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Abstract
Existing operating systems share a common kernel text sec-
tion amongst all processes. It is not possible to perform
kernel specialization or tuning such that different applica-
tions execute text optimized for their kernel use despite the
benefits of kernel specialization for performance guided op-
timization, exokernels, kernel fastpaths, and cheaper hard-
ware access. Current specialization primitives involve sys-
tem wide changes to kernel text, which can have adverse ef-
fects on other processes sharing the kernel due to the global
side-effects.

We present shadow kernels: a primitive that allows mul-
tiple kernel text sections to coexist in a contemporary op-
erating system. By remapping kernel virtual memory on a
context-switch, or for individual system calls, we specialize
the kernel on a fine-grained basis. Our implementation of
shadow kernels uses the Xen hypervisor so can be applied to
any operating system that runs on Xen.

1. Introduction
Traditional monolithic operating system design has a shared
kernel that is mapped into the top of the address space
of every process. This design has numerous advantages:
system calls are fast as they don’t require a context switch,
shared-code has a low memory footprint, there is a higher
cache-hit rate, and the shared state eases kernel design and
implementation.
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At the same time, kernel specialization has been shown to
be beneficial [6, 19]: profile-guided optimization of Linux
can improve performance by up to 10% for some applica-
tions [20], exokernels eliminate kernel abstractions for ap-
plications so that applications communicate more directly
with hardware thereby reducing kernel overheads [7], and
kernel instrumentation can be added that only fires when the
kernel is executing on behalf of certain processes.

Such kernel specialization is often process-specific, in
that the specializations applied to one process may have
an adverse effect on other processes. For instance, profile-
guided optimization of the kernel improves the performance
of some applications and diminishes the performance of oth-
ers. Similarly, removal of security checks may be desirable
for trusted processes, but undesirable for non-trusted pro-
cesses.

Yet, current production operating systems do not provide
a primitive for kernel specialization on a per-process level.
The shared kernel means that any changes to the kernel
text or data have global effects; there is no way to isolate
kernel modifications to individual processes. As such, it is
not currently possible to execute an individual process with
different kernel optimizations or instrumenation to the rest
of the processes executing on the system.

In order to provide a performant, useful and effective ap-
plication augmentation primitive, it is important to have the
ability to limit the scope of kernel specialization. A new
low-level primitive is needed to support this: one that iso-
lates kernel specialization for a single process and allows
for quick changes to its scope. To this end we propose sha-
dow kernels: kernel variants with specialized text sections
that are modified with the specialization required, but share
their data sections with the booted kernel. Non-specialized
processes continue to run the original unmodified kernel in-
struction stream whereas those that require specialization are
dynamically switched to execute the modified code of a sha-
dow kernel.

When process-specific kernel specialization is required,
a copy of an existing kernel instruction stream is made and
remapped into the requesting process kernel address space.
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Because the specialized kernel instruction stream is limited
to executing in the requesting process context, it has no
performance side-effects on other processes in the system.

In the remainder of this paper we argue the benefits of
per-process kernel text regions (§2); introduce a design for
shadow kernels (§3); and evaluate our Xen-based implemen-
tation of shadow kernels (§5), showing that the performance
overhead of shadow kernels is minimal, with the cost of us-
ing a shadow kernel consisting of ten pages of specialization
to be 4.2µs each time the process is scheduled.

2. Motivation
Shadow kernels allow kernel-text specialization without af-
fecting processes other than those being specialized. We dis-
cuss such use cases, highlighting the main benefits of sha-
dow kernels.

2.1 Per-process kernel profile-guided optimization
Recent work has considered applying profile-guided opti-
mization to operating system kernels to improve perfor-
mance. An unsolved issue with profile-guided optimiza-
tion is that the optimization must be based on a represen-
tative workload. In particular, if the kernel is optimized
based on one application then other applications execut-
ing on the same system often see a slowdown in perfor-
mance. Yuan et al. show that profile-guided optimization of
the Linux kernel can improve performance of some applica-
tions by 10%, and reduce performance of others [20], even
when executing a single application on a machine.

Shadow kernels allow applications executing on the same
machine to each execute with their own kernel that is opti-
mized with profile-guided optimization specific to that pro-
gram. This therefore allows a training-phase per-process
that generates a shadow kernel per process. So-long as
the profile-guided optimizations do not modify the data
sections—which can be ensured through compiler flags—
then each process can have its own shadow kernel. Each
time that the scheduler schedules-in a process, it remaps the
kernel to the appropriate shadow kernel. This can be further
extended to allow multiple shadow kernels per-process by
creating shadow kernels per process subsection.

2.2 Scoping probes
Modern operating system kernels provide a range of instru-
mentation primitives, for example Kprobes and DTrace. The
basic mechanism for most of these approaches is identical:
probe handlers are attached to kernel addresses by rewriting
the instruction at the probed address with a software break-
point, or jump instruction. CPUs executing the code raise an
interrupt, or perform a jump, upon executing the instruction.

The Achilles’ heel of this approach is that any process
that executes the instrumented address or function calls into
the instrumentation system regardless of whether it is re-
quired. It is impossible for users to restrict the scope of

the instrumentation to a particular process. The unavoidable
penalty of hitting the probe is incurred by every process each
time it is executed, regardless of whether it is applicable to
the executing process.

This is particularly problematic if the application being
investigated consumes a minority of the system’s CPU cy-
cles, since if hot functions are probed—those that are an ob-
vious cause of poor performance—every system call made
by the rest of the applications on the system could become
substantially slower.

With shadow kernels, probes can be set so they are only
fired for an individual application, thereby leaving the per-
formance of the well-behaving programs untouched. The
overall probe effect of the added instrumentation is also
reduced: setting kernel probes on hot functions such as
kmalloc or tcp sendmsg on a busy server no longer de-
grades overall system performance.

2.3 Kernel optimization and fastpaths
Kernel configurations options are often a tradeoff between
performance and utility of features. For example, kernel op-
tions that provide debug modes for locks, schedulers and
memory allocators add additional code to the instruction
stream that is executed and causes a performance degrada-
tion. With shadow kernels, configuration options that only
affect the text section can be applied to individual processes,
without system wide effects.

Two such fastpaths that can be applied to individual pro-
cesses are (i) removing security checks for trusted processes,
and (ii) removing some concurrency operations when exe-
cuting a process on a single core. (i) A key rôle of the op-
erating system kernel is to perform security checks, how-
ever applying these checks can take a substantial amount
of compute resource [13]. Often, some processes—such as
system processes—are trusted whereas others ought to be
subject to the usual kernel security checks. Moreover, appli-
cations such as debuggers often need so subvert the usual
security checks to introspect the memory of another pro-
cess. However, with current kernel models, the same checks
are applied to all processes. With shadow kernels, priviliged
processes can be mapped onto shadow kernels that con-
tain exactly the security checks relevant to each application.
(ii)Virtual machines operating in the cloud can be subject
to vCPU hotplugging by the cloud provider. Should a vir-
tual machine change between having multiple vCPUs to one
vCPU there is scope for optimization by eliminating concur-
rency primitives from the kernel instruction stream. In par-
ticular, a key benefit of shadow kernels built using a hyper-
visor is that a priviliged domain—controlled by the cloud
provider—can trigger switches of shadow kernel as part of
the hotplugging routine.
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Figure 1. Overview of shadow kernel design

3. Design
An operating system with shadow kernels support boots
in the traditional manner, with all programs initially shar-
ing the kernel. An application can spawn a new shadow
kernel through a call to a kernel module. This creates a
copy-on-write version of the currently running kernel, which
is mapped into the memory of the process that created it.
As a process registers probes, the specialization mechanism
makes modifications to the kernel’s instruction stream. Due
to the use of copy-on-write, every page that is modified is
then physically copied, leaving the original kernel text un-
touched.

Where a function’s definition is to be replaced by a defi-
nition that is the same length or shorter, we replace the func-
tion in place. However, where the specialized text is longer
we allocate additional memory for the new function, and re-
place the first instruction of the function in the shadow kernel
with a jump to the new function.

Figure 1 shows each time a shadow kernel is spawned, the
shadow kernel API returns a shadow kernel handle that
can be used to switch the process between the original and
the shadow kernel. To perform this switch the application
remaps the top of its address space to be the shadow kernel.
This handle can also be shared amongst processes, applied
to all processes in Linux container, or even used within
a resource container [2]. For instance, a system may have
a shadow kernel with complete instrumentation that any
process can use to get a function call graph. On fork, shadow
kernels are inherited by the child.

As shadow kernels only fork the text section of the kernel,
and do not modify the address of function entry points, the
benefits of having a shared memory kernel remain and the
semantics of function pointers are preserved.

Shadow kernels are also compatible with kernel modules:
each time a module is inserted, or removed, we iterate over

the page tables, and perform a mapping, or unmapping for
each shadow kernel.

3.1 Asynchronous tasks
One of the challenges of a shadow kernel design is deal-
ing with code that runs in kernel mode outside particular
processes. This includes code executed in kworkers, inter-
rupts, timers or during scheduling. Asynchronous actions
like these are routinely executed by the kernel for the benefit
of multiple processes.

If a given application requires specialization (for exam-
ple, for creating a hot path), it is difficult to obtain complete
isolation of the specialization from the other applications:
Take the example of a kworker that occasionally flushes data
to disk. Some of these data might belong to specialized ap-
plications, some of it to regular un-specialized processes.
The key challenge is to correctly identify the correct kernel
text section for the kworker to execute.

Further complicating matters, two applications might
want to set different probes for the code executed by that
kworker (one application could be interested in measuring
the number of bytes committed to disk, another in the time
it takes to complete the same operation).

A solution to the issue is to give up isolation for these
particular use cases and make the kworker run the code of a
“union” shadow kernel that contains all the probes set by the
various applications for their own shadow kernels. However,
this may not provide correctness of results, if the specializa-
tion modifies the semantics of the original kernel. Also, in
the worst-case it incurs the same overheads as current mech-
anisms.

For some cases, a better alternative exists: using hardware
virtualization primitives. Single-Root I/O Virtualization sup-
port on recent network cards and flash storage makes it
possible to assign per-process virtual devices (and reserve
corresponding hardware resources—such as receive/send
queues). This approach has already been shown to be vi-
able in systems such as Arrakis [13, 14].

Once a process is given ownership of a particular vir-
tualized PCI device, the problem of “routing” asynchron-
ous tasks towards executing a given shadow kernel becomes
solvable: All the code that is executed in kernel space when
interacting with the device (interrupts, timers) uses the text
section of the shadow kernel associated with the process that
owns the device.

4. Implementation
Our current implementation of shadow kernels is a Linux
kernel module, built on a Xen-paravirtualised Linux ker-
nel. Whilst it is possible to build shadow kernels without
a hypervisor, we chose to implement shadow kernels using
Xen, as it uses a paravirtualised memory management unit
(MMU), that forces all guests to update page tables by issu-
ing hypercalls. As any operating system—including HVM



containers—can issue hypercalls, this allows the core of our
implementation to be used in any contemporary operating
system with minimal engineering effort. Moreover, an ex-
isting criticism of kernel specialization has been that it re-
quires invasive changes to the core memory-management of
the operating system. As virtual machines have loose cou-
pling between kernel virtual addresses and machine physi-
cal addresses our implementation is less invasive than mod-
ifying bare-metal kernel memory assumptions. Indeed, the
core of our implementation of shadow kernels is 250 lines
of code, entirely implemented as a Linux kernel module: no
kernel modifications are necessary.

When a shadow kernel has been created, it initially uses
the same memory as the booted kernel to reduce memory
overheads and ensure high cache-hit rates. Each time a pro-
gram modifies the kernel text, if that page has not previously
been modified, we first allocate a new page and copy the
original text section into this new page. After the modifica-
tions have been applied, we issue a hypercall that updates
the machine-to-physical, physical-to-machine, and virtual-
to-machine page tables. Whilst this design does invoke extra
hypervisor-load, we note that the design of x86 64 protec-
tion rings require domains to trap into Xen on each system
call anyway, therefore the additional load added by shadow
overheads is minimal.

Our implementation has two methods of scoping shadow
kernels. Firstly, per-process scoping interposes the operating
system scheduler—using Kprobes for Linux—that swaps
shadow kernels whenever a process is scheduled in-or-out.
Secondly, manual-scoping allows processes to use a shadow
kernel for a subset of their system calls.

4.1 Implementation safety
As shadow kernels are provided through a kernel module,
users need root priviliges before enabling shadow kernels.
It is possible to change the permissions such that non-root
users can enable shadow kernels (for instance by using se-
tuid) however given that enabling shadow kernels rewrites
the kernel instruction stream, we feel this is unadvisable.

We apply suitable locking to the kernel to ensure safety
from concurrency effects when switching shadow kernels.

5. Evaluation
5.1 Scoping probes
We initially show that the lack of per-process kernel special-
ization can be prohibitive by considering the case of insert-
ing Kprobes on hot Linux kernel functions to profile sys-
tem call latency of a specific process on a production sys-
tem. This system is also running memcached—an applica-
tion whose performance ought to be unaffected. We illus-
trate that Memcached’s performance is substantially affected
by the inserted probes by measuring its single-CPU single-
threaded throughput degradation. This experiment runs on a
Xeon E5-2660v2 serving a production workload at 10 Gbps

Figure 2. Probing hot functions in the Linux kernel causes
a performance impact of up to 62% to applications that are
not executing any instrumentation code. This is caused by
the increased time to execute a system call, due to the probes.
All results are the average of six runs. All samples were
within 5% of the mean value.

on Linux 2.6.32.1 We insert empty probe points into ker-
nel hot functions (as determined by profiling the most com-
monly called functions across all CPUs in the server). Insert-
ing probes on hot kernel functions is a common technique
used to comprehend the interaction of kernel locks with ap-
plications semantics. We are therefore showing how the per-
formance of Memcached is affected when instrumenting the
interactions of other applications with the kernel.

Figure 2 shows that (without shadow kernels enabled)
adding these probes reduces the throughput. Probing the
most popular kernel function called across all CPUs in the
system reduces single thread performance by 30%. Perfor-
mance worsens with increasing numbers of probe points—
with the top three functions being probed, performance is
less than 50% of baseline performance. If the scope of the
probes were isolated to only fire for other processes on the
system the performance of memcached would not decrease
substantially.

5.2 Overheads of shadow kernel creation
Having shown that the lack of per-process kernel special-
ization causes substantial performance degradations we now
consider the costs of creating a shadow kernel, an action that
we expect to be infrequent as it only occurs when an applica-
tion requires new specialization. We execute all experiments
on an Intel Xeon E3-1230 V2 @ 3.3 GHz, running Ubuntu
14.10, with a Linux 3.19 kernel compiled from the Linus
branch.

To measure the cost of creating a shadow kernel we use
a microbenchmark that repeatedly creates a shadow kernel,
but does not switch to it. We measure this cost as 1.4ms ±
0.1ms. As this cost is only borne when spawning a new
shadow kernel, which we expect most processes to do just
once, such overheads are acceptable.

1 This is the latest long-term kernel release of the 2.6 branch, used by
RHEL6. It contains all major performance improvements between 2.6.32
and HEAD as of Nov 2014.
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Figure 3. The time to switch to a shadow kernel is propor-
tional to the number of pages that are modified in the shadow
kernel.

5.3 Overheads of switching shadow kernel
We now consider the costs of switching to an existing sha-
dow kernel, an action typically performed on each context
switch.

5.3.1 Microbenchmark analysis
To measure the cost of switching shadow kernel we use a
microbenchmark that repeatedly switches to a shadow ker-
nel with a varying number of pages, and performs a single
system call (socket). We issue the system call in order to
trigger a mode change into the kernel, so that we can update
the page tables.

Performing the socket system call, without switching to
a shadow kernel, takes 5.19µs±1.61µs. Figure 3 shows the
time to perform the microbenchmark, varying the number
of specialized pages between 1 and 1927, the number of
pages in the text section of our kernel. This time is directly
proportional to the number of pages modified, since for
each page Xen performs an unmap and remap operation. To
specialize ten pages—in order to specialize the ten most-
hot kernel functions—and execute the socket system call
takes 9.4µs. This additional 4µs only need be performed on
a context switch, rather than being an additional overhead of
every system call. Therefore, the overheads of performing
such specialization on hot kernel functions are small. Whilst
the overheads for remapping the entire kernel are higher, we
envisage a hybrid scheme whereby we use a huge page to
represent a shadow kernel that changes a large proportion
of the kernel. Despite improving switching cost, using large
pages does increase the memory footprint of shadow kernels,
from n 4 KB pages (whereby n is the number of pages
changed) to at least 2 MB.

An alternative approach is to assign virtual machines a
vCPU dedicated to a particular process executing using a
shadow kernel so that the hypervisor, rather than the OS
scheduler performs scheduling decisions for the application.
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Figure 4. As the number of pages in the shadow kernel
increases the server side latency of lighttpd increases.

This prevents the need to remap shadow kernels, as the OS
scheduler will not deschedule the specialized application.

5.3.2 Application to web workload
Having shown a microbenchmark cost of switching to a
shadow kernel, we now show the overheads when applied
to a realistic workload. We modify lighttpd in order to
switch to a shadow kernel whenever it is scheduled in by the
operating system scheduler. This setup represents the case of
adding probes to the kernel that only fire when one process
is executing, as explained in Section 2.2. Lighttpd serves a
217 KB file.2 We increase the number of pages in the shadow
from 0 to 1920 in increments of 10, measuring the response
time for 100 requests at each level, with a client concurrency
level of 1.

Figure 4 shows that as the number of pages in the sha-
dow kernel increases, the server response time increases
as well. The server side median response time without us-
ing shadow kernels is 3.54ms ± 5.50ms. With a shadow
kernel that remaps every page the server response time is
4.34ms ± 5.32ms. Of this increase, approximately 0.6 ms
can be explained by the cost of switching to the shadow ker-
nel when lighttpd is scheduled in due to the arrival of a re-
quest, as shown in Figure 3. The remaining slowdown, of
0.2 ms, is expected to be caused by an increased L1 i-cache
miss rate. Whilst in low-latency setups an additional over-
head of 0.2 ms may be undesirable, for kernel specializations
that do not specialize all of the kernel text—the majority of
which is for unused drivers—the overheads are lower. For in-

2 The homepage of https://edition.cnn.com/.
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stance, there is no significant increase in latency when fewer
than 300 pages are specializied.

6. Related work
Shadow kernels isolate processes from unintended special-
ization overhead by only specializing a fork of the current
kernel’s text section. Since the 1980s, the benefits of kernel
specialization for performance have been well known [15],
however invasive changes have prevented uptake by main-
stream kernels. Yet, the idea of kernel specialization has
been reconsidered in research operating systems—such as
Barrelfish—for many core computers whereby each core
runs an entirely different kernel [16]. Furthermore, by im-
plementing multiple services that provide competing imple-
mentations of a service, microkernels can offer kernel spe-
cialization [12].

In production operating systems, tools like Ksplice [1]
enable the live patching of kernel code; once patched, the
whole system is then switched to run the new modified ker-
nel. Moreover, modern malware often uses similar page-
table tricks to shadow kernels, for instance by desynchro-
nizing the instruction and data TLBs [17]. Shadow kernels
differ from these systems by allowing multiple kernel text
variants to coexist. This is similar to systems that make use
of multiple text sections to offer kernel hardening [11] or to
run specific system calls in trusted kernels [18].

Virtualization techniques allow the running of multiple
operating systems (kernel and user spaces) on a single ma-
chine [4]. Shadow kernels differ from virtualization how-
ever, by not requiring separate kernel data and user spaces;
and instead isolate only the kernel text. Multikernels apply a
similar technique by sharing a common user space but add
support for running separate kernels on each CPU core with
explicit communication between them [5].

A key feature of shadow kernels is that the user is able to
switch a process to using one on demand. This is similar to
on-demand virtualization [10], where a user migrates their
operating system onto a virtual machine when they require
isolation and checkpointing.

Instrumentation tools have been built to obtain perfor-
mance data from an operating system kernel [3, 8]. Fowler
et. al show that program performance can be improved by
both kernel space and user space having access to kernel
performance data [9]. However, what can be achieved with
current instrumentation primitives is limited by the perfor-
mance issues we show in Section 5. In that sense, our work
is orthogonal to the instrumentation mechanism that an ap-
plication uses, removing existing limitations and providing
the isolation required to apply such instrumentation with a
low performance overhead.

7. Conclusion
Current mainstream kernels share a common instruction
stream amongst all processes. This prevents per-process ker-

nel specialization, limiting the ability to do custom optimiza-
tion, or isolation of probing.

To solve this problem we present shadow kernels. By
switching between multiple kernel text sections, when pro-
cesses are scheduled in and out, we allow processes to ex-
ecute kernel variants that are optimized to their operation.
Our Xen-based implementation adds an overhead of 4.2µs
to each scheduler operation whilst specializing ten pages.
Moreover, we show a negligible performance impact of sha-
dow kernels when applied to a lighttpd web server.
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