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INCLUSIVE B-DECAY SPECTRA AND IR RENORMALONS
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I illustrate the role of infrared renormalons in computing inclusive B-decay spectra.
I explain the relation between the leading ambiguity in the definition of Sudakov
form factor ∼ exp(NΛ/M) and that of the pole mass, and show how these ambi-
guities cancel out between the perturbative and non-perturbative components of
the b-quark distribution in the meson.

1. Introduction

B-decay physics is gradually turning into a field of precision phenomenology.

Inclusive decay measurements provide some of the most robust tests of the

standard model. Classical examples are the rate of B̄ −→ Xsγ decays [1]

and constraints on the unitarity triangle through the measurement of Vub

from charmless semileptonic decays [2].

The advantage of inclusive measurements over exclusive ones is that the

corresponding theoretical predictions are, to large extent, free of hadronic

uncertainties. QCD corrections to total decay rates are dominated by short

distance scales, of order of the heavy-quark mass m, and are therefore

primarily perturbative. Confinement effects appear as power corrections

in Λ/m. Moreover, the Operator Product Expansion (OPE) allows one

to estimate these power corrections by relating them to specific matrix

elements of local operators between B-meson states, which are defined in

the infinite–mass limit in the framework of the heavy-quark effective theory

(HQET) [3]. These matrix elements can either be computed on the lattice

or extracted from experimental data.

In reality, however, experiments cannot perform completely inclusive

measurements. Precise measurements are restricted to certain kinematic

regions where the background is sufficiently low. The experimentally ac-

cessible region in B̄ −→ Xsγ is where the photon energy Eγ in the B rest

frame is close to its maximal possible value, M/2, (M is the B meson mass),
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or, equivalently, x ≡ 2Eγ/M is near 1, which is the endpoint. Similarly, the

accessible region in the CKM-suppressed B −→ Xulν̄ decay is where the

lepton energy fraction is near maximal, or where the invariant mass of the

hadronic system is small. Out of this region this decay mode is completely

overshadowed by the decay into charm.

As a consequence, precision phenomenology must rely on detailed the-

oretical understanding of the spectrum [4]. Of particular importance is the

spectrum near the endpoint. It turn out, however, that the endpoint region

is theoretically much harder to access as both the perturbative expansion

and the OPE break down there. In the large-x region gluon emission is re-

stricted to be soft or collinear to the light-quark jet. While the associated

singularities cancel with virtual corrections (decay spectra being infrared

and collinear safe) large Sudakov logarithms of (1−x) appear in the expan-

sion, which must therefore be resummed. Moreover, the OPE breaks down

since the hierarchy between operators scaling with different powers of the

mass is lost when (1 − x)M become as small as the QCD scale. Physically

this reflects the fact that the spectrum in the endpoint region is driven by

the dynamics of the light degrees-of-freedom in the meson.

The lightcone-momentum distributiona of the b-quark in the B-meson

has a particularly important role in the endpoint region [5–13]. It has been

shown that up to subleading corrections O(Λ/m) the physical spectrum

can be obtained as the convolution between a perturbatively–calculable

coefficient function and the QDF, where the latter essentially determines

the shape for x −→ 1. The key point is that the QDF is a property of the B

meson, not of the particular decay mode considered, so it can be measured

in one decay and used in another. Moreover, a systematic analysis of the

QDF in the HQET highlights the significance of a few specific parameters

which constitute the first few moments of this function: most importantly

Λ̄ ≡ M − m, the difference between the meson mass and the quark pole

mass, and then λ1 corresponding to the kinetic energy of the b quark in

the meson.

Nevertheless, the dependence of theoretical predictions for the spectra

on the QDF is still a major source of uncertainty. Apart from identify-

ing its first few moments, very little is known about this function, so the

phenomenology of decay spectra in the immediate vicinity of the endpoint

aWe shall define this function in full QCD, and call it Quark Distribution Function
(QDF). This should be distinguished from the common practice to define it directly in
the HQET, where the name “Shape Function” is often used.
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(x −→ 1) remains, to large extent, model dependent. On the other hand,

successful precision phenomenology can well be expected for more moder-

ate (yet large) x values, corresponding to the region where the distribution

peaks. Here the main obstacle has been in combining [10, 14] perturba-

tive Sudakov effects with the HQET-based non-perturbative treatment dis-

cussed above.

It has recently been shown [15] that the resolution of this problem is

firmly connected with infrared renormalons (for general review of renor-

malons see [16]). Since the formulation of the HQET as well as the per-

turbative calculation of decay spectra rely on the concept of an on-shell

heavy quark, both ingredients suffer from renormalon ambiguities. These

ambiguities cancel out, of course, in the physical spectra. It is therefore

useful to traceb the precise cancellation of ambiguities: the use of the

HQET brings about dependence on the quark pole mass, which has a linear

renormalon ambiguity [17–20]. This ambiguity cancels against the leading

renormalon ambiguity in the Sudakov exponent [15]. In order to achieve

power-like separation between perturbative and non-perturbative contribu-

tions to decay spectra, one must therefore compute the Sudakov exponent

as an asymptotic expansion, thus replacing the standard Sudakov resum-

mation with fixed logarithmic accuracy by Dressed Gluon Exponentiation

(DGE) [15, 21–26].

In what follows we illustrate the role of renormalons in the QCD descrip-

tion of decay spectra. We begin by briefly reviewing the HQET analysis for

the QDF where we identify dependence on the quark pole mass. We recall

that the pole mass suffers from an infrared renormalon ambiguity and show

how this affects the QDF [15]. We then consider inclusive B-meson decays

within perturbation theory, review the relevant results on large-x factor-

ization and Sudakov resummation [13], and then show that renormalon

ambiguities appear in the Sudakov exponent [15], which, we emphasize, is

a general phenomenon rather than a peculiarity of B decays. Finally, we

combine the perturbative and non-perturbative ingredients recovering an

unambiguous answer for the QDF in the meson and consequently for decay

spectra. We conclude by shortly discussing the implications for precision

phenomenology in inclusive decays.

bThis can be understood in analogy with factorization scale dependence, the main dif-
ference being that here the interest is in power terms.
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2. Heavy-quark effective theory and the QDF

We define the QDF f(z; µ) as the Fourier transform of the forward hadronic

matrix element of two heavy–quarks fields on the lightcone (y2 = 0):

f(z; µ) =
1

4π

∫ ∞

−∞

dy− eizp+

B
y−

〈B(pB)| Ψ̄(0)γ+Ψ(y) |B(pB)〉µ , (1)

where a path-ordered exponential between the fields is understood, pB is the

B-meson momentum (p2
B = M2), z is the fraction of the “+” momentum

component carried by the b-quark field and µ is the renormalization scale

of the operator. Decay spectra can be computed as a convolution between

a perturbatively calculable coefficient function and f(z; µ). Let us first

analyze f(z; µ) non-perturbatively — we denote it fNP(z) — suppressing

any perturbative corrections. These will be recovered later on.

Since the b-quark mass is large, the heavy quark is not far from its mass

shell. This observation is the basis of the HQET. The momentum of the

heavy quark is p = mv + k where v is the hadron four velocity, v ≡ pB/M ,

and k is a residual momentum, |k| ≪ m. The effective field is defined by

scaling out the dependence on the quark mass: hv(x) = eimv·x 1
2 (1+v/)Ψ(x).

It then follows from the definition (1) that in the heavy-quark limit [5–15]

∫ 1

0

dzfNP(z)e−iv·y (Λ̄−(1−z)M) =
1

2M
〈B(Mv)| h̄v(0)hv(y−) |B(Mv)〉

= 1 +
f2

2!
(−iv · y)2 +

f3

3!
(−iv · y)3 + · · · ≡ F(−iv · y), (2)

where we inverted the Fourier transform and defined Λ̄ ≡ M − m; in the

second line we expanded the lightcone operator in the HQET in terms of

local operators, where e.g.

−3f2 ≡ λ1 ≡
1

2M

〈

B(Mv)
∣

∣h̄v(0)(gµν − vµvν)iDµiDν hv(0)
∣

∣B(Mv)
〉

. (3)

The HQET matrix elements fn ∼ O(Λn) do not depend on the definition

of the mass. On the other hand the vanishing of the linear term in (−iv ·y),

f1 = 0, (and the absence of additional, mass dependent terms in front of

higher powers of (−iv ·y)) in the second line of Eq. (2) are due to the HQET

equation of motion for the heavy quark. Thus Eq. (2) relies on using the

pole mass to define the HQETc.

cThe use of the pole mass in the field redefinition can be avoided if a residual mass term
is introduced. This, however, does not change any of the conclusions [15].
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Expanding the exponential on the l.h.s of Eq. (2) we obtain:

fn =

∫ 1

0

fNP(z)
(

Λ̄ − (1 − z)M
)n

, (4)

so the moments are fixed by the local matrix elements in the HQET. Mellin

moments are defined by

FNP

N =

∫ 1

0

dzzN−1fNP(z). (5)

For the first few Mellin moments we have FNP

1 = 1 and

FNP

2 =
m

M
; FNP

3 =
( m

M

)2

−
1

3

λ1

M2
; FNP

4 =
( m

M

)3

−
λ1m

M3
+

f3

M3
. (6)

It is apparent that all the moments depend on the quark pole mass. They

satisfy M dFNP

N /dm = (N − 1)FNP

N−1. At large N they are given by [15]

FNP

N = e−(N−1)Λ̄/MF((N − 1)/M) + O(1/N), (7)

where the exponential factor depends on the pole mass through Λ̄ while

F((N − 1)/M), defined in (2), is entirely quark-mass independent. Note

that large N corresponds to asymptotically large lightcone separations.

3. IR renormalon ambiguity in the pole mass

The result of the previous section indicates inherent dependence of the

non-perturbative component of the QDF in the heavy-quark limit on Λ̄ =

M − m, or, equivalently, on the pole mass m. We recall that the pole

mass is defined in perturbation theory by requiring that the inverse quark

propagator p/−mMS−Σ(p, mMS) vanishes at p2 = m2. At any given order in

αs one can solve the resulting equation obtaining a unique relation between

the pole mass and the MS mass (or any other renormalized short-distance

mass). However, when considered to power accuracy this definition remains

ambiguous [17–20]. The on-shell condition brings about linear sensitivity to

long-distance scales. In the perturbative expansion (in schemes such as MS)

this sensitivity translates into non-alternating factorial divergence making

the sum of the series ambiguous — the well known infrared renormalon.

Specifically, with a single dressed gluon — thus to leading order in the

large-β0 limit — the relation between the pole mass and mMS is given by

the following Borel sum [18]:

m

mMS

=1−
CF

β0

∫ ∞

0

du

(

Λ2

m2
MS

)u
[

3e
5
3
u(1 − u)Γ(u)Γ(1 − 2u)

2Γ(3 − u)
−

3

4u
+ RΣ1

(u)

]

,

(8)



6

where RΣ1
(u) is free of singularities and β0 = 11

12CA− 1
6Nf . The singularity

of the integrand at u = 1
2 translates into an O(Λ/m) ambiguity, which

directly affects the QDF moments FNP

N .

As one would expect, the pole-mass renormalon ambiguity cancels out

whenever the pole mass is used to compute an observable quantity. A well-

known example [19] is the calculation of the total semileptonic decay rate,

which explicitly depends on the fifth power of the mass. Another example

is the total energy of quarkonia [27]. Here we review this cancellation for

the QDF in the meson and consequently for decay spectra [15].

4. Large-x factorization in B decay

Let us now consider B-decay spectra in perturbation theory. By taking the

initial state to be an on-shell b quark we neglect non-perturbative effects as-

sociated with the meson structure. The decay rate is infrared and collinear

safe, so the partonic calculation yields finite perturbative expansion when

expressed in terms of the renormalized coupling and mass. It should be

noted, however, that this finiteness is owing to cancellation of logarithmic

singularities between real and virtual corrections. As usual, the singularity

leaves a trace in the form of Sudakov logarithms of (1 − x). Since such

logarithms appear at any order in the perturbative expansion, they must

be resummed.

The resummation of Sudakov logarithms takes the form of exponenti-

ation in Mellin space. This is a consequence of the factorization property

of QCD matrix elements in the soft and collinear limits together with the

factorization of phase space [13,29,30]. Up to O(1/N) corrections the per-

turbative expansion of inclusive decay spectra can be written in Mellin

space as a product of three functions [13]: a soft function depending on

m/N , a jet function depending on m2/N and a hard function depending

on m — see Fig. 1.

Furthermore, the resummation can be formulated as DGE, resumming

running-coupling effects in the Sudakov exponent. The result is most conve-

niently expressed as a Borel sum. Explicitly, ford B̄ −→ Xsγ we have [15]:

MPT

N ≡

∫ 1

0

dx
1

ΓPT
tot

dΓPT

dx
xN−1 = CN (m)JN (m; µ)SN (m; µ) + O(1/N), (9)

dThe corresponding formula for the semileptonic decay appears in [15].
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JetHard Hard

Soft

P
P

Quark  distribution

B meson

Figure 1. Large-x factorization of inclusive decays into soft (m/N), jet (m2/N) and
hard (m) functions.

where

SN(m; µ) = exp

{

CF

β0

∫ ∞

0

du

u
T (u)

(

Λ2

m2

)u

× (10)

[

BS(u)Γ(−2u)
(

N2u − 1
)

+

(

m2

µ2

)u

BA(u) lnN

]}

,

JN (m; µ) = exp

{

CF

β0

∫ ∞

0

du

u
T (u)

(

Λ2

m2

)u

× (11)

[

− BJ (u)Γ(−u) (Nu − 1) −

(

m2

µ2

)u

BA(u) lnN

]}

,

Here SN (m; µ) and JN (m; µ) are the soft and jet functions, respectivelye.

These functions were both normalized to unity — the exponents vanish at

N = 1 — so they acquire dependence on the hard scale. BS(u), BJ (u) and

BA(u) are Borel representations of anomalous dimensions of the soft, jet

and cusp functions, respectively. In the large-β0 limit

BS(u) = ecu (1 − u) + O(1/β0), (12)

BJ (u) =
1

2
ecu

(

1

1 − u
+

2

2 − u

)

sinπu

πu
+ O(1/β0). (13)

where c = 5/3 in MS. Beyond this limit the anomalous dimensions are

known only as an expansion in u (through NNLO). Terms that are sub-

leading in 1/β0, which appear first at O(u1), are not small in QCD. The

advantage of the large-β0 limit, where an analytic function is known, is that

it allows one to verify the exact cancellation of renormalon ambiguities.

eT (u) depends [15] on the approximation used for the β function; for one-loop running
coupling T (u) ≡ 1.
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k

p

zp

A      = 0 gauge+

y0
Wilson line

On shell b quark 

 b quark field:  

−

Figure 2. Process-independent calculation of the QDF in an on-shell heavy quark in
the large-β0 limit: the gluon is dressed by any number of fermion-loop insertions and
then Nf −→ −6β0. In the A+ = 0 axial gauge only this diagram contributes.

The soft function is the large-N limit of the lightcone momentum dis-

tribution of a b-quark field in an on-shell b quark. In can be computed in

a process-independent manner from the QDF definition (1), replacing the

external meson states |B(PB)〉 by on-shell quark states |b(p)〉. For example,

the large-β0 limit result of Eqs. (10) and (12) can be obtained from the

diagram of Fig. 2. It is related by crossing to the perturbative heavy-quark

fragmentation function analyzed in [25].

The jet function describes the radiation associated with an unresolved

jet of invariant mass m2/N . It is a universal object appearing in many ob-

servables including deep inelastic structure functions [22–24], single-particle

inclusive cross sections [22, 25] and event-shape distribution [21, 26, 28].

In both the soft and jet functions there are renormalon ambiguities

owing to the singularities of Γ(−2u) and Γ(−u), respectively. They appear

as a result of integrating over the longitudinal momentum fraction near

the endpoint and reflect the sensitivity of the exponent to large-distance

scales through the running of the coupling. The ambiguity indicates the

presence of non-perturbative power corrections at the exponent for each of

the functions: powers of NΛ/m in the soft function and powers of NΛ2/m2

in the jet function.

5. Cancellation of renormalon ambiguities in the exponent

When considered to power accuracy, the perturbative soft function of

Eq. (10) becomes ambiguous. This is not surprising since its definition in-

volves the on-shell quark state |b(p)〉. Its non-perturbative analog, the QDF

in the meson defined in Eq. (1), should be well defined. Yet, at large N
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these two functions differ just by (an infinite set of) non-perturbative power

corrections on the scale M/N :

FN (M ; µ) = SN (m; µ)FNP

N , (14)

wheref FNP

N is given by (7). The corresponding non-perturbative large-x

factorization in B-meson decay is:

MN ≡

∫ 1

0

dx
1

Γtot

dΓ

dx
xN−1 = CN (m)JN (m; µ)FN (M ; µ) + O(1/N), (15)

where the sole difference from the perturbative formula (9) is the replace-

ment of the QDF in the quark, SN (m; µ), by that in the meson, FN (M ; µ).

Since the QDF FN (M ; µ) directly enters the measurable moments MN ,

it must be well defined. This will be the case only if renormalon ambiguities

cancel in (14) between the perturbative and non-perturbative components.

Indeed, such cancellation is expected because both SN (m; µ) and FNP

N in-

volve the concept of an on-shell heavy quark, while FN (M ; µ) does not.

Putting together (7) and (10) we obtain [15]:

FN (M ; µ) = F((N − 1)/M) exp

{

−
(N − 1)Λ̄

M
+

CF

β0

∫ ∞

0

du

u
T (u)

(

Λ2

m2

)u

×

[

BS(u)Γ(−2u)
(

N2u − 1
)

+

(

m2

µ2

)u

BA(u) lnN

]}

+ O(1/N), (16)

which can be explicitly verified to be free of u = 1
2 ambiguities in the

large-β0 limit by substituting Λ̄ = M − m and using Eqs. (8) and (12).

6. Prospects for precision phenomenology

The results of Secs. 4 and 5 have direct implications for the calculation of

inclusive decay spectra: they open up the way for consistent power-like sepa-

ration between perturbative and non-perturbative contributions depending

on NΛ/M . QCD predictions for decay spectra in the peak region require

Sudakov resummation as well as non-perturbative corrections depending

on the meson structure. However, conventional Sudakov resummation with

fixed logarithmic accuracy does not deal with the problem of separation

between perturbative and non-perturbative contributions (the immediate

price is Landau singularities). The perturbative coefficients get significant

contributions from small momentum scales, contributions that increase with

fWe systematically neglect O(1/N), or, equivalently, O(Λ/M) effects. Eq. (14) does not
hold for small N .
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increasing logarithmic accuracy [22]. DGE addressed the source of this

problem. Using Borel summation — with a principal-value (PV) prescrip-

tion for example — it systematically separates non-perturbative power-like

terms in the Sudakov exponent from perturbative contributions. This pro-

cedure uniquely defines the non-perturbative power terms — this is pre-

cisely the meaning of Eq. (16): consider for simplicity the hypothetical

case where F ≃ 1 so fNP(z) ≃ δ(z − m/M). The shape of the QDF is

then determined by the perturbative Sudakov form factor; it is just shifted

non-perturbatively by Λ̄/M toward smaller z values (in the general case F

leads to some smearing). Precise control of this shift is, of course, crucial;

an ambiguity of order Λ in Λ̄ would be a catastrophe. However, based on

Eq. (16) Λ̄ is uniquely fixed: if the principal value of the Borel sum is used

to define the perturbative Sudakov exponent, the same prescription must

be used to relate the pole mass to any (well measured) short-distance mass

when computing Λ̄, so Λ̄ = M − mPV.

It should be emphasized that quantitative control of power-like con-

tributions by means of Borel summation requires more information than

available either from fixed-order calculations of the anomalous dimensions

or from the large-β0 limit alone. For example, the value of BS(u) near u = 1
2

becomes relevant. While challenging, this question can still be addressed

within perturbation theory.
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