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Abstract

A detailed understanding of fundamental material properties can be obtained through

the study of atomic vibrations, performed experimentally with neutron scattering

techniques and coupled with the two powerful new computational methodologies I

have developed. The first approach involves phonon-based simulations of the pair

distribution function – a histogram of localised atomic positions generated experi-

mentally from total scattering data. This is used to reveal ordering behaviour, to

validate interatomic models and localised structure, and to give insights into how

far dynamic behaviour can be studied using total scattering techniques. Most im-

portantly, the long-standing controversy over dynamic disorder in β-cristobalite is

resolved using this technique.

Inelastic neutron spectroscopy (INS) allows direct study of vibrational modes through

their interaction with the neutron beam, and is the experimental basis for the second

strand of the new methodology. I have developed new simulation and refinement tools

based on the next generation of spectrometers currently being commissioned at the

ISIS pulsed neutron source. This allows a detailed powder spectroscopy study of

cristobalite and vitreous silica demonstrating that the Bose peak and so-called ‘fast

sound’ features can be derived from standard lattice dynamics in both the crystal

and the amorphous counterpart, and allowing discussion of their origins. Given the

controversy in the literature, this is a key result.

The new methodology also encompasses refinement of interatomic models against

powder INS data, with aluminium providing a successful test-case. A more com-

plex example is seen in calcite, with experimental data collected during the com-

missioning of the new MERLIN spectrometer. Simulated one-phonon coherent INS

spectra for the single crystal and powder (the latter including approximations to

multi-phonon and multiple scatter) are fully convolved with experimental resolution

functions. These are used in the analysis of the experimental data, yielding previ-

ously unpublished dispersion curves and soft mode information, as well as allowing

the effectiveness of powder refinement of more complex materials to be assessed.

Finally, I present further applications with technologically important materials – re-

laxor ferroelectrics and high temperature pnictide superconductors. The conclusions

draw together the different strands of the work, discussing the importance of these

new advances together with future developments and scientific applications.
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Chapter 1

Introduction and General Theory

The importance of the dynamic properties of materials is introduced, together with the general

formalism of lattice dynamics and the computational approaches used to calculate the atomic

vibrations from interatomic models. Neutron scattering provides an excellent experimental probe

of atomic vibrations, so a formalism and description of experimental technique is presented. In

the light of this, the aims of the current work can be given.

1.1 General introduction

1.1.1 Using neutrons to probe dynamics

Understanding the properties of many mineralogical systems as well as complex new classes

of technologically important materials makes it necessary to consider more than just atomic

arrangements. The study of atomic scale motion (quantised as phonon modes) is essential

to predict which phases will be stable and where the transitions occur, as well as explaining

phenomena such as thermal expansion and thermal conductivity. Therefore, this thesis combines

computer modelling of atomic displacements with experimental neutron scattering techniques

to probe local structure and dynamics for a wide range of materials.

The study of dynamics through inelastic scattering techniques is referred to as spectroscopy.

Most familiar are the Raman and IR light scattering techniques, which are widely available,

highly sensitive, cheap to use, and give accurate finger-prints of vibrational modes. However,

they are limited to studying vibrations at a specific point in reciprocal space – the Brillouin zone

centre – and have restrictive selection rules as to which modes are ‘active’ or visible. Spectroscopy

using beams of x-rays or neutrons allows the study of modes across the entire Brillouin zone.

But these are no longer lab-based techniques. Inelastic X-ray or Neutron Spectroscopy (IXS

or INS), requires the greater flux and specialist machines of a centralised facility such as the

European Synchrotron Radiation Facility (ESRF) providing IXS in France (URL - A), or the
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1.1 General introduction

ISIS neutron spallation source in Oxfordshire (URL - B). The two techniques are complementary

due to the different scattering mechanisms: X-rays are scattered by the atom’s electron cloud

whereas neutrons are scattered by the atomic nuclei. Ongoing development of more sophisticated

spectrometers continues to push the experimental boundaries: it is the development of new

neutron spectrometers at ISIS that has provided the impetus for the work contained in this

thesis.

Neutrons are highly suited to studying atomic scale structure and dynamics for four main

reasons: thermal neutrons have a de Broglie wavelength that is comparable to interatomic dis-

tances and an energy that is comparable to phonon modes; they interact strongly with atomic

nuclei via short range nuclear forces so there is no systematic dependence on scattering ampli-

tude across the periodic table; neutron scattering only weakly perturbs the scattering system,

preventing complications due to surfaces, charges or core electron states; and neutrons are highly

penetrating, allowing the non-destructive investigation of the bulk of materials. Moreover, neu-

tron scattering intensities provide crucial information (and can be measured in absolute units,

unlike standard IR and Raman spectroscopy), allowing detailed comparisons to be made between

theory (computer simulations) and experimental results. As neutrons have a magnetic moment

they also interact with unpaired electrons in magnetic atoms via electromagnetic dipole-dipole

interactions making them an ideal probe of magnetic properties.

My work has focused on using and developing interatomic models and computer simulations

to aid interpretation of the conventional inelastic neutron spectroscopy (INS) approach to the

study of dynamics, and also looking at the dynamical information contained in neutron total

scattering data. Of the two, total scattering experiments are relatively inexpensive, time effi-

cient and versatile. As with standard laboratory diffraction techniques, a beam of particles – in

this case neutrons – are diffracted by the sample giving information on the long range average

structure (Bragg scattering). Total scattering also takes account of the diffuse component, which

arises due to instantaneous fluctuations in the atomic density giving information on localised

disorder. Total scattering data can be analysed through the Pair Distribution Function (PDF),

obtained by Fourier transform. The PDF shows the local and mid-range structure and demon-

strates the effect of atomic scale motion. I have developed new analytical tools based on the

simulation of the PDF using phonon information from an interatomic model, which are pow-

erfully used to resolve the on-going controversy over the dynamically disordered β-cristobalite

structure. This technique also allows ‘computational experiments’ with the structure, for exam-

ple, visualising the effects of different cation ordering schemes.

Recent developments have allowed dynamical information to be successfully extracted from

the total scattering data (Goodwin et al., 2005, 2006) giving ‘phonons-from-diffraction’ using the
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information embodied in the Pair Distribution Function (PDF). However, the more conventional

approach to the study of phonons is through inelastic spectroscopy. As in diffraction experiments

(which conventionally focus on the elastic scattering), the change in direction of the particle beam

arises from the position of atoms within the sample. The main emphasis of inelastic experiments

is the study of the change in energy, which gives information concerning the atomic motion.

Historically, triple axis spectrometers (TAS) at reactor sources have dominated INS, allowing

point-by-point exploration of reciprocal space (Q-space). Spallation sources will soon exceed the

effective flux of reactor sources, and permit spatially simultaneous data collection, so there is

currently great interest in new time-of-flight direct geometry spectrometers such as those being

developed at ISIS, providing the incentive for the new analytical tools developed for this thesis.

INS with time-of-flight spectrometers is nothing new, but the recent (2008) commissioning

of MERLIN (Bewley, 2002; Bewley et al., 2009; Dove et al., 2002a), together with the current

installation1 and development of LET (URL - C), mark the start of a new paradigm. These

machines have rapid data collection rates (over an order of magnitude faster than pre-existing

spectrometers), simultaneous data collection over large solid angles, highly pixelated position-

sensitive detectors (crucial for accurate single crystal work), and the capability to use advanced

sample environments such as pressure cells, cryostats, and large magnets. This exceeds previous

possibilities for powder work and is making single crystal work sufficiently rapid, over a suitable

range of environments, to become routine. By revealing phonons from many Brillouin zones

simultaneously, it is now possible to ‘see the unexpected’, rather than just looking for features

theoretically predicted. The wealth of phonon information contained in these results needs new

analytical tools such as the suite of software I have developed.

1.1.2 Interatomic models

Science today is no longer clearly divided into ‘theory’ and ‘experiment’, but often exists in

the cross-over between the two disciplines. Computer modelling has enabled mathematically

complex theories to be implemented to aid the design and interpretation of experimental data,

feeding back into more accurate theoretical models.

In seeking to understand atomic vibrations, it is helpful to build interatomic models to

study the different interactions within a sample. Phenomenologically, this can most simply be

visualised as springs linking the different atoms, with different spring constants for different

species and between nearest- and next-nearest-neighbours. This is the basis for force constant

models.
1At the time of submission, LET has only a limited range of detector banks installed, but has recently seen

its first neutrons.
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The actual interactions are carefully balanced interatomic potential energies, for which many

models have been developed (see standard texts such as Dove, 1993). These are related to the

phenomenological force constants by taking the first derivative.

Using standard lattice dynamical calculations it is possible to extract dynamical information

about the exact nature of each atomic vibration from these interatomic models. This thesis

demonstrates how I am able to use this to simulate experimental data and track phonon con-

tributions, explaining the origins of key features seen through neutron total scattering and INS.

This ranges from PDF analysis, using the phonon model to give information on the spread

of interatomic distances to help elucidate local structure and dynamics, through powder and

single crystal INS simulations tracking contributions of specific modes. With the addition of

experimental resolution functions, the INS simulations can be directly compared to experiment.

1.1.3 Model validation and refinement

The key challenge in this field today is the development of accurate interatomic models. I am

now able to provide comparison of simulations with powder INS spectra to validate of a model.

The full single crystal INS spectrum provides a highly rigourous test as this encapsulates all the

dynamical information. What is also needed is a means of refining the underlying model against

experimental results, making full use of the vast array of detectors on the new generation of

spectrometers. Powder samples are often readily available; indeed there are materials for which

there are no suitable single crystals. Powder diffraction is now routinely used for structural

refinement, so I pose the question, ‘How far can powder INS be used for refinement of interatomic

models?’.

1.2 Lattice dynamics

In order to understand the relationship between neutron scattering and atomic scale motion, a

formal description of the classical mechanics is required. The Newtonian physics that govern this

movement is well described in a number of texts (e.g. Willis & Pryor, 1975), so this introduction

will simply give an overview, showing the key equations with particular emphasis on those needed

for spectroscopy and encoded in the new analysis software.

1.2.1 Modes of vibration

Atoms within a solid are constantly in motion. These vibrations are travelling waves comprised

of correlated displacements of atoms from their equilibrium positions. Each mode is described
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1.2 Lattice dynamics

by an angular frequency ω and wavevector k, giving both the direction and periodicity of the

displacements.

Crystalline structures can be reduced to a basic unit cell which contains the set of atoms

that allows the entire crystal to be reproduced by symmetry. In this work, I define the position

of the jth atom in the lth unit cell to have average position rjl with respect to a given origin

such that:

rjl = Rj + l (1.1)

where Rj is the position of atom j within the cell and l is the position of the cell from the given

origin.

Each of the Z atoms in every unit cell posses three degrees of freedom, giving 3Z independent

modes ν at each wavevector (with index k). Within Born-von-Kármán theory (stipulating

periodic boundary conditions), the displacement of a single atom can be seen as the sum of each

component vibrational mode ν:

ujl(t) =
∑
k,ν

Aj(k, ν) exp (i [k · rjl − ωj (k, ν) t]) (1.2)

where k is the wave vector of the travelling wave ν (k = 2π/λ), and ωj(k, ν) is the angular

frequency as a function of k. The amplitude vector, Aj(k, ν), is proportional to the mass

weighted polarisation vector, ej(k, ν):

Aj(k, ν) =
A(k, ν)√
Nmj

ej(k, ν) (1.3)

with N as the number of unit cells, mj the atomic mass of atom j. The normalised mode

amplitude A(k, ν) is now independent of atom type. The polarisation vectors are orthonormal

to each other, and each gives the direction of atomic motion for the particular atom in the

cell. Thus knowledge of the atomic positions, mode frequency and polarisation vector gives the

crucial information on atomic motion.

It is common practice to express the displacement in terms of the normal mode coordinate1,

Q(k, ν, t), which subsumes both the amplitude and time-dependence through:

Q(k, ν, t) = A(k, ν) exp [−iωj(k, ν)t] (1.4)

1The notation for the normal mode coordinate, Q(k, ν, t), should not be confused with Q, which I will use to
denote the momentum transfer for a single crystal, or Q (= |Q|) for a powdered sample.
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to give the normal mode equation:

ujl =
1√
Nmj

∑
k,ν

ej(k, ν) exp (ik · rjl)Q(k, ν, t) (1.5)

This is the key equation for describing atomic motion, and the basis for interpreting the dynam-

ical information contained in neutron scattering data.

Before making use of the equations governing these normal modes, it should be noted that

the literature is inconsistent in the phasing of the polarisation, often without explicit definitions.

There are two commonly used settings depending on whether the atomic position in the unit

cell is included in the equations as a separate phase factor, or included in the eigenvector. The

first, written as e, is that introduced above and found in standard texts such as Willis & Pryor

(1975) and Dove (1993). Lovesey (1984) uses the alternative setting, expressing it as σ, but

I use esig here to avoid confusion with PDF peak widths. The default setting1 in the lattice

dynamical software used in this thesis is also esig.

In the alternative setting the displacement is expressed in terms of the average position of

the cell, l, not the average absolute position of the atom, rjl, as in Eqn. 1.5, giving:

ujl =
1√
Nmj

∑
k,ν

esig
j(ν,k) exp (ik · l)Q(k, ν, t) (1.6)

This is because the position of the atom within the cell is here subsumed into the polarisation

vector. The settings are related by this phase factor:

esig
j(k, ν) = ej(k, ν) · exp [ik ·Rj ] (1.7)

1.2.2 Population of normal modes: the Bose-Einstein distribution

The quantisation of normal modes into phonons arises from a quantum dynamical exploration

analogous to the quantisation of light into photons. This is described in detail in many solid-

state texts (e.g. Lovesey, 1984), but can be combined with the classical results already introduced

here. Importantly, the energy of each normal mode is limited to:

E(k, ν) = (n(ω) +
1
2

) ~ωj(k, ν) (1.8)

1I convert to e for the inelastic neutron scattering (SQW) code where the phasing is crucial. The phasing
cancels out in calculations of the PDF (see Chapter 2) so the eigenvectors remain in the esig format to optimise
the code.
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Each n relates to a single phonon mode. Averaging over time, the occupation of states, n(ω), is

a temperature dependent property given by the Bose-Einstein distribution:

n(ω) =
(

exp
[

~ωj(k, ν)
kBT

]
− 1
)−1

(1.9)

where kBT > ~ω, this reduces to n(ω) ≈ kBT (~ωj(k, ν))−1. For many situations it is possible to

work within the ‘high temperature approximation’ where these equations yield the same result

for the time averaged energy of each mode as the classical equipartition result: the average

energy of each degree of motion is E = kBT .

1.2.3 Interatomic forces and the dynamical matrix

Within a crystal, the behaviour of each atom is dependent upon those surrounding it. This is

most simply visualised by forces acting between atoms as if they were connected by springs.

There is a linear relationship between force and displacement, with the force on atom j due to

atom j′ described through Newton’s equation of motion for atom j, with mass mj , summing

over all atoms including j = j′:

mjüjl(t) =
∑
j′l′

Φ
(
j j′

l l′

)
uj′l′(t) (1.10)

Φ is the force-constant matrix, or self-matrix. A force constant model is an interatomic model

describing this set of interactions (or just the longitudinal and transverse components) which

can be used in the calculation of dynamic properties. However, such a model is purely phe-

nomenological, giving no explanation of the physical origin of the interaction.

Explaining the underlying physics requires a description of the interatomic potential energy.

There are many different models, and the appropriate potential model for each group of atoms

is used depending on the type of material, structure, bonding and atomic species.

Φ is derived from the potential energy, V , between pairs of axes α and α′, where α = 1, 2, 3:

Φ
(
j j′

l l′

)
=
(

d2V

duα,jlduα′,j′l′

)
(1.11)

which yields the full equation:

mjω
2
j (k, ν)ûj(k, ν) =

∑
j′l′

Φ
(
j j′

0 l′

)
· ûj′(k, ν) exp[ik · (rj′l′ − rj0)] (1.12)

By expressing the displacements of each atom j along each of the Cartesian axes and col-

lecting the relevant terms, a 3Z mass weighted column vector is obtained for each mode and
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wavenumber which is the polarisation vector of Eqn. 1.3:

e(k, ν) =



√
m1ûx,1(k, ν)√
m1ûy,1(k, ν)√
m1ûz,1(k, ν)√
m2ûx,2(k, ν)

·
·
·√

mZ ûz,Z(k, ν)


(1.13)

Expressing Eqn. 1.12 in this form gives the matrix equation that introduces D(k), the 3Z × 3Z

Hermitian dynamical matrix :

ω2(k, ν) e(k, ν) = D(k) · e(k, ν) (1.14)

defining the dynamical matrix as:

Dαj,α′j′(k) =
1

√
mjmj′

∑
l′

Φαα′

(
j j′

0 l′

)
exp[ik · (rj′l′ − rj0)] (1.15)

This equation has 3Z solutions yielding the dynamical information about each of the 3Z normal

modes through the diagonalisation of the dynamical matrix. The eigenvalues are the squares

of the frequencies, and the eigenvectors give the (possibly complex1) orthogonal polarisation

vectors. As it is a Hermitian matrix, the eigenvalues are always real. The frequencies can be

negative, which implies instability.

Thus it has been shown that any model that can describe the interatomic forces (either

directly or as the derivatives of a potential model) can be used to construct a dynamical matrix

for any wavevector. This, in turn, gives the key dynamical information for each individual

phonon mode in the form of the frequency and polarisation vector (eigenvector). This is the

crucial information that we seek to extract from neutron scattering experiments.

1.2.4 Dispersion curves

Given that a crystal with Z atoms in the unit cell and periodic boundary conditions will have 3Z

phonon modes for each k-point, it is helpful to be able to describe the different modes in more

detail. The three lowest energy modes are known as acoustic modes, so called because dispersion

starts with the characteristic ω = c k relationship seen in sound waves. These tend to zero

at Γ (located at the Brillouin zone centre). At this point they represent pure translations of the

crystal. Where there are more than two atoms in the unit cell, optic modes are also present,
1Complex eigenvectors allow the relative phasing of displacements to be represented.
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Figure 1.1: Dispersion curves for aluminium, calculated in GULP from the Lennard-Jones model
produced in Section 4.5.2.3, between X = [0.5 0 0.5],Γ = [0 0 0], and L = [0.5 0.5 0.5].

so called because in ionic crystals the long wavelength modes can interact with electromagnetic

radiation, giving rise to characteristic optical properties. These modes always have a non-zero

minimum frequency of vibration.

A plot of frequency of these vibrational modes along k is known as the phonon dispersion

curve and has the periodicity of the reciprocal lattice. These are usually produced along the high

symmetry directions, allowing phonon behaviour of a crystal to be summarised in one diagram.

This is the information that has traditionally been extracted from IXS and INS experiments,

although it ignores the effects of the eigenvectors and the different intensities in different Brillouin

zones.

Branches in the phonon dispersion curves are characterised as either longitudinal or trans-

verse, depending on the direction of the polarisation vector with regard to the direction of

propagation, k. The longitudinal branches are polarised parallel to k at the zone centre. Trans-

verse branches are polarised perpendicular to the direction of propagation. Fig. 1.1 shows the

dispersion curves for the simple aluminium Fm3̄m structure between X = [0.5 0 0.5], Γ = [0 0 0],

and L = [0.5 0.5 0.5] derived from the empirical potential model used in Chapter 4.

1.2.5 Formalism for neutron spectroscopy: defining the scattering conditions

Neutron scattering provides a direct probe of lattice dynamics through the interaction of a beam

of neutrons with the atomic nuclei. Experimentally, the incoming neutron beam is characterised

by having an incident energy E and wave-vector k. It will be scattered by the sample, whereupon

it has a final energy E′ and wave-vector k′.
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Neutron scattering is expressed in terms of the change in momentum, Q, known as the scat-

tering vector :

Q = k− k′ (1.16)

and energy transfer:

~ωj(k, ν) = E − E′ (1.17)

Neutrons are scattered by the sample in two distinct processes: elastic scattering (diffrac-

tion), where there is no change in the energy of the neutron beam, and inelastic scattering,

where the beam interacts with the system in two ways:

• phonon creation (neutron energy loss): change is described as positive,

• phonon annihilation (neutron energy gain): change is described as negative.

The energy of thermal neutrons, such as those used in neutron scattering experiments, is

comparable to that of atomic vibrations, and so we can observe appreciable changes in the

neutron energy following an inelastic scattering event.

The law for the conservation of energy, showing that the energy is conserved regardless of

whether a phonon is created (+) or destroyed (-), and holding for both coherent and incoherent

scattering, can be expressed using the de Broglie wavelength for the neutrons:

λ =
~
mjν

(1.18)

as:

~ωj(k, ν) =
1
2
mjv

2 − 1
2
mjv

′2 =
~2

2mj

(
k2 − k′2

)
(1.19)

The other condition for inelastic neutron scattering is the conservation of crystal momentum.

This is defined in terms of the reciprocal scattering vector, Q, which is related to the change in

the wavevector due to the scattering event as described in Eqn. 1.16.

Conservation of crystal momentum holds for coherent scattering, and means that the one-

phonon intensity is only permitted when the scattering vector is:

Q = H + k (1.20)

defining reciprocal lattice vector, H:

H ≡ h1b1 + h2b2 + h3b3 (1.21)

and k as the wave vector of the lattice mode of vibration.
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While defining the scattering vector, it is helpful to introduce the convention which I adopt

throughout this thesis of using Q in the context of the scattering function (defined below) for

single crystal experiments, where each Q is well defined, and Q (= |Q|) for use with powder

experiments1, where the orientational average makes the component Q vectors inaccessible.

1.2.6 Thermal motion

Before considering the details of neutron scattering, it is important to understand the displace-

ment of atoms due to thermal effects, so the matrix equations used in the implementation of the

neutron scattering code are given here in full.

The most useful measure of thermal motion is the mean square displacement, which in a full

model must be assumed to be anisotropic. It is found from the time averaged vector dot product

(normally expressed with angle brackets) of momentum transfer and instantaneous displacement.

Using matrix notation, this is:

〈
(Q · u)2

〉
= QT

〈
uuT

〉
Q (1.22)

The matrix
〈
uuT

〉
is known as the mean square displacement matrix, B. There is such a matrix

for every atom j (j subscripts are assumed to improve clarity):

B =
〈
uuT

〉
=

 〈
u2

1

〉
〈u1u2〉 〈u1u3〉

〈u1u2〉
〈
u2

2

〉
〈u2u3〉

〈u1u3〉 〈u2u3〉
〈
u2

3

〉
 (1.23)

As the phases of the modes are independent, when substituting uj from Eqn. 1.2, the cross

terms in the average cancel, giving:

Bj =
~

Nmj

∑
νk

1
ωj(k, ν)

(
1
2

+ (exp
(

~ωj(k, ν)
kBT

)
− 1)−1

)
×
[
ej(k, ν)(e∗j (k, ν))T

]
(1.24)

This mean squared displacement matrix can be calculated for each atom in the unit cell,

allowing the accurate calculation of the harmonic atomic temperature factor for use in the

phonon structure factor introduced below. The atomic temperature factor can be expressed, for

any atom j, as:

Tj(Q) = exp(−Wj)

= exp
(
−1

2
〈
(Q · uj)2

〉)
Tj(Q) = exp

(
−1

2
QTBjQ

)
(1.25)

1This should not be confused with the normal mode coordinate, Q(k, ν, t).
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1.3 Interatomic computational models

Thus the full anisotropic temperature factor can be extracted from a lattice dynamical model

and used in the calculation of the neutron scattering intensity.

1.3 Interatomic computational models

The lattice dynamical formalism introduced in this chapter enables atomic models to be used to

produce phonon information, namely the full set of dispersion curves together with the eigen-

vectors of each vibration. Such calculations are computationally demanding, involving the di-

agonalisation of many dynamical matrixes. There exist a number of academic software tools

designed to perform these calculations: I make use of GULP, the General Utility Lattice Pro-

gram (Gale & Rohl, 2003)1.

The new analysis techniques I have developed are based on new modules for this code, taking

full advantage of the power of GULP to produce phonon information from an interatomic model

with the calculations optimised according to crystal symmetry. Conventionally, the energy is

calculated from a Coulomb matrix (refineable atomic charges) and a set of potential models:

the dynamical matrix is found through (local) energy minimisation with the hessian calculated

at the stationary points.

To assist with the current work, the main author of this code, Julian Gale, has added

the ability to enter a force constant model directly, rather than taking the derivative of the

energy. Whereas a full interatomic potential model is ‘optimised’2 by the code to ensure that

the system is at an energy minimum, this is not appropriate for force constants3. However,

force constants should be tuned against experimental ‘observables’ for a given temperature

and pressure. For fitting phonon models against the large experimental datasets, this simpler

approach has many advantages as the geometry remains constant and the relationship between

phonon modes and force constants is less complex. More details on the interatomic models

and the software development necessary to generate the pair distribution functions and inelastic

scattering simulations based on these phonon calculations are given in the subsequent chapters.

The dynamical matrix returned by GULP is the mass-weighted Cartesian second derivative

of the energy, which can be diagonalised to extract the vibrational information as described

above. GULP also allows the use of a ‘shell model’ where the dynamical matrix is modified

to take better account of the polarisability of atoms using ‘mass-less shells’ representing the

outer electron cloud, coupled to a ‘massive core’ through a spring constant. The charge is split
1GULP is written in FORTRAN 95, and currently available for Mac OS X, Linux, and Windows. The source

code (on academic licence for those with university email addresses) is available from URL - D.
2This is a process of geometry optimisation using the NR or BFGS minimiser as described in the GULP

manual.
3I make extensive use of force constant models for phonon calculations, but the energy and gradient output

from GULP should be ignored as they are likely to be inconsistent.
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1.3 Interatomic computational models

between the core and shell, and can be refined. Diagonalisation is performed using the standard

EISPACK (URL - E) diagonaliser, and the resulting eigenvalues are the square of the vibrational

frequencies. In a stable system, these should always be positive: the standard way of expressing

unstable frequencies is to denote them as negative. The new GULP modules still function with

unstable frequencies but issue warnings.

It should be noted that at the Γ point the standard evaluation of the dynamical matrix

fails to describe the degeneracy of transverse and longitudinal optic modes for charged particles

because it does not account for the electric field these vibrations produce. The precise splitting

is governed by the direction of approach, and recent versions of GULP make a non-analytical

correction to the dynamical matrix to account for this. The new modules avoid evaluation of

the dynamical matrix at the Γ point where possible.

The main advantage of using GULP has been that many pre-existing empirical and ab initio

models can be easily implemented to give the necessary phonon information to produce simula-

tions that are directly comparable to the key experimental probes of atomic motion described

in the next section. GULP also allows these models to be refined against experimental ‘observ-

ables’ such as vibrational frequencies, elastic and dielectric constants. This was important in the

initial development of the calcite force constant model in Chapter 6. The main challenge of this

thesis, however, was to refine interatomic models against more detailed phonon information to

accurately reproduce the eigenvectors as well as frequencies. To do this, I have linked GULP to

another least squared refinement package (TOBYFIT, designed for simulation and refinement

of magnetic neutron scattering experiments1).

The development of the new simulation modules for GULP has provided the central core to

the new techniques of experiment design and data analysis described in this thesis. Together

with the commissioning of the next generation of spectrometers, this is providing new ways to

look at the dynamical properties of materials.

1.3.1 Computing resources

I have made extensive use of the computing resources both at ISIS and in Cambridge for perform-

ing simulations and manipulating the resulting datasets. All simulations have been performed

on Linux machines. Within Cambridge, I use the CamGrid2: a distributed computing resource

based on the Condor middleware which makes use of dedicated machines federated from across

the university, together with ‘spare’ computing power on desktops. Computing requirements are

matched against available machines, and ‘jobs’ run remotely. This gives access to high memory
1Source code and documentation for the latest version are available from URL - F.
2Complete documentation is provided at URL - G.
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1.4 Neutron scattering

machines where necessary, as well as allowing for (manual) parallelisation of my simulations,

splitting components over many machines.

The system requirements – both filespace, processor power and memory – for manipulating

the four-dimensional single crystal MERLIN experimental and simulated datasets were so large

that all such analysis was performed on a dedicated Linux machine for MERLIN at ISIS.

1.4 Neutron scattering

The derivation of scattering theory is well known (Dove, 2002; Lovesey, 1984; Squires, 1978),

so it is sufficient here to simply state the key results in order to define the terminology used in

this work and demonstrate the link between the different types of neutron scattering together

with their relationship to the scattering function, S(Q, ω). It is worth noting that ‘energy’ and

‘frequency’ are often used interchangeably to refer to the characteristic vibration of a certain

mode (as E = ±~ω, with the sign depending on phonon creation or annihilation): the formalism

contains ω but the experimental results from machines such as MERLIN are expressed in the

energy units of meV.

1.4.1 Experimental geometry

In a neutron spectroscopy experiment, a well characterised neutron beam passes through a

sample before colliding with detectors. In the new generation of instruments like MERLIN,

these banks of detectors cover a huge solid angle around the sample. The formalism that

follows, however, is equally applicable to triple axis spectrometers, where a single detector is

moved through the scattering plane to seek out phonon modes, or to diffractometers, which

collect data at the elastic line.

The nomenclature varies within the literature, and the way the number of neutrons detected

are quantified can be defined in several different ways. For the purpose of this work, we need

only consider the number of neutrons with initial energy E scattered per second in a particular

direction (θ, φ) (into the small solid angle dΩ subtended by the detector and the sample) with

post-scatter energy between E′ and E′+dE′ (see Fig. 1.2 for the experimental geometry). Such

a measurement is known as the partial differential cross section (Squires, 1978, and this work)

or the double differential cross section (Lovesey, 1984) and defined here as:

d2σ

dΩ dE′
=

nn
Φ dΩ dE′

(1.26)

where nn is the number of neutrons scattered per second into dΩθ,φ with final energy between E

and E + dE′, and Φ is the flux of incident neutrons. The partial differential cross-section has
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Figure 1.2: The experimental geometry for scattering of beam of thermal neutrons with incident
energy E, detected at a distance of r and angle θ, φ. The incident neutrons have wavevector k,
and a final scattered wavevector of k′. After Squires (1978).

dimensions of area/energy. It is related to the theoretical response function S(Q, ω), which is

variously defined in different texts to include different constant factors. This function is known

as the dynamic structure factor (Lovesey, 1984), scattering factor (Dove, 2002), or scattering

function (Dove, 1993, and this work) and is always proportional to the partial differential cross-

section. I define the relationship here as:

d2σ

dΩ dE′
=
k′

k
S(Q, ω) (1.27)

where k is the incident wavevector and k′ the final wavevector. This factor is removed during

the data normalisation process (the conversion from raw counts of neutrons to the scattering

function). The experimental data collected on spectrometers such as MERLIN are expressed as

this scattering function in units of mbarn/meV, following normalisation.

1.4.2 The scattering function

The scattering function is proportional to the experimentally measured partial differential cross

section (Eqn. 1.26). It is defined as:

S(Q, ω) =
∫
F (Q, t) exp(−iωt)dt (1.28)

F (Q, t) is the intermediate scattering function which is dependent on the density operator

ρ(Q, t): the Fourier transform of the instantaneous nuclear density weighted by the scatter-
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1.4 Neutron scattering

ing length, bj .

F (Q, t) = 〈ρ(Q, t)ρ(−Q, 0)〉 (1.29)

ρ(Q, t) =
∑
j

bj exp(iQ · rj(t)) (1.30)

Thus the full equation for the scattering function, applicable to diffraction as well as spec-

troscopy, is:

S(Q, ω) =
∑
ı,j

(
bıbj exp(iQ · [rı − rj ])×

∫
〈exp(iQ · [uı(t)− uj(0)])〉 exp(−iωt)dt

)
(1.31)

1.4.3 Coherent and incoherent spectroscopy

Neutrons are scattered from the atomic nuclei, and the relative amplitude of scattering from

different atoms is weighted by the scattering length, b, (equivalent to the x-ray form factor, f).

For neutrons, this is independent of wavelength, depending on nuclear spin state as well as the

nuclear isotope number. Many nuclei have no spin, or weak spin effects, or else the relative

abundance is such that we can justifiably assume a constant scattering length for all atoms of

that element. However when there is considerable variation between the scattering lengths of

different isotopes or spin states, two different types of scattering length can be distinguished.

The classic example (Dove, 2002) is for 1H, where the spin dependence of the proton-neutron

interaction means that there are four possible scattering lengths. Three are parallel, giving spin

totals of +1, 0 and -1. The fourth has anti-parallel spins, and a total spin of 0.

↑↑ b = 10.7 fm
↑↓ b = -47.7 fm

In order to take account of this averaging, the intermediate scattering function should be con-

sidered in two parts:

F (Q, t) = Fcoh(Q, t) + Finc(Q, t) (1.32)

The coherent scattering function uses the average scattering length, and so pertains to the

correlated processes – elastic Bragg scattering and the coherent phonon scattering that elucidate

the phonon dispersion curves. This can be expanded as:

Fcoh(Q, t) =
1
Z

∫ ∑
ı,j

b̄ıb̄j 〈ρı(Q, t)ρj(−Q, 0)〉 (1.33)

where Z is the number of atoms, with interactions between atoms ı and j.
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1.4 Neutron scattering

The incoherent term is similarly defined as:

Finc(Q, t) =
1
Z

∑
ı,j

bıbj − b̄ıb̄j 〈ρı(Q, t)ρj(−Q, 0)〉 (1.34)

However, there is no correlation between the incoherent scattering length and a particular

atomic site, leading to the result that:

bıbj = b̄ıb̄j for ı 6= j (1.35)

Thus these terms then subtract out of Eqn. 1.34 leaving the ı = j terms.

The coherent scattering depends on the time-dependent correlation in the position of the

same type and different types of atom, giving interference effects. The incoherent scattering,

however, depends only on the position of the same atom at different times, so does not give

interference effects.

It is also useful at this stage to relate the scattering length to the cross section:

σinc = 4π
[
b2 − (b̄)2

]
(1.36)

σcoh = 4π(b̄)2 (1.37)

1.4.4 Inelastic neutron spectroscopy (INS)

By expanding the coherent term as instantaneous atomic displacements from the mean position,

it is possible to extract information about phonon dispersion curves and other dynamic processes.

Consider an atom j, with position rj(t). If rj is the average position, and uj(t) the displace-

ment such that rj(t) = rj + uj(t). The coherent intermediate scattering function is:

Fcoh (Q, t) =
∑
ı,j

b̄ıb̄j exp (iQ · (rı − rj)) 〈exp (iQ · [uı(t)− uj(0)])〉 (1.38)

The time correlation function is the last term in this equation, and contains the dynamical

information. Assuming the atoms move with harmonic motion, this (time averaged) term can

be rearranged as shown (a rigourous proof of this can be seen in Ziman (1979)):

〈exp (iQ · [uı(t)− uj(0)])〉 = exp
(
−1

2

〈
[Q · (uı(t)− uj(0))]2

〉)
= exp

(
−1

2

〈
[Q · uı(t)]2

〉
− 1

2

〈
[Q · uj(0)]2

〉
+ 〈[Q · uı(t)] [Q · uj(0)]〉

)
(1.39)

The first two terms in the final expression of Eqn. 1.39 correspond to normal Debye-Waller

temperatures factors (see Section 1.2.6).
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1.4 Neutron scattering

The third term can be expanded as a power series:

exp (〈[Q · uı(t)] [Q · uj(0)]〉) =
∞∑
m=0

1
m!
〈[Q · uı(t)] [Q · uj(0)]〉m (1.40)

Substituting this back into the scattering equation gives:

Scoh
m (Q, ω) =

1
m!

∑
ı,j

b̄ıb̄j exp (iQ · (rı − rj)) exp (−Wı(Q)−Wj(Q))

×
∫
〈[Q · uı(t)] [Q · uj(0)]〉m exp(−iωt)dt (1.41)

The first term in the series, m = 0, corresponds to elastic scattering (Bragg), as used in

diffraction experiments. The second term, m = 1, corresponds to single phonon scattering.

Higher terms refer to multi-phonon scattering.

Taking m = 1, substituting in the equations for the instantaneous displacement (Eqn. 1.2),

and ensuring that the sum runs over all reciprocal lattice vectors H, and all atomic modes (using

the ν subscript to indicate all j,k, ν), the one-phonon coherent dynamical scattering function

can be shown to be:

Scoh
1 (Q, ω) =

∑
ı,j

b̄ıb̄j exp (iQ · (rı − rj)) exp (−Wı(Q)−Wj(Q))

×
∫
〈[Q · uı(t)] [Q · uj(o)]〉 exp(−iωt)dt

=
(2π)3

V

∑
H

∑
ν

1
2ω(k, ν)

|F coh
ν (Q)|2

× ([1 + n(ω)] δ(ω + ω(k, ν)) + n(ω))

×δ(ω − ω(k, ν))δ(Q + k−H) (1.42)

where ı and j are neighbouring atoms, rı and rj are the average atomic position. Fν(Q) is the

phonon structure factor (distinct from the intermediate scattering function). It can be expressed

as:

Fν(Q) =
∑
j

b̄j√
mj

exp (−Wj) exp (iQ · rj) (Q · ej(k, ν)) (1.43)

This equation gives the full four-dimensional scattering pattern, as would be observed from

the coherent scattering from a single crystal. Frequently, experiments are performed using

powder samples, where the resulting pattern is the average over all orientations. The notation

S(Q,ω) will be used for powder-averaged scatter, while S(Q, ω) will refer to the full single crystal

dataset.
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1.4 Neutron scattering

The key results to be taken from this section are the one phonon coherent scattering function

(Eqn. 1.42) and the component phonon structure factor (Eqn. 1.43). The main aim of this work

is to calculated these S1 (Q, ω) intensities using interatomic models. In so doing, the incoherent

scattering is ignored – for many of the systems studied here the incoherent scattering is negligible.

The elastic scattering (Bragg peaks) are also not included in the simulations. For powders,

simple approximations are made for one multi-phonon and multiple scattering backgrounds, as

described in detail in Chapter 4. Notwithstanding the problems of these additional scattering

events, convolution of the one phonon coherent scattering with instrument-specific resolution

functions gives simulations directly comparable to experimental data.

1.4.5 Time of flight spectrometers at ISIS

All the experimental work in this thesis was performed at the ISIS pulsed spallation source.

ISIS is an accelerator-driven neutron source, where pulses of 800 MeV protons collide at 160 kW

with a water-cooled tungsten target 50 times a second with a typical current of 200 µA. The

resulting neutrons pass through a small moderator (with a volume of ∼0.5 l) which slows the fast

neutrons to the energies required for the various experimental techniques used at the facility.

The moderators are surrounded by a water-cooled beryllium reflector which scatters neutrons

back into the moderators and doubles the useful flux. The temperature of each moderator effects

the resulting energy: the symmetrically poisoned1 ambient water moderator on MERLIN offers

maximum flux at ∼45 meV.

The engineering diagram of MERLIN in Fig. 1.3 gives a typical example of the progress

of the neutrons. They are directed into the instrument – in the case of MERLIN using new

supermirror guides – and pass through a series of choppers made of neutron blocking materials

with a narrow slit (collimator) to allow neutrons through for limited phased periods of time.

First, a background-suppressing ‘T0’ chopper rotates with the same frequency as the ISIS pulse,

blocking the beam as the protons strike the target (at time zero). This prevents high-energy

neutrons causing a large time-dependent background. The beam is now suitable for use in crystal

alignment as a white beam, or can be monochromated to produce small packets of neutrons at

a desired velocity. On MERLIN, this is done with a Fermi-chopper suspended magnetically in

a vacuum, and able to rotate about a vertical axis at up to 12 times the ISIS pulse frequency

(50 Hz). This type of chopper is well suited to high-energy neutrons, making fast time-cuts

and giving excellent energy resolution. However, for slow neutrons, as used with the new LET

machine, a rotating disk spinning about a horizontal axis is more appropriate. The effective open
1‘Symmetrically poisoned’ means that a thin sheet of neutron absorbing material (Gd) is put into the centre

of the moderator. This effectively reduces the size of the moderator, sharpening the time structure of the neutrons
but at a cost to the flux.
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Figure 1.3: Engineering diagram of MERLIN with cutaway tank to show the details. Man shown
for scale. Image courtesy of ISIS.
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Figure 1.4: The accessible region of Q, ω space in a time-of-flight spectrometer at incident
energy Ei. The line at angle φ to the incident wavevectors gives all the scattered wavevectors
k′ intercepted by the detector at that scattering angle. For a given Q the energy transfer is
obtained by dropping a line from the paraboloid to meet the end of the vector Q.
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time is dependent on the type of chopper, the frequency and chosen incident energy. Typical

energy resolution on MERLIN at the elastic line, for maximum flux, is ∼ 5%.

To minimise background scattering the entire flight path is kept under vacuum, and the

sample environment is carefully designed to minimise the amount of material in the beamline:

the top loading CCR used in many of the experiments described in this thesis has thinned

windows of aluminium such that only 0.4 mm total thickness is in the direct beam.

Monochromated neutrons pass through the sample chamber and are scattered by the sample.

Raw data are collected in the form of number of neutrons detected over time-of-flight. The precise

incident energy is extracted from the time peaks in monitors1 positioned beyond the sample with

a specific spatial separation. This allows the time at which the neutrons arrived at the sample

to be calculated (from Ei, the monitor time-peaks and spatial positions). Knowing both the

distance between sample and detectors and time of post-scatter-flight allows the time peaks at

each detector to be converted to final energies, giving the energy transfer. This process, together

with the removal of the k′/k factor, is known as ‘normalisation’. With appropriate additional

parameters, this can be expressed in absolute units of mbarn/meV, or relative units based on

flux normalisation from the monitors.

In time-of-flight experiments, the accessible region of Q, ω is restricted to the surface of a

paraboloid for each incident energy (Fig. 1.4) due to the quadratic relations between energy

and wavevector seen in Eqn. 1.19. The sample orientation gives the direction of the vector Q

with respect to the crystal reciprocal lattice. The energy transfer for a given Q is obtained by

dropping a line from the paraboloid to meet the end of the vector Q. This configuration arises

from the components of the scattering vectors parallel and perpendicular to the incident beam

for a given detector at angle φ:

Q‖ = k− k′ cosφ (1.44)

Q⊥ = −k′ sinφ (1.45)

1.4.6 MERLIN: the new spectrometer

The motivation for the work contained in this thesis arose from the development of a new

generation of spectrometers requiring new methods of data analysis. MERLIN (Bewley, 2002;

Bewley et al., 2009) is the new high count rate, medium energy resolution, direct geometry chop-

per spectrometer at ISIS, with a position sensitive detector bank covering over π steradians of
1These are often low efficiency scintillation detectors, or, in the case of MERLIN, novel He3 gas detectors

which surround a very thin vanadium foil, sampling the whole beam without detecting gamma radiation. The
monitors give a measure of the amount of beam seen by the sample, which is used to assess the run-length in
terms of the number of counts. This offsets temporal variations of beam which are beyond the control of the
experimentalists.
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solid angle. MERLIN (Fig. 1.3) complements the high resolution MAPS spectrometer URL - M,

used for the PMN experiments in Chapter 7). MAPS has been described (Bewley et al., 2009)

as creating a new paradigm in INS, as the first spectrometer to allow large volumes of recip-

rocal space to be studied simultaneously, but the flux restrictions mean it is ideally suited to

low-dimensional magnetic studies and not exploring phonon dispersion curves across the entire

Brillouin zone. MERLIN, however, is ideally suited to the study of phonons (as well as general

single crystal and powder work, extreme sample environments, magnetism, etc.). Technological

developments, such as the latest super-mirror technologies, instrument design, and the use of a

dedicated moderator have improved the flux possibilities1. However, the flux gains come at the

expense of increased beam divergence (dependent on incident energy).

When first commissioned, MERLIN had the largest detector range of any spectrometer at

ISIS2, using newly designed position sensitive detectors with a resolution of 20 mm at the

centre of the tubes (increasing slightly to 23 mm). The sample to detector distance is 2.5 m.

The detectors form a cylindrical array with an angular range of −45◦ to +135◦ degrees in

the horizontal plane and ±30◦ degrees in the vertical plane, each 25 mm wide and 3 m long.

These are mounted within the vacuum tank (requiring advances in electronics), reducing the

gaps in detector coverage3. There are nine doors, with a two tube-width gap between each.

To help eliminate suprions due to scattering across the tank, a sheet of neutron absorbing

material emerges into the tank towards the centre of the sample forming a ‘vane’ between all

the high angle banks. Each 3 m tube is split into 256 ‘detector pixels’ ∼ 11 mm in size, giving

∼69000 detector pixels. Each of these has 2500 time channels giving a total of 172 million bins.

For powders, the detector pixels are grouped into rings (defined in the instrument parameter

files). The instrument has been designed to limit the background neutron scattering, achieving

backgrounds of approximately 28 neutrons/hour/metre of detector tube, comparable to other

ISIS machines.

MERLIN was commissioned in 2008: the calcite experiments reported in Chapter 6 formed

part of the initial scientific commissioning. The challenge of working with the huge MERLIN

datasets provided the impetus for the SQW software development described in this thesis, so all

methodologies are given for the specific example of the new MERLIN spectrometer at ISIS,

but are equally applicable to other ISIS spectrometers such as MAPS, MARI and LET, and in

principle to any direct chopper spectrometer.
1MERLIN has flux gains of up to 20 times those seen on the instrument it replaces, at an incident energy of

10 meV.
2LET, the new cold neutron multi-chopper spectrometer on target station two, has recently seen its first

neutrons, and will eventually have an even wider detector range coupled with excellent energy resolution. The
new techniques developed in this thesis are equally applicable to LET.

3Door edges and vanes still give missing regions.
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1.4.7 Total scattering and pair distribution functions

Study of the effects of dynamics is not limited to spectrometers, but can be seen using diffrac-

tometers, such as GEM at ISIS (Williams et al., 1997), through total scattering experiments.

As the name suggests, this involves collecting the complete diffraction pattern; diffuse scattering

as well as Bragg peaks. Initially developed for liquids, this technique is now routinely used with

powdered crystalline samples to study local disorder. The observed scattering is integrated over

all orientations and energies to obtain the S(Q) total scattering function (following Keen, 2001):

S(Q) =
1
Z

∑
ı,j

bıbj
sin (Q |rı − rj |)
Q |rı − rj |

(1.46)

= i(Q) +
∑
m

cm
〈
b2m
〉

(1.47)

where Q is the modulus of the scattering vector, Z is the number of atoms, ı and j label

different atoms, bj is the scattering length of atom j, rj is the instantaneous position of atom j,

m represents an atom type, and cm is the number concentration of atom type m.

A Fourier transform of the experimental data is proportional to a function known as the

Pair Distribution Function (PDF). This gives the relative probability of finding a pair of atoms

of type m and n separated by a distance between r and r + δr. The atomic positions that

contribute to the Bragg peaks in the elastic scattering give the peak positions in the PDF, the

crystal arrangement (number of neighbours) gives the area under each peak, while the dynamic

properties of the material are responsible for the width of the peak.

Chung & Thorpe (1997, 1999) developed a phonon-based model of the PDF, which I have

incorporated into the new GULP PDF module to allow the calculation of PDFs for crystalline and

amorphous materials through the use of empirical models and lattice dynamics. There are many

different expressions of the PDF in the literature, each used in different situations. Chung and

Thorpe use ρPDF as it is zero below the minimum inter-pair spacing, and best suited to sum-

of-residual type agreement factor calculations. For harmonic phonons, each component partial

(pair-specific) peak has a Gaussian shape with area proportional to the number of neighbours –

making it effectively a histogram of interatomic distances – and temperature-dependent widths

that are obtained by summing over all phonons. This real space correlation function tends to

the number density (ρ0) at high r as can be seen for SrTiO3 (described in Chapter 2) in Fig. 1.5,

together with the weighted partial PDFs for each constituent pair.
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Figure 1.5: The PDF of SrTiO3 calculated using the new GULP module as described in Chap-
ter 2, expressed in the preferred ρPDF(r) format of Chung & Thorpe (1999). Partial PDFs,
which have been weighted by the atomic scattering lengths to allow the sum of the partials to
give the total PDF (red line), clearly show the constituent pairs for each peak. The number
density (0.084 Å−3), about which the high r data oscillates, is marked with a dashed line.

There are a number of other commonly used correlation functions (PDFs) within the litera-

ture, chosen to emphasise different features. Keen (2001) performed an extensive survey of these

and his recommendations are followed here, mostly using the three main real space correlation

functions1 T (r), D(r) and G(r). T (r), which scales as r at large r, is often used for peak fitting,

and for analysing structural detail at low r (e.g. in amorphous systems). D(r) is similar to

T (r), but has a term subtracted that scales with r such that it oscillates about zero at high r,

making it the correlation function of choice for studying mid to high r structural detail. This

is also the form of the PDF that is directly derived from experiment. G(r) is often used as it

makes the low r peaks prominent.

1A comparison of these different forms is given in Dove et al. (2002b).
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1.4 Neutron scattering

The function i(Q) in Eqn. 1.47 is related to the experimentally accessible differential corre-

lation function, D(r) (with units of 1/length) by:

Qi(Q) = ρ0

∫
D(r) sin(Qr) dr (1.48)

D(r) =
2
π

∫
Qi(Q) sin(Qr) dQ (1.49)

where ρ0 = n/(Vunit cell), the average number density (units of 1/volume). In the same way,

the total radial distribution function1, G(r) (with units of 1/area) which is related to D(r) by:

D(r) = 4πrρ0G(r) (1.50)

and is found through this pair of Fourier transforms:

i(Q) = ρ0

∫
4πr2G(r)

sin(Qr)
Qr

dr (1.51)

G(r) =
1

2π3ρ0

∫
4πQ2i(Q)

sin(Qr)
Qr

dQ (1.52)

It is often helpful to consider the underlying pair-wise contributions to the total PDF through

the partials. D(r) is related to the familiar g(r) and weighted d′(r) partial PDFs through:

D(r) = 4πrρ0

∑
m,n

cmcnb̄mb̄n (gm,n(r)− 1) (1.53)

=
∑
m,n

d′m,n(r) (1.54)

with b̄m as the coherent scattering length of atom-type m.

The new GULP module also gives results in the form of T (r), the total correlation function2,

with units of 1/length, and the PDF described by Chung & Thorpe (1997) and in the PDFFIT

program (Proffen & Billinge, 1999) as the radial distribution function, (also referred to as the

pair distribution function in Chung & Thorpe, 1999) and written as GPDF(r) by Keen (2001),

with units of 1/area.

1G(r) is often expressed in units of Barns (1× 10−28 m2 = 1× 10−8 Å2), but in the GULP output Å2 is used
to be consistent with the other correlation functions.

2T (r), like G(r) and D(r), is calculated as part of the ATLAS suit of programs (Soper et al., 1989), as used
at ISIS.
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1.4 Neutron scattering

The relationship between these main correlation functions are:

G(r) =
GPDF(r)

(∑Z
m=1 cmb̄m

)2

4πrρ0
(1.55)

D(r) = 4πr
[
ρPDF(r)− ρ0

]( Z∑
m=1

cj b̄m

)2

(1.56)

D(r) = GPDF(r)

(
Z∑

m=1

cmb̄m

)2

(1.57)

T (r) = D(r) + 4πrρ0

(
Z∑

m=1

cmb̄m

)2

(1.58)

=
(
GPDF(r) + 4πrρ0

)( Z∑
m=1

cmb̄m

)2

(1.59)

1.4.8 Phonons-from-diffraction

The traditional approach for extracting phonon dispersion curves has been from inelastic neu-

tron scattering data (INS). However, there are situations where there are no suitable single

crystals, so there is a desire to be able to extract phonon information from other approaches.

While the link between dynamics and the peak widths in the PDF has been known since the

1960s (e.g. Kaplow et al., 1964, 1965) it was not until the 1990s that the full collection of total

scattering data was technologically possible, prompting the question of whether the dynami-

cal properties of materials can be extracted from this relatively simple and quick experimental

technique1.

In recent years, there have been several attempts to extract dynamical information from

neutron powder diffraction studies (e.g. Dimitrov et al., 1999; Goodwin et al., 2004; Graf et al.,

2003), although this approach was opposed by Reichardt & Pintschovius (2001). Graf et al.

(2003) successfully refined the parameters of a model PDF against an experimental PDF, for

some simple systems, but in more complex cases observed a strong dependence upon the choice

of starting model. These are usually generated through a refinement against other experimental

data, such as inelastic neutron results, so are not truly phonons-from-diffraction alone. However,

recent work by our group in Cambridge (Goodwin et al., 2005, 2006) has focussed on the use of

a Reverse Monte Carlo (RMC, Tucker et al., 2001c) approach, to directly probe the dynamical

information available within the PDF. This model-independent approach, which takes account
1While a typical single crystal experiment on MERLIN may take several days to collect a full set of data at

a single temperature, a GEM total scattering experiment takes a matter of hours.
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1.5 Objectives of this thesis

of crystal symmetry, has been very successful in extracting dispersion curves in a number of

model systems.

A major part of this thesis has been concerned with producing and utilising PDF simulation

software based on empirical interatomic models. The impetus for this arose from discussions

with Andrew Goodwin about the limitations of extracting phonon information from neutron

total scattering experiments. While the low frequency dynamical information extracted from

RMC analysis of total scattering experiments provides excellent agreement to that seen from

INS data, the PDF is insensitive to high frequency modes, such as zone-centre LO/TO splitting

in MgO. By performing simulations with the new GULP PDF module, it has been possible to

track the contributions of different mode energies to the overall PDF, as seen in Chapter 2.

1.5 Objectives of this thesis

The main objectives of my work have been to develop new methodologies to assist in the design

and analysis of neutron scattering experiments, advancing understanding of atomic-scale motion

(phonon behaviour) in a wide range of materials. The various strands will be developed and

combined in the examples given throughout the thesis, with the following specific aims:

1. development of new methodologies allowing the phonon-based simulation of PDFs, to-

gether with detailed analysis of the relative contributions of different modes and atoms to

this behaviour,

2. simulation of the one-phonon coherent inelastic neutron scattering from general interatomic

models, and application of this approach to a wide range of materials,

3. convolution of the simulated INS spectra with appropriate resolution functions, allowing

direct comparison to experiment for both powders and single crystals,

4. refinement of interatomic models with experimental powder INS data, allowing the viability

of this much-needed approach to be assessed,

5. the ability to manipulate the INS simulations to help elucidate the origins of observed

phonon behaviour,

6. application of these new methodologies in the study of the structure and dynamics of a

number of mineralogical and technologically important materials.
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Chapter 2

Pair Distribution Functions:

Theory, Implementation and

Examples

A new module has been developed for the widely used General Utility Lattice Pro-

gram (GULP). The phonon-based theory developed by Chung & Thorpe (1997) to

calculate pair distribution function (PDF) peak-widths has been utilised to give a

selection of commonly used correlation functions. A numerical library of neutron

scattering information is now available within GULP, and is used to produce results

that can be compared to neutron scattering experimental data. The influence of dif-

ferent phonon modes on the PDF can be assessed by excluding modes above or below

a cut-off frequency. Results1 are presented for sample crystallographic systems MgO,

SrTiO3 and α-cristobalite as well as CaxSr1−xTiO3 at x = 0.5, which makes use

of the capability to handle partial occupancies to compare different Ca/Sr ordering

arrangements with a disordered model in which every Ca/Sr site has 50% occupancy

of both species. The implications of the relative contribution of modes of different

energies to the PDF peak width is discussed both for ‘phonons-from-diffraction’ and

the selection and refinement of interatomic potential models.

2.1 Introduction

The Pair Distribution Function (PDF) has been used (under various names) for many years to

provide an understanding of both structure and dynamics on the atomic scale. It was initially
1The majority of the work presented in this chapter has already been published (Cope & Dove, 2007;

Goodwin et al., 2005, 2006).
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2.2 Theory

developed for liquids (Zernike & Prins, 1927), and has continued to be useful with amorphous

materials (Warren, 1978). As early as the 1960’s, workers were making use of the dynamic

contributions to the PDF (Kaplow et al., 1964). More recently it has become an important tool

for use with crystalline materials (Toby et al., 1990). As the PDF allows visualisation of local

displacements in the diffraction data, rather than just average atomic structure, Dimitrov et al.

(1999) suggested that it might be possible to extract phonon dispersion curves from diffraction

data, making use of iterative techniques such as the Reverse Monte Carlo (RMC) algorithm. Our

group in Cambridge have used a model-independent approach to extract dynamic information

from atomistic configurations such as those generated using RMC with a number of materials,

but find the high-frequency regions to be irretrievable (Goodwin et al., 2005, 2006). Therefore,

I propose combining the phonons-from-diffraction techniques with a model-dependent approach,

such as that given here, for the study of systems for which established spectroscopic techniques

are prohibitive or inappropriate.

The PDF is found experimentally through a Fourier transform of the observed total scat-

tering function S(Q) from neutron or X-ray diffraction experiments. Working within harmonic

lattice dynamics, the PDF can be modelled using Gaussians. Recently, Chung & Thorpe (1999)

proposed a method for calculating these Gaussian peak widths from phonon calculations, thus

providing a phonon-based model of PDFs.

Chung & Thorpe (1999) used their theory specifically with semiconductor alloys, and it

seemed appropriate to implement the theory such that PDFs for other crystalline materials

could be easily produced. GULP is widely used within the community to generate phonon

information from interatomic models. Thus, with the addition of neutron scattering data, is

ideally suited to this purpose.

There are two main applications for this new modelling approach. First, to assist in the

design of experiments, giving a theoretical model of experimental outcome. Second, to ‘experi-

ment’ on the model, for example changing cation distribution, or investigating different phonon

contributions.

2.2 Theory

The PDF, as introduced in Section 1.4.7, is derived experimentally by Fourier transform of the

observed total scattering function from neutron or X-ray diffraction experiments (Keen, 2001).

The crystal structure gives peak positions and integrated areas, while the phonons give the

temperature-dependent widths.
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2.2 Theory

Chung & Thorpe (1999) proposed a formalism1 for the computation of ρPDF which I have

implemented for interatomic potential models (Cope & Dove, 2007), and is to be released in the

next version of GULP. They give the probability of finding a pair of atoms i and j, with position

ri and rj respectively, at position r by:

ρij(r) = 〈δ(r− (rj − ri))〉 (2.1)

where < . . . > is the statistical average implying both configurational and thermal averages.

Summing over all such pairs gives the density function ρ(r), which is averaged by using each

atom in turn as the starting point. Working with a crystal lattice, the complexity of such

calculations is reduced because only atoms in the first unit cell are used as starting points.

Moreover, GULP reduces the crystal symmetry to a primitive cell, minimising the required

number of calculations.

Consider a lattice of unit cells each containing Z atoms. Denote the position of atom i in

the original unit cell as ri0 and similarly atom j in the `th unit cell as rj` . Define the pair

separation vector between two atoms i0 (in the original unit cell) and j` (in the `th unit cell) as

ri0j` = rj` − ri0 .

The density function (with units of 1/volume) is the weighted sum over all pairs between

atom i0 and atom j in all unit cells, averaged over the number of atoms in the unit cell. The

spherical average is taken, dividing by 4πr2:

ρPDF(r) =
1

4πr2Z

∑
`

∑
i0

∑
j′

wijρi0j`(r)

 (2.2)

where the prime indicates i0 6= j0 (i.e. ri0j` 6= 0). The weighting is dependent on the concentra-

tion, ci (fraction of atoms i in the primitive cell), and coherent bound scattering length, b̄i, and

is expressed as:

wij =
b̄ib̄j(∑Z
i=1 cib̄i

)2 (2.3)

ρPDF(r) is related to the more familiar and experimentally derived D(r) as:

D(r) = 4πr
[
ρPDF(r)− ρ0

]( Z∑
i=1

cib̄i

)2

(2.4)

1I make use of the notation of Keen (2001) to describe this form of PDF. It is chosen for computer modelling as
it is zero below the minimum inter-pair spacing, tending to the number density at high r, thus well suited to sum-of-
residual type agreement factor calculations. This is also the form used in the PDFFIT program (Proffen & Billinge,
1999) as well as by several current workers in this field, e.g. Billinge & Egami (1993); Proffen et al. (2003).

30



2.2 Theory

As suggested by Eqn. 2.1, if the atoms were completely stationary, the density function

would be a series of delta functions located at the interatomic spacings. To account for thermal

motion, Chung & Thorpe (1997) demonstrated that, within the harmonic approximation, the

Debye-Waller theorem can be used to justify the use of a series of weighted Gaussian peaks

ρij(r), centred at the inter-pair spacing, rij , with width σij .

The width is used in a normal Gaussian to give the pair-specific density function:

ρi0j`(r) =
1√

2πσ2
i0j`

exp

[
|ri0j` | − r

2σ2
i0j`

]
(2.5)

These are then summed as in Eqn. 2.2 to give the ρPDF(r) density function. The partial density

function for atomic pair ij is made by summing only ρi0j`(r) for that pair. The weighted sum

of all the partials is the total density function, as was illustrated for SrTiO3 in the General

Introduction (Chapter 1, Fig. 1.5).

Taking r̂ij to be the unit vector between atoms i and j, and uij = uj−uj to be the difference

in displacement, where ui is the displacement of atom i, then the width is given by:

σij =
〈

[uij · r̂ij ]2
〉 1

2 (2.6)

This can be expressed in terms of phonon modes as:

σ2
i0j`

=
~

2N

∑
k,ν

2 n (ω(k, ν)) + 1
ω(k, ν)|ri0j` |

2 | [uj`(k, ν)− ui0(k, ν)] · ri0j` |
2 (2.7)

where the displacements ui` are as given in Eqn. 2.8. It should be noted that this corrects a ty-

pographical error in Reichardt & Pintschovius (2001) Eqn. 3, where the numerator is multiplied

by a factor of
√
mi rather than divided by it.

ui` =
ei(k, ν) exp [ik · ri` ]√

mi
(2.8)

N is the number of k-points, ν is the mode index, n (ω(k, ν)) is the Bose occupation number

(Eqn. 1.9). ω(k, ν) is the frequency from the eigenvalues of the dynamical matrix, and ei(k, ν)

is the eigenvector for atom i (either setting may be used here, as the phase factor cancels, see

Section 1.2.1). GULP generates esig, so this setting is used to minimise computation error and

optimise the code. The mass of atom i is mi. This is implemented within GULP with the k-point

sampling of the first Brillouin zone performed with a Monkhorst-Pack grid (Monkhorst & Pack,

1976) to give an even spread of k-points. The more dense the grid, the more accurate the results

will be at the expense of longer processing times and memory requirements. The density of
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2.3 The GULP PDF module

the grid required depends on the system under study, and must be established by means of a

convergence test.

2.3 Program description for the GULP PDF module

2.3.1 Main purpose

For a given interatomic potential model, this module uses the phonon information (eigenvectors

and frequencies) generated within GULP to calculate the PDF peak widths for every atomic pair

up to a given radius. This is then used to produce several commonly used correlation functions

including both total and partial (pair-specific) pair distribution functions.

2.3.2 Implementation

Every atomic pair, up to a given radius (rmax), is considered in turn. Phonon information for

every k-point within a sufficiently dense Monkhorst-Pack grid is used to calculate the contribu-

tion to the width of the PDF peak from that pair. These are summed and suitably averaged to

give the total ρPDF(r) function, which is converted into each of the total correlation functions

listed in Section 1.4.7. The contributions from all pairs of each type are also used to output the

partial PDFs. The user can control how much of this is written to file (see Section 2.3.4). Other

useful data and statistics are included in the standard output.

It should be noted that the GULP eigenvectors, produced with the EISPACK diagonaliser,

are always returned with the bottom right-hand element set to zero. This introduces an arbitrary

phase factor between different Brillouin zones. Crucially, it destroys the relationship that the

conjugate of an eigenvector is the same as the eigenvector of the negative k-point [esig(−k) =

esig∗(k)], which the PDF calculations rely upon. However, this can be avoided by ensuring that

all calculations were performed by extrapolation1 from a single Γ-centred Brillouin zone.

2.3.3 Input

The conventional input for GULP is a simple text file with keywords at the top, controlling the

general behaviour, followed by options which set up the specific cell and other parameters. New

keywords and options are available for use with normal GULP input files, listed in Table 2.1;

some of these, such as PDF or PDFcut, change the behaviour of the program whereas others, such

as nowidth or coreinfo merely affect the output behaviour. The PDF options are entered within
1The default setting for the first Brillouin zone in GULP is an unconventional one in order to avoid the

problem of evaluating the dynamical matrix at Γ as noted in Section 1.3: instead of being Γ-centred, GULP uses
the Γ-point as the origin in a cell extending to (111) in fractional reciprocal lattice coordinates, so the actual
k-points evaluated approach but do not reach Γ. For PDF calculations, the Monkhorst-Pack grid is shifted back
to be Γ centred.
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2.3 The GULP PDF module

PDF calculate peak widths and PDFs
PDFcut as PDF but ‘cut off’ all phonon

contributions ω >wmax or <wmin
PDFkeep with PDFcut,

set all ω > wmax to wmax (or ω <wmin to wmin)
Coreinfo Output atomic information (for cores not shells)

used in phonon calculations.
Nopartial Suppress output of partial PDFs.
Nofreq Suppress eigenvector output after phonon calculation.

(modified GULP keyword, previously suppress generation)
Nowidth Suppress output of peak widths for PDF calculations
Makeeigenarrays Store all eigenvectors and frequencies after calculation
Converteigen Convert eigenvectors to alternative setting before storing
ArrayFrequencies Output phonon details from internal arrays
Shift Shift the centre of the BZ generated using shrink to Γ

Table 2.1: Summary of new PDF module keywords

the neutron1 block, and allow users to specify the maximum radius (using rmax, default = 5 Å)

and the number of bins (using rbins, default 100), and set the output filenames.

The ‘experimental’ keywords are PDFcut, and PDFkeep, which limit the range of phonon fre-

quencies used either by ignoring anything above/below the given frequency limit, or by replacing

anything above/below the given limit with the limiting value itself. In these cases, wmax or wmin

are used to specify the frequency limits2.

Other standard GULP input options should be used: of particular importance here are

temperature and shrink (used for adjusting the density of the Monkhorst-Pack grid generating

an even distribution of k-points). When using shrink, it is essential that the user checks that

convergence of phonon properties (e.g. peak width) with number of k-points has been achieved.

A new GULP keyword has been added to force a Γ-centred Brillouin zone: shift. All PDF

calculations are performed in this manner, but the keyword can be used manually to obtain the

same range of k-points without performing the PDF calculation.

2.3.4 Output

In addition to normal GULP output, three simple text file-types can be produced. First, a

.wid file lists the width contribution from every atomic pair (unless the keyword nowidth is

given); second, a .pdfs file containing the PDF correlation functions up to the maximum radius
1This is a section of the input file normally headed by neutron, containing a selection of commands, and

closed with the work end. However, the block is headed with PDF instead of neutron in forthcoming release in
GULP

2The default units are THz, but this can be changed by adding unit freq [rad/THz/cm/wav/meV]. The same
units will be used for output.
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2.4 Agreement factors

neutron Start of neutron input block used for PDF input options.
Closed with end.

rmax Sets maximum radius (Å) for PDF calculation
rbins Sets number of bins to be used in PDF output
wmax Sets maximum phonon frequency to be considered
wmin Sets minimum phonon frequency to be considered
units When followed by the freq and [rad/THz/cm/wav/meV]

(radians, THz, cm−1 = wavenumbers, meV)
sets the input/output frequency units overruling default of THz

output pdf Specifies the filename for .wid and .pdfs output files

Table 2.2: Summary of new PDF module options for use in the neutron block

using the rbins specified at input; and finally a set of numbered .pdfs files for the partial pdfs

(unless suppressed by nopartial). The PDF correlation functions given are (in the Keen, 2001

formalism) ρPDF(r), GPDF(r), G(r), D(r), and T (r). In addition the PDF module contributes

to the general Chemical Markup Language (CMLTM) output generated using FoX (White et al.,

2006).

2.4 Agreement factors

To provide a quantitative means of comparison of the quality of the fit, two numerical measures

have been used. As D(r) oscillates around zero at high r, it is not appropriate for use in a

‘sum-of-residuals’ type agreement factor, so ρPDF(r) is used. Toby & Egami (1992) produced

a standard PDF agreement factor, A2, which directly parallels the R-factor used in crystal

structure refinement. When both model and observed functions have been evaluated at n equally

spaced points in r, the agreement factor is defined as:

A2 =
1

nρ0
2

n∑
l=1

[
ρPDF
obs (rl)− ρPDF

model(rl)
]2

dr (2.9)

This function will emphasise the fit to low-r structural detail. As I also frequently use r-

weighted data in the form of D(r), which is the form directly accessible through the Fourier

transform of total scattering data, it is appropriate to define a further agreement factor based

on rρPDF(r) to take account of the higher r features when focusing on the mid-range detail:

A2
r =

1
nρ0

2

n∑
l=1

[
rρPDF

obs (rl)− rρPDF
model(rl)

]2
dr (2.10)
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Figure 2.1: A comparison of the experimental data, showing the large truncation ripples, and
the RMC dataset for α-cristobalite. The fit is excellent, giving agreement factors of A2 = 0.015
and A2

r = 0.2.

2.5 Examples

The new module for GULP was tested against several crystallographic systems. Comparison is

made between GULP output and PDFs extracted from experimental neutron total scattering

experiments. Theoretically, to obtain a true PDF from diffraction data, the Fourier integration

should be carried out to infinite Q. In reality, it has to be terminated at a finite value of Q

determined by the experimental setup. This can result in truncation ripples from the Fourier

transform, as clearly seen in Fig. 2.1. One way to avoid this is to use the Reverse Monte Carlo

(RMC) approach, discussed in detail elsewhere (Tucker et al., 2001a), to generate an atom-

istic configuration consistent with the diffraction pattern. These configurations give excellent

agreement to experimental data, with typical A2 and A2
r agreement factors of 0.015 and 0.2

respectively – the small discrepancies arise where the RMC does not reproduce the truncation

ripples. Standard procedures (see, for example, Howe et al., 1989) were followed to correct the

data for background scattering, instrument resolution etc., before generating the ‘experimental

RMC’ dataset. I present the model PDFs in this chapter alongside ‘experimental RMC’ data

instead of the raw experimental PDFs to avoid these truncation ripples.
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2.5.1 MgO

MgO was chosen for initial testing because it has well understood lattice dynamics (Sangster et al.,

1970) and a small number of atoms in the unit cell. The interatomic potential model of

Baram & Parker (1996) was used, and the GULP calculation performed using 27000 k-points.

Simulations were compared to the ‘experimental RMC’ PDF extracted from experimental

neutron total scattering data collected at room temperature on the GEM instrument at the ISIS

pulsed spallation neutron source (Williams et al., 1997) over a range of momentum transfers

0 ≤ Q ≤ 42 Å−1. RMC is used to avoid the truncation ripples that arise from the Fourier

transform of the experimental data. Further details on this experiment and the RMC analysis

performed by others in our group, showing the validity of the RMC datset, are published in

Goodwin et al. (2005).

Comparing the experimental RMC data and model in Fig. 2.2, it can be seen that the peaks

appear in the same places (i.e. the model optimises to have the same unit cell) and there is

consistently close agreement to peak width over the full range of radii. However, the phonon

model here gives peaks that are uniformly narrow. This is reflected in the agreement factors

A2 = 0.136 and A2
r = 1.96, obtained over the entire range of r shown in the graph.

2.5.2 Calcium/strontium titanates

The calcium/strontium titanates were studied as they have reasonably well understood lattice

dynamics, yet are much more complicated than MgO, and illustrate several features of the

methodology. This solid solution has the ideal cubic perovskite structure (Fig. 2.4(a)) at room

temperature for the pure x = 0 SrTiO3 end-member, while the x = 1 CaSrTiO3 end-member

has an orthorhombic structure with space group Pnma, due to rotations of the TiO6 tetrahedra

about the three crystallographic axes. What is particularly interesting about these perovskites

is the cation ordering (between A = Sr or Ca) observed on the 12-fold coordinated perovskite A-

sites at intermediate x: at x = 5 the structure is P21nm, as shown in Fig. 2.4(b). The Rietveld

refinements of Hui et al. (2007) have shown that standard powder diffraction techniques cannot

unambiguously reveal the ordering pattern, so Hui et al. used a new RMC approach of ‘atom-

swapping’ (Tucker et al., 2007), adjusting the cation ordering in a configuration of 14000 atoms

to bring about agreement with experimental total scattering data. It is interesting to perform a

similar investigation from a computational perspective, to see the effects of adjusting the cation

ordering in the model on the PDF.

Experimental neutron total scattering data for these perovskites had been collected as de-

scribed by Goodwin et al. (2005) on the GEM instrument at ISIS over a large range of mo-

mentum transfers (2.2 ≤ Q ≤ 46 Å−1) and used as input to the Reverse Monte Carlo (RMC)
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Figure 2.2: D(r) for MgO at room temperature comparing GULP calculations (blue line) to
RMC results derived from experimental data (red line). Agreement factors are A2 = 0.136,
A2
r = 1.96
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Figure 2.3: D(r) for SrTiO3 at room temperature comparing GULP calculations (blue line) to
RMC results derived from experimental data (red line). Agreement factors are A2 = 0.029,
A2
r = 0.778.
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(a)

(b)

Figure 2.4: The unit cells for (a) the pure SrTiO3 end-member and (b) the x = 0.5 interme-
diate CaxSr1−xTiO3, shown to scale. The tetrahedrally coordinated Ti are shown in pale blue
coordination polyhedra. Sr is shown in green, and Ca in blue, with the possible A-site cation
ordering in the intermediate structure represented by segmented spheres. The sites labels are
used in Fig. 2.5 to distinguish the three possible ordering patterns. The colour of the cations in
this figure shows the ordering observed experimentally.
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Figure 2.5: CaxSr1−xTiO3 at x = 0.5, showing the difference between the T (r) (the most
appropriate choice of PDF for peak-fitting) for the disordered structure and the three possible
ordered structures, all calculated using GULP. The structure seen experimentally is the ‘observed
ordering’, giving rock-salt like coordination of the two cations. What has been demonstrated
here is that there are real differences in the PDF that can be probed experimentally to establish
ordering. The possible sites are shown in Fig. 2.4(b).

procedure to generate PDFs from approximately 2000 configurations, as described in the pri-

mary reference. Using the RMC ‘experimental’ dataset avoids truncation ripples while giving

an excellent match to experimental data, as demonstrated by Goodwin et al. (2005); Hui et al.

(2007).

An empirical potential model capable of studying the lattice dynamics across the entire solid

solution was refined in GULP against a range of experimental ‘observables’: unit cell, elastic

constants, and IR modes for both end-members, and an ordered intermediate CaxSr1−xTiO3

with x = 0.5. The PDF and total scattering data were not included in the GULP refinement

of the potential model. The potential model was first tested against the PDF for the SrTiO3

end-member: SrTiO3 results were produced by optimising the energy at constant volume with a

unit cell fixed1 at a = 3.9 Å. Convergence of phonon properties was achieved with 3375 k-points.
1to be the same as that found experimentally by Hui et al. (2005).
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Fig. 2.3 shows the excellent agreement (A2 = 0.029, A2
r = 0.778) of the GULP model

and experimental RMC dataset. The peak shapes are well reproduced, demonstrating both

the validity of the method and the use of this refined empirical potential model for further

investigations.

The effects of ordering on intermediate CaxSr1−xTiO3 with x = 0.5 were studied. 50%

partial occupancies were set with ‘mean-field’ atoms with the physical properties of the combined

species for each occupancy. The three possible ordered structures were also implemented: the

rock-salt type ordering provided the best fit to the experimental PDF. The effects of the different

ordering patterns are best seen by comparing the difference plots between the disordered (mean

field) model and the three possible ordered arrangements. It is clear that each ordering gives

rise to an observably different PDF (Fig. 2.5). This provides an additional validation for the

approach taken by Hui et al., who observed the rock-salt like ordering pattern on average over

the RMC configurations derived from experimental total scattering spectra. The most noticeable

differences here are in the width of the peaks, although it was differences in integrated peak areas

that allowed Hui et al. to determine the natural ordering of Ca0.5Sr0.5TiO3 through RMC ‘atom

swapping’.

This study on calcite/strontium titanates has both demonstrated the ability of the new

analytical tool to reproduce experimental PDFs when combined with a good interatomic model,

as well as showing how computational experiments on cation ordering can reveal the subtle

changes to the PDF that are to be expected in experimental data, confirming the results of

RMC ‘atom swapping’ analysis.

2.5.3 Phonons-from-diffraction: limiting the energy range in MgO and SrTiO3

The challenge of extracting phonon dispersion curves from diffraction data has been discussed in

Section 1.4.8. It was in order to establish the appropriate energy range over which this technique

might be possible that this simulation tool was initially developed.

The new GULP module was used with both MgO and SrTiO3 to study the role of different

phonon modes on the overall width of the PDF peaks. GULP simulations with the PDFcut

keyword over a range of cut-off frequencies show low frequency modes dominate the PDF.

Room temperature results of the dependence of various peak widths on ωmax demonstrate that

the peak widths in the PDF are relatively insensitive to most of the high energy modes. For MgO

(Fig. 2.7), most of the peak widths have stopped changing by ∼15 THz; for SrTiO3 (Fig. 2.8),

this occurs at ∼10 THz. Each individual line on the graph comes from a distinct pair at a

particular r-spacing: the distinct shapes of the curves are due to the independent information
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energy modes dominate: by ∼15 THz the peak shapes show very little difference to the full
energy model.
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Figure 2.7: PDF peak widths for a selection of peaks for MgO, against the maximum cut-off
frequency used in the new GULP PDF module. The domination of the low energy modes shown
here is also apparent in the D(r) shown in also Fig. 2.6.
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Figure 2.8: PDF peak widths for a selection of peaks for SrTiO3, against the maximum cut-off
frequency used in the new GULP PDF module. It can clearly be seen that the low energy modes
dominate the width of the PDF peaks, with the high energy modes making very little difference.

about the phonon contributions to the peak-widths for that specific pair. The trends shown

here are independent of temperature.

The importance of these results lies in the implications for attempts to extract phonon

dispersion curves from diffraction data (total scattering patterns). It is well understood that the

contribution to the atomic displacements of any vibration of frequency (ω) is proportional to

1/ω2, so it can be expected that low frequency modes are more likely to be accessible through

this approach. These calculations quantify this: the point at which the majority of peak-widths

stop changing with increasing ωmax corresponds to the maximum energy modes extracted from

neutron total scattering by our group using RMC.

2.5.4 α-Cristobalite (SiO2): interatomic models and the PDF

Silica is a hugely important mineral, found extensively in rock formations and of technological

importance as a glass and in ceramics. It is made up of rigid units of SiO4 tetrahedra: the

different possibilities for the connectivity of these building blocks give it a highly varied phase
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Figure 2.9: The unit cell of α-cristobalite, showing the interconnected SiO4 tetrahedra.

diagram. This local ordering provides the common feature between the crystalline and amor-

phous counterparts (studies of amorphous silica are presented in Chapter 5). Cristobalite is

the high-temperature crystalline phase of silica stable above 1743 K. It exists as the disordered

β-cristobalite (see Chapter 3), metastable with respect to quartz, until cooled below 533 K. It

then transforms to the tetragonal P41212 structure (see Pluth et al., 1985; Schmahl et al., 1992)

of α-cristobalite shown in Fig 2.9.

I have performed many computational studies of silicates in this thesis, so it is important

to justify the choice of interatomic model. α-Cristobalite the appropriate polymorph for these

initial investigations because the structure of α-cristobalite is well accepted, simulations on this

polymorph are not overtly computationally expensive, and I am able to compare simulations to

experimental total scattering and (in Chapter 5) INS powder spectra. I present a detailed PDF

study for two widely used transferable silicate interatomic potential models; the polarisable shell

empirical model of Sanders et al. (1984) and the rigid ion model based on ab initio calculations

from Van Beest et al. (1990) (VB). In the light of this, I discuss the density of states for these and

two other rigid ion interatomic models (Tsuneyuki et al. (1988) commonly referred to as TTAM,

and a new refinement by Carré et al. (2008) based on the VB model), giving comprehensive

justification for the choice of the Sanders model for all silicate studies performed in this thesis.

2.5.4.1 Experiment and simulated PDFs

Experimental total scattering data, published in Tucker et al. (2001c), were collected on a

powdered sample of α-cristobalite using the (now decommissioned) ISIS LAD diffractometer

(Howells & Hannon, 1999), the forerunner to the GEM diffractometer used in the other exam-

ples. Reverse Monte Carlo (RMC) analysis was used to generate PDFs from a configuration of
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Figure 2.10: D(r) for α-cristobalite at 475 K, showing the RMC data (red), Sanders model (blue,
A2 = 0.073, A2

r = 0.510), VB model optimised at constant pressure (green, A2 = 0.122, A2
r =

4.292), and VB model optimised at constant volume (brown, A2 = 0.056, A2
r = 0.457. The effect

of the unit cell distortion in the constant-pressure VB model is clear.

12000 atoms. The excellent agreement between RMC and experimental PDFs demonstrates the

benefit of this approach for avoiding Fourier ripples, as shown in Fig 2.1.

The Sanders and VB models were used with the new GULP PDF module to calculate PDFs

for α-cristobalite at 475 K using 42875 k-points. The Sanders model optimises to give a unit cell

of a = b = 5.01 Å and c = 7.06 Å, matching experimental results, but the VB model optimised

to have a = b = 4.89 Å and c = 6.53 Å. To allow the best comparison between the models,

the VB model was also constrained to optimise at constant volume, fixing the unit cell to the

experimental parameters.

Comparing models and RMC experimental data (Fig. 2.10), it can be seen that the choice

of interatomic potential model is important. Both the Sanders model and the constant-volume

VB model give a very good fit and similar results. The constant-pressure VB model shows very

little correspondence to the data as the peaks are in completely the wrong positions. This is

primarily due to the difference in unit cell – especially as the optimised unit cell is proportioned

slightly differently, with a relatively shorter c axis. First principles models, such as those used

in the development of the VB model, often fail to exactly reproduce the experimental unit cell
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while still preserving accurate phonon information. What has been demonstrated is that this

model provides excellent agreement to the experimental PDF when the cell is correct.

2.5.4.2 Energy cut-offs

Before studying the effects of energy cut-offs on the different models, it is helpful to be familiar

with both density of states: these are shown in the bottom two plots in Fig. 2.11 together with

those of the two other models discussed below. The low energy region shows strong similarities

between the constant-volume VB model and the Sanders model, with a clear shift to higher

energies occurring when the constant volume constraint is removed from the VB model. At the

other extreme the two models place the high energy modes at different energies, although the

relative intensities of the peaks are not hugely different. The VB model is expected to perform

well here as these modes were included in its development.

There are also considerable differences around 60 meV. As will be seen in Chapter 5, it

is important for the INS studies to be able to correctly reproduce the experimental drop in

the density of states in this region, which has been observed across many silicate polymorphs

through INS (e.g. Nakamura et al., 2001; Price & Carpenter, 1987). In this respect, the Sanders

model is better suited to my purpose than the VB model. The question is whether this is born

out in the PDF?

Using the same ‘cut-off’ approach as for MgO and SrTiO3, the effect of different regions

from the two models can be seen in Fig. 2.12. The effect of the cut-off energy on peak widths

(for the first three peaks and two other representative peaks) is shown in Fig. 2.13. For most

peaks, the low energy modes dominate the peak width with the high energy modes (particularly

about 100 meV) making very little difference. These high energy modes will correspond to the

internal modes of the SiO4 tetrahedra – the Si–O stretch. It is therefore not surprising that

these modes do have a more significant role in the first Si–O peak. The Sanders model (as seen

in Fig 2.11) places these modes at considerably lower energy than the VB model. The equivalent

high energy modes from vitreous silica were included in the development of the VB model so

are closer to experimental values. Indeed the constant-pressure VB PDF gives the best fit to

the first peak. Constraining the unit cell made little difference to the high energy modes but a

large difference to the first 10 meV, and had a detrimental value on the quality of the fit here,

leaving the Sanders model to give the closer agreement. It is important to note that beyond the

first nearest neighbour, the Si–O interactions no longer show a marked dependency on the high

energy modes.
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Figure 2.11: A comparison of the density of states for the models discussed in the text. The
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46



2.5 Examples

(a)

40

30

20

10

0

-10

D
(r

) [
10

-9
Å

]

5432
r [Å]

Si-O
Si-O
i-O

Si-O O-O
Si-Si

(b)

40

30

20

10

0

-10

D
(r

) [
10

-9
Å

]

5432
r [Å]

Cutoff Frequency [meV]:
 5
 10
 15
 20
 25
 35
 45
 55
 65
 75
 85
 100
 115
 130
 145 (VB only)

 using full range
 

Si-O O-O
Si-Si

Figure 2.12: Simulated PDFs with a range of energy cut-offs for (a) the Sanders potential model
and (b) the VB potential model optimised at constant volume. It can clearly be seen in both
models that the low energy modes dominate the PDF, but the higher energy modes continue to
make a visible difference, especially in the first Si-O peak. (The density of states in in Fig. 2.11
shows that the VB model at constant volume includes modes up to 155 meV, compared to
140 meV in the Sanders model.)
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that the density of states in in Fig. 2.11 shows that the VB model at constant volume includes
modes up to 155 meV, compared to 140 meV in the Sanders model. The other main difference
between the two density of states is in the 55 to 100 meV region: there are small differences in
the development of the peak widths through this region, but the overall relative contribution of
these modes is not large.
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2.5.4.3 Refinement using PDFs

In light of these findings, it is not surprising that the Sanders and VB (constant volume) models

give very similar PDFs as the dominant low energy modes are very similar. The key question now

is whether the PDF could be used for refinement of interatomic models? This is a subtly different

question to whether full phonon dispersion curves can be extracted in a model-independent

fashion from total scattering data, as it assumes a reasonable starting model. Recent work

by Carré et al. (2008) has provided a new approach to potential refinements that does use the

PDF, with considerable success. The so-called CHIK model, also shown in Fig 2.11, was based

on the VB model and refined against Car-Parrinello molecular-dynamics (CPMD) simulations.

As I would expect, the low energy region of the density of states, which was already reasonable,

showed an improved fit to the CPMD density of states. The mid-range region (where the VB

and Sanders models are so markedly different), also improved, with the desired decrease in the

density of states occurring at the critical ∼60 meV region. However, the refinement process

was unable to fully enforce the large changes needed here. Finally, the high energy modes

from the refinement were not such a close fit to the CPMD density of states as the starting

VB model. In light of the results presented in this Chapter, I can confirm that, while there is

some information in the PDF to loosely constrain the high energy modes, the low energy modes

will be preferentially refined.

What these recent developments have shown is that there is scope for model refinement

using the PDF, but it should be coupled to other experimental observables with appropriate

weightings to ensure that the high energy phonon modes are not degraded. The inclusion of

the new simulation module in GULP means that such a development could be implemented

with relative ease: GULP already allows refinement of interatomic models against a range of

phonon properties with adjustable weightings. It would also allow direct interaction with the

experimental data, rather than a first principles simulation which is likely to misrepresent the

experimental unit cell.

2.5.4.4 Choice of model

It has been seen that the popular silicate interatomic models have similar density of states in

the low energy region yielding similar peak widths in the PDFs. Excellent agreement to the

PDF was seen for both the Sanders and constant volume VB model. However, studies such as

the first principles calculations by Benoit & Kob (2002), have confirmed that the VB model fails

to reproduce the mid-to-high energy regions vibrational density of states and have also shown

the eigenvectors to be poor. Crucially for the structural studies in the next chapter, only the

Sanders model reproduces the experimental unit cell under normal conditions. The polarisable
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oxygen shell in the Sanders model allows for realistic modelling of the electronic behaviour in

the silicates. The other models are simpler rigid ion models, so it is perhaps not surprising that

I find Sanders model is the one best suited to the current work.

I have included the density of states for another widely used interatomic model for silicates

in Fig. 2.11: the so-called TTAM model (Tsuneyuki et al., 1988). Like the VB model, this is

a rigid ion model that was produced from first principles calculations. It can be seen that this

shows many similarities to the two models examined in more detail, and also provides good fits

to experimental data (not shown) although, like the VB model, it optimises to a unit cell that

is slightly different from the experimental value unless constrained. I include it here as it is the

model used in the generation of the silica supercells (as described by Trachenko et al., 2000)

for use in Chapter 5. The actual lattice dynamical calculations shown for these, and the other

silicates in this thesis, were all performed using the Sanders model, although the robustness of

the results was confirmed using the other potential models.

2.6 Conclusions

This new methodology is a powerful tool for performing PDF simulations, useful both for under-

standing experimental results, for example making it simple to label the partial (atom-specific)

contributions, and for designing experiments, for example assessing the effects of incident neutron

energy. The calculated PDFs are comparable to those found using RMC analysis of experimental

data without the use of any adjustable parameters beyond the choice of interatomic potential

model. The PDF has been shown to be sensitive to average structure while particularly suited

to revealing short- to mid-range ordering, as seen in CaSrTiO3. These features will be relied

upon in the rest of this thesis.

One advantage of adding this functionality to the GULP package is that the dynamical matrix

used for the PDF can be calculated from any of the potential or force constant model-types

currently available within GULP. GULP fitting routines can be used to refine these empirical

potential models against other experimental observables prior to simulating the PDF, giving the

best possible simulations. Moreover, the effects of temperature or pressure can be incorporated,

making it appropriate for use with a wide range of crystalline systems under conditions both

within the normal experimental range, and beyond it. Looking at the work of Carré et al. (2008),

it is clear that there is a place for refinement of interatomic models against PDF spectra, but I

feel that the high energy modes have been shown here to be so under-represented that it is almost

dangerous to use the PDF without the addition of other experimental observables to provide

better constraints on the high energy modes. GULP is ideally suited to such a development.
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Another of advantage of these simulations is the ability to manipulate the input to the PDF,

allowing experimenters further insight into the origins of the PDF. The partial PDF output gives

the component parts of each peak as seen in the SrTiO3 plot in Fig. 1.5, making identification

easy. The excellent agreement of the simulation to experimental data in SrTiO3 confirmed

that the refined potential model was suitable for further ‘computational experiments’ on local

ordering. The use of a mean-field atom in GULP – the ‘virtual crystal approximation’ – to

give a simulation of a disordered material, together with the study of different cation ordering

patterns, gave the same local ordering in CaSrTiO3 as had been concluded from other simulation

studies.

Perhaps one of the most important results has been the confirmation that low energy modes

dominate the PDF to such an extent that the model-independent extraction of high energy

phonon dispersion curves from total scattering data is never going to be possible: there is

a point beyond which increasing energy contributions make very little difference to the PDF

peaks. At the same time, the degree to which low energy modes effect the peaks implies that

reliable dispersion curves should be attainable in this region, as has been found by our group

in Cambridge. With the PDF simulation software, it is possible to predict the cut-off point

for phonons-from-diffraction for each individual case. The simulation of α-cristobalite from the

two different potential models with similar low energy density of states, but very different high

energy modes, is a further example of this.

This chapter has introduced the formalism for simulation of PDFs, a set of quantitative

agreement factors, and provided some illustrations of the power of the new GULP PDF module.

This new code has now been incorporated into the beta-version of GULP 3.5, so it is hoped it

will soon find use among a much wider audience. The RMC community are already making use

of it: recent (unpublished) applications include separating the molecular and inter-molecular

components to the PDF of organic crystals. It is used in the rest of this thesis to study local

ordering and as a means of assessing the validity of different potential models (in their ability

to reproduce low energy dynamics and stable structure), and has proved a useful tool alongside

the simulation of inelastic neutron scattering patterns for many materials.
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Chapter 3

Evaluation of domain models for

β-cristobalite from the

Pair Distribution Function

The new technique of phonon-based computer simulations of Pair Distribution Func-

tions (PDFs) is used1 to address the question of whether the structural disorder in the

high temperature β-cristobalite phase of silica can be explained on the basis of domain

models. None of the domain models give as good an agreement to experimental data

as previously reported atomic configurations derived from a Reverse Monte Carlo

analysis that are consistent with the Rigid Unit Mode model. This has immediate

implications for the use of these models for simulation studies.

3.1 Introduction

The atomic structure of the high-temperature β-phase of cristobalite, SiO2, has long elicited a

controversy that remains unresolved. Whilst the average structure is undisputed – cubic Fd3m

space group, Si atoms occupying sites that form a diamond lattice, and O atoms having average

positions mid-way between Si atoms (Peacor, 1973; Schmahl et al., 1992; Wright & Leadbetter,

1975) – and whilst it is also generally accepted that the structure must be disordered, there is

no consensus as to the nature of the disorder.

The simple representation of the average structure described here is shown in Fig. 3.1. The

main reason for believing that the structure of β-cristobalite is disordered is that this literal

interpretation of the structure gives an unnaturally straight Si–O–Si bond angle of 180◦ and a
1The majority of results presented here have recently been published as an IOP select paper (Cope & Dove,

2010).
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Figure 3.1: Crystal structure refinement of β-cristobalite with the single-site model for the
oxygen atoms have unrealistically straight Si–0–Si bonds. The refinement yields large thermal
displacement ellipsoids for the oxygen atoms elongated in the directions normal to the nearest-
neighbour Si–Si vectors. (From Tucker et al. (2001c), used with permission.)

Si–O bond of length 1.55 Å, in contrast to typical values for silica and silicate structures of∼ 145◦

and ∼ 1.61 Å respectively, as in the structure of low-temperature α-cristobalite (Pluth et al.,

1985; Schmahl et al., 1992). The refined crystal structure of β-cristobalite based on this idealised

structure presented in Fig. 3.1 shows a wide distribution of displacements of the oxygen atoms

in directions normal to the Si–Si vector. This suggests either large thermal fluctuations or, more

likely, some degree of disorder in the actual positions of the oxygen atoms (Dove et al., 1997a;

Peacor, 1973; Schmahl et al., 1992; Tucker et al., 2001c).

The rigidity of SiO4 tetrahedra means that large-amplitude rotations of the Si–O bond can

only occur by rotating the tetrahedra, and since neighbouring tetrahedra are linked into an

infinite network a rotation of one tetrahedron will necessitate coupled rotations of surrounding

tetrahedra. Thus the question that is often posed, even if only implicitly, is how to create disorder

on a local scale whilst preserving the integrity of the tetrahedra? The importance of this question

transcends the specific example of cristobalite; this issue is encountered, for example, in attempts

to understand the relationship between structural fluctuations and physical properties, such as

negative thermal expansion (Barrera et al., 2005).

Within the literature there are two approaches for understanding this disorder, based either

on the existence of domains or on Rigid Unit Modes (RUMs): work by our group in Cambridge

has demonstrated that the dynamic disorder produced by RUMs can yield excellent agreement

to experimental data. However, to date there has been no attempt to assess the relative merits

of the domain models, and no means to compare them to the RUM model at the critical short- to
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mid-range length scale. The key experimental probe required to assess the validity of the various

models on an experimental basis is measurement of the PDF (Schmahl et al., 1992) which can

reveal fluctuations of the local structure that give rise to significant differences from the average

structure.

Data for the PDF of the two phases of cristobalite were first reported by Dove et al. (1997a)

and subsequently analysed using the Reverse Monte Carlo (RMC) method (Tucker et al., 2001c).

The experimental PDF showed that the average instantaneous Si–O bond lengths are indeed

around 1.61 Å over a wide range of temperatures, and the PDF data for O–O and Si–Si distances

can be best understood with an average Si–O–Si angle of 146◦ and ideal tetrahedral geometry

of the SiO4 units (Dove et al., 1997a). This immediately confirmed that the local structure of

β-cristobalite must arise through rotations of the SiO4 tetrahedra.

What is needed to conclusively demonstrate which approach can best model the dynamical

disorder in high temperature cristobalite is the new PDF simulation tool introduced in Chap-

ter 2. The primary aim of this chapter is to use this new approach to resolve the controversy

surrounding the local structure of β-cristobalite through the first quantitative analysis of the

different models. I begin with a historical review of the various models followed by a detailed

comparison of predictions from the different models.

3.2 Historical survey of models of disorder in β-cristobalite

3.2.1 Multi-site models

The first attempt to describe a disordered atomic structure of β-cristobalite, shown in Fig. 3.2,

was to assume that the oxygen atoms occupy six positions in a ring around the mean position,

each with a fractional mean occupancy of 1/6 (Nieuwenkamp, 1937; Peacor, 1973). This al-

lows better agreement between the calculated and observed diffraction patterns than using the

ideal cubic structure, giving bond lengths and angles that match the PDF analysis (Dove et al.,

1997a; Peacor, 1973; Schmahl et al., 1992; Tucker et al., 2001c). However, the model doesn’t

address the issue of how the disorder can be accommodated when it requires rotations of whole

SiO4 tetrahedra. Moreover, it is not easy to differentiate between a multi-site model and a

continuous distribution of atomic positions because the distance between neighbouring oxygen

sites in this model is comparable with the resolution of the diffraction experiment. The prob-

lem is amplified when thermal motion is included – as demonstrated by the way the thermal

fluctuations shown in Fig. 3.2 smear the distribution of oxygen atoms when described using

the six-site model. It should be appreciated that the maximum scattering vector Q obtainable
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Figure 3.2: Crystal structure refinement of β-cristobalite with the six-site model, showing more
reasonable bond angles than in the single-site model. Note the overlapping rings of oxygen
thermal displacement ellipsoids, discussed in the text. (From Tucker et al. (2001c), used with
permission.)

with conventional diffraction, Qmax = 2π/dmin, leads to a best resolution in any refined real-

space structure of ∆r = 2π/Qmax = dmin, where dmin is the minimum d-spacing observed in the

diffraction pattern. For X-ray diffraction experiments using standard Cu Kα radiation, the best

real-space resolution possible is ∆r ∼ 0.8 Å. Using neutron diffraction from a spallation source

as in Schmahl et al. (1992) can further improve this. Total scattering experiments extend the

Q range so the resolution is even finer: the data used here have a resolution of 0.13 Å.

3.2.2 Domain models

The most popular interpretation of the structural disorder has been to assume that the local

structure consists of domains of a lower-symmetry phase, with the average cubic symmetry

arising as an average over all possible orientations of these domains. The first domain model

was proposed by Wright & Leadbetter (1975) (WL), followed by an alternative model proposed

by Hatch & Ghose (1991) (HG). A search of the Science Citation Index at the time of submission

highlights the fact that the WL model has gained more popularity than the HG model in the

literature and is frequently being used in simulation papers as the starting point for static energy

calculations (such as Arasa et al., 2008; Jiang & Carter, 2005) although neither model has been

subjected to detailed scrutiny.
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3.2 Historical survey of models of disorder in β-cristobalite

3.2.2.1 The WL model

The WL model (Wright & Leadbetter, 1975) proposes that the disorder is accommodated by

a local distortion of the crystal structure into the tetragonal form of space group I42d. The

average cubic phase results from disorder over all possible orientations of small domains of

this structure. In fact, WL suggested that a domain could be as small as one unit cell. The

structure proposed by WL is shown in Fig. 3.3: it is derived from the ideal cubic structure (also

shown) by a rotation of the tetrahedra about the [0, 0, 1] axis. This distortion corresponds to a

phonon mode of zero wave vector (the Γ point at the centre of the Brillouin zone). The lattice

parameters for this model (after lattice energy minimisation, see Section 3.4) are a = 5.028 Å

and c = 7.205 Å, with a mean Si–O distance of 1.597 Å.

3.2.2.2 The HG model

In the HG model (Hatch & Ghose, 1991) the disorder arises from all twelve orientations of do-

mains of the tetragonal low-temperature α form of cristobalite. The structure can be compared

with the ideal cubic and WL structures in Fig. 3.3. Here, tetrahedra are rotated about axes par-

allel to the horizontal and vertical directions in the plane of the diagram (orthogonal axes normal

to the [0, 0, 1] axis). This distortion arises from a phonon mode with wave vector k = (1, 0, 0),

corresponding to the X-point on the face of the Brillouin zone. The lattice parameters for this

model (after lattice energy minimisation) are a = 5.010 Å and c = 7.062 Å, with a mean Si–O

distance of 1.597 Å.

3.2.3 The Rigid Unit Mode model and evidence from Reverse Monte Carlo

simulations

Analysis of the rigidity of a model structure based on fixed SiO4 tetrahedra with flexible linkages

at the shared corners showed the existence of planes of wave vectors in which one or more phonons

could propagate without deforming the tetrahedra (Hammonds et al., 1996; Swainson & Dove,

1993). These phonons, called Rigid Unit Modes (RUMs), will have low frequency because

they do not involve the larger force constants associated with deformations of the tetrahedra.

The prediction of planes of low-frequency modes in β-cristobalite exactly matches the diffuse

scattering seen in transmission electron diffraction (Hua et al., 1988). Thus it was proposed

that the disorder in the cubic β-cristobalite arises from the dynamic superposition of all RUMs

across the planes of wave vectors, giving large contributions to the atomic motions because their

amplitudes scale as 1/ω. This interpretation by our group in Cambridge has been supported

by a number of independent simulation studies (Bourova & Richet, 1998) as well as model

simulations (Gambhir et al., 1999).
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WL model

HG model HP model

Ideal cubic

Figure 3.3: Comparison of the ideal cubic representation of the crystal structure of β-cristobalite
with the crystal structures of the WL model (space group I 4̄2d, viewed down the tetragonal
[0, 0, 1] axis), the HG model (experimental α-phase, space group P41212, viewed down the
tetragonal [0, 0, 1] axis), and the HP phase (experimental high-pressure phase, space group
P21/c, viewed down the [2, 0, 1] direction). These structures correspond to modulations having
wave vectors located at different points on the surface of the Brillouin zone of the ideal cubic
structure. SiO4 tetrahedra are highlighted as shaded solid objects. Model structures were
obtained using lattice energy minimisation as described in the text.
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3.2 Historical survey of models of disorder in β-cristobalite

The suitability of the RUM model is demonstrated by its prediction of the existence of the soft

mode for the β–α transition as seen in spectroscopic measurements in the α-phase (Swainson et al.,

2003; Zhang & Scott, 2007), as well as giving low-frequency phonons that can provide transition

pathways between the different phases.

Reverse Monte Carlo (RMC, Tucker et al., 2001a) simulations based on experimental total

scattering data (Tucker et al., 2001c) showed a number of features supporting the RUM model.

These include reproducing three-dimensional diffuse scattering patterns predicted by the RUM

model and as seen in electron diffraction, and that the oxygen atoms are continuously distributed

on a broad annulus around the Si–Si vector rather than occupying specific sites. Analysis of

the configurations showed that the most significant contributions to atomic motions arose from

SiO4 tetrahedra moving as rigid bodies (Wells et al., 2002).

3.2.4 A new domain model: the HP model

Given that the popular domain models are formed by deformation of the ideal cubic structure

by the eigenvectors of specific RUMs, it became apparent that it would be equally credible

to construct a domain model based instead on the structure (Dove et al., 2000a) of the high-

pressure monoclinic phase. This structure is derived from the parent cubic structure by a more

complex set of rotations involving unequal rotations of the SiO4 tetrahedra about two orthogonal

axes with wave vector k = (1
2 ,

1
2 ,

1
2), corresponding to the L-point on the face of the Brillouin

zone. This is compared with the other structures in Fig. 3.3. The lattice parameters for this

model (after lattice energy minimisation) are a = 8.739 Å, b = 5.017 Å, c = 10.067 Å and

β = 125.2◦, with a mean Si–O distance of 1.597 Å.

3.2.5 Is there a way to reconcile the models?

The three domains discussed above all represent distortions of the cubic structure via conden-

sation of individual RUMs of β-cristobalite. Thus the RUM model of disorder will include

fluctuations into each of the domain model phases considered here, but will also include a myr-

iad of other fluctuations with a range of wave vectors. Whilst all three domain structures are

symmetry subgroups of the parent cubic symmetry, they are not subgroups of each other but

instead are orthogonal deformations of the structure. There is no a priori reason to suggest a

preference of either the WL, HG or HP structures over the others as candidates for any domain

model, but it is possible that one domain fluctuation might be particularly important. This has

not yet been tested.

All models imply a length scale over which the local symmetry will be lower than the average

symmetry, which might enable certain anomalies in the spectroscopy to be understood: both
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Figure 3.4: Experimental (thick black line) and RMC model (purple) D(r) of β-cristobalite
(SiO2) at 700 K, showing how the weighted partial pair distributions (offset) for each atom-type
contribute ot the total D(r). The difference plot shows the excellent agreement between the
RMC model and the experimental data, giving an A2

r agreement factor of 0.19. The extra ripples
in the experimental data are Fourier truncation ripples and should be ignored.

Infrared and Raman spectra contain an unexplained mode in the α phase that remains on

heating above the α–β phase transition but that should be absent by symmetry in the β phase.

In contrast, all other vibrations that are expected to disappear at the phase transition do in fact

do so (Swainson et al., 2003). In light of this Zhang & Scott (2007) proposed that the WL model

should be reconsidered as the best approach to understanding the structure of β-cristobalite.

Unusually, they also suggested that the structure of the α phase, about which there has been

no controversy, should be assigned to a lower-symmetry structure. Coh & Vanderbilt (2008)

found a possible explanation for the anomalous IR mode through an analysis of the phonons

in the WL structure based on ab initio DFT methods, based on domains of the WL structure.

Accepting this as further proof of the importance of disorder, the critical issue is to understand

the structure in terms of its short-range order and fluctuations. The PDF is the ideal probe

of the relevant length scales, so the new GULP PDF module is the appropriate tool to allow

comparison of the domain models against experimental data.
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3.3 Experiment

Previously published neutron scattering measurements for the PDF of cristobalite (Dove et al.,

1997a; Tucker et al., 2001c) are used for comparison with the new simulations. The original

data were collected on the (now decommissioned) ISIS LAD diffractometer (Howells & Hannon,

1999); details are given in the primary references (Dove et al., 1997a; Tucker et al., 2001c). This

was the forerunner of GEM, and provided low Q-space resolution but high intensity over a large

Q-range yielding excellent resolution in the real-space PDF. The machine was optimised for use

with disordered materials, but for a crystal of cubic symmetry and modest size unit cell it has

still adequate Q-space resolution. A Monte Carlo approach was used to obtain the PDF from

the total scattering data – this method enforces the absence of Fourier ripples before the first

peak (Tucker et al., 2001b). Experimental data are available for both phases of cristobalite,

collected at temperatures of 475 K (α) and 575 K, 700 K and 825 K (β). The measured PDFs

of the two phases show significant differences for distances beyond the nearest-neighbour Si–O,

O–O and Si–Si peaks, as noted in the original publication (Dove et al., 1997a). On the other

hand, there appears to be little difference in the measured PDFs of the β phase at different

temperatures.

Published RMC analysis (Tucker et al., 2001c) of total scattering is used for comparison

with the domain models. The RMC method (Tucker et al., 2001a) enables the total PDF to

be interpreted in terms of partial PDFs, d′m,n(r). These are shown in Fig. 3.4 to facilitate

interpretation of the individual peaks in the PDF. It is clear that beyond the first two peaks

the various features in the experimental PDF correspond to contributions from more than one

atom pair.

3.4 Simulation

Computer simulations were performed using the new GULP PDF module described in detail in

Chapter 2. I use the popular and highly transferable empirical potential model of Sanders et al.

(1984), which I have shown to give a good PDF for α-cristobalite in Chapter 2. Therefore I

expect the Sanders model to reproduce the positions of the main features in D(r) to within

2–3%. Larger differences would mean that the calculation and experiment are not in agreement.

In this regard it can be noted that the main features in the experimental PDFs of both phases

of cristobalite show considerable differences beyond the first Si–Si peak (peak three).

Each structure was relaxed to give the minimum lattice energy, and phonon calculations were

performed using these relaxed structures. Convergence tests were performed to ensure accurate

calculation of phonon properties – with emphasis on the PDF peak widths – and obtained using
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a standard Monkhorst-Pack grid with 35 points along each reciprocal lattice vector and 42875

wave vectors within the first Brillouin zone. PDFs were computed for the same temperatures as

in the experiments.

3.4.1 Agreement factors

Quantitative agreement factors as defined in Section 2.4 have been calculated across the full

range of the graphs presented here. To aid interpretation of the agreement factors, it should be

noted that comparing the experimental PDF data for α and β phases gives a value of A2
r = 0.66.

3.5 Results, discussion and conclusions

3.5.1 A benchmark from analysis of α-cristobalite

Benchmarks for both good and poor agreement are provided by comparing computed PDFs of

each model with α-cristobalite experimental data, Fig. 3.5(a). The HG model is expected to

give good agreement in this case, as this model is that of α-cristobalite. On the other hand, the

WL and HP models should give poor agreement. Thus A2
r = 0.49 obtained for the HG model

contrasts with A2
r = 3.11 and A2

r = 1.38 for the WL and HP structures. Fig. 3.5(a) shows how

the difference plot and peak positions, widths and intensities reflect the level of agreement with

experimental data.

3.5.2 Evaluation of domain models for β-cristobalite

The β-cristobalite experimental data and the three proposed domain models are compared in

Fig. 3.5(b). A close match for nearest-neighbour Si–O, O–O and Si–Si peaks is seen in all

structures, reflecting the fact that all models have nearly-perfect SiO4 tetrahedra. There is

reasonable agreement with the positions of the two features at around 4 and 5 Å in the overall

PDF – from Fig. 3.4 it can be seen that these correspond to peaks in both the Si–O and O–O

partial PDFs – but although the positions of these features match the data, the widths given

by the WL and HP models are significantly different from experiment.

The WL model matches the positions of several features in the experimental PDF up to

about 10 Å, and beyond the first five peaks gives a better fit to the position of peaks than the

HG model. However, features in the WL model are significantly sharper than for experiment.

This enhanced sharpening arises from the fact that the WL model crystal structure is simpler

than the other models, so the peak broadening arises mostly from phonon broadening rather

than the overlap of several atom-pair peaks with similar r. The WL model shows a notable

difference from the experimental PDF at around 11 Å. The agreement factor has a value of
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Figure 3.5: D(r) of (a) α-cristobalite (SiO2) at 475 K comparing experimental data (thick black
line) with the three structural models discussed in the text. This shows how well the simulation
can reproduce experimental data for a known structural model. Blue line: actual α-cristobalite
structure. Green line: WL I 4̄2d structure. Red line: HP P21/c structure. The difference
plot is shown above the main figure, using the same colours. (b) Shows the equivalent plot for
β-cristobalite (SiO2) at 700 K. The HG model is based on the α-cristobalite structure (blue
line).
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A2
r = 1.43, showing that the WL model no more corresponds to the β-cristobalite data than

the HP model corresponds to the α-cristobalite phase. The WL model clearly gives a “poor fit”

according to the benchmarks.

There is significant disagreement between the HG and experimental PDF beyond the first

five peaks, starting clearly with the first feature at 6.4 Å. Subsequent features become out of

register; for example, features at distances between 8–11 Å are at slightly lower r, and the

predicted peak at 12.5 Å is not reflected in the experimental data. These discrepancies are

consistent with differences between experimental PDFs for the two phases of cristobalite noted

previously (Dove et al., 1997a), and their effects are seen in the larger agreement factor of

A2
r = 0.78 in the β-phase.

Finally, the HP domain model yields a similar level of agreement in its PDF to the HG

domain model. It shows a reasonably good register of corresponding features between data and

simulation, although the peak at 5 Å is too narrow. Like the WL model, the HP model gives a

better fit than the HG model in the region of 6.4 Å and 12.2 Å due to having a more complex

structure. This is reflected in the agreement factor, A2
r = 0.71, which is comparable to that

obtained with the HG structures. Again, this falls outside the benchmark for a good agreement.

3.5.3 Discussion and conclusions

Having established the power of the PDF simulation software in the previous chapter, this study

on β-cristobalite provided the opportunity to use these new methods of analysis to help resolve

the controversy by assessing how far the popular structural models stand up to analysis on this

key length-scale.

Our group in Cambridge have long argued (Gambhir et al., 1999; Hammonds et al., 1996;

Schmahl et al., 1992; Tucker et al., 2001c; Wells et al., 2002, amongst others), that a model of

dynamic disorder is necessary to understand the structure of β-cristobalite, but showing that

such a model can reproduce experimental data is not the same as proving that other, simpler

methods, cannot. The results from my new phonon-based simulation tools makes it immediately

obvious that none of the domain models have sufficient flexibility to accurately reproduce the

experimental PDF. They all fail to give agreement factors in any way comparable to that of

the α-cristobalite model to the α-cristobalite experimental data. However it is interesting to

note that the HP domain model, which has not previously been considered as a possible domain

structure, shows slightly closer agreement with experimental data than the WL and HG models

at short length scales, while still breaking down on mid-range length scales (around 12.5 Å).

This suggests that no one domain model can explain the disorder in β-cristobalite.
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This first conclusion is of great importance as the WL model in particular is widely used as the

starting point for simulations. The appeal is obvious: the domain models are simple, containing

only a limited number of atoms. But it is important that workers in this area recognise that

mid-range structural detail will not be accurately reproduced, making such simulations without

merit.

It is clear that the best description of the PDF comes from the models generated by the RMC

approach (Tucker et al., 2001c), as is evident in the agreement factors. Given that the RMC

method is driven by improving agreement to experimental data, this is not surprising. However,

the degree to which this improves upon the domain models implies that the level of disorder in

the RMC configuration realistically reproduces the experimental situation. While the agreement

of the RMC results with data do not preclude other configurations with more constraints (e.g.

a domain model) from giving similarly good agreement, none of these models actually do so.

Moreover, the RMC fits are consistent with the absence of domains, as demonstrated through

the calculation of the bond orientational distribution function (Tucker et al., 2001c), and show

a significant amount of RUM motion as seen in geometric algebra analysis (Wells et al., 2002).

Much of the discussion about the disorder and local structure of β-cristobalite concerns the

length scale over which structural fluctuations depart from the average structure. This is where

comparison of models against experimentally-derived PDFs provides important quantitative

information. Over length scales associated with Bragg diffraction, the space- and time-averaged

structure has the ideal Fd3m structure, but over short length scales we expect fluctuations from

this average structure. It has been interesting to see how the various domain models yield PDFs

that have some similarities to the experimental PDF, but beyond distances of around 10 Å the

similarities are lost, and even at lower distances the experimental PDF of the WL model appears

to underestimate the degree of structural disorder. Since this length scale does not extend much

beyond the unit cell, a considerable volume (more than half) of any structure that consists of

domains of one unit cell size will actually be domain walls, and these will be formed by RUM

deformations for a wide range of wave vectors.

Furthermore, whilst the various domains discussed here will exist as fluctuations of the struc-

ture over a local length scale, these results can preclude the possibility that the WL or HG do-

mains will be dominant. By demonstrating that yet another RUM deformation can yield compa-

rable or even closer agreement on the local scale, this favours the proposition of Swainson & Dove

(1993) and Hammonds et al. (1996) – supported by the RMC analysis (Tucker et al., 2001c)

– that the local fluctuations will correspond to Fourier superpositions of the planes of RUM

phonons. The WL, HG and HP RUMs (Γ, X and L points respectively) will be included but

will not be the only contributions. It is anticipated that it will be possible to construct other
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types of domains from the known RUMs, which, like the HG, WL and HP models, preserve the

size and shape of the SiO4 tetrahedra. Extending the recent simulations on transition pathways

between different domains (Coh & Vanderbilt, 2008) has the potential to add significantly to

our understanding of the disorder in β-cristobalite.

The approach used here has applications beyond the specific example of cristobalite. There

are many situations where correctly reproducing the short- to mid-range structural detail is

important, some of which will be discussed in the following chapters. This tool can incisively

differentiate between models that can be hard to distinguish through other means. With the

inclusion of this new software in the next release of GULP, it can be hoped that this approach can

become routine. Moreover, there is no reason to be constrained to empirical potential models.

Force constants extracted from ab initio models can equally be used, and it would not be difficult

to adapt the routines in the new GULP module for use directly with ab initio software.

In conclusion, this chapter has further demonstrated the usefulness of this new analytical

approach, giving rise to the recommendation that neither the WL nor HG domain models should

be used as models for simulations involving β-cristobalite.
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Chapter 4

New Methodologies for Inelastic

Neutron Scattering:

Simulation and Refinement

This chapter focuses in detail on simulations of single crystal and powder inelastic

neutron scattering experiments using the new GULP SQW module, incorporating ap-

proximations for multiple scattering and multi-phonon events in powders. To apply

experimental resolution functions to these simulations, and to allow refinement of

underlying interatomic models, new cross section models have also been produced for

TOBYFIT. A simple aluminium powder refinement is presented to demonstrate the

new methodology.

4.1 Introduction

The new generation of inelastic neutron spectroscopy machines open up exciting opportunities for

examining huge ranges of reciprocal space. The challenge is the software to handle, manipulate

and simulate these datasets.

Inelastic neutron or X-ray spectroscopy (INS or IXS) is the best experimental probe of the

full lattice dynamics of a crystal structure. However, it is important not just to see the effects of

the phonon modes, but also to understand the origins of the atomic motion due to interatomic

interactions. For this purpose, I have developed simulation software, in the form of new GULP

modules, to give INS S(Q, ω) spectra from any force constant or empirical potential model. I

also use TOBYFIT to convolved the simulated spectra with experimental resolution functions,

allowing direct comparison with experiment.
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While extraction of phonon information has been shown in Chapter 1 to be highly computa-

tionally intensive, simulation of and indeed model refinement from magnetic neutron scattering

is nothing new: TOBYFIT was designed for this purpose (Perring, 1989) and continues to be

used by ISIS users (e.g. Christianson et al., 2008). The challenge has been to adapt these ap-

proaches for phonons. With the advent of MERLIN, we have a machine capable of exploring

large sections of reciprocal space simultaneously, providing the perfect dataset for simulation

and model refinement. Recent advances in computing power have kept pace with developments

in instrument design, and I am now able to produce INS spectra based on lattice dynamical

calculations. The work contained in this chapter is the first step towards making full use of this

huge sweep of data to produce highly accurate interatomic models.

In crystallography, structural powder refinement has become common place. For many sys-

tems, it is not possible to produce suitable single crystals for full extraction of phonon dispersion

curves, so the inelastic scattering community is in need of a similar powder refinement approach

for dynamical information. Phonons-from-diffraction can only go so far, as seen in earlier chap-

ters. The question is now how much can be extracted from powder INS data?

In addition to convolving the INS spectra from my simulations with experimental resolution

functions, working with TOBYFIT has allowed access to a Levenberg-Marquard least-squares

refinement package which allows model refinement against powder INS data. Computing power

has only recently reached a stage where it might be possible to perform these sorts of refinements.

Other groups have been working (independently) on this problem: the first group to publish

work in this area are based at the European Synchrotron Radiation Facility (ESRF) in France,

working with IXS. Fischer et al. (2009) developed a new methodology for simulating the IXS

powder spectra up to ∼8 Å, and refining a force constant model against experimental data

collected at ESRF using the Levenberg-Marquard algorithm, sampling the powder spectra and

taking ten selected spectra (constant-Q cuts) for the refinement. They make the assumption

that the one-phonon scattering dominates the collected IXS spectra (this is largely valid for both

IXS and INS) and make a very simple approximation to two-phonon scattering, but otherwise

include no other backgrounds (see Section 4.3.2.1). This approach successfully extracted full

phonon dispersion curves compatible with single crystal data for simple test-cases of beryllium

and graphite1.

The same group reportedly ‘retrieved the full lattice dynamics of stishovite, SiO2, by a

combination of powder IXS and ab initio calculations’ (Bosak et al., 2009). However, this was

more a validation of the ab initio model against powder data, confirmed by comparison to

single crystal data, than actual ‘retrieval’. Retrieval would suggest that the model was somehow
1The refinements took of the order of 4 days on 2.5 GHz, 8GB RAM machines, although they also parallelised

the program in line with the number of force constants.
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improved in light of experimental data, for example by refining the underlying interactions to

produce an empirical model based on the first principles interactions. Bosak et al. (2009) do

adjust the energy scale by 1.05%, such a mismatch being normal for GGA DFT calculations,

although simple energy scaling could just as well be performed against Raman or IR data. What

they do achieve is validation of a first principles model against powder data. They sensibly

advocate this method of model validation as being valuable for studying thermodynamics of

materials where single crystals are unavailable. My work is able to mirror this for inelastic

neutron spectroscopy through the new GULP and TOBYFIT developments, while also offering

some important additional features, and a real possibility of retrieving lattice dynamics from

powder INS spectra.

The challenge with powder refinement is that as the number of atoms in the unit cell in-

creases, so do the number of modes. In embarking upon this project, the concern was always

that it would be difficult to unambiguously decipher the different modes from the powder av-

erage alone. The work of Fischer et al. (2009) and Bosak et al. (2009) confirms this from IXS:

they now believe ‘powder refinement’ is more accurately reduced to model validation and mi-

nor adjustments. They emphasize the need for a good starting model for any refinement, but

still conclude that powder refinement is ‘impossible’ for complex materials with dense phonon

branches. As will be demonstrated in this thesis, I disagree, believing there is good reason to

expect that powder refinement, with appropriate additional experimental data, will be useful for

a wide range of materials.

Where single crystals are available, it will soon be possible to perform full refinement of

interatomic models against INS data. I have developed software to allow the simulation of

single crystal INS spectra, fully convolved with experimental resolution functions for any crystal

orientation. By combining many of these spectra, the four dimensional scattering can be built

up and visualised using the purpose built HORACE package1. Fitting is not yet possible as

each simulation and convolution of the resulting spectra with experimental resolution functions

takes several hours in the current implementation, leading to fitting cycles taking weeks or

even months. However, there is no reason why refinement should not be possible once the

computational barriers have been overcome through parallelisation.

At the same time, Russel Ewings at ISIS has been working on one-phonon coherent scattering

simulations based on phonon information derived from ab initio calculations. His simulations are

performed in HORACE, and are akin to the one-phonon single crystal data that the new GULP

module produces albeit more readily visualised. Like the basic SQW GULP output, it ignores

the resolution effects arising from the rotation of the crystal when an experimental dataset is
1Further details are given below. Full documentation and the source code are available from URL - I.
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produced. Recent (unpublished) work on MnSi showed excellent agreement between the ab initio

model and experiment. The refinement capabilities within HORACE allowed small adjustments

of the energy scale (as expected when working with ab initio phonons), but no attempts have

been made to refine the underlying force constant models. Thus it is now possible to perform

simulations for the validation of ab initio models using HORACE.

My work complements these developments as I am able to perform simulations producing

spectra convolved with experimental resolution functions using both force constants (accessible

from ab initio calculations or other models) and, uniquely, empirical potential models. Empirical

models have the advantage of being transferable amongst polymorphs and experimental condi-

tions. While the current trend is to build potential models, the non-linear contributions of the

empirical potentials mean that they are not suited to automated refinement against such a huge

bank of data except for very simple cases. Force constants are useful for giving a phenomenolog-

ical understanding of atomic interaction and do not need optimising at every step. Thus a force

constant model is well suited to refinement and can aid interpretation of the features seen exper-

imentally. As the force constant model is related to an empirical potential as the first derivative,

and as a good force constant model will encapsulate all the experimentally observable phonon

properties such as phonon dispersion, elastic and dielectric constants, it would be possible to

use such a model as the ‘observable’ in an empirical potential model refinement. This would be

quicker and more accurate than refining the empirical model against the normal small subset

of experimental observables, and simpler than attempting to refine the empirical model against

the full INS single crystal spectra. However, in this chapter I focus on the general principle of

refining interatomic models.

This chapter give details of these new computational methodologies: GULP INS simula-

tions of powders and single crystals, additional powder backgrounds, use of TOBYFIT both for

convolving with experimental resolution functions and finally for least squares refinement of in-

teratomic models against powdered datasets. I conclude with a simple test case using aluminium

powdered data, as proof of principle for both force constant and empirical model refinements.

This gives the first indications of success for dynamics from powdered INS.

4.2 Existing software and file-types

I base my new simulation approach on two academic programs: GULP and TOBYFIT. GULP

is used to produce the necessary phonon information from a wide variety of different empirical

or force constant models, as discussed in Section 1.3. I have developed new modules to use

this information to generate the inelastic neutron one-phonon scattering function, S1(Q, ω).
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TOBYFIT (version 2)1 is used to provide experimental resolution functions appropriate to the

different chopper spectrometers. This package also allows fitting of user-defined models against

experimental data using the MULTIFRILLS least squares refinement program (URL - H). I

have produced several of these cross-section models for TOBYFIT making use of the new SQW

GULP module.

TOBYFIT uses the ISIS .spe file-type. The ISIS data normalisation software, HOMER and

ILIAD, which are part of the LibISIS suite2, are used to create these files. INS time-of-flight

data are converted into the phonon scattering function and normalised against the peak shape of

a ‘white beam’ Vanadium standard, typically collected once each cycle. Use of a monochromatic

vanadium run allows normalisation to absolute units (when combined with detailed sample

information). Otherwise, data is self consistently normalised against one of the monitors. The

monitors give a measure of the amount of beam seen by the sample, so allow the run-length

to be assessed in terms of the number of counts, offsetting temporal variations in the beam. It

should be noted that attempts to normalise to absolute units, even using a standard such as a

vanadium sample (e.g. Verkerk & Well, 1985) can introduce significant errors (Benmore et al.,

1998), partly due to the inability to reproduce the sample geometry, as well as through multiple

scattering, container effects and sample attenuation.

The ISIS .spe format files contain the scattering intensity (S) for each detector (by angle φ

(P)) and energy bin (E). Every detector is interpreted individually for single crystals, but for

powders, detectors are grouped into rings, to give a two dimensional dataset (which I denote Q,ω

to distinguish it from the full four dimensional single crystal dataset of Q, ω). A .phx file is used

to interpret the detector information. The energy binning is set by the user during normalisation,

and ranges from the negative (neutron energy gain in the collision with the crystal) through the

elastic line to the positive (energy loss). The maximum energy available is typically a few meV

below the incident energy, and appropriate binning is ∼10% of the incident energy.

For visualising both experimental data and simulations, I use MSLICE3 together with the

NIST MSLICE emulator in DAVE4. Powdered S(Q,ω) spectra are normally visualised as two-
1TOBYFIT has recently had a major new release. Now based within MATLAB, TOBYFIT GRID has been

parallelised and designed to run over a computational GRID of many remote machines. This release came too
late for use in this work, but will provide interesting new opportunities for further developments of my work.

2LibISIS (URL - J) was primarily developed by Dickon Champion, Freddie Akeroyd, Pranav Amin, Toby
Perring and Dean Whittaker, and runs within MATLAB.

3MSLICE is used for the visualisation and manipulation of data from .spe files. Source code and docu-
mentation are available from URL - K as both a MATLAB GUI (allowing further interaction with data through
standard MATLAB commands) and standalone GUI (for windows). Originally developed by Radu Coldea, now
maintained within the LibISIS suite of software.

4DAVE is available for download from URL - L, both as IDL source code and binaries for Windows, Linux
and Mac OS X. The GUI for the MSLICE emulator is similar to the main ISIS version, although small differences
exist as both versions have continued to develop independently.
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dimensional slices with Q along the x-axis, ω along the y-axis, and S(Q,ω) reflected by the

colour. Constant Q or w cuts are also frequenctly used, with the scattering intensity on y-axis.

Single crystal data is more difficult to visualise due to the four-dimensional nature of S(Q, ω).

Individual INS spectra (from the .spe file) can be combined and visualised using the HORACE

package introduced above. HORACE produces a finely binned grid of Q and ω space – the

generation of this overarching four dimensional dataset is slow, but once written to file can be

reused and is in a format optimised to allow rapid access to the data – which can be sliced (two

dimensions) or cut (one dimension), integrating over small regions in the other axes, to allow

visualisation. HORACE also provides the ‘slice-o-matic’ to visualise multiple slices on a set of

three dimensional axes, frequently two in Q and one in energy, with the colour representing

the scattering intensity. The MSLICE emulator in DAVE is able to perform a similar function

combining multiple .spe files. Without the generation of the intermediary files, each cut or slice

can be slow, and the visualisation is less sophisticated than HORACE.

4.3 Program description for the new GULP SQW module

4.3.1 Main purpose

Working with standard GULP interatomic models, the phonon information (eigenvectors and

frequencies) generated over a fine k-grid covering the first Brillouin zone is used to produce the

one phonon neutron scattering intensity for a given crystal, either as a single crystal or a powder

average. Temperature dependence is introduced through the Debye-Waller temperature factor,

calculated from a matrix of mean squared displacements (referred to as the Bmatrix ) derived

from the phonon information, together with the bose-occupation number.

For powdered samples, the GULP SQW module can function entirely within GULP. The INS

spectra (which I denote S(Q,ω) with powders) are produced in a format suitable for visualisation

with any plotting package. Additional backgrounds are available, with simple approximations

for the multi-phonon and multiple scattering with powder averaged intensities. A density of

states is already produced by GULP based on the phonon information alone, but the new SQW

module also gives a density-of-states-weighted G(Q,ω) version of S(Q,ω) which is summed to

give G(ω). In addition, with appropriate ISIS parameter files, the incident energy and detector

range of ISIS chopper spectrometers can be used to define the appropriate coverage of reciprocal

space, and an ISIS format .spe file can be produced for use with the MSLICE visualisation

package.

For single crystals, the problem of visualising the four-dimensional INS spectra (which I

denote S(Q, ω) with single crystals) is reserved for specialist visualisation packages. Instead, a
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machine-readable ASCII output file is produced for use with TOBYFIT to simulate the equiva-

lent experimental runs at a given crystal orientation as .spe files. These can then be combined

in DAVE or HORACE, allowing visualisation of the phonon features.

4.3.2 Implementation

Section 1.4 introduced the underlying equations governing neutron scattering, which have been

implemented in a new module of GULP. GULP makes extensive use of symmetry, and the new

code automatically picks up on this, working within a symmetry-reduced cell where possible1.

A dense2 Monkhorst-Pack grid is used to calculate the phonon information, as in normal

GULP functionality. For the new module, the eigenvectors are rephased (see Section 1.2.1) to

remove the dependence on the position of the atom with the cell, bringing them in line with the

e used in the formalism. Standard GULP usage overwrites the eigen-data for every k-point to

minimise memory requirements. The SQW module requires repeated access to this data, so here

it is retained in memory.

The formalism of Section 1.2.6 has been implemented to yield the full anisotropic mean-

squared-displacement matrix (Bmatrix ) for each (core) atom in the primitive cell by summing

over all k-points in turn, as in Eqn. 1.24. The final Bmatrix is stored for subsequent use in INS

simulations (or can be written to file). The number of k-points required to achieve convergence

of phonon properties, and thus suitable for producing the mean-squared-displacement matrix,

may be considerably fewer than the number required to populate the INS simulations. Once a

converged Bmatrix has been produced, manual parallelisation3 of the INS simulations is possible,

performing the S(Q, ω) calculation for each k-point as a separate condor ‘job’. This allows many

k-points or huge supercells to be used efficiently.

The central code for the one phonon coherent scattering function (Eqn. 1.42) is the same for

both powder and single crystal calculations. The main difference is in the binning of the output

data, and the addition of powder averaging in the later case. Both use a simple grid approach,

offering evenly spaced user-defined ‘bins’ in both energy and momentum transfer. Experimen-

tally, detectors are evenly spaced in the angle φ, which gives rise to the characteristic curved

shape of experimental data-ranges when viewed in the conventional Q or Q. This .spe format

can be mimicked by the new GULP module for powders. The interaction with TOBYFIT is

through Cartesian Q points, so the main internal storage of INS simulations is also on Cartesian

axes. For powders, the momentum transfer is binned on a Cartesian array of Q with a specified
1All atoms will be referred to as being in the primitive cell, although it should be understood that user-

instructions to use the full cell are correctly implemented.
2It is essential that the user checks that convergence of phonon properties with density of k-points has been

achieved.
3Perl scripts for splitting and re-combining such jobs are included in Appendix C.2.
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dQ. The step-size and range for each of the three axes in a single crystal simulation can be

varied independently. Bins are centre anchored: the bin name refers to the centre point.

The new module uses an ‘extended zone scheme’ to map the contribution of each k-point in

the first Brillouin zone to an extended position1. The required number of Brillouin zones along

each of the Cartesian axes (to the user-defined limit) are calculated: each Q = k + H, where

H is a vector to the origin of the specific Brillouin zone (Eqn. 1.21). Thus Q-space is explored

sequentially in H. This method of summing over all reciprocal lattice vectors ensures the delta

functions cancel the volume weighting term in Eqn. 1.42.

For each derived Q-point, the SQW inner subroutine is called, looping over all frequencies to

generate the inner sum from S(Q, ω) (Eqn. 1.42), while calling the Fmode function to perform

structure factor calculations (Eqn. 1.43) and the bose eins function to give the temperature

dependent Bose factor n(ω) (Eqn. 1.9). Where both energy gain and loss are requested, the

appropriate Bose weighting is applied for each case, and the results binned as negative or positive

energies respectively. The difference between single crystal and powder output is that the

resulting intensity is binned according to Q or Q as appropriate. For powder samples, SQW inner

also applies the powder averaging, to ensure that the actual contributing Q is used as opposed

to the bin-name ‘Q’. The powder averaging is:

P =
VBZ

nk VQdω
(4.1)

where VBZ is the volume of the Brillouin zone, nk is the number of k-points, VQ is the volume of

the bin in Q defined as VQ = 4πQ2dQ and dQ and dω are the bin sizes of momentum transfer

and energy respectively.

Similarly, the single crystals are corrected by a factor of S to account for the binning and

k-point density. This is performed in the calling routine (SQW single) to optimise performance.

S =
VBZ

nk dQxdQydQzdω
(4.2)

In addition to recording the scattering intensity for each bin, a count is made of the number

of ‘hits’ each bin received.

When generated experimentally at ISIS, the normalised output from HOMER has the units

mbarn/meV. The SQW module output follows the same convention, although SI units are used

internally. The user specifies desired units for energy, and chooses fractional or Cartesian units

for single crystal momentum transfer.
1By convention, I refer to positions in the first Brillouin zone as k-points, and general points in reciprocal

space as Q-points.
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The main purpose of the code is to produce the one phonon coherent neutron inelastic scat-

tering function for both single crystal and powdered samples. Various additional functions have

been produced to help with interpretation of the data, and with comparison with experiments.

4.3.2.1 Background: multi-phonon and multiple scattering

It is increasingly becoming obvious to the inelastic scattering community that there is a need for

accurate determination of additional background scattering processes: this has been highlighted

as topic for discussion at the next ISIS inelastic user group meeting. For visual extraction

of dispersion curves from experimental data, or simple comparison of model and data, these

‘backgrounds’ are of little importance. But to allow model refinement it is essential to include

at least an approximation to the key additional scattering process.

In addition to the one-phonon scattering, the new module contains two approximations to

other significant background factors for use with the powder averaging: multiple scattering and

multi-phonon scattering1.

Multiple scattering (transmission factor) The most common form of multiple scattering

is when an elastically scattered neutron is subsequently inelastically scattered before it leaves

the sample. The effect of this is to introduce additional intensity at the energy of the inelastic

event but with the ‘wrong’ momentum transfer. The amount of multiple scattering will depend

on the transmission (T ) of neutrons through the sample. T is typically of the order of 10% for

the materials studied in this thesis.

The effect of multiple scattering in powder samples is most clearly seen at low Q and ω,

where unexpected scattering can be observed under the lowest modes in a dispersion curve (this

is clearly seen in the aluminium data presented below, Fig. 4.2). The more inelastic events

occurring at a given energy at any Q (i.e. the greater the integral of the one phonon scattering

function over all Q at that ω), the more intense the multiple scattering at all Q when combined

with additional elastic scattering events. This gives a uniform addition to the one-phonon

scattering intensity observed in a constant Q cut.

The multiple scattering at a given energy can be approximated from the integral of the

scattering function over the entire Q-range, weighted by a transmission factor, T . Given that

the scattering function in the new GULP module is binned in Q across nQ Qbins of width dQ,

and that Q = Qbin(iQ) for each bin indexed by iQ, the multiple scattering component in each

1The computational demands of similar backgrounds for single crystals have meant that these are currently
not available.
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bin is:

SMS(Q,ω) =
T

100 · nQ

nQ∑
iQ=1

S(Q,ω) dQ (4.3)

Multi-phonon scattering One-phonon scattering processes occur with the creation or anni-

hilation of a phonon of a given energy, subject to the conditions of conservation of energy and

quasi-momentum. Multi-phonon scattering (two or more phonon events) has fewer constraints,

as it is always possible to find two wavevectors that sum to meet the conservation of crystal

momentum conditions (Section 1.2.5) as well as conservation of energy. Thus multi-phonon

scattering does not show the characteristic Q-dependence of one phonon scattering but instead

gives a smooth background to the inelastic scattering data, dominated by polynomial terms in

Q. Importantly, the convolution of multiple inelastic events gives rise to additional scattering at

higher energies, noticeably giving low intensity, Q-dependent intensity above the highest energy

mode for the system.

While it is possible to calculate this explicitly (from Eqn. 1.41), this process is hugely com-

putationally demanding for very little gain in accuracy over other quicker methods. Slightly

more accessible is the incoherent approximation: the incoherent structure factor is multiplied

by the coherent scattering length to give the many-phonon scattering (Placzek & Van Hove,

1955). The one-phonon incoherent scattering is then subtracted, leaving just the multi-phonon

background. But this is still computationally demanding.

In order to balance the demand of a repeated iterative fitting process with a more advanced

multi-phonon (up to 3-phonon) background, taking advantage of the powder averaging, I imple-

ment a different approach. First, recall that the multi-phonon scattering (Eqn. 1.41) contains a

correlation function < [Q · ui][Q · uj ] >m which can be shown to be proportional to Q2m/ωm.

This provides the relative weighting of one-, two- and three-phonon scattering.

As an approximation to two-phonon scattering, I assume equal likelihood of any one-phonon

scattering event being followed by a second, from anywhere in the density of states. Without

the need to satisfy the condition of conservation of crystal momentum, the Q-dependence in

the one-phonon scattering is not preserved. Thus, I first remove the Q-dependent temperature

factor (taking the average over all atoms in the unit cell) from the one-phonon scattering, and

integrate over all Q to give P1(ω). The Cartesian binning system in the new GULP module has

nQ equally sized Qbins such that Q = Qbin(iQ) for each bin indexed by iQ, each bin having

width dQ. Thus the unweighted one-phonon integral is:

P1(ω) =
1
nQ

nQ∑
iQ=1

(
S(Q,ω)

exp(−2W )

)
dQ (4.4)

75



4.3 The new GULP SQW module

This integral can be convolved with itself to give P2(ω), introducing the necessary broadening

of the energy ranges. When weighted by the appropriate m = 2, Q2m/ωm terms this forms the

basis of the smoothly Q-dependent two-phonon scattering.

In the same way, the three-phonon (m = 3) contribution can be produced with a further

convolution of P1(ω) to give P3(ω), which is weighted by the appropriate form of Q2m/ωm for

m = 3.

The contributions from these two convolutions can be summed and the temperature factor

(exp(−2W )) reintroduced to give the final multiple scattering contribution:

SMP(Q,ω) = exp(−2W )
(

Q4

2! ω2
P2(ω) +

Q6

3! ω3
P3(ω)

)
(4.5)

The overall effect of this is to broaden the density of states to higher energy: this is of par-

ticular importance when trying to fit high incident energy spectra. It should be noted that this

approximation only holds for relatively heavy atoms, but has provided sufficient background to

assist with the refinements performed in this thesis. This multi-phonon contribution is weighted

by the ‘multi-phonon factor’, typically ∼ 10%: this weighting is a refineable parameter with

TOBYFIT.

Fischer et al. (2009) were working on this problem independently, and instead model a simple

two-phonon background as 1/2 QiU ijQj where U ij is thermal displacement (available from the

literature) and Q is the momentum transfer. They find an integral two-phonon contribution

of 9% for graphite and beryllium at 5 Å, giving a smooth and weakly modulated background.

While this model is better than simply using the one-phonon scattering, I consider it to be

too simplistic. I found that it was important to include the three-phonon terms as well as

two-phonon terms, and that the energy-dependence of my approximation was crucial.

4.3.2.2 Density of states

Normal GULP usage allows an un-normalised phonon density of states to be calculated from

a Monkhorst-Pack grid of k-points. INS allows the experimental observation of the density of

states, so the SQW module simulates the density of states for powdered samples. Each bin in the

SQWarray is weighted as appropriate for the density of states, using the average mass, M̄ and

the appropriate Bose weighting (n(ω) or n(ω) + 1 depending on energy gain or loss):

G(Q,ω) =
2M̄ω S(Q,ω)

~2Q2 exp (−2W ) < n(ω) + 1 >
(4.6)

The sum over all Q is then used to give a density of states, G(ω), normalised to unity.
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SQWpowder Calculate the powder averaged S(Q,ω)
SQWsingle Calculate S(Q, ω) for use with TOBYFIT
SPE Calculate the powder averaged S(φ,E)
SQW1 Calculate S(Q, ω) for a given single point in Q, ω space
SQWdispersion Calculate S(Q, ω) along a dispersion line
Outmodes Output phonon information and S(Q, ω) contribution of each k
ShapeDos Output any k with a mode within the specified ω range
Debye or Bmatrix Calculate the mean squared displacement matrix for each atom
Makeeigenarrays Store all eigenvectors and frequencies after calculation
ArrayFrequencies Output phonon details from internal arrays
Coreinfo Output atomic information (for cores not shells)
Nosqwoutput Suppress output of the SQW results to file
Nowarnings Suppress warnings about imaginary eigenvectors

Table 4.1: Summary of new SQW module keywords. These reflect the key functionality available
within this module.

4.3.3 Input

The exact details of the nature of input and output files for the new GULP SQW module are

not needed to understand the main functionality of the software, but are expanded upon in

Appendix A. As with standard GULP, and the new PDF, a single ASCII file is used as input

to the program, made up of keywords and options. New keywords are listed in Table 4.1; some

of these, such as SQWsingle, change the behaviour of the program whereas others, such as

coreinfo merely affect the output.

A GULP input file for a three dimensional crystal, producing stable lattice dynamics, is

required, to which new SQW keywords can be added. The new SQW options are entered in

a specific section of the input file which I have called the ‘neutron input block’. The new

options for specific functionality are described in more detail in Appendix A, and include the

addition of neutron scattering lengths and their modification (to allow mean field atoms, or

to remove a specific atom from the scattering spectra), and the ability to set the energy and

momentum transfer binning for the SQWarray and SQWsingle arrays together with weightings

for the backgrounds.

4.3.4 Output

The new GULP module outputs are described in detail in Appendix A.6. Appropriate output

is added to the normal GULP output file, and the Bose function, Bmatrix (for the Debye-

Waller temperature factor), density of states, and inelastic scattering functions can all be written

to separate files. For powders, the standard ISIS .spe output format can be adopted with

appropriate detector parameter and incident energy settings, and an ASCII .sqw file is produced
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containing the one-phonon scattering together with the approximations to multi-phonon and

multiple scattering and the G(Q,ω) weighted output and number of ‘hits’ in each bin. The

scattering intensity for a single crystal is written to a .sqwt output file which can be used as

input to TOBYFIT and then HORACE to allow further manipulation and visualisation.

4.4 TOBYFIT: new developments

4.4.1 Main purpose

The interaction of the new GULP SQW module with TOBYFIT has allowed new methodologies

for the preparation for and analysis of data from INS experiments on chopper spectrometers.

There are four main reasons for combining the new GULP SQW module with TOBYFIT:

• convolving simulations with experimental resolution functions,

• producing suitable files to allow visualisation of single crystal simulations,

• fitting powder simulations against experimental .spe files,

• simultaneous simulation and fitting of multiple data sets at different incident energies.

GULP can be called either as a standalone program or directly by TOBYFIT, generating the

one phonon scattering function (and appropriate backgrounds). One advantage of using GULP

to generate the eigen-data for the initial simulation is that the standard GULP fitting procedures

can be used to refine a model against other experimental observables, such as dielectric constants

and IR or Raman spectroscopy, ensuring a reasonable starting model. More details on basic

functionality of TOBYFIT, and specifically on the interaction with the new GULP SQW module,

are given in Appendix B.

Tobyfit has been designed to allow a user to provide a ‘cross-section model’ to give the spectra

weight for a given Q and ω. With the addition of the new cross-section models, TOBYFIT not

only convolves the spectra produced from the GULP simulation of the scattering function with

experimental resolution functions, but can now be used to refine the underlying GULP model,

calling GULP each time the interatomic potential or force constant parameters change. More

simply, TOBYFIT can be used to refine the background (including multi-phonon and multiple

scattering) and maximum intensity. Fig. 4.1 shows how the two codes interact.

In order to simulate and fit neutron scattering spectra generated with the new GULP modules

against real experimental data, TOBYFIT has been modified slightly to allow it to call GULP

as a subroutine. This combined code is executed using familiar GULP and TOBYFIT settings,

with a few additional options. The source code for the new TOBYFIT models and the new

GULP modules are stored in an electronic repository at DSpace@Cambridge (Cope, deposited

20.05.2010).
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GULP
‘Observables’ e.g.:

• Elastic constants
• Dielectric constants
• Phonon modes

INS powder or
 single crystal data

Refinable 
Parameters
“parameter.gin”

  TOBYFIT calls GULP to
generate S(Q,ω) for a grid of
Cartesian Q and ω for each
parameter set, convolving this
with experimental resolution
functions

• Crystal structure
• k point grid
• Experimental conditions

“gulpinput.gin”

S(Q,ω) or S(Q,ω) Simulation 
(convolved with experimental resolution functions)

“.spe” format

Refined Interatomic Model 

Figure 4.1: The fitting cycle for TOBYFIT and GULP. The crystal structure, experimental
conditions and (converged) k-point grid are contained in a standard GULP-style input file
gulpinput.gin. GULP can be used to refine a reasonable starting model for the interatomic
model against other experimental ‘observables’. These are then saved in the parameter.gin
input file. TOBYFIT calls GULP using these two input files as a template to generate S(Q,ω)
or S(Q, ω) for the current set of parameters, convolving with experimental resolution functions,
and refining the interatomic model where a suitable experimental dataset is present.

4.4.2 Implementation and program design

In normal usage, TOBYFIT uses the experimental setup to define the range of momentum

transfer and energy that should be explored, depending on the integration method selected (see

Appendix B). For each required Q and ω, the function SQW broad is called. This user defined

function returns the scattering function given by the specified cross section model. I have

developed a range of models for use with both powders and single crystals to allow simulation

and fitting against experimental data, which are listed in full in Appendix B.2. The details of

each model are not necessary to understand the general principles.

TOBYFIT not only allows simulation of experimental data, but also fitting using the MUL-

TIFRILLS least squares refinement routines (see Appendix B.5). When using GULP to generate
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the lattice dynamical data, the most costly step is the diagonalisation of the dynamical matrices,

so it is important to minimise the number of diagonalisation performed. χ2 is calculated from

a sweep of the entire dataset using the initial model parameters. For each free parameter, the

calculation is repeated with a small positive and negative increment to the free parameter on

each datapoint in turn. As with the stand-alone GULP SQW module, I use a dense Monkhorst-

Pack grid of k-points in the first Brillouin zone to seed an extended zone scheme of Q-points,

calling GULP once for a given set of parameters, and storing the resulting scattering function.

For powders, it is appropriate to store a binned full scattering spectra, as the powder averag-

ing means that each datapoint in S(Q,ω) relates to many Q. A copy of the resulting SQWarray

is kept for each change in parameters, up to a user-defined maximum (at least 2p + 1 where

p is the number of free parameters). Thus as the fitting routine progresses, TOBYFIT need

only consult an evenly binned search-table (giving rapid look-up times) to extract S(Q,ω) for

each parameter set. By using a sufficiently-fine Monkhorst-Pack grid, there is no need to inter-

polate between k-points, preserving accuracy and optimising the post-diagonalisation routines

(although more k-points come at the price of slower GULP calls).

The case of single crystals is more difficult. The most accurate results would be produced

by reducing each Q to a k-point in the first Brillouin zone, generating and diagonalising the

dynamical matrix, and calculating the scattering intensity. However, the fine Monkhorst-Pack

grid and extended zone scheme is more efficient, as the same k-point data can be used for many

Q. Initially, it seemed sensible to use GULP only to generate the eigen-data, and pass a stored

kgrid giving the resulting eigenvectors and frequencies for each k-point. Then it would be

possible to interpolate the exact position of the required Q, and use the SQW module subroutines

to generate the scattering intensity. Unfortunately, a single experimental sweep of the calcite

MERLIN data was projected to require 6 months to run on standard CamGrid machines, even

after extensive optimisation. The calcite simulations require 200 of these runs to be repeated

with one degree rotations in crystal alignment. Removing the interpolation and simply using a

binning scheme improved the timings but still did not achieve realistic speeds.

In light of these problems, I decided to use a similar approach to the powder cross section

models: the generation of the SQWsingle array containing the scattering function binned onto

a grid of Cartesian Q-points and energies. Again, I considered interpolation between the bins,

but even without this additional time-cost, a simulations of a typical MERLIN experiment

needs several hours to perform the TOBYFIT Monte Carlo integration for an individual crystal

orientation, on top of the GULP calculation.

The big advantage of using the SQWsingle array approach is that the GULP run can be de-
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volved from the TOBYFIT simulation. GULP simulations are normally1 written to a .sqwt file

which can be read back into TOBYFIT for convolution with experimental resolution functions.

This allows manual parallelisation of the simulation process: if a .sqwt file is generated with

sufficient Q range to cover all crystal orientations, this can be used as input for all remaining

orientations and run in parallel on many machines. Using this approach, the generation of the

entire calcite dataset at one incident energy could be achieved on the CamGrid within a week.

One of the aims of my current work was to investigate the possibility of refining interatomic

models against single crystal data. It can be seen that this is not possible using TOBYFIT v2

due to time constraints. However, considerable imrpovements will be possible by parallelising

the code as part of TOBYFIT GRID, although there will still be memory/file storage issues due

to the size of the SQWsingle array. (The calcite .sqwt files are around 6Gb.) Consideration

must be given to the storage of the 2p+ 1 sets of data needed for the fitting process – possibly

with greater tuning of regions of reciprocal spaced based on the specified input files – as well

as sensible allocation of jobs across processors. These issue are not insurmountable, but require

further development of the software.

What has been achieved, as will be seen in the subsequent chapters showing the experi-

mental results, is a means to produce excellent simulations of experimental data, that are fully

compatible with the data visualisation and manipulation software at ISIS, and useful for both

planning and analysing experiments.

4.4.2.1 Programming details: GULP-TOBYFIT interactions

The new modules in GULP have been designed to work both as subroutines of GULP and stand-

alone routines called by TOBYFIT. The new GULP SQW module can produce .sqw or .sqwt files

which the new TOBYFIT cross-section models can read. TOBYFIT then convolves them with

experimental resolution functions. More powerfully, TOBYFIT can be used to call GULP, and

to refine a model against experimental data interacting with the new GULP modules directly.

GULP is linked to the main TOBYFIT code through TOBYFIT’s user-accessible sqw broad.F.

A few minor changes2 had to be made to the release version of TOBYFIT v.2. The main change

to GULP was to the input: normal GULP only reads a single input file, but when the appropriate

flags are set both gulpinput.gin and then neutron.gin are read sequentially.
1unless output is specifically switched off to save write-time and filespace.
2All ‘pause’ commands were changed to ‘stop’, the maximum number of datasets and related variables had to

be adjusted to fit MERLIN datasets, the system-dependent date and time commands were set appropriately, and
the energy parameters and output names were copied into sample parameters, to allow access to these settings
from within sqw broad.F. All routines were encapsulated in a single Fortran module, to ensure that GULP and
TOBYFIT variables do not interfere. GULP already had the potential to be called as a subroutine from another
program, so only minor modifications were needed to allow TOBYFIT to control it.
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4.4.3 Input

The standard input is an interactive or script based input file together with experimental pa-

rameter files and datasets (where appropriate). To minimise alterations to the main code, the

new SQW input is restricted to the addition of two new GULP-style input files which together

form a full GULP .gin file. Those settings which remain constant throughout a fit – lattice

parameters, optimisation style, number of k-points etc. – are included in gulpinput.gin. The

parameters for refinement and the neutron block settings are placed in parameter.gin. This

data is read by TOBYFIT and used as the template for the neutron.gin file passed between

TOBYFIT and GULP to update the fit parameters at each step in the refinement. More details

and sample files are given in Appendix B.6, together with further information on the standard

TOBYFIT setup including instrument and sample settings (Appendix B.1), but it is helpful to

summarize the key points here.

Suprions in the experimental data can be masked by setting the errors to zero (this is best

performed in MATLAB, functions for which are included in Appendix C.1), and the elastic line

(which is not simulated) should be removed. HighQ simulations are computationally demanding,

so if no new information is contained in this region, it is advantageous to mask these regions

from the experimental data prior to refinement. Entire detector banks can be removed using

standard TOBYFIT commands1.

The main point of interaction between the two codes is in handling the cross section parame-

ters. The first five parameters control the interaction, setting scale, Qmin and Qmax (to override

the normal .phx detector range), transmission (for multiple scattering) and the multi-phonon

weighting. The remaining parameters map sequentially to the interatomic models read directly

from parameter.gin. The ten new cross-section models are listed in full in Appendix B.2, giving

the main functionality of the new code.

4.4.4 Output

TOBYFIT gives a standard output detailing progress and allowing interaction. Refinement

against MERLIN data takes hours to days, so additional progress monitoring has been included2.

An iteration only progresses when a lower χ2 is found, so five or six iterations performed with

15 free parameters can take well over a hundred GULP calls. Following successful refinement,
1These cannot be removed directly from the .spe file as the number of detectors is linked to the instrument

parameter file. When removing high-Q data, for example to prevent unnecessary calculation of non-dispersive
high energy modes, the GULP Qmax setting should be set to reflect this upper limit in the neutron block in the
parameter.gin file.

2For example, every (silent mode) GULP call is followed by a summary of the input parameters and timings.
Optimum parameter shifts are written to the standard output, with reports of every calculated χ2.
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simulations can be performed using the normal interactive TOBYFIT commands yielding the

desired .spe files for visualisation with MSLICE.

4.5 Aluminium: a test-case for powder fitting

4.5.1 Experiment

Powder scattering data were collected from a powdered sample of aluminium on MARI by

Steve Bennington in 1999. MARI (Taylor et al., 1990) is another direct geometry chopper

spectrometer at ISIS, but with a fraction of the number of detectors on MERLIN. This was used

as a test case for the new simulation and fitting software before the commissioning of MERLIN.

Aluminium is a simple face centred cubic (FCC) structure, space group Fm3̄m with an

experimental lattice parameter of a = 4.03 Å. Experimental data were collected at 20 K, with

an incident energy of 54.14 meV. The data were normalised and binned with an energy step of

0.2 meV using HOMER: the resulting specta is shown in Fig. 4.2(a). 144 powder-ring detector

groupings are set with the mari powder lowres 1171.par file. MATLAB was used to remove

the elastic line, to remove negative intensities arising from small inaccuracies in the data nor-

malisation process (by masking them from the refinement and setting the displayed intensity to

zero), and to mask out the door-edges.

4.5.2 Models

To test the efficacy of TOBYFIT powder S(Q,ω) refinement methodologies, two modelling

approaches were taken. First, a force constant model was constructed and refined from various

starting points against the experimental data. Second, a simple empirical potential model was

used.

4.5.2.1 General TOBYFIT setup

To ensure that suitable experimental resolution effects are included in the simulations, the

appropriate TOBYFIT settings for the instrument, moderator and chopper were selected for

use with the full Monte Carlo integration method. Fitting was performed using the default

MULTIFRILLS settings (see Appendix B.5) aiming for a χ2 of unity through the Levenberg-

Marquadt algorithm with convergence being reported when the change in χ2 was less than 0.01.

It is clear that there is a significant amount of multiple scattering present in the experimental

data from the smearing under the first dispersion curve, especially between 17 and 25 meV. Thus

the initial value for transmission was chosen to be 15%. Similar proportions of multi-phonon

contribution were added to the refinements and allowed to vary.
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Figure 4.2: MARI INS spectra for aluminium powder experiments at 20 K, Ei = 54.14 meV.
The elastic line has been removed, as this does not appear in the simulation. (a) Experimental
data. No smoothing has been applied so the quality of the data can be assessed. (b) Simulation
from the final force constant model. (c) Simulations from the final Lennard-Jones potential
model. The energy dependence of the conversion from the even φ-step of the detectors to the
displayed Q-range gives the characteristic shape of the S(Q,ω) image. The edges of the doors
of detectors give rise to the white gaps in the data.

84



4.5 Aluminium

Parameter FC model LJ model
χ2 1.9921 1.5472

Scale 0.94 0.95
Multiple Scatter (%) 19 19
Multi Phonon (%) 21 18

KL (eVÅ−2) 1.1640
KT (eVÅ−2) 0.00126

σ (Å) 2.9254
ε(eV) 0.0865

Table 4.2: Final parameters for the FC and LJ potential models

4.5.2.2 Force constant (FC) model

The simplest way to model the structure is using two force constants (longitudinal and trans-

verse) between nearest neighbour atoms. A maximum cutoff was set to ensure the interaction

is restricted to nearest neighbours (set at 3.5 Å).

The initial starting model was produced by simply adjusting the transverse and longitudinal

force constants manually, producing S(Q,ω) simulations until they came into rough agreement

with the data: as long as the main band of scattering was within the experimental range the

model refined successfully. Parameters were varied individually and collectively, gradually al-

lowing more parameters to vary with no limits on their range. The final FC fit gave χ2 = 1.99,

with the parameters given in Table 4.2.

4.5.2.3 Lennard-Jones (LJ) potential model

It is also possible to produce an empirical potential for use with aluminium. A standard Lennard-

Jones model is suitable for use here:

V (r) = ε

((σ
r

)12
− 2

(σ
r

)6
)

(4.7)

A typical value for ε is around 0.1 eV. A suitable starting model was produced simply by

adjusting ε and σ manually. Unlike force constant models, potential models need to be optimised

at every step of the refinement to ensure that the energy has been properly minimised. In the

case of the Lennard Jones potential, σ is largely responsible for the interatomic spacing, and thus

the lattice parameter. Therefore, σ was initially held constant and the optimisation performed

with constant volume to maintain a = 4.03 Å. As with the FC model, the parameters were

increasingly allowed to vary until all parameters were freed, with no limits. The final fit was

reported at χ2 = 1.55, with the parameters shown in Table 4.2.
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Figure 4.3: Cuts through the aluminium data and simulations showing the relative contribu-
tions of the different backgrounds (discussed in the text). Both models use almost identical
backgrounds, and the LJ model is clearly a slightly better fit. (a) A cut along Q, summed over
all modes. (b) A constant-Q cut at 7 Å−1.
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4.5.2.4 Comparison to experiment

Both the LJ and FC model give similar χ2 values confirming their good fit to the experimental

data (Fig. 4.2). Constant Q (summed over the entire energy range) and constant-energy plots

(through the most intense region at Q = 7 Å−1, δQ = 0.6 Å−1) reveal more detail (Fig. 4.3). It is

clear that both models give a reasonable agreement to the experimental data in both dimensions.

Notably, however, neither model accurately models the experimental peak at 18 to 20 meV. This

could be due to incoherent scattering1, which is not included in the model, or a failure to fully

model the backgrounds, or most likely, additional components from next nearest neighbours. It

should be noted that the error bars in this region in particular are significant, so the quality of

the experimental data here may also be an issue.

Fig. 4.3(a) shows the excellent overall agreement between the line-shapes. As this cut is

integrated over all energies, it gives an general assessment of the quality of the fit. However,

the curved shape of experimental Q,ω space means that the extremes are dominated by the low

energy fit. At low Q, there is only multiple scattering background. This shows no variance in

Q in the model, although the curved shape of the plot, masking of the door edges, and binning

effects combine to give a slight variance in this cut. There is Q-dependence in the multi-phonon

scattering (from the approximation based on weighted contributions for two and three phonon

scattering), which can be seen to be important.

The role of the additional scattering is clear in the constant Q cut in Fig. 4.3(b). The

increasing effect of the multi-phonon scattering at higher energies can be seen, lifting the one-

phonon scattering to the experimental level at 40 meV. In the same way, the multiple scattering,

with its Q-independent increase on the observed peaks, is also crucial.

4.6 Conclusions

Using TOBYFIT to refine interatomic models against scattering data has proved successful.

As with any fitting process, the quality of the background is important, and it should be noted

that without simulation of the Bragg peaks an energy-dependent background, localised in Q will

always be present. This suggests that further improvements to the methodology could be made

by including the elastic scattering in the simulations, or else by sophisticated removal of the

elastic scattering from the experimental dataset. I note that the recent work by Fischer et al.
1Aluminium has an incoherent cross section of 0.81× 10−10 Å2, compared to 0.145× 10−7 Å2 coherent cross

section. For comparison, the incoherent scattering for the silicates, which are sucessfully modelled in the next
chapter, is much less: silicon has 0.32 × 10−10 Å2 incoherent and 0.22 × 10−7 Å2 coherent, and oxygen has
0.30× 10−11 Å2 incoherent and 0.42× 10−7 Å2 coherent scattering cross section.
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(2009) uses a pseudo-voigt fit to account for the elastic scattering, while Bosak et al. (2009)

simply ignore the elastic line and see a similar mismatch at low energy.

The aluminium test-case demonstrates that, for simple systems, even a poor model can be

brought into agreement with experimental data using the new methodology. In the remainder

of this thesis, both the simulations and refinement methodologies will be tested against several

complex systems, allowing assessment of the viability of this approach, together with suggestion

for further developments to the methodology.

In principle, when extending this work to more complex systems differentiating between

different modes in dense regions will be challenging: in the current implementation there are

no additional refinable parameters to ensure that certain modes are constrained in any way.

Moreover, refinement of interatomic potential models without the elastic Bragg data is unlikely to

be possible: the intense Bragg peaks will be needed to ensure the unit cell optimises correctly. For

the Lennard-Jones model, holding constants σ until the final stages of the fit enabled successful

refinement. Such appropriate stepwise variation of different parameters is part of the ‘art’ of

model refinement, but elastic data would ensure better performance. Elastic data would also help

to further constrain the phonon model through the temperature factor. Moreover, it has been

seen that the elastic scattering provides a low-energy background around the Bragg peaks, which

it would be helpful to either remove or simulate. In future work, it would also be advantageous

to include the incoherent scattering: this was not relevant for the key earth materials initially

investigated but the software has been designed to allow this improvement with minimal changes

to the code.

It should also be noted that there is a mismatch between recently normalised ISIS data

(using HOMER) and the error handling in TOBYFIT. While the old aluminium data reported

excellent convergence with χ2 approaching unity, any data normalised recently gives typical

‘converged’ χ2 ∼ 104. In addition, the old aluminium data is not compatible with the latest

version of HOMER. While investigations into this issue are taking place, all other refinements

reported in this thesis have been set of achieve convergence when the change in χ2 is at the

same order of magnitude1 as the reported error calculated for χ2.

In conclusion, the new TOBYFIT cross section models can be used to call the new GULP SQW

modules both to produce INS powder simulations fully convolved with experimental resolution

functions, accounting for one-phonon, multi-phonon and multiple scattering spectra, as well as

refining the underlying interatomic model. In principle, any GULP potential model-type can be

used to produce INS simulations, and any GULP parameters, such as Coulombic charges, can
1If the convergence criteria is set too low, TOBYFIT continues to make smaller and smaller adjustments to

the optimised parameters, resulting in changes too small to be passed between GULP and TOBYFIT through
the neutron.gin input file.
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be refined by TOBYFIT. Single crystals can also be simulated (as demonstrated in subsequent

chapters), and the next challenge is making the refinement process sufficiently rapid to be

achievable. In the rest of this thesis, these new approaches will be applied to a number of

important mineralogical and technologically interesting systems.
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Chapter 5

α-Cristobalite and v-SiO2:

a powder INS study of the Bose

peak and related phonon modes

The lattice dynamics of the silica polymorphs have attracted considerable controversy,

with suggestions of ‘fast sound’, the Bose peak and anomalous thermal features that

appear to be universal to glasses. Using the new GULP SQW module it can be conclu-

sively demonstrated that key features observed experimentally can be reproduced from

a standard interatomic model. The Bose peak – the excess in the density of states

compared to the Debye line seen at around 5 meV in silica – arises in simulations of

both vitreous silica and the crystalline α-cristobalite. Moreover, the remarkably sim-

ilar Q-variation for the crystal and glass, observed experimentally both in the Bose

peak and at higher energies, is reproduced in the simulations. This study gives new

insights to these features in glasses.

5.1 Introduction

The Bose peak (also known as the Boson peak) refers to a low energy excess peak in the Debye

density of states, which is universally observed in glasses. It was first reported by Krishnan

(1953) through Raman spectroscopy of vitreous silica (v -SiO2), and subsequently reported for

almost all glasses regardless of composition. It is so named as the peak scales with temperature

according to Bose-Einstein statistics, and seen by many as “one of the universal features at

the heart of the anomalous properties of glasses” (Ruocco, 2008). It has attracted considerable

interest over the last 50 years, as it has been linked to several thermal anomalies. Understanding
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the origins of these features could aid the design of glasses to have optimal thermal properties,

with important technological implications.

The structure (Wright, 1994) of the prototypical network glass, v -SiO2, is made up of corner-

sharing SiO4 tetrahedra in an infinite random network with local ordering existing up to ∼10 Å.

This has similar local structure to other silica polymorphs such as quartz, tridymite and cristo-

balite (Gaskell & Wallis, 1996; Keen & Dove, 2000): they all consist of these SiO4 tetrahedra.

Moreover, it displays the same degree of flexibility as the dynamically disordered crystalline

phases (Trachenko et al., 1998), undergoing large rotational rearrangements without deforma-

tion of the tetrahedra, and at little energetic cost. These similarities suggest that the study of

the crystalline α-cristobalite may well have important consequences for the understanding of the

key vibrational modes in v -SiO2, and thus give important insights into glasses and amorphous

materials in general.

The Bose peak has long been observed for glasses through Raman spectroscopy, but the

density of states observed for the crystalline counterparts is very different. This poses the

question, do the underlying modes responsible for the Bose peak exist in crystals, or only in

glasses? Raman and IR selection rules mean only excitations at the zone centre are visible.

For glasses, the lack of long range order makes the reciprocal unit cell vanishingly small: all

modes are effectively at the Γ point and thus accessible. However, if the modes responsible for

the Bose peak occur at higher k they will not be seen in the crystalline counterpart. This has

supported the widespread belief that the Bose peak is unique to glasses. Crucially, using INS to

access these higher k modes has revealed a very similar feature in both the glasses and crystalline

counterparts (Harris et al., 2000; Trachenko et al., 2000).

Leadbetter (1969) suggested that the Bose peak in v -SiO2was due to the flattening of the

dispersion of transverse acoustic modes (as occurs at the zone boundary in a crystalline material).

Dove et al. (1997b) studied models of the dispersion curves in α-cristobalite and attribute the

equivalent INS peak at ∼5 meV to a combination of the two lowest phonon branches along

[110] together with the flattening of the transverse acoustic modes along all directions. The

[110] modes are important as these represent low energy rotations of rigid tetrahedra known as

RUMs. Elliott (1996) and Taraskin & Elliott (1997a,b) had also demonstrated the role of RUMs

(which they called ‘floppy modes’) in changing the low energy density of states. They showed

that some fragile glasses (such as alkali silicates) have so many floppy modes that these mask the

Bose peak completely. Dove et al. (2000b) unified the ‘floppy modes’ of network glasses with the

concept of RUMs, which they had previously shown to be instrumental in the phase diagrams

and behaviours of silicates (e.g. Hammonds et al., 1996). RUM energies can be concentrated in

a small energy region up to 5 meV and can spread even across the Bose peak in some materials
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(Dove et al., 1997b; Harris et al., 2000). They are clearly visible in the experimental INS of

v -SiO2 as a distinct band at ∼2 meV.

The first thermal anomaly observed in glasses was in the thermal conductivity of v -SiO2

studied by Berman (1949) (and also Berman et al., 1950) who observed that the thermal con-

ductivities at low temperature displayed a plateaux in the 1–10 K region. More strikingly,

it has since been demonstrated (see, for example, Freeman & Anderson, 1986; Zeller & Pohl,

1971) that all glasses have remarkably similar thermal conductivity curves in this region. Not

only this, but they all share a second thermal anomaly: a departure from the normal Debye

behaviour of the specific head capacity (C) with temperature. In normal crystals, C ∝ T 3, but

in glasses it is nearer C ∝ T in the 5 – 10 K region. This correlates to the excess of low energy

phonon modes – the Bose peak – compared to Debye-conforming materials (see Buchenau et al.,

2007; Sokolov et al., 1992). An association between this thermal anomaly and the Bose peak

was first reported by Flubacher et al. (1959) through studies on v -SiO2. It is interesting to note

that as far back as 1975, Bilir & Phillips found no significant difference between α-cristobalite

and v -SiO2 specific heats around 10 K. In 1971, Zeller & Pohl reported a similar peak in the

density of states of quartz (which is slightly denser than v -SiO2), albeit of lower intensity and

at a higher temperature, and in 1996, Liu & v. Lohneysen observed the thermal anomalies not

just in many of the oft-reported amorphous systems, but also their crystalline counterparts.

Pohl et al. (2002) recently reviewed the ‘universality’ of these features in glasses, and also noted

that this behaviour is seen in a large number of disordered materials not just glasses. They

reach the conclusion that the characteristic lack of long range order seen in amorphous solids is

neither sufficient nor necessary for the thermal anomalies. Despite this history, the crystalline

similarities are still often ignored, particularly by the glass community, as the crystalline Bose

peak does not feature in conventional lab-based spectroscopy experiments.

Thermal anomalies in amorphous materials continue below 5 K, and are probably due to

two-level tunnelling states. Trachenko et al. (2000) used molecular dynamics simulations with

v -SiO2 model structures containing up to 4096 SiO4 tetrahedra to show that large co-operative

(∼30 tetrahedra) reorientations of rigid tetrahedra can occur with an energy barrier of only

0.06 eV, giving the required double well potentials.

The specific heat anomaly, and indeed the energy of the Bose peak, has been shown to be

linked to the density of v -SiO2 by Inamura et al. (1999), with densification giving a dramatic

increasing in the Bose peak energy. The most likely explanation is due to the void space in

the glass shrinking while maintaining the tetrahedral structure (Inamura et al., 1997), and is

consistent with the observation that both the specific heat anomaly and the Bose peak are related

to specific eigenvectors. Similar studies performed by Courtens et al. (2001), on both normal

92



5.1 Introduction

(c)

(d)

En
er

gy
 (m

eV
)

Figure 5.1: ‘Fast sound’: INS spectra in v -SiO2, weighted by ω/Q, from the published data
of Arai et al. (1999) (used by permission). The steep dispersive features gave a calculated
sound velocity of 9400 m/s. The quasi-periodicity is notable given the amorphous nature of the
material.

and densified v -SiO2, conclude from Hyper-Raman spectroscopy that the crucial modes relate to

the rocking of small groups of tetrahedra. The effect of density can also be seen through study

of the INS spectra of quartz, which is denser than v -SiO2. The Bose peak occurs at a higher

energy (Harris et al., 2000; Nakamura et al., 2001). Changes are also observed with increasing

temperature: Buchenau et al. (2007) report that the Bose peak in v -SiO2 shifts to higher energy

with increasing temperature.

Recently, Shintani & Tanaka (2008) have demonstrated that these ‘universal’ thermal anoma-

lies in glasses and the related excess in phonon modes arises as a direct result of transverse

modes – parallel planes of motion – and have been able to modify the position of the peak in

lattice dynamical calculations by changing the force constants. The transverse nature of the

modes responsible for the Bose peak in v -SiO2 had previously been demonstrated numerically

by Horbach et al. (2001) and Pilla et al. (2004).

The Bose peak, both in the glass and crystalline INS spectra, shows a characteristic Q-

dependence, linked to the periodicity of the crystal in the case of α-cristobalite, and the under-

lying structure of the rigid tetrahedra in the glass. The same periodicity is also observed in steep

dispersive features extending to higher energy (∼55 meV) first observed for v -SiO2 by Arai et al.

(1999), whose experimental data are reproduced in Fig. 5.1, and then also in α-cristobalite by

Nakamura et al. (2001) (reproduced later in the Chapter, in Fig. 5.10). This has been dubbed

‘fast sound’ and is also observed in water (see, for example, Sette et al., 1996, 1998). Arai et al.

calculate an expected sound velocity from a fit to observed dispersive features in v -SiO2 of
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9400 m/s compared to the expected longitudinal value in glass of 6049 m/s (Hirao et al., 1995).

Arai et al. believe the coexistence of what they assume to be acoustic phonon dispersion above

a strongly localised mode at the Bose peak agrees with the spectra they have observed in a

range of silica polymorphs, and is an “absolutely unexpected property and is a really novel

dynamics in network-forming glasses”. This conclusion mirrors independent conclusions drawn

by Nakayama (1998); Nakayama & Sato (1998) from models of water and v -SiO2.

What is needed is a comprehensive survey of how far all these experimental features can be

reproduced using conventional lattice dynamics, which is something for which the new GULP

SQW module is ideally suited. To achieve this, I make use of the polarisable-shell empirical

potential model of Sanders et al. (1984). This shows good transferability between polymorphs,

reproducing the experimental structural units, lattice dynamics and phonon properties. Lattice

dynamical calculations for crystals are relatively straightforward, and a similar approach can

be applied with glasses using a large model cell containing hundreds of tetrahedra to model the

disorder in v -SiO2. Performing these calculations in GULP, together with the two new PDF and

SQW modules, allows the phonon properties, PDF and INS spectra to be calculated. TOBYFIT

allows the inclusion of experimental resolution functions, together with a refinement of multi-

phonon and multiple scattering backgrounds. Therefore, comparative simulation studies for

both α-cristobalite and v -SiO2 against previously published INS spectra are presented. The

dispersion curves can also be extracted from the model, and compared to experiment. Finally,

computational experiments focussing on the scattering from individual species are presented.

Together, these investigations allow conclusions on the origin of the Bose peak and ‘fast sound’

to be drawn.

5.2 Model structures, pair distribution functions, and specific

heat calculations

The Sanders model was introduced and validated for α-cristobalite (space group P41212) in

Chapter 2.5.4, and is suitable for performing comparative lattice dynamical studies over a range

of polymorphs by simply adjusting the unit cell (and, if necessary, the temperature and pressure)

used in the model. To ensure the robustness of these results, all simulations were repeated using

the TTAM and VB models (discussed in Chapter 2.5.4). The general trends observed are

reproduced using these other models, but the failure to adequately reproduce the experimental

unit cell leads to differences in the Bose peak energy. Therefore, only the Sanders results have

been included in the figures shown in this Chapter.

To simulate v -SiO2 I have used a primitive cell made up of 216 tetrahedra, previously derived

by Trachenko et al. (2000). Details are given in the primary reference. A larger cell with
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5.2 Model structures, pair distribution functions, and specific heat calculations

(a) (b)

Figure 5.2: The two v -SiO2 model structures, showing the coordination of the SiO4 rigid units.
(a) The model structure from Trachenko et al. with 216 tetrahedra, (b) the larger model struc-
ture with 384 tetrahedra. Only entire tetrahedra are depicted in the figures: the ‘empty space’
around the unit cell edges in fact contains tetrahedral fragments that continue the connectivity
under periodic boundary conditions. Both cells show 5- and 6-fold rings, amongst other more
disordered features.

384 tetrahedra was also produced in the same way by Martin Dove for use here. They are shown

in Fig. 5.2 using a polyhedral model (the tetrahedral fragments at the edges of the unit cell are

not shown). Both cells show the characteristic 5- and 6-fold tetrahedral rings of v -SiO2, as well

as more disordered chains.

The local and mid-range order in the model structures can be compared using PDF simu-

lations performed using the new GULP PDF module. Pushing the computational possibilities

to the limit with the current installation of GULP, the model structures were simulated with

4 × 4 × 4 and 3 × 3 × 3 k-points for the 216 and 384 tetrahedra model structures respectively,

which is appropriate given the size of cell.

The D(r) form of the PDF (to emphasise the mid-range local ordering) is used in Fig. 5.3,

which also includes α-cristobalite simulations as in Chapter 2.5.4. Both polymorphs show clear

local ordering at low r. The first three peaks are well defined, corresponding to the rigid SiO4

tetrahedra. The peaks are sharper in the glass simulations which suggests less variation in

the tetrahedral units here. There are sharp peaks across the whole r-range for the PDF of

α-cristobalite, and similar although much broader features in the vitreous counterpart with

mid-range ordering in the simulated cells continuing up to 10 – 12 Å. The local ordering has

been linked both to the intensity of the first sharp diffraction peak (Elliott, 1992) and also the

frequency of the Bose peak maxima (Malinovsky et al., 1988). Indeed, Sokolov et al. (1992) were

able to use the first sharp diffraction peak and the Bose peak frequency to predict mid-range
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Figure 5.3: GULP simulations showing the PDF for v -SiO2 from two different model structures,
and α-cristobalite. The glass shows peaks up to ∼10 Å indicating local ordering.

ordering in v -SiO2 up to ∼10 Å: this fits with the simulations produced here, where the vitreous

plot shows the same degree of ordering as seen in experimental PDFs produced by Wright et al.

(1991) from neutron scattering data.

The simulations show a high degree of similarity between the v -SiO2 and α-cristobalite PDFs,

as expected given the role of the rigid tetrahedra. Even closer agreement is seen experimentally

between β-cristobalite and v -SiO2 (Keen & Dove, 2000) because the dynamic disorder present in

β-cristobalite (Chapter 3) is similar to the static disorder seen in the glass. The RUMs respon-

sible for this dynamic disorder in β-cristobalite also correlate with the very low energy RUMs

responsible for the low-temperature two-level-tunnelling effects seen in v -SiO2 (Trachenko et al.,

2000).

There are small differences between the two silica samples, most notable in the flexibility of

the ‘rigid units’ and also at ∼5 Å. This latter spacing corresponds to the position of the 4th

peak in the Si–Si partial, so is probably indicative of a slightly different average SiO4 ring-size

between the two model structures. The smaller model structure generally shows slightly more

disorder with slightly broader peak-widths, both within the tetrahedral unit and at mid-range

spacings.
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Figure 5.4: GULP models of the specific heat for both α-cristobalite and the v -SiO2 models,
together with a selection of datapoints taken from the published experimental work on v -SiO2

from Zeller & Pohl (1971). The ‘thermal anomaly’ is the marked curvature of this line around
10 K: a Debye model would produce a flat line here. The two polymorphs both show similar
deviation to the experimental result, suggesting a shared origin to this behaviour. It is not
unique to the glass.

One of the ‘universal’ anomalies seen in glasses is a peak in the specific-heat capacity at

around 10 K. Using the Sanders potential model, GULP simulations of both α-cristobalite

and v -SiO2 were used to produce a series of heat capacity data up to 300 K. The results are

presented in Fig. 5.4, normalised per tetrahedral unit, together with a selection of data-points

from the experimental work on v -SiO2 by Zeller & Pohl (1971). It can clearly be seen that the

model not only reproduces the observed behaviour for the amorphous material, but also that the

same behaviour is seen in the crystalline counterpart. This is in agreement with the finding of

Liu & v. Lohneysen (1996), who suggest a general correlation between the mechanisms leading

to this peak in both amorphous and crystalline solids. Both v -SiO2 models give reasonable

agreement to experiment, with the larger model structure showing slightly closer agreement to

the experimental data.
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5.3 Experiment

Powder INS data for α-cristobalite and v -SiO2 at room temperature were collected on the MARI

spectrometer at ISIS by our group in Cambridge using an incident energy of 35 meV. Details are

in the published reference (Trachenko et al., 2000). The data were self-consistently normalised

against the flux measured on the monitors and binned to give 600 energy bins between −30 and

30 meV. The experimental spectra (with a small amount of smoothing applied to guide the eye:

MSLICE setting s = 5) are shown in the left column Fig 5.5.

5.4 Simulations

Simulations have been performed using the new GULP SQW module with TOBYFIT providing

appropriate experimental resolution functions. The simulations incorporate temperature effects

(303 K) though the Bose factor and Debye-Waller temperature factors. The α-cristobalite unit

cell optimised to a = b = 5.0 Å, c = 7.06 Å using the Sanders model. This gives a density of

2.25 g/cm3. 42875 k-points in the first Brillouin zone were used to populate an ideally spaced

Monkhorst-Pack grid giving the one-phonon INS spectra as well as multi-phonon and multiple

scattering contributions.

v -SiO2 INS spectra were also produced using both structural models. The smaller cell, with

216 tetrahedra and lattice parameters of ∼21 Å, optimised to have a cell volume of 9581 Å3, while

the larger cell, with 384 tetrahedra and lattice parameters of ∼25.5 Å, optimised to have a cell

volume to 15181 Å3. The density of the two cells were 2.25 g/cm3 and 2.29 g/cm3 respectively.

Simulating the v -SiO2, with over 1000 combined cores and shells even in the smaller model

structure, provided a computational challenge. The computational demands meant that only

one k-point could be used in the SQW calculations at any one time, so Perl scripts were used to

manually parallelise the code (see Appendix C.2), each k-point producing an individual .sqw

file. The Bmatrix for the Debye-Waller temperature factor cannot be calculated in this way, so

was generated using the same number of k-points (using the maximum memory available) as

v -SiO2 (216) v -SiO2 (384) α-cristobalite
χ2 70824 67231 42360

Multi-phonon (%) 16.6 16.9 13.7
Multiple scattering (%) 13.6 7.0 5.2

Table 5.1: Final χ2, multi-phonon and multiple scattering parameters for the three simulations
shown in Fig. 5.5. The refined values for multi-phonon and multiple scattering are realistic.
Clearly, the best agreement is between the α-cristobalite and experimental data, but the agree-
ment is good in all case.
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Figure 5.5: (Left) Experimental MARI datasets at room temperature: (a) v -SiO2 (b) v -SiO2

(reproduced for comparison with simulations) (c) α-cristobalite. (Right) Simulations (including
backgrounds and experimental resolution functions) performed using TOBYFIT with the GULP
SQW module: (d) v -SiO2 with 216 tetrahedra, (e) v -SiO2 with 384 tetrahedra (f) α-cristobalite.
These are discussed in the text. It can be seen that all simulations and experimental INS
spectra show a similar Bose peak at around 5 meV, as well as displaying characteristic variation
in intensity along Q.
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Figure 5.6: GULP simulations of the one phonon scatter in absolute units, without experimental
resolution factors for (a) v -SiO2 with 216 tetrahedra, (b) v -SiO2 with 384 tetrahedra and (c) α-
cristobalite. Without experimental resolution effects the details of the one phonon scattering
function can be seen, particularly the bands of RUMs below the main Bose peak in all cases.
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5.4 Simulations

the PDF and specific heat calculations, and passed to each parallel SQW module calculation. The

output from these simulations were then combined through another script, before being used as

the input to TOBYFIT with one of the new powder cross-section models to convolve the spectra

with the experimental resolution functions.

As the model structures are so large and contain so many atoms, relatively few k-points are

required to achieve convergence and adequately populate the SQWarray. Simulations for both

cells were performed using 216 random1 k-points. Combining sub-selections of the resulting

simulations confirmed that convergence had been achieved well before this point.

Approximations to multi-phonon and multiple scattering are calculated as part of the GULP

simulation, and can be refined in TOBYFIT against our experimental data. The final parameters

are shown in Table 5.1. While the output of the GULP simulation is in absolute units, the

MARI data were self-consistently normalised against the flux recorded from the monitors so an

experimental scaling factor is to be expected.

Simulations were performed in two ways to allow comparison with both low and high incident

energy data. First, low energy features such as the Bose peak were revealed using a finely binned

energy grid up to 35 meV. The one-phonon simulations are shown in Fig. 5.6. Together with

refined multi-phonon and multiple scattering spectra, these were convolved with experimental

resolution functions to enable direct comparison with our experimental data (collected with an

incident energy of 35 meV) in Fig. 5.5.

The second set of simulations were designed to study the higher energy dispersive features

seen by Arai et al. (1999) and Nakamura et al. (2001) with MARI data at Ei = 100 meV.

Nakamura et al. weight the experimental INS spectra by ω/Q, which is directly comparable to

a density of states weighting in the long wavelength limit. This highlights the controversial

higher energy features. The higher energy simulations were performed with more coarse bins

to reduce the extensive memory requirements. The weighted one-phonon spectra are shown

Fig 5.11. Incorporating multi-phonon and multiple scattering effects with the same weightings

as for the lower energy spectra, these were convolved with experimental resolution functions

allowing comparison with the published data (at incident energy of 100 meV) of Arai et al.

(1999) and Nakamura et al. (2001) in Fig. 5.10. The simulations also give access to the low-Q

spectra, inaccessible by INS. An enlargement of this region, reflecting the 1st Brillouin zone, is

shown together with dispersion curves for α-cristobalite in Fig. 5.9. Above the first few meV,

there were negligible differences between the spectra from the two v -SiO2, so the results from

just the larger model structure are included for clarity.
1Others in our group in Cambridge have found that using the Monkhorst-Pack grid with these large model

structures can sometimes introduce grid artefacts, and recommend using random k-points to reduce the number
of k-points needed to achieve convergence of phonon property calculations.
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5.5 Results and discussion: Ei = 35 meV data

There is good general agreement between the simulated spectra and the 35 meV experimental

data in Fig. 5.5. Considering the α-cristobalite first, visual comparison between the simulation

and experiment is excellent with all the features being well reproduced. Cuts taken through

the spectra at a representative constant-Q (integrating between 4 < Q < 4.2 Å−1) and a

constant-energy cut along the Bose peak (4 < ω < 6 meV) shown in Fig. 5.7 confirm that

the model reproduces the experimental details very well. The simulations do not include the

elastic line, but there are relatively few modes in the region affected by the elastic resolution in

α-cristobalite so this is immaterial here. There is a marked periodicity in the intensity along Q

in the α-cristobalite experimental data with peaks in the Bose peak intensity at 2.7 Å−1 and

5.3 Å−1 . This is perfectly reproduced by the simulations.

Comparison of the two model structures of v -SiO2 with the experimental spectra shows that

the key features have been reproduced. The agreement is not as close as for the α-cristobalite,

which had the best χ2 value of the three simulations1 in Table 5.1. The larger model structure

reports a more favourable χ2. Crucially, the Bose peak with its characteristic intensity-variation

along Q is clearly present. Again there are peaks in the 5 meV constant-energy cut at 2.7 Å−1

and 5.3 Å−1 .

The intensity scale for the simulated v -SiO2 spectra had to be adjusted to provide a good fit

by eye, because the best mathematical scaling over the entire data-range resulted in the features

at the Bose peak becoming indistinct. This is perhaps an indication that the multi-phonon

scattering was underestimated: certainly the cut along Q appears to be lacking intensity at

high Q (Fig. 5.7(b)).

There are small differences between v -SiO2 simulations and experimental details below 5 meV

(Fig. 5.7(a)). The resolution of the elastic line makes it difficult to extract accurate information

here. No attempts have been made to fit this background in the S(Q,ω) simulations, but

the shape of the elastic line can be extrapolated by eye, lifting the intensity of the lowest

modes to agree with experiment. The presence of more modes around 2 meV than in the α-

cristobalite make this region more relevant, and makes the refinement of the backgrounds and

scaling parameters less reliable. Notwithstanding this, the two model structures, with slightly

different degrees of mid-range order, do reproduce the general trends in the experimental INS

spectra.
1It has been noted in earlier chapters that the χ2 values appear weighted to larger values with data self-

consistently normalised against the moderators, so it is not excepted that these values should achieve unity.
Convergence was reported when the change in the χ2 was less than the reported error in the calculation of the
χ2.
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Figure 5.7: Cuts through both the experimental INS spectra at 35 meV, and the simulated
spectra fully convolved with experimental resolution functions. (a) The cut at 4 < Q < 4.2 Å−1

shows the effect of the elastic line on the experimental data, as well as the quality of the
simulations. (b) The constant-energy cut along the Bose peak (4 < ω < 6 meV) shows the
characteristic Q-variation even in the glass due to the tetrahedral unit. The sharp dips in the
intensity of the data directly mimicked by the background components are due to the door-edges
in the spectrometer.
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The two model structures for v -SiO2 give slightly different features below 5 meV: the larger

cell elevated the energy of the main Bose peak, clearly separating into two component peaks.

This cell also has a slightly higher density, confirming other studies that have linked densification

to a shift in the Bose peak energy. The lowest modes are likely to be RUMs. These merge with

the main Bose peak in the smaller silica cell. Neither simulation gives a perfect reproduction of

experiment, but both are sufficiently close to be able to say that all the observed features can

be simulated from standard lattice dynamical calculations.

It is now possible to make detailed comparison between the polymorphs, having established

the ability of the models to reproduce the experimental data. The similarities are striking.

Features are shaper in the crystal, but the same trends appear in both. This is emphasised by

the constant-Q and constant-energy cuts in Fig. 5.7. The periodicity seen along Q must arise

from the structural similarities between the polymorphs: the rigid SiO4 tetrahedra.

The position of the Bose peak energy is the same for the smaller v -SiO2 cell and α-cristobalite.

Both have a density of 2.25 g/cm3, while the larger supercell has a slightly higher Bose peak

energy and a slightly higher density. The level of agreement between the two polymorphs with

the same density is important.

One difference between the lattice dynamics of v -SiO2 and α-cristobalite is in the number

of RUMs. α-cristobalite has only two branches of RUMs, whereas the glass has many RUMs,

similar to the planes of RUMs found in β-cristobalite (studied in Chapter 3). This confirms

the interpretation of the constant-Q data below 5 meV: if the additional peaks in the glass seen

experimentally around 2 meV are due to these RUMs, the equivalent modes in the crystal merely

put a shoulder on the main Bose peak. This line of discussion is expanded in the next section.

The most important observations here are the striking similarities between the vitreous and

crystalline INS spectra, and that all the features in the 35 meV experimental spectra are closely

reproduced from standard lattice dynamical calculations. The next stage is to look in more detail

at the dispersion curves covering both the Bose peak and higher energies, before comparing the

higher energy simulations with experiment.

5.6 Dispersion curves

The dispersion curves along four key directions for α-cristobalite have been calculated using the

Sanders model and are shown in Fig. 5.8. The Bose peak region is dominated by branches that

would be described as acoustic modes at the zone centre, although this description breaks down

at higher k. There is clearly an optic mode at ∼4 meV at the Γ-point, which also crosses the

relevant region, hybridising with the flattening acoustic modes. The two lowest energy branches

in [110] are the RUMs for α-cristobalite: the v -SiO2 of course has many more RUMs, but these
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Figure 5.8: Dispersion curves calculated from the Sanders model for α-cristobalite. The Carte-
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can clearly be seen when compared to the low-Q α-cristobalite one-phonon ω/Q weighted sim-
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Figure 5.9: The one-phonon spectra weighted by ω/Q from the GULP simulations for (left) α-
cristobalite and (right) v -SiO2 with 384 tetrahedra, highlighting the crucial low Q region that is
inaccessible by INS experiments. Higher Q simulations are shown in Fig. 5.11. The similarities
between the two polymorphs can clearly be seen.

105



5.7 Results and discussion: higher energy features

are the only RUMs in α-cristobalite. Looking at the one-phonon simulations in Fig. 5.6(c) at

least the lowest of these RUMs forms a distinct feature at constant energy just below the main

Bose peak. With experiment resolution, this detail merges into the ‘Bose peak’ and cannot be

distinguished. In the constant-Q cut, the RUMs are the slight shoulder seen both experimentally

and in the simulations at ∼4 meV. By analogy, the continuum of modes seen below the Bose

peak in the experimental spectra for the glass, the details of which can be seen in the one-

phonon simulations in Fig. 5.6, will be the (many more) glass RUMs. The nature of these

RUMs appears dependent on the different cells used to model the glass, implying a dependancy

on the tetrahedral-ordering in the model structure.

5.7 Results and discussion: higher energy features

The similarities seen in the Bose peak of v -SiO2 and α-cristobalite extend to the higher en-

ergy region. The simulated spectra, convolved with experimental resolution functions, can be

compared with the published INS spectra of Arai et al. (1999) (Fig. 5.1) and Nakamura et al.

(2001) (reproduced in Fig. 5.10, together with the simulations). Higher Q features for v -SiO2

were inaccessible due to the huge computational demands of such a simulation.

The effects of the experimental resolution functions can clearly been seen by comparison

of the spectra in Fig. 5.10 with Fig. 5.11, which shows just the one-phonon INS spectra. The

disorder in the glass leads to broadening of the high energy dispersive-features visible in the one-

phonon simulation, but any fine detail in either polymorph is lost in experimental INS spectra

due to experimental resolution functions. The smooth character and shape of this dispersive

feature in both the full simulations and experimental data, makes it is hardly surprising that

such experimental results have been interpreted as acoustic modes.

The higher energy dispersion curves in Fig. 5.8 are of great importance, as they provide the

first real insight into the phenomenon sometimes referred to as ‘fast sound’ in the literature.

The acoustic branches in α-cristobalite behave as expected, peaking below 20 meV. The higher

energy branches would all be described as conventional optic modes at the zone centre. There

is scope for confusion around ∼19 meV where an optic branch continues to higher energies

with a very similar slope to the lower energy acoustic branch, with anti-crossing indicating that

they share the same symmetry. This mode hybridisation is repeated with other optic branches

to higher energies. However, to describe these branches as optic at the zone boundary is not

helpful, as the character of the atomic vibrations here are more acoustic-like. What is important

is that there are many branches which hybridise to give the smooth dispersive features seen in

the simulations.
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Figure 5.10: Comparison of the new simulations with previously published experimental INS
spectra. (Left) A reproduction of the experimental data of Nakamura et al. (2001) (from Fig. 1
in the published paper, used with permission) showing experimental spectra collected on MARI
at Ei = 100 meV and weighted by ω/Q to show the higher energy features for (a) v-SiO2 and (b)
α-cristobalite. (Right) Simulated spectra convolved with experimental resolution functions ap-
propriate for MARI at Ei = 100 meV and weighted by ω/Q for (c) v-SiO2 and (d) α-cristobalite.
The key feature here is the similarity between the crystalline and amorphous behaviour. The
effects of the resolution function masking the underlying detail in the broad high energy curves
can be seen when compared to the one-phonon simulations in Fig. 5.11.
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5.7 Results and discussion: higher energy features
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Figure 5.11: ω/Q weighted simulations for (a) v -SiO2 and (b) α-cristobalite showing the ‘dis-
persive’ features seen by Arai et al. experimentally. The one phonon simulations here also show
the very low Q range data inaccessible by INS, which was shown enlarged in Fig. 5.9. The
agreement in the periodicity of the polymorphs is striking.
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5.8 Contributions from selected atoms

Fig. 5.9 highlights details of the one-phonon spectra within the first Brillouin zone, inacces-

sible by INS. The basic shapes of the dispersion curves can be seen, but now with the addition

of the appropriate intensity. It is clear there is no one smooth acoustic mode ascending to high

energy, but a superposition of many different modes.

It is interesting to calculate the velocity of sound from these simulations in two ways. First,

the shape of the dispersive feature in the simulations gives a sound velocity of 9700 m/s, com-

parable with Arai et al.’s value of 9400 m/s. However, calculating the velocity of sound from

the elastic constants returned by the GULP phonon property calculation, the P waves should

travel at 6400 m/s and the sheer waves at 3800 m/s. These values compare well with the pub-

lished values of Hirao et al. (1995). This still poses the question – now set in a self-consistent

setting – of why the dispersion curves appear to have a higher velocity? This requires further

investigation.

What is clear from these studies is that there is a shared origin for the Bose peak and

the higher energy dispersive features. Moreover, the similarities between the crystalline and

amorphous spectra (both experimentally and in the simulations) are remarkably close. There

are still unanswered questions, but those questions have now been better defined.

5.8 Contributions from selected atoms

Study of the dispersion curves showed that flattening acoustic branches hybridising with the

first optic branch giving rise the high intensity along the Bose peak. It has been argued in

the literature (e.g. Buchenau et al., 2007; Fabiani et al., 2008) that the Bose peak arises from

coupled rotations of tetrahedra – these must have some optic character. New insights into this

can be gained by simulating the INS spectra for individual species in the α-cristobalite unit cell,

as shown in Fig. 5.12.

Using the new GULP SQW module, the neutron scattering length for the two atomic species

were each set to zero in turn, showing the contributions from each individual species. The

Bose peak remains clearly visible in both, although the Si-only S(Q,w) contributes only very

lightly to the overall scattering function. Unsurprisingly, without the oxygens, the characteristic

Q fluctuation is lost (Fig. 5.12(b)), leaving only the normal increase in Q from the scattering

function. To confirm that the main features were maintained here, the two plots were summed,

recombining to give all the features of the total S(Q,ω) although with some loss of intensity

and detail due to cross-terms between the species. In the same way, each individual Si and O

in the unit cell was taken in turn (not shown). Again, the Q-dependence was completely lost,

but all maintained the Bose peak. Summing the individual contributions does not regain the

periodicity as this is due to the cross-terms between spatially ordered atoms.
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Figure 5.12: One-phonon scattering spectra with (a) scattering only from oxygen, and (b)
scattering only from silicon. (c) The sum of the two partial scattering functions: this is less
than the total scattering in Fig. 5.6(c) due to additional cross-terms, but the main features are
still reproduced. All figures are normalised against the maximum scattering intensity of the full
S(Q,ω). The scattering from Si only is small, but there is still a clear Bose peak.
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5.9 Conclusions

This information is useful in understanding the origins of the Bose peak. If it were simply due

to rotations of tetrahedra, the partial S(Q,ω) from Si should no longer show a peak. However,

there is clearly a phonon mode corresponding to movement of the centre of the tetrahedra around

∼5 meV. This implies that there is translation (probably as well as) rotation.

What is needed is a means of visualising the motions of the individual eigenvectors. This

problem is currently being worked on by other members of our group, who are developing a

means of creating video animations of the atomic motion encapsulated in the eigenvectors. This

has shown great success with CASTEP eigenvectors, and is currently being implemented for

GULP. Having demonstrated the validity of the current GULP models here, we should soon be

able to confirm the nature of the modes in the Bose peak.

5.9 Conclusions

This chapter has demonstrated the power of the new methodology to probe the dynamics of

powdered crystals and amorphous materials, gaining insights unavailable through experimental

work. It has been shown that the ‘unique and universal’ features of glasses are also present

in the crystalline networking-forming counterparts. This supports many (underrepresented)

experimental reports in the literature and validates a comparative study of the crystal and

glass. Such experiments have shed new light on both the Bose peak and the controversial ‘fast

sound’, showing that these features have a shared origin in the lattice dynamics.

In light of the experimental and computational data presented here, it is clear that the

Bose peak seen experimentally is often the superposition of two features. Low energy RUMs

contribute to the scattering intensity near the elastic line and extend up to and in some systems

(Dove et al., 1997b), beyond the Bose peak itself. The position of these RUMs is well established

in α-cristobalite, and due to the two lowest energy branches of the [110] dispersion curve. In the

glass, there are many RUMs, whose energies depend on the mid-range ordering (as seen from

the PDF).

The Bose peak is primarily made up of flattening acoustic branches, although there are also

some low intensity optic modes that pass across the peak. However, this description is less useful

further from the zone center, as the optic branches will show considerable acoustic character.

The characteristic Q-variation arises from the tetrahedral unit (the crystalline unit cell is defined

by four such tetrahedra, so has the same dependency). This is confirmed when the scattering

from the Si atoms is ignored: it is the spatial distribution of the oxygens around the tetrahedra

that dominates the Q-variance. More importantly, the Si atoms themselves show a peak in the

density of states corresponding to the Bose peak. This demonstrates that the Bose peak cannot

be due to coupled rotations alone, but must also involve displacements of the Si atoms at the

111



5.9 Conclusions

heart of the tetrahedra. As discussed, what is needed is direct visualisation of these modes,

which will soon be possible. Finally, extending the analysis to higher energy modes has shown

the role of mode hybridisation and the superposition of many branches in forming the smooth

‘dispersive’ feature seen experimentally. Animations of the eigenvectors will also help with the

interpretation of these features.

In conclusion, the new methodology has shown that there are likely to be shared origins to the

Bose peak and higher energy dispersive features, and that these features are not unique to glasses,

but arise from the standard lattice dynamics of the network-forming crystalline counterparts.

The common feature here is the SiO4 tetrahedral unit, which dominates the periodicity of these

features.
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Chapter 6

Calcite: a powder and single crystal

INS study

Inelastic neutron scattering spectra for CaCO3 are simulated using the new TOBY-

FIT cross section models and GULP SQW module. Experimental resolution factors

are included in the simulation, giving results directly comparable to single crystal and

powder data collected on the new MERLIN spectrometer at ISIS. The transferable

carbonate empirical potential model developed by Archer et al. (2003) (making use

of a polarisable core-shell model for the oxygens) is shown to give excellent agree-

ment to experimental data, reproducing the general trends of dispersion curves and

the soft mode that drives the R3̄c to R3̄m phase transition. With the assistance of

this model, the dispersion curves are extracted from single crystal INS spectra, show-

ing the a∗ dispersion for the first time. Refinement capabilities of the new software

package are tested using a force constant model, revealing new possibilities for the

inelastic equivalent of structural powder refinement.

6.1 Introduction

The carbonate group of materials are highly prevalent, forming many sedimentary rocks and

making up a sizeable proportion of the earth’s crust. They show important geological and

geochemical behaviour, and understanding the phase diagrams is important. A key example is

calcite carbonate, CaCO3, known as calcite, which is found as a stable rhombohedral structure

(R3̄c, shown in Fig 6.1) at atmospheric pressure.

The phase diagram for calcite involves monoclinic calcite II (Singh & Kennedy, 1974) and

calcite III (Merrill & Bassett, 1975), whose structure remains unclear, on increasing pressure.

On the temperature spectrum, it undergoes an orientational order-disorder phase transition at
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6.1 Introduction

Figure 6.1: A polyhedral model of the calcite unit cell for the room temperature R3̄c structure.
The carbonate group is shown as a purple triangle, the calcium octahedrally coordinated by
oxygens is shown in blue.

1260 K (Dove & Powell, 1989) between the disordered high temperature R3̄m and ordered R3̄c

structure. At higher pressures, MD simulations by Kawano et al. (2009) have shown a first-order

isosymmetric phase transition occurring between two R3̄c phases prior to this transition. The

high temperature transition is observed by the onset of super-lattice reflections in diffraction

patterns at the Z point of the disordered high temperature Brillouin cell, and is driven by a soft

transverse acoustic (TA) mode at the F point (F = (1
2 , 0, 2̄) in the low temperature cell).

Experimentally, partial (low energy) dispersion curves for R3̄c calcite at room temperature

have been published along the c∗ axis by Cowley & Pant (1973), and towards F by Dove et al.

(1992). The latter direction is of particular importance as it reveals both the soft mode that

drives the phase transition, and anomalous columns of soft phonons sharply localised at the

F point. This continuum of excited states ranges from zero energy to the soft TA mode, with

intensity scaling with temperature according to an Arrhenius relationship with T ∗ = 1035 K.

The origin of this is thought to be thermal fluctuations into a different ordered structure. This

column of scatter is observed in other materials, linked to coupling with electronic correlations,

but this cannot explain how this behaviour arises in an insulator like calcite. Harris et al. (1998)

suggest coupling between relaxational and phonon modes is responsibly here.

In order to fully understand the dynamics and phase diagram of this important mineral

system it is essential to have an accurate computational model. Early force constant models

(Cowley & Pant, 1973; Plihal & Schaack, 1970) showed the importance of a shell model in repro-

ducing experimental data for calcite. Subsequently, Singh et al. (1987) produced an empirical

potential model, although this failed to adequately reproduce phonon dispersion curves. This

was followed by rigid ion empirical potentials developed for a number of polymorphs (Catti et al.,
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1993; Pavese et al., 1992), which accurately reproduced the individual structures although, like

the force constant models, lacked transferability between the polymorphs. A transferable rigid

ion model was successfully developed by Dove et al. (1992) which also reproduced experimental

dispersion curves along [104] and the c∗ axis. However, to account for dielectric properties (as

found with the early force constant models) and to study defect behaviour, a shell model is

required. The first such a model was produced by Pavese et al. (1996) to reproduce the experi-

mental structure for a number of carbonate polymorphs together with elastic properties. A very

accurate structural fit was reported by Fisler et al. (2000), but this was achieved at the expense

of the dynamics and indeed gave an unstable phonon model: the imaginary phonon frequencies

in this model would lead to distortion. However, Archer et al. (2003) were able to use the shell

model of Fisler et al. (2000) as a basis for a GULP refinement, producing a transferable car-

bonate empirical potential shell model by refining against experimental observables, including

a few points from phonon dispersion curves along the c∗ axis. This model (which I refer to as

the Archer model) achieves a good balance between transferability, accurate structural detail

and (weighted slightly more heavily than in other empirical potential models) good phonon

dispersion curves.

What is now needed for calcite is a more complete characterisation of the room-temperature

lattice dynamics. MERLIN, with its huge sweep of detectors, is ideally suited to this purpose. I

have collected single crystal INS experimental data, which I denote S(Q, ω), as well as powder

INS spectra, which I denote S(Q,ω).

This chapter has three inter-related aims. The first is to simulate powder and single crystal

INS spectra, fully convolved with experimental resolution functions, using the well accepted

Archer model. This will enable direct comparison of the spectra with experimental data allowing

rigourous scrutiny of the dynamics in this model.

Second, calcite provides the perfect test-case for the new powder refinement approach in a

more complex material, requiring information from densely overlapping modes to be extracted.

I use a force constant model, which provides a simpler route to testing the refinement method

that empirical potential models, without the need to minimise the energy at every stage and

potentially changing the structure or pressure of the simulations. With the complete single

crystal dataset, the results of this refinement can be assessed. The force constants presented

here are not intended as an alternative model, but are indicative of the progress being made

towards the goal of INS powder refinement, allowing a discussion of the limitations and successes,

and the next stages in development for the powder refinement process.

The final aim is the extraction of dispersion curves in three key directions (along a∗, c∗

and towards the F -point). Comparison with interatomic models is used in the extraction and
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6.2 The interatomic models

interpretation of experimental dispersion curves from the single crystal data.

6.2 The interatomic models

6.2.1 The Archer potential model

A transferable empirical potential model for carbonates was developed by Archer et al. (2003)

with a polarisable core-shell model for the oxygen, to accurately model the calcite-aragonite

phase transitions and to allow substitution of, and defects at, the calcium site: the charge on

the Ca ion was fixed at 2+ for this purpose. Full details of the model and its development

are available in the primary reference. The set of experimental phonon properties used as

‘observables’ when producing this model are shown in Table 6.5, together with the calculated

properties. Elastic, static and high frequency dielectric constants for aragonite, selected calcite

phonon modes for the F and Γ points, and spectroscopic data for the molecular carbonate modes

(Table 6.3) were also used. Dispersion curves were not included in the fit, but the basic features

of the dispersion curves towards F and along c∗ were reproduced, albeit with a small systematic

error. The authors of the model state, ‘It is possible to refit the potentials and obtain better

agreement with experimental parameters but for this potential structure such a refit results in

degradation in the value of the soft mode’ – and correctly modelling this soft mode is crucial to

accurate phase diagrams. The Archer model provides a good model for use with the new INS

simulation software.

6.2.2 Developing the force constant (FC) model

I produced a new force constant (FC) model of calcite for refinement against the experimental

data. Cowley & Pant (1973) (CP) had previously produced a polarisable-shell force constant

model for calcite which had had some success in reproducing their experimental dispersion

curves. However, the CP model was designed to illustrate the improvements seen when using

a shell model over rigid ion models and to aid analysis of experimental triple axis neutron

spectroscopy results. It was never intended as a definitive model. I consider their use of a

shell model for both the oxygen and calcium to be unrealistic: certainly, the oxygen shell is

required, but the electronic structure of the calcium gives little justification for the additional

spring constant. Therefore, when making a new force constant model to refine against the new

experimental data, I do not include a polarisable calcium.
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6.2 The interatomic models

(a) (b)

Figure 6.2: Cuts through the calcite unit cell showing only the atoms within two basal layers of
oxygens, illustrating the force constant parameters used in the model. Atoms in the first layer
are solid (oxygen = red, carbon = black, calcium = blue). The second oxygen and carbon layer
atoms are shown hashed. True bonds are shown in as 3D multi-coloured bonds, and additional
interatomic force constants are shown dashed, with the key to the colours in Table 6.2 below.
(a) Projected down [001]. (b) Projected down [100].

Atom Cutoff [Å] Coordination Depiction in L [eVÅ−2] T [eVÅ−2]
Types Min : Max Fig. 6.2

Intra-molecular
C–O 0 : 1.7 Bonded [3] Solid red/black 114.77759 15.57098
O–O 0 : 2.2 [2] Dotted red 8.74059 -4.50410

Interatomic
Ca–O 0 : 2.4 Bonded [6] Solid red/blue 5.66330 -0.89167
O–O 3.2 : 3.3 In basal plane [4] Dotted yellow -0.32895 -0.01715
O–O 3.0 : 3.2 Out of plane Dotted blue 2.14140 -0.22491

[1up, 1down]
O–O 3.3 : 3.5 Out of plane Dotted green 0.21800 -0.00955

[2up, 2down]

Table 6.1: The force constant model consists of longitudinal (L) and transverse (T) force con-
stants acting between pairs of atoms with a separation falling between the range of cutoffs.
For calcite, there are two types of interaction. First, the non-Coulombic intra-molecular force
constants that act within the carbonate group (purple triangles in Fig. 6.1). These include the
force constant between the bonded C and O, and that between the three O that make up the
carbonate group. The second type are Coulombic interatomic interactions: the bonded Ca–
O interaction and the three differently spaced O–O interactions outside the carbonate group
(Fig. 6.2). The distinct average separation for each of these interactions is reflected by the
minimum and maximum cutoff parameters for the interactions. All O force constants act from
the modelled shell, other interactions are from the species cores.
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6.2 The interatomic models

Atom Charge k2 [eV/Å2] k4 [eV/Å2]
Ca 1.97120
C 1.42780

O (core) 0.22964
O (shell) -1.36264 67.641 3.4609

Table 6.2: Refined charges for the species used in the calcite FC model and refined spring
constants for the polarisable oxygen.

GULP uses a longitudinal and transverse force constant to describe the interaction between

any pair of atoms lying within the range specified by the cutoffs. When using a polarisable

spring, additional spring constants (k2 and k4), together with the split of charges between the

core and shell, model the polarisablity. In my new FC model, both the charge-division between

core and shell and the oxygen spring constants were taken from the polarisable oxygen shell in

the Archer model and later refined using TOBYFIT.

I used the set of pair-wise interactions from the CP model. These are of two distinct types

(and can be modelled as such within GULP). First, the non-Coulombic intra-molecular forces

from the carbonate group (purple triangle in Fig. 6.1). Second, two body forces describing

the interatomic interactions: Ca–O, and in- and out-of-plane O–O interactions. The nearest

neighbour Ca–O interaction within the octahedral polyhedron have average separation of∼2.4 Å.

There are six in-plane O–O interactions within the basal plane, but two are part of the same

carbonate group and thus already modelled. This leaves two sets of interactions with separations

of ∼2.2 Å and ∼3.3 Å as shown in Fig. 6.2. Finally, the out-of-plane interactions (as shown in

Fig. 6.2), are of two characteristic lengths, ∼3.19 Å and ∼3.4 Å. These are encapsulated in this

model as two distinct sets of force constants (distinct from the CP approach which used a single

force constant for both interactions). Full details of the interactions, coordination and cutoffs

for each force constant interaction are given in Table 6.2.

The actual force constants from the CP model are no longer helpful having allocated an

additional set of force constants (when grouping the O–O interactions by average separation),

and rejected the use of a polarisable shell for the calcium. Therefore a new ‘starting model’

for the TOBYFIT refinement was initially refined in GULP against the same set of published

‘observables’ as used in the development of the Archer model: the elastic and dielectric constants

shown in Table 6.5, together with IR spectroscopy data for the high energy internal modes

(White, 1974) in Table 6.3, and with a few selected modes from the experimental INS data

of Cowley & Pant (1973) and Dove et al. (1992). The FC model was then refined against our

MERLIN data using the new TOBYFIT cross section model for powders as described below.
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6.3 Powder INS experiments, simulations and refinements

6.3.1 Experiment

INS spectra for powdered calcite (enclosed in an annulus of aluminium foil) were collected on

MERLIN during the scientific commissioning of the new spectrometer in October 2008. Runs

were performed at room temperature at three incident energies: high energy (250 meV) to show

the full range of modes, mid-range energy (45 meV, where MERLIN has maximum flux) and

low energy (15 meV) to focus on the acoustic modes to reveal the soft modes. Data was also

collected for an empty foil wrapper for each energy and used for data correction, removing both

aluminium scattering and other machine backgrounds. The data was self consistently normalised

using the information from the monitors. The intensity between runs at different energies is not

directly comparable, so the resulting spectra were re-scaled to give continuous intensities in

constant-Q cuts.

6.3.2 Powder simulations and refinement

Both interatomic models were used with the new GULP SQW module to simulate the powder

INS spectra, binned over an even Cartesian grid of 180 bins in Q, up to 9 Å−1, and 1000 bins in

energy, up to 200 meV. TOBYFIT allowed the spectra to be convolved with the experimental

resolution functions1.

For the Archer model, the scale, multi-phonon and multiple scattering weightings were refined

against the three sets of experimental data simultaneously to give the simulated spectra; for the

FC model all parameters were allowed to vary. In the current implementation of TOBYFIT,

parameters can either vary freely, or can be bound to another parameter to maintain a fixed

ratio. It was not possible to freely vary the Coulombic charges as there is no means to ensure

charge balance across the unit cell. Instead, the ratio of charges used in the Archer model was

adopted, and the parameters allowed to vary with this ratio maintained.

It was important to include the high energy data in the refinement, but the energy resolution

is worse than for the other two data sets. Moreover, the highly Q-dependent multi-phonon

backgrounds mean that there is little discernible information below 50 meV. Therefore, this

region was masked from the refinement to improve timings. The high energy spectra also

extends to high Q, which is computationally expensive, and yields little experimental detail as

the internal modes show little variation in Q. Therefore, only the scattering observed on the

first 82 detector rings (Q ≈ 8 Å−1 at the elastic line) was used in the refinement.
1This was performed using the new cross section model (15) for powders with a Cartesian grid of Q, allowing

full calculation of multi-phonon and multiple scattering backgrounds as described in Appendix B.2.4.
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6.3 Powder INS experiments, simulations and refinements

A low-intensity constant background was applied to both models (to aid comparison, the

same backgrounds were used in both cases). This was based upon the level of noise in the exper-

imental data, and refined together with the FC model, giving final values of 0.0047 (arb. units)

for Ei = 15 meV, 0.998 for Ei = 45 meV, and 0.074 for Ei = 250 meV.

A Monkhorst-Pack grid with 14 k-points along each axis was used during refinement, and

increased to 28 × 28 × 7 (reflecting the relevant axis lengths) for the final stage of the fitting

process and for the simulations shown here.

6.3.3 INS results and discussion

The room temperature powder experimental spectra are shown together with the results for the

two calcite models in Figs. 6.3 & 6.6. Both models refined to give similar scale, multiple scatter

and multi-phonon factors (Table 6.4). The overall χ2 demonstrates that the Archer model gives

the best fit to the experimental data1.

Study of the experimental low incident energy dataset in Fig. 6.3(b) shows acoustic modes

rising from the Bragg peaks, with some extra scatter from the elastic line even at 2.5 meV. Clear

dispersive shapes can be seen, with a distrinctive variation in intensity between the Brillouin

zones.

The two models both give reasonable agreement to the low incident energy experimental

data. The Archer model in Fig. 6.3 (a) has the main band of intensity slightly too high, falling

between 8 and 11 meV, but the curves within this region can still clearly been seen, as in

experiment. The lower energy band at Q ∼ 4.4 Å−1 lacks intensity, but the relative intensities

of the different curves at low energy is close to experiment.

The FC model at first inspection appears to give a better fit to experiment. It reproduces

the Q ∼ 4.4 Å−1 features well and correctly places the centre of the main band of intensity at

∼8 meV, but extends to higher energy than seen experimentally. The relative intensity of the

Q ∼ 2.7 Å−1 and ∼ 3.4 Å−1 curves at low energy appears switched, and the curves within the

main intensity band are less clear.

Overall the details appear better reproduced in the Archer model, albeit with a slight energy

offset. This is confirmed by the constant-Q cut at 3 Å−1 in Fig. 6.4: the FC model peaks in the

correct position but the actual (double) peak shape is better in the Archer model.
1‘Convergence’ was reported when the change in χ2 was less than the reported accuracy on χ2.
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Figure 6.3: Powder MERLIN data and simulations with (left) Ei = 15 meV for (a) Archer
model (b) experiment (c) FC model, and (right) Ei = 45 meV for (d) Archer model (e)
experiment (f) FC model. The key features in the experimental data at both these incident
energies appear well reproduced by the two models.
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Figure 6.5: One-phonon simulations (left: Archer model, right: FC model) allowing comparison
of the full range of modes and clearly showing internal modes. The mid-point and range of the
internal modes has been marked (blue for Archer and green for FC model) together with the
(red) experimental values from MERLIN data.
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Figure 6.6: MERLIN data and simulations convolved with experimental resolution functions at
Ei = 250 meV (a) Archer model (b) experiment (c) FC model.
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Cuts from MERLIN data at 8 Å-1: Mode energies:
 Experiment  Experiment (from Gaussians)
 Archer Model  Archer Model
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 IR Data

Figure 6.7: A cut at Q = 8 Å−1 through the 250 meV incident energy experimental data and
the simulations convolved with experimental resolution functions to show the positions of the
internal modes. The published IR data is shown, together with the mean positions and spread
from the one-phonon simulations.

IR data Experiment Archer model FC model
Asymmetric Stretch 182 179.1±3.4 184.5±3.5 197.7±0.4
Symmetric Stretch 135 134.4±2.1 136.1±0.2 125.5±1.6
Torsional Vibration 109 106.9±4.3 118.1±7.4 109.3±0.2
Asymmetric Bend 88 85.6±5.1 77.5±2.4 76.4±0.7

Table 6.3: Comparison of CO3 internal mode energies (meV) from experiment, model and
published IR data (White, 1974).

Parameter Archer model FC model
χ2 3.8× 105 4.4× 105

Scale 0.342 0.342
Multiple Scatter (%) 10.7 10.6

Multi-phonon (%) 14.5 15.0

Table 6.4: Final scaling parameters and χ2 for the two interatomic models.
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6.3 Powder INS experiments, simulations and refinements

The 45 meV data (which corresponds to the single crystal study presented below) is shown

in Fig. 6.3 (d-f). The effect of instrument resolution can be seen when comparing the 45 meV

constant-Q cut (at Q = 3 Å−1, Fig. 6.4) to the 15 meV cut, demonstrating the importance of

including the low energy data in the refinements. The modes in this region are so dense that

distinct peaks cannot be seen in the constant-Q cut, but both models appear to reproduce this

mid-range data well in the INS spectra of Fig. 6.3.

The flaws in the FC refinement become obvious in the under-lying one-phonon S(Q,ω)

simulations. Fig. 6.5 shows that, comparatively, the FC refinement has shifted several modes

into the higher energy region. This is a weakness of the current refinement process: the band at

∼50 meV is not at all well constrained by the data as this region is not covered in the mid-range

datasets and the poor resolution and high multi-phonon backgrounds mask any detail in this

region in the high energy data. As the low incident energy modes dataset cover a smaller Q-

range over the same number of bins, the lower energy modes are effectively more highly weighted

in the current refinement process. It is mathematically preferable, therefore, for the refinement

package to push modes into higher energy region than have poorly fitting results. This has

important implications for further developments of the software: it is necessary to have some

means of limiting how high certain modes can be taken.

The high incident energy data and models (Fig. 6.6) show the level of agreement between

the internal modes in the models and experiment. The one-phonon simulations for both models

show a small amount of high-energy dispersion, giving fairly broad bands (Fig 6.5). Gaussian

peak-shapes have been fitted to the experimental data in a constant-Q cut (Fig 6.7), confirming

that the experimental data is in agreement with the earlier IR data. There are also additional

features around 130 meV which are not drawn out by the IR data due to modes not at the

Γ point. Comparison with the one-phonon Archer model confirms dispersion in the nearby

modes.

The effects of the experimental resolution function are such that there is little observable

difference between the Archer and FC models in the constant-Q cut with the exception of the

highest mode (asymmetric stretch) which is notably too high in the FC model. In the Archer

model, the asymmetric stretch and torsional (out-of-plane) modes are a little high, but the

symmetric stretch is well reproduced. The asymmetric bend is a little low, as is the same band

in the FC model. This model gives a discrete mode that corresponds well with the experimental

values for the torsional mode, but the other modes show large discrepancies. These results

confirm the validation of the Archer model, and the weakness of the refined FC model.

To conclude, the refinement process has allowed a new model to be produced showing good

agreement to low and mid-range energy modes in the powder data. However, the high energy
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6.3 Powder INS experiments, simulations and refinements

Parameter Experiment Archer model FC model
Elastic Constants(GPa):

C11 145.7 151.9 54.6
C33 83.3 96.0 168.7
C44 33.4 45.3 48.8
C12 55.9 65.1 39.6
C13 53.5 62.7 63.8
C14 -20.5 22.1 7.5

Static Dielectric Constants:
11 8.5 6.5 4.84
33 8 6.2 6.0

High frequency
Dielectric Constants:

11 2.75 1.75 1.15
33 2.21 1.85 1.21

Table 6.5: Comparison of the experimental2 and simulated elastic (Dandekar & Ruoff, 1968),
static dielectric (Kaye & Laby, 1982) and high frequency dielectric (Deer et al., 1966) constants
in calcite.

(internal) modes are not well constrained, and there is an excess of modes in the poorly repre-

sented ∼50 meV region. The Archer model, meanwhile, provides a good fit to the shapes of the

dispersion curves seen in the experimental data with some slight energy mismatches. This is to

be expected as the Archer model was produced to allow the study of the calcite-aragonite phase

transition, and some loss of accuracy in reproducing the phonon properties of the individual

polymorphs was allowed to improve transferability.

6.3.4 Comparison with experimental phonon properties

To assess the quality of the refined model it is helpful to look at other experimental phonon

properties. GULP allows the calculation of various phonon properties from a dense Monkhorst-

Pack grid: the same settings were used here as for the SQW module. Results are compared with

the calcite experimental observables used in the production of both models (Table 6.3 & 6.5).

In the long wavelength limit, the acoustic modes correspond to shear crystal strains, and

the slope of the acoustic modes can be used to determine the elastic constants1. These provide

important insights into structural stability and mechanical properties, and can give a numer-

ical indication of the quality of a model. Clearly, the Archer model gives the best fit to the

experimental elastic constants2: the authors of the model acknowledge the discrepancies from

experimental results but are confident that these are not large enough to cause the crystal to
1The elastic constants are the second derivatives of the energy surface with respect to strain.
2The sign difference for C14 is most likely to be due to a difference in alignment.
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6.3 Powder INS experiments, simulations and refinements

distort unrealistically when pressure is applied. The FC model gives reasonable agreement to

C44, C12 and C13, but fails to reproduce the other elastic constants implying that this slope has

not been properly reproduced in several key directions through the Brillouin zone.

Another good test of an interatomic potential model is through the dielectric constants:

those from the Archer model are much better than the FC results. Given the discrepancies in

the elastic constants and the inability to freely refine the Coulombic charges, it is not surprising

that the FC model gives dielectric constants slightly further from experiment.

6.3.5 Conclusions

This chapter asked two questions of powder simulations: can powder INS simulations validate

an interatomic model and can they be used to refine an interatomic model. To answer the first,

powder S(Q,ω) simulations have been used to validate the Archer model more completely than

previously possible. Good agreement had already been noted by the authors of the primary

reference with previously published dispersion curves and other experimental observables. Cor-

rectly reproducing the intensities of the powder INS spectra provides the first confirmation that

the eigenvectors are also correct. Thus powder INS allows a more complete validation of the

lattice dynamics from the Archer model, but fine details, including the important soft modes,

cannot be absolutely confirmed without single crystal data.

Powder refinement was tested through the FC model. Never intended as a definitive model,

this also reproduces many features of the powder INS spectra. Indeed, on visual inspection some

of the features appear better reproduced than the Archer model. However, close examination

of the one-phonon spectra and study of the high energy spectra convolved with experimental

resolution functions showed that the refinement process had produced excellent agreement for

a few modes at the expense of other modes. However, this is still promising, as it shows that

certain features are already possible to refine.

I have not yet managed to refine the Archer potential model against powder INS data, but

there is no intrinsic reason why this should not be possible. Given the necessary geometric

optimisation in refining a potential model (as opposed to a FC model), this would benefit from

simulations of the elastic line. This would also help constrain the refinement process to ensure

that modes are not ‘hidden’ under the resolution function of the elastic features.

In assessing the viability of powder refinement, it is important to differentiate between lim-

itations with the current implementation, and inherent problems with the approach. In the

first category, this study has shown that the inherent higher-weighting of low-energy data in

the experimental INS needs to be overcome. Partially, it is due to the Bose-weighting of the

experimental spectra: refinements could be performed using ω weighted spectra to counteract
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that. The higher energy modes are also underrepresented as there are fewer Q-bins per Å−1,

and computational considerations mean that the higher Q-bins are frequently removed from

a refinement to enhance the timings. This could be corrected for by an additional weighting

factor. I believe the inclusions of other experimental ‘observables’, such as IR or Raman modes,

would also be highly beneficial.

The second category of limitations are less clear at the current time. There is a question of

whether features such as the soft modes will be refinable. This will depend on how visible these

features are in the powder spectra: the Archer simulation is notably different to the FC model

in the 15 meV data so they are probably encapsulated in this information, but the statistics

may not be sufficient. Simple least square refinement may not work to fit these weak features,

since like the high energy modes they will not contribute much to the χ2. Additional weighting

for the crucial areas may help here. It is also possible that the starting model for the refinement

will need to be fairly close to allow refinement of the soft mode. This need for a good starting

model can also be seen as an advantage. It means that, having validated the model, it will be

possible to perform computational experiments, following the effects on the INS spectra as a

functions of, for example, temperature, pressure or doping. However, it is unlikely that powder

data is ever going to be able see longer range interactions or subtle electron-phonon coupling,

so refinement against single crystal data is going to be necessary here.

In conclusion, this section has delivered proof-of-concept for powder refinement. The current

position reflects that of early crystallographical powder refinement, and the initial studies here

have suggested a number of important advances to the methodology. It is important to remember

that this is the start of a new approach to extracting lattice dynamics, and the initial report is

very promising.

6.4 Single crystal

Single crystal INS is the standard method for studying the lattice dynamics of materials. The

new ability to perform simulations of INS spectra fully convolved with experimental resolution

functions making them directly comparable to experiment provides an opportunity for further

validation of the Archer model. Despite the flaws already noted in the FC model, such compar-

isons can yield important information on the strengths and weaknesses of the powder refinement

approach, suggesting further improvements. The simulations are compared to slices of experi-

mental data across many Brillouin zones, giving a robust test of the eigenvectors as well as the

mode frequencies. Finally, dispersion curves are extracted, confirming previous results along c∗

and toward the F point, as well as expanding this latter dataset, and giving the first experimental

results along a∗.
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Figure 6.8: The sweep at the elastic line (integrated between -2 and 2 meV) for the 45 meV
calcite single crystal in (a) the standard alignment allowing slices to be taken along both the a∗

and c∗ axes, and (b) the projection such that slices could be taken (shown in red) along [104̄]
(towards F ).

6.4.1 Experiment

A single crystal of calcite was mounted on an aluminium stub in the cold cycle refrigerator

(CCR) (to take advantage of the goniometer) in MERLIN, such that [100] and [001] were both

in the scattering plane: alignment was based on crystal morphology1. The crystal was rotated

through 202◦ in one degree steps at room temperature with incident energy of 45 meV.

Following normalisation (against the flux observed by the monitors) the data were combined

into a unified four dimensional dataset using HORACE, aligned along x = a∗ and y = c∗,

the Bragg peaks from which are shown in Fig. 6.8(a). The pale rings are characteristic of the

aluminium powder background, arising from the sample environment, which can also be seen

as excess intensity crossing the elastic line in (Q, ω) slices. To study the dispersion towards the

F -point, the combined dataset was projected along [104̄], as shown in Fig. 6.8(b).

6.4.2 Simulations

Single crystal simulations were performed for both models. An orthogonal supercell (a′ = 2a,

b′ = b and c′ = c) was used with 60 (core) atoms in the unit cell to ensure correct alignment

between TOBYFIT and GULP. A Monkhorst-Pack grid of 14 × 28 × 7 k-points achieved con-

vergence of phonon properties and suitable SQWsingle array population. The Archer potential

model optimised to a very slightly different unit cell than experiment, as reported in the primary

reference. This has little implication for the comparison of data as results are given in reciprocal

lattice units.
1The faces are all of the form [104] and the intersection of three faces with obtuse vertices gives the three-fold

axis – the [001]∗.
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TOBYFIT was used1 to produce a GULP single crystal .sqwt output file, providing the sim-

ulated spectra for convolution2 with experimental resolution function for each of the 214 crystal

alignments to cover (and slightly exceed) the experimental datasweep. No other scaling or

backgrounds were included in the simulation.

6.4.3 Results and discussion

One advantage of MERLIN’s many banks of detectors is that data from multiple Brillouin zones

are collected simultaneously, and slices can be made along any direction in reciprocal space. The

powder INS spectra allowed a certain degree of validation for the two models, but the true test

is in how the single crystal data and simulations of these slices compare, both in mode energies

and intensities. These slices also allow the extraction of dispersion curves along key directions,

which can be compared directly with the dispersion curves from the two interatomic models and

with previously published results.

6.4.3.1 INS spectra

The c∗ dispersion has previously been studied experimentally (Cowley & Pant, 1973), so repre-

sentative slices from the new MERLIN data and simulations are shown in Fig. 6.9. The slices in

Fig. 6.10 give the first experimental study of the a∗ direction, testing the Archer model against

completely new ‘observables’. Finally, the agreement of the simulations to experiment towards

the F point can be assessed in Fig. 6.11, which also reveals more experimental detail than seen

in previously published results (Dove et al., 1992).

The range of intensities for equivalent points in different Brillouin zones is immediately

apparent from the results, showing how important it is to collect the experimental data over

a wide range of momentum transfers. Each experimental slice is compared with the simulated

spectra (convolved with the appropriate experimental resolution functions) from the Archer and

refined FC models.

The Archer model gives reasonable agreement to the data in all the directions shown here,

but, as implied in the original paper, there is often a systematic discrepancy in the energies

of the dispersion curves. For the first time, the eigenvectors can also be assessed through

their contribution to the dynamical structure factor seen in the scattering intensity. In general

the agreement between the intensities in the Archer model and the experiment is very good,

particularly where the mode energies are correct.
1The single crystal cross section model 3 (see Appendix B.2.3) took almost 9 hours of CPU time on a CamGrid

machine
2Using single crystal cross section model 4, with Monte Carlo integration, each of these simulations took

between 4 and 7 CPU hours on the CamGrid machines.

129



6.4 Single crystal

(a)
−20 −15 −10 −5
0

5

10

15

20

25

30

35

40

[0, 0, ξ]

 (
m

eV
)

 

 

0

100

200

300

400

500

Student Version of MATLAB

(d)
−20 −16 −12 −8 −4 0
0

5

10

15

20

25

30

35

40

[−1, 0, ξ]

 (
m

eV
)

 

 

0

100

200

300

400

500

Student Version of MATLAB

(b)
−20 −15 −10 −5
0

5

10

15

20

25

30

35

40

[0, 0, ξ]

 (
m

eV
)

 

 

0

100

200

300

400

500

Student Version of MATLAB

(e)
−20 −16 −12 −8 −4 0
0

5

10

15

20

25

30

35

40

[−1, 0, ξ]

 (
m

eV
)

 

 

0

100

200

300

400

500

Student Version of MATLAB

(c)
−20 −15 −10 −5
0

5

10

15

20

25

30

35

40

[0, 0, ξ]

 (
m

eV
)

 

 

0

100

200

300

400

500

Student Version of MATLAB

(f)
−20 −16 −12 −8 −4 0
0

5

10

15

20

25

30

35

40

[−1, 0, ξ]

 (
m

eV
)

 

 

0

100

200

300

400

500

Student Version of MATLAB

Figure 6.9: Slices along the c∗ axis integrated across 0.2 r.l.u centered at (left) h = k = 0
and (right) h = −1, k = 0. (a, d) Archer model (b, e) Experiment (including characteristic
diagonal features across the elastic line due to powder aluminium scattering from the sample
environment) (c, f) FC model. The Archer model gives close agreement to the general trends
in the data. The FC model is poor, especially in (c): the wrong branch of the dispersion curve
has clearly been used to fit the intense higher energy features. This is also true in (f) where the
model lacks intensity for the first optic modes at ∼15 meV.
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Figure 6.10: Slices along the a∗ axis, integrated across 0.2 r.l.u centered at (left) k = 0, l = −10
and (right) k = 0, l = −12. (a, d) Archer model (b, e) Experiment (including characteristic
diagonal features across the elastic line due to powder aluminium scattering from the sample
environment) (c, f) FC model. Both models reproduce the experimental higher intensity region
around 15 meV, but the shape is more realistic in the Archer model. Notably, there is a clear
zone boundary soft mode, reproduced by the Archer model, but not the FC model.
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Figure 6.11: Slices along the [104̄] axis, shown red dotted lines in Fig. 6.8(b). Slices were
integrated across 0.2 r.l.u centered at (left) v = −3 and (right) v = −0 (a, d) Archer model
(b, e) Experiment (including characteristic diagonal features across the elastic line due to pow-
der aluminium scattering from the sample environment) (c, f) FC model. The Archer model
reproduces the experimental detail, including soft modes. The FC refinement correctly models
the intensitiy at ∼15 meV and the curved features at ∼25 meV, but missed the soft mode.
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The FC model gives a marked difference to experiment in some areas, demonstrating that

reasonable agreement of the powder INS spectra can mask crucial details. The refinement repro-

duces several of the key features in all the slices, usually the most intense features, but several

other modes are clearly missing. This confirms the earlier conclusions (from the one-phonon

powder INS simulations) that those modes which could not be made to fit the experimental

data by the refinement were pushed to higher energy.

Neither model included any a∗ modes in the initial GULP refinements, yet both models show

a comparative degree of agreement to the experimental data as seen in other slices. Indeed the

FC model appears to reproduce more of the a∗ features than it does c∗ features. The key detail

visible in Fig. 6.10 is the presence of a soft mode at the a∗ zone boundary in the experimental

data, apparent in the Archer model, but not the FC model. The dispersion curves in this

direction are clearly complex, with marked variation along the axis. Detailed comparison of the

two models is best performed with the aid of the extracted dispersion curves (Section 6.4.3.2).

Perhaps the most interesting dispersion curve is that towards the F -point, given the anomoulous

columns of phonons seen by Dove et al. (1992) over a range of temperatures in the [104̄] projec-

tion. All MERLIN experimental slices (representative examples of which are shown in Fig. 6.11)

show the crucial soft mode at the zone boundary which drives the high temperature phase

transition. tTe Archer model reproduces this, although with a slightly higher intensity that

experiment in the softening branch. The FC model fails to reproduce the soft mode, but still

reproduces many of the intense regions.

6.4.3.2 Dispersion curves

Reducing the INS spectra to the under-lying dispersion curves givens an overview of the phonon

mode energies across different branches. These were extracted from the experimental single

crystal spectra by taking constant-Q cuts at regular intervals along the c∗ and a∗ axes, and

towards the F point in the [104̄] projection. By overlaying cuts from equivalent points in

several Brillouin zones the mode positions for the dispersion curves could be obtained. These

are shown, superimposed on a representative slice, in Figs. 6.12, 6.13 & 6.14 for slices along

the c∗ and a∗ axes, and towards the F point in the [104̄] projection, respectively. The final

extracted dispersion curves are compared with the previous experimental data and the Archer

model dispersion curves1 in Fig. 6.15, and compared with the refined FC model dispersion curves

in Fig. 6.16.
1GULP allows the dispersion curves to be directly calculated for an interatomic model, without recourse to

INS simulations
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Figure 6.12: A representative experimental slice along the c∗ axis (Γ to Λ = [0 0 0.5]) with
h = 2. The aluminium powder scatter present as a diagonal feature crossing the elastic line
was ignored when extracting the dispersion curves. Derived modes are black circles. A dotted
black line based on the branches of the Archer dispersion curves guides the eye through the
derived datapoints. The Archer model dispersion curves are overlain in red. This highlights the
excellent agreement of the Archer model to experiment, as well as the shape of the individual
branches of the dispersion curves.

These data are important for two reasons: primarily, this is the first characterisation of the

dispersion curves along the a∗ axis and at mid-range energies towards F as well as allowing

confirmation of previous experimental results; and second, combining the INS spectra with the

extracted dispersion curves helps comparisons to be made between the different models and

experiment.

Historically, the c∗ axis dispersion curves were the first to be studied (Cowley & Pant, 1973,

from TAS data). Fig. 6.15 (Γ to Λ) shows that there is good agreement between these and the

experimental results from MERLIN. Comparison with the dispersion curves from the Archer

model shows that all the key features are reproduced although not all branches have exactly the

right energies. However, the agreement was sufficiently close that following the general trends of

the Archer model could ensure appropriate degeneracies were maintained in the extracted dis-

persion curves. This is an important confirmation of the validity of the Archer model, especially

as it reproduces the soft mode.
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Figure 6.13: A representative experimental slice (with aluminium powder backgrounds crossing
the elastic line) along a∗ (Γ to L = [0.5 0 0]) at l = −10. Derived phonon modes are shown as
black circles. The Archer model dispersion curves are overlain in red.
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Figure 6.14: A representative experimental slice (with aluminium powder backgrounds crossing
the elastic line) along [ζ 0 4̄ζ] in the F direction, (Γ to F = [0.5 0 2]). Derived phonon modes
are shown as black circles. The Archer model dispersion curves are overlain in red.
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The equivalent FC model dispersion curves between Γ and Λ (Fig. 6.16) reproduce some

experimental features. The lowest acoustic mode is very well reproduced, as are several zone

boundary points such as the modes near 23 meV and 26 meV, as well as the fairly flat high

energy region around 35 meV. However, it is clear that other features are completely missing.

Without the intensity of the INS spectra, it is even more obvious that there are not enough

modes present in the FC simulation below 45 meV. As discussed previously, this is because the

refinement was able to ‘bury’ difficult modes in the poorly represented region at ∼50 meV.

The dispersion along a∗ (Γ to L) is seen for the first time experimentally here, and presented

here together with the Archer (Fig 6.15) and FC (Fig. 6.16) model dispersion curves. The

dispersion is complex in this direction, but there is clearly a soft mode at the zone boundary.

This is seen in the Archer model, providing important validation of the entire model as this

was not included it its refinement. This soft mode is not present in the FC model. As seen in

the previous direction, near-zone centre modes between 10 and 15 meV are missing from the

model, having instead refined against the shape of the higher energy branches. That so many

modes reproduce the experimental datapoints well is encouraging for the principle of powder

refinement, but the failure to model all the branches shows that this particular model still needs

further work. The missing soft mode is important: future developments of the powder refinement

approach would benefit from being able to include some specific modes to help weight such key

experimental features.

The dispersion curves (Γ to F ) extracted from the experimental slices projected along

[104̄] are compared to previous experimental work (Dove et al., 1992) and the Archer model

in Fig 6.15. The FC model is shown with the MERLIN data in Fig. 6.16. The key soft mode is

clearly visible, and the data suggest a splitting of the acoustic modes towards the zone bound-

ary, which was not seen in the more limited Q-range data of Dove et al. (1992). At the same

time, those modes which were identified in the previous study are closely reproduced here. The

FC model, having been refined against the experimental data, also shows this splitting between

the softening acoustic modes, but underestimates this softening. The Archer model accurately

reproduces the softest mode, but not the softening of the second mode.

It has been shown that the new MERLIN data confirms and expands the range of experi-

mental dispersion curves, as well as allowing direct comparison with dispersion curves from the

two models. As expected from the INS spectra, the Archer model performs well. The dispersion

curves are particularly informative in interpreting how and why the FC refinement has failed:

it is clear from all three directions that those features that are well reproduced (usually intense

features in the INS spectra) are very well reproduced, but sometimes with the wrong branches.
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Figure 6.15: Calculated dispersion curves for the Archer model (blue), together with previously
published experimental dispersion curves from Cowley & Pant (1973) and Dove et al. (1992)
(black squares and triangles respectively) and the extracted modes found here (red circles).
Along the c∗ axis, a dotted line guides the eye to the likely dispersion curve, based on compar-
ison with the Archer model. The new MERLIN data agrees with previously published results,
where available. The Archer model clearly reproduces the general trends in all three directions,
although there is a systematic discrepancy in the energies of some branches.
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Figure 6.16: Calculated dispersion curves for the FC model (green), together with the extracted
modes found here (red circles). Along the c∗ axis, a dotted line guides the eye to the likely
dispersion curve, based on comparison with the Archer model. It is obvious that some features
have been well reproduces by the refinement, but there are insufficient modes in this region of
the model to reproduce all the experimental branches.
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6.4.4 Conclusions

The single crystal data were used for two purposes: to further assess the validity of the two in-

teratomic models; and to allow dispersion curves to be extracted along three key directions. The

validity of an interatomic model is powerfully established by comparison to single crystal data.

The powder simulations validated the general trends in the Archer model, but could not confirm

whether specific features such as soft modes were reproduced. In all the directions studied, the

single crystal data confirmed the excellent agreement of the Archer model to experiment, giving

correct trends and relative intensities if not always the exact mode energy. Importantly, even

the soft mode in the previously unpublished a∗ direction was reproduced.

Both models reproduced the low and mid energy powder INS spectra reasonably well, al-

though the FC model had failed to correctly reproduce the higher energy spectra. The weakness

of the FC model became absolutely clear from the single crystal simulations and comparison of

dispersion curves. Those modes (usually intense modes) which were reproduced were well repro-

duced: this is good, and encouraging for the principle of powder INS refinement. Other modes

were frequently missing, pushed ‘out of range’ in the refinement. This suggests further advances

to the methodology to help constrain this through the use of additional ‘observables’ from other

experimental techniques, as well as the ability to weight different regions of the INS spectra

differently. Finally, the refinement failed to reproduce the soft modes. This is disappointing.

Ensuring the appropriate branches of the dispersion curve are constrained to the correct energy

regions so there are no ‘missing’ branches will help here, as will additional weightings or the key

regions in the experimental spectra.

This confirms the conclusions from the previous section: powder INS refinement is in its

infancy but shows great promise. Certainly, the degree to which the powder data has been

successfully fitted using the new approach shows that single crystal refinement should provide

excellent results. There is no theoretical reason to prevent this refinement process, and indeed

the software has been designed to allow it, but required parallelisation to make the timings

reasonable. Single crystal refinement will be very valuable, particularly when looking for weak

magnetic features in the presence of phonons or broad soft features as in PMN (Chapter 7).

The calcite study was not just a test for refinement processes, but provided new experimental

dispersion curves. The advantages of the simultaneous study of many Brillouin zones are clear

from the relative ease with which these can be extracted. Important new features, such as a

previously unseen zone boundary soft mode along a∗, have been revealed.

In conclusion, the work presented in this Chapter has demonstrated the power of the new

computational methodologies and how they can assist in the design, implementation and inter-

pretation of experimental data.
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Chapter 7

Further Applications

The main aim of this thesis was to produce analytical techniques to give new in-

sights into phonon behaviour from neutron scattering experiments. Having success-

fully developed the basic tools, the new approaches are now being applied to com-

plex technologically important materials. This chapter covers the analysis which

has been performed combining experimental INS results with computer simulations

for two such materials – the relaxor ferroelectric PMN (Pb(Mg1/3Nb2/3)O3) and a

high-temperature superconductor (Ba1−xKxFe2As2) from the newly discovered class

of pnictides.

7.1 PMN: a single crystal INS study

7.1.1 Introduction

Lead magnesium niobate (Pb(Mg1/3Nb2/3)O3, PMN) is a mixed cubic perovskite of the ABO3

type, and, together with the the zircon-containing counterpart PZN, is considered a prototypical

relaxor ferroelectric, with exceptional piezoelectric properties. Unlike normal ferroelectrics, these

show an unusually broad and frequency-dependent dielectric susceptibility. Such materials are

technologically important, for example as transducer devices, due to their large and anomalous

electromechanical properties.

The average structure of PMN is cubic, space group is Pm3̄m, over a wide range of temper-

atures (Fig. 7.1(a)). At room temperature, a = 4.05 Å (Bonneau et al., 1991). A substantial

‘skin’ has been observed (Conlon et al., 2004), extending 10 to 50 µm into the bulk with a

different lattice spacing resulting in strain between the bulk and skin.

In normal ABO3 ferroelectrics, the dielectric behaviour is characterised by the Curie-Weiss

law, with the Curie temperature, Tc, representing the dielectric peak: χ ∝ 1/(T −Tc). However,

Bokov & Mylnikova (1961) observed deviation from the Curie-Weiss law below what became
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Figure 7.1: (a) A polyhedral model of the ideal Pm3̄m cubic perovskite PMN structure. Pb oc-
cupies the 12-coordinated (red) polyhedra, while, in the mean-field model, the random mix of
Mg or Nb occupy the octahedrally coordinated (blue) polyhedra. (b) The experimental sweep
at the elastic line for PMN. The Bragg peaks can clearly be seen, together with characteristic
aluminium powder rings from the sample environment.

known as the Burns temperature, TB, nominally given as ∼620 K in PMN (as originally suggested

by Burns & Dacol, 1983) but more recently found to be 420± 20 K (Gehring et al., 2009).

The large dielectric constants seen in relaxor ferroelectrics are a result of the dipolar entities

introduced through chemical substitutions: these materials typically have a random occupation

of equivalent positions (the octahedrally coordinated B-site, Fig. 7.1(a)), in this case between

Mg2+ and Nb5−. There is significant difference in both size (ionic radii of 0.72 Å vs 0.64 Å)

and Pauling electronegativity (1.2 vs 1.6). Below the Burns temperature the dipole moments

are found in so-called Polar Nanoregions (PNRs), unique to relaxor ferroelectrics, giving rise to

the large dielectric constants. The dipole moments are not observed at higher temperatures due

to thermal fluctuations.

Recent work by Xu (2010) suggests the PNRs are ‘pancakes’ 10 to 20 nm diameter with a

thickness 4 times smaller, aligned in six possible orientations (< 11̄0 > polarisations correlated in

110 planes). This gives rise to the observed diffuse scattering (Hiraka et al., 2004; Hirota et al.,

2002; Xu et al., 2004): a distinctive ‘butterfly’ pattern around the Bragg peak at [1, 0, 0], and an

ellipsoidal pattern extending in [11̄0]. The diffuse scattering begins at the Burns temperature

and increases on cooling into the relaxor state. Similarly, Jeong et al. (2005) used RMC analysis

of total scattering data to calculate the increase in volume fraction of PNRs from 0% at 650 K

to ∼ 30% at 15 K. Even in PbTiO3-doped samples, where a rhombohedral phase transition

takes place on cooling, the PNRs persist into the low temperature phases as the local atomic

displacements are not along the rhombohedral < 111 > as previously thought (e.g. Chen et al.,
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1989; Siny & Smirnova, 1989).

The lattice dynamics of PMN are not well understood. The soft transverse optic (TO) mode

that would drive the phase transition in a normal ferroelectric is still present, but Gehring et al.

(2001) showed it to become anomalously broad for small k across the entire temperature range

between the Burns and Curie transition temperatures, although it subsequently recovers on

further cooling. This was originally linked to coupling of the TO mode with the PNR, but

subsequent studies (Stock et al., 2006) showed the same over-damping in highly doped PMN-

60%PT which is no longer a relaxor ferroelectric and does not display the characteristic PNR-

related diffuse scattering. More recently, Swainson et al. (2009) used INS to reveal other unusual

columns of phonon scattering, localised in momentum and extending across a wide section of

energy, at high-symmetry points along the zone edge: QR = [0.5 0.5 0.5] and QM = [0.5 0.5 0].

This also occurred around the onset temperature of the zone-centre diffuse scattering. They

found that these columns are due to zone boundary optic modes associated with Pb and O

displacement.

There are many challenges in understanding the lattice dynamics of this technologically

important material. What is needed initially is a good model of the dynamical behaviour above

the Burns temperature, which can then be used to aid understanding of the properties of the

system as it is cooled.

7.1.2 Experiment

I have collaborated with Chris Stock1 to look at the lattice dynamics of PMN. With the use of

a simple interatomic model, I was able to use simulations of the INS spectra for PMN to aid

with interpretation of experimental data during a MAPS (URL - M) experiment at ISIS. MAPS

was the first direct geometry chopper spectrometer to have the large banks of detectors allowing

simultaneous access to vast areas of reciprocal space. The crystal was comprised of three ∼60 g

samples of PMN which had been coaligned and characterised using the E3 spectrometer at Chalk

River. The samples were grown using the modified-Bridgeman technique described by Luo et al.

(2000). We collected data at 600 K using an incident energy of 100 meV. The crystal was rotated

from ψ = −5 to 67.5 in 2.5◦ steps giving the coverage (at the elastic line) shown in Fig. 7.1(b).

7.1.3 Simulations

Martin Dove and I developed an interatomic model based on a stable polarisable-shell Buck-

ingham potential model for PbTiO3. Assuming B-site ordering as seen in PNRs would be

negligible at 600 K, a mean-field ‘MN’ cation was used, based on average properties of 1/3 Mg
1Chris Stock is now based at NIST but was, until recently, machine scientist on MERLIN at ISIS.
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and 2/3 Nb. Experimental elastic constants (Ahart et al., 2007, Table 7.1) and selected phonon

modes were used in the refinement. The charges not refined, but kept constant at the original

values: MN = +4, Pb = +2, Ocore = +0.84819 and Oshell = −2.84819. During the experiment,

this was used to produce simulations of the one-phonon INS intensity along specific directions

in reciprocal space. It is now possible to simulate the full four dimensional spectra, convolved

with experimental resolution functions. Selected regions of this simulation, generated using a

Monkhorst-Pack grid of 20× 20× 20 k-points in the first Brillouin zone, are shown in Fig. 7.4.

The GULP input file was modified for PDF simulation, allowing comparison with the published

data of Jeong et al. (2005). It must be noted that this model (Table 7.2) was never intended as

a definitive model, but has the potential for further refinements.

Gvasaliya et al. (2003) published ‘preliminary’ results of an interatomic polarisable-shell

force constant model (GFC model) with a mean-field atom (MN = 1/3 Mg and 2/3 Nb) in

the B-site (Tables 7.3 & 7.4). Simulations of the INS spectra and PDFs were obtained from this

model in the same way as described for the Buckingham potential model.

7.1.4 Results

7.1.4.1 PDF simulations

PDFs have been shown to provide an informative comparison between interatomic models.

albeit with emphasis on the low-energy modes. They will also provide a key analytical tool for

probing the PNRs in future work. Jeong et al. (2005) produced PDFs using total scattering

data collected up to Qmax = 25 Å−1, at 650 K (to avoid inclusion of PNRs). Datapoints from

the published graph are reproduced in Fig. 7.2 together with the PDF simulations from the two

models. It is immediately obvious that the low energy dynamics of our Buckingham potential

model are closer to the published experimental work than the GFC model, with the majority

of GFC peaks being too narrow. This is perhaps not surprising as the elastic constants are so

much better in the Buckingham potential model. However, the relatively low Qmax means that

the real space resolution is only of the order 0.2 Å. The results presented here show some of the

limitations of the published GFC model, but are principally intended as an indication of the

starting points for future model refinements.

The partial PDFs for both models are shown in Fig. 7.3. The oxygen interactions in particular

appear to be sharper in the GFC model than experiment or the other model. This type of

analysis will be helpful in assessing the progress of refinement for the different interatomic

models, especially to see how the different partials improve. Study of the partial PDFs can also

help in selecting the order in which to include more distance interatomic interactions during the

development of more advanced models.
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Figure 7.2: Comparison between the idealised Pm3̄m Buckingham potential model and GFC
model, overlain with datapoints taken from the published PDF of Jeong et al. (2005) at 650 K.
Jeong et al. use the GPDF(r) form of PDF to emphasise fit at higher r.
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Figure 7.3: Partial ρ(r) at 650 K. (Top) The GFC model and (bottom) our Buckingham potential
model. The ρ(r) format is used as it allows direct comparison of the partial peak widths at all
r on a flat background.
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Experimental Buckingham model GFC model
C11 156.2 ± 3.4 263 538
C12 76.0± 3.9 135 244
C44 68.5 ± 4.0 135 218

Table 7.1: Experimental elastic constants (GPa) at room temperature (Ahart et al., 2007),
compared to model elastic constants at 600 K.

Pairs Potential A B C Cutoffs [Å]
Min Max

Pb c O s Buckingham 0.137× 104 0.351 19.5 0.000 20.000
M-N c O s Buckingham 739.0 0.400 0.00 0.000 20.000
O s O s Buckingham 0.228× 105 0.149 27.9 0.000 20.000
O c O s Spring (c-s) 164.0 0.00 0.00 0.000 0.600

Table 7.2: Refined Buckingham potentials for PMN.

Pair max cutoff [Å] L [eV/Å2] T [eV/Å2]
Pb – O 2.86 3.1208 -0.062415
MN – O 2.02 10.299 -0.15916
O – O 2.86 7.4274 -0.24966
Pb – MN 3.50 0.49932 -0.093629
Pb – Pb 4.04 0.87381 -0.50244

Table 7.3: Ion pairs, their cut-off distance and longitudinal (L) and transverse (T) force constants
as used in the GULP implementation of the GFC model.

Ion Core [e] Shell [e] k [eV/Å2]
Pb 1.6 -0.70 4.82
MN 2.18 -0.38 26.61
O -0.26 -0.64 301.87

Table 7.4: Core charges, shell charges, and spring constants (k) for the GFC model.

7.1.4.2 INS simulations

Comparisons can be made between experimental data and models for [hξ0] for h = 1 and 2. It

is immediately obvious that while both models produce simulations comparable to experimental

data, there is very little information to be readily extracted from the experimental data in this

format, making refinements challenging. Weighting experimental data by energy (Fig. 7.5) shows

more detail. A cut has been taken (dotted line in energy), showing that neither model accurately

reproduces the exact position of these modes, but both show curves that look close enough to

form a good starting point for a refinement. The experimental cut has peaks at 27 meV and

34 meV, but are not well defined. New experimental data are required to supplement the current

findings.
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Figure 7.4: Two sets of MAPS INS spectra for PMN with Ei = 100 meV at 600 K: (Left) [1ξ0]:
(a) GFC model (b) Experiment (c) Buckingham potential model. (Right) [2ξ0]:(d) GFC model
(e) Experiment (f) Buckingham potential model. Data are presented for both neutron gain and
loss: the experimental data includes the elastic line, although the simulations do not.
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Figure 7.5: Scattering intensity weighted by the energy, highlighting higher energy modes along
(left) a slice along the [2ξ0] axis and (right) a cut through the [220] line shown (dotted), com-
paring the models with experiment. The models have been weighted by 50% to bring them into
the same range as the data.

7.1.5 Conclusions

The new computational approach has been shown to aid in the design of INS experiments,

directing appropriate regions of Q and energy as well as helping with the interpretation of data

as it is collected. It has also allowed proper testing of different interatomic models, both through

PDF and INS simulations. There is now a need for more data which will allow better testing of

the models.

7.2 Ba1−xKxFe2As2: powder simulations and refinement

The second application of the new simulation techniques has been powder refinement with

the recently discovered class of high temperature iron-based superconductors (Kamihara et al.,

2008). These possess a layer of face-sharing FeAs4 tetrahedra, separated by ionic layers (Fig. 7.6),

with doping occurring on the A-site. This causes partial oxidation (hole doping) or reduction

(electron doping) of the (FeAs)–layers, and gives rise to superconductivity.

Superconductors have no electrical resistance, so unlike conventional conductors allow elec-
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DRAFT May 13, 2010 7.2 Ba1−xKxFe2As2

a[Å] b [Å] c [Å]
DFT 3.986 3.986 12.90

Experiment 3.917 3.917 13.30

Table 7.5: Comparison of cell parameters from the experiment and DFT calculations described
in the text.

a strong magnetic excitation at low Q which will not be reproduced using a phonon model, the

first 18 ‘workspaces’, corresponding to Qmax=1.7 Å−1 at the elastic line, were removed from the

fit. The region around the vane crossing the elastic line near Q = 7 Å−1 was also masked. Initial

background settings of 10% for both multiple scattering and multi-phonon scattering were set,

and refinements performed on a number of the CamGrid machines using Condor to distribute

the jobs.

7.2.3 Preliminarily results and future directions

The DFT starting model is shown in Fig. 7.7. This was constrained to have backgrounds of

up to 15%, and the scale allowed to vary freely. Also shown is the same model for which the

backgrounds had been allowed to vary freely. The final values for the backgrounds together with

relative improvement to χ2 is shown in Table 7.7. Finally, the full force constant refinement

which yielded the lowest χ2 is presented. The force constants for the initial and final models

are compared in Table 7.6. This was produced after well over a thousand GULP calls, releasing

progressively more parameters at each stage. This is by no means a definitive model; indeed it

has a number of important flaws. The results are presented only to show the current work in

progress and discuss the new developments required both experimentally and in the modelling

to take this forward.

Comparison of the DFT model to the experimental data shows that many of the features

are reproduced (Fig. 7.7). This is the first time the DFT model has been seen through a

simulation of INS fully convolved with experimental resolution functions, and it goes some way

to validating it. However, it is immediately apparent that there is something missing from the

model. In both the DFT and refinement models, the multiple scattering background dominates

when left to refine without limits. This suggests that there is something missing with a strong

Q2 dependenace. The most likely explanation for this is incoherent scatter from Hydrogen giving

a Q2 recoil line. This could help account for some of the missing features around 20 meV.

The model refinement has been able to correctly push the high energy modes around 35 meV

to have appropriate intensity weightings, and has elavated some modes to fill the gap between 20

and 25 meV. However, these improvements have been at the cost of pushing some modes too high

161

Figure 7.6: The structure of Ba1−xKxFe2As2: Ba (or K when doped) occupies the pink A-site.
The face-sharing FeAs4 tetrahedra (yellow Fe and purple As) can be seen to form layers separated
by the doped A-sites. The Table shows the experimental and DFT model lattice parameters for
x = 0.4 at 10 K

.

tric current to flow without loss. This new class of materials superconducts at relatively high

temperatures – the maximum is currently 56 K in samarium-doped SrFeAsF (Wu et al., 2009) –

and understanding how they work is one of the fundamental questions of condensed matter re-

search today. Results here may also shed light on the still unsolved problem of high-temperature

cuprate superconductivity.

I have performed computational modelling on the iron pnictide Ba1−xKxFe2As2. This is

a doped A–Fe2As2-type pnictide. It exhibits superconducting behaviour when doped, ranging

from Tc = 3 K with low doping to a maximum 38 K (Rotter et al., 2008) when x = 0.4.

The undoped structure has orthorhombic symmetry (Fmmm) and antiferromagnetic spin

(Su et al., 2009) below 140 K, undergoing a structural and magnetic phase transition to tetrago-

nal I4/mmm on heating. Doping reduces this transition temperature exponentially, with struc-

tures doped above x ≈ 0.23 being tetragonal at all temperatures: a phase diagram has been

published by Rotter et al. (2008). Similar A–type pnictides with A = Ca, Sr and Ba have been

shown to display superconducting behaviour up to 29 K without doping when under pressure

(Alireza et al., 2009; Kreyssig et al., 2008).

Single crystals of these new materials were originally not available, so initial explorations of

the phonon properties have come from calculations and powder INS or IXS studies. Reznik et al.

(2009) have now published single crystal IXS results along some key directions, enabling a proper

criticism of original ab initio Density Function Theory (DFT) results. They have now found it

necessary to include magnetic moments in the DFT calculations, even for the non magnetically
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ordered superconducting phase: non-magnetic calculations produce a poor agreement with ex-

periment for phonons around 20 meV. The need for the addition of magnetism even in the phases

without long range ordered magnetic structure implies strong fluctuations remain in these phases

together with magneto-elastic coupling. However, in a field where so little is known, any insights

into the phonon behaviour could lead to an improved understanding of the lattice dynamics and

superconductivity.

7.2.1 Experiment

Collaborating with Frank Weber1, who was involved in powdered BaFe2As2 neutron spectroscopy

experiments on MERLIN in 2008 (Christianson et al., 2008), I have performed initial investi-

gations using the new powder refinement approach. Data were collected as described in the

primary reference, over a range of different doping ratios and temperatures, to investigate the

resonant magnetic excitations especially around Q = 1.15 Å−1 (Fig. 2 of Christianson et al.,

2008). There was also considerable phonon information. The experimental spectra (Fig. 7.7(b))

used for the refinement of the force constant model was collected for Ba0.6K0.4Fe2As2 at 10 K

using Ei = 60 meV.

7.2.2 Simulations and refinement

Ba1−xKxFe2As2 is tetragonal (space group I4/mmm) at 10 K and x = 0.4: the experimental

cell parameters are a = b = 3.917 Å and c = 13.30 Å. INS simulations were performed

using a force constant model extracted from the original non-magnetic DFT results described

by Reznik et al. (2009), and used as the basis for refinement. The Coulombic charges are

subsumed into the force constants in the DFT model, so nominal charges were set to zero in

GULP. I produced a mean-field atom with the combined mass, bonding and neutron scattering

properties of 0.6% Ba and 0.4% K. As the data contained a strong magnetic excitation at low

Q which will not be reproduced using a phonon model, the first 18 ‘workspaces’, corresponding

to Qmax = 1.7 Å−1 at the elastic line, were removed from the fit. The region around the vane

crossing the elastic line near Q = 7 Å−1 was also masked: the vanes, while helpful in removing

some cross-sample scatter, have caused problems with local normalisation. The multi-phonon

and multiple scattering were also included and the weightings allowed to vary freely.

As is usual with first principles calculations, the DTF cell has slightly different lattice pa-

rameters (Fig 7.6), but the force constant model used in GULP was built from the ab initio force

constants with the cell parameter adjusted to match experimental data. A Monkhorst-Pack grid

of 11×11×3 was used, reflecting the shape of the unit cell. The first results are presented here.
1Frank Weber was, until recently, part of Ray Osborne’s Neutron and X-ray Scattering Group at Argonne

National Laboratory, and is now the group leader of the Scattering Group at the Karlsruhe Institute of Technology.
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Figure 7.7: (a) The starting point of the fit from the mean-field implementation of the DFT
model adjusted to have the experimental cell parameters, with backgrounds of 15% (b) Ex-
perimental data for Ba0.6K0.4Fe2As2 at 10 K. (c) The DFT model for which the backgrounds
and scale have been allowed to vary freely. (d) The best optimised FC refinement. In all the
simulations, the masked (white) regions cover the magnetic resonance in the experimental data,
as well as the poorly normalised data around the 90 degree vane.

7.2.3 Preliminarily results

The DFT model is shown in Fig. 7.7. Multi-phonon and multiple scattering were limited to

15% in the first refinement, and the scale allowed to vary freely, while the second version had all

three varying freely. The final values for the backgrounds together with relative improvement

to χ2 is shown in Table 7.6. Finally, the full force constant refinement which yielded the lowest

χ2 is presented. The force constants for the initial and final models are compared in Table 7.5,

although it must be noted that this is by no means a definitive model.

Comparison of the DFT model to the experimental data shows that many of the features

are reproduced (Fig. 7.7). This is the first time the DFT model has been seen through a

simulation of INS fully convolved with experimental resolution functions, and it goes some way

to validating it. However, it is immediately apparent that there is something missing from the
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7.2 Ba1−xKxFe2As2: powder simulations and refinement

DFT [eV Å−2] Refined [eVÅ−2] cut off [Å]
L T L T min max

Fe Fe NN 0.98 0.80 0.72261 -0.10523 2.6 2.9
NNN 0.26 -0.15 -0.69234 -0.18915 3.8 4.0

As As NN 0.78 -0.17 3.0833 -0.77242 3.8 3.9
NNN 0.37 -0.03 -0.35247 2.7927 3.901 4.0

Ba–K Ba–K NN 0.85 -0.10 -5.1864 0.79796 3.8 4.0
Fe As NN 5.90 0.968 5.3198 1.3968 2.3 2.5

Ba–K Fe NN 0.23 0.01 0.41481 -0.26413 3.7 3.9
Ba–K As NN 0.01 -0.03 0.41197 -0.042441 3.3 3.5

Table 7.5: Nearest and next-nearest neighbour interactions used from the original DFT model
and refined FC model giving the longitudinal (L) and transverse (T) force constants together
with the cut-off distances for these interactions.

DFT (constrained) DFT (free) Refined FC
χ2 11.8× 105 5.55× 105 3.40× 105

Multi-phonon (%) 15 47 37
Multiple scattering(%) 15 54 6

Table 7.6: χ2, multi-phonon and multiple scattering weightings for the different models. When
allowed to vary freely for either the DFT or refined FC model, the multi-phonon contribution
is unrealistically high, indicative of a strong degree of incoherent scatteringfrom the hydrogen
recoil line (also Q2 dependent). The multiple scattering, however, is reasonable for the refined
model. When the backgrounds are limited to a sensible values (15%) for the DFT model, the
χ2 value is twice as big.

model. In both the DFT and refinement models, the multiple scattering background dominates

when left to refine without limits. This suggests that there is something missing with a strong

Q2 dependence. The most likely explanation for this is incoherent scatteringfrom hydrogen

giving a Q2 recoil line. As noted by Reznik et al. (2009), the non-magnetic DFT model fails to

reproduce the phonon features around 20 meV.

The model refinement has been able to correctly push the high energy modes around 35 meV

to have appropriate intensity weightings, and has elevated some modes to fill the gap between

20 and 25 meV. However, these improvements have been at the cost of pushing some modes

too high (as can be seen in the one-phonon scattering spectra, without experimental resolution

functions, in Fig. 7.8). At the same time, some modes have moved to unrealistically low energies,

just above zero.

This is a fast moving field, and new first principles models and single crystals have recently

become available. This new approach will allow the validity of this model to be assessed, and

the use of single crystal data will make this even more rigourous.
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Figure 7.8: One phonon INS simulations, showing (left) the original DTF model and (right) the
final refinement.

7.2.4 Conclusions

This study has shown that the validity of a DFT model can be assessed through powder INS

simulations and that the refinement approach can identify unexpected additional scattering

features: the possibility of hydrogen has been raised for the first time due to comparisons between

the DFT simulations and the experimental data. It has demonstrated that the methodologies

contained in this thesis can give new insights into technologically important materials, and are

already being used beyond our group in Cambridge.
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Chapter 8

Summary and Conclusions

The ability to investigate both the structure and dynamics of a material is essential to under-

standing the fundamental properties. Neutron scattering is a powerful experimental technique,

revealing atomic scale motion from powders (or indeed amorphous materials) as well as single

crystals. In order to aid the interpretation of this experimental data, there is a need for a

computational modelling approach allowing direct access to the atomic vibrations giving rise to

the observed neutron scattering. This is delivered by the new methodologies described in this

thesis.

The first part of the thesis focussed on the spread of interatomic separations characterised

by the pair distribution function (PDF) generated experimentally from neutron total scattering

experiments. Implementation of phonon-based simulation techniques as part of the widely used

GULP package now makes modelling the PDF a relatively straightforward process, giving new

insights on a wide range of materials. The ability to reproduce experimental result with a good

interatomic potential has been demonstrated, and the advantages and disadvantages of refining

an interatomic model against the PDF have been discussed. It has been clearly shown (as is

to be expected) that the low energy modes dominate the PDF. This has implications for the

limitations of ‘phonons-from-diffraction’, as well as interatomic model refinement using PDFs.

The PDF is an excellent probe of short- to mid-range structural order. This was utilised

in the β-cristobalite study, looking at simulations based on different structural models. For

the first time, it was possible to accurately reproduce the effects of the different models on the

short-range scale and provide a quantitative comparison to experiment. The combination of

structure and dynamics here was crucial.

One of the most powerful aspects of the PDF simulation software is the ability to perform

computational experiments, as demonstrated by the question of cation ordering in the cal-

cium/strontium titanates. The PDF simulations clearly demonstrated the differences between
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PDFs from the different ordering patterns that could be expected experimentally. This is im-

portant as it gives a general approach that could be used to look at other doping and ordering

problems. It reveals the level of differences to be expected in experimental results, so the via-

bility of extracting this information from total scattering data can be assessed. This could be

using RMC approaches, or through the direct interpretation of the new simulations.

The new GULP PDF modules have been incorporated into the latest β-version of GULP,

so will soon be widely available on academic licence. The RMC community have already had

success applying the new techniques to molecular materials, and the software has been tested

by various other international groups.

The effects of dynamics, while crucial to the proper understanding of total scattering data,

have conventionally and most powerfully been studied through inelastic neutron spectroscopy.

The main aim of the thesis was the development of a comprehensive new methodology incorpo-

rating computer modelling of INS spectra. Again, the flexibility of GULP for use with a wide

range of interatomic models suitable for many different materials, and the advantages of the

in-built symmetry operations to reduce calculations to the appropriate primitive cell, made it

the perfect computational basis for this work.

The coherent one-phonon scattering function, together with full anisotropic Debye-Waller

temperature factors, can now be calculated with the new SQW GULP module. This has the

flexibility to produce scattering intensities for a single point or a line in reciprocal space, as

well as taking a powder average or producing the information for the entire four-dimensional

scattering function of a single crystal. For the materials studied in this thesis the coherent

scattering dominated the INS spectra. However, the necessary flexibility has been built into the

new modules to allow the inclusion of other processes such as incoherent scattering, which will

become increasingly important as the approach is used more widely.

The original aim of this work was to produce one-phonon INS simulations, but comparison

to experimental data soon revealed an important problem. The effects of multiple scattering

and multi-phonon scattering, particularly at higher momentum transfers, cannot be ignored.

Therefore, investigations were made into the most appropriate way to include such effects in

the powder INS spectra. The approximations now included have been shown to be successful,

without adding excessive processing time to the simulations.

The new approach includes the GULP SQW module in new TOBYFIT cross-section models,

allowing the convolution of the simulated INS spectra with experimental resolution functions

appropriate for the specific experimental set-up on the full range of ISIS direct geometry chopper

spectrometers. This has allowed direct comparison with experiment, and introduced the possi-

bility of refining the underlying interatomic models. Interest in these new approaches has been
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List 1 Further developments for the power refinement methodology
The applications of the original software as shown in this thesis have prompted a number of
proposed further developments, summarised here:

• simulation of elastic scattering,

• use of appropriate resolution functions for the elastic line,

• addition of incoherent scattering,

• relative weighting of different regions of the experimental INS patterns,

• addition of other (weighted) ‘observables’,

• direct inclusion of the PDF in the refinement process,

• greater flexibility in the refinement of Coulombic charges (while maintained a charge neu-
tral unit cell),

• ability to refine using ω or ω/Q2 weighted data with appropriately weighted experimental
resolution functions,

• possible combination with (pre-existing) magnetic cross-section models.

expressed by several of the ISIS instrument scientists, and I hope to make these new techniques

part of the standard suit of data-analysis software available to ISIS users during experiments.

Refinement of powder diffraction data is now a standard and important technique for crystal-

lographers. With INS requiring relatively large single crystals, and with some materials simply

not suited to producing well characterised single crystals, the ability to refine an interatomic

model from powder data would have immediate and far-reaching implications. However, there

were concerns that powder refinement would not be possible, especially for unambiguously de-

ciphering individual phonon branches from densely populated areas of the density of states.

For the first time, powder INS refinement has been made available in the new methodologies

developed here, allowing the proper assessment of its long-term viability.

My work has shown that, for a simple system like aluminium, powder refinement is indeed

possible. For more complex situations, like the calcite and pnictide, the new methodology has

certainly allowed refinement, but there were a number of pitfalls as discussed in the individual

studies. Future developments for the methodology in light of these are summarised in List 1.

I consider the current viability study to have delivered proof-of-concept. Powder refinement

of INS is a real possibility, albeit requiring some further developments. There are analogies to

be drawn here with the development of crystallographic refinement techniques: structures were

originally derived from single crystal data, but Rietveld refinement from powders has now become

routine. Powder refinement of phonon modes from INS is ahead of its time, but achievable.
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The new methodology concerns more than refinement. Simulations allow the link between

the underlying phonons and the observed spectra to be investigated. This is perhaps the most

important feature of the new approach, and was powerfully demonstrated in Chapter 5 with the

investigations into the origins of the strikingly similar phonon modes seen in the crystalline and

amorphous silica INS spectra. It has been shown that a standard lattice dynamical model can

reproduce the PDF, the 10 K thermal anomaly in the heat capacity and the Bose peak and ‘fast

sound’ features of INS spectra. Having shown that the simulated spectra, with appropriate back-

grounds and fully convolved with experimental resolution functions, could completely reproduce

the observed scattering, the one-phonon spectra allowed a detailed study of the underlying be-

haviour. Not only did this reveal the nature of the scattering spectra beyond the experimentally

accessible range of momentum transfers, but also allowed, for the first time, proper discussion

of the nature of the different regions of the experimentally observed phonon modes.

This demonstrates the power of the new approach. As the refinement processes become more

effective, improved empirical interatomic models will be possible for a huge range of materials.

Accurate simulation of the observed INS spectra over many Brillouin zones is the most rigourous

possible test of an interatomic model. The study of the underlying phonon modes will allow

experimentally observed features to be explained. Combining this with the new approach being

developed by our group to convert GULP eigenvectors into video animations of atomic motion

will make this even more powerful.

The single crystal simulations of calcite provide another demonstration of the power of the

new methodology. They provided a comprehensive validation of the Archer empirical model

and the excellent reproduction of the general trends shown by this model aided interpretation

of the experimental data and extracted dispersion curves. Such simulations are also valuable

in planning further experiments. Allowing simulation of many Brillouin zones, this will be

a powerful tool for those working with triple axis spectrometers, providing a bigger picture

onto which their experimental results can be projected. Furthermore, there is no theoretical

reason why single crystal model refinement should not soon be a possibility. The computational

demands are large, but not insurmountable, and with appropriate parallelisation this will become

an extremely powerful resource.

The software is currently linked to the ISIS in-house software, making it readily accessible

to other ISIS users. There are plans to unify the current ISIS normalisation, visualisation and

analysis software and for this package to be used at other facilities around the world. The

incorporation of these new modules into that larger body of code would allow many more users

to take advantage of its power and flexibly.
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In conclusion, the work presented in this thesis has demonstrated that the new computer

modelling approach, in conjunction with either the PDF (linked to neutron total scattering) or

INS spectra, can reveal the link between the underlying structure and dynamics of a system

and the observed experimental scattering. Unique insights are available from the different layers

of the simulations – from the under-lying one-phonon scattering, from the multi-phonon and

multiple scattering, and from the experimental resolution functions – as well as by performing

more complex computational experiments such as removing the contribution to the INS from

specific atoms or adjusting the ordering patterns. As more materials are studied, the interac-

tion between the computational and experimental aspects are iteratively improving the overall

methodology. Crucially, many important results have already been obtained. Moreover, these

exciting developments will soon be made available to a much wider audience of ISIS users, as

well as in my own ongoing research, making the study of the structure and dynamics of materials

more accessible than ever before.

157



Appendix A

Additional Details for the new

GULP SQW Module

The discussion on the new GULP SQW module in Section 4.3 introduced the main purpose and

implementation of the new code. Details of the input and output formats were not necessary

for interpreting the science performed with this new software, but it is helpful to document the

available options in a little more detail here.

GULP uses an ASCII input file made up of keywords and options. The new SQW keywords

(shown in Table 4.1) have appropriate dependencies set to trigger standard GULP keywords

such as eigen and phonon, thus generating the phonon information. They also enable GULP

to call the appropriate new routines, and to read the neutron options.

The main GULP input file provides the crystal structure, empirical potentials or force con-

stant model, and other standard GULP input options. Of particular importance are temperature

and shrink (used for adjusting the density of the Monkhorst-Pack grid of k-points). When using

shrink, it is essential that the user checks that convergence of phonon properties with number

of k-points has been achieved.

Most of the new SQW options are placed within a specific block in the GULP input file, headed

with the word neutron and closed with end. This is known as the neutron input block, and

behaves in a similar manner to other GULP input blocks.

A.1 Neutron scattering lengths

I have incorporated neutron scattering lengths into the main elemental data in GULP, which

will be released with GULP from version 3.5. The most important addition here is the inclusion

of the coherent scattering length, b̄. As with other elemental properties in GULP, the default
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A.2 Energy binning

setting can be changed using the GULP element block. Here, at. no. refers to the atomic

number, but can also be replaced by the atomic symbol. The units are Å.

element [at.no.] [bbar] end

There is a further option, used within the neutron block, to switch off the scattering contri-

bution from specific atoms. Here, each n refers to the incremental number of the atomic ‘core’

within the primitive cell as listed using the coreinfo keyword. These can be used here in any

order and need not be sequential.

ignore [n1] [n2] ...

A.2 Setting the energy binning in the neutron block

Energy bins can be entered manually in two ways. The first defines the minimum (optional,

default zero) and maximum energy together with the number of bins with the wbins option:

wbins [<wmin>] [wmax] [nw]

The second is to define the binning explicitly with the Emin, Emax and dE set of keywords (this

follows the conventions of TOBYFIT). Where the binning does not divide exactly, Emax will be

increased to a round number of dE.

Emin [Emin]

Emax [Emax]

dE [dE]

The default units are THz, but this can be changed by adding unit freq [rad/THz/cm/wav/meV]

within the neutron block. The same units will be used for output.

A.3 Setting the Q binning for powders in the neutron block

To understand the input options for the powder momentum transfer, which I denote as Q, it

is necessary to appreciate that there are two different internal storage formats. The standard

internal setting is a nQ by nw grid of S(Q,ω), and this is normally input using qbins option.

The minimum is optional (default zero). The minimum and maximum values given here refer

to the range limits, not the bin names (the centre-point of each bin).

qbins [<qmin>] [qmax] [nq]

This binning directly maps to that in the .sqw output file. However, when the SPE keyword

has been specified, a second array is allocated to hold a Q,E range based on the experimental

spread of detectors as described by the ISIS .phx file. This is specified using the input phx

option (the .phx extension is assumed if not stated). A multiplier m can also be given, which
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A.4 Setting the Q binning for single crystals in the neutron block

can be used simulate the effects of double or triple the number of detectors over the same range

(often used in conjunction with TOBYFIT).

input phx [filename] [<m>]

The parameter file gives the angular spacing and number of detectors. To convert this to Q

the experimental incident energy must also be specified using the Ei option (the units are THz

unless set with the unit freq option):

Ei [Ei]

The conversion from φ to Q gives the characteristic curvature seen in plots of the powder

inelastic scattering data. The internal SPE array therefore contains variable bin sizes, decreasing

in width with increasing energy. The normal SQW array, however, mimics the .spe format range

by performing the conversion to Q at the elastic line and then maintains a constant dQ with

increasing energy. To speed the simulation, however, only data necessary for the desired .spe

output is actually calculated, so the same curved shape is seen in the .sqw output.

Two further option exist for manipulating the input when a detector file has been used. It

is possible to further restrict the range of calculations by setting cutoffs:

cutqmin [qmin]

cutqmax [qmax]

In this case, the SQW and SPE arrays will be set up according to the detector range, but

calculations will only be performed within the range qmin ≤ Q ≤ qmax, leaving all other bins

at zero. This function is of most use during fitting with TOBYFIT.

A.4 Setting the Q binning for single crystals in the neutron block

The single crystal S(Q, ω) is stored internally on a four dimensional centre-anchored Cartesian

nQx × nQy × nQz × nω SQWSINGLE array. Minimum values are optional (default zero).

Limits (actual data range as opposed to bin names) are either input in Cartesian units:

Qxbins [<Qxmin>] [Qxmax] [nQx]

Qybins [<Qymin>] [Qymax] [nQy]

Qzbins [<Qzmin>] [Qzmax] [nQz]

or fractional reciprocal lattice units:

Qhbins [<Qhmin>] [Qhmax] [nQh]

etc.
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A.5 Additional powder options set in the neutron block

A.5 Additional powder options set in the neutron block

Working with powders, it is also possible to directly calculate a density of states. This is

performed (with the same binning as the momentum transfer at the elastic line) when a filename

is given using output dos.

There are also two options for multi-phonon and multiple scattering, whose implementation

are detailed in Section 4.3.2.1. The default option is to give only the one-phonon coherent

scattering intensity. The multi-phonon option is activated by setting a non-zero M scaling

factor (typically 10%):

multiphonon [M]

Similarly, the multiple scattering contribution is calculated based on the transmission prop-

erties of the sample set when T is given (typically 10%):

transmission [T]

Note that these backgrounds rely on sums over the entire data range, so ideally should be

used with full datasets input using the qbins option, rather than the limited detector-based

Q-range.

A.6 Output

GULP writes to the standard output,listing all the program settings and details of the calcula-

tions and calculated properties, the level of detail dependent on user settings. This output must

always be checked for warnings, especially warnings concerning imaginary frequencies (energet-

ically unstable structures). It is possible to produce SQW output for unstable systems using the

nowarnings keyword, but such results should be handled with care!

A brief summary of the SQW output is given towards the end of the standard GULP output.

For example, for powdered samples, ten reports are made of the number of k-points used to

seed the Q-points and thus produce SQW, followed by a timing analysis (in seconds), the number

of frequencies and k points ignored, and the energy range in both SI and user-selected units.

Equivalent data are also produced for single crystals.

In addition to the standard output, the key SQW information is written to separate files,

discussed below.

A.6.1 .sqw files

The main output from a powder run is a .sqw file (see Output 1). The headers are extensive as

they give both human-readable output, appropriate headers for the original PGPLOT plotting

program (now depreciated in preference to using MATLAB with TOBYFIT) and TOBYFIT
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A.6 Output

headers to enable this data to be convolved with experimental resolution factors. The neutron

block settings are reproduced, together with the number of k-points, temperature, and final cell

parameters.

The columns can be plotted in any standard package such as EXCEL or IGOR, or used to

produce .spe files with TOBYFIT. The headers are fairly self explanatory:

Q w S(Q,w)c #hits #hits(powderav) multiscatter(Q,w) multiphonon G(Q,w)

Q and w give the centre-anchored bin names, S(Q,w the one-phonon scatter in mbarn/meV.

The number of hits refers to the number of times a calculation was performed using Q and ω

in that bin. This array also had the same powder averaging performed as the experimental

data: this is the data given in #hits(powderaveraged). The multiscatter column contains

the multiple scattering approximation based on the transmission factor. The multiphonon

column contains the multi-phonon approximation. (Both described in Section 4.3.2.1). The total

scattering is not listed explicitly to improve both timings and space usage, but can be quickly

produced by summing the three relevant columns. This also allows the three components to be

refined independently in TOBYFIT. Finally, the total scattering is weighted appropriately for

a density of states, and written as G(Q,w) (see Section 4.3.2.2)

A.6.2 .sqwt files

A single crystal simulation generates huge amounts of data, and it is unfeasible to give a human

readable output file. The output is designed to be read into TOBYFIT, and used for the parallel

generation of .spe files at multiple crystal orientations. These can later be recombined into a

four dimensional HORACE file for visualisation. The .sqwt file for the calcite single crystal is

5.7Gb.

The headers in a typical .sqwt file contain the essential information to allow TOBYFIT

to produce .spe files (see Output 2). Namely the Cartesian reciprocal lattice matrix (kv), the

momentum transfer binning as specified by the user in the neutron block, and the energy range.

The data are written following four nested do loops, for Q1, Q2, Q3 and ω respectively.

A.6.3 .bose files

The population of phonon modes is dependent upon the temperature through the bose function,

n(ω), (Eqn. 1.9). To show the effect of this, and for use in manipulating data, the .bose file

gives n(ω) and n(ω) + 1 for each energy bin, see Output 3. This output is available for any SQW

simulation, and controlled by the output bose option.
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A.6 Output

Output 1 Headers from a typical powder run in .sqw format
#### S(Q,w) [mbarn/meV] output####

Output for configuration 1:

Number of kpoints: 1728

Temperature: 300.00K

Transmission: 10.00%

Multiphonon weighting: 10.00%

Written at 11:01.36 13th January 2010

################################

Data from powder data

Final Cartesian lattice vectors (Angstroms) :

2.484341 1.434335 5.692304

-2.484341 1.434335 5.692304

0.000000 -2.868670 5.692304

Final Cartesian reciprocal lattice vectors (1/Angstroms) :

1.264558 0.730093 0.367935

-1.264558 0.730093 0.367935

0.000000 -1.460186 0.367935

# 1728 k points, of which 0 were rejected

# 0 frequencies were out of range

###### neutron block input ######

neutron

qbins 0.0000 9.0000 90

Emin 0.0000E+00

Emax 0.2000E+03

dE 0.200

units freq meV

transmission 10.00

multiphonon 10.00

end

########headers for pgplot plotting program########

# |Q|bin(1),|Q|bin(n),|Q|range,wbin(1),wbin(n),nq,nw,w_units

################################################

range 0.050000 8.950000 8.900000 0.100000E+00 0.199900E+03 90 1000 meV

|Q| w S(Q,w) #hits #hits(powderav) multiscatter(Q,w) multiphonon G(Q,w)

<data>

Output 2 Headers from a typical single crystal run in *.sqwt format
kv:

0.73009555744351073 0.0000000000000000 0.0000000000000000

0.0000000000000000 1.2645625910352389 0.0000000000000000

0.0000000000000000 0.0000000000000000 0.36793343756991986

neutron

qxbin -8 8 160

qybin -3.5 3.5 70

qzbin -8 8 160

end

wmin = -.1000E+02 meV

wmax = 0.4000E+02 meV

nw = 125

S(Q,w) generated from nested loops of Qa, Qb, Qc and w:

<data>
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A.6 Output

Output 3 Typical headers for a .bose output in the .bose format
#### Bose-einstein n(w) output ####

Output for configuration 1:

Number of kpoints: 512

Temperature: 300.00\

Written at 11:40.52 31st December 2009

################################

w/meV n(w) n(w)+1

<data>

A.6.4 .dos files

It is often useful to view the density of states generated by a powder simulation. When the

output dos option is entered, the density of states is calculated as described in Section 4.3.2.2,

and written out together with information on multi-phonon and multiple scattering, in a .dos

file. The typical headers are shown in Output 4.
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A.6 Output

Output 4 Typical headers for the density of states output in the .dos format
####Density of States from S(|Q|,w) output####

Output for configuration 1:

Number of kpoints: 2744

Temperature: 300.00K

Delta w: 0.2000meV

Delta |Q|: 0.0500Angs^{-1}

multiphonon weighting: 14 %

transmission: 5.16 %

Written at 09:27.13 13th January 2010

################################

w, SUM_Q dQ

<Summed Scattering Data>

...

normalising densities of states with factor 1190.797

w[meV ], 1-p G(w), total G(w)

<Density of States Data>

...

Multiple phonon scattering contribution

w[meV ], multiphonon

<Multiple Phonon Density of States Data>

...

Multiple Scattering contribution

w[meV ], multiplescattering

<Multiple Scattering Density of States Data>

...
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Appendix B

Using TOBYFIT with the new

GULP SQW Module

The new analysis methods produced in this thesis rely heavily on the TOBYFIT software pack-

age1. It has the capacity for users to add their own FORTRAN code to produce the desired

model for the scattering intensity: this is what I have done with the new GULP SQW module. It

is helpful to summarise the key functionality of this code here with particular emphasis on the

points of interaction with the new GULP module and the setup details for MERLIN.

B.1 The run menu

Tobyfit is designed to allow the simultaneous simulation or least-squares refinement of several

datasets form multiple runs. Each ‘run’ relates to an experimental run, with certain experimental

parameters such as temperature, chopper settings, moderator parameters, sample parameters

etc. A dataset is defined as a single one-dimensional cut, two dimensional slice, or entire .spe

file.

For MARI and MAPS experiments, the instrument parameters are built into the code,

together with the available chopper settings. For MERLIN, however, these parameters need

to be given explicitly as as in Table B.1, together with suitably refined moderator line-shape

parameters (more details in the TOBYFIT manual).

Having set up the instrument parameters, the crystal parameters must be set. Working with

single crystals, it is essential to get the lattice parameters and alignment correct, although for

powders any reasonable cell parameter (e.g. 2π) can be used. The alignment is defined with
1Tobyfit version 2 is written in FORTRAN 77. Now generally replaced by the new GRID version (URL - F),

the original code is still available direct from the author.
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B.2 Cross section models

x0 Moderator-chopper distance 10 m
xa Collimation start-chopper distance 1.7 m
x1 Chopper-sample distance 1.83 m
wa Width of collimation at its start 94 mm
ha Height of collimation at its start 94 mm
pslit Chopper slit width 2.28 mm
radi Radius of chopper body 49 mm
ρ Radius of curvature of slits 1300 mm

Table B.1: Instrument parameters for MERLIN with the standard Fermi Chopper

respect to two vectors defining the horizontal scattering place, u and v, where u lies parallel to

the incident beam. The sample shape and mosaic spread should also be taken into account.

Finally, temperature and the incident energy must be set. When performing a simulation

without an input data file, the minimum and maximum energy range and energy step in meV

should be given. However, TOBYFIT will overwrite these if experimental data is available.

(While working with some of the GULP cross sections, these variables can also be used to

control the energy range of the GULP output in place of the neutron block.)

B.2 Cross section models

The user much select a cross-section model (which may be user defined), the parameters of

which are globally set in the cross section menu. There are a number of in-built models for

magnetic fitting, but the phonon scattering models are reliant upon the new GULP models. Full

details are given below.

There are two types of cross section model. ‘Sharp’ models return the energy of a dispersion

relation and its spectral weight as a function of momentum transfer, Q. These are not suited to

phonon scattering, as there are 3N modes at any given Q, so the interaction between TOBYFIT

and GULP is performed using the SQW broad.F routine, where the spectra weight for a given Q

and ω must be given.

When used with GULP, the parameters set in the cross section menu control the interaction

between TOBYFIT and GULP.
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B.2 Cross section models

B.2.1 ‘External parameters’ P1–5

The first five parameters are reserved in TOBYFIT for “external parameters” – those that are

not part of the interatomic potential model. These are as follows:

1. Overall scale factor. Can be refined without re-calling GULP.

2. |Q|min. Ignores any |Q| < P2 when used in conjunction with the rings map.phx models

(icross 10,11,12), returning zero. With icross 15, duplicates changing the minimum Qbin

set in parameter.gin (but effects MS and MP background correction).

3. |Q|max. (Used as P2.)

4. Transmission: Controls the relative intensity of the multiple scattering background – pro-

portional to the transmission properties of the sample. P4% of the total sum-over-Q

(including multi-phonon contributions) is used as the multiple scattering seed.

5. Multi-phonon: A weighting factor for the multi-phonon scattering approximation. Used

when P5 > 0. Good starting values are around 10%.

B.2.2 Potential parameters

Subsequent parameters (P6 onwards) map to the entries in parameter.gin setting up the re-

finable parameters for the force constant model. These are not entered manually but read from

parameter.gin where they are listed together with the interaction type. This occurs on the

first GULP call of a simulation. To read them for fitting, the @GULP command should be entered

at the Multifrills prompt.

B.2.3 Single crystals cross section models

icross 1: Full interpolation of the k-grid, interpolating between the 8 k-points forming a box

around any desired point in reciprocal space. returning the appropriate polarisation vector

and frequency. The scattering intensity is then calculated explicitly with the resulting

eigen-data using GULP SQW module subroutines.

icross 2: Binning of the k-grid, where the appropriate GULP bin for a Q-point passed from

TOBYFIT is used to provide the eigenvectors and frequencies for the explicit calculation

of the scattering intensity using GULP SQW module subroutines.

icross 3: Binning of a GULP generated SQWSINGLE array (produced on the first function call

with a given set of parameters).
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B.2 Cross section models

icross 4: Binning of a SQWSINGLE array read from gulpinput.sqwt on the first function call

with a given set of parameters1.

icross 9: Data Mining: instead of calling GULP and returning scattering intensity, this simply

tracks the momentum range TOBYFIT is using. Only suitable for use with the INT NULL

integration method, this is used to check the maximum and minimum requirements prior

to calling GULP. Especially useful when setting up a simulation of many orientations of

the crystal before collecting data.

As discussed above, options 1 and 2 are too slow to use in the current implement. All single

crystal simulations, therefore, are performed using icross 3 and 4, using icross 9 to set appropriate

ranges.

B.2.4 Powder cross section models

The GULP SQW module allows binning of powder data based either on the instrument detectors

or a Cartesian grid of Q. The first is useful for performing simulations to assist experiment

design while varying incident energy. It is necessary to use the Cartesian binning for greater

control of the binning of the GULP output, to allow one GULP simulation to be used with

multiple incident energies, to get accurate edge effects, and to make proper use of multi-phonon

and multiple scattering background approximations.

cross 10: Simulation of the one-phonon inelastic neutron scattering with the binning based on

instrument detectors specified in the .phx file2 using the GULP SPE keyword. The energy

binning in the GULP run automatically mimics TOBYFIT’s elo, ehi, de. The Q-binning

maps 1:1 to the elastic line, converting from the detector number to Q with the incident

energy set for that run in TOBYFIT (“Ei”)

icross 11: As for icross 10, but with a 2:1 mapping of Qbins at the elastic line

icross 12: As for icross 10, but with a 3:1 mapping of Qbins at the elastic line. (Usually too

finely binned unless a very fine Monkhorst Pack grid is used.)

icross 15: Binning is controlled using the normal GULP neutron block, placed in the parameter.gin

file instead of picking up on instrument settings3.

icross 50: Reads the contents of gulpinput.sqw4, instead of calling GULP. Used to repeat

a simulation (for example, to produce a picture mid-way through a fit using the latest
1This allows the scale parameter to be refined and additional crystal alignments to be simulated without

recalling GULP.
2renamed (or linked as) rings map.phx
3Either the wbins or Emin and Emax input form of energy binning can be used, but the energy must be in

meV.
4This can be set up with a symbolic link to the original output file
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B.3 Integration Methods

GULP call n.sqw output file), or to fit external parameters P1, P4 and P5. All parameters

greater than P5 are now ignored. The SQW and multi-phonon contributions are read in

separately, with the multi-phonon being re-scaled to a weighting of 1.0 for storage in

memory. Parameters P1, P4 and P5 are then used to scale the appropriate components.

B.3 Integration Methods

Tobyfit performs a simulation by sampling (Q, E) space and collecting the spectral weight from

the cross section model, and then convolving with the appropriate resolution functions. There are

three integration methods available in TOBYFIT v 2 of which two are relevant here: NULL and

MONTE-CARLO. NULL only takes account of the detector area (and optionally the mosaic

spread of the sample). This is very quick, and suitable to planning experiments and simple

visualisation. MONTE-CARLO, however, performs a full Monte Carlo integration over all

contributions to the resolution function. Full details of this are available in Perring (1989).

When using the MONTE-CARLO integration method, it is necessary to have a simulation that

covers a slightly greater area of (Q, E) space than the experimental detector spread. Failure to

do this can lead to artefacts at the edges.

B.4 Background Models

Tobyfit contains a number of standard background models, for example, quadratic in energy and

momentum transfer. These can be applied locally to any run (with the option to make them

global across all datasets of that run). The parameters for the background models can be refine

in the same way as the cross section parameters, although background are not convolved with

experimental resolution functions.

B.5 Fitting in TOBYFIT: MULTIFRILLS

Least-squared refinement is performed using the MULTIFRILLS1 v 1.2 subroutine library, em-

bedded in TOBYFIT. This allows interactive fitting of several datasets simultaneously, with

the ability to use both global parameters and those local to a single dataset. When used with

TOBYFIT to fit .spe data, each position sensitive detector becomes a ‘workspace’, with energy

bins along the x axis and the scattering intensity along y. The errors on the intensity are taken

into account and anything with zero error is removed from the fit unless specifically cleared

by the user. Subsequent datasets are given incremental workspace numbers. The least squares
1Full details of MULTIFRILLS are given at URL - H. MULTIFRILLS is based on the original FRILLS code

(Osborn (1991)) developed at ISIS by Ray Osbourn with additions by Toby Perring.
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B.5 Fitting in TOBYFIT: MULTIFRILLS

refinement can be performed using the Levenberg-Marquadt algorithm, a combination between

a Gauss-Newton and Steepest Descents approach. This is often found to be more robust (more

likely to find the true minimum from further away) than in a simple Gauss-Newton approach.

An optimum chi squared should be of the order of 1.0. When the numbers are much larger

than this, either the model is a poor representation of the data, or the estimates on the errors

are much too small. Similarly, a small value is likely to indicate an overestimate of the errors.

However, it has been noted that there is a problem with the current interaction between current

ISIS .spe files and TOBYFIT. The appears to be a problem with the interpretation of the errors.

Thus, for all except the old aluminium data, the χ2 did not approach unity but was pronounced

‘converged’ when the change in the χ2 was reported to be less than the error calculated for

χ2: the user can adjust the point of χ2 convergence as appropriate. Errors on the parameters

are estimated by the diagonal elements of the covariance matrix, assuming that they are un-

correlated.

The user is able to adjust the fitting parameters as follows :

• derivative step length

• accuracy1 of χ2

• maximum number of iterations

• the least-squares fitting algorithm (quasi-Newton or Levenberg-Marquadt)

• maximum number of times the parameter step is halved if χ2 diverges (with quasi-Newton

method)

MULTIFRILLs allows all or a selection of the cross section and background parameters to

be ‘freed’ for fitting against experimental .spe files. Parameters can be bound to each other to

ensure a constant ratio (although more complicated relationships cannot be defined). Limits

can be imposed, although ideally fitting should be performed with free parameters.

1the “accuracy” sets that point at which χ2 is deemed to have converged if the χ2 changes by less than the
accuracy parameter between two iterations
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B.6 GULP input files for use with TOBYFIT

Input 1 The gulpinput.gin file for a simple aluminium model.
#keywords (these are minimal, as TOBYFIT adds additions SQW keywords)

nokpoints

title

simple aluminium model

end

cell

4.03 4.03 4.03 90.000000 90.000000 90.000000

fractional

Al core 0.0000000 0.0000000 0.0000000

Space

225

species 1

Al core 0.000000

shrink 20

B.6 GULP input files for use with TOBYFIT

B.6.1 The gulpinput.gin file

The two additional input files constitute two halves of a normal GULP input file. The first,

the gulpinput.gin file, contains the model setup and is used for each GULP call. During a

fit, TOBYFIT uses the information in the second ‘half’, the parameter.gin file, combined with

internal changes to parameters to produce a replacement neutron.gin file. GULP then reads

gulpinput.gin followed by neutron.gin. At any stage, inspection of neutron.gin will reveal

what TOBYFIT has asked GULP to do, and combining gulpinput.gin with neutron.gin will

give a standalone GULP input-file.

An example of a gulpinput.gin file is given in Input B.6.1.

This file starts with normal GULP keywords. For empirical potentials, it is necessary to use

the optimise flag (but this needs to be performed at constant volume (conv) to ensure the cell size

does not depart from that set in TOBYFIT: this is meaningless with forceconstants. Appropriate

keywords such as C6 must be included, as they would for a normal GULP run. TOBYFIT will

add the essential SQWpowder, phonon, eigen and Bmat keywords to the neutron.gin file. It is

worthwhile setting nokpoints and nophonon to minimise output, although GULP is called in

silent mode after the first function call, with only minimal output. It is advisable not to use

additional output keywords such as distance or property, as these will still be calculated in

silent mode, but not written, so only serve to slow a fit1. In the same way, using the SPE

keyword while fitting is not advisable, as this duplicates many of the calculations in order to fill

the SPE array that matches the experimental setup as well as the standard SQW array, slowing
1Re-running GULP combining gulpinput.gin and neutron.gin, and adding the temperature, will show the

output of these keywords
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B.6 GULP input files for use with TOBYFIT

progress considerably. It is better to use icross 50 to re-read a .sqw output for monitoring the

progress of a fit.

It is important not to include the temperature specification in the input file this is picked

up from the TOBYFIT run settings. However, the Monkhorst Pack grid of k-points must be

defined in gulpinput.gin in the example this has been set as shrink 20 putting a 20×20×20

grid into the first Brillouin zone. This value must be carefully chosen, to balance convergence

of phonon properties (tested against normal GULP phonon properties) and population of the

given SQW array (again, plot the GULP .sqw or .spe output to check – the .spe output from

TOBYFIT is convolved with the resolution functions so should not be used for this check) with

speed of calculations.

B.6.2 The parameter.gin file

The parameter.gin file contains the information that TOBYFIT will use to build up the

neutron.gin input file. Specifically, all the force constant or potential model parameters, to-

gether with the names of the contributing atoms and their cutoffs, followed by the neutron

block if using icross 15 (powder) or 1, 2 or 3 (single crystal).

The parameter.gin file starts with a TOBYFIT header to specify the number of sets of

potential models: parameters N . This is followed by N sets of standard GULP potential in-

puts. This consists of a line specifying the type of potential, e.g. forceconstant, Buckingham

or spring. This line is simply copied and re-written into the neutron.gin file. Then the line

with the actual parameters starts with the atoms involved (specifying core/shell if appropri-

ate), followed by the parameters, followed by the cut-offs (where appropriate). It is essential

that there are no fitting flags included (and that the GULP keyword fit does not appear in

gulpinput.gin).

Many standard GULP models are supported. The parameter line into three sections, the

atom description (e.g. Al core Al core or simply Al Al) is copied directly into neutron.gin,

the parameters are read into cross section parameters sequentially typically two or three terms

will appear in a line, and then the cutoffs are copied directly into neutron.gin. More complicated

GULP models, or those with an unusual number of terms, will need further ‘special cases’ adding

to the code: readpotentialparameters.F currently contains several special cases.

In the version of the code, these parameters should only be entered through the parameter.gin

file and not in the cross section menu. They are read into TOBYFIT automatically the first

time a simulation is performed. To read them in for a fit, or to re-read the file, type @GULP in

the MULTIFRILLS fitting menu. (This decision was made following consultation with users.)
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B.6 GULP input files for use with TOBYFIT

Input 2 The parameter.gin file for the aluminium force constant model, also showing the
alternative setting for the energy binning
parameters 1

forceconstant 1

al al 1.1668 0.15043E-01 0 3.2

neutron

qbins 0 10 250

Emin 4.0

Emax 50.0

de 0.2

end

or the alternative input format could be used:

neutron

qbins 0 10 250

wbins 4 50 230

end

The parameters used in any GULP call are copied to standard output, or can be inspected by

opening neutron.gin.

When using icross 15 (powders) or icross 1, 2, or 3 (single crystals), it is then necessary to

add a neutron block to the end of the file. This is exactly the same as a started neutron block

from GULP, although the energy input is limited to be in meV, in agreement with the standard

ISIS practice. Thus TOBYFIT automatically adds the unit freq meV line, and it should be

omitted here.

As an example, the aluminium parameter.gin file used with icross 15 is given in Input B.6.2

The force constant parameters will be listed as P6 and P7 when TOBYFIT runs. The energy

binning could equally well have been entered as wbins 4 50 230. Note that when setting a

minimum energy, this should not be higher than that used in TOBYFIT, or the minimum

energy bin in the input .spe file. (Input .spe ranges overwrite TOBYFIT run menu settings)
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Appendix C

Additional Scripts

C.1 MATLAB functions for tidying .spe files prior to a fit

Small discrepancies in the data normalisation procedures can lead to small negative numbers

in the scattering intensities in .spe files. While this does not cause problems when visualising

the data, it does effect the refinement process. Therefore, the .spe file should be loaded into

MSLICE and the data extracted into MATLAB with the data=fromwindow() command. I have

written the seterrors function (Program 1) to set the error to zero, masking the datapoint

from TOBYFIT. The same routine can also be used to remove data at the elastic line by

passing appropriate column numbers as variable elastic.

Having set the errors to zero, the removenegatives function (Program 2) should be used to

set the same datapoints to have an intensity of zero (for visualisation purposes).
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C.1 MATLAB functions for tidying .spe files prior to a fit

Program 1 MATLAB seterrors.m function
function B=seterrors(ERR, S, mask1, mask2,elastic)

% B=seterror(data).

% call as "data.ERR = seterrors(data.ERR, data.S, mask1, mask2, elastic)

% followed by "data.S = removenegatives(data.S, mask1, mask2, elastic)

%

% Run this BEFORE removenegative. Mimics removenegative, but sets

% everything that will be set to zero in that routine to have an

% error of zero -- thus marking it for removal from fits in TOBYFIT

% error column of data has element S, data is S

% mask1 and mask 2 are the detector to clear = 0

% also removes the elastic line: column "elastic". set to zero to ignore..

maxQ = size(S,1)

maxw = size(S,2)

for i=1:maxQ,

for j=1:maxw,

if (S(i,j)<0)

S(i,j)

B(i,j) = 0;

else

B(i,j) = ERR(i,j);

end

if (i == mask1)

B(i,j) = 0;

end

if (i == mask2)

B(i,j) = 0;

end

if (j == elastic)

B(i,j) = 0;

end

end

end

Program 2 MATLAB removenegatives.m function
function B=removenegatives(S,mask1, mask2,elastic)

% B=removenegatives(data).

%

% Always precede by call to seterrors:

% call as "data.ERR = seterrors(data.ERR, data.S, mask1, mask2, elastic)

% followed by "data.S = removenegatives(data.S, mask1, mask2, elastic)

%

%

% data has element S

% mask1 and mask 2 are the detector to clear = 0

% also removes the elastic line: column "elastic"

maxQ = size(S,1)

maxw = size(S,2)

for i=1:maxQ,

for j=1:maxw,

if (S(i,j)<0)

S(i,j)

B(i,j) = 0;

else

B(i,j) = S(i,j);

end

if (i == mask1)

B(i,j) = 0;

end

if (i == mask2)

B(i,j) = 0;

end

if (j == elastic)

B(i,j) = 0;

end

end

end
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C.2 Perl scripts for the manual parallelisation of SQW simulations

Program 3 splitkpoints.pl: Perl script to split SQW calculations by kpoint
#!/usr/bin/perl

# Read in a file and split the kpoints within it into

# chunks of $numOfKpointsPerFile, writing out a new gulp input file for

# each chunk

# Written by Richard Bruin and Beth Cope. June 2007

use strict;

my $templateInputFile = "silica.gin";

my $kpointFile = "kpoints.dat";

open(KPOINTFILE, $kpointFile) or

die("Error: cannot open file ’$kpointFile’\n");

my $lineCtr = 0;

my $line = "";

my $numOfKpointsPerFile = 1;

my $originalKpointsString = "kpoints $numOfKpointsPerFile\n";

my $outputKpoints = $originalKpointsString;

my $jobNum = 0;

while ($line = <KPOINTFILE> )

{

if ( $lineCtr < $numOfKpointsPerFile )

{

my @tempLine = split(" ", $line);

my $newLine = $tempLine[0] . " " . $tempLine[1] . " " . $tempLine[2];

$outputKpoints = "$outputKpoints $newLine\n";

$lineCtr++;

}

if ( $lineCtr == $numOfKpointsPerFile )

{

createNewFile($jobNum, $outputKpoints);

$outputKpoints = $originalKpointsString;

$lineCtr = 0;

$jobNum++;

}

}

if ( $lineCtr < $numOfKpointsPerFile )

{

createNewFile($jobNum, $outputKpoints);

print "warning. check number of k points in $jobNum\n";

}

print $jobNum ."jobs created";

close(KPOINTFILE);

# Create a new gulp input file with the passed variable as

# part of the name with the kpoints that are also passed to it

# Usage: createNewFile(job number, kpoints to put in);

sub createNewFile()

{

my $outputFilename = "silica_rand216_job_" . $_[0] . ".gin";

my $jobName = "silica_rand216_job_" . $_[0];

‘cp $templateInputFile $outputFilename‘;

‘perl -i -p -e ’s/KPOINTS/$outputKpoints/’ $outputFilename‘;

‘perl -i -p -e ’s/JOB_OUTPUT/$jobName/g’ $outputFilename‘;

}

C.2 Perl scripts for the manual parallelisation of SQW simulations

When performing SQW simulations with many k-points, or, particularly, with many atoms in the

unit cell, it is helpful to be able to perform the SQW simulations for individual or small groups of k-

points, combining them retrospectively. To take full advantage of the many available computers

within CamGrid, I have written the script in Program 3, to take a list of k-points and allocate

a set number of them to each batch file. A gulp input file should be prepared with the words

KPOINTS at the appropriate point, and JOB OUTPUT for the appropriate output filenames.

Having run the batch job using Condor to submit each job to a suitable machine on CamGrid,

the final results can be recombined using the scripts in Program 4 to recreate the .sqw and

Program 5 for the .dos.
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C.2 Perl scripts for the manual parallelisation of SQW simulations

Program 4 newcombineqw.pl: Perl script to recombine multiple .sqw files
#!/usr/bin/perl

# Combines the .sqw files in jobs 1 to $jobNumber

# into one big .sqwfile called $outputFileName

# written by Elizabeth Cope 11th June 2007

use strict;

#variables to do with files

my $rootJobName = "silica_rand216_job_";

my $rootJobExtension = ".sqw";

my $thisJobFileName = " ";

my $outputFileName = "sanders_384_r216cv_combined.sqw";

my $lastJobNumber = 215;

my $firstJobNumber = 0; # this is to allow start at 0 or 1

my $count = $firstJobNumber; #loop variable for job loop

#variables to do with individual job

my $lineCtr = 0;

my $line = "";

my @tempLine = ""; #array containing line contents

my $numberHeaderLines = 47;

my $rangeDataLine = 43;

#variables to do with output, set on read of file

my $nq =0;

my $nw = 0;

my $col = 0;

my $numCols = 8; # to match 8 columns in file

my $row = 0;

my $numRows = 0; # will be $nq*$nw once read

my @dataMatrix;

my @rowMatrix;

my $rowCounter = 0 ; #counting lines for the DataMatrix as filled

#body

JOBLOOP : while ($count<=$lastJobNumber){

$thisJobFileName = $rootJobName . $count . $rootJobExtension;

print "$count : $thisJobFileName \n";

#now open that file, and do things with it

open(THISJOB, $thisJobFileName) or

die("Error, cannot open file ’$thisJobFileName’\n");

#initialise line and lineCtr

$lineCtr = 0;

$line = "";

$rowCounter = 0;

LINELOOP : while($line = <THISJOB>){

if (($count ==$firstJobNumber) && ($lineCtr == $rangeDataLine)){

print "ranges: |Q|min,|Q|max,|Q|range,wmin,wmax,nq,nw,w_units\n";

print " $line\n";

@tempLine = split(" ",$line); #read in line splitting at space

$nq = @tempLine[6];

$nw = @tempLine[7];

$numRows = $nq * $nw;

print "nq = $nq, nw = $nw \n";

print "numCols = $numCols, numRows = $numRows \n";

# now we know the size of the array we can make an empty one to fill

# Two dimensional arrays are accessed by row-order, meaning that the row is listed first

for ($col = 0; $col < $numCols ; $col++){

push @rowMatrix, "0"; }

for ($row = 0; $row < $numRows; $row++){

push @dataMatrix, [@rowMatrix]; }

$lineCtr ++;

next LINELOOP; }

if ($lineCtr<$numberHeaderLines){

print "Header: $line\n";

$lineCtr ++;

next LINELOOP; }

if ($rowCounter == $numRows){

print "$rowCounter lines read : $line\n";

next LINELOOP; }

@tempLine = split(" ",$line); #read in line splitting at space

# on first run though, the output file is the same as the input file so simply read it in

if ($count == $firstJobNumber){

my $i = 0;

foreach my $value (@tempLine) {

$dataMatrix[$rowCounter][$i] = $value;

$i++; }

} else {

my $i = 0;

foreach my $value (@tempLine) {

if ($i>1){

$dataMatrix[$rowCounter][$i] = $dataMatrix[$rowCounter][$i]+$value; }

$i++;

}

}

$rowCounter ++ ;

$lineCtr ++; #increment counter before finishing

}#end of LINELOOP

$count++; #increment outer while loop before finishing

close(THISJOB);

} # end of JOBLOOP

open(NEWFILE,">$outputFileName") || die("Cannot Open File"); #OPEN (and overwrite) NEWFILE

# print matrix

print NEWFILE " |Q| w S(Qw) #hits #hits(powav) MS MP GQW\n";

for($row = 0; $row < $numRows; $row++) {

for($col = 0; $col < $numCols; $col++) {

print NEWFILE "$dataMatrix[$row][$col] "; }

print NEWFILE "\n";

} #end of matrix for loops

close(NEWFILE)
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C.2 Perl scripts for the manual parallelisation of SQW simulations

Program 5 combinedens.pl: Perl script to combine .dos files
#!/usr/bin/perl

# Combines the .dos files in jobs 1 to $jobNumber

# into one big .dos file called $outputFileName

# written by Elizabeth Cope 11th June 2007

use strict;

#variables to do with files

my $rootJobName = "silica_rand216_job_";

my $rootJobExtension = ".dos";

my $thisJobFileName = " ";

my $outputFileName = "sanders_384_r216cv_combined.dos";

my $lastJobNumber = 215;

my $firstJobNumber = 0; # this is to allow start at 0 or 1

my $count = $firstJobNumber; #loop variable for job loop

#variables to do with individual job

my $lineCtr = 0;

my $line = "";

my @tempLine = ""; #array containing line contents

my $numberHeaderLines = 648;

#variables to do with output, set on read of file

my $nw = 310;

my $col = 0;

my @w =0;

my @dos=0;

my $rowCounter = 0 ; #counting lines for the DataMatrix as filled

my $i=0;

#body

JOBLOOP : while ($count<=$lastJobNumber){

$thisJobFileName = $rootJobName . $count . $rootJobExtension;

print "$count : $thisJobFileName \n";

#now open that file, and do things with it

open(THISJOB, $thisJobFileName) or

die("Error, cannot open file ’$thisJobFileName’\n");

#initialise line and lineCtr

$lineCtr = 0;

$line = "";

$rowCounter = 0;

$i = 0;

LINELOOP : while($line = <THISJOB>){

if ($lineCtr<$numberHeaderLines){

$lineCtr ++;

next LINELOOP;

}

@tempLine = split(",",$line); #read in line splitting

# on first run though, the output file is the same as the input file

# so simply read it in

if ($i<$nw){

if ($count == $firstJobNumber){

$w[$i]=$tempLine[0];

print "$i $w[$i]\n";

$dos[$i] = $tempLine[1];

print "$i $dos[$i]\n";

$i++;

} else {

$dos[$i] = $dos[$i]+$tempLine[1];

$i++;

}

}

$lineCtr ++; #increment counter before finishing

}#end of LINELOOP

#increment outer while loop before finishing

$count++;

close(THISJOB);

} # end of JOBLOOP

#OPEN (and overwrite) NEWFILE

open(NEWFILE,">$outputFileName") || die("Cannot Open File");

# print matrix

for($i = 0; $i < $nw; $i++) {

print NEWFILE "$w[$i],$dos[$i] \n";

}

print NEWFILE "\n";

close(NEWFILE)
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