply affects the sensitivity of the sensor. 

The Nyquist noise currents in the shunt resistors produce white voltage and current noise in the 

SQUID. This effect poses a constraint on the system parameters, in that the magnetic energy per 

flux quantum stored in the SQUID must be much greater than the noise energy (i.e. 

L22
0Φ � TkBπ2 �. Moreover, an important condition for optimisation is that [1]: 

 

1
2

0

0 ≈
Φ

≡
LI

Lβ      (2.17) 

 

In view of all these considerations on the SQUID parameters and the experimental data 

available, the optimal SQUID inductance L is found to lie in a range of a few tens of pH [1],[6]-[9]. 

L is a key parameter in the design of efficient sensors. 

Another source of flux noise is the motion of flux vortices in the SQUID loop. Because 

YBCO is a type II superconductor, when it is cooled down to its superconducting state in the 

presence of a magnetic field higher than its first critical field Bc1, which is typically very low, 

magnetic flux is not excluded from the bulk: flux vortices (fluxons) can be observed, confined in 

certain regions within a matrix of flux-excluding material. (This effect is particularly evident when 

the superconductor is cooled in the earth’s magnetic field.) The effect of finite temperature is to 

thermally activate the hopping of flux vortices between pinning sites (the nature of which is still 

unknown) in the superconducting film. This generates low frequency flux noise. For high-Tc 

superconductors such as YBCO, usually operating at liquid N2 temperatures, thermal energies, and 

thus flux hopping, cannot be neglected. Making the linewidths of the films narrow enough reduces 

this noise because it is energetically unfavourable for vortices to enter. Improving the crystalline 

quality also reduces flux hopping, but on the other hand it decreases the density of pinning sites, 

which are crucial to maintain flux vortices under control. Because the phenomenon is not yet fully 

understood, there is no quantitative description of the dependence of low frequency flux-noise on 

flux hopping; therefore direct noise measurements are required to determine the quality of a film 

[1],[3]. 

A SQUID is very sensitive to changes in magnetic flux, but because of its small area its 

sensitivity to changes in magnetic field is low. The magnetic-field noise at a given frequency is 

( ) ( ) effB AfSfS 2121
Φ=  [7]. Consequently, the SQUID is often coupled to a flux transformer to 
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increase the effective area effA  of the device without enhancing the flux noise ( )fSΦ . 

Alternatively, a square washer design can be adopted, where flux is focussed into a hole 

representing the SQUID loop. The SQUID-flux transformer system is known as a magnetometer, of 

which there exist two classes: directly coupled and multiturn flux-transformer magnetometers. Here 

we are interested mainly in the first type. 

 

2.3.1 Square washers 

A square washer is a square superconducting film of length D and with an inner hole of 

length d (see Figure 2.2 below). The wide inductive square loop of the SQUID acts as the single 

turn coil of a flux transformer [10]. Flux is expelled from the film and is partly focussed into the 

inner hole. A screening supercurrent is induced along the outer and inner perimeters of the washer 

(with a fast-decaying tail moving away from the edges). Moreover, a bias current greater than the 

junctions’ critical current is applied in order to measure the voltage across the circuit. (The bias 

current has no inductive effect because it does not circulate in a loop.) If we neglect the inductance 

of the slit, computer simulations show that the inductance of the SQUID approaches a constant 

value, dL 025.1 µ= , when the width ( ) 2dDW −=  of the loop becomes of the order of or greater 

than the width of the hole, d [10]. 

Figure 2.2: Schematic representation of a square washer SQUID design. 

 

Josephson 
junction 

Josephson 
junction 

D d 

V 

Ibias 

Ibias 
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Also, in analogy with the case of a circular washer of the same width, the effective area can 

be found analytically to be dDAeff ≈  [6]. Now, if the Josephson junctions are close enough to the 

hole, the flux that they see is approximately that through the hole. If, on the other hand, they are 

near the outer edge of the washer, the slit inductance can become important because it is 

proportional to the length Wl ≈  of the slit: ( )pHmlLslit µ4.03.0 −≈  [1]. The effective area though 

is significantly increased as the slit length increases. So if we want to maximise the effective area 

without increasing the inductance beyond a few tens of pH, we need to find a compromise, which 

limits the washer size to a few hundreds of microns. This is a task where computer simulations can 

play an invaluable part, as preparing SQUIDs of different shapes and sizes just for optimisation 

purposes is costly. 

Although the SQUID inductance can be calculated by summing the hole inductance 

( dLh 025.1 µ= ) to the slit inductance ( ( )pHmlLslit µ4.03.0 −≈ ), this method is often too 

inaccurate for high-sensitivity sensors. The slit inductance includes the contribution of the 

Josephson junction striplines (the u-shaped strip below the junctions in Figure 2.2), although it is 

highly unfavourable for the screening supercurrent to follow that path. Also, in general, for more 

complicated shapes the approximations for the inductances given above do not apply. This problem 

thus requires a numerical treatment, e.g. solving the London equations subject to the appropriate 

Maxwell’s equations for a given geometry [1],[11]-[13]. 

 

 

2.3.2 Directly coupled magnetometers 

In directly coupled magnetometers [7], a large pickup loop is patterned in the same layer as 

the SQUID so that the supercurrent produced by an applied magnetic field is injected directly into 

the body of the SQUID (see Figure 2.3 below). These single layer devices are relatively simple to 

produce, but the flux-coupling efficiency is reduced with respect to multiturn flux-transformers due 

to a mismatch in the inductances of the pickup loop and the SQUID. Overall, though, they are often 

preferable over multilayer designs thanks to their lower low-frequency noise and dimensions. 
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Figure 2.3: Directly coupled magnetometer. The pickup loop is connected directly to the hairpin-shaped SQUID. The 
screening current enters from the right-hand side and flows around the slit clockwise. The bias current 
flows vertically. 

 

 

The idea behind SQUID sensors is to relate a measurable voltage to a magnetic field B. 

What the voltage tells us is the flux threading the SQUID. This is the sum of the external magnetic 

flux that enters the SQUID hole directly, plus the fraction of flux that the pickup loop focuses into 

the SQUID hole. Let AS, ΦS, LS and Ap, Φp, Lp be the effective area, the flux, and the inductance of 

the SQUID and the pickup loop respectively. Let Aeff be the effective area of the magnetometer. If 

we can assume the field B to be uniform over the area occupied by the SQUID, we have: 

 

BAeff = flux threading the SQUID = 

= external flux + flux focused by the pickup loop = 

= BAS + ΦS      (2.18) 

 

Now, the same supercurrent I flows both in the pickup loop and in the SQUID. The pickup 

loop is a closed loop, so it follows from the Meissner effect that this supercurrent I must generate a 

flux Φp, which is equal and opposite to the external flux threading the hole in the pickup loop. The 

Ibias 

Is 

Josephson junctions flux is focussed into this region 

no flux in this region 

SQUID 
pickup loop 

screening 
supercurrent 
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flux Φp produced by the pickup loop to screen the external flux, and the flux ΦS focused by the 

pickup loop into the SQUID, have the following relationship: 

 

p
p

S
SS

pp

L

L
IL

IL

Φ==Φ

=Φ
     (2.19) 

 

Substituting (2.19) into (2.18), we obtain a formula for the total effective area: 

 

Sp
p

S
S

p

p

SS
Seff AA

L

L
A

BL

L

B
AA +=+

Φ
=

Φ
+=    (2.20) 

 

So if the effective areas and the inductances are known from numerical methods, the 

magnetic field B ensues. Given a numerical method to evaluate mutual and self-inductances, a 

reference source can be used to determine effective areas. For example, we can use a short strip 

length �  acting as an electric dipole, with a constant current I and mutual inductance with the 

SQUID (or pickup loop) M. M is found via the same numerical techniques as for the self-

inductances. At large distances ( r � � ), the strip generates an approximately uniform magnetic field 

( ) 2
0 4 rIrB πµ �=  [14]. The flux induced by the strip is MI=Φ . Hence the effective area is: 

 

( ) ��

2

0
2

0

4
lim

4
limlim

Mr

rI

MI

B
A

rrr
eff µ

π
πµ ∞→∞→∞→

==Φ=    (2.21) 

 

Because the effective area is an intrinsic property of a magnetometer, we expect the slope of a graph 

of M  vs. 21 r  to tend to a constant limiting value of πµ 40 effA�  as ∞→r . 

 

 

2.3.3 Inductance calculation 

We have seen that the problem of calculating the magnetic field B given the readout of the 

flux transformer reduces to the calculation of inductances. One way to do this is numerically [11]-

[13],[15]-[17]. The general approach is to consider the energy of a system, solve the appropriate 

London and Maxwell equations for the specific geometry and penetration depth, and relate the 
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current distribution to the energy (which is a functional of the current density). This set of 

equations, satisfied by the vector potential, can be shown to be equivalent to the Laplace equation of 

electrostatics outside the superconductor and to the Poisson equation inside [18]. This means that 

with the appropriate boundary conditions we can solve for the current density at a discrete number 

of points in the superconductor, and using a finite element method compute the total energy of the 

system. The boundary conditions are 0=⋅∇ A  and that the component of A normal to the thin film 

is zero. 

The energy of the system has a magnetic term and a kinetic term. The latter originates from 

the fact that the superconducting electrons move without dissipation, so the energy required to 

accelerate them is stored in their motion. Because the velocity of the electrons is proportional to the 

current density J, the kinetic energy is proportional to J2. The magnetic term is proportional to the 

square of the magnetic field, and via the London equations, Maxwell’s equations, and the Biot-

Savart law, it can be reduced to a double integral in the current density [11]. The energy functional 

for a thin superconducting film has the form: 

 

∫ ∫∫ −
⋅+=

V VV
L dddvE '

'

)'()(

82
0220 rr

rr
rJrJ

J
π

µλµ
   (2.22) 

 

where Lλ  is the London penetration depth, J the current density and the integration is over the 

entire superconducting region. The contribution of external magnetic fields is included in J. If most 

computational techniques to calculate inductances are based on a total energy evaluation approach, 

they differ in the way the current distribution is simulated. In [11] and [12], for example, the current 

density J in equation (2.22) was calculated directly by minimizing free energy with a variational 

technique. These methods proved to have limitations in their applicability and were time and 

memory consuming [15]. In the present project the problem of inductance calculation was tackled 

with the use of the computer program 3D-MLSI [16]. The method used in 3D-MLSI to solve for the 

energy in equation (2.22) is based on the representation of the current density as a scalar potential 

function, on the solution of appropriate electrostatic equations and boundary conditions, and on the 

simulation of piecewise-constant currents circulating on a triangular finite element mesh [13]. 

Evidence will be produced in the course of this report of the accuracy and computer efficiency of 

this method. 

Once the energy of the system is known, it is straightforward to calculate the mutual and 

self-inductances of its components, which are holes and terminal paths. It will be shown in section 3 

that the energy is a quadratic form in the currents circulating around holes and between terminals, 
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the coefficients of the form being the mutual and self-inductances of the various system 

components. A simple iterative process can be used to extract the inductances from the total energy, 

by sequentially assigning arbitrary values (e.g. 1 for a single or pair of components and 0 for all the 

others) to the currents and calculating the energy at each step. 
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3. Experimental Method 

 

3.1 The Code: 3D-MLSI 

3D-MLSI is a finite element software package developed by Dr. Mikhail Khapaev of 

Moscow State University [16]. Finite element methods are used in a wide range of engineering 

applications. The basic concept is to map what is usually a continuous function into a discrete set of 

values, thus enabling a computer to perform numerical calculations. The object under investigation 

is divided into a grid of small elements (the mesh), and the property that we wish to simulate (such 

as temperature, stress, or in the present case current density) is defined at each node of the grid. 

Given some boundary conditions, the list of values at the nodes is calculated by the appropriate 

computer program at each step in the simulation, giving the overall variation of the required 

property in space or time. 

The first feature in 3D-MLSI’s algorithm is the transformation of a three-dimensional 

picture into a two-dimensional representation of the system of superconductors (see Figure 3.1 

below). For this simplification we require the conductors to have a thickness of the same order as 

the penetration depth, and the other linear sizes to be much greater (in other words, the method 

applies to thin films). This enables us to neglect the components of the current and of the field in the 

direction perpendicular to the film (e.g. the z-direction), and to eliminate the z-dependence of all the 

quantities by taking averages over the thickness [13]. 

 

 

 
Figure 3.1: example of how the mesh is generated by 3D-MLSI in the case of a square washer with a hole. 
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The program generates a 2D triangular mesh automatically (according to the shape of the 

conductors), with a resolution step adjustable by the user. The appropriate electrodynamical 

equations and boundary conditions are transformed into a system of linear and quadratic equations 

in a scalar potential, the stream function, which is introduced for the purpose of mathematical 

simplification. The stream function is a potential-function representation of the two-dimensional 

sheet current flowing on the film, is defined in terms of its derivatives and has the physical meaning 

of the total current through a component of the circuit [13]. The advantage of this representation is 

that a complex system with, in general, no analytical solution can be solved numerically: the 

boundary conditions fix the value of the stream function at the external nodes of the mesh (i.e. the 

nodes on the edges of the conductors), while everywhere else the value of the stream function is 

worked out from the electrodynamical equations using a numerical algorithm common to many 

finite element problems [15],[19]. Because the stream function is related to the current density, the 

current distribution in the system is a direct output of the numerical solution (see Figure 3.2). At 

the same time, the energy of the system can be shown to be a quadratic form of the stream function, 

and from the total energy the inductances can be obtained directly [18]. A rigorous derivation of the 

method employed by 3D-MLSI can be found in [13]. 

 

 

 
Figure 3.2: current distribution for the square washer of Figure 3.1. The colour scheme describes the current intensity, 

from dark blue (lowest) to yellow (highest). The white lines represent the current flow paths. 

 

 

The program 3D-MLSI is divided into three parts: a pre-processor, a numerical core and a 

tool for the extraction of inductances [20]. The pre-processor is a program that takes an input file 
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with the specifications of the system of superconductors and generates the triangular mesh. The 

files with the information about the mesh are then fed to the numerical core, which performs the 

finite element calculations on the stream function. 

Once the numerical core produces its output, the total energy of the system, another 

algorithm is required to extract the inductance matrix. The total energy of a system consisting of N 

components is [21]: 
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where Li is the self-inductance of component i, Ii the current circulating through i, and Mij the 

mutual inductance between components i and j. The expression above can be written more simply 

in matrix form: 

 

II LE T

2

1=       (3.2) 

 

where ( )NII ,...,1=I  is a vector containing all circulating currents and L is called the inductance 

matrix. The diagonal elements of L are the self-inductances of the system, while the off-diagonal 

terms are the mutual inductances. Note that because jiij MM =  (reciprocity of the mutual 

inductance), matrix L is symmetric. 

If we set the boundary conditions so that the current through each component is zero except 

for component i ( ijjI δ= ), calculate the total energy, and then repeat the procedure for all 

components, we get the self-inductances of the system directly from the energy: 

 

22 ii IEL =       (3.3) 

 

If we then set all currents but a pair i, j to zero ( jlillI δδ += ), we obtain the mutual inductances: 

 

( ) jiiiij IIILEM 22 −= ,     (3.4) 

 

and hence the whole inductance matrix. 
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3.2 Simulation Set-up† 

The first task in the use of 3D-MLSI is to create the input file, which contains all the details 

about the system to simulate. The input file is simply a text file that can be created using a text 

editor (such as Notepad in Windows). 3D-MLSI is quite flexible in terms of the geometry of the 

components, but there are certain requirements that need to be satisfied by both the system and the 

input file. All the components of the system must be thin superconducting films. Once the height 

and thickness of each are defined, we consider their projection on the (x, y) plane; the boundaries of 

this projection are the subject of the input file. The films are separated by a perfect dielectric 

medium. The surface of a film can have arbitrary shape and contain holes and current terminals on 

its external boundary. The program assumes that the thickness of the film is small compared to its 

typical lateral size (i.e. the length or width of a strip or the side of a square washer) and of the same 

order as the penetration depth of the film. 

Figure 3.3 below is an example of an input file, for a single ������ ��	
���� 
������������

�����������
	�����
�����	
	������
��	������
������������������	
���	���
���� 

 

 

 

Figure 3.3: example of an input file for 3D-MLSI. 

 

 

                                                 
† For the complete 3D-MLSI User’s Manual refer to [20] 
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The first line in the file contains the name of the project and a comment (‘grds’ is a scaling 

factor: it defines the unit length of the quantities in the input file as a multiple of the micron. In this 

project, the unit length was always taken to be the micron so grds = 1). When the unit of length is 


������	���������	���
�����
�	����	�	���	��	���
�pH. The number of superconductors in the system 

must then be declared (nc). The command ah defines the resolution of the grid (roughly the linear 

size of the average mesh triangle), while lmbd is the London penetration depth of the film. In this 

project, the superconductors used in the simulations were usually assumed to be thin films of 

YBCO (YBa2Cu3O7-x), which has parameters ( ) mL µλ 13.00 ≅  [22] and KTc 9388 ÷≈  [3]. From 

equation (2.6), it follows that the penetration depth of YBCO at liquid nitrogen operating 

temperatures can be taken to be: 

 

( ) mKYBCO µλ 23.077 ≅     (3.5) 

 

Although this was the reference value adopted when simulating real magnetometers, other values 

were also employed and the dependence of the system parameters on penetration depth was 

explored. 

3D-MLSI simulates inductances and current distributions for excitation currents circulating 

around holes or through chains of terminals. The algorithm for numerical solution requires 

boundary conditions, and these are in the form of terminals on the external boundary, or of holes 

within the conductor. This means that in order to obtain an inductance matrix there must be 

terminals and/or holes in the system. Terminals must always be in pairs (input and output terminal), 

so as to form terminal paths for the excitation currents to flow along. As mentioned before, they 

must lie on the external boundary of the superconductor. It is possible to set up chains of terminals 

rather than simply pairs. A more advanced option in 3D-MLSI allows the simulation of the current 

distribution given an external magnetic field or flux set by the user, in which case the program is 

unable to calculate the inductance matrix. 

Each conductor is assigned a number and its thickness is fixed (refer to Figure 3.3). Each 

can have its own penetration depth and mesh resolution step (ah). The boundaries of the conductor 

are specified as linear elements: straight segments, arcs or circles. The command ell defines the 

geometrical form and features of the elements: origin and endpoint, centre, radius, etc. An element 

can be an edge, a terminal, or a hole boundary. Figure 3.4 shows the input file for the simulation of 

a square washer and a source (a small strip). The elements that delimit a hole are labelled ‘h i’ 

where i is the number of the hole, while terminal n is labelled ‘t n’. The command ‘tp n ��m’ sets 

the direction of flow of the current from terminal n to terminal m. 
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Figure 3.4: input file for the case of a square washer and a strip. 

 

 

The input file can be opened with 3D-MLSI directly, for visualisation and execution of the 

pre-processor (the program UPM). UPM generates the mesh automatically, using one of the most 

recent and efficient finite element algorithms for mesh generation. The output from UPM is a file 

that constitutes the input of the numerical core (MLW), which is the most engaging part of the 

program in terms of CPU time. MLW produces two files: one containing all the information about 

the solution (including the current density at each node of the mesh, which is used to evaluate the 

inductance matrix but may not apply to a physical situation), and one containing the self- and 

mutual inductances in matrix form. The outcome of the simulation is immediately visualised in the 

program’s window (WPM). It is possible to view the current distribution by displaying the 

streamlines and vanes indicating the trajectory and direction of flow, and by colour contrast, i.e. 

assigning a colour to each range of current density (see Figure 3.5 below). 
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Figure 3.5: 3D-MLSI solution showing the current distribution and the streamlines. 

 

 

 

3.3 Computational Goals and Tools 

The main objective of this project was to understand how 3D-MLSI is to be used in the 

design of real SQUID sensors. For this purpose, one needs to elucidate the details of the program 

and work out how the information about a device must be inserted and extracted from the code. For 

example, how is a Josephson junction to be modelled? What is the equivalent inductance of a 

SQUID circuit? As the details of the apparatus that are entered into the program are of essentially 

two natures only (geometrical and boundary conditions-like), and because the output is a somewhat 

obscure matrix containing the inductances of the current paths rather than of the actual components 

of the system, the data that we get from 3D-MLSI has to be analysed and processed before it can 

give us any useful information. At the same time, the accuracy of the method is intrinsic to the 

numerical technique used to solve the relevant equations, and so it lies on the resolution of the mesh 

rather than on experimental conditions. These issues call for a test of the validity and precision of 

the computational method, which can come from either theory or experiment. So before 

investigating real, interesting designs, an analysis of the characteristics and limitations of the code 

was carried out on simple systems, such as striplines and square washers, of which the 

specifications were known. Moreover, in discussing the results, the data obtained from 3D-MLSI 

has been compared to analytical formulae or experimental data whenever these were available. 
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3.3.1 Superconducting strip 

The simplest superconducting system is a single thin stripline. Because of its elementary 

geometry, it has been studied extensively from both a theoretical and experimental point of view, so 

it is the perfect tool to investigate the validity and accuracy of 3D-MLSI. In the present project, a 

stripline has been used to investigate mesh resolution effects, the dependence of inductances on 

penetration depth and the dependence of mutual inductance on the distance between two 

superconductors. A stripline was also used as the magnetic field source when studying the effective 

area of a magnetometer. 

The inductance of a superconducting strip has a magnetic and a kinetic term. The kinetic 

inductance for such a geometry cannot be neglected, because the strip cross-section is comparable 

to the square of the penetration depth. We can see why this characteristic is important by 

considering the analytical form of the kinetic inductance of a strip of length �, width w and 

thickness t [4]: 

 

wt
L L

k

�
2

0λµ
=       (3.6) 

 

For a typical stripline with a ratio w� �10, and thickness and penetration depth of a few 

tenths of microns (which is the case for YBCO thin films), the kinetic inductance is greater than or 

in the order of a few tenths of pH. It will become apparent in the course of this report that this value 

can affect the accuracy of the result, and therefore should always be taken into account. This 

consideration also applies to the more complex geometries considered hereafter. 

As for the magnetic term of the inductance, we can turn to classical electromagnetic theory 

(in which the kinetic inductance is not predicted) for analytical formulae. For normal conductors 

and in the absence of magnetic materials, the mutual and self-inductance are parameters that do not 

depend on the current distribution but only on the geometry, so long as we can neglect skin depth 

effects (which are only important in high-frequency situations) [21]. Although superconductors are 

perfect bulk diamagnets (i.e. they have zero global permeability µr) because of the Meissner effect, 

their local permeability is close to 1, as for normal non-magnetic materials [23]. Moreover, given 

the low fields in which SQUIDs operate (below Bc1), the magnetic inductance should be 

independent of field and current. If these two assumptions are true, the formulae for the magnetic 

inductance of normal conductors must hold for superconductors as well. Because nothing was found 
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in the literature to clarify this issue, 3D-MLSI was used to compare computational data with 

predictions of self-inductance from normal conductors. 

The magnetic inductance of a stripline of length �, rectangular cross-section and small shape 

ratio (i.e. width w � thickness t) is [21]: 
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where L has units of pH when � is expressed in microns. If the same approximations adopted for 

equation (3.6) hold true, the magnetic inductance of the strip will be of a few tens of pH. 

 

 

3.3.2 Square washer 

The square washer is the most common design for pickup loops in SQUID magnetometers 

and has been studied extensively. Jaycox and Ketchen [10] have shown that a square washer with 

outer dimension D and hole width d has a self-inductance approaching the value dL 025.1 µ=  when 

the width of the loop ( ) 2dDW −=  becomes on the order of or greater than d. Also, Ketchen et al 

[6] have shown that the effective area of the washer is aDdAeff = , where a is a numerical constant 

of order unity. The computational method in 3D-MLSI has been tested against these results [13], 

showing, for the case of the self-inductance, accuracy of about 2-3%. Those calculations were 

repeated in the present project, and extended to the case of the effective area. The investigation on 

square washers was the taken further, with studies of the dependence of the inductances on 

penetration depth (an almost impossible task to do experimentally) and of the variation of mutual 

inductance between a washer and a source as a function of distance between the two (measured 

from the centre of the washer hole to the vertical axis of the strip, see Figure 3.6 below). 
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Figure 3.6: square washer and source in the shape of a stripline, r = ������������ 

 

 

Actual square washer pickup loops have slits that contain the Josephson junctions [1] (refer 

to Figure 3.7 and 3.8 below). The presence of a slit will modify the field and current distribution on 

the washer [6], though the effect on the inductances is usually neglected. The result of including a 

slit in a square washer was considered, by making the slit width vary until it approached zero, and 

then comparing with a square washer with no slit. A convergence to the value for the washer with 

no slit was expected. In using 3D-MLSI, there is a significant difference between simulating a 

washer with slit and no slit. For the latter case, the boundary conditions are provided by the 

presence of the hole, whereas for the former case, the presence of a terminal path is required. The 

choice of location and width of the terminals is a crucial one, for the terminals are an artificial 

imposition to the physical system and could affect the current distribution arbitrarily. 

 

 

   
Figure 3.7: visual comparison between a square washer without a slit and another with a 1��-wide slit. 

 

r 
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3.4 Kahlmann’s SQUID 

A device of particular interest is the magnetometer layout introduced by Lee et al [24], [25] 

and developed by Kahlmann et al [26], which for convenience will be hereafter referred to as 

Kahlmann’s SQUID. It consists of a directly coupled magnetometer where the pickup loop is in the 

form of a square washer (see Figure 3.8 below). Kahlmann et al have measured the effective area 

of the device, so it was decided to compare those results with calculations using 3D-MLSI. 

The magnetometers in [26] were patterned out of 200nm thick YBCO films. The square 

pickup loop has an outer dimension of 2mm and a width of 0.75mm, while the hole has a side 

0.5mm long. The SQUID loop is placed within the square washer, it has a linewidth of������
����	�

���� ������� ��	�  ��� ������� !�	� �	
���� �"� ��	� #$%&'� ����� ��� (���	�� ��� �)���
� "���� (���	�� �"� ��	�

SQUID inductance, 50pH, 100pH, 150pH and 200pH (for simplicity, the magnetometers will be 

labelled according to their respective SQUID inductance value). 

 

 

 

 

 

 

 

 

Figure 3.8: Kahlmann’s SQUID. The pickup loop is common for all magnetometers (left). The length of the SQUID is 

tuned to obtained the desired SQUID self-inductance, as shown by the four enlargements on the right. 

 

 

The system has four components: the pickup loop, the two parts of the SQUID separated by 

the Josephson junctions and the source (a long and narrow strip, which can be considered as a 

50pH 

100pH 

150pH 

200pH 
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current dipole). Thus the inductance matrix will be a 4×4 matrix and the information about the 

equivalent inductances of the circuit must be extracted for the specific purpose. The method that has 

been employed is a special case of the method discussed in [17]. We start with the statement that 

the vector � of fluxoids trapped in holes or excited by terminal currents is given by: 

 

I� L=       (3.8) 

 

where ( )
thhh NNNN IIII ++= ,...,,,..., 11I  is the vector of full currents circulating around holes and 

through terminals, while L is the inductance matrix. It is recalled that L is an N×N symmetric 

positive-definite matrix, and th NNN += . For hNi ,...,1=  the vector component �i is the fluxoid 

trapped in hole i, while for thh NNNi += + ,...,1  the component �i is the sum of fluxoids for a given 

sequence of terminals on a superconductor. Because in 3D-MLSI the currents circulating around 

holes are excited by externally applied currents (the terminal currents), the self- and mutual 

inductance terms associated with holes are dependent on the terms due to terminal currents, and so 

the inductance matrix can be effectively reduced in size. If we decompose the vectors of fluxoids 

and of currents into sub-vectors ( ) ( )hΦΦ= ,...,1
1�  and ( ) ( )hII ,...,1

1 =I  of length h = Nh, and sub-

vectors ( ) ( )Nh ΦΦ= + ,...,1
2�  and ( ) ( )Nh II ,...,1

2
+=I  of length l = Nt, equation (3.8) can be rewritten 

as: 
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where 11L , 12L , 21L  and 22L  are sub-matrices of L with dimensions h×h, h×l, l×h and l×l 

respectively. Solving for ( )1�  in terms of ( )2� , we obtain the following relation: 

 

( ) ( ) ( )11
1121

22 ~ �I� −+= LLL     (3.10) 

 

where 
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is the reduced inductance matrix of the system, having dimensions l×l. Note that L
~

 is symmetric as 

11L  and 22L  are symmetric and TLL 1221 = . Now, the flux trapped in the hole of a superconductor is 

quantised and constant. If we consider the fact that SQUID magnetometers are used to measure very 

small magnetic signals, given the low intensity of the fields in which they operate we can safely 

assume that no flux is trapped in the holes and the elements of ( )1�  can be taken to be zero. 

Equation (3.10) then reduces to: 

 

( ) ( )22 ~
I� L=       (3.12) 

 

In our specific case, the indices 1, 2, 3 and 4 denote the pickup loop, the section of the 

SQUID connected to the pickup loop, the other part of the SQUID and the source respectively. We 

can reduce the 4×4 inductance matrix to a 3×3 matrix, using L
~

. Our basic assumption for the 

solution of this problem is that the currents through the terminal paths on the two sections of the 

SQUID (I2 and I3) are equal. This is because we are modelling a pair of Josephson junctions 

connected in parallel on a closed loop, so the same supercurrent must go through both (the bias 

current contributes nothing to the inductance so it is ignored). Sub-vector ( )2I  can be written as (I2, 

I2, I4) and equation (3.12) yields the system of linear equations: 
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The flux threading the SQUID (which is the quantity measured by the device) is the sum of 

the fluxes linking its two components (see Figure 3.9 below): 

 

( ) ( ) 42313222121132

~~~~
2

~
ILLILLLSQUID ++++=Φ+Φ=Φ   (3.14) 

 

It is straightforward now to calculate the equivalent mutual and self-inductance of the 

magnetometer from equation (3.14). The equivalent self-inductance eqL  is found by imposing 

04 =I  and by dividing the flux through the SQUID by the current flowing in it: 
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Similarly, the equivalent mutual inductance between Kahlmann’s magnetometer and the 

source is: 
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Note that when considering the equivalent self-inductance of a circuit, which is an intrinsic 

property of the system of conductors, the value of the coupling current in the source should by no 

means affect the result; hence the assumption 04 =I  in (3.15). Moreover, the mutual inductance is 

a measure of the coupling between two loops; it relates the current through one to the induced 

currents through the other and so any externally injected current in the second loop (e.g. 2I  for the 

magnetometer) does not enter the picture of mutual inductance and should be neglected. This 

argument justifies the assumption 02 =I  in (3.16). 

 

 

 
Figure 3.9: the flux measured by the SQUID is the flux linking the slit. This flux is the sum of two components: that 

from the hairpin-shaped loop on the left, and that from the component to the right. The blue vertical 

segments are the terminals, which effectively simulate the Josephson junctions. 

 

 

If we consider a system with only three components (the pickup loop, the SQUID and the 

source), it can be shown by the same procedure that the equivalent mutual inductance between the 

magnetometer and the source is: 
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where MS and Mp are the mutual inductance between source and SQUID, and source and pickup 

loop respectively, LS is the self-inductance of the SQUID and Lp the self-inductance of the pickup 

loop. If we multiply both sides of equation (3.17) by �0
24 µπr  and then take the limit as ∞→r , 

according to equation (2.21) we get the effective area of the magnetometer. It is straightforward to 

verify that the formula for the effective area thus obtained is the same as equation (2.20). 

The procedure for extraction of the equivalent SQUID self-inductance is simpler than for the 

whole magnetometer. There are only two components: the two loops connecting the junctions. The 

current circulating around the coil is I, the fluxes are then given by: 
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The total flux threading the SQUID is the sum of the two fluxes in (3.18), so the equivalent 

self-inductance is simply: 

 

221211 2 LLLIL SQUIDeq ++=Φ≡     (3.19) 
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4. Results 

 

Before using the software to study complex and interesting systems, the properties and 

limits of 3D-MLSI were investigated. In particular, emphasis was laid on the accuracy of the 

method by varying the resolution step and observing the evolution of the outcome. It was also 

checked that the inductances and effective areas had the expected dependence on penetration depth 

and distance from the source. Some analytical and experimental values were available for 

comparison, but while formulas and empirical data are abundant as far as the inductance is 

concerned, for the effective area scarce information could be found in the literature. 

 

4.1 Effect of mesh size 

The first step in the project was to study the effect of mesh resolution on the inductance 

matrix. Because finite element techniques are numerical methods based on discretisation of 

continuous systems, they are valid strictly in the limit that the grid elements tend to infinitesimal 

entities. Thus we expect our results to be only crude estimates that tend asymptotically to the exact 

value, but nevertheless they should be reliable to a certain degree. Just how reliable is a question 

that requires an answer in the framework of this project. 

For simplicity, the first choice for a test superconductor was a thin strip (100µm long, 14µm 

wide and 0.2µm thick). The penetration depth used was 0.135µm, which is the value for YBCO at 

absolute zero [3] (the penetration depth dependence of the inductance will be dealt with later in this 

chapter). 

 

 

                        
Figure 4.1: section of the strip showing the triangular mesh (a) and the current distribution (b). The mesh size is ah = 3. 

The colour scheme in (b) is a measure of the current density, from blue (lowest) to yellow (highest). 

(a) (b) 
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Figure 4.1 shows the strip after the pre-processor run (a) and after the numerical core (b): it 

exhibits the grid on the left and the current distribution on the right. The resolution step is 3 for this 

case. For visual comparison, the same system but with a lower mesh resolution (ah = 10) has been 

presented below (Figure 4.2). It is evident that the mesh is much coarser, and accordingly the 

current distribution is asymmetric and incoherent. The different colours represent different values of 

the current density, from yellow (highest) to dark blue (lowest). In Figure 4.1 the current is 

concentrated along the borders of the strip, decreasing exponentially as we move inwards, in 

agreement with the Meissner effect. The strip in Figure 4.2, on the other hand, is so deeply affected 

by the coarseness of the grid that the current distribution appears random, dictated by the large area 

of the triangles (the sides of which are of the same order as the width of the strip). The obvious 

conclusion is that the resolution step must be much smaller than the dimensions of the 

superconductor, otherwise finite size effects become dominant and the simulation looses physical 

significance. 

 

 

                         

 

Figure 4.2: section of the strip showing the triangular mesh (a) and the current distribution (b). Mesh size is now 10. 

The accuracy and symmetry of the current distribution is suffering from the poor resolution of the mesh. 

 

 

The effect of mesh resolution on the inductance can be appreciated in Figure 4.3 below. The 

asymptotical behaviour of the self-inductance as the mesh is refined is apparent, but interestingly 

enough the inductance experiences an overestimation that grows as ah increases. There is thus a 

definite correlation between the size of the triangles and the total energy of the system (from which 

the inductance matrix is found). 

 

(b) (a) 
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Figure 4.3: self-inductance of the strip as a function of mesh size ah. 

 

 

The self-inductance of the strip seems to converge to approximately 63pH. It will be shown 

in the next section that this result is consistent with theoretical predictions. Note that all values are 

within 20% of the lowest value (63.05pH for ah = 0.8). In particular, for a resolution step smaller in 

size than 10% of the strip width (i.e. for ah < 2) the overestimation is below 1%. So the mesh size 

can be “tuned” so as to give the required accuracy, given that precision has a cost in terms of 

computer power time and memory. For example, CPU time was 5.0 s when ah = 3, 1.0 s when ah = 

5 and less than 0.1 s when ah = 10 (the simulations in this project were performed with an Intel® 

CeleronTM 600 MHz processor and a 192 MB RAM). 

 

 

4.2 Effect of penetration depth on stripline inductance 

The effect of penetration depth on the stripline self-inductance was discussed in section 

3.3.1, where the kinetic inductance was shown to be proportional to 2
Lλ , while the magnetic 

inductance was taken to depend on the geometry only. The same considerations are expected to 

apply to the mutual inductance between two superconductors as well. For the strip considered in 

section 4.1, formula (3.6) for the kinetic inductance and formula (3.7) for the magnetic inductance, 

yield 2288.44 mpHL Lk µλ=  and pHLm 90.62=  respectively. 
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Figure 4.4 is a plot of the self-inductance of the same superconducting strip of section 4.1, 

as a function of the square of the penetration depth. The mesh size used was 5. If our predictions are 

correct, i.e. if the kinetic inductance is accurately given by equation (3.6) and the magnetic 

inductance depends only on geometry, we expect a plot of the total inductance minus the kinetic 

inductance to be a horizontal line with a y-intercept at approximately 63pH. 
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Figure 4.4: self-inductance of the strip as a function of penetration depth. 

 

 

The blue trendline in Figure 4.4 shows that the self-inductance of the stripline is indeed 

proportional to 2
Lλ . The y-intercept is the magnetic inductance of the strip (the kinetic term is zero 

when Lλ  is zero), and the value 64.74pH is in good agreement (3%) with the prediction of 62.90pH 

from equation (3.7), considering the overestimation due to mesh resolution (ah = 5 in this case). 

The slope of the trendline is 2
LkL λ , and there is an 8% mismatch between 3D-MLSI’s result 

( 254.48 mpH µ ) and the theoretical prediction from equation (3.6) ( 288.44 mpH µ ). Again, we 

may put this down to mesh resolution, although the effect in this case is more dramatic. Similarly, 

by taking the predicted value of the kinetic inductance for a given Lλ  out of the total self-

inductance, we obtain a quantity which is still penetration depth dependent. If the magnetic 

inductance depends entirely on geometry, this implies a general overestimation of the kinetic 

inductance, which is a logical conclusion given the results of section 4.1. It would therefore not 

seem unreasonable to support the hypothesis that magnetic inductance is not affected by the current 
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distribution, though of course more experimental evidence is needed to reach a decisive conclusion 

on the subject. 

 

 

4.3 Square washer 

To test the accuracy of 3D-MLSI, the inductance of a square washer with a hole was 

compared with the value found by Jaycox and Ketchen, dL 025.1 µ=  [10], where d is the width of 

the hole. The devices in [10] were made of low-Tc superconductors, so the value of the penetration 

depth was chosen to be 50nm (which is the right order of magnitude for e.g. Nb). A plot of dL 0µ  

against W/d, where W is the width of the loop, for three different hole widths is compared with the 

original data from [10] in Figure 4.5 below. 
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Figure 4.5: graph of L/�0d vs. W/d for three different hole widths d and the expected curve from [10]. 

 

 

The three curves in Figure 4.5 seem to settle at a limiting value between 1.4 and 1.2 d0µ . 

This is consistent with a prediction of 1.25 (once again, the overestimation effect must be taken into 

account). The shape of the curves is in good agreement (less than 10% mismatch) with the result 

presented by Jaycox and Ketchen only for d�*�������
��d�*�������
����	
�W � d. The agreement 

increases significantly though (less than 3% error) for the blue and the red curve when W � 2d. This 
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implies that for large washers with large W/d values (which is usually the case for actual SQUID 

magnetometers), 3D-MLSI produces an accurate and reliable result. Unfortunately, probing the 

inductance of square washers with hole widths greater than 10 beyond a ratio W/d of 5 proved to be 

impossible for a resolution step of 5. When the number of mesh points exceeds an upper limit, the 

power of the processor becomes inadequate to run the program and 3D-MLSI is unable to perform 

its tasks. For example, in the case d�*�������
��D�*�+��������	�,-%����	������.������!�/�
�����

increase D was not possible with the 600 MHz processor. Nevertheless, it was deemed necessary to 

maintain a high resolution in order to reproduce the result of [10]. 

Note that the value of dL 0µ  decreases as d increases. This is due to the fact that while the 

resolution step is kept fixed (ah = 5), the relative resolution improves as the washer size (and thus 

d) increases, and we have seen that poorer resolution results in a greater overestimation of the 

inductance. 

The effective area is an intrinsic property of a loop, so we expect it to be constant (at least 

asymptotically) as the distance between the loop and the source increases. The effective area was 

considered in section 2.3.2, where it was shown that using a strip as a source at large distances (so 

that the magnetic field becomes uniform) it can be obtained from: 
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eff µ
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==Φ=    (2.21) 

 

In (2.21), r is the distance between washer and source and � the length of the strip that acts 

as a source. If the mutual inductance is then inversely proportional to the square of distance (at least 

for large values of r), the effective area will approach its limiting value. For verification, the mutual 

inductance between a square washer and a strip was investigated, varying the distance between the 

two. The square washer had parameters: D�*��������
��d�*� �����!�	��������
	�����
�������
��

�
�� ������	��!�	������
	����
���	
	������
��	�����"�)������
���������	�	�����	
����)	��������

The effective area was expected to be roughly 0.01mm2 from the formula dDAeff ≈  in [6]. The 

resolution step was 5. 

The assumptions on the mutual inductance and the effective area are confirmed by Figure 

4.6 and Figure 4.7. The effective area appears to be approaching a value roughly in the range 

0.00912÷0.00914mm2. 
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Figure 4.6: mutual inductance between washer and source as a function of r-2. The datapoints are well fitted by a 

straight line, indicating that M ∝  r-2. 
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Figure 4.7: effective area of the square washer as a function of distance from source. The curve seems to be 

approaching a limiting value of 0.00912÷0.00914mm2. 
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Once established that the effective area reaches its limiting value for distances r ��2mm, the 

data obtained from 3D-MLSI and equation (2.21) were compared with the result dDAeff ≈  from 

[6]. A number of square washers of different dimensions were simulated, using a strip of length 

equal to the outer dimension D� �
�� ������  ��� ��� �� �����	�� !�	� �����
�	� )	��		
� ��	� ����

conductors was 2mm. The effective area of the square washers found using 3D-MLSI and equation 

(2.21) is shown in Figure 4.8, as a function of dD. 
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Figure 4.8: effective area of square washer obtained via 3D-MLSI and equation (2.21) as a function of dD. 

 

 

The datapoints in Figure 4.8 show that the effective area is proportional to the quantity dD. 

The constant of proportionality, 0.9125, is of the order unity, as predicted by Ketchen et al [6]. 

It was then decided to study the behaviour of the square washer inductances when the 

penetration depth was varied. For that purpose, a washer with outer dimension D�*�����������	�

width d�*� �����
�������
	���t�*����������������	��������������
	������	��
������
��� ������	��

������ ������ �
�� ����� �� �	
	������
� �	���� �"� ������� �
� ��der to compute the mutual and self-

�
�����
�	�� !�	� �	
	������
� �	���� �"� ��	� �0���	� ����	�� ���� �����	�� )	��		
� �� �
��  �����

Although in reality �L ranges from a few tens to a few hundreds of nanometers, this choice was 

made to probe the response of 3D-MLSI to situations beyond the expected range of validity. The 

resolution step was once more taken to be 5. 
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Figure 4.9: self-inductance of the square washer as a function of the square of penetration depth. 

 

 

Like for the stripline of section 4.2, the inductance of the square washer has a square 

dependence on the penetration depth (as shown by the straight line fitting the points in Figure 4.9, 

which is a graph of the self-inductance against 2
Lλ ). This is hardly surprising if we consider the 

definition of the kinetic energy of a supercurrent [11], reproduced in equation (2.22). The slope of 

the fit in Figure 4.9 (30.61�����2) is the kinetic inductance per 2
Lλ  of the washer, while the y-

intercept (98.20pH) is the washer’s magnetic inductance. If we compare the value of 2
LkL λ  

extrapolated from the graph, with that of a stripline of identical dimensions calculated using 

equation (3.6), which in this case yields 41.89	 �����2, we see that there is a 40% discrepancy 

between the two. It follows that we cannot use the kinetic inductance per unit length of a stripline to 

approximate the kinetic inductance per unit length of a square washer loop. 

If we consider the mutual inductance between the washer and a source, the dependence on 

penetration depth shows quite a different pattern, as we can see from Figure 4.10 below: 
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Figure 4.10: mutual inductance between washer and source as a function of the square of penetration depth. 

 

 

The mutual inductance seems to increase parabolically at first (see Figure 4.11 below), but 

then it approaches a constant value of approximately 0.3pH. This peculiar feature might be 

explained as follows. The current distribution on the washer is typical of superconductors at small 

values of penetration depth, with screening currents flowing along the edges. As Lλ  increases, the 

zero-current zero-field region gets narrower as the screening currents are spread over a larger area. 

At some point, the screening currents meet and the current distribution becomes uniform, like for a 

normal conductor (for which the penetration depth can be considered to be infinite [3]). As a result 

(when the penetration depth becomes of the same order as half the width of the loop) there are no 

more changes to the current distribution and thus to the total energy of the system. 
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Figure 4.11: detail of the graph in Figure 4.10������
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The final investigation into the behaviour of square washer was the comparison of washers 

with slits and washers without. In reality, square washer pickup loops are slitted so that the SQUID 

can be placed in the slit [1]. Nevertheless, the contribution of the slit to the total inductance is for 

simplicity neglected (see e.g. [6]) and the parameters of the pickup loop are taken to be those 

discussed for the square washer without a slit. This assumption was tested using 3D-MLSI. A 

square washer (D = 40����d�*�������t�*��������
���L�*���� ���������������	������������������
��

with a number of slits of different widths connecting the hole to the external edge. The results are 

shown in Figure 4.12. 
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Figure 4.12: self-inductance of slitted square washer as a function of slit width. 

 

 

The graph shows that as the slit narrows, the self-inductance of the washer approaches a 

constant value of 53.75pH, which is 0.07% lower than the result for a washer of the same 

dimensions but without a slit (53.79pH). This proves that for narrow slits, the approximation 

adopted in most works in the literature is correct. 

In section 2.4, it was mentioned that the self-inductance of a square washer with a slit is 

generally approximated as the sum of the hole inductance and of the slit inductance [1]. This 

implies that the self-inductance of a square washer with a slit should be higher than that of a square 

washer of identical dimensions but no slit. The result from the 3D-MLSI simulations summarised in 

Figure 4.12 seems to disagree with this commonly accepted assumption, but we must consider that 

the software calculates the self-inductance of the terminal path, which is shorter in the presence of a 

slit than the path followed by a current circulating around a hole. This might explain why the self-

inductance is dropping as the slit width is increasing. 
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4.4 Kahlmann’s SQUID 

The final and most significant application of 3D-MLSI was the magnetometer layout 

considered in section 3.4 (which has been reproduced for reference in Figure 4.13 below). Four 

magnetometers were considered, of expected SQUID self-inductances 50pH, 100pH, 150pH and 

200pH. These values were first checked against 3D-MLSI calculations. The penetration depth was 

taken to be 0.23nm and the resolution step 5. Results show good agreement between the simulations 

and the values in [26], if the overestimation effect discussed in section 4.1 is taken into account (see 

Table 4.1 below). 

 

 

 

 

 

 

 

Figure 4.13: Kahlmann’s SQUID layout, with the pickup loop on the left and a blow-up of the SQUID on the right. 

 

 

Kahlmann et al 
[pH] 

3D-MLSI 
[pH] 

50 57 

100 106 

150 154 

200 203 

Table 4.1: comparison between the expected SQUID self-inductances and the values obtained by 3D-MLSI. 

 

Using the method described in section 3.4, the equivalent mutual inductances and the 

effective areas of the four magnetometer layouts were calculated as a function of the distance from 
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the source. The aim was to verify that those parameters satisfied the properties observed for simpler 

superconducting systems. 
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Figure 4.14: mutual inductance of the magnetometers as a function of distance from source. 

 

 

Figure 4.14 shows that the mutual inductance M of the magnetometers approaches zero as 

the distance from the source increases. From previous considerations, we expect it to drop as the 

square of the distance. This is confirmed by the lines fitting the data points in Figure 4.15. 
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Figure 4.15: graph showing the r-2 dependence of the mutual inductance. 
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As the mutual inductance exhibits the expected dependence on the distance from the source, 

it follows from the definition of effective area given in section 2.3.2 that Aeff should approach a 

constant limiting value. This result has been verified in Figure 4.16 below: 
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Figure 4.16: effective area as a function of distance from source. A limiting value is approached in all cases. 

 

 

The most important test for the reliability of 3D-MLSI and of the technique for extraction of 

equivalent inductances expounded in section 3.4 is the comparison between the effective areas 

calculated using 3D-MLSI and the experimental results by Kahlmann et al [26]. These results are 

summarised in Table 4.2 and plotted in Figure 4.17. In [26], the measured quantities were checked 

against the theoretical predictions from the formula discussed in section 2.3.2: 

 

Sp
p

S
eff AA

L

L
A +=      (2.20) 

 

where LS is the SQUID inductance, dLp 025.1 µ=  and dDAp =  the pickup loop inductance and 

effective area, and AS the SQUID effective area. AS is usually neglected because is very small [1]. 
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LSQUID Theoretical Experimental 3D-MLSI 

50 0.064 0.053 0.058 

100 0.127 0.123 0.124 

150 0.191 0.172 0.182 

200 0.255 0.231 0.236 

Table 4.2: comparison between the expected SQUID effective areas and the values obtained by 3D-MLSI (in mm2). 
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Figure 4.17: comparison between 3D-MLSI values, theoretical predictions and experimental results by Kahlmann et al. 

 

 

The agreement between the 3D-MLSI results and both the theoretical predictions and 

experimental data is satisfactory. Not only does the program give the right value of the SQUID self-

inductance, as previously shown in Table 4.1, but it can also produce an accurate estimate of the 

equivalent mutual inductance of the whole system and thus its effective area. This is evidence that 

the inductance matrix of 3D-MLSI is a reliable output and can be safely used to predict the 

parameters of real SQUID magnetometers. The fact that the 3D-MLSI values are approximately 

midway between the theoretical predictions and Kahlmann’s experimental data is a significant 

indication of the important role that computational methods can play in the design of efficient 

superconducting sensors. 
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Conclusions 

 

The aim of this project was to investigate the accuracy and flexibility of the finite element 

package 3D-MLSI for modelling superconducting thin film structures. Overall it was found that the 

computer program gives results that compare well with analytical formulae and experimental data. 

The accuracy of the 3D-MLSI calculations could be adjusted to obtained the desired uncertainty, 

showing that a trade-off between high resolution and high CPU time and memory usage can be 

easily attained. 

The validity and accuracy of 3D-MLSI have been tested extensively, using common 

superconducting systems of known parameters. The precision of the calculated inductances depends 

on the resolution step chosen for a particular simulation. The self-inductance of a stripline proved to 

be consistent with theoretical predictions of both the kinetic and the magnetic inductance, showing 

a square dependence on the penetration depth. 

The agreement between the self-inductance value for square washers found by Jaycox and 

Ketchen [10] and the 3D-MLSI calculations was significant for large washers with large loop-

width-to-hole-width ratio, while a predicted large discrepancy was observed otherwise. The 

effective area of a square washer calculated with 3D-MLSI was successfully compared to the value 

predicted by Ketchen et al [6]. The self-inductance of the washer exhibited the same dependence on 

the square of the penetration depth as the stripline, while the mutual inductance was observed to 

reach a constant value as the current distribution on the washer becomes uniform. 

The comparison between a square washer with a slit and a washer without a slit led to the 

conclusion that the self-inductance of the washer with a slit approaches the inductance value of the 

washer without a slit from below, as the slit width goes to zero. 

Finally, the SQUID magnetometer layout by Kahlmann et al [26] was considered. The 

parameters of both a single component (the SQUID loop) and of the whole system proved 

consistent with Kahlmann’s findings and with theoretical predictions. This result was particularly 

encouraging, as it proved the solid correlation between a numerical technique and experimental 

reality for a complex device of technological interest. 

In conclusion, this project was successful in showing that 3D-MLSI can be used to predict 

the inductances and effective areas of real magnetometers, with good accuracy and reliability. A 

promising field of application for the software is design optimisation, where a good a priori 

knowledge of the main system parameters and their dependence on geometry is a great advantage 

for the development and fabrication of efficient devices. It would also be of scientific interest to 
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perform simulations on systems where no analytical results exit, but for which experimental results 

are easy to obtain. A direction for future work that could lead to significant applications is the study 

of slotted SQUIDs [27],[28], which have been claimed to greatly enhance the effective area leaving 

the SQUID self-inductance unchanged. Because of its great practical interest and its dependence 

essentially on geometry, the slotted SQUID seems to suit 3D-MLSI characteristics perfectly. 
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