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Abstract

Materials can flow down a slope in a wide range of geophysical and industrial contexts,

including lava flows on volcanoes and thin films on coated surfaces. The aim of my research

is to provide quantitative insight into these forms of motion and their dependence on

effects of the topography, the volume and the rheology of the flowing structure. Numerous

different problems are investigated through mathematical models, which are developed

analytically and confirmed by laboratory experiments.

The initial advance of long lava flows is studied by considering the flow of viscous fluid

released on sloping channels. A scaling analysis, in agreement with analog experiments and

field data, offers a practical tool for predicting the advance of lava flows and conducting

hazard analysis. A simple and powerful theory predicts the structure of flows resulting

from any time-dependent release of fluid down a slope. Results obtained by the method

of characteristics reveal how the speed of the advancing front depends importantly on the

rate of fluid supplied at an earlier time.

Viscous flows on surfaces with different shapes are described by similarity solutions to

address problems motivated by engineering as well as geophysical applications. Pouring

viscous fluid out of a container can be a frustratingly slow process depending on the shape

and the degree of tipping of the container. The discharge rate of the fluid is analysed in

simple cases, shedding light on how containers can be emptied most quickly in cosmetic

and food industries. In a separate study motivated by coating industries, thin films are

shown to evolve with uniform thickness as they drain near the top of a horizontal cylinder

or sphere. The leading edge eventually splits into rivulets as predicted theoretically and

confirmed by experiments.

Debris flows can develop levees and trigger avalanches which are studied by considering

dense granular flows down a rough inclined plane. Granular materials released down a



slope can produce a flowing structure confined by levees or trigger avalanches at regular

intervals, depending on the steady rate of supply. The experimental results are discussed

using theoretical ideas of shallow granular flows.

Finally, materials flowing in long and slender ducts are investigated theoretically to bet-

ter understand the digestive and urinary systems in biology. The materials are pumped in

an elastic tube by translating waves of muscular contraction and relaxation. The deforma-

tion of the tube is predicted by solving a free-boundary problem, a similar mathematical

exercise to predicting the moving boundaries of materials spreading on slopes.
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Chapter 1

Introduction

1.1 Physical motivation

This thesis is concerned primarily with the dynamic process of materials spreading on

slopes. Gravity can drive materials of all kinds to flow, ranging from small-scale coatings

in manufacturing processes to large-scale avalanches in mountainous regions. It is of

interest to understand quantitatively how the bulk structure evolves in depth and extent.

This allows the possibility of predicting where and how quickly the spreading occurs in

different situations, as demonstrated in numerous examples below.

Geophysical examples include debris flows, landslides and snow avalanches (figure 1.1)

on mountains. They are natural hazards involving the motion of large masses of rock,

water and snow. As a consequence, many casualties are produced and properties are

severely damaged. The economic cost of repairing the damage is enormous. Despite the

risks on mountains, people are attracted by the beautiful scenery and engage in outdoor

activities, including climbing and skiing. Natural hazards on mountains not only affect

people but also the rich biodiversity and vegetation, which are fundamental to the natural

environment.

1



1 Introduction

Figure 1.1: Photograph of an avalanche initiated by an explosion at the Vallee de la Sionne (WSL
Institute for Snow and Avalanche Research SLF, 2006).

There are additional risks to habitats on volcanoes where lava (figure 1.2) and pyro-

clastic flows develop. The pyroclastic material can mix with water, after a heavy rainfall,

and produce a type of mudflow called lahar. These natural hazards have the potential to

destroy anything along their path with catastrophic consequences. Nevertheless, commu-

nities settle on volcanoes for numerous reasons, including the availability of geothermal

resources of energy and fertile soil containing useful minerals for farming. Researchers

spend time on volcanoes studying surface features, such as the deposits of past lava flows

as shown in figure 1.3. The deposits reveal how the lava split into branches and flowed in

channels confined by levees. These features are footprints of past activities and provide

clues to possible consequences of future eruptions.

A quantitative prediction of where materials could spread on land offers both immediate

and long-term benefits to society. Infrastructure can be developed in relatively safe areas

by identifying and assessing possible areas of future development. Barriers can be con-

structed accordingly to divert flows like snow avalanches and protect the developed areas.

In the event of a natural hazard, such as the advance of long lava flows, it is helpful to

update communities with the latest information. Accurate information minimises any fear

and supports the mental health of individuals concerned. The trust and cooperation of

the general public are essential for evacuating communities from areas at risk. The public

demands accurate and reliable information, which requires a quantitative prediction of

2



Figure 1.2: Aerial view of Pu’u O’o fountain and lava flows on Kilauea Volcano, Hawaii (J.D.
Griggs, U.S. Geological Survey, 1984).
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Figure 1.3: Photograph of Llullaillaco Volcano, at the border of Argentina and Chile, taken from
aboard the International Space Station (National Aeronautics and Space Administration, 2010).
Several channels of deposited lava extend from the summit, which is elevated 6,739m above sea
level.

how large masses flow on topography.

The spreading of materials on slopes occurs at smaller scales at home on a daily basis.

A familiar example at the dining table is the spreading of sauce on food (figure 1.4). The

sauce extends and produces multiple drips like branches of lava on a volcano. Another

example at home is the frustratingly slow flow of shampoo in a bottle, which is tipped

to discharge the fluid. Emptying the bottle is difficult so the remaining fluid is wasted.

The disposal of fluid can pollute the environment with undesirable chemicals. In order to

reduce the waste of products, such as food and cosmetics, the shape of their containers

could be engineered so that the contents can pour out most effectively.

The spreading of thin liquid films on rigid surfaces is of interest to many industries.

An example is the coating process of manufactured products, ranging in scale from small

electronic components to large motor vehicles. The coatings are helpful for decorative

purposes and protecting surfaces from rusting. In order to control the coatings before they

ultimately dry, their motion must be predicted. This requires a quantitative understanding

of the moving boundaries of thin liquid films (Oron et al., 1997).

Moving boundaries of materials not only arise on slopes but also in other settings,

such as the inside of a flexible duct like the body of a python (figure 1.5). Waves of

4



Figure 1.4: Sticky toffee sauce spreading on a pudding. The photograph was taken by Ioanna
Vlahou, my office mate at the Institute of Theoretical Geophysics.

Figure 1.5: Photograph of a 6m-long python swallowing a pregnant ewe (Reuters, 2006).
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1 Introduction

muscular contraction and relaxation can travel down the duct, resulting in deformation of

the duct and propulsion of the inner contents. The motion is fundamental to many systems

in biology, including the digestive system, which can be studied through mathematical

models.

1.2 Mathematical motivation

All of the physical examples presented above can be studied through mathematical models

of materials with moving boundaries. This is pursued by formulating and solving problems

in a mathematical framework. A major strength of the mathematical approach lies in its

general applicability to physical systems of any size within a wide range of length scales.

In order to gain a quantitative understanding of the physical systems, the associated

challenges in mathematics must be addressed.

There are open problems associated with the mathematical treatment of materials

spreading on slopes. An issue that remains unresolved is the dynamics of contact lines,

which may play a role at the leading edge of a driven film of fluid. Although the issue can

be partly resolved by introducing the notion of a slip velocity (Dussan, 1979) or by con-

sidering an extremely thin precursor film (Troian et al., 1989; Spaid & Homsy, 1996), the

most effective approach remains debatable. Another challenging issue is the mechanics of

granular materials (GDRMiDi, 2004) like sand, which can switch between a flowing state,

behaving like fluid, and a jammed state, behaving like a solid. Microscopic effects in the

material can result in macroscopic phenomena and entirely change the bulk structure of

the flow.

In an attempt to gain a better understanding of these systems, we develop simplified

models of viscous fluids and granular materials flowing on slopes. Continuum models

are developed by neglecting microscopic effects, which do not influence the dynamics of

the bulk structure under specific conditions to be determined. The models are validated

by comparing the theoretical solutions with analog experiments in the laboratory. The

experiments are helpful for identifying the limitations of the simplified models. The models

can then be extended to incorporate additional effects. The power of simplified models is

that they provide a foundation for studying more complicated systems in the future.

The models considered here are simplified by the approximation that the flowing struc-

ture is long and thin, as in lubrication theory (Acheson, 1990). Solutions, which are

obtained analytically by solving the governing equations, provide a fairly complete descrip-

tion of the dependence on physical parameters. We consider numerous different problems

to better understand how flowing structures depend on the volume, the topography and

the rheology of the material.

6



1.3 Thesis structure

1.3 Thesis structure

In chapter 2, the initial advance of long lava flows is considered. A scaling analysis of

Newtonian flow in open channels suggests that the initial advance depends importantly

on the effusion rate and minimally on topography. Scaling laws for the advancing extent

of the flow are compared with field data.

In chapter 3, variations in the supply of fluid from a source down an inclined plane

are considered. The speed of the front of the resultant flow depends importantly on the

rate of supply at a prior time, as investigated using the method of characteristics. We

consider specific examples of releasing fluid at variable rates, including a supply which

decays exponentially and a supply which oscillates sinusoidally about a mean flux.

In chapter 4, the effect of introducing a sharp change in the slope of the inclined plane

is investigated. This is relevant to the process of pouring fluid out of a tipped container.

Flow in two different containers is analysed to show that the discharge rate of the fluid

depends importantly on the shape of the container.

In chapter 5, the effect of a slowly-varying angle of inclination of the substrate is studied.

This is relevant to the process of coating a curved surface, such as the top of a sphere.

When a constant volume of fluid is released rapidly on the surface, the leading edge of the

flow can split into a series of rivulets, making it difficult to coat the surface completely.

The rivulets develop when the front extends beyond a critical distance, which increases

significantly with the fluid volume.

In chapter 6, the effect of a slowly-varying width of a channel with rectangular cross-

section is studied. This is relevant to coating a sector of an inclined plane. The leading

front of the flow down the channel detaches from the sidewalls when it extends a critical

distance, which depends mainly on the fluid volume.

In chapter 7, the steady flow of granular materials down a rough inclined plane is in-

vestigated. The flowing structure has features which are not present in Newtonian flows,

indicating that changing the rheology can introduce new flow phenomena. These include

the formation of levees which confine a continuous stream at large mass flow rates and the

development of avalanches at small flow rates.

In chapter 8, avalanches of sand flowing down a rough inclined plane are examined.

Laboratory experiments are reported to show how avalanches can be triggered at regular

intervals from a steady source. The avalanches retain their shape and size as they travel

steadily on an erodible bed down the slope.

7



1 Introduction

In chapter 9, the steady translation of waves of muscular contraction and relaxation

down an elastic tube are considered. The resultant deformation of the tube and the

propulsion of the inner contents are studied. Different results are obtained by considering

the propulsion of a Newtonian fluid, a Bingham plastic and a rigid body immersed in

viscous fluid. The motion depends importantly on the type of material.

8



Chapter 2

Initial advance of long lava flows in open

channels

2.1 Abstract

The initial development of long lava flows is investigated using simple theory and field ev-

idence. Order-of-magnitude estimates of the evolving thickness and the extending length

of lava are obtained by scaling arguments based on the simplification that the bulk struc-

ture can be modelled initially as a Newtonian fluid. A scaling analysis suggests that the

rate of advance of the leading front evolves primarily due to temporal variations in the

effusion rate and minimally due to topography. The apparent viscosity of the bulk flow

increases with time at subsequent stages when effects due to cooling become important.

Theoretical results are applied to the study of long lava flows that descended on Etna,

Kilauea and Lonquimay volcanoes. We determine that lava flows at Kilauea extended ini-

tially like a Newtonian fluid with constant viscosity, implying that thermal effects did not

significantly influence the dynamic properties of the bulk flow. In contrast, effects due to

cooling played a major role throughout the advance of lava flows at Etna and Lonquimay.

9



2 Initial advance of long lava flows in open channels

We show that the increasing length and volume of an active emplacement field can be

monitored to estimate its evolving viscosity, which in turn allows the further advance of

the lava to be predicted.

2.2 Introduction

Lava flows occur when molten rock is extruded from a volcanic vent. A long channel of

lava may develop down a slope, where the flow is driven by gravity and confined laterally

by elevations in topography. The lava quickly cools and solidifies at the margins of the

flow, where levees form and further confine the flow (Hulme, 1974; Sparks et al., 1976).

The upper surface of the lava may also solidify to form a lava tube system whereby the lava

continues to flow inside a completely enclosed passage (Greeley & Hyde, 1972; Hallworth

et al., 1987; Calvari & Pinkerton, 1999). The confinement may insulate the interior of the

channel, allowing the lava to flow efficiently, without much loss of heat, towards its leading

front (Keszthelyi, 1995). The front of the flow may propagate, branch into different lobes

and stagnate in a complex series of processes (e.g., Lipman & Banks, 1987), before the

entire structure of the emplaced lava solidifies.

One of the motivations for understanding the morphology of lava flows is to predict

and evaluate the consequences of an effusive eruption. The resultant flow of hot and

destructive lava can reach distant areas, threatening lives and damaging properties (Blong,

1984). An accurate prediction of the evolution of active lava flows is helpful for identifying

danger zones and assessing risks posed to areas on volcanoes. For the purposes of effective

forecasting, it is useful to be able to predict the extent of lava based on conditions that

can be measured prior to or during the early stages of lava emplacement.

Previous studies obtained empirical relationships showing that the final lava length is

correlated to a number of factors, including the mean effusion rate at the vent (Walker,

1973), the total erupted volume (Malin, 1980) and the rheology of the lava (Pinkerton

& Wilson, 1994). An idea has been put forward that the flow is either cooling-limited

when it reaches a maximum length attainable for a given supply of lava from the vent or

volume-limited when a considerable decline in the effusion rate prevents the flow front from

reaching the maximum length (Guest et al., 1987). In either case, the final length of the

lava is controlled by dynamic processes involving heat loss and depends importantly on the

effusion rate (Harris & Rowland, 2009). We complement previous studies by examining

dynamically how the various input factors, including variations in the effusion rate and

effects due to cooling, influence the lava flow before it ultimately stops.

The dynamic processes leading to the final solidified state require understanding of the

fluid dynamics of the lava (Griffiths, 2000). Of particular importance is the development

10



2.3 Theory

of lava flows during their early stages, when the flow front advances rapidly and reaches

a large proportion of its final extent. A quantitative formulation of the initial advance

of long lava flows forms an important foundation for studying subsequent stages of the

evolving morphology of lava. The use of scaling arguments, which are applied to the early

stages, could be developed further to study other problems including the prediction of the

final lava extent, which is beyond the scope of the current investigation.

During the early stages, an open channel develops down a slope and directs the flow

towards its advancing front (Hulme, 1974; Kerr et al., 2006). The resultant flow during

the early stages is commonly modelled as Newtonian and laminar (Tallarico & Dragoni,

1999; Sakimoto & Gregg, 2001). There is a rich class of mathematical problems relevant

to the prediction of lava flows (Baloga & Pieri, 1986; Bruno et al., 1996). The apparent

viscosity of the bulk structure of the lava is expected to remain constant until the flow

is influenced by thermal effects, which change the dynamical properties of the lava in

two important ways. First, crystals may nucleate due to degassing and grow in the flow,

effectively increasing the viscosity of the lava (Sparks et al., 2000). Second, a crustal layer

may develop on the surface due to cooling (Griffiths & Fink, 1993), effectively introducing

an additional resistance to flow. Both mechanisms reduce the flow speed considerably

until the flow stagnates altogether.

Here, we consider the initial advance of lava flows supplied down open channels of differ-

ent shapes. The aim is to provide theoretical insight into natural lava flows by simplifying

the analysis as much as possible while including the most fundamental mechanisms. For

simplicity, the lava is modelled as Newtonian and we study the effects on the bulk flow

due to given variations in the topography, the effusion rate and the apparent viscosity.

Theoretical results obtained are applied to describing lava flows that descended the vol-

canic slopes of Etna, Kilauea and Lonquimay. The theoretical treatment is presented first

in section 2.3, followed by applications to field data in section 2.4. We demonstrate how

increases in the viscosity of the lava and further advance of the flow front can be predicted

solely based on prior measurements of the cumulative volume and the length of an evolving

emplacement field.

2.3 Theory

Consider an open channel of lava flowing down a slope. The channel may represent

topography confining the entire length of lava that has been extruded from a volcanic vent,

as long as the flow does not split into different branches. The following analysis applies

equally well to lava that has branched off from another channel and extends thereafter as

a single lobe. We are concerned with the temporal evolution of the dimensions of a single

11



2 Initial advance of long lava flows in open channels

Figure 2.1: A sketch of lava of typical length L, width W and height H flowing inside a channel
of cylindrical shape.

channel of lava. Of interest are the characteristic height H(t), width W (t) and length

L(t) of the flow at time t. The flow is primarily along the channel, provided that the

dimensions of the flow satisfy H ≪W ≪ L.

The exact shape of the channel confining the flow of lava will depend on a number

of factors, which include the pre-existing topography and the development of levees at

the margins of the flow. However, as we discuss later, the details of the channel do not

significantly influence the flow. Consider a general relationship between the width and

thickness of the flow of the form

H/w∗ ∼ (W/w∗)
n, (2.1)

where ∼ denotes a relationship of proportionality, w∗ is a measure of the size of the channel

and n is a prescribed constant that describes the shape of the channel. For example, the

limit as n→ ∞ is equivalent to W ∼ w∗ and corresponds to a shallow layer of lava flowing

down a flat channel of constant width w∗. Channels confining lava are approximately

described by n taking some finite value greater than 1. For instance, n = 2 corresponds to

a thin layer of lava flowing inside a channel of cylindrical shape whose radius of curvature,

w∗, is much larger than the characteristic flow thickness, as shown in figure 2.1. The case

of n = 1 describes flow along a wedge. Deep and narrow flows, described by n < 1, are not

considered here because they are sheared predominantly across fractures of width W ≪ H

and do not apply to natural lava flows.

The exact velocity varies within the lava but has a common characteristic magnitude

denoted by U(t) ∼ L/t because L is the only characteristic length scale associated with the

direction of flow along the channel. In particular, U is the characteristic rate of advance

of the flow front, which is estimated by considering the governing equation of Newtonian

and laminar flow. The driving force of gravity must balance the resistive forces due to the

viscosity of the lava, provided that inertial effects are negligible. The component of gravity

in the direction of the flow is given by ρg sin θ, where ρ is the density of the lava, g the

12



2.3 Theory

acceleration due to gravity and θ the angle of inclination of the channel to the horizontal.

The lava is sheared predominantly across its thickness because the resistive forces exerted

at the sides of the flow are negligible, since H ≪ W . The flow is sheared at the base,

where we impose the condition of no slip. Shear stresses exerted by the ambient or any

development of a crustal layer on the free surface are considered to be small initially.

Given that the flow is sheared across its thickness, the viscous forces scale like µU/H2,

where µ is the dynamic viscosity of the lava. By balancing gravity with viscous forces and

rearranging, we obtain the characteristic speed of the flow

U ∼ ρg sin θH2/µ. (2.2)

Note that (2.2) is consistent with an equation quantifying the surface velocity of flow

down a channel with rectangular cross-section, often referred to as the Jeffreys equation

(Jeffreys, 1925). The flow speed depends importantly on H, the thickness of the flow,

which is set by the supply of lava into the channel.

The supply of the lava into the channel from upstream depends on the effusion rate at

the vent and generally varies with time. The effusion rate corresponds to the rate of change

of the cumulative volume of extruded lava. Typically, the effusion rate increases initially

during a waxing phase and then decreases slowly during a waning phase (Wadge, 1981).

To illustrate the effects of the lava supply on the resultant flows down open channels, we

consider a simple power-law dependence of the effusion rate with time, which is expected

to fit field data during the initial stages of an effusive eruption. Let the effusive activity

at the vent begin at time t = 0 such that the cumulative volume of extruded lava is given

by

V = V∗(t/T∗)
α, (2.3)

where T∗ is some fixed time scale at which the volume erupted is V = V∗. The exponent

α ≥ 0 is a prescribed constant and describes the temporal evolution of the effusion rate at

the vent. For example, α = 0 corresponds to a fixed volume V∗ of lava extruded rapidly at

time t = 0 and no further extrusion subsequently. Another example of importance is α = 1,

which corresponds to a continuous supply of lava with a steady effusion rate at the vent. A

more general situation, where the effusion rate at the vent declines continuously with time,

is described by α taking some value between 0 and 1. Note that the volume of extruded

lava for general α > 0 in (2.3) grows indefinitely, which does not model the effusion rate at

large times. Nevertheless, (2.3) provides useful insight into the development of long lava

flows during the early stages of the propagation, as we investigate below.

The cumulative volume of lava in the channel given by (2.3) must scale like

V ∼ HWL. (2.4)

13



2 Initial advance of long lava flows in open channels

By eliminating W , H and V from the coupled relationships (2.1)-(2.4) and the relationship

U ∼ L/t, the scaling for the extent of the flow at time t is given by

L ∼ t(2αn+n+1)/(3n+1). (2.5)

The exponent c = (2αn + n + 1)/(3n + 1) depends only on the evolving nature of the

effusion rate at the vent described by α in (2.3) and the shape of the channel described

by n in (2.1). The exponent c does not depend on the viscosity of lava or the slope angle

of the channel, as long as they remain approximately constant.

The scaling of the flow length given by (2.5) is consistent with a more detailed theoretical

analysis and agrees well with data from a series of laboratory experiments (Takagi &

Huppert, 2007; 2008). The experiments were conducted by supplying glycerine inside a

wedge or a semi-circular channel either instantaneously or continuously with a steady flux,

verifying the validity of (2.5) when n = 1, 2 and α = 0, 1. The special case of α = 0 not

only describes the flow of an idealized situation of an instantaneous release of fluid into an

inclined channel, it also describes the flow of a more general situation where the fluid is

supplied from the upstream end of an inclined channel over a duration that is much shorter

than the time scale of the resultant flow. In the context of a brief effusive eruption, where

a considerable volume of lava is extruded during a relatively short period, the resultant

flow does not depend on the details of the effusive activity and extends like (2.5), with

α = 0.

The numerical value of the exponent c, previously introduced so that the flow extends

with time like tc, provides an important insight into the evolving nature of lava flows in

open channels. Depending on whether c < 1, c = 1 or c > 1, the position of the front

decelerates, progresses steadily or accelerates, respectively, with time. A close inspection

of the dependence of the exponent c on n in (2.1) and α in (2.3) reveals that the shape of

the topography is not as important as the nature of the temporal variations in the effusion

rate. This is illustrated by a stronger dependence of c on α than n, as shown in figure

2.2 for α = 0, 1 and 2. In fact, in the special case of a steady effusion rate at the vent

(α = 1), the flow front advances steadily in open channels of any shape.

Given that the shape of the channel does not significantly influence the exponent c, a

representative shape of a channel with rectangular cross-section will be considered in all

the analysis to follow. The flow is effectively two-dimensional, independent of the cross-

stream direction. By taking the limit as n → ∞ in (2.5), we determine the extent of the

flow down a flat channel of characteristic width a to be given by

L ∼
(

ρg sin θA2
∗T∗/µ

)1/3
(t/T∗)

(2α+1)/3 , (2.6)
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Figure 2.2: Plot of c against n for three different values of α, where a cumulative volume ∼ tα

results in a lava flow of length ∼ tc. The number n describes the cross sectional shape of the
channel, as sketched beneath corresponding integer values of n.
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2 Initial advance of long lava flows in open channels

where A∗ = V∗/w∗ is the characteristic area of lava extruded in time T∗ per unit cross-

stream width w∗. The extent of the flow advances at least like t1/3, provided that the

lava descends down the channel like a Newtonian fluid of constant viscosity. Note that

L in (2.6) does not change much as a result of minor variations in θ and w∗, reinforcing

the idea that topographic variations play a minor role in governing the length scale of the

flow. By coupling relationships (2.3) and (2.6), we determine the characteristic thickness

of the flow to be given by

H ∼ [µA∗/(ρg sin θT∗)]
1/3 (t/T∗)

(α−1)/3 . (2.7)

A declining supply of lava into the channel with α < 1 in (2.3) leads to a decreasing

thickness of the lava with time, as expected. The scalings (2.6) and (2.7) are consistent

with the mathematical solutions obtained by a more detailed analysis (Lister, 1992).

When the length and thickness of lava flowing down an inclined channel scale like (2.6)

and (2.7) respectively for some common value α, the implication is that the lava is flowing

like a Newtonian fluid of constant viscosity. If the temporal variations of either (2.6)

or (2.7) disagree with α in (2.3), which can be measured independently by monitoring

the cumulative volume of lava, then the theoretical assumptions made so far need to be

revised. The obvious source of the problem lies in the simplifying assumption so far that

the viscosity remains constant. As the lava cools, its viscosity may increase by orders of

magnitude.

It is helpful to consider the effects on the flow due to a time-dependent viscosity of the

form µ ∼ tβ for some β. Although this power-law is not the end result of an explicit

theoretical development, a similar analysis has provided insight into the growth of lava

domes (Sakimoto & Zuber, 1995). This approach has the advantage of simplifying the

analysis without considering the details of the temperature-dependent viscosity (Shaw,

1969). The specific viscosity of lava may vary in position but the bulk structure is simplified

to flow with an apparent viscosity, whose order of magnitude depends only on time. By

setting µ ∼ tβ in (2.6), the characteristic thickness of the flow evolves in the form

H ∼ t(β+α−1)/3 (2.8)

behind an advancing front of the flow, extending a distance

L ∼ t(2α+1−β)/3. (2.9)

Relationships (2.8) and (2.9) indicate that an increase in the viscosity with time, repre-

sented by β > 0, results in a channel of thicker lava, which advances at a slower rate

compared to the corresponding flow without any increase in viscosity. For example, a
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2.3 Theory

significant rise with time in the level of lava inside a channel, which is being supplied at a

steady rate, can be explained by setting α = 1 in (2.8) and deducing that the viscosity of

the lava is increasing considerably with time.

Another possibility that gives rise to a considerable decline in the speed of the flow is

the additional force resisting the motion due to the formation of a crustal layer on the

upper surface of the flowing lava. Effects on the lava flow due to the development of a

surface crust are presented below for the propagation down a slope, which is different

from a growing lava dome on a horizontal surface (Griffiths & Fink, 1993). The idea is

that cooling is assumed to be confined to a thin thermal boundary layer of characteristic

thickness δ near the crust, below which the interior flow of lava remains isothermal. The

approximation holds for a sufficiently large Peclet number UH/κ ≫ 1, where κ is the

thermal diffusivity of the lava flowing under the crust. Thermal conduction is assumed to

be most significant across the depth so that the crustal thickness grows diffusively like

δ ∼ (κt)1/2. (2.10)

The crust is approximated to have a thickness proportional to the thermal boundary layer

and exert a shear stress σcδ on the flowing lava per unit surface area, where σc is the

effective shearing strength. Under these assumptions, the driving force due to gravity is

no longer balanced by viscous forces at the base of the channel and within the flowing lava

but instead by σcδ/H, the retarding force per unit volume due to the surface crust. By

setting ρg sin θ ∼ σcδ/H and coupling with (2.3) and (2.4), we determine the characteristic

thickness of the bulk flow to grow like t1/2 behind an advancing front, which extends a

distance

L ∼ tα−1/2. (2.11)

Note that (2.11) is equivalent to (2.9) with β = 5/2−α, suggesting that the bulk flow with

a surface crust extends like a fluid with apparent viscosity that grows in time like t5/2−α.

Note also that an advancing flow front requires a continuous supply of lava with α > 1/2.

The scaling given by (2.11) does not hold for a cumulative volume of lava described by

α ≤ 1/2, suggesting that the entire structure of the flow cools and comes to rest when

there is insufficient supply of lava driving the flow in the insulated interior under the crust.

Ultimately, the downslope acceleration due to gravity must be countered by static rather

than viscous forces.

The applicability of the scaling laws introduced in this section is best assessed by testing

against data of natural lava flows. The theory predicts the characteristic thickness of

lava to scale like (2.8) and the extending length like tc as in (2.9), provided that the

cumulative volume scales like tα and the apparent viscosity of the lava like tβ. The scaling

relationships are useful for estimating any variation with time in the viscosity of the lava,
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2 Initial advance of long lava flows in open channels

Location Start date Reference

Etna 18 Jul 2001 LFS1, Coltelli et al. (2007)
Kilauea 13 Jun 1983 Episode 4, Wolfe et al. (1988)
Kilauea 22 Jul 1983 Episode 6, Wolfe et al. (1988)
Kilauea 30 Mar 1984 Episode 17, Wolfe et al. (1988)
Lonquimay 27 Dec 1988 Naranjo et al. (1992)

Table 2.1: Table of selected lava flows investigated in this article.

which is difficult to measure directly in the field. When the cumulative volume of lava is

plotted against time on logarithmic scales, the slope of the line of best fit is α. Similarly, c

can be obtained by finding the slope of the line of best fit through data of the flow extent

plotted against time on logarithmic scales. The theory predicts the apparent viscosity to

have scaled like tβ, where β = 1+2α−3c. In the following section, we demonstrate how the

evolving viscosity and the morphology of natural lava flows can be explained using simple

ideas that have been developed. It is not possible at this stage to conduct a complete

test of the model partly due to the lack of data showing changes in the bulk viscosity of

the flowing lava. Variations in the viscosity are inferred and remain to be tested against

further data in future studies.

2.4 Natural lava flows

Many natural lava flows have been observed and studied extensively. Well-documented

sets of field data are available in the literature describing the evolving morphology of long

lava flows. We select representative sets of data to examine how a single channel of lava

advances down a slope. The width of the flow and the slope do not change considerably

with time or distance downstream, as assumed in the model. Lengths of the flow recorded

at different times were compiled to investigate several different lava flows, as presented in

table 2.1. The selected data provide us with an excellent opportunity to test the theoretical

ideas developed in section 2.3.

A series of eruptive events occurred on the Kilauea Volcano of Hawaii starting in 1983.

Episodes of vigorous fountaining at central vents resulted in basaltic lava flows, some of

which extended several kilometers. Detailed narratives and graphical representations of

lava flows during the first 20 episodes in 1983-1984 are available in Wolfe et al. (1988). We

take a representative sample of episodes in which one major flow of lava extended from

the central vent of Pu’u O’o.

A cone of Pu’u O’o marked the locus of major fountaining and lava discharge soon after

the start of episode 4 during the late morning of 13 June 1983. The cone enclosed a
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Figure 2.3: Extent of the advancing front of lava plotted against time during three representative
episodes of the Pu’u O’o eruption in Kilauea, 1983-1984. Data points are reproduced from figures
presented on the plates of Wolfe et al. (1988).

crater partly filled with lava, which overflowed and fed a well-developed channel. The lava

flow advanced in the southeastern direction and extended a distance of 5.7 km by 16:00

on 15 June 1983. During this time, a time-lapse camera at the vent recorded low bursts

of fragmented spatter rather than sustained fountains, which caused large fluctuations in

velocity and thickness of the major flow. However, variations in fountain height in episode

4, as plotted in figure 1.24 of Wolfe et al. (1988), are not significant over the time scale of

tens of hours during which the flow front advanced. This suggests that the major channel

was fed with lava at an approximately steady rate (Wolfe et al., 1988). The advancing

position of the flow front is plotted against time in figure 2.3. Although the flow is reported

to have experienced fluctuations in speed, the general trend is an approximately steady

advance of the flow front until the afternoon of 16 June 1983. Both the discharge rate at

the vent and the rate of advance of the major flow were approximately steady during the

course of about three days so α = 1 and c = 1. We deduce β = 1 + 2α− 3c = 0, meaning

that the major channel of lava flowed initially like a Newtonian fluid of constant viscosity.

Some subsequent episodes also featured a steady discharge rate of lava at the Pu’u O’o

vent which resulted in a steady advance of a major flow. In episode 6, after a series of

minor lava flows, one major channel of lava developed and extended to the north east.

Figure 2.3 shows how the length of the flow initially extended. The rate of advance of the

major flow remained steady from the early afternoon of 23 July 1983, when the channel

began to extend, until the night of 24-25 July 1983, when the flow front divided into two

parallel lobes. During this period, a steady and sustained discharge of lava supplied the

major channel, while the flow front advanced at an average rate of 80m/h, suggesting that

the viscosity remained constant.
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Figure 2.4: Extent of the advancing front (+) and the cumulative volume (o) plotted against time
on logarithmic scales for the main flow on Lonquimay, 1988-1989. Numbers represent the slope of
the corresponding line of best fit. The cumulative volume scaled like t initially and t0.34 subsequently,
resulting in flow extending a distance proportional to t0.45 initially and t0.18 subsequently. Data
points are from figure 3 and table 3 of Naranjo et al. (1992).

In episode 17, a major channel of lava extended eastwards at an approximately steady

rate of 490m/h from a distance 2km away from the base of Pu’u O’o, from the late morn-

ing until the evening of 30 March 1984. During the day, the fountain height remained

at approximately 100m, suggesting that the discharge rate of lava was steady. The dis-

charged lava was supplied primarily to the main eastern flow and minimally to its minor

subordinate flow, as shown graphically on the map of episode 17 on plate 2 of Wolfe et al.

(1988). The considerably faster flow in episode 17 compared to other episodes on Kilauea

has been attributed partly to confinement of the flow (Wolfe et al., 1988). However, the

average width of the flow was 220m in episode 17, not much less than the widths of 230m

and 260m in episodes 4 and 6 respectively. An increase of the effusion rate by a factor of

almost four and a minor decrease in the flow width, which would increase A
2/3
∗ in (2.6)

by approximately 2.5, do not account for the increase in the flow speed by a factor of

approximately six. The fast flow in episode 17 is primarily due to an order-of-magnitude

decrease in the viscosity of the lava. This is consistent with Wolfe et al. (1988) who argue

that increasing lava temperature, decreasing phenocryst content and changing lava com-

position may have been related to this apparent change in viscosity compared to earlier

episodes.
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2.4 Natural lava flows

On 27 December 1988, a major flow of andesite lava developed on Lonquimay Volcano

in Chile which can be studied as follows. The main flow moved north-northeast down the

Rio Lolco valley and extended to 10.2 km after 330 days. It has been observed that the

lava of thickness ∼ 20m and width ∼ 500m extended in length ∼ 104 m within months

by order of magnitude. Using these values in the scaling relationship (2.4), we obtain an

order-of-magnitude estimate of the cumulative volume of extruded lava ∼ 108 m3, which

is consistent with the measurement of the final volume of extruded lava, 2.3 × 108 m3

(Naranjo et al., 1992). The position and thickness of the continuously advancing flow front

at different stages are presented in table 3 of Naranjo et al. (1992). A plot of the flow

length against time on logarithmic scales is shown in figure 2.4. By calculating the slopes

of the lines of best fit, we determine that the flow extended like t0.45 for approximately the

first 8 days and like t0.18 thereafter, before the flow stopped. The cumulative volume of the

flow increased approximately linearly with time at a rate of 6.9×106m3 per day for the first

8 days according to figure 3 of Naranjo et al. (1992). Given that the cumulative volume

scaled like t and the flow extent like t0.45, the theory developed previously predicts that

the apparent viscosity increased with time like t1.65 initially. Equation 2.11 with α = 1

predicts c = 0.5, which is in reasonable agreement with the field data indicating c = 0.45,

suggesting that the initial lava flow on Lonquimay was resisted by the development of a

surface crust. At subsequent stages, the cumulative volume increased like t0.34, where the

exponent corresponds to the slope of the line of best fit through the corresponding data

in figure 2.4. Setting α = 0.34 and c = 0.18, we obtain β = 1.14 and deduce that the

apparent viscosity increased with time like t1.14. The theory shows that the viscosity of

the lava increased with time throughout the course of the flow, which is consistent with

the increase in the viscosity of the flow front as it advanced downstream (Naranjo et al.,

1992).

Detailed measurements of a long lava flow on Mount Etna in 2001 can be analysed in

a similar fashion. A fissure close to Monte Calcarazzi between 2100 m and 2150 m above

sea level, referred to as LFS1 in Coltelli et al. (2007), opened at 2:20 on 18 July 2001.

The main lava flow continuously descended from the LFS1 vent and attained its lowest

elevation of 1040 m on 25 July 2001, when the lava flow extended a distance of 6.4 km

with a maximum width of 545 m. The major channel of lava was supplied predominantly

from the LFS1 vent and minimally from a minor flow extending from another vent, LFS2.

The cumulative volume of lava in the main LFS1 flow is presented in table 8 of Coltelli

et al. (2007), which is approximated by (2.3) with α = 1.27. Likewise, the extending

length of the flow is found to scale like t0.50. Given that α = 1.27 and c = 0.50, the theory

developed previously predicts β = 2.04. The apparent viscosity of the lava increased like

t2.04, suggesting that the flow decelerated considerably due to thermal effects.
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Figure 2.5: Extent of the advancing front (x) and the cumulative volume (o) of lava both plotted
against time on logarithmic scales during the early stages of the LFS1 flow on Etna in 2001 (Coltelli
et al., 2007). Numbers indicate the slope of the corresponding line of best fit.

2.5 Summary

The initial advance of long lava flows was investigated quantitatively using scaling argu-

ments. The extending length of the lava was shown theoretically to depend importantly on

the supply from upstream and minimally on the shape of the channel. Thermal effects on

the bulk flow were examined to play a major role at subsequent stages when the flow front

decelerates considerably. The use of scaling arguments, as drawn out in this paper, can

be extended to incorporate additional effects or even investigate new problems, including

ones for which it is very difficult to write down the governing equations completely.

The theoretical predictions were applied to explain the initial development of natural

lava flows on the volcanoes of Etna, Kilauea and Lonquimay. We determined that selected

lava flows on Kilauea extended initially like a Newtonian fluid of constant viscosity, while

lava flows on Etna and Lonquimay increased considerably in viscosity throughout the

course of their propagation. This suggests that thermal effects due to cooling played a

major role at all times as the flows advanced on Etna and Lonquimay but only after the

flows nearly attained their maximal extent on Kilauea.

Our analysis of field observations demonstrates how the morphology of long lava flows

can be studied readily using quick and simple techniques. The relationship β = 1+2α−3c

allows one of the three parameters (α, β, c) to be calculated given the other two, where

22



2.5 Summary

the cumulative volume ∼ tα and viscosity ∼ tβ of the lava extends a distance ∼ tc. This

relationship enables any variation in the apparent viscosity of the lava, a useful indicator

of the role of heat loss, to be estimated solely by monitoring the growth rates of the

cumulative volume and the flow extent. Values of α and β characterising active lava flows

in the early stages provide an estimate of c, helpful for predicting any further advance of

the lava.
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Chapter 3

Variable flux of materials flowing down a

slope

3.1 Abstract

Geophysical flows, including lava flows and ice streams, are supplied at a rate that naturally

evolves in time. In order to investigate effects due to flux variations, we consider a time-

dependent release of viscous fluid from a fixed source. The free surface of the resultant

gravity-driven flow down a slope is described by a kinematic wave equation, based on

the simplification that effects due to inertia and surface tension are negligible. Analytic

expressions for both the thickness and the extent of the flow are obtained by the method of

characteristics, given the flux at the source. The dimensionless speed of the front depends

only on the source flux at a prior time, which jumps discontinuously when an internal shock

reaches the front of the current. The theory is applicable to a wide range of problems as

demonstrated in numerous examples. An exponentially decaying flux at the source results

in a flow that initially resembles the flow from a steady supply and subsequently tends

to the flow following an instantaneous release of a constant volume of fluid. A source

flux that oscillates sinusoidally about a mean flux perturbs the extent of the flow but the

perturbations decay at large times.
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3 Variable flux of materials flowing down a slope

3.2 Introduction

Geophysical flows driven by gravity along a slope are often supplied from sources at variable

rates. A molten rock of lava exudes from vents and fissures on volcanoes and descends

down slopes (Griffiths, 2000). Glacier ice grows with snowfall and flows down a sloping

valley (Nye, 1960). Debris flow of mud propagates down a sloping channel (Takahashi,

1981). A thin layer of water develops on growing icicles (Short et al., 2006) and stalactites

(Short et al., 2005).

In simplified models of materials flowing primarily down a slope, the downstream flux

at any position is proportional to some power of the local thickness. For example, the

numerical value of the exponent is approximately 3 to 7/2 for glacial flows (Nye, 1960)

and 5/2 for dense granular flow down a rough inclined plane (Pouliquen, 1999). The

exponent depends on the rheology and also on topography, as shown for Newtonian flows

in channels and fractures (Takagi & Huppert, 2008).

The evolution of the flow structure is unknown a priori and must be determined by

solving a kinematic wave equation (Whitham, 1974). Solving the kinematic wave equa-

tion subject to a prescribed flux at a source is equivalent to solving a signaling problem

(Whitham, 1974). This is relevant to a wide area of subjects, including flood waves

(Lighthill & Whitham, 1955a) and traffic flow (Lighthill & Whitham, 1955b).

Analytic solutions obtained previously have been limited to a special class of problems.

The volume per unit breadth of Newtonian fluid on a slope was considered to be of the

form V = qtα, where t is time and q and α are non-negative constants (Huppert, 1982b;

Lister, 1992). The special case of α = 0 corresponds to releasing instantaneously a constant

volume q of fluid from a line source. The case of α = 1 corresponds to a continuous supply

of fluid at a steady rate q.

Here, the volume of fluid on an incline is considered to grow as a general function of

time. The objective is to determine the profile of the thickness and the extent of the

resultant flow, given any prescribed flux at a fixed source. Of particular interest is the

speed of the advancing front as a function of the variable flux at the source. Although the

current focus is mainly directed towards the specific problem of predicting Newtonian flow

down a slope, the theory is generally applicable to a wider range of problems involving

kinematic waves.

In section 3.3, the governing equations are formulated and solved by the method of

characteristics. In section 3.4, the theory is applied to specific examples, including a

source flux that either decays exponentially or oscillates sinusoidally.
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3.3 Theory

Figure 3.1: Sketch of a thin film flow down a rigid slope. The fluid is supplied with a prescribed
flux q(t) from the origin.

3.3 Theory

Although the theory can be readily generalized to predicting a large class of flowing ma-

terials, as outlined in the Appendix, we consider an incompressible Newtonian fluid of

viscosity ν as a representative example. It is driven by gravity on a rigid slope of angle θ

to the horizontal. Consider the source of fluid to be at the origin and denote the coordinate

down the slope by x. A general flux q(t) of fluid is supplied onto the slope at time t ≥ 0.

The resultant flow has a thickness denoted by h(x, t) and an extent xN (t), as shown in

Figure 3.1.

The flow is driven by gravity and resisted by viscous forces. Effects due to inertia

of the fluid, any motion in the ambient fluid, surface tension at the free interface and

dynamics near the contact line at the front of the current are all neglected. The flow is

predominantly along the slope because its characteristic thickness, h, is much smaller than

its length, xN . The assumption that the characteristic variation of the flow thickness along

the flow, ∂h/∂x, is negligible compared to the slope of the incline, tan θ, ensures that the

flow is driven only by the component of gravity along the slope. Under these conditions,

lubrication theory with no-slip on the rigid slope gives rise to a nonlinear kinematic wave

equation (Huppert, 1982b)
∂h

∂t
+
g sin θ

3ν

∂h3

∂x
= 0. (3.1)

Laboratory experiments have verified that (3.1) describes the bulk region of the flow until

an instability develops at the front, even though the assumption of ∂h/∂x may not hold

near the front (Huppert, 1982b).

If the characteristic flux at the source is Q and the time scale of the flow is T , then the

thickness and extent of the current can by scaled by H and X respectively, where

H ≡
(

3νQ

g sin θ

)1/3

(3.2)
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Figure 3.2: Sketch of characteristic lines along which the thickness of the flow remains constant
in the (x,t) plane. A shock forms at the front of the current, which is represented by the red curve.
The characteristic line that leaves the source at time sN (t′) reaches the front of the current xN (t′)
at time t′. Note that the characteristic lines leaving the x axis are vertical according to (3.5) and
(3.7).

and

X ≡ T

(

Q2g sin θ

3ν

)1/3

. (3.3)

The dimensionless form of (3.1) reduces to

∂h

∂t
+
∂h3

∂x
= 0, (3.4)

which must be solved subject to the initial condition

h(x, 0) = 0 (3.5)

on the slope, x > 0, and the flux condition at the origin,

q(t) = h(0, t)3. (3.6)

Equation (3.4) implies that h remains constant along characteristics given by

dx

dt
= 3h2. (3.7)

This corresponds to the wave speed at which information propagates downstream. By

integrating (3.7), we obtain the equation for the characteristic line that leaves the source
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at time s,

x = 3q(s)2/3(t− s), (3.8)

which is straight in the (x,t) plane. The characteristic line that reaches the front of the

current xN at time t is given by

xN (t) = 3q[sN (t)]2/3(t− sN (t)), (3.9)

where sN (t) is the prior time when the line begins at the source, x = 0.

Consider first the case where a shock forms only at the front of the current, where a

characteristic line from the t axis intersects a vertical characteristic line from the x axis.

A representative set of characteristic lines is sketched in figure 3.2 along with the position

of the current, which evolves along the red curve. Characteristic lines originating from

the t axis in the (x, t) plane do not intersect each other before intersecting a characteristic

line originating from the x axis because no shock forms internally in the current. In this

case, for a given time t and extent x behind the front of the current, a single characteristic

line reaches x at time t. Denote the time when this line leaves the source by s(x, t). The

thickness of the flow is

h(x, t) = q[s(x, t)]1/3, (3.10)

where s(x, t) is an implicit expression given by (3.8).

By conservation of mass across a shock, the speed of the shock is given by

h3
+ − h3

−
h+ − h−

, (3.11)

where h+ and h− are respectively the thickness immediately behind and ahead of the

shock. Note with h+ > h− that the shock moves faster than the characteristic lines

immediately ahead but slower than those behind the shock. In particular, h− = 0 for the

front of the current which advances at speed

dxN (t)

dt
= q[sN (t)]2/3. (3.12)

The speed of the front at time t depends only on the source flux at the prior time of sN(t).

In addition, the structure of the current at time t is independent of the source flux prior

to time sN (t).

By differentiating (3.9) and equating with (3.12), we obtain an evolution equation for

sN ,
dsN (t)

dt
=

2q(sN )

3q(sN ) − 2(t− sN)[dq/ds]s=sN

, (3.13)
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xN (t′)

Figure 3.3: Sketch of characteristic lines along which the thickness of the flow remains constant
in the (x,t) plane. A shock forms at the front of the current, which is represented by the red curve.
An internal shock is represented by the blue curve. The function sN (t) jumps discontinuously when
the internal shock reaches the front of the current at time t′.

which must be solved subject to the initial condition sN (0) = 0. A continuous increase in

sN with time ensures a continuous advance of the flow front according to (3.12) without

the development of internal shocks in the current. We obtain

3q(sN ) − 2(t− sN)[
dq

ds
]s=sN

> 0, (3.14)

as the condition for no internal shock to form. An alternative derivation of the governing

equations (3.12) and (3.13) is given in the Appendix.

Now consider the case when (3.14) no longer holds so an internal shock develops. Phys-

ically, a sharp change in the thickness of the flowing structure arises. In the (x, t) plane,

characteristic lines originating from the source intersect each other as shown in figure 3.3.

An internal shock forms at x < xN where ∂x/∂s = 0. The shock propagates downstream

at a speed given by (3.11), which can be challenging to compute in practice because h+

and h− in (3.11) may depend on the evolution of the shock in a nontrivial manner. Nev-

ertheless, we can obtain the salient features by noting that the shock moves faster than

the characteristic lines immediately ahead but slower than those behind the shock, as

demonstrated in the example below of a film driven by an oscillating flux at large times.

When an internal shock reaches the front of the current, sN jumps discontinuously to the

greatest value of s such that xN = 3q2/3(t− s). Otherwise sN evolves according to (3.13).

The speed of the flow front is always governed by (3.12) and increases discontinuously

when an internal shock reaches the flow front.
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3.4 Examples

The theory is applied to specific examples with various different functions q(t). In each

case, given the prescribed flux at the source, the extent of the flow is determined.

3.4.1 Power-law flux

The method presented here is verified by considering the area of the fluid to obey a power-

law in time,

A(t) = tα. (3.15)

The problem can be solved by an alternative method of seeking similarity solutions (Lister

1992). These solutions provide a useful basis against which solutions obtained here can

be tested.

By differentiating (3.15) with respect to time, we determine the flux at the origin to be

q(t) = αtα−1. (3.16)

By substituting (3.16) into (3.13) and rearranging, we obtain

sN (t) =
2α t

2α+ 1
. (3.17)

The condition (3.14) with q given by (3.16) and sN given by (3.17) reduces to the condition

α ≥ −1/2 for no internal shock to form behind the front of the current.

Equations (3.16) and (3.17) are substituted into (3.10) and (3.12) to determine that the

thickness of the flow at the front is given by

h(xN (t), t) = αα/3(α + 1/2)(α−1)/3t(α−1)/3, (3.18)

where the extent of the flow is given by

xN (t) = 1.5α2α/3(α+ 1/2)−(2α+1)/3t(2α+1)/3. (3.19)

Equations (3.18) and (3.19) agree with the solutions that are obtained in terms of a

similarity variable (Lister 1992).
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Figure 3.4: Plots on logarithmic scales of three different dimensionless flow extents xN in (3.22)
against time. The flow results either from an instantaneous constant-volume release, a steady flux
at the source or an exponentially decaying flux given by (3.20).

3.4.2 Exponentially decaying flux

The effusion rate of lava at a volcanic vent is often believed to decay exponentially. Con-

sider the flux of fluid at the source to be given by

q(t) = e−t. (3.20)

In the limit of small time, t≪ 1, the source flux remains approximately constant by (3.20).

The source flux is effectively described by (3.16) with α = 1 at early times. In the limit

of large time, t ≫ 1, the total volume of fluid asymptotes to a constant value. The flow

corresponds to that initiated by releasing instantaneously a constant volume of fluid. The

extent of the flow is expected to tend to (3.19) with α = 0 as t→ ∞.

By substituting (3.20) into (3.13) and rearranging, we determine that sN satisfies

2t = esN (t) + 2sN (t) − 1. (3.21)

Condition (3.14) with q given by (3.20) and sN satisfying (3.21) reduces to the condition

that 2 + esN > 0, which holds for all time. No internal shock forms behind the front of

the current when the flux is of the form (3.20).

32



3.4 Examples

By substituting (3.20) into (3.12), we determine that the extent of the flow is given by

xN (t) = 3(t− sN (t))e−2sN (t)/3. (3.22)

Figure 3.4 shows the relationship between xN (t) and t on logarithmic scales for three dif-

ferent flows supplied with an exponentially decaying flux, steady flux or an instantaneous

release of a constant volume. In the limit of small time, t ≪ 1, the flow from an expo-

nentially decaying flux resembles the flow from a steady flux. The flow extent increases

linearly with time, as predicted by (3.19) with α = 1. In the limit of large time, t ≫ 1,

the flow from an exponentially decaying flux resembles the flow following an instantaneous

release of a constant volume of fluid, q = δ(t), where δ is the Dirac delta function. The

flow extent scales like t1/3, as predicted by (3.19) with α = 0.

Equation (3.22) along with the corresponding curve of xN in Figure 3.4 is welcoming

for describing lava flows supplied with an exponentially decaying effusion rate. Unlike the

method of seeking similarity solutions, which is unable to describe the flow at intermediate

time scales when t ∼ 1, the method presented here allows the extent of the flow to be

determined at all times.

3.4.3 Oscillating flux

Here, we study the effects on the resultant flow of perturbing a constant flux of fluid at

the source. Consider a source flux given by

q(t) = 1 + β sin t, (3.23)

where β < 1 is the amplitude of the perturbation.

No internal shock forms in the current at early times. The condition of no shock (3.14)

is satisfied when t−sN ≪ 3/2β, which reduces to t≪ 9/2β because sN ∼ 2t/3 and xN ∼ t

to leading order.

If β ≪ 1, then the source flux may oscillate with small amplitude many times without

producing internal shocks behind the front of the current. In that case, we obtain

sN =
2t

3
+
β

3

(

2t

3
sin

2t

3
+ cos

2t

3
− 1

)

+O(β2). (3.24)

The front of the current is given by

xN = t+ β

(

1 − cos
2t

3

)

+O(β2). (3.25)
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Figure 3.5: Representative characteristic lines plotted in the (x,t) plane, where q is given by
(3.23) with β = 1/4. The red line represents the position of the front of the current.

Equation (3.25) indicates that the the front of the current oscillates at the same amplitude

as that of the flux at the source. The frequency of the oscillating front of the current is

50% larger than that of the oscillating flux at the source. The speed of the front takes

longer to complete a periodic cycle than the source flux because the front of the current

is moving away from the source.

A representative plot of the characteristic lines is shown in figure 3.5 for the case of an

oscillating flux of the form (3.23) with a specific value of β = 1/4. The position of the

front is given by (3.9), where sN is computed using a built-in Matlab function, ode15s, by

solving (3.13) subject to the initial value sN = 0 at t = 0. Characteristic lines are given

by (3.8) with s taking values which are multiples of π/2. The lines leaving the source at s

near 2nπ, with integer n, approach each other downstream because the temporal gradient

of the flux at the source is maximal at time 2nπ. The lines leaving the source at s near

(2n + 1)π move slowly away from each other downstream.

At large times, t ≫ 9/2β, internal shocks form behind the front of the current at

x ∼ 9/2β. Characteristic lines leaving the source near s = 2nπ intersect each other

as implied in figure 3.5 and sketched in figure 3.6. The internal shocks do not coalesce

downstream because the flux at the source is 2π-periodic in time. At any given position

down the point where internal shocks form, a shock arrives periodically with the same

speed. The exact evolution of each internal shock and the characteristic lines truncated

at the shock in the (x, t) plane remain a challenge to compute. Instead, an asymptotic

analysis at large times is presented below to highlight the salient features of internal shocks.

The advancing speed of internal shocks is given by

q(2nπ + δ+) − q(2nπ − δ−)

q(2nπ + δ+)1/3 − q(2nπ − δ−)1/3
, (3.26)
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Figure 3.6: The top sketch shows characteristic lines along which the thickness of the flow remains
constant in the (x,t) plane, where q is given by (3.23). At large times, internal shocks form at a
distance ∼ 9/2β away from the source and propagate along the blue curves. The thickness of the
flow at time t′ is sketched at the bottom.

where 2nπ ± δ± correspond to the maximum and minimum values of s such that h is

constant along the characteristic line given by (3.8), with x representing the shock po-

sition. By considering x = xN ∼ t and s = 2nπ ± δ ∼ 2t/3, and considering the slope

of the characteristic lines that reach the front of the current at time t, we determine

δ± ∼ π − 27π/4βt. Substituting δ± into (3.26) we deduce that each internal shock moves

approximately three times faster than the speed of the front. When an internal shock ar-

rives at the front of the current, the thickness of the front increases instantaneously from

1− 9π/2t to 1 + 9π/2t and the speed of the front from 1− 9π/2t to 1 + 9π/2t. Otherwise,

the thickness and the speed of the front decrease extremely gently for a period of 3π. Note

that as t→ ∞, xN → t so surface deformations decay at large times. Internal shocks may

diminish more quickly by effects due to surface tension and flow driven by a hydrostatic

pressure gradient, which were neglected.

3.5 Conclusion

A general theory has been developed to predict flows supplied at a prescribed rate down a

rigid slope. For any given flux q(t) at the origin, both the profile of the thickness and the

position of the front of the current can be determined by the method of characteristics.
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3 Variable flux of materials flowing down a slope

The profile of the thickness of the flow is given by (3.10), where s(x, t) satisfies (3.8). The

extent of the flow is given by (3.12), where sN (t) satisfies (3.31).

The theory has been applied to specific examples, where the prescribed flux at the source

is given. The techniques developed here could be helpful particularly for studying flows

driven by gravity in geophysical contexts, where the flux of fluid at the source may vary

with time in a non-trivial manner.

Appendix 3.A Alternative formulation

The governing equations (3.12) and (3.13) can be obtained alternatively as follows. First,

we introduce the area of fluid on the slope at any given time t,

A(t) =

∫ xN (t)

0
h(x′, t) dx′, (3.27)

which is equal to the cumulative flux from the origin,

A(t) =

∫ t

0
q(t′) dt′. (3.28)

By differentiating both (3.27) and (3.28) and equating, we immediately obtain (3.12).

The evolution equation for (3.13) can be obtained by further steps as follows. By sub-

stituting (3.10) into (3.27) and representing the thickness of the fluid as a function of t

and s rather than t and x, the area of the fluid can be expressed alternatively as

A(t) =

∫ sN (t)

t
h(0, s)

∂x

∂s
ds, (3.29)

where
∂x

∂s
= 2(t− s)q−1/3(s)

dq

ds
− 3q2/3(s) (3.30)

is obtained by differentiating (3.8) with respect to s, keeping t fixed. Integrating (3.29)

by parts, using (3.6) and equating with (3.28), we obtain an equation for sN (t),

∫ sN (t)

0
q(t′) dt′ = 2(t− sN (t))q[sN (t)]. (3.31)

Differentiating (3.31) gives (3.13) as required.
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Appendix 3.B General case

Materials flowing down a slope are generally described by a kinematic wave equation of

the form
∂h

∂t
+ k

∂hn

∂x
= 0, (3.32)

where

q = khn (3.33)

is the downstream flux that is prescribed at the source, x = 0. For dense granular flow

down a rough slope, n = 5/2 and k is proportional to
√
g/hstop, where hstop is the thickness

of the layer that is naturally deposited on the slope (Pouliquen, 1999). For glacial flow, n is

approximately 3 to 7/2 (Nye, 1960). For a non-Newtonian flow with a power-law rheology,

n = 2 + 1/m and k = m (ρg sin θ/µm)1/m /(1 + 2m), where m is the flow index and µm

is the viscosity coefficient (Whitham, 1974). The special limit of m = 1 corresponds to a

Newtonian fluid, 0 < m < 1 a shear-thinning fluid and m > 1 a shear-thickening fluid.

The evolution equations for xN and sN ,

dxN

dt
= k1/nq(sN )1−1/n (3.34)

and
dsN

dt
=

(n− 1)q(sN )

nq(sN ) − (n− 1)(t− sN )[dq/ds]s = sN
, (3.35)

are obtained by the same methods as before. The choice of n and k may affect the

quantitative details but should not change the qualitative features of materials supplied

at a time-dependent rate down a slope, as investigated here for Newtonian flows.
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Chapter 4

Pouring viscous fluid out of a tipped

container

4.1 Abstract

Emptying a container partially filled with viscous fluid can be a frustratingly slow process.

Tipping the container develops a draining film on the interior surface and allows the fluid

to pour out slowly. The time required for the fluid to begin discharging is predicted

theoretically in two simple geometries and compared with experiments. At subsequent

times, the volume of the fluid yet to be discharged is predicted to scale with time like

t−1/2 or t−1 for flow driven along a plane or corner respectively. We discuss how fluid

pours out most quickly, keeping the size of the system fixed, by tipping a container of

equal height and width at 45o to the horizontal and directing the flow along a right-angled

corner.
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4.2 Introduction

Viscous fluids in a wide range of contexts are stored and transported in containers. Bottles

of shampoo, buckets of detergent, cans of paint, jars of honey and tanks of oil represent

frequent examples in the cosmetic, cleaning, coating, food and petroleum industries re-

spectively. One of the simplest and most common methods of retrieving fluids from con-

tainers is by tipping. However, the process can be slow, particularly when there is little

fluid remaining in the container. The difficulty of dispensing viscous fluids completely

from containers is associated with the development of a thin film coating on the interior

surface.

Relevant problems involving thin films have been studied extensively. The drainage on

a vertical plate (Jeffreys, 1930) and scraping a viscous fluid on a plane surface (Taylor,

1962) are pioneer problems. At smaller scales, where effects due to surface tension play

an important role, the rise of a bubble inside a capillary tube (Bretherton, 1961) and the

film that is left behind as a viscous fluid is blown from an open-ended tube (Taylor, 1961)

are relevant. Further examples of thin films have been studied and reviewed (Ruschak,

1985; Oron et al., 1997; Batchelor et al., 2000).

The objective here is to determine the optimal shape and tipping angle of a container

which maximises the cumulative proportion of fluid retrievable at any given time. There

are practical benefits of minimising the time required to retrieve the first drip of fluid.

Furthermore, there are economic advantages to minimising the remaining fluid in the

container, which is usually disposed as waste. We study how a desirable proportion of

fluid can be poured out in the shortest possible time.

In section 4.3, we consider tipping a rectangular container partially filled with New-

tonian fluid. The fluid eventually pours out of an edge of the container as investigated

theoretically. In section 4.4, we consider pouring fluid out of a corner of a different con-

tainer in order to study the effects of the geometry. Theoretical predictions for the time

required to begin discharging after tipping the container, and the subsequent decrease in

volume of fluid remaining in the container, are compared with experiments in section 4.5.

The implications of the current study are discussed in section 4.6.

4.3 Flow out of an edge

Consider a rectangular container of vertical height H, width W and breadth B, partially

filled with viscous fluid of volume V0 ≪ HWB. A corner on the base is represented by the

origin, where the x axis initially points vertically and the y and z axes extend horizontally

40



4.3 Flow out of an edge

O
x

y
z

z

h(x, t)

hb(z, t)

H

B

W

θ

(a)

O
x

yz

H

W/
√

2

W
√

2

θ

(b)

Figure 4.1: Sketch of a tipped container of rectangular cross-section such that the bulk flow is
along two planes (left) and a square container with a wedged base such that the flow is along two
corners. Each inset figure shows a cross-section of the flow.

along the breadth and width respectively. When the container is rotated rapidly about

the y axis and tipped at an angle θ beyond the horizontal, the fluid is driven by gravity

and eventually pours out of the container, as sketched in figure 4.1(a). The flow inside

the container is primarily in the direction of the −z axis followed by the x axis, provided

that effects due to walls confining the current and the upstream end of the flow on the

base are negligible.

When the fluid thickness is much smaller than any length scale of the container, the

volumetric flow rate per unit cross-stream width is given by q = g∗h
3/3ν, where g∗ is the

component of gravity g along the flow, h the flow thickness and ν = µ/ρ the kinematic

viscosity of the fluid (Batchelor, 2000). This holds provided that effects due to fluid

inertia and surface tension are neglected in the dynamical regime of low Reynolds number

Re = UL/ν and high Bond number Bo = ρgL2/σ, where ν is the viscosity, ρ is the

density, σ is the surface tension, U is a characteristic scale for the velocity and L is a

suitable length scale of the flow. The relevant dimensionless parameters are

Re =
gV 3

0

W 3B3ν2
≪ 1 (4.1)

and

Bo =
ρgB2

σ
≫ 1, (4.2)

where V0/(WB) is the initial thickness of fluid and sets the viscous length scale and B is

the cross-flow length scale relevant to the Bond number.

The local conservation of mass in the −z direction, ∂h/∂t − ∂q/∂z = 0, subject to

the approximate condition that the film thickness is negligible after the fluid has drained
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sufficiently at z = W , is solved using the method of characteristics (Whitham, 1974) to

obtain the fluid thickness on the base of the container,

hb(z, t) =

(

ν(W − z)

g cos θ t

)1/2

. (4.3)

The solution (4.3) holds provided that the plane forming the base is not too deviated

from the vertical such that the fluid drains without dripping, as considered further in the

Appendix. The fluid thickness along the x axis,

h(x, t) =

(

ν(x+W tan1/3 θ)

g sin θ t

)1/2

, (4.4)

is obtained by conserving mass in the x direction, ∂h/∂t + ∂q/∂x = 0, subject to the

condition that the flow rate is continuous in the limits as z → 0 and x→ 0. The region at

the corner, where the flow is two-dimensional and possibly influenced by capillary effects,

is small based on the assumption that the film thickness is much smaller than any length

scale of the container. The neglect of this small region is justified by the agreement

between the theory and the experiments. Note that the fluid thickness along the x axis

is equivalent to that on an inclined plane where the fluid is released at a virtual origin,

x0 = −W tan1/3 θ.

The front of the current reaches the open end of the container at time T̄ , which is

determined by the condition
∫ H
0 h(x, T̄ ) dx +

∫W
0 hb(z, T̄ ) dz = V0/B. The front of the

current remains stable before this time as long as it travels a distance less than a critical

length proportional to (V0/B)1/2 (Huppert, 1982b). The fluid begins to pour out of a flat

edge after a dimensionless time

T̄

(

νB2H3/2W 3/2

gV 2
0

)−1

=
4

9 sin θ

(

a1/2 + a−1/2 tan1/3 θ
)3
, (4.5)

where a = H/W is the aspect ratio of the container. The expression in brackets on the

left hand side is a time scale of the problem and is reduced by swapping the values of

B and W if B > W , suggesting that the discharge of fluid from a given container is

enhanced by directing the flow on a plane of minimal area. For a given container of aspect

ratio a, the dimensionless function on the right hand side of (4.5) attains a minimum

at θ = arctan(a3/7). A global minimum of 211/2/32 is attained at a = 1 and θ = π/4,

indicating that fluid is retrieved most rapidly, holding all quantities other than a and θ

fixed, from a container of identical height and width and tipping it at 45o to the horizontal.

Once the fluid has started to pour out, the volume of the fluid remaining on the interior
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planes of the container is given by

V̄ = V0(t/T̄ )−1/2. (4.6)

Note that T̄ ∼ V −2
0 so the functions V̄ (t) for different V0 fall on a curve, independent

of V0 for times t > T̄ . The volume of the fluid yet to be discharged scales like the flow

thickness and evolves with time like t−1/2 because the characteristic width of the flow

remains steady in time. A different scaling is expected when the width, in addition to the

thickness of the flow, varies as demonstrated in a container of different shape.

4.4 Flow out of a corner

Consider a configuration where fluid drains from a container such that the bulk flow is

along a wedge. This can be set up, for example, using a square container of vertical height

H and width W with a right-angled corner constructed along a diagonal of the base.

Figure 4.1(b) shows flow along two successive channels of V-shaped cross-section, which

arises after tipping the tank initially filled with a small volume of fluid V0. The free surface

remains approximately flat across the flow as the fluid depth declines in time, provided

that the contact line recedes over a time scale shorter than the time scale associated with

the main flow. The volumetric flow rate along a wedge is given by Qx = Kg∗h
4/ν, whereK

is a dimensionless function of the angle at the vertex that attains a maximum of K ≈ 0.68

when the wedge is right-angled (Takagi & Huppert, 2007). The relevant length scale for

both the Reynolds number and the Bond number is given by the initial thickness of the

fluid, which scales like (V0/W )1/2. This means that the dynamical regime of interest is

characterised by

Re =
gV

3/2
0

W 3/2ν2
≪ 1 (4.7)

and

Bo =
ρgV0

Wσ
≫ 1. (4.8)

The fluid begins to pour out of a corner at dimensionless time

Ť

(

νHW

gV0

)−1

=
1

4K sin θ

(

a1/2 + a−1/2
√

2 tan1/2 θ
)2
, (4.9)

which is obtained using the same methods as before in section 4.3. The time Ť required for

the fluid to reach the end of the corner and begin discharging after tipping the container

scales like ǫ−1, where ǫ≪ 1 is defined as the proportion of the container initially occupied

by the viscous fluid, V0/Vc, with Vc = W 2(H −W/3
√

2). The time is shorter than T̄ ,
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4 Pouring viscous fluid out of a tipped container
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Figure 4.2: Rescaled time when fluid begins to pour out of a flat edge of a square container (left)
and a corner of a square container with a wedged base (right), plotted against the proportion of the
container initially occupied by the fluid.

the corresponding time for the same fluid along a flat edge of a rectangular container of

similar dimensions, which scales like ǫ−2 in (4.5). The volume of the fluid remaining inside

corners is either V0 for t ≤ Ť or

V̌ = V0(t/Ť )−1 (4.10)

for t > Ť . At large times, the volume of the fluid remaining along the corners decreases

more rapidly than that along flat edges of a rectangular container.

4.5 Experiments

Experiments were conducted to test the theoretical predictions of the time required for the

fluid to begin discharging and the subsequent decline in the volume of the fluid remaining

inside different containers. A perspex tank of height H = 300mm with a square cross-

section of width W = 100mm was initially vertical and partially filled with different

volumes of either glycerine of viscosity ν = 890 ± 30mm2/s or golden syrup of viscosity

ν = 38000 ± 8000mm2/s, the uncertainty attributed to fluctuations in room temperature

20.5±1Co. The viscosities were measured using U-tube viscometers. A right-angled corner

was constructed along a diagonal of the base by inserting a pair of aluminium plates, as

required. The tank was rapidly tipped at either θ = 5 or 35o to the horizontal and held

fixed on clamp stands. Any fluid discharged from the tipped container was collected inside

a beaker on a weight balance. The mass of the discharged fluid was recorded to an accuracy

of 0.1 g every third of a second approximately.
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Figure 4.3: Proportion of glycerine (G) and golden syrup (GS) remaining along flat edges of a
square container (left) and corners of a square container with a wedged base (right), plotted on
logarithmic scales against rescaled time.

Figure 4.2(a) shows the interval t∗ between the moment when the container is rapidly

tipped and when the fluid starts discharging from a flat edge of the tank, as a function

of the proportion of the container initially occupied by the fluid, ǫ = V0/Vc, where Vc =

W 2H. The interval is rescaled by T̄ ǫ2, which is independent of the fluid volume. Figure

4.2(b) shows the corresponding plot of the time, rescaled by Ť ǫ, required for the fluid to

begin discharging from a corner of the tank with a wedged base, where Vc = W 2(H −
W/3

√
2). In both cases, the experimental data agree with the theoretical predictions of

the dimensionless times, which scale like ǫ−1 and ǫ−2 depending on the geometry.

Figure 4.3(a) shows the proportion of fluid discharged out of an edge in different ex-

periments, conducted by varying the tipping angle, the initial volume and the viscosity

of the fluid. The fluid pours out in the form of threads and then droplets, the details of

which do not influence the bulk flow inside the container, as suggested by the excellent

agreement between the theoretical curve and the experimental data. The collapse of ex-

perimental data onto the theoretical line of the form (4.6) is also obtained with golden

syrup in different containers, including a perspex tank of circular cross-section and along

a corner of a square tank, with and without a wedge on the base. The volume of golden

syrup decreases like t−1/2 rather than t−1 along corners (not shown), possibly because the

characteristic width of the flow remains steady. This is attributed to the contact line that

appears pinned on the perspex over the time scale of the main flow. The contact line does

not recede and maintain a flat free surface across the flow as assumed in the theory.

Figure 4.3(b) shows the remaining proportion of glycerine inside a corner of a square
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4 Pouring viscous fluid out of a tipped container

tank with a wedged base. The experimental data do not collapse onto the theoretical

curve, possibly due to effects of the receding contact line and surface tension that are not

incorporated into the model. Nevertheless, the volume of glycerine scales approximately

like t−1 along a corner as predicted, which declines more rapidly than t−1/2 on a flat edge

of the square container.

4.6 Discussion

The cumulative volume of fluid poured out of a tipped container depends importantly on

the shape of the container. A concept of relevance to the problem is the hydraulic radius,

a measure of the efficiency of the flow. The hydraulic radius is proportional to the cross-

sectional area of the flow divided by the wetted perimeter. The wetted perimeter of the

flow down a rectangular channel approaches the width of the channel as the fluid drains.

In contrast, the wetted perimeter of the flow down a V-shaped channel is 2
√

2A/ sin β,

where A is the cross-sectional area of the flow and β is the internal angle at the vertex

of the channel. As A decreases sufficiently with time, the resistive forces acting on the

wetted perimeter are minimised by setting β = π/2. This indicates that a right-angled

wedge, amongst the shapes considered here, is the optimal shape of the channel which

allows fluid of ever-thinning depth to be transported most efficiently. This holds provided

that the free surface of the flow is flat across the channel, as expected when the contact

line recedes rapidly.

Considerable variations in the elevation of the free surface may arise across the channel,

for example due to effects of the contact line pinning on the sides of the channel. The

effects of the contact line on the bulk flow down a wide rectangular channel are negligible.

However, the effects may significantly influence the bulk structure of the flow down a

wedge. This is consistent with the observation that the agreement between the simplified

theory and the experiments for flow down a wedge is not as good as for flow down a

rectangular channel.

Appendix 4.A Draining and dripping of a thin film under an in-

clined plane

The condition for fluid to drain and not drip inside a tipped container is estimated as

follows. First, component of the momentum equation along a plane inclined at angle θ to

the horizontal is given by

−∂p
∂x

+ ρg sin θ + µ
∂2u

∂z2
= 0, (4.11)
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4.A Draining and dripping of a thin film under an inclined plane

where x is down the slope and z is normal to the slope. Imposing the boundary conditions

that u = 0 on z = 0 and ∂u/∂z = 0 on z = h, we obtain the velocity profile

u =
ρg sin θ − ∂p/∂x

2µ
z(2h − z), (4.12)

where
∂p

∂x
= −ρg cos θ

∂h

∂x
− γ

∂3h

∂x3
(4.13)

and γ is the surface tension. The depth-integrated version of mass conservation, ∂h/∂t+
∫ h
0 u dz = 0, leads to a nonlinear partial differential equation,

∂h

∂t
+
g sin θ

3ν

∂h3

∂x
+
g cos θ

3ν

∂

∂x

(

h3 ∂h

∂x

)

+
γ

3µ

∂

∂x

(

h3 ∂
3h

∂x3

)

= 0. (4.14)

In order to study the possible Rayleigh-Taylor instability of the fluid, we conduct a

linear stability analysis by seeking normal mode solutions of the form

h = h0

(

1 + ǫeσt+ikx
)

, (4.15)

where ǫ≪ 1. By substituting (4.15) into (4.14) and linearising, we obtain the growth rate

σ =
g cos θh3

0

3ν
k2 − γh3

0

3µ
k4 (4.16)

for each wave number k. The most unstable mode,

kmax =

√

ρg cos θ

2γ
, (4.17)

is obtained by setting dσ/dk = 0. The associated growth rate is given by

σmax =
ρ2g2 cos2 θh3

0

12µγ
. (4.18)

The time scale of dripping is

Tdrip ∼ 1

σmax
∼ µγ

ρ2g2 cos2 θh3
0

∼ νL2

g cos θh3
0

. (4.19)

The time scale of draining is

Tdrain ∼ νL

g sin θh2
0

, (4.20)

where L is the length of the inclined plane. There is no dripping provided that Tdrain ≪
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4 Pouring viscous fluid out of a tipped container

Tdrip. This reduces to the condition that a film of thickness

h0 ≪ γ sin θ

Lρg cos2 θ
(4.21)

inside a container tipped at angle π/2−θ beyond the horizontal is linearly stable and does

not drip. Identifying the exact condition for the film not to drip requires further work to

study the nonlinear regime, where the Rayleigh-Taylor instability may saturate by effects

due to flow shear and surface tension (Babchin et al., 1983). Nevertheless, the simple

scaling analysis presented here captures the basic idea that fluid drains without dripping

on the base of the container provided that the tipping angle beyond the horizontal is small.
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Chapter 5

Flow and instability of thin films on a

cylinder and sphere

5.1 Abstract

We investigate the dynamics of thin films driven by gravity on the outer surface of a

cylinder and sphere. The surface is rigid, stationary and the axis of the cylinder hori-

zontal. An instantaneous release of a constant volume of fluid at the top of the cylinder

or sphere results initially in a two-dimensional or axisymmetric current respectively. The

resultant flow of a thin film of fluid is described using lubrication theory when gravity

and viscous forces govern the dynamics. We show that the thickness of the flow remains

uniform in space and decreases in time like t−1/2 near the top of both the cylinder and

sphere. Analytic solutions for the extent of the flow agree well with our experiments until

the advancing front splits into a series of rivulets. We discuss scalings of the flow at the

onset of the instability as a function of the Bond number, which characterises the relative

importance of gravity and surface tension. The experiments, conducted within an inter-

mediate range of Bond numbers, suggest that the advancing front becomes unstable after
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5 Flow and instability of thin films on a cylinder and sphere

it has propagated a critical distance, which depends primarily and monotonically on the

volume of fluid and not on the viscosity of fluid. Releasing a sufficiently large volume of

fluid ensures that rivulets do not develop on either a cylinder or sphere.

5.2 Introduction

Many problems in industrial and natural settings involve the flow of thin liquid films, some

of which are driven by gravity on a rigid surface (Oron et al., 1997). These include the

application of coatings on manufactured products and the spreading of sauce on food. A

naturally occurring example is the flow of water on stalactites that hang from the ceilings

of limestone caves (Short et al., 2005). At larger scales, the ascent of buoyant magma

below solid rocks and the spreading of lava on volcanoes are further examples of geological

problems. The recurring feature in all these examples is that fluid is in contact with, and

driven along, a rigid boundary due to the action of gravity. Effects due to inertia are

negligible in the bulk region of the flow, where gravity and viscous forces dominate.

The flow of thin films driven by gravity has received considerable attention within the

scientific community largely because the leading edge of the flow gives rise to the fasci-

nating phenomenon of a fingering instability. Laboratory experiments have shown that a

thin film of Newtonian fluid flowing down an inclined plane can become unstable at the

front and split into a series of rivulets (Huppert, 1982b; Silvi & Dussan, 1985). Rivulets

develop in a similar manner when a thin film is driven by a centrifugal force (Melo et al.,

1989; Fraysse & Homsy, 1994; Wang & Chou, 2001) or by a spatial gradient in surface

tension (Cazabat et al., 1990). The instability has been studied by incorporating effects

due to surface tension in a small region near the advancing front of the flow, where a cap-

illary ridge develops before splitting into rivulets (Troian et al., 1989; Goodwin & Homsy,

1991). A cross-flow perturbation of the flow front develops thicker regions that advance

more rapidly, a possible mechanism of the fingering instability (Spaid & Homsy, 1996).

Macroscopic perturbations can be caused by microscopic corrugations in the contact line

(Bertozzi & Brenner, 1997), suggesting that minor variations in topography, in addition

to thermal effects, may influence the development of candle wax drips and branches of

lava flows on volcanoes.

We extend previous studies of thin films to consider driven films featuring a moving

contact line on curved surfaces. Lubrication theory has been applied to describe thin films

flowing in between curved gaps (Stone, 2005) and on curved substrates with a free surface

(Roy et al., 2002). It is fruitful to assess the applicability of the theory to thin films

featuring a moving contact line (Davis, 1983), which may not influence the bulk flow.

Thin films on the outer surface of a cylinder and sphere are considered as two special
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5.2 Introduction

cases where the slope of the substrate changes slowly in the direction of flow (Takagi &

Huppert, 2010). The theory is based on the following three conditions. First, the front of

the flow is assumed to have extended a distance much longer than the characteristic film

thickness. Second, the component of gravity is approximated to increase linearly in the

flow direction, which holds near the top of the cylinder and sphere. Third, surface tension

is considered to be negligible everywhere except possibly near the leading front of the flow.

We examine the effect of a curved substrate on the flow and its possible instability of thin

films in two specific cases.

In the first case, we consider the instantaneous release of a constant volume of viscous

fluid from a line source at the top of a cylinder. We stress that the cylinder does not

rotate about its horizontal axis. The resultant flow is initially two-dimensional; an analytic

solution describing its form and extent is obtained in § 5.3 using lubrication theory. Related

problems that have been investigated theoretically include thin films on a rotating cylinder

(Moffatt, 1977) and steady rivulet flows on a stationary cylinder (Duffy & Moffatt, 1995).

We note that once the rotation of the cylinder, or the supply of fluid, has stopped, the film

draining at the top of the cylinder is expected to be identical at large times, independent

of the initial conditions.

In the second case, we consider the instantaneous release of a constant volume of viscous

fluid from a point source at the top of a sphere. The initial spreading of fluid near the

source is the axisymmetric counterpart of the two-dimensional flow in our first case. The

problem on the sphere falls in the same category of axisymmetric spreading as flow from

the top of a cone, which is presented as mathematical exercise 7.12 in the introductory

textbook by Acheson (1990). In § 5.4, we develop theoretical results and show that the

spreading on a stationary sphere is closely related to spin coating, where a drop of fluid

spreads and develops a fingering instability on a rotating plane (Melo et al., 1989; Fraysse

& Homsy, 1994; Wang & Chou, 2001). Consequently, the spreading on a sphere is expected

to develop a fingering instability at the leading edge in a similar manner to a spinning

drop.

In § 5.5, corresponding experiments are reported and shown to agree well with our the-

oretical predictions until the advancing front splits into a series of rivulets. The rivulets

continue to extend until they eventually detach, before they have reached the bottom of

the cylinder or sphere. The detachment of fluid from the underside of the cylinder and

sphere is similar to dripping from the underside of an inclined plane (Rothrock, 1968;

Indeikina et al., 1997). We note that the development of rivulets at the flow front and the

detachment of fluid before reaching the bottom prevent the fluid from completely coating

the cylinder or sphere.
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5 Flow and instability of thin films on a cylinder and sphere

Figure 5.1: Sketch of a thin film driven by gravity at the top of a cylinder. Flow is denoted to
have thickness h(θ, t) and extend an arc length RθN (t) from the vertical line of symmetry.

Finally, in § 5.6, the fingering instability at the leading front of the flow is discussed. A

scaling analysis of the governing equations suggests that the non-dimensional flow length

at the onset of the instability depends on the Bond number of the flow, as defined below.

The ideas are partly based on the scalings obtained previously for flow down an inclined

plane at a small Bond number (Troian et al., 1989; Goodwin & Homsy, 1991). We obtain

approximate conditions at the onset of a fingering instability on a cylinder and sphere in

the two limits of small and large Bond numbers. The results suggest that rivulets do not

develop on a cylinder or sphere when a sufficiently large volume of fluid is released.

5.3 Two-dimensional flow on a cylinder

A theoretical framework for describing flow on the outer surface of a cylinder of radius R is

developed in polar coordinates (r, θ), where r = R represents the surface and the azimuth

angle θ is measured from the vertical, as in figure 5.1. We consider the instantaneous

release of a constant volume of viscous fluid from a line source at the top of the cylinder

such that the resultant flow is initially two-dimensional, independent of the direction

normal to the (r, θ) plane. By the vertical line of symmetry, we restrict attention to flow

on the right half of the cylinder. A constant cross-sectional area A of fluid is considered

to have depth h(θ, t) and extend an arc length RθN(t) along the surface of the cylinder

from the vertical, as shown in figure 5.1.

A long wave approximation is adopted, provided that the fluid depth is much smaller
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5.3 Two-dimensional flow on a cylinder

than its extent,

h≪ RθN . (5.1)

The approximation is expected to hold soon after the fluid is released on a cylinder of

sufficiently large radius R. Since flow is predominantly tangential to the surface of the

cylinder, the pressure in the fluid is given by

p = p0 + ρg(R + h− r) cos θ − (γ/r2)∂2h/∂θ2, (5.2)

where ρ is the density of fluid, g gravity, p0 atmospheric pressure and γ surface tension.

The θ-component of the momentum equation is given by

ν∂2u/∂r2 = (1/ρr)∂p/∂θ − g sin θ, (5.3)

where ν is the kinematic viscosity of the fluid and u is the θ-component of the flow velocity.

The pressure given by (5.2) remains approximately uniform in the bulk region of the flow

given the following two conditions. First, the depth of fluid must vary slowly along the

substrate and satisfy

∂h/∂θ ≪ R tan θ. (5.4)

Condition (5.4) is expected to hold everywhere except possibly near the flow front and

ensures that contribution to (5.3) from the ρg(R + h − r) cos θ term on the right hand

side of (5.2) is negligible. The solution to be obtained for small θ indeed satisfies (5.4).

Second, effects due to surface tension must be small everywhere except possibly near the

flow front, requiring that the final term of (5.2) does not play a role in the equation of

motion given by (5.3). By comparing the magnitude of the first and second terms on the

right hand side of (5.3), we obtain the corresponding condition

γ ∂3h/∂θ3 ≪ ρgR3 sin θ. (5.5)

Importantly, we note that the bulk structure of the flow is relatively unaffected by the

specific dynamics of the small region near the flow front (Huppert, 1982b; Troian et al.,

1989). Under these conditions, the bulk region of the flow is governed primarily by viscous

forces and the component of gravity along the flow. The solution satisfying (5.3) with the

first term on the right hand side neglected, along with the no-slip condition on the rigid

surface and vanishing tangential stress on the free surface, is given by

u =
1

2
y(2h− y)g sin θ/ν, (5.6)

where y = r − R is the radial coordinate measured from the surface of the cylinder. The

velocity profile is parabolic in y and identical to that arising on an inclined plane with a
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5 Flow and instability of thin films on a cylinder and sphere

constant slope θ to the horizontal (Huppert, 1982b). The local flow on a sufficiently large

cylinder does not experience the curvature in the substrate. The depth-integrated velocity

of the flow,

Q =

∫ h

0
u dy, (5.7)

does not depend on the curvature of the substrate, R.

The governing equations for the unknown free surface h(θ, t) are formulated by conserv-

ing the mass of fluid, both locally and globally. Substituting (5.6) into (5.7) followed by

the local conservation of mass in cylindrical polar coordinates, ∂h/∂t + R−1∂Q/∂θ = 0,

we obtain
∂h

∂t
+

g

3νR

∂

∂θ
(sin θh3) = 0. (5.8)

The total cross-sectional area of fluid is independent of time and expressed as

A = R

∫ θN (t)

0
h(θ, t) dθ, (5.9)

which ensures that mass is conserved globally. This completes the formulation of the

problem.

The length and time scales of the flow initially near the top of the cylinder can be

determined by considering the scaling factors of the governing equations (5.8) and (5.9).

For small θ such that sin θ ≈ θ to leading order, the two terms in (5.8) scale as h/t and

gh3/νR respectively. Meanwhile, equation (5.9) indicates that A ∼ hx, where x = Rθ

is a characteristic length of the current. The only dimensional groups appearing in the

governing equations for h in terms of x and t are therefore g/νR and A, provided that

x rather θ is used to represent the coordinate along the flow. The equations can be

non-dimensionalised by scaling all lengths by

L ≡ A1/2 (5.10)

and time by

T ≡ νR/gA. (5.11)

The radius of the cylinder, R, only appears in the time scale and not in the length scale

of the bulk flow.

The system of equations (5.8) and (5.9) is solved near the top region of the cylinder,

where θ ≪ 1, as follows. Given that the characteristic length and time scales are given by

(5.10) and (5.11) respectively, it is natural to seek solutions to (5.8) with sin θ ≈ θ of the

form

h = A1/2f(t/T ). (5.12)
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5.3 Two-dimensional flow on a cylinder

The function f to be determined is independent of θ because θ does not appear in the

scalings of the two terms in (5.8) when sin θ ≈ θ or in (5.9), provided that the coordinate

along the flow is represented by x rather than θ. By substituting (5.12) into (5.8), we

obtain f ′ + f3/3 = 0, which can be immediately integrated to give

f(s) = [3(s + c)/2]−1/2 (5.13)

for some constant c. If the fluid has uniform thickness h0 initially when it is released at

time t = 0, then the starting time is offset by c = 2(A1/2/h0)
2/3 for the similarity form

(5.12) to satisfy the initial condition. However, the required offset c is negligible when

the initial thickness is not too small, h0 > A1/2, or equivalently when the flow front is

close to the top of the cylinder at the time of release of fluid, as was the case in all our

experiments. At large times, t≫ cT , the solution (5.13) in dimensional form reduces to

h(t) =

(

3Rν

2g

)1/2

t−1/2, (5.14)

which indicates that the thickness is independent of θ and decreases with time like t−1/2.

The subsequent term of order ǫ in the expansion about the leading-order solution (5.14),

where θ = O(ǫ), is also independent of the spatial coordinate. The solution (5.14) is

independent of θ to order ǫ2 because of the symmetry of the problem.

We note that the solution of uniform film thickness is related to the boundary layer thick-

ness of a stagnation-point flow towards a flat boundary (Acheson, 1990). Both gravity-

driven flow near the top of a cylinder and two-dimensional straining flow along the flat

boundary increase linearly with distance. It follows by mass conservation that in both

cases the thickness of the flow is uniform along the boundary.

The length of the current is obtained by imposing the condition that the total cross-

sectional area of fluid is conserved and given by (5.9). By substituting (5.14) into (5.9)

and rearranging, we determine the length of the current

RθN (t) =
(A2g

6Rν

)1/2
t1/2. (5.15)

We note that the dependence on the amount of fluid released, A, only appears in the

expression for the length and not in the expression for the depth of the flow. The flow

near the top of the cylinder takes a similarity form and is independent of the initial

conditions. By substituting solutions (5.13) and (5.15) into conditions (5.1) and θN ≪ 1,

we determine that the solution for the flow length given by (5.15) is valid for

1 ≪ t/T ≪ R2/A. (5.16)
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5 Flow and instability of thin films on a cylinder and sphere

The first condition, t≫ T , ensures that the thickness of the current is small compared to

its length. The second condition, t/T ≪ R2/A, arises because the solution given by (5.14)

is limited to the region near the top of the cylinder.

We now discuss the small region at the flow front, which we have neglected so far. By

eliminating time from solutions (5.14) and (5.15), we determine that the flow has a sharp

leading front of thickness

hN = A/RθN . (5.17)

The unphysically sharp front is expected to be resolved by a thin boundary layer with

length scale l ≪ RθN , which is small under the following conditions. When effects due to

surface tension are neglected, lubrication theory breaks down near the front of the current

(Goodwin & Homsy, 1991). The velocity normal to the substrate is no longer small in

the region at the flow front. In that case, the length of the boundary layer at the front of

the current is expected to scale like l ∼ hN , which is always smaller than the bulk flow by

condition (5.1).

When surface tension plays a role, in addition to viscous forces and gravity, the left and

right hand sides of (5.5) are of the same order of magnitude in the region near the flow

front. By considering the scaling factors of (5.5), we obtain l ∼ (γhN/ρg sin θN )1/3, which

is consistent with the corresponding scaling for the length scale of the tip of the current

down an inclined plane (Huppert, 1982b; Troian et al., 1989). This can be written as

l ∼ hN (Ca)−1/3, (5.18)

where Ca is a capillary number of the flow in the region near the front given by

Ca ≡ ρgθNh
2
N/γ. (5.19)

The capillary number measures the relative importance of viscous forces, which are exactly

balanced by gravity, compared to surface tension near the flow front. By substituting (5.15)

and (5.17) into (5.19), we determine that the capillary number evolves like t−1/2. Instead

of working with the capillary number, it is convenient to introduce a Bond number defined

as

Bo ≡ ρgA3/2/γR, (5.20)

which is expressed in terms of input parameters that do not vary in time. By setting l in

(5.18) to be much smaller than RθN and eliminating hN using (5.17), we determine that

the region of the flow front influenced by surface tension remains small compared to the

bulk flow as long as

θN ≫ Bo−1/5A1/2/R. (5.21)
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5.4 Axisymmetric flow on a sphere

Figure 5.2: Sketch of a thin film of fluid spreading axisymmetrically at the top of a sphere.

Equivalently, by substituting (5.15) into (5.21), we obtain

t≫ Bo−2/5T (5.22)

as the condition when surface tension plays a negligible role in the bulk region of the flow.

In summary, the bulk structure of the flow has uniform thickness given by (5.14) behind

an advancing front given by (5.15). The prediction for the flow length is given by (5.15)

provided that conditions (5.16) and (5.22) hold. We now present corresponding results for

the axisymmetric spreading of fluid at the top of a sphere, before comparing our theoretical

predictions with data from laboratory experiments.

5.4 Axisymmetric flow on a sphere

The methods presented in § 5.3 for the two-dimensional flow around a cylinder can be

readily applied to the axisymmetric flow on a sphere. Consider the outer surface of a

rigid sphere represented by r = R in spherical polar coordinates, where θ is the usual

zenith angle from the vertical axis. A constant volume V of viscous fluid is released

instantaneously at the top point of the sphere such that the resultant flow is initially

axisymmetric as sketched in figure 5.2. When the extent of the flow, denoted by RθN(t),

is much greater than the film thickness denoted by h(θ, t), the flow velocity u(r, θ, t) is

predominantly along the surface of the sphere, in the θ direction. Assuming that conditions
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5 Flow and instability of thin films on a cylinder and sphere

(5.1), (5.4) and (5.5) hold in the bulk region of the flow as in § 5.3, and using lubrication

theory as before, we obtain the same velocity profile as for viscous spreading on a cylinder.

Thus, the depth-integrated velocity is again given by

Q =
1

3
g sin θ h3/ν. (5.23)

Substituting (5.23) into the local mass conservation in spherical polar coordinates given

by ∂h/∂t+ (R sin θ)−1 ∂(sin θQ)/∂θ = 0, we obtain

∂h

∂t
+

g

3νR sin θ

∂

∂θ
(sin2 θh3) = 0. (5.24)

The total volume of fluid is independent of time and expressed as

V = 2πR2

∫ θN (t)

0
h sin θ dθ. (5.25)

The governing equations given by (5.24) with sin θ ≈ θ and (5.25) can be non dimen-

sionalised by scaling all lengths by

LV ≡ V 1/3 (5.26)

and time by

TV ≡ νR/gV 2/3. (5.27)

The curvature of the substrate only appears in the time scale and not in the length scale

of the flow, just like the flow on a cylinder in § 5.3.

The system of equations (5.24) and (5.25) is solved in the region at the top of the sphere,

where θ ≪ 1, using the same methods as before, to obtain

h(t) =

(

3Rν

4g

)1/2

t−1/2. (5.28)

The solution given by (5.28) indicates that the thickness of the bulk structure remains

uniform near the top of the sphere. Note that the thickness of fluid on a sphere of radius

R given by (5.28) is identical to the thickness of fluid on a cylinder of radius R/2, as

can be verified using (5.14). The expression (5.28) is also identical to the thickness of

a constant volume V of fluid rotated at angular velocity ω about its centre of mass on

a plane, where ω2 = g/R (Melo et al., 1989). The mathematical reason is that the

governing equations for fluid spreading near the top of a sphere, (5.24) and (5.25), where

sin θ ≈ θ and g/R = ω2, reduce to corresponding equations for a spinning volume of fluid.

Physically, fluids spreading both on the top of a stationary sphere and on the rotating

plane experience a body force that increases linearly with distance away from the point of

release. The body force is gravity on the sphere or centrifugal on the rotating plane.
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5.5 Experiments

By substituting (5.28) into (5.25), we determine that the length of the current is given

by

RθN (t) =
( 4V 2g

3π2Rν

)1/4
t1/4. (5.29)

The radius of the leading edge of the flow increases like t1/4 as long as effects on the bulk

flow due to surface tension are small.

An analysis similar to the previous one indicates that the capillary region, where capillary

forces are important near the flow front, is small compared to the bulk flow provided that

θN ≫ Bo
−1/6
V V 1/3/R, (5.30)

where BoV is a Bond number defined as

BoV ≡ ρgV/γR. (5.31)

The capillary region becomes relatively small after the flow front has extended sufficiently

far. By substituting (5.29) into (5.30), we determine that surface tension plays a negligible

role in the bulk region of the flow when

t≫ Bo
−2/3
V TV . (5.32)

The regime of validity of solutions (5.28) and (5.29) is further constrained by

1 ≪ t/TV ≪ R4/V 4/3, (5.33)

which can be investigated experimentally by releasing fluid on a sphere of sufficiently large

radius R. The volume of fluid must be sufficiently large that the Bond number is not too

small to satisfy (5.32) and sufficiently small that it spreads as a thin film near the top of

the sphere to satisfy (5.33).

5.5 Experiments

The theoretical predictions derived in § 5.3 and § 5.4 were tested against a suite of labo-

ratory experiments. In particular, equations (5.15) and (5.29) were compared with flow

lengths on a cylinder and sphere respectively. Experimental set ups and results are pre-

sented first for flows on a cylinder followed by flows on a sphere.
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5 Flow and instability of thin films on a cylinder and sphere

5.5.1 Flow on a perspex cylinder

A perspex cylinder of radius 15.0 cm and width 11.0 cm was fixed between two parallel

and vertical plates, perpendicular to the axis of the cylinder. The cylinder resembled the

structure of a wheel, fixed and confined laterally by sidewalls. At the top of the cylinder,

a constant volume of either pure glycerine or golden syrup was held behind a removable

lock-gate, 2.0 cm away from a rigid and vertical wall. Flow down the outer surface of the

cylinder was initiated by a near-instantaneous lift of the gate.

A standard digital camera pointed in the direction parallel to the axis of the cylinder

and recorded images of the resultant flow at 15 frames per second. The flow was observed

both directly from its side and in plan form through a mirror as shown in the images

of figure 3. The flow near the sidewalls was observed to shear laterally with the leading

edge of the flow deforming accordingly. This is possibly due to contact line pinning on

the sides and the curvature of the substrate, which allows fluid further along the flow to

be driven by a larger body force. However, the central region of the flow appeared to be

two-dimensional and unaffected by the sidewalls, as indicated by a flat leading front in

figure 5.3(b). The flow front, after advancing some distance, split into a pair of rivulets.

The rivulets continued to flow as shown in figure 5.3(c) until they reached some extent

on the underside of the cylinder, where they dropped as viscous threads (figure 5.3(e)).

The point of detachment advanced approximately 5 cm further along the underside of the

cylinder and appeared to remain stationary thereafter.

The viscosity and volume of the released fluid were varied in a series of experiments

on the cylinder. Representative values of the kinematic viscosity of golden syrup and

glycerine were taken to be ν = 4.5 × 102 cm2/s and ν = 5.1 cm2/s respectively, based

on measurements using U-tube viscometers. Although the viscosity of fluid may have

fluctuated slightly as a result of minor temperature variations in the laboratory, the flow

lengths recorded in every experimental run are relatively insensitive to minor variations

in viscosity. The flow length on a cylinder or sphere scales like ν−1/2 in (5.15) or ν−1/4 in

(5.29) respectively.

Figure 5.4 shows a plot of non-dimensional flow extents against non-dimensional time on

logarithmic scales for different experiments on the cylinder. The data for the initial flow

extending with a single front collapse onto the theoretical curve given by (5.15). Minor

discrepancies between the theory and experiments conducted by releasing a cross-sectional

area A = 10.5 cm2 of golden syrup and A = 5.2 cm2 of glycerine are attributed to the

shear stress on the sidewalls, which may have retarded the flow. Experiments conducted

by releasing A = 4.2 cm2 and A = 6.3 cm3 of golden syrup are in excellent agreement with

the theoretical predictions until the front of the flow split into a pair of rivulets. Once
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(a) t = 0 (b) t = 0.7 s

(c) t = 1.5 s (d) t = 2.2 s

(e) t = 2.7 s (f) t = 30 s

Figure 5.3: Sequence of snapshots of an experiment conducted by releasing 57.5 cm3 of pure
glycerine on a cylinder, where the resultant flow is viewed directly from the side and in plan form
through a mirror on the right. The numbers on the cylinder indicate the perimeter in centimetres
from the top of the cylinder. (a) Glycerine is behind the lock-gate, before initiation of the current.
(b) 0.7 s after release, the bulk flow is approximately two-dimensional, except near the sidewalls
confining the flow. (c) 1.5 s after release, wave patterns appear at the leading edge of the flow. (d)
2.2 s after release, the flow front has split into a pair of rivulets. (e) 2.7 s after release, the rivulets
continue to extend until they drop from the underside of the cylinder. (f) 30 s after release, the
points of detachment of fluid have extended along the underside of the cylinder. The experimental
parameters are: cross-sectional area of fluid A = 5.2 cm2; kinematic viscosity ν = 5.1 cm2/s;
surface tension γ = 64 mN/m; and radius of the cylinder R = 15 cm.

61



10
0

10
1

10
2

10
0

10
1

t / (Rν/Ag)

Rθ
N

 / A1/2

 

 

4.2cm2 Golden syrup, single front

4.2cm2 Golden syrup, multiple fronts

6.3cm2 Golden syrup, single front

6.3cm2 Golden syrup, multiple fronts

10.5cm2 Golden syrup, single front

5.2cm2 Glycerine, single front

5.2cm2 Glycerine, multiple fronts

Theory, single front

Figure 5.4: Plot of non-dimensional flow extents on a cylinder against non-dimensional time
using logarithmic axes. Different symbols correspond to different experiments. The symbols are
either open or closed, with the latter indicating that rivulets have developed at the front of the flow.
The black line is the theoretical relationship given by (5.15).
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5.6 Discussion

the front developed a fingering instability, the subsequent leading fronts extended further

along the cylinder than predicted by (5.15).

5.5.2 Flow on a vinyl beach ball

Experiments were conducted to investigate viscous flow on a sphere. A vinyl beach ball of

radius 23.5± 0.5 cm was secured at its base. The surface of the beach ball was reasonably

spherical and rigid. A cylindrical lock was positioned carefully at the top of the beach ball

using a spirit level such that its axis pointed vertically. A constant volume of golden syrup

was poured inside the lock, which could be swiftly raised by guiding it along a vertical

rail to release the syrup. The radius of the gate was either 2 cm or 5 cm and made little

difference to the resultant flow.

The near-instantaneous release of golden syrup resulted initially in an axisymmetric

current from the top of the sphere as shown in figure 5.5(b). The structure of the flow

extended with a circular plan form and then slowly started to deform in shape (figure

5.5(c)). Modulations then developed at the leading edge of the flow, as shown in figure

5.5(d). Soon after, a series of rivulets developed at the front (figure 5.5(e)). The rivulets

are similar to those produced at the front of an initially axisymmetric spreading on a

rotating plane (Melo et al., 1989; Fraysse & Homsy, 1994). The rivulets continued to flow

down the sphere until they reached some extent on its underside, where they detached

and dropped in the form of threads.

The flow lengths along six representative directions were recorded at different intervals.

Figure 5.6 shows that the mean flow lengths agree well with the theoretical curve before

the leading edge of the flow developed a fingering instability. We now discuss scaling laws

of the flow at the onset of the instability.

5.6 Discussion

It is widely accepted that a capillary ridge near the flow front plays an important role at

the onset of the instability. Numerous other possible factors are believed to play a minor

role. For example, the viscosity of fluid appears only to set the time scale and not the

length scale of the flow resulting from the release of a constant volume of fluid (Huppert,

1982b). Experiments suggest that effects due to the contact angle at the flow front do not

influence the onset of the instability either (Silvi & Dussan, 1985). Conjecturing that the

onset of the instability is determined by the length scale l of the small capillary region

near the flow front, we develop dimensional arguments to suggest scalings of the flow at
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(a) t = 0 (b) t = 30 s

(c) t = 120 s (d) t = 240 s

(e) t = 360 s (f) t = 900 s

Figure 5.5: Sequence of snapshots taken from above a six-sector beach ball of radius R = 23 cm,
on which 123 cm3 of golden syrup was released. (a) Golden syrup is released by rapidly lifting a
cylindrical gate. (b) 30 s later, the structure of the flow continues to take a circular plan form.
(c) 120 s after release, the flow remains approximately axisymmetric. (d) 240 s after release, wave
patterns begin to develop at the leading edge of the flow. (e) 360 s after release, the amplitude
of the instability at the flow front grows and develops a series of rivulets. (f) 900 s after release,
the rivulets continue to flow down the beach ball, eventually detaching from the underside (not
shown). The experimental parameters are kinematic viscosity ν = 4.5 × 102 cm2/s and surface
tension γ = 78 mN/m (Llewellin et al., 2002).
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Figure 5.6: Non-dimensionalised average flow lengths against non-dimensional time on the top
of a sphere before rivulets developed. Different symbols correspond to experiments conducted by
releasing different volumes of golden syrup. The black line is the theoretical relationship given by
(5.29).

the onset. The two important regimes of small and large Bond numbers will be treated

separately, using ideas that have been developed in the well-studied context of flow down

an inclined plane.

In the regime of small Bond numbers, surface tension initially plays a role not only at

the tip of the current but also in the bulk region of the flow. It has been proposed that the

bulk structure of the flow is stable until the flow extends a distance xc ∼ l (Troian et al.,

1989). The current at the onset of the instability must extend sufficiently to develop a

capillary ridge near the flow front ahead of a region where gravity dominates. Numerical

simulations of a thin film flowing down an inclined plane (Schwartz, 1989) support the

idea that gravity drives the fingering instability with a characteristic wavelength set by

surface tension. The condition that gravity dominates in the bulk flow at the onset of

the instability suggests that the critical distance xc, scaled by the length scale of the bulk

flow, increases in the limit of small Bond numbers.

In the regime of large Bond numbers, surface tension is initially negligible everywhere,

including the region near the flow front. The flow front features a recirculating nose,

which has been shown experimentally to extend initially without any development of a

fingering instability (Ancey et al., 2009). The apparent contact angle of the advancing
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5 Flow and instability of thin films on a cylinder and sphere

front is initially obtuse because gravity pushes the nose further than the contact line.

It has been suggested that the fingering instability develops when the contact angle and

the capillary number of the flow front have decreased sufficiently (Veretennikov et al.,

1998). Effects due to surface tension begin to play a role at the tip of the current when its

thickness decreases and approaches the capillary length scale, lc. We therefore conjecture

that hN ∼ lc at the onset of the fingering instability of a current initially unaffected by

surface tension everywhere. The condition that the length scale of the tip of the current

must decrease to its capillary length scale before the front splits into rivulets suggests that

the critical distance xc, scaled by the length scale of the bulk flow, increases again in the

limit of large Bond numbers.

The ideas developed above can be applied to the flow and instability of thin films on a

cylinder and sphere. By balancing the magnitude of the bulk flow length in (5.15) with

the capillary length scale of the front in (5.18) and coupling the result with (5.17), we

obtain the length of the current on a cylinder for small Bond numbers at the onset of the

instability,

xc ∼ A1/2Bo−1/5. (5.34)

The critical length increases in the limit of small Bond numbers, as expected. By balancing

the magnitude of the flow thickness in (5.17) with the capillary length scale of the front in

(5.18), we obtain the length of the current on a cylinder for large Bond numbers at onset,

xc ∼ A1/2Bo. (5.35)

This indicates that the critical length increases in the limit of large Bond numbers. Note

that xc is a monotonically increasing function of A for all Bond numbers. Corresponding

results are obtained for the length of the current at the onset of instability on a sphere,

xc/V
1/3 ∼







Bo
−1/6
V small BoV

Bo
1/3
V large BoV .

(5.36)

The critical length at the onset is a monotonically increasing function of the volume of

fluid, V . For fixed V , the critical length increases both in the limits of small and large

Bond numbers.

Given that the dimensionless length of the current at the onset of the instability increases

both in the limits of small and large Bond numbers, there must be an intermediate range

of Bond numbers where the dimensionless length is minimal. This is consistent with the

dimensionless radius of a spinning drop at the onset of the fingering instability, which is

minimal for Bond numbers ρω2V/γ ∼ 50 (Wang & Chou, 2001). Figure 5 in the paper
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Figure 5.7: Log-log plot of the lengths of golden syrup spreading on a sphere at the onset of
the fingering instability against the Bond number given by (5.31), where representative values of
ρ = 1.4 kg/m3, g = 9.8 m/s2, γ = 78 mN/m and R = 0.24 m were fixed. The Bond number was
varied in different runs by releasing different volumes of fluid. The average flow lengths at the
onset of instability are represented by crosses with associated error bars indicating the maximum
and minimum flow lengths for each experiment. The line of best fit through the experimental data
has a slope of 0.13, which lies between the two limits of −1/6 and 1/3 as predicted by (5.36) for
small and large Bond numbers.

by Wang and Chou (2001) shows that the dimensionless radius of spinning drops at the

onset depends weakly on the Bond number, when it is neither too small or large.

Our experiments on both the cylinder and the sphere were conducted over an inter-

mediate range of Bond numbers. Consequently, the length of the current at the onset

of the instability is expected to depend weakly on the Bond number. This is consistent

with figure 5.4, which shows that rivulets on a cylinder developed when the flow front

advanced ≃ 8A1/2 in experiments, independent of the Bond number. Figure 5.7 plots the

mean radius of flows spreading on a sphere at the onset of the fingering instability, as a

function of the Bond number given by (5.31). The critical length of the flow increases

slowly and depends weakly on the Bond number. A least-square fit to the data yields

xc/V ≃ 1.4Bo0.13
V within an intermediate range of Bond numbers, intermediate between

scalings for small and large Bond numbers given in (5.36).

The wavelength of the fingering instability was estimated by dividing the circumference

of the plan form at the onset of the instability by the number of rivulets observed sub-
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Figure 5.8: Wavelengths of the fingering instability of golden syrup spreading on a sphere as a
function of the Bond number given by (5.31), where ρ = 1.4 kg/m3, g = 9.8 m/s2, γ = 78 mN/m
and R = 0.24 m. Wavelengths were estimated by dividing the circumference of the leading edge of
the flow at the onset of instability by the number of rivulets observed subsequently. Error bars are
associated with the maximum and minimum flow lengths recorded at the onset of the instability
for each experiment. The line fitting the average wavelengths has a gradient of −0.52, which lies
between the two limits of −2/3 and −1/6 as predicted in (5.37) for large and small Bond numbers.
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sequently. The dimensionless wavelength is plotted against the Bond number BoV on

logarithmic scales in figure 5.8. The line of best fit shown in figure 5.8 scales like Bo−0.52
V

and indicates that the dimensionless wavelength decreases with Bond number. Conjec-

turing that the wavelength is set by the length scale of the tip of the current l in (5.18)

(Huppert, 1982b), the wavelength scales like

λ/V 1/3 ∼







Bo
−1/6
V small BoV

Bo
−2/3
V large BoV .

(5.37)

The exponent of −0.52 obtained from the experiments for an intermediate range of Bond

numbers lies between the limiting exponents of −1/6 and −2/3 for small and large Bond

numbers respectively.

The number of rivulets produced at the top of a sphere is given by

N = 2πxc/λ, (5.38)

when a sufficiently small volume of fluid is released such that xc ≪ R. By substituting

(5.36) and (5.37) into (5.38), we estimate the number of rivulets to remain constant,

or increase linearly with Bond number, in the limits of small and large Bond numbers

respectively. This is consistent with the trend of the number of fingers produced on a

rotating plane shown in Figure 12 of the paper by Wang and Chou (2001). Rivulets are

not expected to develop on a cylinder or sphere when a sufficiently large volume of fluid

is released.

5.7 Concluding remarks

We conclude that thin films spreading at the top of a cylinder and sphere result in a

succession of events. Initially, both flows on the cylinder and sphere evolve with uniform

thickness. The leading edge of the flows, after extending a critical distance, splits into

a series of rivulets. The critical distance was shown experimentally to depend primarily

on the volume of fluid released, for Bond numbers that are not too small or large. The

relevant length scale is set by either the square root of the cross-sectional area of fluid

or the cube root of the volume released for two-dimensional or axisymmetric spreading

respectively. Experiments further showed that the rivulets extend along the cylinder and

sphere until they eventually detach and develop pendent threads.

The detachment of fluid before it has reached the bottom of the cylinder or sphere

gives rise to an interesting problem. Experiments reported in § 5.5 showed that releasing
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5 Flow and instability of thin films on a cylinder and sphere

a relatively small volume of fluid at the top of the cylinder and sphere does not result

in complete coating of the cylinder or sphere. We conducted further experiments and

observed that releasing a relatively large volume of fluid at the top of a cylinder does

not result in complete coating either. Approximately 300 cm3 of golden syrup, poured

from a beaker immediately above a cylindrical rod of steel of diameter 1.2 cm with its

axis pointing horizontally, left a small uncoated region along the bottom of the rod. This

qualitative observation indicates that it is difficult to completely coat the outer surface of

a cylinder or sphere by releasing fluid from above.

A complete coating of the outer surfaces of a cylinder and sphere could be obtained

instead by dipping them into and withdrawing from a bath of viscous fluid, a familiar

method in coating industries. Thin films are expected to develop and drain as investigated

here in § 5.3 and § 5.4 near the top of the cylinder and sphere. In contrast to a film of fluid

draining from a vertical plate, which is always thicker towards the bottom of the plate

(Jeffreys, 1930), the thickness of fluid draining from the top of the cylinder and sphere

should remain uniform.
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Chapter 6

Coating a sector of an inclined plane

6.1 Abstract

The flow of a Newtonian fluid down a rigid plane bounded by diverging walls is considered.

The evolution at a low Reynolds number of a constant volume of fluid is determined using

the free film lubrication theory and consists of up to three regimes. In the early-time

regime, the fluid occupies the entire width of the prescribed bounds and spreads radially

away from the source. In the intermediate regime, which exists on inclined planes bounded

by gently diverging walls, the fluid continues to flow approximately radially down the slope.

The front of the fluid appears to separate from the walls once it has extended a distance,

which is estimated by scaling arguments and compared with experiments. In the late-time

regime on an inclined plane, the front of the flow can become unstable and produce one

or a series of extended regions.

6.2 Introduction

A thin layer of fluid flowing with a free surface above and a rigid surface underneath occurs

naturally in a wide range of situations. These include the spreading of lava in geophysics,
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6 Coating a sector of an inclined plane

the long-scale evolution of macroscopic thin films in biophysics and the manufacturing

process of glass in industrial engineering. Some important flow features can be examined

by considering a Newtonian fluid to be driven predominantly by effects due to gravity.

The flow is consequently in the direction of any component of gravity and any gradient

of the free surface. Effects due to inertia are small compared to viscous forces provided

that the Reynolds number is small. Effects due to capillary action are neglected in the

dynamical regime of interest, where the Bond number is large.

Previous studies indicate that the shape of the rigid surface plays an important role in

influencing the evolution of the free surface. The thin film lubrication theory is used to

describe the different flows that arise on an unconfined horizontal plane (Huppert 1982a),

an unconfined inclined plane (Huppert 1982b, Lister 1992) and various different open

channel systems (Takagi and Huppert 2007). The channels considered so far are limited

to those with the condition that the characteristic length scale of the flow extent is much

greater than the channel width. This allows any cross-stream flow to be neglected to

leading oder and simplifies the governing equations considerably.

Here, the flow on a rigid surface confined by a pair of diverging walls is considered,

where any cross-stream flow must be incorporated into the theory in general. Various

different situations are considered with a particular emphasis on inclined flows, which are

motivated by three separate ideas. Firstly, the flow front initially occupies the entire width

of the bounds and eventually separates from the bounds. The transition from a laterally

confined flow to an unconfined flow towards the front involves interesting dynamics near

the bounds. This has never been investigated before as all previous studies assume the

viscous flow on a rigid surface to be either confined or unconfined at all times. Secondly,

the governing equations with additional terms introduced by any cross-stream flow provide

a more general formulation of confined flows, where the channel width can be considered to

vary arbitrarily. Thirdly, experiments conducted on an inclined rigid plane show that the

front of the fluid becomes unstable when it is unconfined (Huppert 1982b) while its stability

is not yet clear when it is confined with a sufficiently small channel width. Laboratory

experiments on an inclined rigid plane with a pair of diverging walls are designed to

investigate the influence of the lateral bounds on any development of instabilities at the

front.

In the next section, a general theoretical formulation for the viscous flow on a sector-

shaped plane is presented. Three dynamical phases generally exist and are identified as

early-time, intermediate and late-time regimes in the subsequent subsections. In section

6.3, the separation of the fluid front from the lateral bounds is investigated with reference

to laboratory experiments by considering the transition to the late-time regime. In section

6.4, the influence of the lateral bounds on the development of a fingering instability at the

front is discussed.
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6.2 Introduction

Figure 6.1: A sketch in the (r, θ) plane of a constant volume of fluid, which flows away from
the point source O and is marked by the shaded region of depth h(r, θ, t) > 0 behind the front
r < rN (θ, t). The bounds are located at θ = ±β and the fall line θ = 0 makes an angle γ to the
horizontal.

6.2.1 Theory

Consider a flat channel with a linearly increasing width down a slope of angle γ to the

horizontal. The side walls meet at angle 2β at the origin and the line of symmetry

corresponds to the fall line. A cylindrical polar coordinate system is adopted so that the

(r,θ) plane represents the bottom surface with the z axis pointing upwards normal to the

plane. The fall line is represented by θ = 0 and the pair of flat boundaries is represented

by θ = ±β. A constant volume of viscous fluid is released instantaneously at the origin.

At any time t > 0, the fluid occupies a depth h(r, θ, t) and reaches an extent rN (θ, t)

down the inclined plane, as shown in figure 6.1. The length scale of the fluid depth

is considered to be much smaller than its extent so that the lubrication approximation

holds. The velocity vector u(r, θ, z, t), satisfies the modified Stokes equation

µ
∂2

∂z2
u = ∇p, (6.1)

where ∇ = ∂/∂r + r−1∂/∂θ is the gradient operator in the (r, θ) plane and p is given by

p = ρg[(h − z) cos γ − r cos θ sin γ]. (6.2)

By imposing the no-slip boundary condition at the rigid boundary z = 0 and the no-stress

condition at the free surface z = h, we determine the velocity profile to be parabolic and
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is given by

u = −∇p 1

2µ
z(2h − z). (6.3)

Note that the no-slip condition u = 0 at the rigid bounds θ = ±β is not satisfied by (6.3).

The velocity profile inside a small inner region near the bounding walls θ = ±β must

have an explicit dependence on θ, which must be solved using the full Stokes equation

rather than (6.1). However, the region must scale in width like the film thickness, which is

assumed to be small compared to the channel width. The scaling follows from the isotropy

of the biharmonic equation satisfied by the stream function of the two-dimensional Stokes

flow. It is therefore adequate to consider the velocity profile to be given by (6.3) throughout

the flow, to leading order.

The volumetric flux Q is defined as the depth-integrated velocity and is given by

Q ≡
∫ h

0
u dz = − g

3ν
h3∇p. (6.4)

By evaluating ∇p using (6.2) and substituting the expression into (6.4), the radial com-

ponent of Q is given by

Qr =
g

3ν
h3[−∂h

∂r
cos γ + cos θ sin γ] (6.5)

and the azimuthal component by

Qθ =
g

3ν
h3[−1

r

∂h

∂θ
cos γ − sin θ sin γ]. (6.6)

The depth averaged equation of mass conservation

∂h

∂t
+ ∇ · Q = 0, (6.7)

where ∇ · Q in cylindrical polar coordinates is

∇ · Q =
1

r

∂

∂r
(rQr) +

1

r

∂

∂θ
(Qθ), (6.8)

becomes

∂h

∂t
+

g

3νr

[

−cos γ
∂

∂r
(rh3 ∂h

∂r
)+cos θ sin γ

∂

∂r
(rh3)− cos γ

r

∂

∂θ
(h3 ∂h

∂θ
)−3h2 sin γ sin θ

∂h

∂θ

]

= 0.

(6.9)

The depth at any point evolves in time according to (6.9) due to four different factors. The

second term of (6.9) corresponds to the radial gradient of the free surface, the third term

the component of gravity in the radial direction, the fourth term the azimuthal gradient

of the free surface and the fifth term the component of gravity in the azimuthal direction.
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6.2 Introduction

Finally, the global conservation of mass is given by

∫ β

−β

∫ rN (θ,t)

0
rh(r, θ, t) drdθ = V (6.10)

and completes the mathematical formulation of the problem. By considering the asymp-

totic balances of (6.9), there exist up to three regimes, which are studied separately in the

following subsections.

6.2.2 Early-time regime

Initially, the depth profile is independent of θ so that h = h(r, t). Any gradient in the free

surface along the azimuthal direction will induce a flow to quickly diminish it. The fourth

and fifth terms of (6.9) are therefore negligible to leading order. In addition, the spatial

gradient of the thickness of the current is initially greater than the slope of the rigid plane.

This means that only the first and second terms of (6.9) balance to give the approximate

evolution equation
∂h

∂t
− g cos γ

3νr

∂

∂r
(rh3 ∂h

∂r
) = 0. (6.11)

The self-similar solution satisfying (6.10) and (6.11) is given by

h(r, t) = (
3

4
)1/4

( V ν

βgt cos γ

)1/4
(1 − r2/r2N )1/3, (6.12)

where rN is independent of θ and is given by

rN (t) = (
4

3
)5/8

(V 3g cos γ

β3ν

)1/8
t1/8. (6.13)

It is worth noting that this solution tends to the solution of an axisymmetric spreading on

a horizontal plane (Huppert, 1982a) in the limit as β → π and γ → 0. The solution holds

in the early-time regime, t≪ T ∗, for some T ∗. The time scale T ∗ corresponds to the time

when flow induced by the gradient of the free surface and the component of gravity in the

radial direction become comparable. This is given by

T ∗ =
ν

gV 1/3

(β cos5 γ

sin8 γ

)1/3
, (6.14)

which is obtained by considering the scaling factors in (6.10) and balancing the second

and third terms of (6.9). In the limit as γ → 0, T ∗ → ∞ by (6.14) so only the early-time

regime is encountered in the limit as the rigid plane approaches the horizontal.
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6 Coating a sector of an inclined plane

6.2.3 Intermediate regime

If the rigid plane is inclined, γ > 0, then the radial gradient of the free surface becomes

less important for all t ≫ T ∗. In addition, if β is sufficiently small with tan β ≪ 1 so

that the channel widens slowly down the plane, then cos θ∂h/∂r ≫ r−1 sin θ∂h/∂θ so the

component of gravity is approximately in the radial direction everywhere. Any significant

azimuthal gradient of the free surface is considered to be diminished at a very short time

scale by the resultant flow and the presence of the lateral bounds. This leaves only the

first and third terms of (6.9) to balance to give

∂h

∂t
+
g sin γ cos θ

3νr

∂

∂r
(rh3) = 0. (6.15)

Note that the depth h depends implicitly on θ through the multiplicative factor of the

second term in (6.15). This dependence is weak, which means that the fluid must continue

to flow in the radial direction to leading order. Furthermore, the depth h must vanish at

O because the flux vector Q and hence Qr in (6.5) must vanish at the source. The self-

similar solution satisfying (6.10) and (6.15) with the condition that the depth h vanishes

at O is given by

h(r, θ, t) = (
9

20
)1/5

( V ν2

βg2t2 sin2 γ cos2 θ

)1/5
(r/rN )1/2, (6.16)

where rN is given by

rN (θ, t) = (
125

48
)1/5

(V 2g sin γ cos θ

β2ν

)1/5
t1/5. (6.17)

The agreement between theory and experimental data in figure 6.2 shows that the overall

structure of the flow is given by (6.16) and (6.17), suggesting that the neglected details

at the front or near the walls do not play an important role. The solution (6.16) can be

substituted into (6.9) to justify the earlier assumptions that the second, fourth and fifth

terms of (6.9) are relatively small in the intermediate region T ∗ ≪ t ≪ T ∗∗. The time

scale T ∗∗ is that at which the third and fourth terms of (6.9) become comparable and is

given by

T ∗∗ =
ν

gV 1/3β3

(cos5 γ

sin8 γ

)1/3
. (6.18)

It can be verified using the forms of the two time scales in (6.14) and (6.18) that the

intermediate regime exists when tan β ≪ 1.
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Figure 6.2: A plot of the non-dimensional flow extent rN (0, t)/L against non-dimensional time

t/T ∗∗, where L = (V/ tan γ)1/3β−1 and T ∗∗ is given by (6.18). Experimental data for each run
using a different set of V , γ and ν are marked in different symbols and appear to collapse together
on the theoretical line given by (6.17) for t < T ∗∗ as expected. Polygonal symbols correspond to
experiments on a gentle slope tan γ = 0.069 while dots and crosses correspond to experiments on a
steep slope tan γ = 0.64. The early time regime t < T ∗ is too short to appear in the figure. The late
time regime in which (6.17) no longer holds is shown by the experimental data points that slowly
divert away from the solid line after t > T ∗∗ in the figure.
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Figure 6.3: Extent of the flow along the confining walls where the fluid appears to separate from
the walls, plotted against the right hand side of (6.21). All units are in metres. Data of experiments
conducted on gentle (tan γ = 0.069) and steep (tan γ = 0.64) inclines are shown to fit reasonably
well with the theoretical line of slope 0.6. V varied from 350 to 770 cm3 and β = π/18 was fixed.
The error bars represent typical variations in the flow extent along the walls.

6.2.4 Late-time regime

Effects due to the component of gravity down the slope and the lateral gradient of the

free surface become comparable in the late-time regime t ≫ T ∗∗. The fluid has spread

sufficiently far away from the source that only a small region near the source is in contact

with the walls. The small influence of the lateral bounds can be neglected. As t→ ∞, the

limiting form of (6.9) is identical to the late-time behaviour of viscous spreading down an

unconfined slope from a point source (Lister 1992). The results are that

rN (θ = 0, t) ∼
(V 4g3 sin8 γ

ν3 cos3 γ

)1/9
t1/3 (6.19)

and the maximal extent of the fluid away from the fall line θ = 0 scales like (V/ tan γ)1/3

(Lister 1992). The dependence on β and the confinement near the source is lost as the

majority of the flow becomes unconfined. These results hold in the late-time regime up

until a fingering instability develops at the leading front of the flow.
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6.3 Transition from confined to unconfined flow

Figure 6.4: A sketch in the (r, θ) plane of the region whose width of the bounds is fully occupied
(r < rS(t)) and partially occupied (rS(t) < r < rN (0, t)).

6.3 Transition from confined to unconfined flow

Laboratory experiments were conducted to investigate the transition from confined to

unconfined flow. A constant volume of glycerine was released rapidly down a 2m channel

of slowly increasing width, where β = π/18. The volume of the fluid and the angle

of inclination of the channel were varied systematically. The leading edge of the bulk

structure flowing down the centreline of the channel and along the confining walls was

measured at different times.

The experiments show that the front of the fluid eventually separates from the bounds.

This means that the flow front rN (θ, t), whose extent does not depend on θ initially,

deforms such that rN (β, t) < rN (0, t) as shown in figure 6.4. The flow extent along the

sides, denoted by rS(t) ≡ rN (β, t), continues to grow with time but much more slowly

than rN (0, t), the flow extent along the fall line.

A scaling analysis indicates that the flow front begins to deform significantly during the

transition from the intermediate to the late-time regime. The difference between rN (0, t)

and rN (β, t) is identically 0 during the early-time regime and is of order β2 by (6.17)

and hence negligible during the intermediate regime. At some time tS ∼ T ∗∗, however,

the azimuthal flow can no longer be neglected. This is when the spreading due to the

component of gravity down the slope and the cross-slope gradient of the free surface
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6 Coating a sector of an inclined plane

become comparable. The depth evolves according to

∂h

∂t
+

g

3νr

[

cos θ sin γ
∂

∂r
(rh3) − cos γ

r

∂

∂θ

(

h3 ∂h

∂θ

)]

= 0, (6.20)

which is obtained by keeping the first, third and fourth terms of (6.9). There is now

an explicit dependence of the depth profile h and the frontal extent rN on θ. As a

result, a significant qualitative change in the shape of the fluid-air interface at the front is

encountered for the first time. This naturally gives rise to a separation point whose radial

extent r = rS(t) is well behind the flow extent rN (0, t) along θ = 0. By considering the

scaling factors of (6.10) and (6.20), we determine the radial extent at which the transition

to the late-time regime occurs to scale like

rS(tS) ∼ (V/ tan γ)1/3 /β. (6.21)

The constant of proportionality is estimated to be approximately 0.6 using sets of experi-

mental data, which are plotted in figure 6.3. The linear relationship between rS(tS) and

(V/ tan γ)1/3/β is consistent with the scaling relationship (6.21). The exact evolution of

rS , which extends much more slowly than the extent of the flow down the centreline of

the inclined plane, is not pursued any further here.

6.4 Fingering instability at the front

Laboratory experiments show that for a fixed volume of fluid, the front of the current

ultimately develops a fingering instability and forms one or a series of rivulets extending

down the slope. The fingering instability in all experiments occurred at time t > T ∗∗, after

the front had separated from the walls. The characteristic wavelength of the instability is

discussed below.

The extent r = rI at which the front first develops an instability might possibly depend

on one or a combination of V , g/ν, β and tan γ, the only parameters appearing in the

formulation of the problem. By dimensional analysis, rI must be proportional to V 1/3 as

it is the only way of constructing a length scale that does not depend on time. In addition,

the wavelength of the instability at the front must have a characteristic length scale λ that

may depend on the surface tension T but is independent of ν (Huppert 1982b). A scaling

analysis of (6.9), incorporating effects due to surface tension, offers an order-of-magnitude

estimate of λ. The analysis is similar to that performed for the fingering instability of

thin films on a cylinder and sphere (Takagi & Huppert, 2010). Further work is required

to investigate effects on the fingering instability due to the curved front of the bulk flow.

Unlike the spreading on a cylinder or sphere, where the fluid is initially uniform across the
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6.5 Conclusion

flow, the curved front of the current down a sector-shaped plane may influence the onset

and the wavelength of the instability.

6.5 Conclusion

A constant volume of fluid, released on a sector-shaped plane, evolves in three different

regimes. In the early-time regime t ≪ T ∗, the front spreads away from the source and

the flow extent scales with time like t1/8. In the intermediate regime T ∗ ≪ t ≪ T ∗∗, the

current continues to spread predominantly radially and the flow extent scales like t1/5. In

the late-time regime t ≫ T ∗∗, the leading edge of the fluid has separated from the walls

and its extent scales like t1/3 down the slope. The separation occurs when the flow extends

a distance, which is proportional to V 1/3 and independent of ν.
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Chapter 7

Steady granular flow confined by levees down

a rough inclined plane

7.1 Abstract

Laboratory experiments of sand flowing steadily on a rough inclined plane are reported and

discussed. A dense granular flow between static levees develops down the plane and reaches

a steady state, which is attained more rapidly if the plane is initially covered in sand to a

thickness hstop. The characteristic width of the bulk flow increases linearly with the mass

flow rate, which does not appreciably affect the maximal thickness or surface velocity at

large times. We propose a simple model which is consistent with our observations. The

decrease in thickness toward the margins of the flow and the existence of a minimum flow

rate of steady flow are discussed. The flow features of sand are different from those of

spherical beads which ultimately become unstable, indicating that the shape of grains

plays an important role in shallow granular flows.
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7 Steady granular flow confined by levees down a rough inclined plane

7.2 Introduction

Granular materials can flow in a wide range of geophysical situations, on the Earth and

on Mars, and in industrial settings. Examples include landslides, ice streams, pyroclastic

flows and pill dispensers. To gain a better understanding of these forms of motion, dense

granular flows have been studied extensively in recent years (GDRMiDi, 2004; Forterre &

Pouliquen, 2008). Many experiments have contributed to the development of a continuum

theory of granular dynamics (Jop et al., 2006), but this is not anywhere near complete.

For steady flow down a rough plane inclined at a range of intermediate angles (Azanza

et al., 1999; Forterre & Pouliquen, 2003; Pouliquen, 1999; Silbert et al., 2001; Börzsönyi

& Ecke, 2007), the theory predicts

U√
gh

= α+ β
h

hstop
, (7.1)

where U is the depth-averaged velocity, h is the flow depth, hstop is the thickness of

the layer that naturally deposits on the incline when the flow stops, g is gravitational

acceleration and α and β are dimensionless parameters. However, this theory and most

others (Goldhirsch, 2003; Jenkins, 2006) do not accurately describe how shallow layers with

thickness close to hstop can be either static or flowing. Open problems remain in addressing

nonlocal effects which play a role in shallow layers close to jamming (Rajchenbach, 2003;

Aranson et al., 2008; Pouliquen & Forterre, 2009), a phenomenon exhibited similarly

by yield stress fluids (Coussot et al., 1996; Balmforth et al., 2002). Shallow granular

flows must be better understood in order to conduct hazard analysis by predicting paths

of natural flows, which are often close in thickness to hstop as they spread out over an

open slope (McDonald & Anderson, 1996; Félix & Thomas, 2004; Deboeuf et al., 2006;

Mangeney et al., 2007a).

Previous experiments showed that spherical beads released steadily on a rough incline

develop a thin flowing layer with nearly static margins (Félix & Thomas, 2004). Further

experiments showed that the flow gradually becomes thinner and wider in time (Deboeuf

et al., 2006). The authors of this paper claimed that the structure of the flow approaches

a steady state. However, we conducted similar experiments, but for longer periods, by

releasing spherical beads of diameter 0.35 ± 0.05mm at a rate of 4.6–21.0 g/s on rough

slopes of 24–26 degrees, and discovered that the margins of the flow eventually become

unstable, leading to considerable spatiotemporal variations in the flowing structure after a

typical time of 70–90 minutes. The instability is not observed when the beads are replaced

with the more generic material of non-spherical grains of sand, as reported here, indicating

that the shape of grains plays an important role in shallow granular flows.
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Figure 7.1: Schematic of the experiment. Sand in the hopper is released onto the V-shaped foam
and flows down the rough inclined plane. The bulk layer of the resultant flow has thickness h,
width w, and surface velocity u, confined by static layers of sand of thickness hstop. The angle of
inclination of the plane θ = 32o is fixed and the steady mass flow rate Q is chosen within a wide
range.
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7 Steady granular flow confined by levees down a rough inclined plane

7.3 Method

We have carried out laboratory experiments to investigate sand flowing down an open and

rough incline (figure 7.1). The sand consisted of non-spherical grains of mean diameter

0.45± 0.15mm and was glued on the incline to form a rough surface. The incline was 3m

long and 1m wide, which was wider than any of the flows in our experiments. The incline

was fixed at an angle of 32◦ to the horizontal because this produces steady flows confined by

levees over approximately the widest range of flow rates. Our preliminary study of steady

flows provides a foundation for future studies of intermittent avalanches (Börzsönyi et al.,

2008) and roll waves (Forterre & Pouliquen, 2003), which develop on gentler and steeper

slopes respectively. The experiments were initiated in two different ways. In one set of

experiments the incline was initially free of sand. In another set of experiments the incline

was covered in an erodible layer of uniform thickness hstop ≈ 4.5mm. The static layer

was set up before each run by releasing sand steadily onto the incline until the flow was

uniform and then abruptly stopping the flow, a technique adopted previously (Pouliquen,

1999).

A perspex cylindrical hopper of diameter 250mm and height 700mm was used to supply

the sand. The bottom of the hopper was connected to a cone which fed the sand into a

smooth pipe of diameter 30mm. A control valve could be screwed across the pipe to

control the mass flow rate Q to lie between 5 and 218 g s−1, with a repeatability better

than ±2 g s−1. Steady flows could be maintained indefinitely by transferring the sand that

flowed off the inclined plane back into the hopper. Below the control valve the sand fell

freely down a tube onto a block of foam on the inclined surface. There was a ‘V’-shaped

groove cut into the middle of the foam to produce a point-like source of grains so that the

only length scale was set by the flow rate. The foam was highly inelastic and absorbed

the energy of the impacting grains so as to produce a dense flow from the source.

All measurements of the flow were taken approximately 2m down the incline, where

the flow was fully developed. This was verified by mounting instruments on a traverse

and checking that measurements at other positions did not vary. The flow thickness was

measured to an accuracy of ±0.1mm at 1 000Hz using a laser triangulator (Micro-Epsilon

LLT2800–100 2D Laser displacement measuring system). This could only measure the

thickness over ≈ 130mm of the flow so for wider flows it was positioned to observe one

edge rather than the whole flow. Surface velocities were measured to an accuracy of

±0.3mm s−1 with a high-speed camera (Photron SA1 5 400 fps, 1024 × 1024 pixels, 12 bit

ADC) using PIV (Dalziel, 2003). The cross-slope thickness and velocity profiles were

averaged over 30 seconds to reduce statistical fluctuations.
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Figure 7.2: Thickness and surface velocity of sand 2 m down a rough incline, which is initially
free of sand. Both the characteristic thickness and surface velocity decrease slowly with time until
a steady state is reached.

7.4 Results

Our results show that steady flows develop for mass flow rates ranging between 31 and

218 g s−1. For flow rates below Qc = 20 ± 10 g s−1 steady flows are not obtained; instead,

avalanches are triggered nearly periodically. Here we examine steady flows, though we

discuss the implications of the unsteady system at small flow rates in the conclusion.

Temporal evolutions of the thickness and the surface velocity across the flow with Q =

50g s−1 for an experiment initiated without erodible grains on the incline are shown in

figure 7.2. There is a gradual decrease in height and velocity once the initial flow front has

passed the measurement point. Note that the curves at 30 and 40 minutes in figure 7.2

overlay each other, indicating that the system has reached an approximately steady state.

We verified by conducting experiments for over two hours that both the thickness and

width of the flow tend to constant values with time.

Figure 7.3 shows the corresponding results of another run initiated differently by covering

the incline to a thickness hstop and maintaining the same flow rate as before. The flow

attains a steady state more quickly, as indicated by the coinciding curves at 12 and 20

minutes. Figure 7.4 shows that the steady velocity profiles coincide with the previous

case, indicating that the long-time steady state is independent of the initial conditions on

the incline. The remaining discussion is based on measurements of steady flow, obtained

more quickly by initially covering the incline with sand of thickness hstop.
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Figure 7.3: Thickness and surface velocity of sand 2 m down a rough incline initially covered
with a static, erodible layer of thickness hstop. Minimal variations with time indicate that the flow
quickly reaches a steady state.
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Figure 7.4: Steady surface velocity profiles in the long-time limit on a rough incline, covered
initially with no sand (h0 = 0) and with an erodible layer of sand (h0 = hstop). The mass flow
rate is Q = 50 g/s in both experiments.
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Figure 7.5: Characteristic width of the flowing region with non-zero velocity (squares) and surface
velocity greater than half the maximal velocity attained at the center of the flow (circles), plotted
against the mass flow rate. Each line of best fit is extrapolated to Q = 0.
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Figure 7.6: Maximal thickness and surface velocity of steadily flowing sand as functions of the
mass flow rate, Q.

89



7 Steady granular flow confined by levees down a rough inclined plane

0 10 20 30 40 50
0

50

100

150

200

 

 

50 g/s
75 g/s
104 g/s
139 g/s
218 g/s

u
(m

m
/s

)

y +w/2 (mm)

Figure 7.7: Surface velocity profiles across the slope near one margin of the flowing layer for
different mass flow rates.

Steady flows obtained at different flow rates all feature a central region of approximately

constant thickness and a pair of margins where the thickness decreases to hstop. The central

region is characterized by its width w, maximal thickness h and surface velocity attained

at the center of the flow u. The width of the flow increases linearly with the mass flow rate

as shown in figure 7.5, where w is defined as the width of the region with surface velocity

greater than one half of its maximum attained at the center. We have considered other

definitions of the width, including the width of the region of non-zero velocity (Deboeuf

et al., 2006), which changes the intercept w0 but gives the same slope as shown by the

approximately parallel lines of best fit in figure 7.5. The error bars are comparable to

both the size of the symbols and the linear norms of residuals of the two fitting lines,

12–13mm. The thickness of the central flow is independent of the flow rate and shows no

systematic deviation, as shown in figure 7.6. In contrast to the observations and theory

of (Deboeuf et al., 2006), the bulk region of the flowing layer in all our experiments is flat

with a maximal thickness of 8.3 ± 0.4mm, which is greater than, but the same order of

magnitude as, hstop ≈ 4.5mm. The surface velocity increases weakly with the flow rate

and appears to approach a finite limit as Q → ∞, as shown in figure 7.6. There is a

relatively large change between Q = 31 and Q = 50g s−1 but from here to Q = 218 g s−1,

a 430% increase in mass flow rate, the velocity only increases from 158 to 200mm s−1,

a 26% increase. The increase in velocity with increasing mass flow rate, without any

change in the flow depth, is attributed to the reduced influence of lateral stresses as h/w

decreases. The surface velocity varies strongly at the margins and weakly in the central

region, suggesting that lateral stresses are most important at the margins, but also play
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a role in the center of the flow even at a small aspect ratio of 1/20. Lateral variations

in the surface velocity toward one margin of the flow for different flow rates are shown in

figure 7.7. The approximate collapse of the velocity profiles suggests that the margins of

the flowing layer are independent of the mass flow rate. Note that the length scale of the

margins is comparable in order of magnitude to w0.

7.5 Discussion

We propose a simple model that incorporates all our observations. In the central region

of the bulk flow, any lateral variation in the layer thickness would be reduced by a cross-

stream flow driven by an induced pressure gradient. Given that the long-time steady flow

must be in lateral force balance, and that the central region is yielded and behaves like a

fluid, the layer thickness becomes flat over time sufficiently far downstream, as shown for

|y| < 20mm in figure 7.3. The layer thickness is governed by the details at the margins,

which are independent of the flow width for sufficiently wide flows (figure 7.7). The central

region of wide flows has the same constant height h, depth-averaged velocity U and density

ρ, independent of the flow rate Q, in agreement with figure 7.6. An increase in the flow

rate results predominantly in an increase in the flow width described by

Q = (w − w0)q, (7.2)

where q = ρhU is the mass flow rate per unit cross-stream width and w0 can be interpreted

as a correction in the flow width due to the margins. The flow width increases linearly

with the mass flow rate Q because w0 and q depend on the grain and incline properties

but not on Q. The agreement of this model with our experiments is shown by the linear

relationships in figure 7.5.

The model of Deboeuf et al. (2006) has a constant aspect ratio γ = h/w independent of

the mass flow rate, which does not agree with our experimental results. The assumption

of a constant aspect ratio and a scaling analysis of the flow rule (7.1) imply that w scales

like either Q2/5 or Q2/7 for small or large Q respectively. This is inconsistent with the

linear relationship between w and Q (figure 7.5). In addition, the model of Deboeuf et al.

(2006) predicts the flow thickness to increase arbitrarily as the flow rate is increased. This

could not be in a steady state because a lateral flow would be driven by the much greater

hydrostatic pressure under the middle of the flow.

The central region of steady flows has constant thickness and is bounded by regions

of constant width, where the thickness and the surface velocity decrease considerably

toward the margins (figure 7.7). If the region near the margins were behaving like a fluid,
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7 Steady granular flow confined by levees down a rough inclined plane

then grains would flow down the height gradient and this could only be in steady state

if there were recirculating eddies within the flow, though we have no evidence of this.

If the region were plug-like, then static stresses would balance the height gradient but

this appears incompatible with the surface shear (figure 7.3). A possible mechanism for

balancing the lateral pressure gradient is attributed to a non-zero value in the second

normal stress difference, σyy − σzz, where σ is the stress tensor (Tanner, 1970). A closer

inspection is needed to understand the structure of the margin and its stability. We

speculate that shallow flows of glass beads are unstable because they are subcritical,

meaning that disturbances move faster than the beads on the surface and hence can

propagate upstream (Börzsönyi et al., 2008). In contrast, sand flows reported here are

supercritical, suggesting that any perturbation of the flow margins decays by the arrival

of fresh sand.

The margins play an important role particularly for narrow streams, which are retarded

considerably by lateral stresses, as shown for Q = 31g/s in figure 7.6. There is a minimum

mass flow rate for steady flow, which suggests that there is a minimum width of the flow and

a minimum mass flux per unit cross-stream width. The minimum width exists because a

stream of insufficient width would be unable to flow by overcoming lateral stresses exerted

by static margins. We conclude that steady flows have a minimum flow rate and that our

simple model describes shallow flows with flow rates greater than this minimum.
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Chapter 8

Avalanches triggered at regular intervals

from a steady source

8.1 Abstract

An avalanche involves the flow of granular material down a slope. Laboratory experiments

are reported to show how a steady mass flux of sand from a point source can trigger

avalanches down a rough inclined plane. The avalanches occur at regular intervals when

the rate of supply is just below the minimum rate required for steady flow. For lower flow

rates, the avalanches occur at irregular intervals. The regular avalanches maintain their

shape, size and speed down the slope, that is they behave like three-dimensional solitons.

We discuss the challenges associated with the mathematical treatment of the granular

dynamics.

8.2 Introduction

There are numerous natural hazards featuring the flow of granular materials on moun-

tainous terrain. Examples include rockfalls, snow avalanches (Hopfinger, 1983) and debris
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8 Avalanches triggered at regular intervals from a steady source

flows (Davies, 1986). These natural flows have the potential to destroy everything along

their path; and therefore they are a serious danger to life and infrastructure on mountains.

A continuous stream often develops into a succession of waves of higher speeds and masses,

which can be particularly destructive. In order to conduct hazard analysis and protect

inhabited areas, for example by diverting the descending waves with barriers (Cui et al.,

2007; Hákonardóttir et al., 2003), the size and speed of the waves must be predicted. This

requires a quantitative understanding of dense granular flows (GDRMiDi, 2004). However,

they are not well understood, especially in shallow layers, where flowing and static regions

simultaneously exist.

Laboratory experiments have been conducted using cohesionless grains to study sur-

face waves on shallow granular flows. Avalanches triggered suddenly on different surfaces,

including a horizontal plane (Lajeunesse et al., 2004; Lube et al., 2004), a curved slope

(Savage & Hutter, 1991; Gray et al., 1999; Davies & Mcsaveney, 1999) and an erodible

granular layer on a rough inclined plane (Daerr, 2001), have provided insight into the dy-

namics of avalanches from initiation to termination. A steady release of granular material

may also result in the development of avalanches down a rough inclined plane. On gentle

slopes, avalanches are triggered intermittently from the source (Lemieux & Durian, 2000;

Tischer et al., 2001; Félix & Thomas, 2004), when the rate of supply is below a critical

value, which is examined below. On steeper slopes, longitudinal (Prasad et al., 2000;

Forterre & Pouliquen, 2003) and transverse (Malloggi et al., 2006) instabilities develop on

the flowing surface and produce avalanches down the plane. Although some wave phenom-

ena are partly described by continuum models of granular flows (Savage & Hutter, 1989;

Aranson & Tsimring, 2001; Turnbull et al., 2007), it remains a challenge to understand

how avalanches can continue propagating and cause severe damage along their path.

Recent experiments (Börzsönyi et al., 2005; 2008) and numerical simulations (Mangeney

et al., 2007b) suggest that avalanches may travel steadily on an erodible layer down a

rough inclined plane. The previous experiments were conducted by supplying grains at

a constant rate evenly along the top of an inclined plane of length 220 cm and width

40 cm. Avalanches of sand with different sizes initiate intermittently and travel steadily

downstream.

We report experiments here which show that avalanches of similar size can be triggered

at regular intervals by releasing sand from a point source down the slope at some steady

rates. In contrast to the release of grains on a horizontal surface, which results in a broad

distribution of avalanche sizes on a granular heap (Abate et al., 2007), the release on a

rough slope within a range of slope angles can produce avalanches of approximately con-

stant size. We discuss why the resultant flow remains a challenge to describe theoretically.
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8.3 Laboratory experiments

8.3 Laboratory experiments

8.3.1 Method

Experiments were carried out on a plane of length 3m and width 1m (figure 8.1). A layer

of sand with mean size 0.45±0.15mm was glued on the plane to form a rough surface. The

rough plane was supported by an aluminium framework and could be inclined by a pulley

system. The inclination angle to the horizontal was measured by a digital inclinometer

with an accuracy of 0.1◦.

The same sand was supplied steadily at the top end of the inclined plane. A hopper

of sand was connected at the bottom to a smooth pipe with a screw mechanism, which

controlled the mass flow rate ranging from 5 to 218±2 g/s. The pipe extended down to a

V-shaped block of foam, which allowed the sand to flow down the inclined plane effectively

from a point source.

The thickness of the resultant flow of sand was measured by a laser triangulator system

at different positions down the inclined plane. Thickness profiles, consisting of 1024 data

points along ≈ 130mm of the centreline of the flow, were recorded every 0.04 seconds.

Sand falling off the bottom end of the plane was transferred back into the hopper.

8.3.2 Results

Different types of flow arise at large times depending on the angle of inclination of the

rough plane and the mass flow rate (figure 8.2). The main possible regimes are sketched

in figure 8.3. The flow is dilute on steep slopes with angle greater than approximately

38 degrees. On more gentle slopes, dense granular flows develop in a shallow layer. On

slopes ranging in angle between approximately 33 and 38 degrees, the flow is dense and

unsteady because roll waves develop on the flowing surface (Forterre & Pouliquen, 2003),

which can result in avalanches far downstream. On any slope ranging in angle between 31

and 33 degrees, the flow is dense and steady provided that the flow rate is above a critical

value. The minimum flow rate required for steady flow increases sharply as the slope angle

is reduced. When the flow rate is lower than and close to this minimum, avalanches are

triggered at regular intervals, which are examined further in this section.

The current investigation provides a foundation for studying the more complicated

regime of avalanches which are triggered at irregular intervals when the flow rate is fur-

ther reduced or when the rough plane is less inclined. At flow rates far below the critical

rate required for steady flow, most avalanches eventually stop and form a thick erodible

95



Figure 8.1: Photograph of the experimental configuration. The rough inclined plane is supported
by an aluminium structure.
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Figure 8.2: Regime diagram showing the different types of flow as a result of a supply at a steady
rate Q down a rough plane inclined at an angle θ to the horizontal. Avalanches are triggered at
regular or irregular intervals down gentle slopes with θ < 33 degrees when the flow rate is small.
At larger flow rates, dense granular flow develops and remains steady. On steeper slopes, the dense
flow becomes unsteady downstream as roll waves develop.

Figure 8.3: A sketch of the salient regimes in figure 8.2. The regime of regular avalanches, as
investigated here, marks the boundary between irregular avalanches and dense steady flow.
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Figure 8.4: The thickness of the deposit on the rough plane, scaled by the mean size of individual
grains (d ≈ 0.45 mm), as a function of the slope of the plane. The line is given by (8.1) with
a = 0.48 and θ1 = 30.1◦.

layer down the slope. Subsequent avalanches stop closer to the source until a massive

avalanche is triggered, eroding the thick layer and reaching the end of the slope. Although

this unsteady system may eventually reach a time-periodic state, avalanches are initially

triggered at irregular intervals. We instead examine a simpler time-periodic state which

arises when sand is supplied at a rate close to and below the critical rate required for

steady flow.

Pulses of avalanches are triggered at approximately regular intervals in the following

manner. First, a relatively deep pile of sand grows near the source. After some time, an

avalanche is triggered and propagates down the incline in a solitary wave. The avalanche

leaves behind a layer of deposit at rest and erodes any static layer ahead of the front. The

avalanche comes to a halt when there is no more erodible layer of sand ahead of the flow.

In this manner, an erodible layer of static sand is produced and extends down the incline.

Successive avalanches are triggered and propagate down the incline on the erodible layer,

produced by the deposit of earlier avalanches.

The thickness of the deposit is related to the following phenomenon. When the supply

of grains required for steady flow down a slope is turned off, the flow gradually stops and

deposits a layer on the inclined plane. The thickness of the final deposited layer depends

on the angle of inclination of the plane as shown in figure 8.4. The thickness for the
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Figure 8.5: A plot of the mean thickness of the layer of sand 2 m down the incline from the
source, averaged over half-second intervals near the beginning of an experiment with q = 16 g/s
and θ = 32◦. Time begins from the moment when the first avalanche reaches the 2 m mark. The
local maxima are represented by circles and correspond to the arrival of avalanches. Note that the
minimum thicknesses are greater than hstopduring the transient phase.

moderate range of inclination angles, bounded by approximately 31 and 39 degrees, is well

described by a curve of the form (Börzsönyi et al., 2008)

hstop

d
=

a

tan θ − tan θ1
, (8.1)

where a = 0.48 and θ1 = 30.1◦ are dimensionless parameters. A layer of thickness less than

hstop is unable to flow. We discuss later how hstop, which characterises the roughness and

the slope of the inclined plane, appears in the condition for regular avalanches to develop.

The intervals in time between the arrival of successive avalanches can be computed

readily by measuring the thickness of sand down the inclined plane. A representative

set of results is presented for sand released at q = 16g/s down a 32◦ slope. Figure 8.5

shows an evolution of the mean thickness of the layer of sand 2 m down the slope. The

local maxima are represented by circles and correspond to the arrival of avalanches. The

local minima correspond to the static layer that is deposited following the passage of

avalanches. The mean and standard deviation of twenty intervals in time between the

arrival of successive avalanches are shown in figure 8.6. The intervals decrease slowly with

time until approximately 50 minutes into the experiment. The intervals remain close to
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Figure 8.6: The time interval between the arrival of successive avalanches plotted against time.
Each data point is the mean period of twenty successive avalanches. The error bars show the
standard deviation of the period of the same twenty avalanches. After approximately 50 minutes,
the period remains close to 11.5 seconds, as marked by the horizontal line. This indicates that
avalanches arrive at regular intervals in the long-time limit.
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Figure 8.7: Period of avalanches triggered at regular intervals increases with hstop. This means
that the interval between successive avalanches is longer down a more gentle slope.

11.5 seconds subsequently, indicating that avalanches arrive at regular intervals in the long

time limit.

The regular interval between successive avalanches at large times increases on a gentler

slope, which is associated with an increase in hstop, as shown in figure 8.7. Moreover, an

increase in hstop increases the minimum flow rate required for steady flow as shown in

figure 8.8. This means that the mass of grains in each avalanche, which is the product

of the interval and the steady rate of supply at the source, increases sharply with hstop.

Avalanches initiated at regular intervals are more massive and occur less frequently on

more gentle slopes.

The shape, size and speed of an avalanche are computed from thickness profiles at

successive times which are translated steadily along the slope. The translation speed c

and the mean thickness profile f are obtained by minimising a measure of deviations of

the translated profiles,
∑

i

∑

j

[h(xi, tj) − f(xi − ctj)]
2, (8.2)

where h represents data recorded at discrete positions xi and times tj. The speed corre-

sponds to the wave speed of avalanches, based on the assumption that avalanches retain

their shape and size as they travel steadily, as verified below. The computed speeds

are consistent with images captured by a high-speed camera, which offers an alternative

method of computing the speed of avalanches.
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Figure 8.8: The minimum flow rate required for steady flow is estimated by (8.6), where the
constant of proportionality k ≈ 3.

−200 0 200 400 600 800
0

2

4

6

8

10

12

 

 

x (mm)

z
(m

m
)

Mean data

Margins of error

Figure 8.9: Thickness profile of an avalanche 2m down a 32◦ slope. The margins of error of the
experimental data represent one standard deviation about the mean profile due to fluctuations in
the flow.
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Figure 8.10: Thickness profiles of five successive avalanches 2m down a 32◦ slope. The overlap
of the mean profiles suggests that the successive avalanches have the same shape and size.
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Figure 8.11: Dimensional thickness profile of representative avalanches at 0.5m, 1.0m, 1.5m
and 2.0m down a 32◦ slope. The horizontal length is scaled by L ≈ 700 mm and the vertical length
is scaled by hstop ≈ 4.5 mm. The mean profiles almost overlap, suggesting that avalanches retain
their shape and size as they propagate downstream.
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Figure 8.12: Mean and standard deviation of the wave speed of ten representative avalanches at
different extents down a 32◦ slope. The speed of each avalanche remains approximately constant
during the course of its propagation. Variations in the wave speed are smaller closer to the source.

The shape and size of avalanches are presented in the representative case of sand supplied

at a rate of q = 16g/s down a 32◦ slope. The thickness profile of a representative avalanche

2m down the slope is shown in figure 8.9. The thickness increases sharply at the front

and decreases gently towards the back of the wave. The margins of error are attributed to

flow fluctuations, which are represented by one standard deviation above and below the

mean curve. Figure 8.10 shows the thickness profile of five successive avalanches, which

collapse with errors comparable to the flow fluctuations. This indicates that avalanches

of similar shape and size travel down the slope. Figure 8.11 shows the thickness profile of

representative avalanches at different extents down the slope. The profiles indicate that

avalanches do not change appreciably in shape or size as they travel down the slope. The

speed of wave propagation is approximately constant as indicated by figure 8.12.

The dimensionless wave speed is plotted against the maximal thickness attained near

the front of avalanches on different slopes in figure 8.13. The wave speed c is scaled by
√

ghstop cos θ and the maximal thickness hf by hstop. Avalanches initiated at regular

intervals from a point source down different slopes with θ ranging between 31 and 32.5

degrees, as investigated here, have approximately constant wave speed, c = 0.6 ± 0.1.

These avalanches are generally slower in speed and closer in thickness to hstop than the

avalanches triggered from a steady line source on steeper slopes with θ ranging between

32 and 41 degrees (Börzsönyi et al., 2005).
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Figure 8.13: Dimensionless wave speed plotted against dimensionless thickness of the wave front.
Symbols with horizontal error bars represent the mean speed of several avalanches initiated at regular
intervals from a point source down a slope with angle 31.0◦ (©), 31.5◦ (△), 32.0◦ (2) and 32.5◦

(⋆). Vertical error bars are shorter than the size of the symbols. Crosses represent avalanches
initiated at irregular intervals from a line source on slopes ranging between 32 and 41 degrees,
reproduced from figure 2b of Börzsönyi et al. (2005).

8.4 Discussion

Simple ideas are developed below to estimate the condition for avalanches to be triggered

at regular intervals from a steady source, as observed in the experiments. We then discuss

some challenges associated with the mathematical treatment of the dynamics of avalanches.

The granular flows considered here pose theoretical challenges partly because the thick-

ness of the flows is not much greater than hstop. Shallow granular flows are not as well

understood as deep flows where the thickness is much greater than hstop. For h ≫ hstop,

the depth-averaged velocity u of the flow is given by the empirical flow rule

u√
gh

= α+ β
h

hstop
, (8.3)

where α and β are dimensionless parameters which depend on the granular material

(Pouliquen, 1999). Materials commonly used in the laboratory are sand (α = −0.77,

β = 0.65) and glass beads (α = 0, β = 0.14) (Forterre & Pouliquen, 2003). Shallow

granular flows including avalanches, which are confined by static margins as they develop

down open slopes, have thickness comparable by order of magnitude to hstop and are not

described by (8.3).
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8 Avalanches triggered at regular intervals from a steady source

In order to study the flow rates resulting in avalanches at regular intervals, we consider

the minimum flow rate required for steady flow. When the flow rate is far above this

minimum, a steady flow develops with thickness h much smaller than the width w of the

flow down the inclined plane. The flow is sheared predominantly across its thickness and

remains steady down the slope. At larger flow rates, the thickness h remains comparable

by order of magnitude to hstop, which is written as h ∼ hstop. The dominant length scale

of the system is hstop. The other physical quantities with dimensional units are gravity g

and the mass flow rate Q, which primarily changes the width of the flow only. It follows

by dimensional analysis that a suitable scale for the downstream velocity is given by

u ∼
√

ghstop. (8.4)

By mass conservation, the mass flow rate

Q ∼ ρuwhstop, (8.5)

where ρ ≈ 1.5 kg/m3 is the density of sand. The condition for steady flow is w ≫ hstop,

which is equivalent to Q≫ Qc, where

Qc ∼ ρg1/2h
5/2
stop (8.6)

is obtained by combining (8.4) and (8.5). Below this critical flow rate, it is not possible to

sustain a steady flow with comparable width and thickness. Such a flow would be resisted

by lateral stresses and eventually stop. Instead, avalanches are triggered when a sufficient

mass of grains accumulates near the source. Figure 8.8 shows that (8.6) is consistent with

experiments.

There are some aspects of the experiments which are not fully understood. A feature

of the avalanches triggered at regular intervals is that the dimensionless wave speed is

constant on different slopes. Unlike avalanches triggered intermittently from a line source,

the avalanches triggered at regular intervals from a point source vary in dimensionless

thickness but not in dimensional speed as the slope angle θ changes. The maximal thickness

attained near the front of the wave is hf = γhstop, where γ = 1.9 ± 0.5 depends on θ

as shown in figure 8.13. This means that avalanches have an explicit dependence on θ

in addition to the implicit dependence through hstop, which is further evidence that a

relation like (8.3) fails for shallow flows. The function γ(θ) is not monotonic and not

well understood. Another feature of the avalanches is that they travel steadily like three-

dimensional solitons, retaining their shape and size. Dispersive effects due to down-slope

variations in thickness may be countered by nonlinear effects due to wave steepening.

However, it is surprising that cross-slope variations in thickness, which would cause fluids
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to disperse across the main flow, do not cause the avalanche to spread laterally and evolve

downstream. This may relate to the possibility for steady granular flows at larger flow

rates to feature lateral variations in thickness near the margins.

Further insight into the experimental observations could be gained by the development of

a mathematical model of avalanches, but this is far from straightforward. One possible ap-

proach is to move into the reference frame of an avalanche and consider the flowing region

using a depth-averaged model of shallow granular flow, conserving mass and momentum

down the slope (Savage & Hutter, 1989). This simplified approach neglects lateral varia-

tions and the vertical structure of the avalanche. These features may play an important

role particularly near the interface between the flowing and static regions. It is beyond

the scope of the present analysis to study the exchange of mass across the interface due

to erosion and deposition of grains. A better understanding of these processes would be

helpful for developing a model, which predicts and explains the dynamics of avalanches

observed in the experiments.
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Chapter 9

Nonlinear peristaltic waves in an elastic tube

9.1 Abstract

Nonlinear waves of fluid are driven in an elastic tube by imposing a radial force of sinusoidal

form. The governing equations of the deformation of the tube and the flow rate inside the

tube are derived using linear elasticity theory and lubrication theory. Steady and periodic

solutions in the reference frame of a steadily propagating wave are obtained by either

asymptotic theory in the two regimes of small and large forcing amplitudes or numerical

techniques for moderate forcing amplitudes, respectively. A strongly deformed tube of

Newtonian fluid is shown to feature an occluded region and a peak region, which depends

weakly on the large forcing amplitude. The flow rate inside the tube reduces significantly

when the fluid has a yield stress, as investigated using a Bingham plastic model. The

flow of Newtonian fluid containing a rigid rod in the tube shows that a maximal speed of

the rod is attained by imposing a radial force of moderate amplitude. The rod generally

declines in speed with increasing radius, suggesting that the python, which must take in

food by peristalsis without grinding into smaller pieces, has a bitter pill to swallow.
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9 Nonlinear peristaltic waves in an elastic tube

9.2 Introduction

Fluid inside a deformable tube can be driven by the mechanism of peristaltic action. Many

biological ducts convey contents, including a bolus in the gastronomical duct and urine

in the ureter, by propagating waves of muscular contraction and relaxation. A python is

able to swallow prey of considerable size this way. A related type of flow in a deformed

tube occurs in peristaltic pumps, which are used for the infusion of medication into the

circulatory system and the treatment of wastewater in the environment, amongst many

other applications. Pushing toothpaste out of its tube is another example of relevance.

Mathematical models of peristaltic motion can be developed using lubrication theory,

provided that effects due to fluid inertia are negligible. The low-Reynolds-number flow of

Newtonian fluid was described in an axisymmetric tube with either a sinusoidal (Shapiro

et al., 1969) or non-sinusoidal (Lykoudis & Roos, 1970) deformation in its radius. The

flow of non-Newtonian fluid was studied in a similar fashion, given a small deformation in

the tube radius (Frigaard & Ryan, 2004; Vajravelu et al., 2005). Another variation is to

introduce a peripheral layer of Newtonian fluid adjacent to the wall, which has a different

viscosity from that of the inner fluid (Brasseur et al., 1987). These models prescribe the

tube deformation without taking elastic properties of the tube into consideration.

Of interest is a situation where the shape of the tube is unknown a priori and must

be solved as part of the problem, given some coupling between the hydrodynamics and

the mechanics of the elastic tube. Related free-boundary problems of flow near an elastic

material arise in a range of contexts, including the swimming of a microorganism near a

rigid wall (Argentina et al., 2007; Balmforth et al., 2010) and premelting of ice in a de-

formable capillary (Wettlaufer & Worster, 1995; Wettlaufer et al., 1996). In the context of

peristaltic motion with a prescribed activation wave of muscular contraction, where elastic

tubes result in finite-amplitude deformations, tubes containing Newtonian fluid (Carew &

Pedley, 1997) and a rigid bolus (Bertuzzi et al., 1983) have been solved numerically. Ana-

lytic solutions are desirable for gaining a deeper understanding of peristaltic flow inside a

strongly deformed tube, where the response in tube radius is a nonlinear function of the

forces driving the flow.

Here, theoretical models of peristaltic flow are developed, given a sinusoidal wave of

radial force of arbitrary amplitude that translates along an elastic tube. In the reference

frame of the wave, steady and periodic solutions are obtained to describe the motion of

three different materials inside the tube. In section 9.3, the flow of Newtonian fluid is

investigated inside a linearly elastic tube and separately inside a tube of finite bending

stiffness. In section 9.4, the flow governed by a Bingham plastic model is considered, which

exhibits the dual behaviour of a fluid and a solid. Familiar examples of non-Newtonian fluid
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Figure 9.1: Sketch in cylindrical polar coordinates of a deformed tube filled with Newtonian fluid.
A prescribed radial force F perturbs the tube of radius a and induces flow with axial velocity w.

described by the Bingham model include mud, paint, slurry, and toothpaste. In section 9.5,

the propulsion of a rigid body in a Newtonian fluid is examined. The coupled motion of

the solid and the fluid provides useful insight into the flow of pills in the gastronomical

duct, kidney stones in the ureter, and blood cells in small blood vessels. In each section,

the governing equations are derived and solved using asymptotic theory in the two regimes

of small and large forcing amplitudes, which give rise to linear and nonlinear responses in

tube radius respectively. The theoretical results are complemented by numerical solutions

that describe responses to moderate forcing amplitudes.

9.3 Newtonian fluid

Consider a Newtonian fluid of density ρ and dynamic viscosity µ with pressure p0, inside

a cylindrical tube of constant radius R in its undeformed state. A radial force per unit

area of sinusoidal form F (z − ct) = η sin[(z − ct)2π/L] is applied on the tube along the

axial coordinate z at time t. The imposed force, characterised by its amplitude η, steady

speed c, and wavelength L, perturbs the pressure p inside the tube and the tube radius a,

as sketched in figure 9.1. The velocity u of the induced flow of fluid is governed by

ρ
Du

Dt
= −∇p+ µ∇2u, (9.1)

subject to the condition of incompressibility,

∇ · u = 0. (9.2)

The elastic properties of the tube are such that the change in pressure across the tube is

of the form

D
∂n

∂zn
(a−R) + F, (9.3)
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9 Nonlinear peristaltic waves in an elastic tube

where n = 0 or 4 characterises the type of elastic material constituting the tube and D

denotes its stiffness. The case of n = 0 corresponds to a linearly elastic tube such that

its deformation is proportional to the net radial force. For example, the tube could be

attached by springs to a rigid surrounding backing, where D is the spring constant. The

case of n = 4 corresponds to a thin shell of bending stiffness D = h3E/12(1 − ν2), where

h is the shell thickness, E the Young modulus and ν the Poisson ratio (Love, 1944). The

objective is to determine the shape of the tube and the volumetric flow rate q per wave

period, L/c.

It is convenient to introduce dimensionless variables of axial coordinate z′ = z/L, radial

coordinate r′ = r/R, time t′ = tc/L, pressure p′ = pR/µc, tube stiffness D′ = DR/µc,

amplitude of forcing η′ = ηR/µc, and flow rate q′ = q/πR2c. All quantities from here

onwards are dimensionless, without the primes for simplicity. In addition, it is convenient

to formulate the problem in the reference frame of the wave, moving at speed 1 in the z

direction. The advantage of moving with the wave is that the tube radius is steady in

time in this reference frame, as justified below. The axial velocity w and radial velocity u

are governed by (9.1)

δ2Re
Du

Dt
= −∂p

∂r
+ δ2

1

r

∂

∂r

(

r
∂u

∂r

)

+ δ4
∂2u

∂z2
(9.4)

and

Re
Dw

Dt
= −∂p

∂z
+

1

r

∂

∂r

(

r
∂w

∂r

)

+ δ2
∂2w

∂z2
, (9.5)

where

δ ≡ R

L
(9.6)

is the aspect ratio of the region of interest and

Re ≡ ρcR2

µL
(9.7)

is the Reynolds number. The deformation of the tube is small provided that δ ≪ 1 under

the long-wave approximation. Inertia is negligible compared to viscous forces provided

that Re ≪ 1. It is natural to seek steady solutions in the wave frame because the ex-

plicit dependence on time is dropped by neglecting effects due to inertia. Under these

approximations of lubrication theory, the leading-order equation of (9.4) indicates that

the pressure inside the tube is uniform in the radial direction. Consequently, (9.3) is equal

to p− p0 so
dp

dz
= D

d1+na

dz1+n
+ η cos z, (9.8)

by differentiating (9.3) with respect to z. The leading-order equation of (9.5) gives rise to
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9.3 Newtonian fluid

a second-order differential equation for the axial velocity w,

dp

dz
=

1

r

∂

∂r

(

r
∂w

∂r

)

. (9.9)

The associated boundary conditions are w = −1 on r = a, by the condition of no slip

on the tube wall, and ∂w/∂r = 0 on r = 0, by either regularity or axisymmetry of the

flow. Note that w = −1 in the wave frame corresponds to no axial flow in the lab frame.

Integrating (9.9) twice and imposing the two boundary conditions yield the velocity profile

in the wave frame,

w =
1

4

dp

dz
(r2 − a2) − 1. (9.10)

Streamlines are determined by contours of the streamfunction

ψ = − 1

16

dp

dz
r2(2a2 − r2) − 1

2
r2, (9.11)

which is obtained by integrating w = r−1∂ψ/∂r.

A measure of the proportion of fluid propagating with a wave is given by the time-

averaged flow rate in the lab frame, πq, where q = 1+2
∫ a
0 wr dr. The integral corresponds

to the flow rate in the wave frame. The constant 1 is attributed to frame advection. Note

that the global conservation of fluid volume implies

〈a2〉 = 1, (9.12)

where 〈·〉 ≡ (2π)−1
∫ 2π
0 · dz. The time-averaged flow rate in the lab frame is proportional

to

q = −1

8

dp

dz
a4 − a2 + 1, (9.13)

where dp/dz is given by (9.8). When n = 0 in (9.8), the first-order differential equation

(9.13) must be solved subject to the periodic boundary condition a(0) = a(2π). When

n = 4 in (9.8), the fifth-order differential equation (9.13) must be solved subject to periodic

boundary conditions dia/dzi(0) = dia/dzi(2π) for i = 0, 1, 2, 3, 4. A boundary-value

problem with an eigenvalue to be determined, q, must be solved to determine the radius

of the tube.

The system of equations, (9.12) and (9.13), can be solved numerically using a built-in

function of Matlab called bvp4c. The forcing amplitude η is incremented slowly from 0

with a = 1 to obtain a solution during each iteration, which forms an initial guess for

solutions with successive increments of η. A representative set of solutions for the tube

radius in response to different forcing amplitudes η is plotted in figure 9.2. The associated

solutions of the eigenvalue q are presented later. For small η, the tube deformation is small
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Figure 9.2: Numerical solutions of the tube radius perturbed by different forcing amplitudes η.
The tube is of type n = 0 and has stiffness D = 1. As η increases, the deformation of the tube
increases.
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Figure 9.3: Streamlines of flow driven by a radial force of amplitude η = 2. In the wave frame,
the axial velocity inside the tube is everywhere negative.
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Figure 9.4: Streamlines of flow driven by a radial force of amplitude η = 3. In the wave frame,
a trapped core, recirculating anti-clockwise, forms in the region where a peak radius of the tube is
attained.

as expected. As η increases, the tube is occluded except near z = 3π/2, where its radius

peaks due to the imposed force that is maximal and radially outward. Streamlines of the

flow induced with forcing amplitudes η = 2 and η = 3 are shown in figures 9.3 and 9.4,

obtained using equation (9.11). As η increases, a qualitative change in the structure of

the streamlines is observed, from axial flow that is everywhere negative in the wave frame

to the development of a recirculating zone where the tube peaks in radius. Fluid inside

the recirculating zone propagates with the wave.

In the limit as η → 0, the tube is almost undeformed and flow inside the tube is expected

to be negligible. In the limit as η → ∞, the trapped core near z = 3π/2 is expected to

increase in size and allow most of the fluid in the tube to propagate with the wave. The

two regimes of small and large η are investigated separately using asymptotic theory.

In the small-amplitude regime, η ≪ 1, it is fruitful to seek series solutions of a and q

about the base state, a = 1 and q = 0. The subsequent term in a is of order η, which

indicates that the leading term in q is of order η2, by operating 〈·〉 on (9.13) and using

the integral constraint (9.12). The radius of the tube responds linearly to the amplitude

of the external forcing. Substituting a = 1 + ηa1 + o(η2) into (9.13) gives

D
d1+na1

dz1+n
− 16a1 = cos z, (9.14)

which is solved subject to periodic boundary conditions. The solution is given by

a = 1 − η
16 cos z −D sin z

162 +D2
+ o(η2), (9.15)
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Figure 9.5: Theoretical prediction and numerical solutions of the time-averaged flow rate in the
lab frame for small forcing amplitudes η. The numerical solutions are obtained with tube stiffness
D = 1 and agree with the theoretical prediction in the asymptotic limit as η → 0, independent of
the type of tube, n = 0, 4.

independent of the type of tube characterised by n = 0, 4 because sin z and cos z are invari-

ant under four differentiations. Operating 〈·〉 on (9.13), which gives q = −〈(dp/dz)a4/8〉,
and imposing periodic boundary conditions at z = 0, 2π, yield an expression for the time-

averaged flow rate,

q =
4η2

162 +D2
+ o(η3), (9.16)

which is in agreement with numerical results for small η as shown in figure 9.5. Note that

the theoretical prediction given by (9.16) in the asymptotic limit as η → 0 agrees with

numerical results up to η ≈ 2 inside a tube of type n = 0 and up to η ≈ 5 inside a tube of

type n = 4. The numerical results in the figure suggest that q approaches 1 as η increases,

which is investigated below.

In the large-amplitude regime, η ≫ 1, two qualitatively distinct regions develop, one

near z = 3π/2 where the tube radius peaks, and the other away from z = 3π/2 where the

tube is occluded. Quantitative details of the two regions must be considered separately in

the two types of tubes, n = 0 and n = 4. Of interest is the quantity 1 − q, a measure of

the proportion of fluid left behind the wave.

When n = 0, the tube radius is expected to approach 0 in the occluded region so the

dominant contribution to dp/dz in (9.13) arises from the second rather than the first term

on the right hand side of (9.8). The governing differential equation (9.13) reduces to an

algebraic equation

−η cos z a4 − 8a2 + (1 − q) = 0. (9.17)
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Figure 9.6: Theoretical prediction and numerical solutions of the characteristic proportion of fluid
left behind the wave for large η, plotted on logarithmic scales. The tube is of type n = 0 and has
stiffness D = 1.

This quadratic equation in a2 results in two branches,

a2 =
4

η cos z

(

−1 ±
√

1 +
η

2
(1 − q) cos z

)

, (9.18)

where ± is either positive in the lower branch or negative in the upper branch. Only

the lower branch corresponds to a real tube radius throughout the domain 0 ≤ z ≤ 2π.

However, the lower branch alone violates the global conservation of fluid volume, (9.12).

This must be resolved by switching smoothly from the lower to the upper branch at z = π.

The condition that the lower and upper branches meet at z = π requires

q = 1 − 2η−1 + o(η−2). (9.19)

The theoretical prediction for the flow rate given by (9.19) is in excellent agreement with

numerical results, as shown in figure 9.6. Note that the characteristic proportion of fluid

left behind the wave is determined solely by the occluded region, independent of the peak

region to be examined later. Substituting (9.19) into (9.18) gives the solution for the tube

radius in the occluded region,

a =







2
(

1 −
√

2| cos z/2|
)−1/2

η−1/2 + o(η−1) π ≤ z < 3π/2,

2
(

1 +
√

2| cos z/2|
)−1/2

η−1/2 + o(η−1) 0 ≤ z < π, 3π/2 < z ≤ 2π,
(9.20)

which is continuous at z = π but discontinuous at z = 3π/2. The radius of the tube

diverges as z → 3π/2 from below and converges to
√

2/η from above. The divergence

and discontinuity represent the formation of a shock, which is resolved mathematically by
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Figure 9.7: Theoretical and numerical solutions of the tube radius deformed with forcing amplitude
η = 200. The theoretical solution, given by (9.21) in the peak region and (9.20) in the occluded
region, is in excellent agreement with the numerical solution obtained using input parameters n = 0
and D = 1.

considering a boundary layer near z = 3π/2, the peak region.

In the peak region, the tube radius is expected to grow arbitrarily with forcing amplitude

η, suggesting that only the first term on the right hand side of (9.13) is dominant. This

means that dp/dz = 0 so the pressure in the peak region is uniform. It can be shown,

by combining equations (9.8) and (9.12), where cos z in (9.8) is expanded near z = 3π/2,

that the rescaled tube radius is given by A = η−1/5a and has a peak Amax at ζ = 0, where

ζ is the rescaled axial coordinate in the peak region such that z = 3π/2 + η−2/5ζ. The

rescaled equation of (9.8) reduces to DdA/dζ + ζ = 0 and is integrated to obtain

A = Amax − ζ2

2D
. (9.21)

The tube radius in the peak region has a parabolic profile, provided that the tube has

stiffness D > 0. The peak radius of the tube is given by amax = η1/5Amax with

Amax =

(

152π2

27D

)1/5

, (9.22)

which is obtained by solving the rescaled equation of (9.12),
∫ δ
−δ A

2 dζ = 2π, where δ =√
2DAmax corresponds to the half-width of the peak region. The occluded region given

by (9.20) and the peak region given by (9.21) agree with numerical results, demonstrated

in figure 9.7 for a tube of stiffness D = 1, forced with amplitude η = 200. The scaling η1/5

and the prefactor (9.22) for the peak radius of the tube also agree with numerical results

as shown in figure 9.8. The form of amax indicates that the peak radius depends depends
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Figure 9.8: Theoretical prediction and numerical solutions of the peak radius of the tube of type
n = 0 and stiffness D = 1, plotted on logarithmic scales.

weakly on the tube stiffness and the forcing amplitude for large η.

When the type of tube is characterised by n = 4, different scalings of the flow are

obtained in both the occluded and peak regions. In the peak region, the pressure is

uniform and the rescaled equations are obtained by combining equations (9.8) and (9.12),

as before. The rescaled tube radius is given by A = η−1/13a and satisfiesDd5A/dζ5+ζ = 0,

subject to the boundary conditions that A, dA/dζ, and d2A/dζ2 all vanish near the ends

of the peak region, as ζ → ±δ, where z = 3π/2 + η−2/13ζ. These boundary conditions

ensure that the peak region matches smoothly to the occluded region, which is considered

later. Integrating the fifth-order differential equation fives times gives the radius of the

tube in the peak region,

a = η1/13 1

6!D

(

δ2 − ζ2
)3
, (9.23)

where

δ = (πD26!2)1/13

(

11

3
− 20

7
− 6

11
+

1

13

)−1/13

(9.24)

is obtained using the rescaled integral constraint (9.12),
∫ δ
−δ A

2 dζ = 2π. The peak region

agrees with numerics, demonstrated by figure 9.9 for η = 200, D = 1. The maximal radius

of the tube at z = 3π/2, η1/13δ6/6!D, agrees with the numerics as shown in figure 9.10.

Note that the forcing amplitude must increase by thirteen orders of magnitude to deform

the tube radius by one order of magnitude. A comparison of figures 9.7 and 9.9 indicates

that for the same value of D and large η, the peak region of the tube of type n = 4 is longer

and less deformed than that of the tube of type n = 0. The extremely weak dependence

of the tube deformation on the applied force in the limit of large η is attributed to large

amount of energy that is dissipated due to viscous forces in the highly occluded region,
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Figure 9.9: Theoretical and numerical solutions of the tube radius deformed with forcing amplitude
η = 200. The theoretical prediction, given by (9.23) in the peak region, agrees with the numerical
solution obtained using input parameters n = 4 and D = 1.
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Figure 9.10: Theoretical prediction and numerical solutions of the peak radius of the tube of type
n = 4, plotted on logarithmic scales.

120



9.3 Newtonian fluid

10
0

10
1

10
2

10
−4

10
−2

10
0

 

 

Numerical
2.9η−35/26

1 − q

η

Figure 9.11: Theoretical prediction and numerical solutions of the characteristic proportion of
fluid left behind the wave inside a tube of type n = 4, plotted on logarithmic scales.

instead of doing mechanical work to deflect and expand the peak region of the tube.

In the occluded region away from z = 3π/2, the numerical solution in figure 9.9 suggests

that the tube radius rapidly approaches zero with increasing η. This implies that keeping

the dominant terms of (9.13) reduces to a2 = 1 − q. The occluded region has a constant

radius. In contrast to the previous problem inside a tube of type n = 0, in which q was

determined by the occluded region, q in a tube of type n = 4 must be obtained by matching

the occluded and peak regions using matched asymptotic expansions. It can be shown

in the matched region near z = 3π/2 ± η−2/13δ that all terms are dominant in (9.13),

except the contribution to dp/dz from η cos z, which drops to leading order. A scaling

analysis of the reduced equation of (9.13) and its boundary conditions in the matched

region indicates that 1 − q = o(η−35/26). The prefactor of this scaling is approximately

2.9 because numerical values of (1 − q)η35/26 quickly approach this value with increasing

η. This theoretical prediction agrees well with numerical results as shown in figure 9.11.

Note that the characteristic proportion of fluid left behind the wave approaches 0 more

quickly in the limit of η → ∞ in a tube of type n = 4 than n = 0. A tube of type n = 4

has a smaller occluded region than a tube of type n = 0, implying a trapped core of larger

size in the peak region that allows more fluid to propagate with the wave.

It has been determined that a non-zero radial force always results in deformation of a

tube of Newtonian fluid. This is no longer the case when the tube contains fluid with a

yield stress, where sufficient force on the tube must be applied to induce any motion. The

problem of pumping a Bingham plastic, which is a type of non-Newtonian fluid with a

yield stress, is considered in the following section. For simplicity, the tube is of type n = 0

in the remaining sections.
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Figure 9.12: Stress-strain relationships of a Newtonian fluid and a Bingham plastic. The New-
tonian curve has a slope corresponding to its viscosity. The Bingham curve has a stress-intercept
corresponding to the yield stress and a slope corresponding to the plastic viscosity.

9.4 Bingham plastic

Consider a Bingham fluid with yield stress τ0 and plastic viscosity µ. The Bingham fluid

behaves either like a Newtonian fluid of viscosity µ in regions where the shear stress exceeds

the yield stress, or like a plug without deformation in regions where the shear stress is

below the yield stress. The stress-strain relationship of a Bingham fluid is compared with

that of a Newtonian fluid in figure 9.12. The introduction of the yield stress modifies the

force balance in the axial direction (9.9) to the system of equations

dp

dz
=

1

r

∂

∂r
(rτrz) (9.25)

and

∂w

∂r
=







τrz − sgn
(

∂w
∂r

)

B |τrz| > B,

0 |τrz| < B,
(9.26)

where

B ≡ τ0R

µc
(9.27)

is the dimensionless yield stress, also known as the Bingham number. Equation (9.26) is

the one-dimensional approximation of the Bingham constitutive law that applies to the

current problem in a slender geometry (Vajravelu et al., 2005). The limit as B → 0 reduces

to the Newtonian problem encountered in section 9.3.

The boundary conditions of the axial velocity w are the same as in the Newtonian

problem. The solution, satisfying the no-slip condition on the tube wall and regularity at
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9.4 Bingham plastic

r = 0, is given by

w =







−1
4

dp
dz [(a2 − r2) − 2r0(a− r)] − 1 r > r0

−1
4

dp
dz (a− r0)

2 − 1 r ≤ r0,
(9.28)

where

r0 = min [2B/|dp/dz|, a] (9.29)

is the radius of the plug-like region inside the tube. The velocity profile is either parabolic

for r > r0 or uniform for r ≤ r0. The central region of the tube, bounded by radius r0,

is actually a pseudo-plug because the associated velocity profile is flat in radius and only

appears to be below the yield stress to leading order (Balmforth & Craster, 1999). Indeed,

this region is not truly rigid because axial velocity variations remain, except if r0 = a, in

which case the fluid spanning that section of the tube becomes truly rigid.

The time-averaged flow rate in the lab frame scaled by π, q = 1+2
∫ a
0 wr dr, is computed

from the axial flow velocity w in the wave frame, as in section 9.3. The expression for q is

given by

q = − 1

24

dp

dz
(a− r0)

2
(

(a+ r0)
2 + 2a2

)

− a2 + 1, (9.30)

where dp/dz is given by (9.8) with n = 0. The expression on the right hand side of

(9.30) without the two final terms represents the steady flow rate in the wave frame and is

equivalent to the Buckingham-Reiner equation (Bird et al., 1987). In the limit as B → 0,

the flow rate in (9.30) with r0 = 0 reduces to (9.13) and recovers the flow rate of Newtonian

fluid, as expected.

The tube radius is determined by solving the governing equations as a boundary-value

problem in the domain 0 ≤ z ≤ 2π. Equation (9.30), subject to the periodic boundary

condition a(0) = a(2π), contains an eigenvalue q and must be solved subject to the integral

constraint (9.12). A sample solution is shown in figure 9.13 and features three qualitatively

distinct regions. A sheared region, r0 < r < a, forms near the tube wall where the tube is

most deformed. A region of pseudo-plug, r < r0 < a, forms inside the sheared region. A

solid region, r < r0 = a, occupies the entire cross-section of the tube where its radius is

uniform in z. This means that at any extent along the tube in the lab frame, a stationary

region develops during an interval of time, which begins after the departure of a sheared

region and ends on arrival of another sheared region.

In the regime of small forcing amplitude η, solutions of the form a = 1+ηa1 +o(η2) and

q = η2q2 + o(η3) are sought, as in section 9.3. In a tube of type n = 0 without stiffness,

D = 0, it follows from (9.30) that

a = 1 − η

48
cos z(1 − r0)

2
(

(1 + r0)
2 + 2a2

)

+ o(η2). (9.31)
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Figure 9.13: Numerical solution of the tube radius and the plug-like region inside a Bingham
fluid. The dashed curve, which translates steadily with the wave, represents the phase boundary
between the sheared and plug-like regions. The input parameters are n = 0, D = 0, η = 1, B = 0.1.
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Figure 9.14: Theoretical prediction for small η and numerical solutions of the time-averaged flow
rate of Bingham fluid, scaled by the corresponding flow rate of Newtonian fluid. The theoretical
prediction is represented by the solid curve. The numerical solutions, represented by different
symbols, are obtained by fixing η and varying the Bingham number given by (9.27) from 0 to η/2.
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9.4 Bingham plastic

The time-averaged flow rate q is computed by operating 〈·〉 on (9.30), the method adopted

in section 9.3. It can be shown, after some steps of algebra, that

q =
η2

96
〈cos2 z(1 − r0)

3
(

(1 + r0)
2 + 2

)

〉. (9.32)

There is no contribution to (9.32) from the solid region, where r0 = 1. The flow rate is

determined by the sheared regions, |z| < ξ and |z − π| < ξ, where ξ ≡ cos−1(2B/η) is the

half-width of each region. Substituting r0 = 2B/η| cos z| into (9.32) and integrating over

the sheared regions gives

q =
η2

48π
f(ξ), (9.33)

where

f(ξ) =
3ξ

2
− 11

4
sin(2ξ) + 4ξ cos2 ξ + tan ξ cos4 ξ

− cos5 ξ

(

tanh−1(tan
ξ

2
) +

1

4(1 − sin ξ)
− 1

4(cos ξ
2 + sin ξ

2 )2

)

. (9.34)

Figure 9.14 shows the flow rate given by (9.33), scaled by the corresponding flow rate

of Newtonian fluid, (9.16), as a function of the rescaled Bingham number, 2B/η. The

theoretical prediction for D = 0 and small η is in excellent agreement with numerical

results. The rescaled flow rate is a monotonically decreasing function of the rescaled

Bingham number for 2B/η ≤ 1, as shown in figure 9.14, because the plug-like region

increases in size and reduces the flow due to a larger yield stress. In the limit as 2B/η → 1,

the flow rate q → 0 because the forcing amplitude η is insufficient to drive much flow. For

2B/η ≥ 1, q = 0 because the yield stress is not overcome by the imposed force, resulting in

no motion. As the Bingham number approaches 0, the flow rate given by (9.33) approaches

the corresponding flow rate of Newtonian fluid, as expected.

In the regime of large forcing amplitude η, solutions are obtained by examining the flow

near threshold of no motion, a = r0 = 1, which occurs in the limit as 2B/η → 1. The small

parameter ǫ ≡ 1−2B/η is introduced to examine the limit as ǫ→ 0. Equations (9.29) and

(9.30) respectively suggest solutions of the form r0 = 1−ǫr1+o(ǫ2) and a = 1+ǫ2a2+o(ǫ3).

The o(ǫ) correction to the radius of the plug-like region

r1 =







1 − ζ2

2 |ζ| <
√

2, |ζ − ǫ−1/2π| <
√

2,

0 otherwise,
(9.35)

where ζ = ǫ−1/2z is the rescaled axial coordinate, is obtained by expanding cos z near
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Figure 9.15: Theoretical prediction in the asymptotic limit as 2B/η → 1 and numerical solutions
of the time-averaged flow rate of Bingham fluid.

z = 0, π in (9.29). Substituting r1 into (9.30) gives

a2 = ±ηr
2
1

8
, (9.36)

where ± is either + for |ζ| <
√

2 or − for |ζ − ǫ−1/2π| <
√

2. Operating 〈·〉 on (9.30) gives

q =
23/2η2ǫ7/2

105
, (9.37)

which is in agreement with numerical results as shown in figure 9.15. The flow rate scales

like ǫ7/2, indicating that the flow of Bingham plastic increases very weakly with the applied

force as it overcomes the yield stress.

It has been determined that the flow rate of both Newtonian fluid and Bingham fluid is a

monotonically non-decreasing function of the forcing amplitude. This is no longer the case

for the speed of propulsion of a rigid body inside a tube filled with fluid, as investigated

in the following section.

9.5 Rigid body

Consider a rigid body of radius b surrounded by a Newtonian fluid of density ρ and

dynamic viscosity µ. For simplicity, the rigid body is considered to be an infinitely-long

rod of constant radius b so that steady and periodic solutions can be obtained in the wave

frame. The rod has steady axial velocity W in the lab frame, as sketched in figure 9.16.
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a

b

r

z

w

W

Figure 9.16: Schematic sketch in cylindrical polar coordinates of an elastic tube filled with New-
tonian fluid and a rigid rod. The rod has radius b and propels at a steady axial velocity W in the
lab frame.

The axial velocity profile of the fluid is governed by (9.9), subject to no-slip conditions

on the tube wall and the rigid rod. The boundary conditions that w = 0 on r = a and

w = W on r = b determine the axial velocity in the lab frame,

w = −1

4

dp

dz
(a2 − r2) −

(

W + 1
4

dp
dz (a2 − b2)

log a
b

)

log
r

a
. (9.38)

In a similar manner to before in sections 9.3 and 9.4, the flow rate in the lab frame is

determined and given by

q = −1

8

dp

dz

(

a4 − b4 − (a2 − b2)2

log(a
b )

)

+
W (a2 − b2)

2 log(a
b )

− b2W − a2 + 1. (9.39)

In the limit as b→ 0, the flow rate given by (9.39) reduces to the flow rate of Newtonian

fluid without any rod given by (9.13), as expected. Note that the boundary-value problem

governed by (9.39), with the same periodic boundary condition a(0) = a(2π) as before,

features W as an eigenvalue to be determined in addition to the eigenvalue q.

The two eigenvalues are determined by imposing two integral constraints, one of which

is given by the global conservation of fluid, (9.12). Another integral constraint is obtained

from the axial force balance on the rigid rod. Given that the rod is in steady motion, there

is no net force exerted on the rod. This is written mathematically as 〈[r∂w/∂r]r=b〉 = 0,

which reduces to

〈W + 1
4

dp
dz (a2 − b2)

log a
b

〉 = 0. (9.40)

Figure 9.17 shows a set of solutions of tubes containing rigid rods of different size,

where the forcing amplitude is fixed at η = 10. The associated eigenvalues, q and W , are
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Figure 9.17: Numerical solutions of the deformed tube containing a rigid rod of different radius
b, propelled by a radial force of amplitude η = 10.

presented later. The special case of b = 0 corresponds to a tube of Newtonian fluid only,

which features an occluded region and a peak region, as investigated in section 9.3. The

peak radius of the tube decreases with increasing b as shown in figure 9.17, indicating that

the presence of the rigid rod reduces the deformation of the tube. The tube is occupied

with more solid and less fluid, which partly explains the decreased deformation of the tube

with increasing radius of the rigid rod.

The flow rate q increases with η in a qualitatively similar manner, independent of the

rod radius b. However, the steady speed of the rod W increases for small η and decreases

for large η, as shown in figure 9.18 for three representative values of b. For all values

of rod radius, a maximal speed is attained at an intermediate value of η. The maximal

attainable speed is less than half the wave speed. The rod speed decreases with η thereafter

because the large forcing increases the viscous resistance in the occluded region, making it

more difficult for the rod to move relative to the tube. The rod speed generally decreases

with increasing b, indicating that it is more difficult to propel a rod of greater size. The

quantitative details of the two asymptotic regimes of small and large forcing amplitudes

are investigated separately below.

In the regime of small η, solutions of the form a = 1+ ηa1 + o(η2), q = η2q2 + o(η3), and

W = η2W2 + o(η3) are sought. Equation (9.39) to order η reduces to kDda1/dz + 16a1 =

−k cos z, which is integrated subject to the periodic boundary condition a1(0) = a1(2π)

to obtain the solution

a = 1 − η
16k cos z + k2D sin z

(kD)2 + 162
+ o(η2), (9.41)
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Figure 9.18: Numerical solutions of the steady velocity of the rigid rod of radius b as a function
of the forcing amplitude η.

where k = 1 − b4 + (1 − b2)2/ log b.

The solution given by (9.41) is substituted into the integral constraint (9.40) to obtain

the leading-order speed of the rigid rod,

W =
2k

(kD)2 + 162

(

2 +
1 − b2

log b

)

η2 + o(η3). (9.42)

Operating 〈·〉 on (9.39) obtains the leading-order flow rate in the lab frame,

q =
2k

(kD)2 + 162

(

2 +
1 − b2

log b

)

(1 − b2)η2 + o(η3). (9.43)

Note that q → W in the limit as b → 0, indicating that a rigid wire of negligible radius

propagates along the centreline of the tube at a steady speed corresponding to the flow

rate of the surrounding fluid. The solutions given by (9.42) and (9.43) are in agreement

with numerical results, as shown in figure 9.19.

In the regime of large η, the resultant deformation of the tube is qualitatively similar

to that of a tube containing Newtonian fluid only, as in section 9.3. A peak region near

z = 3π/2 and an occluded region away from z = 3π/2 are expected to develop. The two

regions are investigated separately below.

In the peak region near z = 3π/2, the peak radius is determined in a similar manner to

before in section 9.3. The conditions in the peak region are that the pressure is uniform

and that the total volume must be conserved by (9.12). The peak radius is given by

amax =

(

152π2(1 − b2)2η

27D

)1/5

, (9.44)
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Figure 9.19: Theoretical predictions in the asymptotic limit of η → 0 and numerical solutions of
the flow rate q of fluid and the steady speed W of rigid body.

which scales like η1/5 with a prefactor that decreases with increasing b, in agreement with

numerical results.

In the occluded region, the radius of the tube is expected to approach the radius of the

rigid rod. Solutions of the form

a = b+ η−1/2α+ o(η−1) (9.45)

are sought, with the two eigenvalues of the form

W = W∞ + o(η−1/2) (9.46)

and

q = 1 − b2 − η−1/2bq̂ + o(η−1), (9.47)

where α, W∞ and q̂ are all of order 1 to be determined. Note that 1− b2 − q is a measure

of the proportion of fluid left behind the wave, which is expected to scale like (a − b)b

and diminish in the limit as η → ∞. This is because most of the fluid is trapped in a

recirculating core of the peak region and propagates with the wave, while the remaining

fluid lies in a thin shell of radius b and thickness a− b, the gap between the tube and the

rod. The choice of the scaling η−1/2 for corrections to a, q and W is justified below. A

cubic equation for α,

cos z α3 + 6(2 −W∞)α− 6q̂ = 0, (9.48)

is obtained by substituting (9.45), (9.46), and (9.47) into (9.39), and neglecting terms of

order η−1. All three terms in the cubic equation must be of order 1 by demanding that
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cos z
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Figure 9.20: Sketch of f(α) given by (9.49), which changes sign at α0 and attains its minimum
of −1 at α+. The value α− corresponds to the minimal radius of the tube in the occluded region.

a→ b+o(η−1/2), q → 1−b2+o(η−1/2) and W →W∞+o(η−1/2), which justifies the earlier

choice of the scaling η−1/2. The solution for α is determined implicitly by a rearrangement

of (9.48),

cos z = f(α) ≡ 6

α3
(q̂ − α (2 −W∞)) . (9.49)

The function f has a local minimum at α+ = 3q̂/(4 − 2W∞) with the asymptotic limits

that f → ∞ as α → 0 and f → 0 as α → ∞, as sketched in figure 9.20. Given that the

tube radius must match smoothly with the peak region as z → 3π/2, f must attain a local

minimum of −1. The equation f(α+) = −1 reduces to

q̂ =
23/2

3
(2 −W∞)3/2 , (9.50)

which provides an equation for the two unknown quantities, W∞ and q̂. A minimal tube

radius is attained at z = 0, where α = α− satisfies the cubic equation f(α−) = 1. The

function f changes sign at α0 = 2α+/3.

In addition to equation (9.50), another equation relating W∞ and q̂ can be obtained

by (9.40). Note that contributions to the integral (9.40) from the occluded region are

dominant because they are negligible from the peak region, where a ∼ η1/5 as z → 3π/2.

By substituting (9.45) into (9.40) and keeping only the leading-order terms of order η1/2,

we obtain

〈2W∞
α

+ α cos z〉 = 0. (9.51)

This integral constraint indicates that the tangential-stress balance is between the stress

due to the rod speed and the radial forcing in the occluded region. The tangential stress on

the rod is independent of the peak region or the stiffness D of the tube. Furthermore, the
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Figure 9.21: The proportion of fluid left by the wave 1− b2 − q and the approach of the rod speed
W to W∞ ≈ 0.247 for large forcing amplitudes η, plotted on logarithmic scales. The radius of the
rod b = 0.5 is fixed. Theoretical prediction for the proportion of fluid left by the wave, η−1/2bq̂,
with q̂ ≈ 2.19, agrees with numerical results. The slope of W −W∞ indicates that W approaches
W∞ like η−1/2.

governing equations for W∞ and q̂, (9.50) and (9.51), are independent of b. This indicates

that in the regime of large forcing amplitudes, the size of the rod does not influence its

speed of propulsion to leading order. The integral constraint (9.51) reduces to

(4W∞ − 6)〈α−1〉 + (4 − 2W∞)3/2〈α−2〉 = 0, (9.52)

by substituting (9.49) and (9.50) into (9.51). The integral 〈·〉 in z-space can be evaluated

in α-space by using (9.49), treating the three regions of 0 ≤ z ≤ π, π < z < 3π/2 and

3π/2 < z < 2π separately. This gives

〈·〉 =

∫ ∞

α+

·J dα−
∫ α0

α−

·J dα−
∫ α+

α−

·J dα, (9.53)

where

J =
df/dα

2π
√

1 − f2
. (9.54)

Solving equation (9.52), where 〈α−1〉 and 〈α−2〉 are evaluated numerically using (9.53),

gives W∞ ≈ 0.247. It follows that q̂ ≈ 2.19 by (9.50) and completes the theoretical analysis

of the problem.

A measure of the proportion of fluid left behind the wave is plotted as a function of

the forcing amplitude in figure 9.21. Numerical values approach slowly to the theoretical

prediction with increasing forcing amplitude. The difference between the rod speed from

W∞ ≈ 0.247, also shown in figure 9.21, approaches 0 like η−1/2, which is consistent with
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(9.46). In the regime of large forcing amplitude, most of the fluid is carried with the wave

while the rod propels at approximately a quarter of the wave speed in the tube.

9.6 Conclusion

A theoretical analysis of fluid driven along a deformable tube by a prescribed radial force

provides important insight into peristaltic motion. For small forcing amplitudes η, the

deformation of the tube is of order η and the time-averaged flow rate is of order η2,

independent of the three different types of fluid considered in the tube. For large forcing

amplitudes η, different results are obtained depending on the contents of the tube, as

summarised separately below.

A tube of Newtonian fluid features an occluded region and a peak region, where a

trapped core of fluid recirculates in the wave frame. The peak region, which is shorter

and more deformed in a linearly elastic tube with a spring constant D than a thin shell of

constant bending stiffness D, depends weakly on the forcing amplitude. A larger forcing

amplitude increases the size of the trapped core in the peak region, allowing more fluid to

propagate with the wave.

A tube of Bingham plastic features a sheared region, a pseudo-plug region, and a solid

region in the wave frame, provided that the applied force has overcome the yield stress.

The existence of the three distinct regions reduces the flow rate of the Bingham plastic

considerably compared to that of a Newtonian fluid, which is sheared everywhere. The flow

rate of the Bingham plastic increases from 0 extremely slowly with the forcing amplitude

as the yield stress is overcome.

The steady propulsion of a rigid rod surrounded by Newtonian fluid in a tube shows

that the size of the rod plays an important role. As the radius of the rod increases, the

tube deforms less with a smaller speed of propulsion of the rod. The maximal speed of the

rod, which is less than half the wave speed, is attained at a moderate forcing amplitude.

A larger body, which reduces the maximal attainable speed of propulsion, is a bitter pill

to swallow for the hungry python.

The propulsion of a rigid body in a deformable tube could be pursued further by modi-

fying the underlying assumptions of the problem. The theoretical analysis presented here

is limited to describing steady and periodic solutions in the wave frame. Time-dependent

solutions in a non-periodic domain could be investigated, for example, by prescribing a

radial force with a solitary-wave profile to drive a rigid body of finite length. This may

provide further insight into the motion of the rigid body, where the regions ahead and

behind the body in the tube are respectively relaxed and contracted.
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Chapter 10

Conclusion

10.1 Summary

The flow of materials is considered in a series of different situations relevant to processes

in geophysics, engineering and biology. A common feature in all the situations is that the

flowing structure is long and thin. In order to study effects of the topography, the volume

and the rheology of the flowing structure, the moving boundaries of the flow are predicted

by solving a class of free-boundary problems in mathematical models. General results are

obtained and have broad implications as outlined below.

Chapters 2 and 3 are concerned with predicting the advance of lava flows supplied at

unsteady rates down a slope. The initial advance of long lava flows depends importantly on

the effusion rate, which controls the cumulative volume of the lava emplaced on volcanoes.

The results indicate that the advancing front depends importantly on the volume of the

flowing material and weakly on the topography. A major strength of the theoretical

approaches lies in their general applicability to predict the advance of a diverse range of

geophysical flows, including ice streams and debris flows.
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Chapters 4, 5 and 6 investigate the slumping of a constant volume of viscous fluid on

rigid surfaces with different shapes, motivated by the engineering of industrial processes

involving thin films. The importance of the fluid volume is reinforced by the result that

the volume sets the length scale of the flow features. For example, the leading edge

of fluid spreading on a sphere splits into a series of rivulets after extending a critical

length, which depends primarily on the fluid volume. Another example is that the leading

front of viscous flow in a channel of slowly increasing width detaches from the walls after

extending a critical distance, which depends importantly on the fluid volume. In contrast,

the viscosity of the fluid has no effect on the length scale and only changes the time scale

of the flow.

Chapters 7 and 8 examine the flow of granular materials, which can produce levees and

avalanches down a rough inclined plane. These phenomena do not arise in Newtonian flows,

indicating that changing the rheology of the flowing structure introduces new flow features.

Distinct results are obtained in the laboratory using sand and glass beads, meaning that

shallow granular flows depend on the shape of grains constituting the flowing material.

Chapter 9 studies the peristaltic pumping of different materials in a linearly elastic tube.

Newtonian fluids, Bingham plastics and rigid bodies are considered separately in the tube.

The deformation of the tube and the motion of the inner contents are different in each

case, reinforcing the idea that the rheology of the material plays an important role.

10.2 Future work

The series of problems considered here should provide a foundation for studying further

problems in the future. The simplified models can be extended to incorporate additional

effects in more complicated situations, which may better represent realistic scenarios in

geophysical, engineering and biological applications. Effects include the cohesive proper-

ties of snow in the flow of avalanches and nonlinear elasticity of biological ducts undergoing

peristalsis.

Testing the models against analog experiments in the laboratory offers insight into the

strengths and limitations of the models. The limitations highlight the areas where further

work is needed, offering future research opportunities. In the long term, new methods

which are different from the simplified approach adopted here may help us better un-

derstand some remaining issues, including the mechanics of contact lines and granular

materials.

A recurring and important aspect of the spreading of viscous fluids which remains to be

completely understood is the mechanics of moving contact lines. Effects due to contact
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lines, which are neglected in the simplified models developed here, may play an important

role in viscous flow along corners of a tipped container. The contact line should also

influence the motion of rivulets which develop after the fingering instability of thin films

flowing on slopes. The physics at the molecular level near the contact line may influence

the macroscopic behaviour of thin liquid films.

The physics at the scale of individual grains may influence the macroscopic flow of

granular materials. Different features of the flow arise depending on the shape of the

grains, which are different for sand and glass beads. Incorporating the physics at the level

of individual grains may provide insight into the macroscopic behaviour of granular flows

and how the flows can stop.
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Hákonardóttir, K. M., Hogg, A. J., Batey, J. & Woods, A. W. 2003 Flying

avalanches. Geophys. Res. Lett. 30, 2191.

Hallworth, M. A., Huppert, H. E. & Sparks, R. S. J. 1987 A laboratory simulation

of basaltic lava flows. Modern Geol. 11, 93–107.

144



Bibliography

Harris, A. J. L. & Rowland, S. K. 2009 Effusion rate controls on lava flow length

and the role of heat loss: a review. Studies in Volcanology: The Legacy of George P. L.

Walker pp. 33–51.

Hopfinger, E. J. 1983 Snow Avalanche Motion and Related Phenomena. Annu. Rev.

Fluid Mech. 15, 47–76.

Hulme, G. 1974 The interpretation of lava flow morphology. Geophys. J. Int. 39, 361–383.

Huppert, H. E. 1982a The propagation of two-dimensional and axisymmetric viscous

gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 43–58.

Huppert, H. E. 1982b Flow and instability of viscous current down a slope. Nature 300,

427–429.

Indeikina, A., Veretennikov, I. & Chang, H. C. 1997 Drop fall-off from pendent

rivulets. J. Fluid Mech. 338, 173–201.

Jeffreys, H. 1925 The flow of water in an inclined channel of rectangular section. Phil.

Mag. 49, 793–807.

Jeffreys, H. 1930 The drainage of a vertical plate. Math. Proc. Camb. Phil. Soc. 26,

204–205.

Jenkins, J. T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307.

Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular

flows. Nature 441, 727–730.

Kerr, R. C., Griffiths, R. W. & Cashman, K. V. 2006 Formation of channelized

lava flows on an unconfined slope. J. Geophys. Res. 111, B10206.

Keszthelyi, L. 1995 A preliminary thermal budget for lava tubes on the Earth and

planets. J. Geophys. Res. 100, 20411–20420.

Lajeunesse, E., Mangeney-Castelnau, A. & Vilotte, J. P. 2004 Spreading of a

granular mass on a horizontal plane. Phys. Fluids 16, 2371–2381.

Lemieux, P. A. & Durian, D. J. 2000 From avalanches to fluid flow: a continuous

picture of grain dynamics down a heap. Phys. Rev. Lett. 85, 4273–4276.

Lighthill, M. J. & Whitham, G. B. 1955a On Kinematic Waves. I. Flood Movement

in Long Rivers. Proc. Roy. Soc. A 229, 281–316.

Lighthill, M. J. & Whitham, G. B. 1955b On Kinematic Waves. II. A Theory of

Traffic Flow on Long Crowded Roads. Proc. Roy. Soc. A 229, 317–345.

145



Bibliography

Lipman, P. W. & Banks, N. G. 1987 Aa flow dynamics, Mauna Loa 1984. U.S. Geol.

Surv. Prof. Pap. 1350, 1527–1567.

Lister, J. R. 1992 Viscous flows down an inclined plane from point and line sources. J.

Fluid Mech. 242, 631–653.

Llewellin, E. W., Mader, H. M. & Wilson, S. D. R. 2002 The rheology of a bubbly

liquid. Proc. Roy. Soc. A 458, 987–1016.

Love, A. E. H. 1944 A treatise on the mathematical theory of elasticity . Dover Publica-

tions.

Lube, G., Huppert, H. E., Sparks, R. S. J. & Hallworth, M. A. 2004 Axisymmetric

collapses of granular columns. J. Fluid Mech. 508, 175–199.

Lykoudis, P. S. & Roos, R. 1970 The fluid mechanics of the ureter from a lubrication

theory point of view. J. Fluid Mech. 43, 661–674.

Malin, M. C. 1980 The lengths of Hawaiian lava flows. Geology 8, 306–308.

Malloggi, F., Lanuza, J., Andreotti, B. & Clément, E. 2006 Erosion waves:

Transverse instabilities and fingering. Europhys. Lett. 75, 825–831.

Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J. P. & Bristeau, M. O.

2007a Numerical modeling of self-channeling granular flows and of their levee-channel

deposits. J. Geophys. Res 112, F02017.

Mangeney, A., Tsimring, L. S., Volfson, D., Aranson, I. S. & Bouchut, F.

2007b Avalanche mobility induced by the presence of an erodible bed and associated

entrainment. Geophys. Res. Lett. 34, L22401.

McDonald, R. R. & Anderson, R. S. 1996 Constraints on eolian grain flow dynamics

through laboratory experiments on sand slopes. J. Sediment. Res. 66, 642–653.

Melo, F., Joanny, J. F. & Fauve, S. 1989 Fingering instability of spinning drops.

Phys. Rev. Lett. 63, 1958–1961.

Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating
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