Determining energy relaxation length scales in two-dimensional electron gases
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We present measurements of the energy relaxation length scale £ in two-dimensional electron gases
(2DEGS). A temperature gradient is established in the 2DEG by means of a heating current, and
then the elevated electron temperature T, is estimated by measuring the resultant thermovoltage

signal across a pair of deferentially biased bar-gates.

We adapt a model by Rojek and Konig

[Phys. Rev. B 90, 115403 (2014)] to analyse the thermovoltage signal and as a result extract ¢,
Te, and the power-law exponent «a; for inelastic scattering events in the 2DEG. We show that in
high-mobility 2DEGs, ¢ can attain macroscopic values of several hundred microns, but decreases
rapidly as the carrier density n is decreased. Our work demonstrates a versatile low-temperature
thermometry scheme, and the results provide important insights into heat transport mechanisms
in low-dimensional systems and nanostructures. These insights will be vital for practical design

considerations of future nanoelectronic circuits.

There currently exist well-established methods to
probe the low-temperature (low-T') electrical and ther-
moelectric properties of two-dimensional electron gases
(2DEGs). However, probing heat transport mechanisms
in these systems has proven more challenging, primarily
due to the lack of convenient low-T' thermometers that
couple directly to the electron gas. Conventional low-
T thermometers such as germanium or ruthenium-oxide
films are sensitive only to the lattice temperature 71,
the temperature of the crystal that hosts the 2DEG. At
T, < 1K the coupling between electrons and phonons
becomes relatively weak, and therefore T, can differ sig-
nificantly from 77,. The electrical resistance of the 2DEG
itself becomes insensitive to T, at these temperatures,
since the majority of scattering events are from static
impurities. These both therefore become ineffective at
measuring T, in this regime. Accurate measures of T, can
be obtained from the Coulomb-blockade characteristics of
quantum dots [1] which are broadened at a finite T,. The
weak localization characteristics of 2DEGs [2] can also be
useful as they depend sensitively on the phase-coherence
length which is T.-dependent. However, neither of these
methods lend themselves easily to the measurement of
spatial temperature gradients, which is required in order
to measure the thermal conductivity & [3, 4] or the energy
relaxation length scale ¢ in 2DEGs.

Appleyard et al. [5] showed that the diffusive compo-
nent of the thermopower S can be used to detect dif-
ferences between T, and T1,. Here S = V;,/AT, where
Vin is the thermovoltage developed in response to a tem-
perature difference AT. To do this they measured Vi
across a pair of quantum point contacts (QPCs) with a
heated electron gas between them, as was done similarly
in Ref. [6], and more recently in Ref. [7]. Then AT was
estimated as V4, /S, where S was obtained using the Mott
relation [8]:
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FIG. 1. Device geometry. (a) False-colour SEM image of
the device used in our experiments. The first bar-gate ther-
mometer (BGT) is outlined by white dashed lines. The three
contacts at the top of the device allow a four-terminal mea-
surement of the heating element resistance. (b) Schematic
representation of a BGT which consists of gated (II and III,
yellow) and ungated (I and IV, blue) regions of 2DEG, termi-
nated by an ohmic contact. The orange section between the
gates illustrates a region of ‘hot’ electrons.
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Here kg is the Boltzmann constant, e is the electron
charge, i = h/2m with h being Planck’s constant, o is

the electrical conductivity, E is the total energy and  is
the chemical potential. This technique has been used to



measure £ in quantum wires [3, 9] and energy-loss rates
in 2DEGs [10]. Chickering et al. [11] showed Eq. 1 to be
broadly valid in gated regions of a 2DEG between 0.8 K
and 2K and therein suggested the possibility of using a
symmetric pair of bar-gates as a low-7T' thermometer for
the electron gas. This method was recently employed to
measure S in mesoscopic 2DEGs [12-14]. Usefully, the
relatively large size of the bar-gates eliminates the need
for electron beam lithography which simplifies the fabri-
cation process. However, it was noted in Ref. [11] that
the data systematically deviated from the Mott predic-
tion. Rojek et al. [15] attributed these deviations to the
spatial extent of the bar-gate thermometers (BGTSs) be-
ing comparable to the energy relaxation length ¢ in the
2DEG and developed a model to account for this. In this
work we adapt the model developed by Rojek and Konig
to refine the analysis of the signal produced by a BGT,
and to make an accurate measurement of 4.

Figure 1a shows a false-colour SEM image of a typical
device. Please see the supplementary Material [18] for
wafer and fabrication details. The device consists of a
heating element and a longitudinal strip of 2DEG (of
width 100 pm and length Lgip = 1 mm) which together
form a ‘T’ shape, with three BGTs along the strip. The
first BGT is at a distance Lty = 200 pm from the heating
element. A top-gate sits over the heating element and the
strip and is used to tune the electron density n in these
regions. This design minimizes any power reflection at
the interface between the heating element and the strip.
The strip is terminated by a large ohmic contact.

Throughout the experiment all ohmic contacts through
which no current is passed were assumed to be at 71,
since they are in direct thermal contact to the mixing
chamber via the measurement wiring. Figure 1b shows
a schematic of a single BGT. It is a symmetric structure
consisting of two arms flanking the 2DEG strip. The
left (right) arm is formed by a gated region labelled II
(III), followed by an ungated region labelled I (IV), and
terminated by an ohmic contact. The lengths of the gated
and ungated regions of the arms are L, = 150 pm and
Lyg = 455 pm, respectively.

The experiment involves passing a current I, at fre-
quency f = 10Hz through the heating element which
Joule heats the electron gas with a power of I2 R}, where
Ry, is the four-terminal electrical resistance of the heating
element. This establishes a temperature gradient along
the length of the 2DEG strip. The thermovoltage Vi
generated across a thermometer in response to [}, is de-
tected at 2f using a lock-in amplifier. Figure 2 shows
Vin = Va — W, (see Fig. 1b) from the first BGT while the
gate voltage (V) on gate II is swept. An almost identical
result is obtained when gate III is swept, except that Vi,
is opposite in sign. The thermovoltages developed across
the second and third BGTs were found to be negligible
for even the largest used heating currents. Each section
of the BGT from I to IV, contributes to Viy:
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FIG. 2. The fit shown in this figure is based on a simple
model where the hot electrons are assumed to relax to Tt
within the gated region. This model ignores any effects of the
temperature profile along the BGT, and therefore the only
fitting parameter is T.. The fit is clearly inadequate with the
fit systematically deviating from the experimental data. This
kind of deviation was found to be typical across the parameter
space of I, and Vigz explored in this experiment.

Vih = ) S,AT,. (2)
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Here p goes from I to IV, denoting each section shown
in Fig. 1b, AT}, is the temperature drop across section p,
and S, for each section is given by the Mott formula for
a non-interacting 2DEG:
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Equation 3 is obtained by substituting the Drude ex-
pression o = n,e*7./m for the electrical conductivity into
Eq. 1. Here n, is the 2D number density of charge car-
riers in section p, 7. is the Drude elastic scattering time,
m is the effective mass of the charge carriers (= 0.067m,
in GaAs-based 2DEGs, with m, being the bare electron
mass), ae = (n,/7e)(d7e/dn,), and T}, is the average elec-
tron temperature in region p.

Figure 2 also shows the best fit to the data by assum-
ing that hot electrons relax to 77, within a distance L,
and therefore over the gated region, regardless of the car-
rier density ngy beneath the gate. In this simple picture
the temperature profile along the BGT arm is not rele-
vant, and the only unknown is T, between the BGT arms.
However the quality of the fit is clearly inadequate and
this is found to be the case across the parameter space
of Iy, and Vi explored in this experiment.

We first describe why it is essential to consider the con-
tribution from all the regions p = I to IV towards V.
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FIG. 3. Fits to the data using Egs. 2, 3 and 4. The graphs show Vi1 as a function of the swept gate voltage V; and ng, the
corresponding carrier density under the swept gate. The different traces in (a) and (b) represent different heating currents Iy,
and different top-gate voltages Vi, respectively. The fits are markedly improved over, for example, that shown in Fig. 2.
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FIG. 4. (a) The elevated electron temperature ATe = T, — 71, extracted from the model is seen to increase as a power-law of I,.
The broken line shows an I trend, which would be the case if AT, increased linearly as a function of applied heating power.
The sub-linear dependence on power indicates that there are heat losses to the surrounding lattice. (b) As Vi, becomes more
negative, Te at the first thermometer decreases rapidly, indicating that the electrons thermalize over a much shorter distance.

At low-T and especially in high-mobility 2DEGs, the en-
ergy relaxation length ¢ over which hot electrons relax
through inelastic processes can greatly exceed the mean-
free path of electrons [15, 17]. The dependence of £ on the
inelastic scattering time 7y is given by £ = /D73, where
D = vp?7,/2 is the diffusion constant of the electrons,
and vp is the Fermi velocity. 7; has a power-law depen-
dence on n: 71 = 7;0(n/ng)*, where the subscript 0 de-
notes the values in the ungated 2DEG. Thus, the distance
over which electrons lose their excess energy in the BGT
arm is crucially dependent on n,. The ohmic contact en-

J

forces T, = Ty, at the 2DEG to ohmic contact interface,
and this needs to be taken into consideration if £ is com-
parable to L+ Lye. Therefore in all the above situations,
both the gated and ungated regions contribute to V;y in
a manner dependent on T, at the centre of the BGT, T,
at the interface of the gated and ungated regions, ¢, and
aj, all of which need to be estimated self-consistently. To
do this we adapt the model used in Ref. [15] (described
in the Supplementary Material [18]). The resulting ex-
pression for AT, = T, — 11, at the junction of the gated
and ungated regions AT, (L), reads:

zsinh(Lyg/lo)

AT,(Lg) = AT,

Here /g is the energy relaxation length at n = ng, and

“cosh(Lyg/lo) sinh(Lg/f) + zsinh(Lyg/lo) cosh(Lg/€) )

(

2z = (n/ng)tee=®)/2 Within the framework of Ro-



jek et al. ’s linearized model [15], T, = T1.. Equation 4
provides an expression for AT}, which when substituted
together with Eq. 3 in Eq. 2, results in an expression
for Vip as a function of ng, n in each gated region, £,
e, o and T,. We measure ng and n(Vg) in the device
by observing V,-dependent edge-state reflections in the
quantum Hall regime [16], and «, is extracted from the
dependence of ¢ on n and turns out to be & 0.89 over the
relevant range of n. This leaves three unknowns, namely
Ly, Te, and «;, which are used as fitting parameters. Im-
portantly though, by fitting to several complementary
data sets whilst varying different experimental param-
eters such as I, and Vi, we are able to considerably
reduce the uncertainty in these three fitting parameters
(see Supplementary Material [18]).

Figure 3a shows V;y, against ng for varying I, which
will produce different AT,. Figure 3b shows V};, against
ng but for varying V;, which will vary ¢ in the 2DEG strip
as well as AT, via its effect on Ry. Clearly, the model
produces excellent fits to the data with no discernible
systematic deviations. Similar data and quality of fit is
obtained when the adjacent BGT is swept.

The results of the fitting are the AT, for each I;, and
Vig in the two data sets. Figure 4a shows AT, as a func-
tion of I, on a log-log scale, and we find that AT, o I}-%5.
This sub-squared dependence is presumably due to a frac-
tion of the power being lost to the lattice and to the ohmic
contacts. The values of a; and ¢y are found to be ~ 3.76
and = 280 pm, respectively. Figure 4b shows AT, as a
function of Vi, after AT, has been scaled for the changing
value of Ry. This has been done by applying a corrective
factor of Ry 0/Rn(Vig) so that any change in AT, is now
due solely to a change in ¢. Here Ry(Vig) is the electri-
cal resistance of the heating element as a function of V.
Therefore the graph suggests that for Vi < —0.11V | the
hot electrons completely relax within a distance L.

The data therefore suggests that hot electrons ther-
malize over macroscopic length scales (/2 300 um) in the
ungated 2DEG, but that this length scale rapidly de-
creases with n. This strongly justifies the need to ac-
count for the ungated 2DEG arms when using BGTs at
high ng. This is also consistent with the negligible ther-
movoltage detected across the second and third BGTs
which are at distances of 500 pm and 800 pm from the
heating element, respectively. While ng can certainly be
lowered untill £ < Ly such that AT,(Lg) = 0, care must
be taken to ensure that Eq. 3 remains valid. Indeed, we
have observed that when the 2DEG approaches the lo-
calized regime (when o becomes < 3e?/h) the model is
unable to fit the data satisfactorily. In this experiment
n was conservatively limited to > 0.7 x 10 m~—2 corre-
sponding to kpl > 4 and rg < 2, where kg is the Fermi
wave vector, [ is the elastic mean free path, and 7y is the
interaction parameter defined as the ratio of the Coulomb
energy and kinetic energy of the 2DEG.

Importantly, the model only provides the value of ¢
and «a; from which ¢(n) can be reconstructed. However,
as argued in the previous paragraphs, this information
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FIG. 5. Energy relaxation length ¢ as a function of carrier
density n. The data in Fig. 4b produces an independent mea-
sure of ¢(n) which we find to be in excellent agreement with
the model exponents.

is independently contained in Fig. 4b. The T,-profile in
the 2DEG strip is given by (see Supplementary Mate-
rial [18]):

sinh [(Lstrip - y)/g]
sinh (Lgtrip/£)

ATe(y) = ACZ—‘e,() (5)

Here y is the spatial coordinate along the 2DEG strip
(see Fig. 1b) and AT, g = AT,(y = 0), the temperature
elevation in the heating channel. Since the heating chan-
nel is effectively at a constant temperature between pairs
of points in Fig. 4b, the ratio AT (n1)/ATe(n2) taken at
y = L1 provides an implicit relation between ¢(n) and
£(ng), where n; and ng are the respective carrier densi-
ties. Therefore this allows the inference of ¢ from T, and
reconstruction of £ as a function of n as shown in Fig. 5.
This is the main result of this study showing the depen-
dence of the energy relaxation length scale on the carrier
density. We stress that this is a direct measurement of
£(n) using the pre-calibrated BGT, which we find to be in
striking agreement with indirectly obtained dependence
{(n) = Lo(n/ng) A Teetei)/2 using the values of £y and oy
derived from the model and the fitting.

To summarize, we have demonstrated that BGTs are a
versatile tool with which to detect elevated electron tem-
peratures. As remarked earlier, BGTs are an attractive
alternative to QPCs. QPC fabrication requires electron
beam lithography and they come with the associated dif-
ficulties of sub-micrometre devices such as sensitivity to
electrical shock and vulnerability to disorder. In con-
trast, BGTs can be macroscopic and therefore free from
the above mentioned difficulties.

While our manuscript seems to suggest that the trade-
off between QPCs and BGTs is that detailed modelling
is required to extract T, it is important to note that
modifying the device design such that L, > /¢ significantly



reduces the complexity of the analysis. On the other
hand, the advantages of the employed device design are
that it allows for the determination of £(n) using a single
BGT. We note that using a second BGT further displaced
along the length of the 2DEG strip should also allow for

such a measurement, so long as £(n) < Lrs.
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Supplementary Material

I. WAFER, DEVICE FABRICATION, AND
MEASUREMENT SYSTEM DETAILS

The 2DEGs used in this study have a mobility of
172m?/Vs at a carrier density of ng = 1.45 x 1015 m~2.
For a top-gate voltage of V;z = 0V, Ry, = 230.9€2 which
corresponds to a resistivity of 44.4/Sq. The typical
ohmic contact resistance is ~ 2002 as determined by
the difference between two and four-terminal resistances
(corrected for known cryostat wiring resistances). There-
fore the ohmic contacts should not effect thermalization.
A wet etch is used to define the conductive mesa, and
Au-Ge-Ni ohmic contacts and Ti-Au top-gates are then
deposited by thermal evaporation. Photolithography is
used at each stage to define the layer pattern in photore-
sist on the substrate. Measurements on the devices were
performed in a dilution refrigerator with a base temper-
ature of 170mK. A ruthenium oxide thermometer at-
tached to the mixing chamber of the dilution refrigerator
was used to measure Tr,.

II. THERMOPOWER DIFFUSION MODEL

Rojek et al. consider a fixed electrical power input into
a two-dimensional electron gas (2DEG) that results in an
elevated electron temperature T, = AT.+711, with respect
to the lattice temperature 71,. In the steady-state, the
power input to the 2DEG is balanced by the heat loss
to the lattice. Then, one can derive from the continuity
equation for heat and charge flow a diffusion equation for

AT, (x),

29 OAT,
ATe—;a—x (/1 8:1:e> =0. (S1)

Here « is the thermal conductivity of the 2DEG, ¢ the
energy relaxation length, and « is the spatial coordinate
along which the temperature varies (for the temperature
variation within the BGT, relevant for Eq. 4, this is the
x-direction while for the temperature variation within the
2DEG strip, relevant for Eq. 5, this is the y-direction, see
Fig. 1 of the main text).

An applied gate voltage changes the electron density
n which, in turn, modifies the transport properties, in
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FIG. 6. Fits to a set of data showing the sensitivity of the fit to altered fitting parameters.

particular the elastic and inelastic scattering times 7, and
7, the thermal conductivity x, and the energy relaxation
length ¢. Their n-dependences are described by power
laws with the following exponents:

dln7./dInn = a.,
dln7/dlnn = a4,
dlnk/dlnn =1+ ae,
dlnf/dInn = (1 + ae + o4)/2.

For each region with constant electron density (the
gated region II(IIT) and the ungated region I(IV) of the
BGT, relevant for Eq. 4, as well as the 2DEG strip, rel-
evant for Eq. 5), the general solution of Eq. S1 is

AT.(z) = ae™"/* + be®/* (52)

where the coefficients a and b have to be determined by
boundary conditions.

A. Derivation of Eq. 4

For the BGT, the spatial position z is defined relative
to the interface between the 2DEG strip and the gated
region II. There are two regions of constant electron den-
sity (the gated and the ungated one, I and II) which
requires four boundary conditions to fully determine the
temperature profile. One is given by AT,(0) at x = 0,
the quantity to be measured by the BGT. Furthermore,
the Ohmic contact at * = Lg+ Ly fixes the electron tem-
perature to the lattice temperature, AT (Lg + Lyug) = 0.
Finally, at = L, (the interface between the gated (I)
and the ungated (IT) region), both the temperature AT,
and the heat current —x(0AT,/0z) have to be continu-
ous. It is, then, a matter of solving a set of four linear
equations to express the coefficients of Eq. S2 in terms
of AT,(0). However, the only relevant feature of the full
temperature profile that enters the thermovoltage is the
temperature at the interface between region I and II,
AT, (Lg). Plugging x = Lg into the full solution im-
mediately leads to the compact formula Eq. 4, where
2z = (k/0)/(Ko/ly) = (n/ng)(Itee=)/2 originates from
the boundary condition of the heat current to be contin-



uous.

In the limit of a large gated region, Ly > ¢, the coeffi-
cient b of the exponentially increasing term in Eq. S2 van-
ishes, AT, (Lg) goes to zero, and the ungated region does
not influence the measure thermovoltage. For Ly < ¢,
however, the ungated region becomes important. Ignor-
ing it leads to an inadequate fit to the data, as shown in
Fig. 2 of the main text.

B. Derivation of Eq. 5

The modelling of the temperature profile along the y-
direction in the 2DEG strip is analogous to that of the
BGT. Since the electron density is constant in the 2DEG
strip, only two boundary conditions are needed. They
are given by fixing AT, to AT, at y = 0 and to 0 at
the Ohmic contact y = Lgtrip. Formally, determining
the temperature profile along in the 2DEG strip is just
a special case of the calculation for the BGT. Therefore
Eq. 5 follows from Eq. 4 by performing the replacements
z—=1,4 =¥, Ly -y, Lyg = Lgtrip — v, and AT, —

AT, .

III. SENSITIVITY OF FIT ON PARAMETERS

Figure S 1 shows the sensitivity of a model fit to the
fitting parameters. The particular data used to demon-
strate this corresponds to I, = 600nA at Vi = 0V,
although similar results are obtained for all other values
of I, and Vi, used in this experiment. The optimum fit
is contrasted to the resulting fit when a specific fitting
parameter is changed by a given percentage. In panel
(a) AT, was varied by 10% in each direction, in panel
(b) and (c), a; and ¢ were varied by 20% in each direc-
tion respectively. The result is a clearly deviated and
inadequate fit in each case. However these percentage
changes are chosen such that the quality of the fit vis-
ibly deteriorates. In fact the residual of the fit is more
sensitive to changes in a single fitting parameter, for ex-
ample, doubling for a 5% change in AT,. This highlights
the technique’s usefulness as an electron thermometer.



