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Abstract

Rational herd behavior and informationally efficient security prices have long been

considered to be mutually exclusive but for exceptional cases. In this paper we

describe the conditions on the underlying information structure that are necessary

and sufficient for informational herding and contrarianism. In a standard sequential

security trading model, subject to sufficient noise trading, people herd if and only

if, loosely, their information is sufficiently dispersed so that they consider extreme

outcomes more likely than moderate ones. Likewise, people act as contrarians if and

only if their information leads them to concentrate on middle values. Both herding

and contrarianism generate more volatile prices, and they lower liquidity. They are

also resilient phenomena, although by themselves herding trades are self enforcing

whereas contrarian trades are self-defeating. We complete the characterization by

providing conditions for the absence of herding and contrarianism.
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1 Introduction

In times of great economic uncertainty, financial markets often appear to behave frantically,

displaying substantial spikes as well as drops. The recent financial crisis is a striking

example. Such extreme price fluctuations are possible only if there are dramatic changes

in behaviour with investors switching from buying to selling or the reverse. This pattern of

behavior and the resulting price volatility is often claimed to be inconsistent with rational

traders and informationally efficient asset prices and is attributed to investors’ animal

instincts. We argue in this paper, however, that such behavior need not be triggered by

‘animal spirits’ but that it can be the result of fully rational social learning where agents

change their beliefs and behavior as a result of observing the action of others.

One example of social learning is herd behavior in which agents switch behavior (from

buying to selling or the reverse) following the crowd. So-called ‘rational herding’ can occur

in situations with information externalities, when agents’ private information is swamped

by the information derived from observing others’ actions. Such ‘herders’ rationally act

against their private information and follow the crowd.1

At first sight, rational herding seems tailor-made to explain financial market frenzies,

crashes and panics. However, when prices are assumed to be informationally efficient,

reflecting all public information, it is not clear that herd behavior can occur at all. For

example, suppose a crowd of people buys a stock frantically and consider the case of an

investor with unfavorable private information about this security. Such an investor will

update his information, and, indeed many buys will increase his expectation. At the same

time, prices also adjust upward. Then it is not clear that at this stage the investor with an

unfavorable signal buys — to him the security may still be overvalued. So, for herding to

take place, private expectations and prices must diverge substantially — once unfavorable

expectations must rise faster or favorable expectations must drop faster than prices.

In models with only two states of the world, it turns out that such a divergence is

impossible as prices always adjust so that there is no herding (more generally no social

learning).2 Two states models however are rather special and rational herding can emerge

in richer models. In this paper we identify economically appealing necessary and sufficient

conditions on traders’ private information that allow for herding in the context of a simple

informationally efficient financial market. Moreover, we show that (i) during herding prices

can move substantially and (ii) herding can induce lower liquidity and higher price volatility

than if there were no herding. In other words, the kind of herd behavior that we identify can

have exactly the features that have long been suspected to be present in financial markets.

1See Banerjee (1992) or Bikhchandani, Hirshleifer, and Welch (1992) for early work on herding.
2With two states traders with favourable information always buy and those with unfavourable informa-

tion always sell irrespective of what the traders observe.
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Herd behavior in our set-up is defined as any history-switching behavior in the direction

of the crowd (a kind of momentum trading).3 Social learning can also arise as a result

of traders switching behavior by acting against the crowd. Such contrarian behaviour

is the natural counterpart of herding, and in this paper we also characterize conditions

under which contrarian behavior arises. Contrary to received wisdom that contrarianism

is stabilizing, we also show that contrarian behavior leads to higher volatility and lower

liquidity, just as herd behavior. Finally, by contraposition we obtain the conditions under

which neither herding nor contrarian behavior is possible — the case of no social learning.

We thus provide a complete characterization of trading behavior.

The key insight of our characterization result is that social learning in financial markets

with informationally efficient prices occurs if and only if the investors in question receive

information that satisfies some compelling and intuitive property. Loosely (see below),

herding happens if and only if private information satisfies a property that we call “U

shaped”. Namely, an investor who receives such information believes that extreme states are

more likely to have generated the information than more moderate ones. Therefore, when

forming his posterior belief, the recipient of such a signal will shift weight away from the

center to the extremes so that the posterior distribution of the trader is “fat-tailed”. Thus,

the recipient of a U shaped signal discounts the possibility of the intermediate value and

as a consequence will update the probabilities of extreme values faster than an agent who

receives only the public information. So, even if this investor’s prior belief is pessimistic,

after observing a large number of buys (favourable news), he updates his belief and puts

more weight on the best outcome than the market, and hence starts buying. Similarly,

such an investor will sell after a large number of sales because his updated belief puts more

weight on the worse outcome than the market’s. Therefore, the behavior of an investor

with a U shaped signal can be volatile.

On the other hand, contrarianism occurs if and only if the investor’s signal indicates

that moderate states are more likely to have generated the signal than extreme states. We

describe such signals as being Hill shaped. The recipient of a Hill shaped signal updates

extreme outcomes slower and always puts more weight on the middle outcome relative to

the market so that this trader’s posterior distribution becomes “thin-tailed”. This causes

him to take actions that move prices towards this middle outcome: if prices rise too much

he sells and if prices fall too much he buys. Thus, he may act against the crowd.

Finally, an informed investor trades the same way irrespective of the history (no social

learning) if and only if his signal is neither U shaped nor Hill shaped.

We follow the microstructure literature and establish our results in the context of a

3Herding in our set-up does not signify that everyone acts alike or that there is an informational cascade.
In fact, in an efficient financial market all traders acting alike would not be such an interesting phenomenon
as actions would not reveal any private information and therefore prices would not react.
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stylized trading model in the tradition of Glosten and Milgrom (1985). In such models the

bid and ask prices are set by a competitive market maker. Investors trade with the market

maker either because they receive private information about the asset’s fundamental value

or because they are “noise traders” and trade for reasons outside of the model, e.g. liquidity.

The simplest possible Glosten and Milgrom (1985) type trading model that would allow

herding or contrarianism is one with at least three states or liquidation values for the asset

(as we mentioned before, with two states social learning is not possible). For this case, we

show that (i) a U shaped (Hill shaped) signal is necessary for herding (contrarianism) and

(ii) herding (contrarianism) occurs with a positive probability if there exists at least one

U shaped (Hill shaped) signal and there is a sufficient amount of noise traders. The latter

assumption on the minimum level of noise trading is not necessary in all cases and is made

because otherwise the bid and ask spread may be too large to induce appropriate trading.

In Section 8 we will further show that the intuition for our three states characterization

carries over to a setup with an arbitrary number of states.

We obtain our characterization results without restrictions on the signal structure. In

the literature on asymmetric information (for instance, in rational expectations models or

auctions) it is often assumed that information structures satisfy the monotone likelihood

ratio property (MLRP). Such information structures are “well-behaved” because, for ex-

ample, investors’ expectations are ordered. At first, it may appear that such a very strong

monotonicity requirement would prohibit herding or contrarianism. Yet MLRP does not

only admit the possibility of U shaped signals (and thus herding) or Hill shaped signals

(and thus contrarianism), but it also turns out that the proofs for our sufficiency results

are significantly simpler with MLRP signals. When the well-behaved MLRP is violated,

on the other hand, the proofs are substantially more complicated.

Having characterized both herding and contrarianism, we next show that the range of

price movements can be very large during both contrarianism and herding. In fact we show

that with MLRP signals both herding and contrarianism can occur for almost the entire

range of feasible prices.4

Our second main result concerns the impact of social learning on liquidity (measured

by the bid-ask-spread) and price volatility. We show that the former declines when the

herding or contrarian candidate switches the trading direction (compared to a situation

where he does not switch). To understand the impact of social learning on the latter,

we compare price movements in our set-up, which we call the transparent economy, with

those in a hypothetical economy, which we call opaque, that is otherwise identical to our

set-up except that the informed traders do not switch behavior as a result of observing

4In the model asymptotically the true state is revealed and prices converge to the true value. In this
paper, however, we shall not be concerned with such long-run results.
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the behavior of others. In contrast to the transparent economy, in the opaque economy

there is no social learning either because traders do not have access to the information

regarding the behavior others or because they cannot (e.g. for cognitive reasons) extract

any information about the true state from the behavior of others. We also restrict attention

to MLRP signals. We then show that once herding or contrarianism begins, prices respond

more to individual trades relative to the situation without social learning so that price rises

and price drops are greater in the transparent set-up than in the opaque one.5

Some of the above results on the impact of social learning on price paths (in particular

the impact on volatility in the transparent case relative to the opaque one) are surprising

for both the herding and the contrarianism case. For casual intuition suggests: (i) during

herding there is little informational content in herd trades and thus price movements and

spreads are small and (ii) contrarianism is often stabilizing. These intuitions are, however,

incorrect because volatility is higher when social learning occurs (for both herding and

contrarianism) compared to the opaque case where there is no social learning. These

results are even more surprising as they arise with the ‘well-behaved’ MLRP restriction.

The liquidity and price volatility results also have direct and important implications

for the discussion on the merits of ‘market transparency’. The price path in the opaque

economy without social learning can be interpreted as the outcome of a trading mechanism

in which people submit orders without knowing the behavior of others and without know-

ing the market price. Our results thus indicate that in the less transparent setup, price

movements are less pronounced.

While the results on price ranges, volatility and liquidity indicate similarities between

herding and contrarianism, there is also a stark difference. Contrarian trades are self-

defeating because a large number of such trades will cause prices to move ‘against the

crowd’ thus ending contrarianism. During herding, on the other hand, investors continue

to herd when trades are ‘in the direction of the crowd’, so herding is self-enforcing.

We complete this introduction by outlining several real-world situations where signals

can have the structure necessary for herding or contrarian behavior. The current financial

crisis provides a good set of examples for such signals, and our characterization results for

herding and contrarianism may cast some light on the idea that extreme uncertainty may

foster increases in trading activities and volatility. For example, the collapse of Lehman

Brothers might have changed investors’ beliefs of the possibility of extreme events, such as

unconditional bailouts, nationalizations or further collapses of financial institutions. With

all the rumours, and extreme and divergent commentaries, many investors might have

concluded that in the aftermath of the Lehman collapse the authorities either knew what

5The increase in price-volatility associated with herding is only relative to a hypothetical scenario. Even
when herding is possible, in the long-run volatility settles down and prices react less to individual trades. It
is well known that the variance of Martingale price-processes such as ours is bounded by model primitives.
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they were doing and that the remaining financial institutions must be sound and would

eventually come out well or that the authorities have no idea what they are doing and that

the contagion effect will be so large that a complete collapse of the financial system will

be inevitable. According to our theory, such assessments that either extreme outcomes are

likely could have resulted in herding in the aftermath of the Lehman collapse.

As another example consider September 29, 2008, the day the bailout bill (TARP) was

first rejected. Loosely, after the rejection there were three possible outcomes: (i) the bill is

re-introduced and passed, (ii) a new bill with a foul compromise is passed, or (iii) no bill

at all is passed and wide-spread banking panics follow. Thus, (i) and (iii) correspond to

the extreme outcomes and (ii) is the middle outcome.

In this environment, investors’ information might have implied that the most likely

outcome is either that Congress will ultimately pass the original bill and a good outcome

will occur or that Congress will block any attempted bailout and the doomsday outcome will

happen. Such information is an example of U shaped signal. Alternatively, some investors’

assessment might have implied that the compromise bill is the most likely outcome, for

policy makers would neither allow the initial bill to be passed nor would they conceivably

allow the doomsday outcome by passing no bill at all. Such information is an example of

a Hill shaped signal.

It is conceivable that in Autumn 2008 many believed that the two extreme states (the

bill passes or there is no bill at all) were the most likely outcomes. Then our theory

predicts the potential for herd behavior, with investors changing behavior in the direction

of the crowd, causing strong short-term price fluctuations. Hill shaped private signals,

signifying that the compromise is considered the most likely outcome, may also be part of

the explanation as contrarians display rapid changes of behaviour that cause volatility.

Finally, U shaped and Hill shaped signals may also be good descriptions of situations

with a potential upcoming event that has an uncertain impact. For example, consider

the case of a company or institution that contemplates appointing a new leader who is an

uncompromising “reformer”. If this person takes power, then either the necessary reforms

take place or there will be strife with calamitous outcomes. Thus the new leader will be

either very good or disastrous, and the institution will certainly not be the same. In this

situation, private information signifying that the person is likely to be appointed exemplifies

a U shaped signal and any information revealing that this person is unlikely to be appointed

(and thus the institution will carry on as before) represents a Hill shaped signal.6

Overview. The next section discusses some of the related literature. Section 3 out-

lines the setup. Section 4 defines herding and contrarian behavior, outlines properties of

6Other examples are an upcoming merger or takeover with uncertain merits, the possibility of a gov-
ernment stepping down, announcements of FDA drug approvals, outcomes of lawsuits etc. Degenerate
examples for such uncertain events were first mentioned in Easley and O’Hara (1987).
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signal distributions and derives some basic properties. Section 5 discusses the necessary

and sufficient conditions that ensure herding and contrarianism. Section 6 considers the

resiliency, and fragility of herding and contrarianism and describes the range of prices for

which there may be herding and contrarianism. Section 7 discusses the impact of social

learning on prices with respect to liquidity and volatility. Section 8 extends the result to a

setting with an arbitrary number of states. Section 9 concludes. Proofs that are not in the

text are either in the appendix or in the supplementary material.

2 Related Literature

Extensive literature surveys on herding in financial markets are in Brunnermeier (2001),

Chamley (2004) and Vives (2008). The work closest to ours is Avery and Zemsky (1998).

Probably best known for its no-herding result with informationally efficient prices, it also

presents an intuitive appealing example in which herding is possible. Avery and Zemsky

argue that herd behavior with informationally efficient asset prices is not possible unless

signals are “non-monotonic” and attribute the herding result in their example to “multidi-

mensional uncertainty/risk” (investors have a finer information structure than the market).

In their example, however, there are hardly any price movements under herding.7

The profession, for instance Brunnermeier (2001), Bikhchandani and Sunil (2000),

Chamley (2004) have derived three messages from Avery and Zemsky (1998)’s paper. First,

with “monotonic” signals, herding is impossible. Second, for herding one needs “multidi-

mensionality” of risk. Third, herding does not involve violent price movements except in the

most unlikely environments. Therefore, since in Avery and Zemsky’s example the informa-

tion structure needed to induce herding is very special and large price movements cannot

easily be attributed to herd-type behavior, it has been concluded that rational herding

models are not so relevant to understanding the functioning of efficient financial markets.

The results of our paper demonstrate that the conclusions derived from Avery and Zemsky

and the profession’s perception need to be corrected. First, we show that it is U shaped

signals, and not multidimensionality (or non-monotonicity) of the information structure,

that generate herding. Therefore there may be a great deal more rational informational

herding than is currently expected in the literature. Second, extreme price movements with

herding are possible under not so unlikely situations. And third, price volatility may even

be exacerbated by herding and contrarian behavior.

There are several related contributions in the literature that highlight how certain facets

7To generate extreme price movements (bubbles) with herding Avery and Zemsky have an example
with further information asymmetries and thus more ‘risk dimensions’. However, even with these further
informational asymmetries, the likelihood of large price movements in their set-up during a herd phase is
extremely small; see Chamley (2004). Section 9 outlines Avery and Zemsky’s notions of monotonicity and
dimensions of risk and discusses further relations of their results to ours.
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of market organization or incentives lead to conformism and informational cascades. In Lee

(1998), there are fixed transaction costs which temporarily prevent traders from revealing

their information. This hidden information gets revealed suddenly when a large number

of traders enters the market simultaneously. The market maker absorbs these trades at a

fixed price, which leads to large price jumps after the avalanche. In Cipriani and Guarino

(2008), traders have private benefits from trading in addition to the fundamental value

payoff. As the private and public expectations converge, private benefits gain importance

to the point when they overwhelm the informational rents. Then learning breaks down and

an informational cascade arises. In Dasgupta and Prat (2005) an informational cascade is

triggered by traders’ reputation concerns, which eventually outweigh the possible benefit

from trading on information. Chari and Kehoe (2004) also study a financial market with

efficient prices; herding in their model arises with respect to a capital investment that is

made outside of the financial market.

All of the above contributions highlight important aspects, facets, and mechanisms that

can trigger conformism in financial markets. Our findings complement and complete the

analysis by providing a complete description of trading behavior when prices do account

correctly for all the information that is revealed by agents’ trading at any point in time.

3 The Model

We model financial market sequential trading in the tradition of Glosten and Milgrom (1985).

Security: There is a single risky asset with a liquidation value V from a set of three

potential values V = {V1, V2, V3} with V1 <V2 <V3. The prior distribution over V is denoted

by Pr(·). To simplify the computation we assume that {V1, V2, V3} = {0,V , 2V}, V > 0 and

that the prior distribution is symmetric around V2; thus Pr(V1) = Pr(V3).
8

Traders: There is a pool of traders consisting of two kinds of agents: Noise Traders

and Informed Traders. At each discrete date t one trader arrives at the market in an

exogenous and random sequence. Each trader can only trade once at the point in time at

which he arrives. We assume that at each date the entering trader is an informed agent

with probability µ > 0 and a noise trader with probability 1 − µ > 0.

The informed agents are risk neutral and rational. Each receives a private, condition-

ally i.i.d. signal about the true value of the asset V. The set of possible signals is denoted

by S and consists of three elements S1, S2 and S3. The signal structure of the informed

agent can therefore be described by a 3-by-3 matrix I = {Pr(Si|Vj)}i,j=1,2,3 where Pr(Si|Vj)

is the probability of signal Si if the true value of the asset is Vj.

Noise traders have no information and trade randomly. These traders are not necessarily

8The ideas of this paper remain valid without these symmetry assumptions.
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irrational, but they trade for reasons not included in this model, such as liquidity.9

Market Maker: Trade in the market is organised by a market maker who has no

private information. He is subject to competition and thus makes zero-expected profits.10

In every period t, prior to the arrival of a trader, he posts a bid-price bidt at which he is

willing to buy the security and an ask-price askt at which he is willing to sell the security.

Consequently he sets prices in the interval [V1, V3].

Traders’ Actions: Each trader can buy or sell one unit of the security at prices

posted by the market maker, or he can be inactive. So the set of possible actions for any

trader is {buy, hold, sell}. We denote the action taken in period t by the trader that arrives

at that date by at. We assume that noise traders trade with equal probability. Therefore,

in any period, a noise-trader buy, hold or sale occurs with probability γ = (1 − µ)/3 each.

Public History: The structure of the model is common knowledge among all market

participants. The identity of a trader and his signal are private information, but everyone

can observe past trades and transaction prices. The history (public information) at any

date t > 1, the sequence of the traders’ past actions together with the realised past trans-

action prices, is denoted by H t = ((a1, p1), . . . , (at−1, pt−1)) for t > 1, where aτ and pτ are

traders’ actions and realised transaction prices at any date τ < t respectively. Also, H1

refers to the initial history before any trade takes place.

At any date t and any history H t the public belief of the probability that the true

liquidation value of the asset is Vi is denoted by qt
i = Pr(Vi|H

t), for each i = 1, 2, 3. The

public expectation of the value is given by E[V |H t] = Σqt
iVi.

The Informed Trader’s Optimal Choice: The game played by the informed agents

is one of incomplete information; therefore the optimal strategies correspond to a Perfect

Bayesian equilibrium. Here, the equilibrium strategy for each trader simply involves com-

paring the quoted prices with his expected value taking into account both the public history

and his own private information. For simplicity, we restrict ourselves to equilibria in which

each agent trades only if he is strictly better off (in the case of indifference the agents do

not trade). Therefore, the equilibrium strategy of an informed trader that enters the mar-

ket in period t, receives signal St and observes history H t is (i) to buy if E[V |H t, St] > askt,

(ii) to sell if bidt > E[V |H t, St], and (iii) to hold in all other cases.

The Market Maker’s Price-Setting: To ensure that the market maker receives

zero expected profits, bid and ask prices must satisfy the following at any date t and any

history H t: askt = E[V |at = buy at askt, H t] and bidt = E[V |at = sell at bidt, H t].

If the market maker always sets prices equal to the public expectation, E[V |H t], he

makes an expected loss on trades with an informed agent (note that each informed agent

9As is common in the microstructure literature with asymmetric information, we assume that noise
traders have positive weight (µ < 1) to prevent “no-trade” outcomes a la Milgrom and Stokey (1982).

10Alternatively, we could assume a Bertrand model with many identical market makers setting prices.

8



trades only if he makes a strict gain). However, if the market maker sets an ask-price and a

bid-price respectively above and below the public expectation, he gains on noise traders, as

their trades have no information value. Thus, in equilibrium the market maker may have

to make a profit on trades with noise traders to compensate for any losses against informed

types. This implies that if at any history H t, there is a possibility that the market maker

trades with an informed trader, then there is a spread between the bid and ask prices at H t

and the public expectation E[V |H t], henceforth also referred to as the “average price”,

satisfies askt > E[V |H t] > bidt.

Trading by the Informed Types and No Cascade Condition: At any history H t

either informed types do not trade and every trade is by a noise trader or there is an

informed type that would trade at the quoted prices. The game played by the informed

types in the former case is trivial as there will be no trade by the informed from H t onwards

and an informational cascade occurs.11 In this paper, we thus consider the latter case in

which at every history there is an informed type that would trade at the quoted prices.

Informative Private Signals: The private signals of the informed traders are infor-

mative at history H t if

there exists S ∈ S such that E[V |H t, S] 6= E[V |H t]. (1)

First note that (1) implies that at H t there is an informed type that buys and an informed

type that sells.12 Second, if there is informed type that trades at H t then (1) must hold.

Otherwise, for every signal S ∈ S, E[V |H t, S] = E[V |H t] = askt = bidt, in which case the

informed types would not trade at H t. Therefore, it follows from the above that (1) is both

necessary and sufficient for trading by an informed type at H t. Since we are interested in

the case when the informed types trade, we therefore assume throughout this paper that (1)

holds at every history H t.13

Long-run behavior of the model. Since price formation in our model is standard, (1)

also ensures that standard asymptotic results on efficient prices hold. More specifically, by

standard arguments as in Glosten and Milgrom (1985) we have that transaction prices form

a martingale process. Since by (1) buys and sells have some information content (at every

date there is an informed type that buys and one that sells), it also follows that beliefs

and prices converge to the truth in the long run. However, as we mentioned before (see

Footnote 4), here we are solely interested in short-run behavior and fluctuations.

11If there are no trades by the informed at Ht then no information will be revealed and the expectations
and prices remain unchanged irrespective of the outcome at Ht. Hence, by induction, we would have no
trading by the informed and no information revelation at any date after Ht.

12By (1) there must exist two signals S′ and S′′ such that E[V |Ht, S′] < E[V |Ht] < E[V |Ht, S′′]. If no
informed type buys at Ht then there is no informational content in a buy and askt = E[V |Ht]. Then, by
E[V |Ht] < E[V |Ht, S′′], type S′′ must be buying at Ht; a contradiction. Similarly, if no informed type sells
at Ht then bidt = E[V |Ht]. Then, by E[V |Ht] > E[V |Ht, S′], type S′ must be selling at Ht; a contradiction.

13A sufficient condition for (1) to hold at every Ht is that all minors of order two of the information
matrix I are non-zero.
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4 Some Definitions and Basic Properties

4.1 Definitions of Herding and Contrarian Behavior

The definitions of herding and contrarianism that we adopt here refer to the behavior of a

particular signal type and they capture the history-dependent (or social learning) element of

behavior in an informationally efficient financial market. We differentiate between herding

and contrarianism by describing the former as a history-induced switch of opinion in the

direction of the crowd and the latter as a history-induced switch against the direction of

the crowd. Thus in our setup there is a symmetry in our definitions, making herding the

intuitive counterpart to contrarianism — which itself is not a mass phenomenon.

Definition (Herding and Contrarianism)

Herding. A trader with signal S buy herds in period t at history H t if and only if

(i) E[V |S] < bid1, (ii) E[V |S,H t] > askt, (iii-h) E[V |H t] > E[V ]. Sell herding at history H t

is defined analogously with the required conditions E[V |S] > ask1, E[V |S,H t] < bidt, and

E[V |H t] < E[V ]. Type S herds if he either buy herds or sell herds.

Contrarianism. A trader with signal S is engages in buy contrarianism in period t

at history H t if and only if (i) E[V |S] < bid1, (ii) E[V |S,H t] > askt, (iii-c) E[V |H t]

< E[V ]. Sell contrarianism at history H t is defined analogously with the required conditions

E[V |S] > ask1, E[V |S,H t] < bidt, and E[V |H t] > E[V ]. Type S engages in contrarianism if

he engages either in buy contrarianism or sell contrarianism.

Both with buy herding and buy contrarianism, type S prefers to sell at the initial history,

before observing other traders’ actions (condition (i)), but prefers to buy after observing the

history H t (condition (ii)). The key differences between a herd-buy and a contrarian-buy

are conditions (iii-h) and (iii-c). The former requires the average price to rise at history

H t so that a change of action from selling to buying at H t is with the general movement of

the prices (crowd), whereas the latter condition requires the average price to have dropped

so that a trader who buys at H t acts against the movement of prices.14

Our definition of herding is the same as that in Avery and Zemsky (1998).15 In the

literature, there are other definitions of herding (and informational cascades). For instance,

14There are several points to note about our definition. First, the benchmark for a switch is the decision
that a trader would take at the initial history. Thus someone acts as a buy herder (contrarian) if he would
have sold at the initial history, but buys after observing a history with rising (falling) prices. Second,
a ‘history with buy herding or buy contrarianism’ only implies that there could be types that buy-herd
or act as buy contrarians — it does not mean that the actual trades are by these types. Third, herding
and contrarianism here refer to extreme switches of behavior from selling to buying or the reverse. One
could expand the definition to switches from holding to buying or to selling (or the reverse). To ensure
consistency with the earlier literature, we focus on the extreme cases where switches do not include holding.

15Avery and Zemsky (1998)’s definition of contrarianism is stronger than ours (they also impose an
additional bound on price movements that reflects the expectations that would obtain if the traders receives
an infinite number of draws of the same signal). We adopt the definition of contrarianism above because,
as we explained before, it is a natural and simple counterpart to the definition of herd behavior.
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some papers require ‘action convergence’ or even complete informational cascades where

all types take the same action, irrespective of their information (see Chamley (2004)).

However, as we discussed above (see footnote 3), in a standard sequential security trading

model with informationally efficient prices it is impossible for all informed agents to trade on

the same side of the market, if there are informative private signals (see (1)). Furthermore,

if all traders act alike, actions would be uninformative, and prices would not move; and,

therefore, one cannot explain excess volatility or booms and busts.16

4.2 Information Structure

Conditional signal distributions. As we outlined in the introduction, the possibility

of herding or a contrarian behaviour for any informed agent with signal S ∈ S depends

critically on the shape of the conditional signal distribution of S. Henceforth, we refer

to the conditional signal distribution as the csd. Furthermore, we will also employ the

following terminology to describe six different types of csds:

increasing: Pr(S|V1) ≤ Pr(S|V2) ≤ Pr(S|V3); decreasing: Pr(S|V1) ≥ Pr(S|V2) ≥ Pr(S|V3);

U shaped: Pr(S|Vi) > Pr(S|V2) for i = 1, 3; Hill shaped: Pr(S|Vi) < Pr(S|V2) for i = 1, 3;

Negative bias: Pr(S|V1) > Pr(S|V3); Positive bias: Pr(S|V1) < Pr(S|V3);

zero bias: Pr(S|V1) = Pr(S|V3); non-zero bias: Pr(S|V1) 6= Pr(S|V3).

We shall call a signal’s csd monotonic if its csd is either increasing or decreasing (monotonic

signals thus include the case of an uninformative signal). Also, a monotonic csd is said

to be strictly monotonic if all three conditional probabilities for the signal are distinct.

Furthermore, we use the term nU (pU) shaped csd to describe a U shaped csd with negative

(positive) bias. Similarly, we use nHill and (pHill) to describe a Hill shape with a negative

(positive) bias. In describing the above properties of a type of csd for a signal we shall

henceforth drop the reference to the csd and attribute the property to the signal itself,

when the meaning is clear. Similarly, when describing the behavior of a signal recipient we

attribute the behavior to the signal itself.

An immediate property implied by a monotonic signal is that the recipient of such a

signal cannot buy at some history and sell at another.

Proposition 1 (No Herding or Contrarianism with Monotonic Signals) If S is in-

creasing then type S does not sell at any history. If S is decreasing then type S does not buy

at any history. Thus recipients of monotonic signals cannot herd or behave as contrarians.

To see the intuition suppose that S is decreasing. Then for any Vl < Vh we have Pr(S|Vi) ≤

Pr(S|Vj). Thus at any history H t the likelihood that trader S attaches to Vℓ relative to Vh

16For instance, models with informational cascades such Cipriani and Guarino (2008) and Dasgupta and
Prat (2005) have the feature that prices no longer move once the informational cascade starts.
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is no more than that for the market maker: Pr(Vl|S,Ht)
Pr(Vh|S,Ht)

= Pr(Vl|H
t)Pr(S|Vl)

Pr(Vh|Ht)Pr(S|Vh)
≤ Pr(Vl|H

t)
Pr(Vh|Ht)

. Then

S’s expectation does not exceed that of the market maker, and hence S cannot be buying

at any history. By a similar reasoning an increasing signal type cannot be selling at any

history. The following lemma formally yields the result.

Lemma 1 For any S, time t and history H t, E[V |S,H t] − E[V |H t] has the same sign as

qt
1q

t
2 [Pr(S|V2)−Pr(S|V1)] + qt

2q
t
3 [Pr(S|V3)−Pr(S|V2)] + 2qt

1q
t
3 [Pr(S|V3)−Pr(S|V1)]. (2)

To show Proposition 1, fix any history H t. If signal S is decreasing then every term in (2)

is non-positive and E[V |S,H t] ≤ E[V |H t]. Since E[V |H t] < askt, S does not buy at H t.

Similarly, if the signal type S is increasing then every term in (2) is non-negative and

E[V |S,H t] ≥ E[V |H t]. Since E[V |H t] > bidt, S does not sell at H t.

Monotone likelihood ratio property (MLRP). As we mentioned before, the lit-

erature on asymmetric information often assumes that the information structure satis-

fies MLRP. Here this means that for any signals Sl, Sh ∈ S and values Vl, Vh ∈ V such

that Sl < Sh and Vl < Vh, Pr(Sh|Vl)Pr(Sl|Vh) < Pr(Sh|Vh)Pr(Sl|Vl) holds. Thus, MLRP

holds if and only if all minors of order two of the information matrix I are positive.

The MLRP imposes a natural order on the signals in terms of their conditional expec-

tations after any history. In particular, this implies that the lowest signal is always selling

and the highest signal is always buying. Also, with MLRP signals, the extreme signals

have monotonic csds. Formally, we have the following.

Lemma 2 Assume S1 < S2 < S3 and the information structure satisfies MLRP. Then

(i) E[V |S1, H
t] < E[V |S2, H

t] < E[V |S3, H
t] at any t and any H t.

(ii) In any equilibrium informed traders with signal S1 (S3) always sell (buy).

(iii)The csd for S1 is strictly decreasing and the csd for S3 is strictly increasing.

We derive our main results on herding and contrarianism with no assumptions on the

information structure (other than the informativeness of the private signals as described

by (1)). As it turns out the properties described in Lemma 2 enable us to derive a sharper

(and easier to establish) sets of results when the information structure satisfies MLRP.

Finally, note that MLRP is a set of restrictions on the conditional probabilities for the

entire signal structure, whereas the properties associated with a csd are a restriction on the

conditional probabilities of a given signal. In particular, note that although MLRP implies

that the csd of the lowest and highest signals are strictly monotonic (Lemma 2 (c)), the

csd for the middle signal S2 can be decreasing, increasing, hill shaped or U shaped with a

negative or a positive bias — Table 1 displays examples of all these possibilities.17

17Avery and Zemsky (1998) define a notion of monotonicity that is different from both MLRP and csd
monotonicity (see the concluding Section 9 below).
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Pr(S|V ) V1 V2 V3

S1
5
9

1
3

2
9

S2
6
18

4
18

3
18

S3
1
9

4
9

11
18

Pr(S|V ) V1 V2 V3

S1
5
9

4
9

1
9

S2
5
27

6
27

9
27

S3
7
27

1
3

5
9

Pr(S|V ) V1 V2 V3

S1
5
6

1
3

0
S2

11
120

40
120

20
120

S3
3
40

1
3

5
6

decreasing for S2 increasing for S2 pHill shape for S2

Pr(S|V ) V1 V2 V3

S1
5
6

1
3

3
40

S2
20
120

40
120

11
120

S3 0 1
3

5
6

Pr(S|V ) V1 V2 V3

S1
31
100

1
5

1
100

S2
59
100

50
100

60
100

S3
1
10

3
10

39
100

Pr(S|V ) V1 V2 V3

S1
3
10

1
5

1
50

S2
60
100

50
100

59
100

S3
1
10

3
10

39
100

nHill shape for S2 pU shape for S2 nU shape for S2

Table 1: Examples of MLRP Signal distributions Each entry represents the probability of the row-

signal given the true liquidation value in the column. In all the above examples, the signal distributions

for S1 and S3 are csd-monotonic. MLRP is satisfied as each minor of order 2 is positive.

5 Characterizing Herding and Contrarian Behavior

5.1 Necessary Conditions

Before stating the necessary conditions on csds that make herding and contrarianism possi-

ble, we state two useful lemmas. First, since the prior on the liquidation values is symmetric

it follows that at the initial history the expectation of the informed is less (greater) than

the average price if and only if the signal type is negatively (positively) biased.

Lemma 3 For any signal S, E[V |S] is less than E[V ] if and only if S has a negative bias,

and E[V |S] is greater than E[V ] if and only if S has a positive bias.

Second, note that when the average price rises (falls), as is the case when buy herding (buy

contrarian) occurs, the public belief must attach a lower (higher) probability to the lowest

value, V1, than to the highest value, V3.

Lemma 4 If E[V |H t] > E[V ] then qt
3 > qt

1 and if E[V ] > E[V |H t] then qt
1 > qt

3.

We are now in the position to describe our main necessary conditions:

Proposition 2 (Necessary Conditions for Herding and Contrarianism)

(a) Signal type S buy herds only if S is nU shaped, sell herds only if S is pU shaped and

herds only if S is U shaped.

(b) Signal type S acts as a buy contrarian only if S is nHill shaped, acts as a sell contra-

rian only if S is pHill shaped and acts as a contrarian only if S is Hill shaped.

A sketch of the proof of Proposition 2 is as follows. Suppose that S buy herds or acts as a

buy contrarian (the cases of sell herding or sell contrarian are analogous). Then it must be

13



that at the initial history H1 type S sells and therefore that his expectation is below the

market price. By Lemma 3, this implies that S is negatively biased.18 By Proposition 1, S

cannot be monotonic. Thus, it follows that S is either nU shaped or nHill shaped.

The proof is completed by showing that buy herding is inconsistent with an nHill shaped

csd and that buy contrarianism is inconsistent with an nU shaped csd. To see the intuition,

for example, for the case of buy herding, note that in forming his belief a trader with an

nHill shaped csd puts less weight on the tails of his belief (and thus more on the center)

relative to the market maker; furthermore, the shift from the tails towards the center is

more for value V3 than for V1 because of the negative bias. Since when buy herding occurs

prices must have risen and therefore, by Lemma 4, the public belief attaches more weight

to V3 relative to V1 (i.e. qt
1 < qt

3), such a redistribution of probability mass ensures that S’s

expectation is less than that of the market maker. Hence S cannot be buying.

5.2 Sufficient Conditions: Informal Discussion

The above necessary conditions —U shape for herding and Hill shape for contrarianism—

also turn out to be almost sufficient. We present the sufficiency results in the next subsec-

tion; here we provide some intuition by discussing three underlying insights for the results.

(I) With a U shaped or a Hill shaped signal an informed trader has an expectation that is

below that of the market maker (the average price) at some history and above it at another.

To see the intuition for this, consider first any history H t at which the probability of

state V1 is sufficiently small relative to the probability of the other states (both qt
1/q

t
2 and

qt
1/q

t
3 are close to zero). Then at such a history there are effectively two states V2 and V3.

This means that at such a history the expectation of a trader S exceeds (is less than) that of

the market maker (who has no private information) if S induces a higher (lower) weight to

the higher state V3 than to the lower state V2. Formally, at any H t at which both qt
1/q

t
2 and

qt
1/q

t
3 are close to zero, the first and the third terms in (2) are arbitrarily small; moreover,

the second term in (2) has the same sign as Pr(S|V3) − Pr(S|V2); therefore, it follows from

from Lemma 1 that E[V |S,Ht]−E[V |Ht] has the same sign as Pr(S|V3)−Pr(S|V2). But the

latter is positive for a U shaped S and negative for a Hill shaped S. Thus when qt
1/q

t
2 and

qt
1/q

t
3 are sufficiently small, the expectation of a U shaped type exceeds that of the market

maker and the expectation of a Hill shaped type is below that of the market maker.

By a similar reasoning the opposite happens at any history H t at which at the probabil-

ity of state V3 is sufficiently small relative to the probability of the other states (both qt
3/q

t
1

and qt
3/q

t
2 are close to zero). At such a history there are effectively two states, V1 and V2;

therefore, by Lemma 1, E[V |S,H t] − E[V |H t] has the same sign as Pr(S|V2) − Pr(S|V1).

18Note that the bias is only required because we assume that priors are symmetric. If, for instance, the
prior would favor the highest state, then herding or contrarian behavior can also arise when the signal
distributions have no bias.
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Since the latter is negative for a U shaped S and positive for a Hill shaped S, it follows

that at such a history the expectation of a U shaped type is less than that of the market

maker and the expectation of a Hill shaped type exceeds that of the market maker.

The above arguments assume that there are histories at which the probability of each

extreme state (V1 or V3) is sufficiently small relative to the probabilities of the other states.

Demonstrating the existence of such histories is simple in some cases: for example, when the

signal structure satisfies MLRP, the probability of V1 (V3) relative to the remaining states

can be made arbitrarily small if there is a sufficient number of buys (sales). For arbitrary

signal structures, however, it can be quite complex to demonstrate these possibilities, as

can be seen from the proof of Proposition 3 (see the discussion in Subsection 5.3 below).

(II) If the informed type has an nU (pU) shaped signal then his expectation is less than

(above) the market maker’s initially and rises above (falls below) it in the direction of the

crowd at some history. The same holds for any Hill shaped signal (with the bias determining

the relative expectation at the initial history) except that the switch is against the crowd.

For instance, consider the cases of nU shape and nHill shape. If the informed trader has

an nU shaped signal, then it follows from Lemma 3 and from the insights in (I) respectively

that his expectation is below the market maker’s expectation initially and subsequently it

rises above it at any history at which the relative likelihood of the lowest state V1 is

arbitrarily small. Since by Lemma 4 the average price rises when the probability of V1 is

small relative to that of V3, it follows that such a history induces the private expectation

of the informed to rise above that of the market maker in the direction of the crowd.

Similarly, if the informed has an nHill shape then his expectation is below the market

maker’s expectation initially and subsequently it rises above it at any history at which the

likelihood of the highest state V3 is arbitrarily small. Since the average price falls when the

probability of V3 is small, with Hill shape such a history induces the private expectation of

the informed to rise above that of the market maker against the movement of the crowd.

(III) The probability of noise trading may have to be sufficiently large to ensure that the

bid-ask spread is not too large both initially and later at the point of the switch.

In (I) and (II) we have compared the private expectation of the informed trader with

that of the market maker. To establish the existence of herding or contrarian behavior,

however, we must compare the private expectations with the bid- and ask-prices. The dif-

ference is that bid- and ask-prices form a spread around the market maker’s expectation.

To ensure that this spread has no adverse effect on the possibility of herding or contrarian-

ism, we must ensure that the spread is sufficiently ‘tight’. Tightness of the spread, in turn,

depends on the extent of noise trading: the more noise there is (the smaller the likelihood

of the informed types, µ), the tighter the spread.

More specifically, consider the case of buy herding. Here, the spreads may need to
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be tight so that the informed type with signal S sells initially and then buys after some

history H t in the direction of the crowd. This means that one may need a minimal amount

of noise trading so that (a) the expectation of the informed is less than the bid price at the

initial history and (b) the expectation of the informed is greater than the ask price at H t.

Analogous restrictions apply to sell herding, buy contrarianism and sell contrarianism.

For each of the cases of herding and contrarian behaviour, we formalize these minimal

noise trading restrictions by introducing two bounds µin and µch ∈ (0, 1] and require the

likelihood of informed trading µ to be less than both µin (to ensure the initial trade by the

informed trader) and µch (to ensure the subsequent change of behaviour).

There are two further points to note concerning the minimal noise trading restrictions.

First, to demonstrate herding or contrarian behaviour by type S, a minimal amount of noise

trading is needed only if type S’s expectation is in between those of the other informed

types. For example, if at the initial history the buy herding candidate type S has the

lowest expectation amongst all the informed then his expectation must be less than the bid

price at the initial history. In this case, a minimal noise trading condition is not needed to

ensure the initial sale (µin can be set to equal 1). Similarly, at any potential history H t at

which buy herding occurs if type S has the highest expectation, then his expectation must

be greater than the ask price at H t for all values of µ (µch can be set to equal 1).

Second, the minimal amount of noise trading needed to ensure that a particular type S

trades at some history H t depends on the actions of the other informed types at H t. If

the actions of the others are always the same at every history (as is the case with MLRP),

then there is a unique upper bound on the size of the informed µch that is independent of

the trading history; otherwise, µch will depend on the history considered.

5.3 Sufficient Conditions: Formal results

We now show formally that a U shape and a Hill shape, combined with some minimal

amount of noise trading, are respectively sufficient for herding and contrarian behaviour.

We fix an informed type and denote it by S and consider first the decision problem of

type S at the initial history. If S has a negative bias then, by Lemma 3, E[V |S] < E[V ].

Also, note that E[V ] − bid1 > 0 and limµ→0 E[V ] − bid1 = 0. Therefore, there must exist a

critical level of noise µin
s such that E[V |S] − bid1 < 0 if and only if µ < µin

s . By a similar

argument, if S has a positive bias there must exist a critical level µin
b ∈ (0, 1] such that

E[V |S] − ask1 > 0 if and only if µ < µin
b . Therefore, we have the following result.

Lemma 5 (Minimal Noise Levels at the Initial History)

(i) If Pr(S|V3) > Pr(S|V1) then there exists µin
b ∈ (0, 1] such that S buys at the initial

history if and only if µ < µin
b .
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(ii) If Pr(S|V3) < Pr(S|V1) then there exists µin
s ∈ (0, 1] such that S sells at the initial

history if and only if µ < µin
s .

Next, at date t, after history H t and in state Vi denote the probability of a buy by βt
i =

Pr(buy|H t, Vi) and the probability of a sale by σt
i = Pr(sell|H t, Vi) . Then the following is

a useful characterization of the decision problem of the informed with signal S at any H t.

Lemma 6 (Expectation Minus Price)

(i) E[V |S,H t] − askt has the same sign as

qt
1q

t
2[β

t
1Pr(S|V2)−βt

2Pr(S|V1)]+qt
2q

t
3[β

t
2Pr(S|V3)−βt

3Pr(S|V2)]+2qt
1q

t
3[β

t
1Pr(S|V3)−βt

3Pr(S|V1)].

(3)
(ii) E[V |S,H t] − bidt has the same sign as

qt
1q

t
2[σ

t
1Pr(S|V2)−σt

2Pr(S|V1)]+qt
2q

t
3[σ

t
2Pr(S|V3)−σt

3Pr(S|V2)]+2qt
1q

t
3[σ

t
1Pr(S|V3)−σt

3Pr(S|V1)].

(4)

To establish buy herding or buy contrarianism we need to show that (3) is positive at

some history H t. Similarly, for sell herding or sell contrarianism we need to show that (4)

is negative at some history H t. To analyze the sign of the expressions in (3) and (4) we

shall first consider the first two terms in both of these expressions and show that the sign

of these two terms are determined by either Pr(S|V2)−Pr(S|V1) or by Pr(S|V3)−Pr(S|V2)

if and only if µ is sufficiently small. To establish this, let, for any i = 1, 2 and any signal

type S ′, mi≡Pr(S|Vi+1)−Pr(S|Vi), M i(S ′)≡ Pr(S ′|Vi)Pr(S|Vi+1)−Pr(S ′|Vi+1)Pr(S|Vi) and

µch
i (S ′) ≡

{

mi

mi−3M i(S′)
if mi and M i(S ′) are non-zero and have opposite signs,

1 otherwise.

Clearly, for each i, µch
i (S ′) ∈ (0, 1]. The next lemma shows that for some S ′, 1 − µch

1 (S ′)

is the critical minimum amount of noise trading necessary to characterize the signs of the

first term in both (3) and (4), and 1 − µch
2 (S ′) is the critical minimum amount of noise

trading necessary to characterize the signs of the second term in both (3) and (4).

Lemma 7 (Critical Noise Levels) In any equilibrium the following holds:

(i) Suppose that Pr(S|V3) > Pr(S|V2). Then at any H t at which S ′ buys and S ′′ 6= S, S ′

does not, the second term in (3) is positive if and only if µ < µch
2 (S ′).

(ii) Suppose that Pr(S|V1) > Pr(S|V2). Then at any H t at which S ′ sells and S ′′ 6= S, S ′

does not, the first term in (4) is negative if and only if µ < µch
1 (S ′).

(iii)Suppose that Pr(S|V2) > Pr(S|V1). Then at any H t at which S ′ buys and S ′′ 6= S, S ′

does not, the first term in (3) is positive if and only if µ < µch
1 (S ′).

(iv) Suppose that Pr(S|V2) > Pr(S|V3). Then at any H t at which S ′ sells and S ′′ 6= S, S ′

does not, the second term in (4) is negative if and only if µ < µch
2 (S ′).
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Remark Note that the critical value µch
i (S ′) for the size of the informed could be 1; this

happens if either both mi and M i(S ′) have the same sign or if one of them is 0. Then

the assumption µ < µch
i (S ′) in Lemma 7 is trivially satisfied. For example, suppose that

Pr(S|V3) > Pr(S|V2) and S ′ is Hill shaped so that Pr(S ′|V2) > Pr(S ′|V3). Then both m2 and

M2(S ′) are positive and thus µch
2 (S ′) = 1; therefore by part (i) of Lemma 7 the second term

in (3) is positive irrespective of the value of µ.

Each of the four cases in Lemma 7 provides a set of conditions that determine the sign of

one of the terms in either (3) or (4). These conditions also determine the signs of (3) and (4)

as a whole if the other terms in (3) and (4) are sufficiently small. This can happen at the

following two types of extreme histories. First, suppose that there is a history H t such

that qt
1 is arbitrarily small relative to qt

2 and qt
3. Since in both (3) and (4) the first and the

last terms are multiplied by qt
1 (and the second term is not), it follows that these terms are

close to zero and can be ignored. Thus, at such H t type S buys if the second term in (3)

is positive and sells if the second term in (4) is negative.

Second, suppose that there is a history H t such that qt
3 is arbitrarily small relative to

qt
1 and qt

2. Since in both (3) and (4) the last two terms are multiplied by qt
3 (and the first

term is not) it follows that these terms in both (3) and (4) are close to zero. Then type S

buys at H t if the first term in (3) is positive and sells if the first term in (4) is negative.

Appealing to Lemma 7, we can then show that with a sufficient amount of noise traders,

at one of the extreme histories described above, type S buy (sell) herds if S is nU (pU)

shaped and acts as a buy (sell) contrarian if S is pHill (nHill) shaped.

The argument for buy herding and buy contrarian is as follows (the cases of sell herding

and sell contrarian are analogous). U shaped S implies that Pr(S|V3) > Pr(S|V2). Then

at any H t at which qt
1 is arbitrarily small relative to qt

2 and qt
3, by part (i) of Lemma 7,

U shaped S must be buying if µ is sufficiently small. Also, at such H t since qt
1 is small

relative to qt
3, by Lemma 4, the prices must have risen and, therefore, S would be buying

in the direction of the crowd.

Hill shape S, on the other hand, implies that Pr(S|V2) > Pr(S|V1). Then, by part (iii)

of Lemma 7, at any H t at which qt
3 is arbitrarily small relative to qt

1 and qt
2, Hill shaped

S must be buying if µ is sufficiently small. Furthermore, the buying in this case is against

the crowd, as the price has fallen.

The argument is completed by noting that if S has also a negative bias and there is a

sufficient level of noise trading, by part (i) of Lemma 5, he sells at the initial history.

For our formal result we define the following two properties:

For any ǫ > 0 there exists a history H t such that qt
1/q

t
l < ǫ for all l = 2, 3. (5)

For any ǫ > 0 there exists a history H t such that qt
3/q

t
l < ǫ for all l = 1, 2. (6)

18



Then we can establish the following:

Lemma 8 (Possibility of Herding and Contrarian Behavior)

(i) Suppose S is nU and (5) holds. Then S buy herds if µ < min{µin
s , µch

2 }.

(ii) Suppose S is pU and (6) holds. Then S sell herds if µ < min{µin
b , µch

1 }.

(iii) Suppose S is nHill and (6) holds. Then S is a buy contrarian if µ < min{µin
s , µch

1 }.

(iv) Suppose S is pHill and (5) holds. Then S is a sell contrarian if µ < min{µin
b , µch

2 }.

To complete the analysis of the sufficiency results we need to show that properties (5) and

(6) can hold. For this, we will first turn to the case where the information structure is

MLRP, where the analysis is simple and the result is sharpest.

The Special Case of Monotone Likelihood Ratio Signals. Assume that the signals

are ordered so that S1 < S2 < S3 and that the signal structure satisfies MLRP. Then

by Lemma 2 we can make the following two observations. First, S1 and S3 are strictly

monotonic; therefore S2 is the only type of informed agent that could be U shaped or hill

shaped. Second, type S1 will always be selling and type S3 will always be buying; thus the

only possible herding or contrarian candidate is an informed agent with middle signal S2.

These observations allow us to state the following result for the case of MLRP signals.

Theorem 1 (Herding and Contrarianism with MLRP) Assume signals are ordered,

S1 < S2 < S3, and that the signal structure satisfies MLRP. Then the following holds:

(a) Suppose S2 is nU. Then S2 buy herds if and only if µ < min{µin
s , µch

2 }.

(b) Suppose S2 is pU. Then S2 sell herds if and only if µ < min{µin
b , µch

1 }.

(c) Suppose S2 is nHill. Then S2 is a buy contrarian if and only if µ < min{µin
s , µch

1 }.

(d) Suppose S2 is pHill. Then S2 is a sell contrarian if and only if µ < min{µin
b , µch

2 }.

The “only if” part of the above results follows immediately from Lemmas 5 and 7 (for

details see the Appendix). To establish the “if” parts, by Lemma 8, it suffices to show

that (5) and (6) hold. To show this note that the probability of a buy (sale) increases

(decreases) in the value of V by a positive amount (independent of the past history) if S3

and S1 are monotonic, as is the case with MLRP signals. Formally, we have the following.19

Lemma 9 Let signals satisfy MLRP. Then there exists δ ∈ (0, 1) such that for every H t

and for any Vh and Vℓ with Vh > Vℓ, the following holds: βt
ℓ/β

t
h < δ and σt

h/σ
t
ℓ < δ.

Next consider any history H t that consists of only buys and note that qτ+1
1 /qτ+1

ℓ =

βτ
1 qτ

1/β
τ
ℓ qτ

ℓ for all τ < t and ℓ = 2, 3. Then with MLRP signals it follows from Lemma 9

that qτ
1/q

τ
ℓ is decreasing by a factor that is independent of the past for all ℓ = 2, 3; hence,

for sufficiently large t, qt
1/q

t
ℓ must be arbitrarily close to zero and (5) holds. Similarly, with

MLRP, for histories with sufficiently many sales Lemma 9 implies that qt
3/q

t
ℓ can be made

arbitrarily close to zero for all ℓ = 1, 2, and hence (6) holds. This proves Theorem 1.

19The result actually follows more generally: all that is required is that there are two monotonic signals.
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The General Case. Our main result for the general information structure is as follows.

Theorem 2 There exists a µ ∈ (0, 1] such that the following holds:

(a) If there is a non-zero biased U shaped signal and µ < µ, then there exist an informed

type that herds.

(b) If there is a non-zero biased Hill shaped signal and µ < µ, then there exists an infor-

med type that acts as a contrarian.

Theorem 2 provides a sufficient condition for herding and contrarian behaviour; yet, in

contrast to Theorem 1 for the case of MLRP signals, it does not differentiate between buy

and sell herding or between buy and sell contrarians. We will now highlight the issues

involved in making such differentiations for the general case.

First, the constructions for MLRP signal structures that ensure both (5) and (6) do not

extend to non-MLRP signal structures. The reason is that without MLRP a buy does not

necessarily reduce both qt
1/q

t
2 and qt

1/q
t
3 and therefore, histories consisting of only buys do

not always ensure (5). Similarly, a sale does not necessarily reduce both qt
3/q

t
1 and qt

3/q
t
2

and therefore, histories consisting of only sales do not always ensure (6).

Without MLRP we need a different construction to ensure that (5) and (6) hold. Such

a construction can be particularly difficult because in some cases there are no paths that

result in both qt
1/q

t
2 and qt

1/q
t
3 decreasing at every t or in both qt

3/q
t
1 and qt

3/q
t
2 decreasing

at every t. For these difficult cases, we construct outcome paths, each consisting of two

different stages, to ensure (5) and (6). For example, to ensure (5), the path is constructed

so that in the first stage qt
1/q

t
2 becomes small while ensuring that qt

1/q
t
3 does not increase

by too much. Then in the second stage, once qt
1/q

t
2 is sufficiently small, the continuation

path makes qt
1/q

t
3 small while ensuring that qt

1/q
t
2 does not increase by too much. A similar

construction is used to ensure (6). Such constructions work for most signal distributions so

that we obtain a similar set of conclusions with respect to herding and contrarian behaviour

as in Theorem 1. The exception are cases with two U shaped signals or two Hill shaped

signals. In these cases we can show, depending on the bias of the third signal, that either (5)

or (6) holds, but not both; thus in these cases we can only establish (i) either buy or sell

herding and (ii) either buy or sell contrarianism. Thus our result for herding and contrarian

behaviour in these cases is weaker than with MLRP signals. Formally,

Proposition 3 (Taxonomy of Herding and Contrarianism: The General Case)

(a)Suppose S is nU shaped. Assume also that if one other signal is pU shaped then the

third signal has a non negative bias. Then S buy-herds if µ < min{µin
s , µch

2 }.

(b) Suppose S is pU shaped. Assume also that if one other signal is nU shaped then the

third signal has a non positive bias. Then S sell-herds if µ < min{µin
b , µch

1 }.

(c) Suppose S is nHill shaped. Assume also that if one other signal is pHill shaped then

the third signal has non positive bias. Then S is a buy contrarian if µ < min{µin
s , µch

1 }.
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(d)Suppose S is pHill shaped. Assume also that if one other signal is nHill shaped then the

third signal has a non negative bias. Then S is a sell contrarian if µ < min{µin
b , µch

2 }.

Note first, that by setting µ = min{µin
s , µin

b , µch
1 , µch

2 }, Theorem 2 follows immediately

from Proposition 3. To see this suppose that there exist a U shaped signal as in part (i) of

Theorem 2. Then there are two possibilities: either there is another U shaped signal with

an opposite bias or there is not. If there is no other U shaped signal with an opposite bias,

then by parts (a) and (b) of Proposition 3, the U shaped type buy herds if the signal has

a negative bias and sell herds if it has a positive bias. If there is another U shaped signal

with the opposite bias, then by parts (a) and (b) of Proposition 3, one of the U shaped

signals must herd: if the third signal is weakly positive then the U shaped signal with a

negative bias buy herds, and if the third signal is weakly negative then the U shaped signal

with a positive bias sell herds. The reasoning for part (b) of Theorem 2 is analogous.

Second, the sufficiency result in Theorem 1 for the case of MLRP signal structures is a

special case of Proposition 3 (with MLRP there is at most one U shaped type).

Third, as we explained before, the noise restrictions in Proposition 3 (and in Theorem 2)

may be trivially satisfied if the upper bounds on the value of µ are equal to 1.

Fourth, consider the minimal noise trading restrictions that require µ to be less than

some critical level min{µin
ℓ , µch

j } for some ℓ = b, s and j = 1, 2. In Theorem 1 with MLRP

signal structures, a U shaped type herds or a Hill shaped type acts as a contrarian if and

only if such a minimal noise trading restriction holds. By contrast, in Proposition 3 (and

Theorem 2), we can only show a similar herding or contrarian behaviour if µ is less than

some critical level min{µin
ℓ , µch

j }. The reason is that there may be levels of µ above these

critical levels that are also compatible with herding or contrarian behaviour.

To see this consider the case of buy herding for an nU shaped signal S. As Lemma 7 (i)

shows, the upper bound on the value of µ that allows S to change behaviour and buy at

some history H t depends uniquely on the identity of the other type (if any) that might also

buy at H t. With MLRP the expectations of the different types are ordered so that the type

with the lowest and the highest signals always trade the same way. This implies that when

S changes behaviour the identity of any other type that buys together with S is always the

same and therefore, the upper bound for µ is uniquely defined by µch
2 for any history. With

a non-MLRP signal structure, on the other hand, the expectations of the signal types may

cross. It is thus possible that for different histories, different types are paired to buy or sell

so that the upper bound on the value of µ may be different for different histories.

It turns out however that the above difficulty with respect to the necessity of the

minimal noise trading conditions for herding (contrarian) behaviour only arises if there are

two U shaped (Hill Shaped) signals. In the supplementary material (Proposition 3a) we

show that, even without MLRP, the minimal noise trading condition remains necessary for
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herding (contrarian) behaviour as long as there is at most one U (Hill) shaped signal.

So in summary, the results on herding and contrarianism in the general case are almost

as strong as in the case with MLRP signals.

6 Resilience, Fragility and Large Price Movements

We now consider the robustness of herding and contrarianism and describe the range of

prices for which herding and contrarianism can occur. Throughout this section we assume

that signals satisfy the well-behaved case of MLRP (we will return to this later) and perform

the analysis for buy herding and buy contrarianism; the other cases are analogous.

We first show that buy herding persists if and only if the number of sales during an

episode of buy herding is not too large. This implies in particular that buy herding behavior

persists if the buy herding episode consists of only buys. We also show that during a

buy herding episode as the number of buys increases, it takes more sales to break the

herd. For buy contrarianism the impact of buys and sales work in reverse: in particular,

buy contrarianism persists if and only if the number of buys during an episode of buy

contrarianism is not too large. This means that buy contrarianism does not end if the buy

contrarianism episode consists of only sales. We also show that during a buy contrarianism

episode as the number of sales increases, it takes more buys to break the contrarianism.

Proposition 4 (Persistent Herding and Self-Defeating Contrarianism)

Assume MLRP. Consider any history Hr = (a1, . . . , ar−1) and suppose that Hr is followed

by b ≥ 0 buys and s ≥ 0 sales in some order; denote this history by H t = (a1, . . . , ar+b+s−1).20

(a) If there is buy herding by S at Hr then there exists an increasing function s̄(·)>1

such that S continues to buy herd at H t if and only if s < s̄(b).

(b) If there is buy contrarianism by S at Hr then there exists an increasing function b̄(·) > 1

such that S continues to act as a buy contrarianism at H t if and only if b < b̄(s).

One implication of the above result is that herding is resilient and contrarianism is self

defeating. The reason is that when buy herding or buy contrarianism begins, buys become

more likely relative to a situation where the herding or contrarian type does not switch.

Thus, in both buy herding and buy contrarianism there is a general bias towards buying

(relative to the case of no social learning). By Proposition 4, buy herding behavior persists

if there are not too many sales and buy contrarian ends if there is a sufficiently large number

of buys. Thus herding is more likely to persist whereas contrarianism is more likely to end.

To see the intuition for Proposition 4 consider first the case of buy herding in part (a).

At any history the difference between the expectation of the herding type S and that of

20 We will henceforth omit past prices from the history Ht to simplify the exposition.
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the market maker is determined by the relative likelihood that they attach to each of the

three states. Since the herding type S must have an nU shaped csd it follows that in

comparing the expectation of the herding type S with that of the market maker there are

two effects: first, S attaches more weight to V3 relative to V2 than the market maker and,

second, S attaches more weight to V1 relative to both V2 and V3 than the market maker.

Since (i) V1 < V2 < V3 and (ii) at any history Hr with buy herding the expectation of the

herding type S exceeds that of the market maker, it then follows that at Hr the first effect

must dominate the second one, i.e. qr
1/q

r
2 and qr

1/q
r
3 are sufficiently small so that the first

effect dominates. Also, by Lemma 9, when the MLRP holds, buys reduce the probability

of V1 relative to the other states. Therefore, further buys after Hr make the second effect

more insignificant. Further buys thereby ensure that the expectation of the herding type S

remains above the ask price.

On the other hand, by Lemma 9 when MLRP holds, sales reduce the probability of V3

relative to the other states; thus sales after Hr make the first effect less significant. There-

fore, with sufficiently many sales, the expectation of the herding type S will move below

the ask price so that type S will no longer buy. This ends herding.

The intuition for the buy contrarian case is analogous except that the effect of further

buys and further sales work in the opposite direction.

Next, we consider the range of prices for which herding and contrarianism is possible.

Casual intuition may suggest that prices may not move significantly during any herding

episode. Yet with MLRP signals this is not true and large price movements are consistent

with both herding and contrarianism. In fact, in both cases the range of price movements

can (almost) include the entire set of feasible prices.

More specifically, for buy herding the range of feasible prices is [V2, V3] and for buy

contrarianism the range is [V1, V2].
21 To show that price movements during herding and

contrarianism can span almost the entire feasible range of prices note that, as argued above,

with MLRP buys increase prices, and sales decrease prices. Furthermore, by Proposition 4,

buy herding persists when there are only buys and buy contrarianism persists when there

are only sales. Then we can conclude that (i) once buy herding starts, a large number of

buys can induce prices to rise to levels arbitrarily close to V3 without ending buy herding

and (ii) once buy contrarianism starts, large numbers of sales can induce prices to fall to

levels arbitrarily close to V1 without ending buy contrarianism.

Finally, we complete the analysis by showing that there exists a set of priors on V such

that herding and contrarianism can start when prices are close to the middle value, V2.

Together with the arguments in the last paragraph, we have that herding and contrarian

prices can span almost the entire range of feasible prices. Formally, we have the following.

21By Lemma 4, at any date t buy herding implies qt
3 > qt

1 and buy contrarian implies qt
1 > qt

3.
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Proposition 5 (Social Learning and the Price Range) Let signals obey MLRP.

(a)Consider any history Hr = (a1, . . . , ar−1) at which there is buy herding (contrarianism).

Then for any ǫ > 0, there exists history H t = (a1, . . . , at−1) following Hr such that

there is buy herding (contrarianism) at every Hτ = (a1, . . . , aτ−1), r ≤ τ ≤ t, and the

average price E[V |Hr+τ ] exceeds V3 − ǫ (is less than V1 + ǫ).

(b) Let µ admit buy herding (contrarianism) as in Theorem 1. Then for every ǫ > 0 there

exists a δ > 0 such that if Pr(V2) > 1 − δ there is a history H t = (a1, . . . , at−1) and a

date r < t such that (i) there is buy herding (contrarianism) at every Hτ =(a1, . . . ,

aτ−1), r ≤ τ ≤ t, (ii) E[V |Hr]<V2+ǫ (E[V |Hr] >V2−ǫ) and (iii) E[V |H t] > V3 − ǫ

(E[V |H t] > V1 + ǫ).

The results of this section (and the ones in the next section on volatility) assume that the

information structure satisfies the well behaved case of the MLRP. This ensures that the

probabilities of buys and the sales are monotonic in V (see Lemma 9). As a result, we have

that the relative probability qt
1/q

t
ℓ falls with buys and rises with sales for all ℓ = 2, 3, and

the opposite holds for qt
3/q

t
ℓ for all ℓ = 1, 2. This monotonicity in the relative probabilities

of the extreme states is the feature allow us to establish our persistence and fragility results.

If MLRP were not to hold, then the probability of buys and sales may not be monotonic

in V , and the results of this section may not hold.22 An example of such possibility is the

herding example in Avery and Zemsky (1998); see Section 9 for a discussion.

7 The Impact of Social Learning on Liquidity and Volatility

In this section we consider the consequences of both herding and contrarianism for liquidity

and price volatility. The key feature of such social learning is that traders change their

behavior. To assess the impact of herding and contrarianism we now compare the outcomes

with social learning to a scenario when informed types do not change their actions as

prescribed by the theory.

This exercise is important because it highlights the impact of the history induced

switches of behavior. Furthermore, there are many realistic instances in which traders

may not change their behavior. For instance, traders may be unable to observe past prices

and actions due to a lack of transparency in the market. Or there may be some constraint

on rationality resulting in traders not remembering past observations or not being able

to make the right inference from observing past histories. We will discuss these instances

in more detail towards the end of this section. The exercise below provides a comparison

between the outcomes with history dependent social learning with those in other situations

in which traders follow the simple strategy of always taking the same actions irrespective

22Since the monotonicity of the probability of buys and sales in V (Lemma 9) also holds if two signals
have monotonic csds; all the results of this paper that assume MLRP hold under this weaker assumption.
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of the past. Our conclusion is that transparency, in terms of observing the past actions

of other players, is less attractive (as measured by liquidity and volatility) than no trans-

parency. For the former can generate herding and contrarian behavior that would be absent

if such details were not known.

7.1 Liquidity

In sequential trading models in the tradition of Glosten and Milgrom (1985) liquidity is

measured by the size of the bid-ask-spread because a larger spread implies higher adverse

selection costs and thus lower liquidity. We will compare this measure of liquidity when

a (rational) informed trader herds or acts as a contrarian by switching his behavior with

that when he chooses not to switch according to the theory (prices in both cases accurately

reflect behavior). We show that the spread is larger in the former case than in the latter.

To do this consider the case of buy herding by a signal type S. Casual intuition suggests

that buy herding hampers the information transmission and thus the ask-price is lower when

the herding candidate switches than when he does not switch. (The idea is that when S

type switches to buy herding there are more types that are buying compared to when he

does not switch and therefore a buy conveys less information in the former case than in the

latter one). This intuition is, however, misleading, and the ask-price is higher with herding

than when there is no switch in behavior. The reason lies in the herding candidate’s U

shaped csd: the difference in the ask prices in the two cases reflects the fact that the herding

candidate S buys in one case and not in the other. When buy herding starts the likelihood

of V1 is small relative to both V2 and V3. As type S puts larger weight on signal V3 relative

to V2, it then follows that in the case when S buys the ask-price must be higher.

By a similar reasoning, the bid price is lower when S (rationally) buy herds than when S

sells: When buy herding happens the relative likelihood of V1 is small; since type S puts

larger weight on signal V3 relative to V2 it then follows that a sale in the case when S is

selling must involve a higher price than in the case when S is buy herding.

This increase in the spread that we obtain for herding compared to the case when the

informed types do not switch also extends to the case of buy contrarianism. The reason here

lies in the hill shaped nature of a contrarian candidate’s signal. First, when a hill shaped S

type engages in buy contrarianism, prices have dropped and state V3 is considered to be

unlikely relative to V1 and V2. Second, the contrarian type S puts more weight on V2 than V1

and thus when S buys, the price must be larger than when S does not buy. Thus when S

switches and acts as a buy contrarian the ask-price must be higher and the bid-price lower.

Proposition 6 (The Impact of Herding and Contrarian Behavior on Liquidity)

Consider any history H t at which type S engages in buy herding or buy contrarianism.

(a) The ask price when the buy herding or buy contrarian candidate S rationally buys
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exceeds the ask price when he chooses not to buy.

(b) The bid price when the buy herding or buy contrarian candidate S rationally buys

is lower than the bid price when he chooses to sell.

The above result is only formulated for the cases of buy herding and buy contrarianism;

an identical set of results holds for sell herding and sell contrarianism.

7.2 Volatility

In this subsection we address the impact of switches in behavior due to herding and con-

trarian on price volatility. Specifically we address the following questions. Will buys move

prices less with than without herding? Will sales move prices more with than without

herding? We also ask the same questions about contrarian behavior. To answer these

questions we compare prices when herding or contrarian behavior happens in the model

described thus far with prices in a hypothetical world that is otherwise identical except

that each informed type always takes the same action as the one that he would take at the

initial history. The market maker in the hypothetical economy correctly accounts for such

behavior and the whole history when setting prices.

In the hypothetical economy informed traders act as if they do not observe prices and

past actions of others; we thus refer to this world as the opaque market. In contrast, in the

standard setting traders observe and learn from the actions of their predecessors. To high-

light the difference, in this section we refer to the standard case as the transparent market.

Figure 1 presents particular sequences of simulated transaction prices for the two mar-

kets. In these simulated figures, it appears that volatility is higher in the transparent

market than in the opaque one and this conclusion holds both for when herding is possible

(left panel) and for when contrarian behaviour is possible (right panel).

Clearly, the conclusions that can be drawn from these figures are only suggestive. In

Proposition 7 below, we formally confirm these conclusions concerning volatility at the

point when herding or contrarianism begins. In fact, as the average price after a buy is the

last period’s ask price, and the average price after a sale is the last bid price, the liquidity

result, Proposition 6, implies that when herding or contrarianism starts, the first trade has

a larger impact on the average price in the transparent market than in the opaque one (the

average price is higher after a buy and lower after a sale). We show below that at histories

at which herding or contrarian behavior occurs, this effect applies more generally. Namely,

we show that further trades move prices more in the transparent market than in the opaque

one where traders, contrary to herding or contrarian behavior, always do the same thing.

We will derive this strong result on volatility for the case of MLRP signals. This is

surprising because, taken at face value, MLRP corresponds to a “well-behaved” information

structure. Also, we focus on the case of buy herding and buy contrarianism; the results for
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Figure 1: Simulated Transaction Prices. The left panel is an example for a history with herd-
ing, the right panel is an example for a history with contrarianism (V1 = 0, V2 = 10, V3 = 20).
In the left panel the gray line plots the outcome of the simulated prices for the transparent
market (where there may be herding). Herding starts for prices close to V2, and prices during
herding can move up substantially. The dark line plots transaction prices for the same sequence
of traders, but for an opaque market. In the right panel, the dark line plots the outcome of the
simulated prices for the transparent market with contrarianism. Here, prices with contrarianism
drop below those that would transpire in the opaque market. Moreover, the transparent prices
move more than the opaque prices. The underlying signal distributions are listed in the Supple-
mentary Appendix; we use the smallest possible amount of noise trading. The underlying trader
sequence is random but for five ‘artificial’ buys in the herding example and six ‘artificial’ sales in
the contrarian example in the early rounds of trading.

sell herding and sell contrarianism are identical and will thus be omitted.

Specifically, fix any history Hr at which buy herding starts and consider the difference

between the average price in the transparent market with that in the opaque market at

any buy herding history that follows Hr. Assuming MLRP signals, we show (a) that the

difference between the two prices is positive if the history since Hr consists of only buys,

(b) that the difference is negative if the history since Hr consists of only sales and the

number of sales is not too large,23 and (c) that the difference is positive if the history

following Hr is such that the number of buys is arbitrarily large relative to the number of

sales. We also show an analogous result for buy contrarianism.

Formally, for any history H t let Eo[V |H t], qt
i,o, βt

i,o and σt
i,o be respectively the average

price, the probability of Vi, the probability of a buy in state Vi and the probability of a sale

in state Vi in the opaque market at H t. Then we can show the following.

Proposition 7 (Relative Volatility) Assume MLRP. Consider any finite history Hr =

(a1, . . . , ar−1) at which the priors in the two markets coincide: qr
i = qr

i,o for i = 1, 2, 3.

23Note that buy herding cannot persist with an arbitrarily large number of sales; therefore, here by
assumption, we are considering the differences between the prices in the two worlds only at histories at
which the number of sales is not too large after buy herding has started.
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Suppose that Hr is followed by b ≥ 0 buys and s ≥ 0 sales in some order; denote this

history by H t = (a1 . . . , ar+b+s−1).

(1) Assume that there is buy herding at Hτ , for every τ = r, . . . , r + b + s.

(a)Suppose s = 0. Then E[V |H t] > Eo[V |H t] for any b > 0.

(b) Suppose b = 0. Then there exists s ≥ 1 such that E[V |H t] < Eo[V |H t] for any s ≤ s.

(c) For any s there exists b such that E[V |H t] > Eo[V |H t] for any b > b.

(2) Assume that there is buy contrarianism at Hτ , for every τ = r, . . . , r + b + s.

(a)Suppose b = 0. Then E[V |H t] < Eo[V |H t] for any s > 0.

(b) Suppose s = 0. Then there exists b ≥ 1 such that E[V |H t] > Eo[V |H t] for any b ≤ b.

(c) For any b there exists s such that E[V |H t] < Eo[V |H t] for any s > s.

The intuition for the above proposition is similar to the insights from the liquidity result

before. The critical element in demonstrating the result is the U shaped nature of the

herding candidate’s signal and the Hill shaped nature of the contrarian candidate’s signal.

To see this consider any buy herding history H t = (a1, . . . , ar+b+s−1) satisfying the above

proposition for the case described in part (1) of the proposition — the arguments for a

buy contrarian history described in part (2) of the proposition are analogous. Then the

prices in the transparent and opaque markets differ because at any buy herding history

in the transparent market the market maker assumes that the buy herding candidate S

buys whereas in the opaque market the market maker assumes that S sells.24 Since the

buy herding type must have a U shaped signal we also have Pr(S|V3) > Pr(S|V2). Then

the following must hold: (i) the market maker upon observing a buy increases his belief

about the likelihood of V3 relative to that of V2 faster in the transparent market (where S

is a buyer) than in the opaque market (where S is a seller) and (ii) the market maker

upon observing a sale decreases his belief about the likelihood of V3 relative to V2 faster

in the transparent market than in the opaque market. Now if it is also the case that the

likelihood of V1 is small relative to that of V3 in both worlds then it follows from (i) and (ii),

respectively, that the average price in the transparent market exceeds that in the opaque

market after a buy and it is less after a sale.

At Hr in both markets the likelihoods of each state coincide (qr
i = qr

i,o); moreover the

likelihood of V1 in both markets is small relative to that V3 (to ensure buy herding). Then

the following two conclusions follow from the discussion in the previous paragraph: First,

if H t involves only a single buy after Hr (i.e. if s = 0 and b = 1) then E[V |H t] > Eo[V |H t].

Second, if H t involves only a single sale after Hr (i.e. if b = 0 and s = 1) then E[V |H t] <

Eo[V |H t]. Thus Proposition 7 part 1(b) follows immediately. To complete the intuition

for 1(a) and 1(c) in Proposition 7, note that further buys after Hr reduce the probabilities

of V1 relative to V3 in both markets (see Lemma 9); therefore if either the history after Hr

24If we assume S1 < S2 < S3, then with MLRP the buy herding candidate must be S2.
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involves no sale (as in part 1(a) of Proposition 7) or the number of buys is large relative

to the number of sales (as in part 1(c) of Proposition 7) then the first conclusion is simply

reinforced, and E[V |H t] remains above Eo[V |H t] after any such histories.

Notice that with MLRP signals, any sale beyond Hr increases the probability of V1

relative to V3 (and relative to V2) both in the transparent and in the opaque market.

Furthermore, the increase may be larger in the latter than in the former. As a result, for

the herding case we cannot show that in general average prices in the transparent market

fall more than in the opaque market after any arbitrary number of sales. However, if the

relative likelihood of a sale in state V1 to V3 in the transparent market is no less than that

in the opaque market, then we can extend the conclusion in part 1(b) of the proposition to

show that the price in the transparent market falls more than in the opaque market after

any arbitrary number of sales (the proof is in the supplementary material):25

if (σ1/σ3) ≥ (σ1,o/σ3,o) and b = 0 then E[V |H t] < Eo[V |H t] for any s. (7)

Proposition 7 of course does not address the likelihood of a buy or a sale after herding

or contrarianism begins. However, it is important to note that once buy herding or buy

contrarianism starts there will also be more buys in the transparent market compared to the

opaque market because the herding type buys at such histories. Thus, given the conclusions

of Proposition 7, price paths must have a stronger upward bias in the transparent market

than in the opaque market (this is consistent with the simulations in Figure 1).

Finally, it is often claimed that herding generates excess volatility whereas contrarian-

ism tends to stabilize markets because the contrarian types act against the crowd. The

conclusions of this section are consistent with the former claim but contradict the latter.

Both herding and contrarianism increase price movements (compared to the opaque mar-

ket) and they do so for similar reasons — namely because of the U shaped nature of the

herding type’s csd and the Hill shaped nature of the contrarian type’s csd.

Interpretation of the Opaque Market. To illustrate the importance of social learning,

we have compared the outcomes with learning and switches of behaviour (herding and con-

trarianism) to a stark situation in which traders always take the same action (the optimal

one from the initial history) independently of the public history of actions and prices.

One can think of the traders in the opaque market as automata that always buy or sell

depending on their signals. One justification for such naive behavior is that traders do not

observe or remember the public history of actions and prices (including current prices).

Alternatively, the non changing behavior may represent actions of rational traders in

a trading mechanism where traders submit their orders, possibly through an intermediary,

some time before the orders get executed. The market maker would receive these orders

in some sequence and he would execute them sequentially at prices which reflect all the

25The condition (σ1/σ3) ≥ (σ1,o/σ3,o) is satisfied if, e.g., the herding candidate has an almost zero bias.
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information contained in the orders received so far. The actions of other traders and the

prices are unknown at the time of the order submission and thus, as in the opaque market,

the order submissions of each trader are independent of these variables.

In this set-up the traders effectively commit to a particular trade before any infor-

mation is revealed and the market maker receives orders sequentially and sets efficient

prices. Therefore, the price sequence in this alternative model would coincide with the

price sequence in the opaque market if each informed trader chooses the same action in

this alternative set-up as he would choose at the initial history in our original model and if

the order of arrivals of the informed is the same in the two models. There is thus an exact

mapping between the price in this alternative set-up and the price in the opaque market.

Our result in Proposition 7 demonstrates the excess volatility resulting from social learning

in the standard sequential transparent market compared to this alternative set-up in which

all orders are submitted before any execution and in which there is no social learning.

In the opaque market the informed traders always take the same action because the

traders either ignore prices and the public history or because they do not have access to

them at the time they have to make a decision. A slightly more transparent market than

the opaque one is one where each trader with signal S compares his prior expectations,

E[V |S], with the current price and buys if E[V |S] exceed the ask price, sells if E[V |S] is less

than the bid price and does not trade otherwise. In this “almost opaque” market there is a

different kind of non-transparency in that at each period the traders do not observe or recall

past actions and prices but they know the bid and ask prices at that period; furthermore

they act semi-rationally by comparing their private expectation with current prices without

learning about the fundamental value from the current price (e.g., for cognitive reasons).

For the case of herding, the same excess volatility result as in part (1) of Proposition 7

can also be demonstrated if we compare the transparent market with the above almost

opaque market. To see this note that by assumption at the initial history every buy

herding type S sells. Also, at every buy herding history the prices are higher than at

the initial history; therefore it must be that in an almost opaque market the herding type

must also sell at every herding history.26 Since Proposition 7 compares price volatility only

at histories at which buy herding (or buy contrarianism) occurs, it follows that the same

excess volatility result holds if we compare the transparent with the almost opaque market.

Finally, in comparing the opaque market with our standard model, we have focussed

solely on price volatility (in the sense of Proposition 7). There are other aspects of trans-

parency that one could consider. Although transparency has many benefits, our results

point to a possible adverse effect caused by social learning.
26Since at a buy contrarian history prices are lower than at the initial history, the same claim cannot be

made for the contrarian case (a buy contrarian type in an almost opaque market may change behaviour
and buy at a buy contrarian history).
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8 Herding and Contrarianism with Many States

Our results intuitively extend to cases with more signals and more values. In fact, with three

states and arbitrary number of signals our characterization results (in terms of U shape

signals for herding and Hill shaped signals for contrarianism)27 and all our conclusions

in the previous two sections with respect to fragility, persistence, large price movements,

liquidity and price volatility remain unchanged.28

With more than 3 states, U shape and Hill shape are no longer the only possible signal

structures that can lead to herding and contrarianism. The intuition for our results with

many states does, however, remain the same: the herding type must distribute probability

weight to the tails, the contrarian types must distribute weight to the middle.

To illustrate this, assume that there are n > 2 states and n signals. Then an analogous

result to Proposition 1 holds regarding csd monotonic signals.29

Lemma 10 (No switching with csd monotonic signals) If signal type S has a mono-

tonic csd, then type S will never switch from buying to selling or vice versa.

To see this point, it can be shown, analogously to Lemma 6, that E[V |S,H t]− E[V |H t]

has the same sign as n−1
∑

j=1

n−j
∑

i=1

j · qiqi+j[Pr(S|Vi+j) − Pr(S|Vi)]. (8)

For increasing csds, Pr(S|Vi+j)−Pr(S|Vi) will be non-negative for all i, j, and for decreasing

csds non-positive. Thus, (8) is either always non-negative or always non-positive for increas-

ing and decreasing csds respectively, so that the necessary condition for switching cannot

be satisfied. To observe switches, the underlying signal must thus have non-monotonic

csd. In what follows we will outline two sufficient conditions that yield herding and con-

trarian behavior respectively, and that have a similar flavour as our sufficiency results in

Section 5. We will focus only on buy herding and buy contrarianism; sell herding and sell

contrarianism is analogous.

In line with the previous analysis we assume that values are on an equal grid and that the

prior probability distribution is symmetric. This means {V1, V2, . . . , Vn} = {0,V , 2V , . . . , (n−

1)V} and Pr(Vi) = Pr(Vn+1−j), respectively.

Next, recall that a buy herding and buy contrarian candidate must sell at the initial

history. A necessary condition for this is that E[V |S] < E[V ]. In the supplementary material

27With 3 states, hill- and U shape are still well-defined, irrespective of the number of signals; even with
a continuum of signals these concepts can be defined in terms of conditional densities.

28With MLRP signals and three states there is at most one type with a U shaped signal, and thus,
depending on the bias of this type, there is either buy or sell herding but not both. With MLRP and more
than three signals, there may be more than one U shaped type. If these have different biases, then both
buy and sell herding may be feasible.

29Of course, with n states, signal S has an increasing csd if Pr(S|Vi) ≤ Pr(S|Vi+1) for all i = 1, . . . , n− 1
and it has a decreasing csd if Pr(S|Vi) ≥ Pr(S|Vi+1) for all i = 1, . . . , n − 1.
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we show this arises if signal S is negatively biased in the sense that Pr(S|Vi) > Pr(S|Vn+1−i)

for all i < (n + 1)/2, i.e. the signal happens more frequently in low states compared to

high states that are equally far from the middle value. Moreover, to be selling at the initial

history, type S’s expectation must also be lower than the bid price. As in Lemma 5, if

E[V |S] < E[V ] this is indeed the case if µ is sufficiently small.

Next we consider sufficient conditions for switching behavior. As with three states, we

need to consider histories at which the probabilities of extreme states are small. When the

probabilities of the lowest states are small (and therefore these states can be effectively

ignored), the expectation of the informed will be larger than that of the market maker if

the informed puts more weight on high than middle states. Moreover at such histories the

price must have risen. Analogously, when the probabilities of the highest states are small

enough (so they can be ignored), the trader may act as a buy contrarian if he puts more

weight on middle relative to low states. The sufficient conditions that we describe here

for the switches are very simple and impose restrictions only on the most extreme states.

Specifically, for buy herding we assume Pr(S|Vn−1) < Pr(S|Vn), and for buy contrarianism

we assume Pr(S|V1) < Pr(S|V2).

As in the three state model the simplest way of ensuring the existence of histories at

which the probabilities of the extreme states are small is the case of MLRP. Then, as in

Lemma 2 for the three states case, the probability of a buy is increasing and the probability

of a sale is decreasing in V . As a result, at any history H t at which the number of buys is

sufficiently large, we can ignore all but the highest two states Vn−1 and Vn. Then at any

such H t (i) the price must have risen and (ii) the expectation of type S must exceed that

of the public expectation if Pr(S|Vn−1) < Pr(S|Vn). Furthermore, if in addition the bid-ask

spread is not too large (enough noise trading), the expectation of S will also exceed the

ask price at H t and S switches from selling to buying after a price rise.

Similarly, with MLRP, at any history H t at which the number of sales is large relative

to the number of buys, we can ignore all but the first two states V1 and V2. At any such H t

(i) the price must have fallen and (ii) the expectation of type S must exceed that of the

market expectation if Pr(S|V1) < Pr(S|V2). Further, if in addition the bid-ask spread is not

too large (there is enough noise trading), the expectation of type S will also exceed the ask

price at H t and S switches from selling to buying after a price fall. Formally we have:30

Theorem 3 (Herding and Contrarianism with n States)

Assume that signals satisfy MLRP and let signal S be negatively biased.

(a) If Pr(S|Vn−1) < Pr(S|Vn) then there exist noise levels µin and µch ∈ (0, 1] such that

30Conditions that ensure sell herding and sell contrarian can be defined analogously. In particular, to
ensure the initial buy we need to assume a positive bias defined Pr(S|Vi) < Pr(S|Vn+1−i) for all i < (n+1)/2.
For the switches we reverse the two conditions that ensure switching for buy herding and buy contrarian:
for sell herding we need Pr(S|V1) > Pr(S|V2) and for sell contrarian we need Pr(S|Vn−1) > Pr(S|Vn).
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type S buy herds with positive probability if µ < min{µin, µch}.

(b) If Pr(S|V1) < Pr(S|V2) there exists noise levels µin and µch ∈ (0, 1] such that type S

acts as a buy contrarian with positive probability if µ < min{µin, µch}.

9 Extensions, Discussion and Conclusion

In the first part of this paper we showed under which specific circumstances herding and

contrarian behavior can and cannot occur in markets with efficient prices. Our second

main set of findings has been that both herding and contrarianism can reduce liquidity

and increase volatility relative to situations where these kinds of social learning are absent.

This is a surprising result with a potential conclusion that transparency of trading activities

may hamper liquidity and increase volatility. Our characterisation result also reveals which

structure of information can prevent herding or contrarian behavior; for example, it shows

that mixed messages predicting extreme outcomes (U shaped signal) should be avoided, as

herding is a result of such information.

In the paper we have presented the results for which we were able to obtain clear-

cut analytical results. In the supplementary material, we also explore other implications

with numerical simulation. First, as some types of traders change their trading modes

during herding or contrarianism, prices become history-dependent. Thus as the entry

order of traders is permutated, prices with the same population of traders can be strikingly

different. Second, herding results in price paths that are very sensitive to changes in some

key parameters. Specifically, in the case with MLRP, comparing the situation where the

proportion of informed agents is just below the critical levels described in Theorem 1 with

that where the proportion is just above that threshold (so there is no herding), prices

deviate substantially in the two cases. Third, herding slows down the convergence to the

true value if the herd moves away from that true value, but it accelerates convergence if

the herd moves into the right direction. The differences in speeds of convergence speak to

the prevalence of herding.

As mentioned in the introduction, Avery and Zemsky (1998), AZ, argue that herd

behavior with informationally efficient asset prices is not possible unless signals are “non-

monotonic” and risk is “multi-dimensional”. In the rest of this concluding section, we

explain why our conclusions differ from theirs.

AZ reach their conclusions by (i) showing that herding is not possible when the in-

formation structure satisfies their definition of monotonicity and (ii) demonstrating the

possibility of herding by providing a specific example that that has a special “multi-

dimensional” information structure. AZ argue that it is this information structure’s in-

herent non-monotonicity that triggers herding. Our herding characterization (in terms

of U shaped signals) however holds even with (and also without) the standard MLRP
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monotonicity assumption. AZs’ conclusion differs from ours because their definition is

non-standard. Specifically, they define monotonicity by:

∀S, ∃w(S) s.t. ∀H t, E(V |H t, S) is weakly between w(S) and E(V |H t) (9)

This definition does not imply nor is implied by the standard MLRP definition of mono-

tonicity. Also, it is not a condition on the primitives, i.e. on the signal distribution, but it is

a requirement on endogenous variables that must hold for all trading histories.31 Further-

more, it precludes herding almost by definition; for example, if E[V |S] < E[V ] and the price

rises, which must hold for buy herding, (9) implies immediately that w(S) ≤ E[V |H t, S] ≤

E[V |H t] for any H t and hence buying is not possible.

AZ’s example of herding also has the same three-states–three-signals structure as in our

set-up, and uses Event Uncertainty, a concept first employed by Easley and O’Hara (1992).

Event Uncertainty is an interesting example and a special case of the information structures

that we identify as the causes for herding and contrarian behavior. Many of the real-world

examples that we list in the introduction were inspired by the general intuition behind

event uncertainty. The idea behind Event Uncertainty as used by AZ is that first, informed

agents know if something has happened. Second, they receive noisy information about how

this event has influenced the asset’s liquidation value. Formally, the information matrix in

AZ’s example has Pr(Si|Vi) = q > 1/2 and Pr(Si|V2) = 0 for i = 1, 3, and Pr(S2|V2) = 1.

AZ attribute herding in their example to the signals of the informed investors inducing

a finer partition of the set of states than the market maker: an informed trader excludes V2

if their signal is S1 or S3 and excludes V1 and V3 if he receives signal S2. As we have shown,

it is not the finer partition (multidimensionality of risk) per se that generates herding but

it is the U shaped nature of a signal that is both necessary and (almost) sufficient for

herding. In fact, the event uncertainty in AZ is a good example of U shaped signals (with

degenerate csds): The two types S1 and S3 who know that the event has happened are the

herding candidates. These two types have U shaped signals as these signals do not happen

in the middle state, V2.
32 Also, notice that our sufficiency results in Section 5 demonstrate

that there would also be herding if the AZ example is perturbed in such a way that all

signals occur with positive probability in all states, while maintaining the U shaped nature

31Condition (9) does not imply that each signal has a monotonic csd; however, one can to show that if S
has a monotonic csd then S satisfies (9).

32It is important to note that in AZ’s example herding does not constitute an informational cascade
either, as not all types take the same action. To see this observe that in AZ’s example the informed’s
private information is either {S1, S3} or S2. Thus, when an informed trader receives information S1 or S3

and herds, there is no informed trader who receives signal S2. In this case, at the point at which herding
takes place one can say that all potential informed traders (receiving either S1 or S3) act alike. However,
at any herding history (at which an informed trader with either S1 or S3 herds) if there is an informed
trader who receives the middle signal S2 then he will trade in the opposite direction to the S1 and S3 types.
Further, at any herding history the market maker must take into account that there may be an S2 type.
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of signals S1 and S3. Since such a perturbed information structure would no longer have

multidimensional risk (the partition of the informed trader would be the same as that of

the market maker) it follows that multidimensionality is relevant to herding only to the

extent that it generates a U shaped signal.

Finally, AZ’s herding outcome has limited capacity to explain price volatility as price

movements during herding are strictly limited. For informed agents, herding trades do not

convey information, thus traders’ expectations do not move. To break buy herding (sell

herding), it suffices that prices rise above (fall below) the (constant) expectation of S1 (S3)

types, and this is generally a very small movement.33 This lack of price movements and

the fragility of buy herding (sell herding) after small price rises (falls) is in sharp contrast

to our results where herding can persist and prices may move significantly during herding.

A Appendix: Omitted Proofs

A.1 Proof of Proposition 2

To save space we shall prove the result for the case of buy herding and buy contrarian; the

proof for the sell cases are analogous. Therefore, suppose that S buy herds or acts as a

buy contrarian at some H t. Then the proof is in several steps.

Step 1: S must have a negative bias: It follows from the definition of buy herding and

buy contrarian that E[V |S] < bid1. Since bid1 < E[V ] we must have E[V |S] < E[V ]. Then

by Lemma 3, S must have a negative bias.

Step 2: (Pr(S|V1)−Pr(S|V2))(q
t
3−qt

1) > 0: It follows from the definition of buy herding

and buy contrarian that E[V |S,H t] > askt. Since E[V |H t] < askt we must have E[V |S,H t] >

E[V |H t]. By Lemma 1, this implies that the RHS of (2) is positive at H t. Also, by negative

bias (Step 1), the third term in the RHS of (2) is negative. Therefore, the sum of the first two

terms in the RHS of (2) is positive: qt
3(Pr(S|V3)−Pr(S|V2)) + qt

1(Pr(S|V2)−Pr(S|V1)) > 0.

But this means, by negative bias, that (Pr(S|V1) − Pr(S|V2))(q
t
3 − qt

1) > 0.

Step 3a: If S buy herds at H t then S is nU shaped : It follows from the definition of

buy herding that E[V |H t] > E[V ]. By Lemma 4, this implies that qt
3 > qt

1. Then it follows

from Step 2 that Pr(S|V1) > Pr(S|V2). Also, since S buy-herds, by Lemma 1, S cannot

have a decreasing csd. Therefore, we must have Pr(S|V2) < Pr(S|V3). Thus, S is U shaped.

Step 3b: If S acts as a buy contrarian at H t then S is nHill shaped. It follows from

the definition of buy contrarian that E[V |H t] < E[V ]. By Lemma 4, this implies that

qt
3 < qt

1. But then it follows from Step 2 that Pr(S|V1) < Pr(S|V2). Since by Step 1 S has

a negative bias, we have Pr(S|V2) > Pr(S|V1) > Pr(S|V3). Thus S is nHill shaped.

33In fact, in AZ the required price movement during herding vanishes in the limit as µ → 0 and q → 1/2
(as the informativeness of the signals of the informed agents disappears); see Proposition 8 in AZ.
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A.2 Proof of Lemma 7

First we establish (i) and (iv). Consider the second terms in (3) and (4) given by βt
2Pr(S|V3)−

βt
3Pr(S|V2) and σt

2Pr(S|V3) − σt
3Pr(S|V2), respectively. In case (i) the former and in case

(iv) the latter equal γm2 + µM2(S ′). Also, note that Pr(S|V3) > Pr(S|V2) in (i) and

Pr(S|V3) < Pr(S|V2) in (iv). Therefore, it follows from the definition of m2 and M2(S ′)

that in case (i) we have βt
2Pr(S|V3)− βt

3Pr(S|V2) > 0 if and only if µ < µch
2 (S ′) and in case

(iv) we have σt
2Pr(S|V3) − σt

3Pr(S|V2) < 0 if and only if µ < µch
2 (S ′).

The proofs of (ii) and (iii) are analogous. Consider the first term in (3) and (4) given by

σt
1Pr(S|V2)− σt

2Pr(S|V1) and βt
1Pr(S|V2)− βt

2Pr(S|V1), respectively. In case (ii) the former

and in case (iii) the latter equal γm1 + µM1(S ′). Also, note that Pr(S|V1) > Pr(S|V2) in

(ii) and Pr(S|V1) < Pr(S|V2) in (iii). Therefore, it follows from the definition of m1 and

M1(S ′) that in case (ii) we have σt
1Pr(S|V2) − σt

2Pr(S|V1) < 0 if and only if µ < µch
1 (S ′)

and in case (iii) we have βt
1Pr(S|V2) − βt

2Pr(S|V1) > 0 if and only if µ < µch
1 (S ′).

A.3 Proof of Lemma 8

Consider case (i). Since by assumption S has a negative bias and µ < µin
s , it follows

from Lemma 5 that S sells at the initial history. Also, since S has a U shape we have

Pr(S|V3) > Pr(S|V2). Therefore, by µ < µch
2 and Lemma 7 (i), there exists some η > 0 such

that the second term in (3) always exceeds η.

By condition (5) there exists a history H t such that qt
1/q

t
3 < 1 and

qt
1

qt
3

+
2qt

1

qt
2

< η. Then

by the former inequality and Lemma 4 we have E[V |H t] > E[V ]. Also, since the sum of the

second and the third term in (3) is greater than −q2q3(
qt
1

qt
3

+
2qt

1

qt
2

), it follows from
qt
1

qt
3

+
2qt

1

qt
2

< η

that the sum must also be greater than −η. This, together with the first term in (3)

exceeding η, implies that (3) is greater than zero, and hence S must be buying at H t.

The proofs of (ii) − (iv) are analogous and will be omitted to save space.

A.4 Proof of the Necessity Part of Theorem 1

Consider case (i) of the theorem in which S2 buy herds (the proof of the other cases are

similar and therefore omitted). Since at the initial history S2 sells, by Lemma 5, we must

have µ < µin
s . Now by Lemma 2, type S3 always buys and S1 always sells; therefore since S2

buy herds at some history, it follows from Lemma 7 that µ < µch
2 (S3). Also by Lemma 2,

type S1 is strictly decreasing and S3 is strictly increasing; thus it follows from the definition

of µch
2 (.) that µch

2 (S1) = 1 and therefore µch
2 (S3) = µch

2 .

A.5 Proof of Lemma 9

Consider any arbitrary history H t and any two values Vl < Vh. Then βt
l /β

t
h < 1. To see

this note, first, as S1 is strictly decreasing, by Proposition 1 S1 never buys. Then if there
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is a buy at H t it must be that either S3 types buy and S1 and S2 types sell or S2 and S3

types buy and S1 types sell. In the former case, since S3 is strictly increasing, it follows

immediately that βt
l /β

t
h < 1. In the latter case,

βt
h − βt

l = µ (Pr(S3|Vh) + Pr(S2|Vh) − Pr(S3|Vl) − Pr(S2|Vl))

= µ (1 − Pr(S1|Vh) − (1 − Pr(S1|Vl))) = µ (Pr(S1|Vl) − Pr(S1|Vh)) .

Since S1 is strictly decreasing, we have βt
l /β

t
h < 1 in this case as well. But then, by the

finiteness of the set of states, there must exist δ ∈ (0, 1) such that for every H t and for any

Vl and Vh with Vl < Vh, we have βt
l /β

t
h < δ.

By a similar reasoning it can be shown that there must exist δ ∈ (0, 1) so that σt
h/σ

t
l < δ.

A.6 Proof of Proposition 3

Below we provide a proof for part (i) of the proposition; the arguments for the other parts

are analogous and therefore omitted.

The proof of part (i) is by contradiction. Suppose that S is nU shaped and that all the

other assumptions in part (i) of the proposition hold. Also assume, contrary to the claim

in part (i), that S does not buy herd. Then, by Lemma 8 (i), we have a contradiction if it

can be shown that (5) holds. This is indeed what we establish in the rest of the proof.

First note that the no buy herding supposition implies that S does not buy at any

history H t. Otherwise, since S has a negative bias, by Step 2 in the proof of Proposition 2,

(Pr(S|V1)−Pr(S|V2))(q
t
3 − qt

1) > 0. Since S is U shaped this implies that qt
3 > qt

1; but then

since by assumption µ < µin
s , it follows from Lemma 5 that S buy herds; a contradiction.

Next, we describe conditions that ensure that qt
1/q

t
l are decreasing (qt+1

1 /qt+1
l < qt

1/q
t
l )

for any l = 2, 3. Denote an infinite path of actions by H∞ = {a1, a2, . . . .}. For any date t

and any finite history H t = {a1, . . . , at−1}, let at
k be the action that would be taken by type

Sk ∈ S\S at H t; thus if the informed trader at date t receives a signal Sk ∈ S\S then at,

the actual action taken at H t, equals at
k. Also denote the action taken by S at H t by at(S).

Then we have the following.

Lemma I Fix any infinite path H∞ = {a1, a2, . . .} and any signal Sk ∈ S\S. Let Sk′ ∈ S\S

be such that Sk′ 6= Sk. Suppose that at = at
k. Then for any date t and l = 2, 3 we have:

A. If at
k = at

k′ then qt
1/q

t
l is strictly decreasing.

B. If at
k = at(S) and the inequality Pr(Sk′|Vl) ≤ Pr(Sk′|V1) holds then qt

1/q
t
l is decreasing;

furthermore, if the inequality is strict then qt
1/q

t
l is strictly decreasing .

C. If at
k 6= at

k′ and at
k 6= at(S) and the inequality Pr(Sk|Vl) ≥ Pr(Sk|V1) holds then qt

1/q
t
l is

decreasing; furthermore, if the inequality is strict then qt
1/q

t
l is strictly decreasing.

Proof of Lemma I: Fix any l = 2, 3. Since
qt+1

1

qt+1

l

=
qt
1
Pr(at|Ht,V1)

qt
l
Pr(at|Ht,Vl)

, to establish that
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qt
1/q

t
l is (strictly) decreasing it suffices to show that Pr(at|H t, Vl) is (greater) no less than

Pr(at|H t, V1). Now consider each of the three cases A. − C.

A. Since signal S is nU shaped, the combination of Sk and Sk′ is pHill shaped. This

together with at = at
k = at

k′ imply that Pr(at|H t, Vl) exceeds Pr(at|H t, V1).

B. If Pr(Sk′|Vl) ≤ Pr(Sk′|V1) we have Pr(Sk|Vl)+Pr(S|Vl) ≥ Pr(Sk|V1)+Pr(S|V1). This,

together with at = at
k = at(S) imply that Pr(at|H t, Vl) ≥ Pr(at|H t, V1). Furthermore, the

latter inequality must be strict if Pr(Sk′|Vl) were less than Pr(Sk′|V1).

C. If Pr(Sk|Vl) ≥ Pr(Sk|V1) and at
k 6= at

k′ and at
k 6= at(S) we have immediately that

Pr(at|H t, Vl) ≥ Pr(at|H t, V1). Furthermore, the latter inequality is strict if Pr(Sk|Vl) were

less than Pr(Sk|V1). This concludes the proof of Lemma I.

Now we show that (5) holds and thereby obtain the required contradiction. This will

be done for each feasible csd combination of signals.

Case A: Either there exists a signal that is decreasing or there are two Hill

shaped signals each with a non-negative bias.

Consider an infinite path of actions consisting of an infinite number of buys. We demon-

strate (5) by showing that along this infinite history at any date t both qt
1/q

t
2 and qt

1/q
t
3 are

decreasing, and hence converge to zero (note that there are a finite number of states and

signals). We show this in several steps.

Step 1: If more than one informed type buy at t then qt
1/q

t
2 and qt

1/q
t
3 are both decreasing

at any t: Since S does not buy at any t, this follows immediately from Lemma I.A.

Step 2: If exactly one informed type buys at period t then (i) qt
1/q

t
2 is decreasing and (ii)

qt
1/q

t
3 is decreasing if the informed type that buys has a non-zero bias, and is non-increasing

otherwise: Let Si be the only type that buys at t. This implies that Si cannot be decreasing;

therefore, by assumption, Si must be pHill shaped and the step follows from Lemma I.C.

Step 3: If a type has a zero bias he cannot be a buyer at any date t: Suppose not. Then

there exist a type Si with a zero bias such that E[V |H t, Si] − E[V |H t] > 0. By Lemma 1

we then have
[Pr(Si|V3) − Pr(Si|V2)](q

t
3 − qt

1) > 0. (10)

Also, by Steps 1 and 2, qt
1/q

t
3 is non-increasing at every t. Moreover by assumption q1

1/q
1
3 =

1. Therefore, qt
1/q

t
3 ≤ 1. Since Si buys at t, Si must be Hill shaped, contradicting (10).

Step 4: qt
1/q

t
2 and qt

1/q
t
3 are both decreasing at any t. This follows Steps 1-3.

Case B: There exists an increasing Si s.t. Pr(Si|Vk) 6= Pr(Si|Vk′) for some k and k′.

Let Sj be the third signal other than S and Si. Now we obtain (5) in two steps.

Step 1: If Pr(Si|V1) = Pr(Si|V2) then for any ǫ > 0 there exists a finite history Hτ =

{a1, . . . , aτ−1} such that qτ
1/q

τ
2 < ǫ. Consider an infinite path H∞ = {a1, a2, . . .} such

that at = at
j (recall that at

j is the action taken by Sj at history H t = (a1, . . . , at−1)).

Note that S is nU shaped and Pr(Si|V1) = Pr(Si|V2) < Pr(Si|V3). Therefore, Pr(Sj|V2) >
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max{Pr(Sj|V1), Pr(Sj|V3)}.

Then it follows from Lemma I that qt
1/q

t
2 is decreasing if at 6= at(S) and it is constant

if at = at(S). To establish the claim it suffices to show that at 6= at(S) infinitely often.

Suppose not. Then there exists T such that for all t > T, at
j = at(S). Since type S does

not buy at any date and there cannot be more than one informed type holding at any date

(there is always a buyer or a seller), we must have Sj (and S) selling at at every t > T .

Then, by Lemma 1 we have

qt
3

qt
1

[Pr(Sj|V3)− Pr(Sj|V2)] + [Pr(Sj|V2)− Pr(Sj|V1)] + 2
qt
3

qt
2

[Pr(Sj|V3)− Pr(Sj|V1)] < 0. (11)

for all t > T . Also, by Pr(Si|V1) = Pr(Si|V2) < Pr(Si|V3) we have Pr(Sj|Vl) + Pr(S|Vl) >

Pr(Sj|V3) + Pr(S|V3) for l = 1, 2. Therefore,
qt
3

qt
l

→ 0 as t → ∞ for any l = 1, 2. This,

together with Pr(Sj|V2) > Pr(Sj|V1), contradict (11).

Step 2: For any ǫ > 0 there exists a history H t s.t. qt
1/q

t
l < ǫ for any l = 2, 3: Fix

any ǫ > 0. Let Hτ be such that qτ
1/q

τ
2 < ǫ if Pr(Si|V1) = Pr(Si|V2) (by the previous step

such a history exists) and be the empty history H1, otherwise. Consider any infinite path

H∞ = {Hτ , aτ , aτ+1, . . . .}, where for any t ≥ τ , at is the action that type Si takes at history

H t = {Hτ , aτ , . . . , at−1}; i.e. we first have the history Hτ and then we look at a subsequent

history that consists only of the actions that type Si takes.

Since Si is increasing it follows from Proposition 1 that at any history Si does not sell.

Also, by the supposition S does not buy at any history. Therefore, Si and S always differ

at every history H t with t ≥ τ (there cannot be more than one type holding). But since at

is the action that type Si takes at history H t, Si is increasing and Pr(Si|Vk) 6= Pr(Si|Vk′)

for some k and k′, it then follows from part A and C of Lemma I that for every t ≥ τ (i)
qt
1

qt
3

is decreasing, (ii)
qt
1

qt
2

is non-increasing. This, together with qτ
1/q

τ
2 < ǫ when Pr(Si|V1) =

Pr(Si|V2), establishes that there exists t such that qt
1/q

t
l < ǫ for any l = 2, 3.

Case C: There are two hill shaped signals and one has a negative bias.

Let Si be the Hill shaped signal with the negative bias. Also, let Sj be the other Hill

shaped signal. Since both S and Si have negative biases, Sj must have a positive bias.

Next fix any ǫ > 0 and define y and ϕlm, for any l,m = 1, 2, 3, as follows:

y :=
[Pr(Si|V2) − Pr(Si|V1)]

2[Pr(Si|V1) − Pr(Si|V3)]
> 0

ϕlm := max

{

γ + µPr(Si|Vl)

γ + µPr(Si|Vm)
,

γ + µ(1 − Pr(S|Vl))

γ + µ(1 − Pr(S|Vm))
,

γ + µPr(Sj|Vl)

γ + µPr(Sj|Vm)

}

. (12)

Since both Si and Sj are hill shaped we have ϕ12 < 1. This implies that there exists an

integer M > 0 and δ ∈ (0, ǫ) such that y(ϕ12)
M < ǫ and δ(ϕ13)

M < ǫ.

Consider the infinite path H∞ = {a1, a2, . . .} where at = at
j at every t. Then we have:
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Claim 1: qt
1/q

t
3 is decreasing at every t: As Si and Sj have a negative and a positive

bias respectively, by Lemma I, qt
1/q

t
3 is decreasing at every t.

Claim 2: qt
1/q

t
2 converge to zero if there exists T such that at

i 6= at
j for all t > T :

Since Sj is Hill shaped this follows immediately from parts A and C of Lemma I.

Claim 3: There exists a history Hτ s.t. qτ
1/q

τ
3 < δ and qτ

1/q
τ
2 < y: Suppose not; then

by Claims 1 and 2 there exists a date τ such that qτ
1/q

τ
3 < δ and aτ

i = aτ
j . Since S

does not buy at any history, it follows that Si and Sj must be buying at τ (there is

always at least one buyer and seller; thus Si and Sj cannot both be holding at τ). Then,

E[V |Si, H
t] − E[V |H t] > 0. By Proposition 2, this implies

[Pr(Si|V3) − Pr(Si|V2)] +
qτ
1

qτ
3

[Pr(Si|V2) − Pr(Si|V1)] +
2qτ

1

qτ
2

[Pr(Si|V3) − Pr(Si|V1)] > 0.

Since Si is nHill shaped, it follows from the last inequality that

qτ
1

qτ
2

<
[Pr(Si|V3) − Pr(Si|V2)] +

qτ
1

qτ
3

[Pr(Si|V2) − Pr(Si|V1)]

2[Pr(Si|V1) − Pr(Si|V3)]
<

qτ
1

qτ
3

[Pr(Si|V2) − Pr(Si|V1)]

2[Pr(Si|V1) − Pr(Si|V3)]
. (13)

As qτ
1/q

τ
3 < δ and δ < 1, we have qτ

1/q
τ
2 < y. This contradicts the supposition.

To complete the proof for this case, fix any τ and Hτ such that qτ
1/q

τ
3 < δ and qτ

1/q
τ
2 < y

(by Claim 3 such a history exists). Consider a history H
t

that consists of path Hτ =

(a1, . . . , aτ−1) followed by M periods of buys. Thus t = τ +M and H t = {Hτ , a1, . . . , aM},

where for any m ≤ M , am = buy. Since a buy must be either from Sj or Si or both, it

then follows from the definitions of ϕ13,M and δ, and from qτ
1/q

τ
3 < δ that

qt
1/q

t
3 ≤ (ϕ13)

M(qτ
1/q

τ
3 ) < (ϕ13)

Mδ < ǫ. (14)

Also, since qτ
1/q

τ
2 < y we have

qt
1/q

t
2 < (ϕ12)

M(qτ
1/q

τ
2) < (ϕ12)

My < ǫ. (15)

Since the initial choice of ǫ was arbitrary, (5) follows immediately from (14) and (15).

Case D: There exists a U shaped signal Si ∈ S\S.

Since both S and Si are U shaped it follows that the third signal Sj is Hill shaped.

Moreover, by assumption Sj must have a non-negative bias.

To establish (5) fix any ǫ > 0 and consider the two possible subcases that may arise.

Subcase D1: Either Si or Sj has a zero bias.

Consider the infinite path H∞ = {a1, a2, . . .} such that at = buy. Since a buy must be

either from Sj or Si or both, and either Si or Sj has a zero bias, it follows from parts A

and C of Lemma I that qt
1/q

t
3 is non-increasing at every t. Furthermore, qt

1/q
t
3 is decreasing

if at = at
l and Sl has a positive bias. Next we establish the following claims.

Claim 1: There exists a history Hτ such that qτ
1/q

τ
3 < ǫ: By assumption either Si or Sj

has a zero bias. First assume that Si has a zero bias; thus Sj must have a positive bias.
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Since qt
1/q

t
3 is decreasing if at = at

j, the claim follows if Sj buys infinitely often along the

path H∞. To show the latter suppose not; then there exists T such that for all t ≥ T ,

at
j 6= at

i =buy. But then for all t > T , by Lemma 6,

qt
2

qt
1

[βt
2Pr(Sj |V3) − βt

3Pr(Sj |V2)] +
qt
2

qt
3

[βt
1Pr(Sj |V2) − βt

2Pr(Sj |V1)] + [βt
1Pr(Sj |V3) − βt

3Pr(Sj |V1)] < 0, (16)

Also, since Si is U shaped both
qt
2

qt
1

and
qt
2

qt
3

must be decreasing at every t > T . But this

is a contradiction because at every t > T , the last term in (16) is positive: βt
1Pr(Sj|V3) −

βt
3Pr(Sj|V1) = γ(Pr(Sj|V3) − Pr(Sj|V1)) > 0 (the equality follows from Si’s zero bias).

Second, assume that Sj has a zero bias; thus Si has a positive bias. Since Sj is also

Hill shaped, by exactly the same reasoning as in Step 3 in Case A, Sj cannot be a buyer.

Therefore, at
j 6= at

i = buy at every t. But this, together with the positive bias of Si, implies

that qt
1/q

t
3 is decreasing at all t and therefore the claim must hold.

Claim 2: There exists a history H t such that qt
1/q

t
l < ǫ for all l = 2, 3: By the previous

claim there exists a history Hτ such that qτ
1/q

τ
3 < ǫ. Next, consider a history H∞ =

{Hτ , aτ , aτ+1, . . .} that consists of path Hτ followed by a sequence of actions {aτ , aτ+1, . . .}

such that at = at
j at every history H t = {Hτ , aτ , . . . , at−1}. Since either Si or Sj has a zero

bias, it follows from Lemma I that at every t > τ , qt
1/q

t
3 is non-increasing. Also, we have

qτ
1/q

τ
3 < ǫ; therefore we have that at every t > τ , qt

1/q
t
3 < ǫ. Furthermore, since S and Si

are U shaped, and Sj is Hill shaped, by Lemma I, qt
1/q

t
2 is decreasing at every t > τ ; hence

there must exists t > τ such that qt
1/q

t
2 < ǫ.

Since the initial choice of ǫ was arbitrary, (5) follows from Claim 2.

Subcase D2: Both Si and Sj have non-zero bias.

Consider first the infinite path H∞ = {a1, a2, . . .} such that at = at
j at every history

H t = {a1, . . . , at−1}. Then the following claims must hold.

Claim 1: qt
1/q

t
2 is decreasing at every t : Since Sj and Si are respectively Hill shaped

and U shaped, it follows from Lemma I that qt
1/q

t
2 is decreasing.

Claim 2: If Si has a negative bias then qt
1/q

t
3 is decreasing at every t: Since Sj has a

positive bias and Si has a negative bias, by Lemma I, qt
1/q

t
3 is decreasing at every t.

Claim 3: If there exists a period T such that for all t > T, at
j = buy then qt

1/q
t
3 is

decreasing at every t > T : Since Sj has a positive bias and S does not buy at any date, by

Lemma I, qt
1/q

t
3 must be decreasing at every t > T .

Before stating the next claim, consider ϕml defined in (12). Since by assumption S has

a negative bias and Sj have a positive bias, it follows that ϕ13 < 1 if Si has positive bias.

Thus, in this case there exist an integer M and a positive real number δ < ǫ such that

(ϕ13)
M < ǫ and δ(ϕ12)

M < ǫ. (17)

Claim 4: If Si has positive bias, then there exists a history Hτ s.t. qτ
1/q

τ
2 < δ and
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qτ
1/q

τ
3 < x, where satisfies δ satisfies (17) and

x ≡
[Pr(Si|V3) − Pr(Si|V2)] + 2ǫ[Pr(Si|V3) − Pr(Si|V1)]

[Pr(Si|V1) − Pr(Si|V2)]
:

Suppose not. Then by Claims 1 and 3 there exists date τ such that qτ
1/q

τ
2 < δ and

aτ
j 6= buy. Since S also does not buy at Hτ , it follows that only Si buys at τ . Then

E[V |Si, H
τ ] > E[V |Hτ ]. By Proposition 2, this implies

[Pr(Si|V3) − Pr(Si|V2)] +
qτ
1

qτ
3

[Pr(Si|V2) − Pr(Si|V1)] +
2qτ

1

qτ
2

[Pr(Si|V3) − Pr(Si|V1)] > 0.

Since qτ
1/q

τ
2 < δ < ǫ and Si is pU shaped, we can rearrange the above to show that

qτ
1

qτ
3

≤
[Pr(Si|V3) − Pr(Si|V2)] +

2qτ

1

qτ

2

[Pr(Si|V3) − Pr(Si|V1)]

Pr(Si|V1) − Pr(Si|V2)
<

[Pr(Si|V3) − Pr(Si|V2)] + 2ǫ[Pr(Si|V3) − Pr(Si|V1)]

[Pr(Si|V1) − Pr(Si|V2)]
= x.

Claim 5: If Si has a positive bias, then there exists a history H
t
s.t. qt

1/q
t
l < ǫ for any

l = 2, 3 : Fix any history Hτ = (a1, . . . , aτ−1) s.t. qτ
1/q

τ
2 < δ and qτ

1/q
τ
3 < x (by the previous

claim such a history exists). Next, consider a history H
t
that consists of path Hτ followed

by M periods of buys. Thus t = τ + M and H t = {hτ , a1, . . . , aM}, where for any m ≤ M ,

am = buy. Since a buy must be either from Sj or Si or both, it then follows from the

definitions of ϕ12 in (12), from (17) and from qτ
1/q

τ
2 < δ that

qt
1

qt
2

≤
qτ
1

qτ
2

(ϕ12)
M < δ(ϕ12)

M < ǫ.

Also, since qτ
1/q

τ
3 < x, we have

qt
1

qt
3

<
qτ
1

qτ
3

(ϕ13)
M < x(ϕ13)

M < ǫ.

Since the initial choice of ǫ was arbitrary, (5) follows from Claims 1,2 and 5.

A.7 Resilience and Fragility: Proof of Proposition 4

(a) First we demonstrate the existence of the function s. Since at H t buy herding occurs

if and only if E[V |S,H t] − askt > 0 and E[V |H t] − E[V ] > 0, the existence of s is obtained

by fixing b and showing (i) these two inequalities hold when s = 0 and (ii) neither hold for

large enough s.

Let βi = Pr(buy|Vi) and σi = Pr(sale|V3) at every buy herding history (these prob-

abilities are are always the same at every history at which S buy herds). Note that by

Lemma 6(i), E[V |S,H t] − askt has the same sign as

(

β1

β3

)b (
σ1

σ3

)s

qr
2q

r
1[β1Pr(S|V2) − β2Pr(S|V1)] + qr

3q
r
2[β2Pr(S|V3) − β3Pr(S|V2)]

+ 2
(

β1

β2

)b (
σ1

σ2

)s

qr
3q

r
1[β1Pr(S|V3) − β3Pr(S|V1)].

(18)

Also, by MLRP and Lemma 9 we have

β1 < β2 < β3 and σ1 > σ2 > σ3 (19)

Since by Proposition 2, S must have an nU shaped csd it then follows that

β1Pr(S|V2)−β2Pr(S|V1) < 0, β1Pr(S|V3)−β3Pr(S|V1) < 0, β2Pr(S|V3)−β3Pr(S|V2) > 0. (20)
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(the last inequality in (20) follows from the first two and from (3) being positive at Hr).

Thus, the first and the third terms in (18) are negative, the second is positive. Hence, it

follows from (19) that the expression in (18) increases in b and decreases in s. Also, by (19),

we must have that E(V |H t) increases in b and decreases in s (note that qt
3/q

t
1 is increasing

in b and decreasing in s).

By assumption there is buy herding at Hr. Therefore, both (18) and E(V |H t)− E(V ) are

positive when both b and s are equal to zero. Since both (18) and E(V |H t) are increasing

in b and decreasing in s, it then follows respectively that (i) for any b both (18) and

E(V |H t) − E(V ) are positive when s = 0 and (ii) for any b both (18) and E(V |H t) − E(V )

are negative for large enough values of s. These two conclusions, together with (18) and

E(V |H t) − E(V ) being decreasing in s, imply that there exists an integer s > 1 such

that both (18) and E(V |H t) − E(V ) are positive for any integer s < s, and either (18)

or E(V |H t) − E(V ) are non-positive for any integer s ≥ s.

To complete the proof of this part we need to show that s is increasing in b. To show

this suppose otherwise; then there exists b′ and b′′ such that b′ < b′′ and s′ > s′′ where s′

and s′′ are respectively the critical values of sales corresponding to b′ and b′′ described in

the previous paragraph. Now since s′ > s′′ it follows that both (18) and E(V |H t)−E(V ) are

positive if b = b′ and s = s′′. But since both (18) and E(V |H t) − E(V ) are increasing in b,

we must then have that both (18) and E(V |H t) − E(V ) are positive if b = b′′ and s = s′′.

By the definition of s′′ this is a contradiction.

(b) By Lemma 6(i), E[V |S,H t] − askt has the same sign as

qr
2q

r
1[β1Pr(S|V2) − β2Pr(S|V1)] +

(

β3

β1

)b (
σ3

σ1

)s

qr
3q

r
2[β2Pr(S|V3) − β3Pr(S|V2)]

+ 2
(

β3

β2

)b (
σ3

σ2

)s

qr
3q

r
1[β1Pr(S|V3) − β3Pr(S|V1)].

(21)

Also, with buy contrarianism S must have an nHill shaped csd and therefore β1Pr(S|V2)−

β2Pr(S|V1) > 0, β1Pr(S|V3)− β3Pr(S|V1) < 0, and β2Pr(S|V3)− β3Pr(S|V2) < 0. Thus, the

second and the third terms in (21) are negative, and the first is positive. Hence, it follows

from (19) that the expression in (21) increases in s and decreases in b.

The remainder of the argument is then analogous to that for part (a), with reversed

roles for buys and sales (i.e. one needs to show first that for any s (i) (21) is positive and

E(V |H t)− E(V ) < 0 when b = 0 and (ii) (21) is negative and E(V |H t)− E(V ) > 0 when b

is sufficiently large; then use (i) and (ii) to demonstrate the existence of b).

A.8 The Range of Herding Prices: Proof of Proposition 5

(a) In the proof of Proposition 4 we have shown for the case of buy herding that if the

history following Hr consists only of buys, then type S herds at any point during that

history. What remains to be shown is that for an arbitrary number of buys after herding
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has started, the price will approach V3. Observe that E[V |H t] =
∑

i Viq
t
i = qt

3

(

qt
2

qt
3

V2 + V3

)

.

Also, qt
2/q

t
3 is arbitrarily small at any history H t that includes a sufficiently large number

of buys (see the discussion that follows Lemma 9). Consequently, for every ǫ > 0, there

exists a finite history of length t = r + b, consisting of Hr followed by sufficiently many

buys b, such that E[V |H t] > V3 − ǫ.

Similarly, for the case of buy contrarianism, if the history following Hr consists only

of sales then type S acts as a contrarian at that history. Also, E[V |H t] =
∑

i Viq
t
i =

qt
1

(

V2
qt
2

qt
1

+ V3
qt
3

qt
1

)

. Furthermore, qt
i/q

t
1, i = 2, 3, is arbitrarily small at any history H t,

t = r + s, that includes a sufficiently large number of sales s. Hence, for any ǫ there is

exists a history of length t = r + s, consisting of Hr followed by sufficiently many sales s

during buy contrarianism, such that E[V |H t] < V1 + ǫ.

(b) First note that since µ < µch
2 there exists η > 0 such that

[βt
2Pr(S|V3) − βt

3Pr(S|V2)] > η, for every t. (22)

As signals satisfy MLRP, without loss of generality signal S3 is strictly increasing so that

type S3 always buys. Now fix any r > 1 such that
qr
i

qr
3

=
(

γ+µPr(S3|Vi)
γ+µPr(S3|V3)

)r−1

< η/2, for i = 1, 2.

(Since Pr(S3|Vi) < Pr(S3|V3) such a r exists.) Let Hr be the history consisting only of r−1

buys. Then it follows from (22) that

[βr
2Pr(S|V3) − βr

3Pr(S|V2)] +
qr
1

qr
3

[βr
1Pr(S|V2) − βr

2Pr(S|V1)] > η/2. (23)

Next, fix any ǫ > 0 and note that there exists δ > 0 such that if q1
2 > 1 − δ then

askr = E[V |Hr, buy] = qr
2V2 + qr

3V3 ∈ (V2, V2 + ǫ) and

2
qr
1

qr
2

[βr
3Pr(S|V1) − βr

1Pr(S|V3)] < η/2. (24)

Hence, if q1
2 > 1 − δ it follows from (23) and (24) that

qr
2q

r
3[β

r
2Pr(S|V3)−βr

3Pr(S|V2)]+qr
1q

r
2[β

r
1Pr(S|V2)−βr

2Pr(S|V1)]+2 qr
1q

r
3[β

r
1Pr(S|V3)−βr

3Pr(S|V1)] > 0.

This, together with askr ∈ (V2, V2 + ǫ), establish that if q1
2 > 1− δ then at Hr there is buy

herding and the ask price belongs to the interval (V2, V2 + ǫ).

Next, as shown in part (a), there must also exist a history H t with t = r+b following Hr

such that there is buy herding at any history Hτ , r ≤ τ ≤ t, and E[V |H t] > V3 − ǫ.

The arguments for buy contrarianism are analogous except that one uses s − 1 sales.

A.9 Proof of Propositions 6 and 7

We shall prove the two results for the case of buy herding; the proof for the buy contrarian

case is analogous and will be omitted.

Proof of part (a) of Propositions 6 and part 1(a) of 7. Let βi and σi be

respectively the probability of a buy and the probability of a sale in the transparent world
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at any date τ = r, .., r + b + s. Also, let βi,o and σi,o be the analogous probabilities in the

opaque world. Then E[V |H t] − Eo[V |H t] = V{(qt
2 − qt

2,o) + 2(qt
3 − qt

3,o)}

= V

{

qr
2

(

βb
2σ

s
2

∑

i q
r
i β

b
i σ

s
i

−
βb

2,oσ
s
2,o

∑

i q
r
i β

b
i,oσ

s
i,o

)

+ 2qr
3

(

βb
3σ

s
3

∑

i q
r
i β

b
i σ

s
i

−
βb

3,oσ
s
3,o

∑

i q
r
i β

b
i,oσ

s
i,o

)}

.

Therefore, E[V |H t] − Eo[V |H t] has the same sign as

qr
2q

r
1[(β2β1,o)

b(σ2σ1,o)
s − (β2,oβ1)

b(σ2,oσ1)
s] + qr

3q
r
2[(β3β2,o)

b(σ3σ2n)s − (β3,oβ2)
b(σ3,oσ2)

s]

+ 2qr
3q

r
1[(β3β1,o)

b(σ3σ1,o)
s − (β3,oβ1)

b(σ3,oσ1)
s].

(25)

Suppose that S buy herds at Hr. Then, by Step 1 of Lemma 6, we have

qr
2q

r
1[β1Pr(S|V2) − β2Pr(S|V1)] + qr

3q
r
2[β2Pr(S|V3) − β3Pr(S|V2)]

+ 2 qr
3q

r
1[β1Pr(S|V3) − β3Pr(S|V1)] > 0.

(26)

By simple computation we also have

β2β1,o − β2,oβ1 = µ[β1Pr(S|V2) − β2Pr(S|V1)],

β3β1,o − β3,oβ1 = µ[β1Pr(S|V3) − β3Pr(S|V1)],

β3β2,o − β3,oβ2 = µ[β2Pr(S|V3) − β3Pr(S|V2)].

(27)

Therefore, it follows from (26) that

qr
2q

r
1[β2β1,o − β2,oβ1] + qr

3q
r
2[β3β2,o − β3,oβ2] + 2qr

3q
r
1[β3β1,o − β3,oβ1] > 0. (28)

Next suppose that b = 1 and s = 0 (thus t = r + 1). Then, by from (25) and (28), we have

E[V |H t] − Eo[V |H t] > 0. Since in this case H t is simply Hr followed by a buy, it follows

that E[V |H t] and Eo[V |H t] are respectively the ask price at Hr when S buys and the ask

price when S does not. This, together with E[V |H t] − Eo[V |H t] > 0, completes the proof

of (a) in Proposition 6.

To prove 1(a) in Proposition 7 suppose that s = 0 (thus t = b). Then by expanding (25)

it must be that E[V |H t] − Eo[V |H t] has the same sign as

qr
2q

r
1

{

(β2β1,o − β2,oβ1)
∑b−1

τ=0
(β2β1,o)

b−1−τ (β2,oβ1)
τ
}

(29)

+qr
3q

r
2[(β3β2,o) − (β3,oβ2)]

∑b−1

τ=0
(β3β2,o)

b−1−τ (β3,oβ2)
τ

+2qr
3q

r
1

{

(β3β1,o − β3,oβ1)
∑b−1

τ=0
(β3β1,o)

b−1−τ (β3,oβ1)
τ
}

.

Also, by MLRP β3 > β2 > β1 and β3,o > β2,o > β1,o. Therefore,

b−1
∑

τ=0

(β3β2,o)
b−1−τ (β3,oβ2)

τ >

b−1
∑

τ=0

(β2β1,o)
b−1−τ (β2,oβ1)

τ , (30)

b−1
∑

τ=0

(β3β2,o)
b−1−τ (β3,oβ2)

τ >
b−1
∑

τ=0

(β3β1,o)
b−1−τ (β3,oβ1)

τ . (31)
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Also, by (20) and (27) the first and the third terms in (29) are negative and the second

is positive. Therefore, by (28), (30), and (31), E[V |H t] − Eo[V |H t] > 0 for s = 0. This

completes the proof of part 1(a) of Proposition 7.

Proof of part (b) of Proposition 6 and part 1(b) of Proposition 7. Suppose that

b = 0 and s = 1 (t = r + 1). Since S buys in the transparent world, bidr − E[V |S,Hr] < 0.

Thus, by Lemma 6, we have

qr
2q

r
1[σ1Pr(S|V2)−σ2Pr(S|V1)]+ qr

3q
r
2[σ2Pr(S|V3)−σ3Pr(S|V2)]+2qr

3q
r
1[σ1Pr(S|V3)−σ3Pr(S|V1)]<0

(32)
Also, by the definition of σi and σi we have

σ3σ2,o − σ3,oσ2 = −µ[σ2Pr(S|V3) − σ3Pr(S|V2)],

σ3σ1,o − σ3,oσ1 = −µ[σ1Pr(S|V3) − σ3Pr(S|V1)],

σ2σ1,o − σ2,oσ1 = −µ[σ1Pr(S|V2) − σ2Pr(S|V1)].

(33)

Therefore, (32) is equivalent to

qr
2q

r
1[σ2σ1,o − σ2,oσ1] + qr

3q
r
2[σ3σ2,o − σ3,oσ2] + 2qr

3q
r
1[σ3σ1,o − σ3,oσ1] > 0. (34)

Since the LHS of (34) is the same as the RHS of (25) when b = 0 and s = 1, it follows

that in this case E[V |H t] − Eo[V |H t] < 0. This completes both the proof of part (b) of

Propositions 634 and part 1(b) of 7.

Proof of 1(c) in Proposition 7. First, note that (25) can be written as:

qr
2q

r
1

(β2,oβ1)b

(β3β2,o)b

[

(β2β1,o)b

(β2,oβ1)b (σ2σ1,o)
s − (σ2,oσ1)

s
]

+ qr
3q

r
2

[

(σ3σ2n)s − (β3,oβ2)b

(β3β2,o)b (σ3,oσ2)
s
]

+2qr
3q

r
1

(β3,oβ1)b

(β3β2,o)b

[

(β3β1,o)b

(β3,oβ1)b (σ3σ1,o)
s − (σ3,oσ1)

s
]

.
(35)

Fix s and let b → ∞. Then since by (20) and (27) β3β2,o > β3,oβ2 we have that the second

term in (35) converges to qr
3q

r
2(σ3σ2n)s as b → ∞. Also, since β3 > β2 > β1 it follows

that β2,oβ1 < β2,oβ3 and β3,oβ2 > β3,0β1. The former, together with (20) and (27), imply

that the first term in (35) vanishes as b → ∞. The latter, together with (20) and (27),

imply that β3β2,o > β3,oβ1; therefore, using (20) and (27) again, the last term in (35) also

vanishes. Consequently, as b → ∞ the expression in (35) converges to qr
3q

r
2(σ3σ2n)s. Since

(σ3σ2n)s > 0 and E[V |H t]−Eo[V |H t] has the same sign as the expression in (35), the claim

in 1(c) of the proposition is established.

34Since in this case Ht correspond to Hr followed by a single sale, Eo[V |Ht] and E[V |Ht] correspond
respectively to bid prices at Hr when S sells and when S does not.
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Supplementary Material

B Proofs Omitted from the Paper

B.1 Proof of Lemma 1

Observe first that

E[V |S,H t] − E[V |H t] = Vqt
2

(

Pr(S|V2)

Pr(S)
− 1

)

+ 2Vqt
3

(

Pr(S|V3)

Pr(S)
− 1

)

.

The RHS of the the above equality has the same sign as

qt
2

(

Pr(S|V2)
∑

j

qt
j −

∑

j

Pr(S|Vj)q
t
j

)

+ 2 qt
3

(

Pr(S|V3)
∑

j

qt
j −

∑

j

Pr(S|Vj)q
t
j

)

= qt
1q

t
2 (Pr(S|V2) − Pr(S|V1)) + qt

2q
t
3 (Pr(S|V2) − Pr(S|V3))

+2 qt
3

(

qt
1(Pr(S|V3) − Pr(S|V1) + qt

2 (Pr(S|V3) − Pr(S|V2))
)

= expression (2).

B.2 Proof of Lemma 2

(i) By standard results on MLRP and stochastic dominance it must be that E[V |Sl] <

E[V |Sh]. By a similar reasoning, at any history H t, E[V |Sl, H
t] < E[V |Sh, H

t] if the

following MLRP condition holds at H t: for any Sl < Sh and any Vl < Vh

Pr(Sh|Vh, H
t)

Pr(Sl|Vh, H t)
>

Pr(Sh|Vl, H
t)

Pr(Sl|Vl, H t)
. (B-1)

To show this note first that Pr(V |H t, S) = Pr(V |S)Pr(H t|V )/
∑

V ′∈V
Pr(V ′|S)Pr(H t|V ′).

Then we have by the following manipulations that the MLRP condition Pr(Sh|Vh)
Pr(Sl|Vh)

> Pr(Sh|Vl)
Pr(Sl|Vl)

implies the MLRP condition (B-1) at any H t:

Pr(Sl|Vl)Pr(Sh|Vh) > Pr(Sl|Vh)Pr(Sh|Vl)

⇔ Pr(Vl|Sl)Pr(Vh|Sh) > Pr(Vh|Sl)Pr(Vl|Sh)

⇔
Pr(Vl|Sl)Pr(Ht|Vl)
∑

V

Pr(V |Sl)Pr(Ht|V )

Pr(Vh|Sh)Pr(Ht|Vh)
∑

V

Pr(V |Sh)Pr(Ht|V )
>

Pr(Vh|Sl)Pr(Ht|Vh)
∑

V

Pr(V |Sl)Pr(Ht|V )

Pr(Vl|Sh)Pr(Ht|Vl)
∑

V

Pr(V |Sh)Pr(Ht|V )

⇔ Pr(Vl|H
t, Sl)Pr(Vh|H

t, Sh) > Pr(Vh|H
t, Sl)Pr(Vl|H

t, Sh).

(ii) Suppose contrary to the claim, that an informed trader with signal S1 does not sell

at some history H t. Then by part (i) no informed trader sells at H t. This implies that

at history H t, bidt = E[V |H t]. But since, by part (i), E[V |H t] exceeds E[V |S1, H
t], we
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have bidt > E[V |S1, H
t]. Hence, an informed trader with signal S1 sells at H t. This is a

contradiction.

The proof that informed traders with signal S3 always buy is analogous.

(iii) First we show that Pr(S1|V1) > Pr(S1|V3). Suppose otherwise; thus Pr(S1|V1) ≤

Pr(S1|V3). Then the two MLRP conditions Pr(S1|V1)Pr(S2|V3) > Pr(S2|V1)Pr(S1|V3) and

Pr(S1|V1)Pr(S3|V3) > Pr(S3|V1)Pr(S1|V3) imply respectively that Pr(S2|V1) < Pr(S2|V3)

and Pr(S3|V1) < Pr(S3|V3). Hence, since Pr(S1|V1) ≤ Pr(S1|V3) we have
∑3

i=1 Pr(Si|V3) >
∑3

i=1 Pr(Si|V1). But this contradicts
∑3

i=1 Pr(Si|Vj) = 1 for every j.

The same argument can be applied to show that Pr(S1|V1) > Pr(S1|V2) and Pr(S1|V2) >

Pr(S1|V3), and also in the reverse direction for Pr(S3|V1) < Pr(S3|V2) < Pr(S3|V3).

B.3 Proof of Lemma 3

This follows from Lemma 1: By the symmetry assumption on the priors (q1
1 = q1

3), the

RHS of (2) is negative (positive) at t = 1 if and only if (Pr(S|V3) − Pr(S|V1))(q
1
2 + 2q1

1)q
1
3

is less (greater) than 0; the latter is equivalent to S having a negative (positive) bias.

B.4 Proof of Lemma 4

The claim follows from E[V |H t] − E[V ] = V [(1 − qt
1 − qt

3) + 2qt
3] − V = V(qt

3 − qt
1).

B.5 Proof of Lemma 6

The proof is analogous to the derivation in the proof of Lemma 1. To show (i) note that

E[V |S,H t] − askt = Vq2

(

Pr(S|V2)

Pr(S)
−

β2

Pr(buy|H t)

)

+ 2Vq3

(

Pr(S|V3)

Pr(S)
−

β3

Pr(buy|H t)

)

.

The RHS of the above has the same sign as

q2

(

Pr(S|V2)
∑

j

βjqj − β2

∑

j

Pr(S|Vj)qj

)

+ 2 q3

(

Pr(S|V3)
∑

j

βjqj − β3

∑

j

Pr(S|Vj)qj

)

= q1q2 (β1Pr(S|V2) − β2Pr(S|V1)) + q2q3 (β3Pr(S|V2) − β2Pr(S|V3))

+2 q3 (q1 (β1Pr(S|V3) − β3Pr(S|V1)) + q2 (β2Pr(S|V3) − β3Pr(S|V2))) = expression (3).

The proof of (ii) is analogous to that of (i).
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B.6 Proof of Theorem 3

We first prove that any informed type buys initially if it has a negative bias and if there

are enough noise traders.

Lemma II Let S be negatively biased. Then E[V |S] < E[V ]. Hence, there exists µin ∈ (0, 1]

such that S sells at the initial history if µ < µin.

Proof of Lemma II: Without loss of generality, we present the proof only for the case

when the number of states n > 2 is even so that n = 2k for some integer k. Then by the

symmetry of the prior E[V ] = (2k − 1)/2. Also, E[V |S] =
∑2k

i=1(i − 1)Pr(Vi|S). Thus, we

need to show
2k
∑

i=1

(i − 1)Pr(Vi|S) <
2k − 1

2
. (B-2)

Next note that by Pr(S|Vi) > Pr(S|Vn+1−i) together with the symmetry of the initial prior,

we have Pr(Vi|S) > Pr(Vn+1−i|S) for all i < (2k + 1)/2. Using this and
∑n

i=1 Pr(Vi|S) = 1,

we have
∑k

i=1 Pr(Vi|S) > 1
2

>
∑2k

i=k+1 Pr(Vi|S). Therefore

(k − 1) +
2k
∑

i=k+1

Pr(Vi|S) < (k − 1) +
1

2
=

2k − 1

2
. (B-3)

Then by (B-2) it is sufficient to show that

k
∑

i=1

(i − 1)Pr(Vi|S) +
2k
∑

i=k+1

(i − 1)Pr(Vi|S) < (k − 1) +
2k
∑

i=k+1

Pr(Vi|S). (B-4)

But the second term on the left hand side of (B-4) is

2k
∑

i=k+1

(i − 1)Pr(Vi|S) =
2k
∑

i=k+1

Pr(Vi|S) + (k − 1)Pr(Vk+1|S) + . . . + (2k − 2)Pr(V2k|S)

<

2k
∑

i=k+1

Pr(Vi|S) + (k − 1)Pr(Vk+1|S) + [(k − 1)Pr(Vk+2|S) + Pr(Vk−1|S)]

+[(k − 1)Pr(Vk+3|S) + 2Pr(Vk−2|S)] + . . . + [(k − 1)Pr(V2k|S) + (k − 1)Pr(V1|S)]

=
2k
∑

i=k+1

Pr(Vi|S) + (k − 1)
2k
∑

i=k+1

Pr(Vi|S) +
k
∑

j=1

(k − j)Pr(Vj|S).

Therefore,

LHS of (B-4) <
k
∑

i=1

(i−1)Pr(Vi|S) +
2k
∑

i=k+1

Pr(Vi|S) + (k−1)
2k
∑

i=k+1

Pr(Vi|S)+
k
∑

i=1

(k−i)Pr(Vi|S)

= (k − 1) +
2k
∑

i=k+1

Pr(Vi|S) = RHS of (B-4).

50



This demonstrates that E[V |S] < E[V ]. To complete the proof of the lemma we also

need to show that there exists µin ∈ (0, 1] such that E[V |S] < bid1 if µ < µin. As in

Lemma 5 this follows immediately from E[V |S] < E[V ] and from limµ→0 E[V ] − bid1 = 0.

This completes the proof of Lemma II.

Next, we turn to the switching of behavior. Before doing that note that with MLRP

the probability of a buy is increasing in the liquidation values and probability of a sale is

decreasing in the liquidation values. To show this assume without any loss of generality

that S1 < S2 < . . . < Sn. Then we have the following.

Lemma III When signals satisfy the MLRP, βt
1 < βt

2 < . . . < βt
n and σt

1 > σt
2 > . . . > σt

n.

Proof of Lemma III: We will show only βt
1 < βt

2 < . . . < βt
n, the result on sales σi

follows analogously. To show the former, observe that with MLRP signals, expectations

are ordered in signals: for i > j, E[V |H t, Si] > E[V |H t, Sj]. Thus, if signal type Sk buys,

so will all Sl > Sk. Thus for i > j, βi − βj has the same sign as

n
∑

l=m

Pr(Sl|Vi) −
n
∑

l=m

Pr(Sl|Vj) = 1 −
m−1
∑

l=1

Pr(Sl|Vi) −

(

1 −
m−1
∑

l=1

Pr(Sl|Vj)

)

=
m−1
∑

l=1

Pr(Sl|Vj) −
m−1
∑

l=1

Pr(Sl|Vi), for some m ≤ n.

This latter expression is positive since MLRP implies First Order Stochastic dominance.

This completes the proof of Lemma III.

Proof of part (a) of Theorem 3: Fix S. Analogously to Lemma 6, by simple calcula-

tions, it can be shown that E[V |S,H t] − askt has the same sign as

qt
nq

t
n−1 ·

n−1
∑

j=1

n−j
∑

i=1

j ·
qt
iq

t
i+j

qt
n−1q

t
n

(βt
iPr(S|Vi+j) − βt

i+jPr(S|Vi)). (B-5)

Next consider the infinite path consisting of only buys at every date. By MLRP and

Lemma III, βt
1 < βt

2 < . . . < βt
n. Then we have that qt

i/q
t
n converges to zero for all i < n.

But this implies that along this path

lim
t

E[V |H t] = Vn > E[V ] (B-6)

Also, since for any i < n − 1 and j ≥ 1 and for any t,

qt+1
i qt+1

i+j

qt+1
n−1q

t+1
n

=
βt

iβ
t
i+j

βt
n−1β

t
n

qt
iq

t
i+j

qt
n−1q

t
n

<
qt
iq

t
i+j

qt
n−1q

t
n

,
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we have that (qt
iq

t
i+j)/(q

t
n−1q

t
n) converges to zero along this infinite path of buys. Thus,

as t → ∞

n−1
∑

j=1

n−j
∑

i=1

j ·
qt
iq

t
i+j

qt
n−1q

t
n

(βt
iPr(S|Vi+j)−βt

i+jPr(S|Vi)) → lim
t

[βt
n−1Pr(S|Vn)−βt

nPr(S|Vn−1)]. (B-7)

Let Si be the lowest type that buys at t. Then with MLRP all Sj with j ∈ {i, . . . , n} will

buy. This implies that

βt
n−1Pr(S|Vn) − βt

nPr(S|Vn−1) > 0

⇔ (γ + µ
∑n

j=i Pr(Sj |Vn−1))Pr(S|Vn) > (γ + µ
∑n

j=i Pr(Sj |Vn))Pr(S|Vn−1)

⇔ (Pr(S|Vn) − Pr(S|Vn−1)) > µ
γ

∑n
j=i{Pr(Sj |Vn)Pr(S|Vn−1) − Pr(Sj |Vn−1)Pr(S|Vn)}.

(B-8)

Since Pr(S|Vn) > Pr(S|Vn−1), the left hand side of the last inequality in (B-8) is positive.

Therefore, by (B-8), for µ sufficiently small, βt
n−1Pr(S|Vn)− βt

nPr(S|Vn−1) > 0. Since there

is a finite number of types, it then follows from (B-5), (B-6), and (B-7) that there exist

a critical level of informed trading µch > 0 and a history H t along the infinite path of

buys such that E[V |S,H t] − askt > 0 and E[V |H t] > E[V ]. This together with Lemma II

completes the proof.

Proof of part (b) of Theorem 3: Analogously to (a), we can rewrite E[V |S,H t]−askt =

q1q2 ·
n−1
∑

j=1

n−j
∑

i=1

j ·
qiqi+j

q1q2

(βt
iPr(S|Vi+j) − βt

i+jPr(S|Vi)). (B-9)

Now consider the infinite path consisting of only sales at every date. By MLRP and

Lemma III, σt
1 > σt

2 > . . . > σt
n. Then we have that qt

i/q
t
1 converges to zero for all i > 1.

But this implies that

lim
t

E[V |H t] = V1 < E[V ] (B-10)

Also, since for any i, j ≥ 1 such that either i or j > 1, and any t,

qt+1
i qt+1

i+j

qt+1
1 qt+1

2

=
σt

iσ
t
i+j

σt
1σ

t
2

qt
iq

t
i+j

qt
1q

t
2

<
qt
iq

t
i+j

qt
1q

t
2

,

we have that (qt
iq

t
i+j)/(q

t
1q

t
2) converges to zero along this infinite path of buys. Thus,

as t → ∞

n−1
∑

j=1

n−j
∑

i=1

j ·
qiqi+j

q1q2

(βiPr(S|Vi+j) − βi+jPr(S|Vi)) → lim
t

[β1Pr(S|V2) − β2Pr(S|V1)]. (B-11)
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Let Si be the highest type that buys at t. Then with MLRP all Sj with j ∈ {i, . . . , n} will

buy at t. This implies that βt
1Pr(S|V2) − βt

2Pr(S|V1) > 0 if and only if

⇔ (Pr(S|V2) − Pr(S|V1)) >
µ

γ

n
∑

j=i

{Pr(Sj|V2)Pr(S|V1) − Pr(Sj|V1)Pr(S|V2)}. (B-12)

Since Pr(S|V2) > Pr(S|V1), the left hand side of (B-12) is positive. Thus, for µ sufficiently

small, βt
1Pr(S|V2) − βt

2Pr(S|V1) > 0. As there are finite number of types, it then follows

from (B-9), (B-10), and (B-11) that there exist a critical level of informed trading µch > 0

and a history H t along the infinite path of sales such that E[V |S,H t] − askt > 0 and

E[V |H t] < E[V ]. This together with Lemma II completes the proof.

C Additional Results

C.1 Proposition 3a

(i) Suppose that S buy herds and there is at most one U shaped signal.

Then µ < min{µin
s , µch

2 }.

(ii) Suppose that S sell herds and there is at most one U shaped signal.

Then µ < min{µin
b , µch

1 }.

(iii)Suppose that S acts as a buy contrarian and there is at most one hill shaped signal.

Then µ < min{µin
s , µch

1 }.

(iv) Suppose that S acts as a sell contrarian and there is at most one hill shaped signal.

Then µ < min{µin
b , µch

2 }.

We shall prove (i); the proof of (ii) − (iv) are analogous.

Since S sells initially it follows from Lemma 5 that µ < µin
s . To show that µ < µch

2 first

note that by Proposition 1, S must be nU shaped. Next consider the different possibilities

separately.

Case A. There is no signal S ′ 6= S such that Pr(S ′|V3) > Pr(S ′|V2). Then it must be

that µch
2 (S ′) = 1 for all S ′ and therefore it must be that µ < µch

2 = 1.

Case B. There is a signal S ′ 6= S such that Pr(S ′|V3) > Pr(S ′|V2). Since S is U shaped it

must be that Pr(S|V3) > Pr(S|V2) and Pr(S ′′|V3) ≤ Pr(S ′′|V2) for S ′′ 6= S, S ′. This implies

that µch
2 (S ′′) = 1 and hence, µch

2 (S ′) = µch
2 .

Now there are two cases. First, if µch
2 (S ′) also equals 1 then clearly µch

2 = 1 and the

claim is trivially true.

Second, assume that µch
2 (S ′) = µch

2 < 1. Since S buy herds at H t, to show that

µ < min{µin
s , µch

2 } it suffices to show that S ′ also buys whenever S buys (the alternative
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is that S ′ does not buy so that µch = 1 > µch
2 ). When S ′ buys, E[V |S ′, H t] − askt > 0.

Suppose S ′ does not buy. As the sign of E[V |S ′, H t]− askt is given by equation (3), it must

then hold that

q1q2 [β1Pr(S ′|V2) − β2Pr(S ′|V1)] + q2q3[β2Pr(S ′|V3) − β3Pr(S ′|V2)]

+2 q1q3 [β1Pr(S ′|V3) − β3Pr(S ′|V1)] ≤ 0.
(C-13)

Also, since there is at most one U shaped signal it must be that

Pr(S ′|V3) > Pr(S ′|V2) ≥ Pr(S ′|V1). (C-14)

By Proposition 1 this implies that S ′ does not sell. By supposition S ′ does not buy and

therefore S is the only buyer at H t (S ′′ is selling). Since S is nU shaped we must also have

βt
1 > βt

3 ≥ βt
2. This, together with (C-14) imply that the first and the third term in (C-13)

are positive. Furthermore, the second term equals

γ(Pr(S ′|V3) − Pr(S ′|V2)) + µ(Pr(S|V2)Pr(S ′|V3) − Pr(S|V3)Pr(S ′|V2)). (C-15)

By (C-14) the first term in the last expression is positive; furthermore, since S is nU, we

have m2 = Pr(S|V3) > Pr(S|V2). Since µch
2 (S ′) < 1 we must have that M2(S ′) < 1 is

negative. But −µM2(S ′) is the second term in the last expression and it is thus positive.

Consequently, (C-15) is positive. Therefore, the second term in (C-13) must also be positive.

Therefore, S ′ must be buying at any H t at which S buys and thus µch
2 < 1 is unique.

C.2 Proof of the statement in condition (7) in Section 7 of the

main text

First, note that, by (33) in the proof of Proposition 7, we have

σ3σ2,o − σ3,oσ2 = −µ2ρ23
12 + µγ(Pr(S|V2) − Pr(S|V3)) < 0

σ2σ1,o − σ2,oσ1 > σ3σ1,o − σ3,oσ1

(C-16)

Also, since for herding we require E[V |S,H1] < bid1, it follows from Lemma 6 and (32)

that
q1
2q

1
1[σ2σ1,o − σ2,oσ1] + q1

3q
1
2[σ3σ2,o − σ3,oσ2] + 2q1

3q
1
1[σ3σ1,o − σ3,oσ1] > 0.

But then by (C-16) we have

σ2σ1,o − σ2,oσ1 > 0. (C-17)
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Since E[V |H t]− Eo[V |H t] has the same sign as the expression in (29), by simple expansion

of this expression we have that if b = 0 then E[V |H t] − Eo[V |H t] has the same sign as

qr
2q

r
1

{

(σ2σ1,o − σ2,oσ1)
∑s−1

τ=0
(σ2σ1,o)

s−1−τ (σ2,oσ1)
τ
}

+qr
3q

r
2

{

[(σ3σ2,o) − (σ3,oσ2)]
∑s−1

τ=0
(σ3σ2,o)

s−1−τ (σ3,oσ2)
τ
}

+2qr
3q

r
1

{

(σ3σ1,o − σ3,oσ1)
∑s−1

τ=0
(σ3σ1,o)

s−1−τ (σ3σ1)
τ
}

.

Rearranging, we have that for b = 0, E[V |H t] − Eo[V |H t] has the same sign as

qr
2q

r
1

∑s−1
τ=0(σ2σ1,o)

s−1−τ (σ2,oσ1)
τ

∑s−1
τ=0(σ3σ2,o)s−1−τ (σ3,oσ2)τ

[σ2σ1,o − σ2,oσ1] + qr
3q

r
1[σ3σ2,o − σ3,oσ2]

+ 2qr
3q

r
1

∑s−1
τ=0(σ3σ1,o)

s−1−τ (σ3σ1)
τ

∑s−1
τ=0(σ3σ2,o)s−1−τ (σ3,oσ2)τ

[σ3σ1,o − σ3,oσ1]. (C-18)

Further manipulations show that
(

σ1

σ3

)s

>

∑s−1

τ=0
(σ2σ1,o)

s−1−τ (σ2,oσ1)
τ

∑s−1

τ=0
(σ3σ2,o)s−1−τ (σ3,oσ2)τ

⇔
s−1
∑

τ=0

σ2
s−1−τσ2,o

τ (σ1σ3)
τ
(

(σ1σ3,o)
s−1−τ − (σ3σ1,o)

s−1−τ
)

> 0.

Also, by assumption we have σ1

σ3
> σ1,o

σ3,o
. Therefore, we must have

(

σ1

σ3

)s

>

∑s−1
τ=0(σ2σ1,o)

s−1−τ (σ2,oσ1)
τ

∑s−1
τ=0(σ3σ2,o)s−1−τ (σ3,oσ2)τ

. (C-19)

Similar manipulations show that
(

σ1

σ2

)s

<

∑s−1

τ=0
(σ3σ1,o)

s−1−τ (σ3σ1)
τ

∑s−1

τ=0
(σ3σ2,o)s−1−τ (σ3,oσ2)τ

⇔

s−1
∑

τ=0

σ3
s−1−τσ3,o

τ (σ1σ2)
τ
(

(σ2σ1,o)
s−1−τ − (σ1σ2,o)

s−1−τ
)

> 0.

This together with (C-17), implies that
(

σ1

σ2

)s

<

∑s−1
τ=0(σ3σ1,o)

s−1−τ (σ3σ1)
τ

∑s−1
τ=0(σ3σ2,o)s−1−τ (σ3,oσ2)τ

. (C-20)

Also, since E[V |S,H t] − bidt > 0, by Lemma 6, we have that if b = 0 then

qr
2q

r
1

(

σ1

σ3

)s

[σ2σ1,o − σ2,oσ1] + qr
3q

r
2[σ3σ2,o − σ3,oσ2]

+2qr
3q

r
1

(

σ1

σ2

)s

[σ3σ1,o − σ3,oσ1] < 0. (C-21)

Then it follows from (C-21), together with σ1

σ3
> σ1,o

σ3,o
, (C-17), (C-19) and (C-20), that the

expression in (C-18) is negative. Thus E[V |H t] − Eo[V |H t] < 0 and (7) follows.
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D The Parameters used for Figure 1

Herding Example Contrarian Example

Pr(S|V ) V1 V2 V3

S1
601
1000

270
1000

0

S2
399
1000

180
1000

245
1000

S3 0 550
1000

755
1000

Pr(S|V ) V1 V2 V3

S1
7
10

1
4

0

S2
3
10

1
2

3
20

S3 0 1
4

17
20

V = (0, 10, 20) V = (0, 10, 20)

Pr(V ) = (1/100, 98/100, 1/100) Pr(V ) = (1/4, 1/2, 1/4)

µch
b = 0.9496, µin

b = 0.4294 µch
b = 0.4706, µin

b = 0.1922

⇒ µ = 0.4294 − 0.0001 ⇒ µ = 0.1922 − 0.001

E The Parameters used for Figure 2

µch
b = κb/(3 + κb) = 0.7656 ≡ µb

µin
b = θb/(3 + θb) = 0.9215

V = (0, 10, 20),

Pr(V ) = (1/10, 4/5, 1/10), and

Pr(S|V ) V1 V2 V3

S1
40049
49000

4
49

0

S2
8951
49000

9
490

243
12250

S3 0 9
10

12007
12250

(E-22)

F Further Features of Herding

Simple History Dependence. The order of trades and traders does not affect the price

path as long as the model primitives do not allow any type of trader to change behavior.

Clearly, herding or contrarian behavior involve such a change of behavior; changes from

buying to holding or selling to holding also qualify as a change of behavior.

Without changes in behavior, it suffices to study the order imbalance (number of buys

minus number of sales) to determine prices, but with changes, the order of arrival matters

a great deal. Consider the following numerical example35 of an MLRP signal structure with

U-shaped and negatively biased csd for S2

Pr(S|V ) V1 V2 V3

S1
40
49

4
49

0

S2
9
49

9
490

243
12250

S3 0 9
10

12007
12250

µ = 1209
1600

,

V = (0, 10, 20), and

Pr(V ) = (1/6, 2/3, 1/6).

For illustrative purposes, assume that the first fifteen traders are all informed and each

signal Si, i = 1, 2, 3, is received by five of the first fifteen traders. Next, we compare the

35We chose the numbers so that there can be herding after a small number of trades.
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price paths for different arrival orders of these traders.

Series 1: The arrival order is 5×S1–5 ×S2–5×S3 (meaning the first five receive S1,

the next five S2 and the last five S3). The S1 types, who move first, all sell and thus the

price drops. The S2 types also sell and the S3 types buy. Computations show that after

these 15 trades the public expectation will drop from 10 to .15.

Series 2: 5×S1–5×S3–5×S2. Here the outcome is the same as in the previous series

with S1 traders selling, S3 types’ buying and finally the S2 types selling. The public

expectation also drops from 10 to .15.

Series 3: 5×S3–5×S2–5×S1. The S3 traders move first and buy. The S2 types will

now behave differently from the previous two series and will be buy-herding. The public

expectation now rises to about 13.5. Finally, the five S1 type sell, and then the public

expectation drops to 10.31.

The difference between the outcome for Series 3 with those of Series 1 and 2 illustrates

how the arrival order of traders matters: since there are S2 types who trade, this type’s

change in trading-mode (from selling to buying) strongly affects the price-path.

Note, however, that even if there are no S2-types directly involved in trading, the market

maker has to consider the possibility that this type trades and thus has to account for this

type’s change of trading mode. To illustrate this, we next compare the outcome when the

same number of buys and sales occurs, but in different orders.

Series 4: 20 buys followed by 20 sales. After 20 buys, the public expectation

is 15.36, after 20 subsequent sales it is 3.12.

Series 4: 20 sales followed by 20 buys. After 20 sales, the public expectation

is 1.16 × 10−13, after 20 subsequent buys it is 10.0064.

In summary, the S2-type can change trading modes in response to observing the order

flow; thus the order flow affects prices and the frequency of different types of future trades.

Although there is convergence in the long run, in the short run the fluctuations may be

influenced by the precise order of trades.

Price Sensitivity. To further elaborate on the price sensitivity induced by herding,

consider the following simulations of our model which uses the specification outlined in

Appendix D, expression (E-22). The simulated prices paths are plotted in Figure 2.

In the left panel, there are two relevant price paths: the first (in gray) is for a setting

with µ = µb − ǫ, ǫ = 1/10, 000; in other words, there is just enough noise so that herding

is possible. The second price path (in red) is for µ = µb so that there cannot be herding.36

The entry series for the graph is as follows: first, there is a long series of S3 types, who all

36The third price path (in blue) is for the case of näıve agents as described in the preceding section. For
the näıve case the differences in prices for the two levels of µ are negligible.
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Figure 2: Illustrations of the Sensitivity in Prices Paths with and without Herding.

buy; this is followed by a group of S2 types and eventually by some S1 types. The point

when S2 types start entering is clearly marked; the S1 types enter at the point when both

curves peak. The point at which herding starts is marked too.

The series is constructed so that there are S3 types who enter during herding. When

the S2 types enter, in the herding case, they buy, in the no-herding case, they hold. Even

with holds, however, prices increase (this is due to the U-shaped csd).37

In the middle panel we plot prices for the same specifications, this time for a random

sequence of traders; both series have the same sequence of traders but due to herding their

actions may differ.38 In the right panel we plot the difference of the two rational price-series

from the middle panel. The series with herding-prices has more noise (because µ < µb).

Thus initially, the price for the no-herding series is above the price of the herd series. Once

herding starts (here after 8 trades), and once an S2 type enters, this relation flips; this

illustrates that due to herding prices move stronger in the direction of the herd than in the

no-herding case.

Does Herding Hamper Learning? The common perception of herding is that it slows

down learning. With rational agents and informationally efficient prices, this is not so obvi-

ous. With U-shaped signal distributions, the S2-herding-type occurs with high probability

in both the highest and the lowest state — so their herding may speed up learning.

To explore this more generally, we use Monte Carlo simulations and compare the two

scenarios outlined when discussing price sensitivity. That is, for the first series, there is just

enough noise so that buy-herding can be triggered, µ = µb− ǫ, ǫ ≈ 1/10, 000. In the second

series, herding cannot occur, because there is too much informed trading, µ = µch
b ≡ µb.

37The same simulation for the näıve case of the proceeding section results in S2 types selling and prices
falling for both levels of µ.

38There is also a series for the näıve case which, not surprisingly, is entirely below both rational series.
Again, the näıve price series for µ = µb and µ = µb − ǫ are almost identical.
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The true value is V1 The true value is V2 The true value is V3

Figure 3: The Difference in Speeds of Convergence. Each graph plots the difference of the negative
of the average log-distance of the transaction prices of herding and no-herding case. An up-sloping line
thus indicates that for any t herding-prices are further from the true value than no-herding prices. All
graphs are scaled to fit the page. The underlying signal distribution is listed in Appendix D.

We will refer to prices in the first setting as herding-prices, irrespective of whether or not

herding actually occurred; we refer to prices in the second setting as no-herding prices.

Comparing the speeds of convergence for our two sets of simulations we note the following

two observations:

1. if the true value is V1 or V2, then herding-prices converge slower;

2. if the true value is V3, then convergence with herding is faster.

These observations are based on the following: For the simulations we again used the

specification of the parameters given by (E-22) in Appendix D. Fixing the true liquidation

values, we then drew 650 traders at random (noise and informed) assuming that µb ≈ .766.

Since the proportion of the informed agents µ is large — approximately three quarters

for both simulations — the 650 trades are almost always sufficient to obtain convergence

to the true value. Next, we computed the time series of the transaction prices for both

the herding and the no-herding case, and then recorded for each t and for both cases the

absolute distance of the transaction price from the true value (which we know). We then

repeated this procedure a large number of times, and calculated for each t and for each case

the average distance from the true value. Since prices converge to the true value, these

average distances decline in t. In the simulations, this distance declines approximately

exponentially to zero. Thus the slope of the logarithm of the average distance measures

the speed of convergence.

As the final step, we subtract at each t the log-averages for the no-herding from the

herding series. A positive number indicates that the herding series is slower, i.e. that the

average herding price is further away from the true value. Figure 3 plots these differences
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and the graphs are striking; they confirm our two observations mentioned above.39

To see the intuition for the these observations compare the effects of buy-herding on the

herding and no-herding prices. First, when buy-herding occurs, S2 types buy in the herding

case and thus there are more buys with herding than in the no-herding case. Second, in

the case of a buy, prices in the herding case tend to be higher than in the no-herding case.

Since the no-herding prices here are the same as the ones that arise in the ‘näıve’ economy

of the previous section (only S3 types buy in both cases), this second effect follows from

the same reasoning used in the previous section to explain why, in the case of a buy, prices

in the rational world, when herding starts, exceed those in the näıve hypothetical economy

(see Proposition 7(a)). Third, when there is a sale, prices in the herding and no-herding

cases are almost identical and unaffected by buy-herding. This is because in both cases

only S1 types sell: in the herding case this is so by definition and in the no-herding case,

the S2 type’s expectation is almost equal to the ask-price (expression (3) is almost zero)

and thus larger than the bid-price.40

Now it follows from the above that if the true value is V1 or V2, herding prices con-

verge slower: during herding, herd-buys move prices away from the true value by a larger

magnitude and there are more such buys than in the no-herding case (sales have a similar

effect in both cases). If, however, the true value is V3 then once herding starts, prices in

the herding-case move up more strongly because of the first two effects and thus they move

faster towards the true value. This leads to a higher speed of convergence in the herding

case. Figure 3 documents these three cases.

The Probability of the Fastest Herd. The shortest sequence of trades that leads to

buy-herding is one with only buys; this is the ‘fastest’ herd. We now want get a sense of

how likely this sequence is. Keeping the csd and the prior distribution fixed but varying

the proportion of informed trading, we compute first how many buys are needed for buy-

herding to begin, and then we determine how likely this sequence of buys is. The same

type of analysis clearly applies to sell-herding.

As was explained before, S2 types buy at any history Ht if the expression in (3) is

positive. As the amount of informed trading increases from 0 to µb, there are then two

opposing effects. First, as noise decreases, the positive term in expression (3) (the first

39We have also made a formal analysis by regressing the log-distance on time and, using the Chow test,
checking if one slope is steeper than the other. The results were highly significant.

40The herding and no-herding price paths may also differ even if no buy-herding occurs (if S2 types
behave the same way in the two cases) because the proportions of informed trading µ are different for
the two cases. In particular, when S2 types do not buy-herd, since µ is smaller in the herding case, each
price-movement in the herding-price series is smaller than than in the no-herding case, and as a result speed
of convergence is slower in the former series. However, since for the simulations the difference between the
values of µ is small (ǫ = 1/10, 000), the consequence of this effect is small relative to the first two effects
mentioned above.

60



0
-0.12

5

-0.1

-0.08

4 0.1

-0.06

-0.04

3 0.2

-0.02

0

2 mub 0.3
1

0.40

13

11

7

12

10

0.40.15

4

0.20.10.05

6

0.35

5

0.25

9

0.3

8

3

0.1

0.4

0.06

0.02

0.350.30.20.150.1

0.12

0.08

0.04

0
0.250.05

conditional probability

for V = V3

unconditional
probability

Equation (3) Minimum b given µ Probability of b given µ

Figure 4: Trades needed for Herding the Probabilities for these trades. The left panel plots the
value of expression (3) as a function of µ, with µ ∈ (0, µb), and of no-herd buys b. Whenever the bend
curve crosses the 0-surface from below, herding is triggered. The middle panel computes the minimum
integer number of no-herd buys that would trigger herding as a function of noise level µ. The right panel
computes two probabilities: the first is the probability of having exactly the threshold number of buys at
the beginning of trade (the thresholds are taken from the middle panel) conditional on the true state being
V3. The second probability is the unconditional likelihood of this threshold number. The plots in the right
panel are functions of the µ. The signal distribution that underlies these plots is listed in Appendix D.

term) becomes smaller. This implies that for any history, the difference between the market

maker’s and the S2 type’s expectation becomes smaller; thus to get buy-herding one needs

more buys. Second, as noise decreases, the informational content of past behavior (public

information) improves and this makes herding more likely. Formally, the second and third

terms in (3), the negative terms, decline as µ increases. This is because for any i = 2, 3, β1

βi
=

µPr(S3|V1)+γ
µPr(S3|Vi)+γ

, ∂(β1/βi)
∂µ

= (Pr(S3|V1) − Pr(S3|Vi))/βi
2 and thus, since S1’s csd is decreasing,

∂(β1/βi)
∂µ

< 0.

While we do not have an analytical result on the net effect of increasing µ from 0 to µb,

in all numerical examples that we computed the second effect dominates. Thus as noise

trading declines (µ increases to µb) it takes fewer buys to trigger buy-herding. Figure 4 plots

the minimum number of such consecutive time-zero buys needed to trigger buy-herding for

our simulations. As the amount of noise decreases, ex ante it gets more likely that these

consecutive buy-trades occur. (Figure 4’s right panel illustrates these probabilities.)
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