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Highlights 

 

►   ► The resilience of ecosystems is being challenged by the thinning boundaries between domestic and wild animals. 

 

The epidemiology of diseases caused by a number of infectious agents is undergoing profound readjustments. 

 

Substantial risk exists for diseases of wildlife to spread to domestic carnivores and vice versa, and for zoonotic agents to emerge or re-emerge in 

human populations.  

 

In the first part of this two-part article, we review the role wild canids and felids may play in the transmission of protozoa and arthropod-borne 

agents to dogs and cats in Europe. 

Abstract 

Over the last few decades, the world has witnessed radical changes in climate, landscape, and ecosystems. These events, associated to other factors 

such as increasing illegal wildlife trade and changing human behaviour towards wildlife, are resulting into thinning boundaries between wild canids 

and felids and their domestic counterparts. As a consequence, the epidemiology of diseases caused by a number of infectious agents is undergoing 

profound readjustements, as pathogens adapt to new hosts and enviroments. Therefore, there is a risk for diseases of wildlife to spread to domestic 

carnivores and vice versa, and for zoonotic agents to emerge or re-emerge in human populations. Hence, the identification of the hazards linked to 

the co-habitation of these species is critical in order to plan and develop adequate control strategies against these pathogens. In the first part of this 



two-part article, we review the role that wild canids and felids may play in the transmission of protozoa and arthropod-borne agents to dogs and cats 

in Europe, and provide an account of how current and future progress in our understanding of the ecology and epidemiology of parasites, as well as 

of host-parasite interactions, can assist efforts aimed at controlling parasite transmission. 
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1. From wildlife management to public health concerns  

There is an increased awareness of the global effects of several aspects of human politics (e.g., industrialization, urbanization, fragmentation of the 

environment, land use, recycling in urban settings, lack of political will) on the ‘health’ of the planet, and on the alterations that humankind is 

causing on the precarious balances of the ecosystems. The resilience of ecosystems is being challenged by the thinning boundaries between 

domestic and wild animals, ultimately resulting in a redistribution of infective agents (Thompson et al., 2010; Colwell et al., 2011; Tompkins et al., 

2015). These changing scenarios are not only of concern to animal and environmental conservation, but they are likely to become an issue of public 

health relevance, especially considering their effects on the epidemiology of some infectious diseases (Figure 1). For instance, parasites affecting 

both domestic and wild carnivores may circulate between and among sympatric populations of animals, thus facilitating potential spill-overs of the 

infections to humans (Polley, 2005). Indeed, wild and domestic carnivores are considered the first source of human infections with zoonotic agents, 

which include, in descending order, viruses, protozoa, bacteria, and fungi (Cleaveland et al., 2001). In particular, while until recently domestic 

animals were mostly blamed for the transmission of zoonoses to humans (e.g., livestock through consumption of meat and dairy products), the 

emergence or re-emergence of zoonotic infections have stimulated studies on the role that wild birds and mammals, including carnivores, may play 



in their spreading (Polley, 2005). An increasing number of cases of infection or disease caused by parasites of wildlife origin may be a consequence 

of a plethora of factors, which may act alone or in concert (e.g., the introduction of a new parasite of wildlife origin or of new routes of transmission 

to humans), and a causality is usually hard to establish. Whether new cases can be attributed to the introduction of ‘new’ parasites of wildlife origin 

(i.e., emergence), or to a sudden peak after a period of reduced incidence (re-emergence) is difficult to assess, mainly as a result of incomplete 

and/or inaccessible epidemiological data for these pathogens (Thompson et al., 2009). Importantly, the flow of parasites from wildlife to domestic 

carnivores and vice versa mostly depends on the specific ecological variants which characterise each given area. For example, hunting practices 

(and therefore the presence of hunting dogs), as well as human encroachment in wildlife habitats (i.e., rural tourism facilities) may facilitate the 

spill-over of parasitic infections from domestic canids and felids to wild populations. Similarly, the establishment of wildlife reservoirs may 

determine a subsequent spill-back of the same parasites to populations of domestic animals, ultimately perpetuating the life cycles of parasites. 

According to their behaviour and ecology, wild carnivores are free-ranging at low or high geographical scale (i.e., up to 800 km in wolves), their 

territories are characterised by no or limited boundaries and they are unlikely to be subjected to thorough veterinary inspections, except for specific 

national preventive programs, such as those promoted for the control of sylvatic rabies in foxes (Pastoret and Brochier, 1999). Therefore, data on 

parasitic diseases shared between domestic and wild carnivores is scant and limited to case reports or case series obtained under national programs 

for wildlife conservation (Table 1). In the first part of this two-part article, we review current knowledge of the role played by wild canids and felids 

in maintaining and spreading protozoal diseases, as well as other tick-borne infections, to domestic carnivores in Europe, with a particular focus on 

parasites of public health significance. We also discuss the relationships between wildlife infections and emergence (or re-emergence) of selected 

diseases caused by protozoa.  

 



2. Wild felids and canids in Europe 

Europe is the smallest continent of the world (≅10.000.000 square km), home to more than 700 millions inhabitants (at a density of ~70 per square 

km), with the vast majority of them clustered in towns. At the same time, ~75 and ~90 million dogs and cats, respectively, are estimated to inhabit 

the continent as household pets (FEDIAF, 2012), together with a few millions of stray dogs and cats, and wild carnivores (the red fox being the 

most abundant followed by the raccoon dog and wolf). The whole dynamic of infection disease transmission among wild and domestic carnivores is 

complex and driven by many host species that live in sympatry, and share susceptibility to the same parasite species, as well as dietary habits (which 

may include many intermediate and paratenic hosts). Each species occupies its own environmental niche (i.e., the spectrum of resources utilized by 

a species), which very often overlaps that of other species. For parasites, these scenarios represent opportunities to enlarge their own ecological 

niche. In this perspective, ecologically ‘elastic’ parasites are expected to expand their geographic distribution, abundance and host spectrum, while 

parasites living in very specialized ecological niches, as the Iberian lynx (Lynx pardinus) populations, are possibly directed towards extinction, 

thereby adding to further loss of biodiversity.  

The resulting epidemiological landscape is complex, in that widely distributed, abundant domestic and wild species are sympatric with their 

domestic/wild hybrids, and often share the habitats with rare, endangered species. New species, harbouring specific parasites, are expanding their 

distribution range, thus adding complexity to the host/parasite relationship. Humans in particular occupy nearly all ecological niches inhabited by all 

other species, including parasites. 

Eight species of canids and felids are known to occur in Europe (Sillero-Zubiri, 2009; Sunquist and Sunquist, 2009), i.e. five canids (the wolf, Canis 

lupus; the golden jackal, Canis aureus; the raccoon dog, Nyctereutes procyonoides; the artic fox, Alopex lagopus, and the red fox, Vulpes vulpes), 

and three felids (the Iberian lynx, Lynx pardinus, the Eurasian lynx, Lynx lynx, and the wildcat, Felis silvestris silvestris). In addition, the raccoon 



(Procyon lotor), an exotic species introduced to Europe over the past decades, may also be included, given its relative closeness to the family 

Canidae, its increased geographical distribution and the role played as epidemiological reservoir of zoonotic agents, including parasites. 

Based on knowledge of their natural history, the species of canids and felids occurring in Europe can be ideally grouped into three main categories, 

namely with i) restricted, ii) wide or iii) very wide distribution. Among those with a restricted geographical distribution and reduced population size, 

the artic fox conservation status is considered of “least concern” (IUCN, 2014). However, the European (Fennoscandian) population is very small 

(about 200 individuals) and distributed into four isolated sub-populations (Angerbjörn et al., 2011). These animals are unlikely to come into contact 

with domestic dogs and cats, as populations are highly constrained by the availability of suitable habitats and conflict with human settings. The 

demography of artic foxes largely depends on lemming vole (Alticola lemminus) cycles and the availability of undisturbed areas for dens and cub 

care. The population dynamics of the artic fox are also affected by the simultaneous presence of red foxes in their habitats. Indeed, red foxes have 

occupied most of the fennoscandian areas suitable to the artic fox, thus resulting in the confinement of the latter to mountains which, in turn, 

represent a less suitable habitat. The Iberian lynx and the European population of the Eurasian lynx, also survive in very small populations. 

Amongst the large cats, the Iberian lynx is considered the closest to extinction (i.e., critically endangered, according to the IUCN list) with less than 

200 individuals inhabiting two geographically separate areas of Spain (Von Arx and Breitenmoser-Wursten, 2008). The Eurasian lynx is considered 

‘least endangered’ by the IUCN (IUCN, 2014), but the European population is divided into several small sub-populations (which include sub-

species), of which most are critically endangered (Kaczensky et al., 2013).  

For all these species, the limited availability of geographical corridors connecting small and isolated sub-populations leads to inbreeding which, in 

turn, results into a loss of genetic variability (Gaona et al., 1998; Schmidt et al., 2011). The attitude to dispersal of young individuals is limited, and 

thus the possibility to occupy new suitable habitats or territories is considerably reduced. It is well known that loss of genetic variability within the 



host population limits its resilience to parasitic infections. Many eco-ethological barriers prevent cross breeding of these wild animals with domestic 

species. Therefore, the population sizes of the artic fox, the Iberian lynx and the European populations of the lynx, respectively, are likely to be too 

small to allow the establishment of these species as epidemiologically important reservoirs of many or even host-specific parasites. In fact, these 

animals are more likely to be infected by parasites transmitted by abundant sympatric host species, such as the fox or the domestic cat (Ryser-

Degiorgis et al., 2005).  

Wolves and the wildcats are species with a wide geographical distribution range but with a limited population size. These species have recently 

expanded their distribution range and abundance, although their conservation status in Europe is still considered ‘under threat’ in most areas. Cross-

breeding with domestic free ranging dogs and cats is considered disadvantageous, since it leads domestic genetic introgression (= movement of 

gene/s from one species to another, leading to “genetic pollution”) (Daniels et al., 2001; Verardi et al., 2006). However, it seems that cross breeding 

with the domestic equivalent species is common. In many areas, fertile hybrids (wolf x dog and wildcat x domestic cat) represent a conspicuous 

proportion of the wild populations. For example, a continuous “cline” between domestic cats and wildcats has been described in Scotland (Daniels 

et al., 2001) while in Italy the occurrence of dog x wolf hybrids has been reported in some wolf populations at the border of their historical 

geographical range (Ciucci et al., 2003) (Figure 2). Cross breeding may derive from the absence of consistent eco-ethological barriers between wild 

and domestic species (Biró et al., 2005), and from the capacity of wild species to undergo behavioural adaptation to fragmented habitat landscapes 

and to take advantages from human activities (including large populations of game, animal breeding and waste production). As a consequence of the 

taxonomic closeness between wild and domestic species, the use of common habitats and the presence of fertile hybrids, wolves, wildcats, hybrids 

and dogs and cats may be considered as a unique host population characterised by two distinct ecotypes: the genetically pure wild populations that 



survive in remote wild areas, and the domestic dogs and cats living in overcrowded European towns. For the parasites, this translates into the 

availability of huge ecological niches encompassing both the wild and the anthropic environments.  

Finally, amongst wild dogs and cats of Europe, the red fox is a unique example of a species with a very wide distribution range and with a huge 

population size, being the most common carnivore in Europe. Its local abundance benefits from the presence of humans. In urban areas, the 

availability of food and resting places, human tolerance and the absence of predators/competitors, make the red fox a very successful species. The 

red fox itself can be considered as a species connecting the wild and the anthropic environments. The geographical distribution of red foxes 

encompasses all ecological environments and habitats, and the population size enables the red fox to play the role of epidemiological reservoir for 

many parasites that infect all susceptible species sharing the same habitats, including humans.  The golden jackal is a poorly studied species whose 

ecology (including punctual distribution, genetic variability and local abundance) is almost unknown (Arnold et al., 2012). In the late 1960’s, the 

species range was restricted to the central Balkan area (Bulgaria, Romania, Serbia); nowadays, the geographical range of the species is expanding 

towards the West, such as in Italy and Austria that are inhabited by a few reproductive couples. Like the red fox, the golden jackal can be described 

as a generalist predator, due to the ability to establish successfully in any kind of environment. Thanks to its great colonising potential, the species is 

expected to further expand its geographical distribution range over the forthcoming years.  

 

3. Protozoa infecting domestic and wild carnivores 

Multiple routes of transmission of protozoan parasites from wild to domestic carnivores (and vice versa) are known, and they are characterised by 

complex webs within and among their ecosystems. These include transmission via food containing parasite stages (e.g., Toxoplasma) and water 

(e.g., Giardia and Cryptosporidium) as well as through one or more arthropod vectors (e.g., Leishmania and tick-borne protozoa); therefore, 



determining the exact route of parasite transmission between or amongst wild and domestic host populations is challenging. However, knowledge of 

such transmission routes is pivotal to ensure that hazards are identified, thus leading to the determination of critical control options. In the following, 

we provide selected examples of diseases caused by protozoan and vector borne-bacterial infections circulating in wildlife and domestic carnivore 

populations, taking into account public health implications.   

 

Leishmania 

Leishmania (Kinetoplastida, Trypanosomatidae) are intracellular protozoa transmitted by sand flies to humans and animals (Schönian et al., 2010), 

currently distributed in at least 98 countries, and causing infections with a broad spectrum of symptoms and clinical signs, from asymptomatic to 

life threatening diseases (Alvar et al., 2012). The life cycle is complex and indirect, involving different morphological stages, in various vertrebate 

cell types and extraellularly in the insect hosts. The genus comprises many species, with the validity of some being still debated (Schönian et al., 

2010). However, in Europe only three species are reported. Leishmania infantum is the predominant species causing canine leishmaniosis (CanL), as 

well as the visceral (VL) and cutaneous (CL) forms in humans (Faucher et al., 2011). The anthroponotic species Leishmania tropica and Leishmania 

donovani cause occasionaly and focally human CL and VL in Greece and Cyprus, respectively (Mazeris et al., 2010). Less frequently, L. infantum 

may cause disease in cats (Pennisi et al., 2013), which may also eventually serve as a source of infection to sand fly vectors (Maroli et al., 2007).     

Generally, the dog is regarded as the main reservoir of L. infantum, due to the high susceptibility to the infection/disease and to the great ability to 

transmit the parasite to the arthropod vector, mostly by individuals with overt clinical disease and, less often, subclinically infected dogs (Dantas-

Torres et al., 2014). However, the recent occurrence of human outbreaks in Spain (Arce et al., 2013) that were not accompanied by an increase in 



prevalence of leishmaniosis in dogs or cats (Miró et al., 2014), led to speculations that other animals, such as hares (Lepus spp.) and wild rabbits 

(Oryctolagus cuniculus) are able to transmit Leishmania to sand flies (Molina et al., 2012; Jiménez et al., 2014) eventually acting as reservoirs. 

The role of wildlife in the epidemiology of leishmaniosis has been recently reviewed by Millán et al. (2014), who concluded that black rats (Rattus 

rattus) and hares could contribute to maintaining this parasite in a given area. The list of wild carnivores with confirmed cases of Leishmania 

infection in Europe includes red fox, wolf, polecat (Mustela putorius), stone marten (Martes foina), pine marten (Martes martes), European badger 

(Meles meles), European mink (Mustela lutreola), weasel (Mustella spp.), golden jackal (Canis aureus), Egyptian mongoose (Herpestes 

ichneumon), common genet (Genetta genetta), Iberian lynx and European wildcat, with red fox and wolf showing clinical signs of disease (see 

Millán et al., 2014). In most cases, infected wild carnivores were detected in areas where CanL is endemic, thus it is not known whether the control 

and prevention of the infection in dogs (Otranto and Dantas-Torres, 2013) could impact on the transmission of L. infantum to human disease in 

those areas, considering that wild carnivores could represent a permanent source of parasites to sand fly vectors. The advent of high-throughput 

molecular tools, such as next-generation sequencing, will contribute to a further understanding of the taxonomy of Leishmania and help answering 

questions surrounding the strains shared by and circulating amongst domestic and wild carnivores (Cantacessi et al., 2015). 

For detailed information on drivers for the spreading of CanL in Europe see the article by Cardoso et al. (2015).  

 

Giardia  

Giardia (Diplomonadida, Hexamitidae) is a binucleated, flagellated protozoan with a worldwide distribution, affecting a wide range of hosts and 

causing mostly self-limiting diarrea, less frequently, accompanied by chronic intestinal clinical signs (Ryan and Cacciò, 2013). The transmission is 

characterised by ingestion of Giardia cysts (Lloyd and Williams, 2014). After excystation, the trophozoyes attach to the small intestinal wall with 



the aid of a unique ventral adhesive disc (Thompson and Monis, 2011). The trophozoites remain extracellular, undergo multiple mitotic divisions, 

and encyst again. The taxonomy of Giardia is still under revision (Monis et al., 2009; Thompson and Monis, 2011). Giardia duodenalis (syn. 

Giardia intestinalis, Giardia lamblia) is a complex of genotypes infecting mammals and including at least eight distinct genetic groups or 

assemblages (from A to H) (Ryan and Cacciò, 2013). The host-specific assemblages C or D and F predominantly infect dogs and/or cats, 

respectively, and they are not considered to be zoonotic (Ryan and Cacciò, 2013). On the other hand, the human- and primate-specific assemblages 

A and B have been reported in dogs and cats, particularly under conditions of strict human-animal association in shared environments; humans have 

been indicated as the main source of animal infections (Ryan and Cacciò, 2013; Thompson, 2013). Giardia duodenalis is a common parasite of dogs 

and cats (Bowman and Lucio-Forster, 2010), being reported as the most prevalent pathogen in dog populations (Batchelor et al., 2008; Claerebout et 

al., 2009; Bryan et al., 2011). 

While Giardia occur in wildlife, especially in wild rodents and cervids, the majority of the infections are caused by human- or domestic animal-

specific assemblages, rather than by wildlife-specific genotypes (Thompson, 2013). This suggests that wildlife can act as amplifiers of Giardia 

assemblages specific to other hosts, as it has been documented in beavers (reviewed in Thompson, 2004). In Europe Giardia has been reported in 

20-46% of wolves from Poland (Bajer, 2008), in 4.6% of red foxes, 10% of wolves and 12.5% of golden jackals from Croatia (Beck et al., 2011), in 

4.8% of red foxes in Norway (Hamnes et al., 2007), in 5-15.7% of red foxes from Bosnia and Herzegovina (Hodžić et al., 2014). Only the canid 

genotypes C and D have been detected in wolves (Beck et al., 2011); however, given the small number of cysts recovered from faeces, a passive 

ingestion of cysts from a contaminated source could not be excluded. To the best of our knowledge, no information on Giardia infection in wild 

felids is currently available.  

  



Cryptosporidium  

Cryptosporidium (Eucoccidiorida, Cryptosporidiidae) share several epidemiological features with Giardia, being a waterborne pathogen causing 

self-limiting intestinal infection distributed worldwide; it infects a wide range of animals including humans, and is characterised by a direct 

transmission, with an environmentally resistant oocyst (infectious when shed by the host). Following ingestion, the oocyst releases four sporozoites 

that invade enterocytes in the small intestine, develop to merozoites and finally gametocytes resulting in oocysts formation (Lendner and 

Daugschies, 2014). The taxonomy of Cryptosporidium has been controversial; based on biological and genetic features, ~30 species are currently 

recognized as valid, of which at least 14 are potentially zoonotic (Šlapeta, 2013).  

Dogs and cats are infected by the host-specific species Cryptosporidium canis and Cryptosporidium felis, respectively, which can occasionally 

infect humans and are considered of minor and moderate public health significance (Lucio-Forster et al., 2010; Šlapeta, 2013). The reported 

prevalence of Cryptosporidium spp. in dogs in Europe has been 7.4% in Spain (Causapé et al., 1996), 1.1-3.3% in Italy (Rinaldi et al., 2008; 

Zanzani et al., 2014), 13% in kennel dogs of Poland (Bajer et al., 2011), 2.8% in shepherd and hunting dogs in Greece (Papazahariadou et al., 2007), 

8.7% in owned dogs of The Netherlands (Overgaauw et al., 2009), and 2% in dogs in rural areas of the Czech Republic (Dubná et al., 2007). If one 

repeats faecal sampling of dogs during the first year of age, the prevalence of infection can rise to up to 44.1% (Hamnes et al., 2007). The recorded 

prevalence in cats is more variable: 0% in colony cats (Spada et al., 2013) and in owned and free-roaming cats of Italy (Paoletti et al., 2011), 4.6% 

in household cats of The Netherlands (Overgaauw et al., 2009), 8.1% and 17.2% in the UK (Scorza et al., 2014). In affected cats, the prevalence can 

rise to up to 24.4% (UK; Paris et al., 2014). Studies on the occurrence of Cryptosporidium spp. in wild carnivores in Europe are scant, with high 

prevalence (38.7%) registered in red foxes from Slovakia (Ravaszova et al., 2012) and in wolves in Poland (37.5-55%) (Kloch et al., 2005; 

Paziewska et al., 2007). In the latter country, up to five genotypes were recorded to infect rodents (Paziewska et al., 2007). In Ireland, 5% of 



American minks (Mustela vison) were infected with Cryptosporidium andersoni (infecting cattle); both mink genotype (Stuart et al., 2013) and 

Cryptosporidium parvum were also detected in red foxes (Nagano et al., 2007). There is currently no evidence of wild carnivores infected by C. 

canis or C. felis. 

 

Toxoplasma  

Toxoplasma gondii (Eucoccidiorida, Sarcocystidae) is one of the most successful protozoan parasites, virtually infecting all cell types and an 

enormous range of mammals (including cetaceans and humans) and birds, and occupying a great variety, if not all, of habitats (Dubey, 2004; Smith, 

2009; Schlüter et al., 2014). This zoonotic agent has been estimated to affect one-third of the human population (Tenter et al., 2000). T. gondii is 

characterised by an indirect, complex life cycle involving cats and other felids as definitive hosts (sexual reproduction); warm-blooded animals act 

as intermediate hosts (asexual reproduction), as can cats (see White et al., 2014 for details). Cats shed non-sporulated resistant oocysts via the 

faeces, which contaminate water and feedstuffs. Following the ingestion of the sporulated oocysts by an intermediate host, the sporozoites transform 

to tachyzoites, which and undergo asexual reproduction. This pathogenicprocess is terminating with the formation of a tissue cyst cointining 

bradyzoites which can persist lifelong in the intermediate host. Warm-blooded animals can acquire Toxoplasma by ingesting sporulated oocysts in 

the environment, or tissue cysts (via predation), or from an infected mother (congenital or lactogenic transmission). T. gondii is a unique species 

comprising three main clonal lineages known as types I, II and III. In Europe, type II predominates and is transmitted mainly by the domestic cat to 

wild and domestic mammals and birds (Sibley et al., 2009).  

Although less than 1% of cats is estimated to shed oocysts worldwide (Hartmann et al., 2013), environmental contamination is ensured by the 

extreme resistance of the oocysts, which can remain viable for at least 1 year in soil at cold temperatures and from 2 to 4.5 years in marine and fresh 



water (VanWormer, 2013). This characteristic, coupled with the small infectious dose (even 1 oocyst is able to infect a mouse (Smith, 2009), the 

persistence over years in intermediate hosts  and the multiple routes of transmission explain the enormous burden of Toxoplasma infection and 

toxoplasmosis in humans and animals worldwide.  

In Europe, exposure to or infection with Toxoplasma has been detected in almost all the wild species of carnivores, i.e. wild cat (Millán et al., 

2009a; Hermann et al., 2013), Eurasian and Iberian lynx (Millán et al., 2009b; Jokelainen et al., 2013), red fox (Jakubek et al., 2012; Herrmann et 

al., 2013; Verin et al., 2013), wolf (Akerstedt et al., 2010; Lopes et al., 2011) and mustelids (Burrells et al., 2013; Chadwick et al., 2013), even at 

very high percentages (see also Sobrino et al., 2007; De Craeye et al., 2011; Dubey et al., 2014). 

The contribution of European wild felids to environmental contamination with oocysts and, in turn, to cat and dog (and other animals) infections is 

likely minimal, given their low density compared with that of owned or colony cats (with the exception of confined small populations, as the case of 

the wild cat in Majorca island, Spain, whose prevalence of infection was up to 85%) (Millán and Casanova, 2009). Other wildlife, including wild 

canids, contribute to maintaining Toxoplasma in the environment via tissue cysts, which represent a source of infection for predators and scavenger 

animals, and of transmission to the offspring. Many wild small animals, particularly rodents and birds, can also act as sources of infection for 

domestic cats and hunting dogs. While Toxoplasma infection in wildlife is mostly subclinical (Thompson, 2013), the spill-over of virulent strains 

from domestic to wild cats could threaten endangered species, such as the Iberian lynx in Spain. 

 

4. Tick-borne diseases 

Piroplams 



Piroplasms (Apicomplexa, Piroplasmida) are intra-erythrocytic protozoan parasites comprising several genera, of which Babesia, Theileria and 

Cytauxzoon affect wild and domestic carnivores. 

Babesia spp. have been traditionally divided into large and small Babesia based on the morphology of the parasite in the erythrocytes (Solano-

Gallego and Baneth, 2011).  Three species of so-called ‘large’ Babesia are known as dog pathogens: B. rossi, transmitted by Haemaphysalis 

elliptica, B. vogeli, transmitted by Rhipicephalus sanguineus sensu lato (the brown dog tick), and B. canis, transmitted by Dermacentor spp. ticks, 

with the latter two occurring in Europe (Irwin, 2009). Babesia vogeli is distributed (almost) worldwide and, in Europe, has been reported from areas 

where the brown dog tick is present, i.e. mainly in the countries bordering the Mediterranean sea (reviewed in Solano-Gallego et al., 2011). Because 

B. canis is transmitted by Dermacentor spp., mostly D. reticulatus, this parasite causes the most widespread canine babesiosis in Europe (Solano-

Gallego and Baneth, 2011). The parasite merozoites within the infected erythrocytes are ingested by ticks during blood feeding. In the tick gut, the 

parasites undergo sexual development, followed by sporogony. The parasites then travel to the tick salivary glands, from which the infectious 

sporozoites are transmitted to a susceptible canine host. Infection by B. vogeli is usually characterised by milder clinical signs; however, B. canis 

infections are frequently associated with haemolytic anemia, fever, lethargy, jaundice and vomiting, splenomegaly, and hematuria. Disease severity 

ranges from mild clinical infections to peracute hematolytic crises, which can result in shock and death. Chronically infected dogs act as carriers, 

even in the presence of high specific antibody concentrations and represent sources of infection for ticks. Babesia vogeli has not been reported in 

wild carnivores but B. canis was found in one fox in Portugal (Cardoso et al., 2013) and in two fatal cases of captive wolves in Hungary (Erdélyi et 

al., 2014), indicating a negligible role of these animals as reservoirs of “large” Babesia for dogs. 

The “small” forms of Babesia in dogs, considered for long time as B. gibsoni, have been sporadically reported in Europe (Solano-Gallego and 

Baneth, 2011; Yisaschar-Mekuzas et al., 2012), because the main tick vector (i.e., Haemaphysalis longicornis) is present only in Russia. However, 



the increasing use of molecular tools suggested that a higher number of "small" species of Babesia could circulate in dog populations. These 

protozoa are closely related to members of the genus Theileria (Beck et al., 2009) and have been named B. microti-like piroplasms, also known as 

“Spanish dog isolate”.  This species was later named as Theileria annae and has been reported in dogs of Spain, Croatia and Portugal (Farkas et al., 

2015), causing a severe disease. In wild carnivores T. annae is increasingly reported in red foxes, i.e. in 69.2% of foxes in Portugal (Cardoso et al., 

2013), 50% in Austria (Duscher et al., 2014), 46.4% in Germany (Najm et al., 2014a), 20% in Hungary (Farkas et al., 2015) and 0.98% in Italy 

(Zanet et al., 2014). These findings suggest that foxes could act as wild reservoirs of the protozoan. 

Babesiosis is less common in domestic cats and is due mainly to B. felis, which cause anemia and icterus in South Africa. In Europe other Babesia 

spp. are found in cats and B. vogeli is considered the most common agent circulating among cats in Portugal (Maia et al., 2014). In addition, B. 

canis and T. annae infections have been sporadically reported in cats from Spain and Portugal (Solano-Gallego and Baneth, 2011). The information 

on the occurrence of piroplasms in wild felids is even more scarce and only an intraerythrocytic small piroplasm was reported in the wild Iberian 

lynx of Spain (Luaces et al., 2005). 

 

Cytauxzoonosis of felids is a tick-borne disease caused by Cytauxzoon felis (Theileriidae), which recognizes in the vertebrate host an intra-

erythrocytic phase and schizonts in macrophages or monocytes (Millán et al, 2007). Cytauxzoon felis causes a severe and fatal disease of cats in the 

USA and the bobcat (Lynx rufus) is considered the natural host since it shows a persistent, subclinical infection (Millán et al, 2007). Recently, other 

species of Cytauxzoon infecting wild and domestic felids have been sporadically described. In Europe, a cat was found to be co-infected by 

Cytauxzoon sp. (0.8%) and H. canis in France (Criado-Fornelio et al., 2009). An endemic focus of cytauxzoonosis was for the first time described in 



Italy, with a prevalence of 23% in colony and owned cats (Carli et al., 2012). A Cytauxzoon-like piroplasm has also been described in the Iberian 

Lynx from Spain (Luaces et al., 2005; Millán et al., 2007, 2009b). 

 

Anaplasma 

Anaplasma spp. (Rickettsiales, Anaplasmataceae) are Gram-negative, obligate intracellular bacteria; two species infect dogs, namely Anaplasma 

phagocytophilum, the causative agent of granulocytic anaplasmosis, and A. platys, causing thrombocytic anaplasmosis. The latter has a worldwide 

distribution, with reports of infection from South and North America, Australia, Asia and Africa. Within Europe, the geographical distribution of A. 

platys is associated to that of R. sanguineus s.l., although the vectorial role of this tick species has never been ascertained (Dantas-Torres et al., 

2013). A. phagocytophilum occurs in the northern hemisphere, and it is transmitted by hard ticks of the Ixodes ricinus complex. The main vector of 

this pathogen is the taiga tick I. persulcatus in Asia, the sheep tick I. ricinus in Europe, the deer tick (Ix. pacificus) in eastern North America, and 

the Western black-legged tick (Ix. scapularis) in western North America. Besides these major vector tick species, A. phagocytophilum has been 

detected in a range of other Ixodes species, as well as some Dermacentor and Haemaphysalis species; however, the latter two genera are not 

considered of epidemiological importance (reviewed in Stuen et al., 2013). Anaplasma phagocytophilum has been detected in a range of European 

countries, with varying prevalence in ticks, ranging from zero to over 20% (23.6% in Denmark; Skarphedinsson et al., 2007; 24.4 % in Italy; Cinco 

et al., 1997; and 20.5 % in Spain; Ruiz-Fons et al., 2012), and up to 33% in Bulgaria (Christová et al., 2001). Infection rates in dog samples were 

recently reviewed (Stuen et al., 2013), and prevalence ranged between 0.5% in Poland (408 animals; Zygner et al., 2009) to 7.5 % in Italy (50 dogs; 

Alberti et al., 2005). Seroprevalence rates in dogs are generally higher, i.e. 8.76% in central Italy (Ebani et al., 2008), 9% in a mixed dog cohort 

from Spain, Portugal and Italy (René-Martellet et al., 2015), 10.6% in Romania and Hungary (Hamel et al., 2012), 13.5% in Portugal (Alves et al., 



2009), 14.8% in Italy (Ebani et al., 2013), and up to 40% in Albania (Hamel et al., 2009). Little information is available on natural infections of 

dogs with A. platys, probably as a consequence of the subclinical form of disease despite the detectable haematological changes and in serum 

enzyme activities (Warner and Harrus, 2013). Acute clinical forms may present with fever, weight loss and pale mucous membranes, and petechiae 

or echymoses that coincide with severe thrombocytopenia. Studies on the genetic heterogeneity of strains of A. phagocytophilum led to the 

identification of four distinct clusters, three of which are only found in ungulates (two only in wild ungulates) and one cluster including A. 

phagocytophilum sequences from dogs, cats, humans, horses, as well as ungulates; this finding provided evidence for (i) a diverse ecology and (ii) a 

range of virulence and host association of different A. phagocytophilum strains (Scharf et al., 2011; Stuen et al., 2013).    

In an investigation on tick-borne pathogens in foxes in Palermo and Ragusa provinces of Sicily, Italy, none of the 13 foxes molecularly tested were 

positive for A. platys (Torina et al., 2013). To our knowledge, no further information is available on A. platys infection in wild canids. This might be 

a consequence of the limited clinical relevance of this pathogen in European dogs, or of the fact that most studies investigating the prevalence of a 

panel of tick-borne diseases simply ignore this bacterium. Conversely, studies are available on the natural reservoir hosts for A. phagocytophilum 

(e.g., Víchová et al., 2014; Zele et al., 2012). The fact that transovarial transmission has never been demonstrated in any of the major Ixodes vectors 

is conducive to the existence of a vertebrate host reservoir. Several mammals are likely to act as host and reservoir (e.g., Keesing et al., 2012). 

Beside domestic ruminants (cattle, sheep, goats), horse and man, A. phagocytophilum has been detected in several small mammal species and nine 

species of wild ruminants in Europe alone (reviewed in Stuen et al., 2013). Foxes harbour A. phagocytophilum with prevalences of 16.6% in Italy 

(Ebani et al., 2011), 4% in the Czech Republic (Hulínká et al., 2004), 2.7% in Poland (Karbowiak et al., 2009), 2.8% in Switzerland (Pusterla et al., 

1999) were recorded, with no infected red foxes found in Slovakia (Víchová et al., 2014). A single report of acute granulocytic anaplasmosis was 

described in a captive wolf from Austria (Leschnik et al., 2012). As prevalence rates in cats (even stray cats) are rarely exciding 0.5% (Hamel et al., 



2012; Morgenthal et al., 2012), studies on wild felids are sparse. However, antibodies against A. phagocytophilum were detected in 4 out of 106 

Eurasian lynx from Sweden (Ryser-Degiorgis et al., 2005). 

Ehrlichia 

Ehrlichia canis (Rickettsiales, Anaplasmataceae) is the aetiological agent of canine monocytic ehrlichiosis (CME). Ehrlichia canis is transmitted by 

the brown dog tick R. sanguineus s.l., whose geographical distribution in the Neotropics overlaps that of the pathogen. In Switzerland, almost 1,000 

dogs were tested for antibodies against E. canis, and 2.2% were found positive; all of these came from south of the Alps or had travelled further 

south (Pusterla et al., 1998). In the same study, the authors failed to detect any positive red fox (out of 1,500 tested), thus lending support to the 

hypothesis that dog infections by E. canis had not been acquired in the same region (Pusterla et al., 1999). Like all members of the Rickettsiales, E. 

canis is an obligatory intracellular pathogen targeting blood monocytes and tissue macrophages. Prevalence of 2.9%, 8%, and 9.7% were detected in 

dogs from northern, central, and southern Italy, respectively (Solano-Gallego et al., 2006b), and 11% and 26% of dogs from Italy, Spain and 

Portugal (René-Martellet et al., 2015) by PCR and serology, respectively. Likewise, 17% of dogs were positive to E. canis by PCR, and 50% by 

serology (Hamel et al., 2009). Ehrlichia canis was found by PCR in 31% of 13 foxes in Sicily, Italy (Torina et al., 2013), but none of 150 red foxes 

from central Italy and of 1,550 foxes from Switzerland (see above) scored molecularly positive for E. canis (Pusterla et al., 1998; Ebani et al., 

2011).   

Ehrlichia canis has been detected in Ixodes canisuga larvae collected from red foxes in Hungary, suggesting a possible role of this wild carnivore in 

the epidemiology of CME (Hornok et al., 2013b).  

Besides CME, E. canis has been imputed as an agent of infection in cats. Following the initial description of a disease in a cat serologically positive 

in France (Charpentier and Groulade, 1986), reports of feline infections have originated in Southern Europe supported mainly by seroreactivity 



(Vita et al. 2005; Solano-Gallego et al., 2006a; Ayllón et al., 2012; Vilhena et al., 2013) and confirmed by PCR and sequencing in Portugal (Maia et 

al., 2014). However, since the agent has not been yet isolated from cats, the molecular evidence supporting E. canis-like infection must be 

interpreted with caution (Breitschwerdt et al., 2002). 

 

Hepatozoon  

Hepatozoon protozoa (Eucoccidiorida, Hepatozoidae) are apicomplexan parasites; three species are known to cause disease in dogs and cats (i.e., 

Hepatozoon canis, Hepatozoon americanum, and Hepatozoon felis) (Baneth, 2013; Baneth et al., 2013). H. canis is responsible for a variety of 

manifestations, ranging from subclinical infection to mild and moderate disease, characterised by weight loss, lethargy, anaemia and elevated 

temperature and, in severe cases, life-threatening cachexia. Clinical severity is directly associated with levels of parasitaemia in blood neutrophils 

(Krargenc et al., 2006; Marchetti et al., 2009; Sakuma et al., 2009). Sexual development and sporogony of Hepatozoon species occur in the tick 

host, while formation of merozoites (merogony) and gametes (gametogenesis) occurs in the intermediate vertebrate host. The tick vectors of H. felis 

are currently unknown, whereas H. canis is transmitted by R sanguineus s.l.. Consequently, the geographic distribution of H. canis overlaps that of 

R. sanguineus s.l.; however, reports of canine hepatozoonosis in non-endemic areas for this tick species (e.g. north of the Alps and the Balkans), 

indicate that other ixodid species may transmit H. canis (Dezdek et al., 2010; Farkas et al., 2014; Najm et al., 2014b). However, the detection of H. 

canis DNA in Dermacentor marginatus, D. reticulatus and Haemaphysalis concinna removed from dogs (Hornok et al., 2013a) needs confirmatory 

evidence. Indeed, experimentally infected I. ricinus were incapable of transmitting H. canis (Giannelli et al., 2013a). Despite the fact that 

Hepatozoon spp. are transmitted by haematophagous ectoparasites, transmission does not occur during the blood meal, since transmission relies on 

the ingestion of infected ticks (both adults or nymphs) by the vertebrate host (Giannelli et al., 2013b). Then, sporozoites are released from the 



sporocysts in the intestine during the digestion process; they penetrate the gut and invade mononuclear cells, which subsequently disseminate 

Hepatozoon spp. via the blood stream to various organs, where merogony takes place. The diagnosis of hepatozonosis relies on the detection of 

gamonts within the infected mononuclear cells by cytology or PCR on whole blood, bone marrow or buffy coat smears (Otranto et al., 2011; De 

Tommasi et al., 2014).  

Studies on the prevalence of H. canis infection in dogs from various countries in the Mediterranean area have been reviewed elsewhere (Baneth, 

2011). More recent reports are available from Albania (Hamel et al., 2009), France (Criado-Fornelio et al., 2009), Romania (Andersson et al., 2013), 

Hungary (Hamel et al., 2012) and Poland (Bajer et al., 2014). Conversely, for H. felis, reports are only available from field studies in Spain (Ortuño 

et al., 2008; Tabar et al., 2008) and Portugal (Vilhena et al., 2013; Maia et al., 2014). In Europe, H. canis has been reported in 23% of red foxes 

from Croatia (Dezdek et al., 2010), 13.4% from Italy (Gabrielli et al, 2010), 45.2% from Germany (Najm et al., 2014b), 40.6% and 75.6% from 

Portugal (Abranches et al., 1982; Cardoso et al., 2014), 8% from Hungary (Farkas et al., 2014), 58.3% from Austria (Duscher et al., 2014), and 28% 

from Spain (Gimenez et al., 2009). In addition, H. canis has been detected in one road kill golden jackal in Austria (Duscher et al., 2013) and in 

60% of 15 shot golden jackals from Hungary (Farkas et al., 2014).  

Despite the high prevalence of H. canis based on detection of the DNA of this pathogen, no Hepatozoon-like parasites have thus far been detected in 

foxes or jackals north of the Alps, in areas where no dog infections have been described over the last decade. This observation raises the question of 

whether the molecular identification of H. canis (based on one gene marker only) might be yielding false positive results. Indeed, a longer sequence 

of the 18s rRNA amplified from a parasite recovered from a jackal in Hungary clustered separately from the H. canis group (Farkas et al., 2014); 

however, in a Portuguese study, the parasite was detected in 23.4% out of 47 fox bone marrow samples by histopathology and 83.0% by PCR 

(Cardoso et al., 2014). 



Rickettsia 

Rickettsia spp. (Rickettsiales, Rickettsiaceae) consist of a growing number of Gram-negative, small, obligate intracellular alpha-proteobacteria, 

generally classified into three large groups. The spotted-fever group consists of more than 30 different species most of which are tick-borne, with 

some also transmitted by fleas or mites. The typhus group consists of two species (R. prowazekii, R. typhi), like the so-called ancestral group (R. 

canadensis and R. bellii). Rickettsia spp. have a worldwide distribution, with the geographical range of each pathogen overlapping that of their 

specific tick vector(s) (Parola et al., 2013). Thus far, a total of 16 Rickettsia spp. have been described in Europe, with six further species awaiting 

confirmation While R. felis is the only rickettsia in the spotted-fever group molecularly found in a range of flea and tick species, most rickettsiae 

rely on a unique tick genus for transmission to vertebrate hosts (Fournier, 2013). In Europe, the most important rickettsia species are R. conorii (two 

of the four subspecies) transmitted by R. sanguineus s.l., R. massiliae also transmitted by R. Sanguineus s.l., R. raoultii and R. slovaca transmitted 

by Dermacentor spp., R. helvetica and R. monacensis transmitted by I. ricinus, R. felis primarily transmitted by the cat flea, and R. sibirica subsp. 

mongolotimonae, transmitted by Hyalomma spp. Upon inoculation by the tick, rickettsiae invade endothelial cells for a first round of replication, 

which is followed by release of progeny bacteria, rickettsiemia and dissemination of the infection to new endothelial cells. As a result, an eschar 

forms at the site of tick bite, followed by disseminated vasculitis, which leads to a variety of symptoms, including fever. Although R. conorii and the 

Mediterranean spotted fever have been known for over 100 years, the role of dogs in the epidemiology of the disease has been investigated only 

recently. Seroprevalence in dogs around the Mediterranean ranges from from 81% in rural areas in Israel where human cases occur (Harrus et al., 

2007), to 56.4% (Solano-Gallego et al., 2006a) and 31%-53% in dogs from Spain (Ortuño et al., 2009), and 38.5% in dogs from southern Portugal 

(Alexandre et al., 2011). Some reports describe a seasonality of antibody titers, indicating a short lived immune response in dogs as the cause of 

frequent reinfections (Espejo et al., 1993); based on this observation, seroprevalence in dogs has been used as an epidemiological marker of R. 



conorii infections (Ortuño et al., 2009). Seroprevalence of R. typhi in dogs from north-eastern Spain was 9.7%, and 51.1% for R. felis (Nogueras et 

al., 2009). However serological results must be carefully interpreted since cross-reactivity among different Rickettsia species is well documentd 

(Wächter et al., 2015). Only one report described three acutely ill, febrile dogs from Sicily, Italy (Solano-Gallego et al., 2012). Nevertheless, even 

under experimental conditions, dogs do not generally display clinical signs; dogs, however, are competent reservoir hosts for R. conorii (Levin et 

al., 2011). R. sanguineus s.l. also acts as a reservoir this pathogen, as transovarial transmission occurs in 100% of naturally infected ticks 

(Socolovschi et al., 2012). Only a few attempts to detect Rickettsia spp. other than R. conorii in dogs have been made (Hamel et al., 2009). R. 

raoultii, R. helvetica, and R. monacensis were detected in ticks removed from dogs in Kiev, Ukraine (Hamel et al., 2013), while 16.2% of cats were 

seropositive for Rickettsia spp. in Portugal (Alves et al., 2009).  

Thus far, no Rickettsia has been detected in wild carnivores in Europe. Thirty-six foxes from the north-eastern part of Austria were negative for 

Rickettsia spp. (Duscher et al., 2014). However, since some Rickettsia spp. are transmitted by Ixodes species (which also feed on carnivores), the 

prevalence of these pathogens in wildlife is likely underestimated. 

 

5. Conclusions  

The combined experience of microbiologists, parasitologists, veterinarians, physicians, biologists and epidemiologists is the key for a better 

understanding of the ecology of diseases caused by protozoan parasites that wild carnivores may share with dogs and cats and, in some instances, 

with humans. Nonetheless, the flow of infection from wildlife to domestic animals or humans may vary according to the specific transmission 

dynamics of each agent. In addition, the sudden emergence of ‘new’ parasites in wildlife may greatly impact on their population dynamics and on 

conservation of endangered species (Thompson et al., 2010). Nonetheless, an increasing number of reports is becoming available on the 



transmission of protozoan pathogens from humans to animals outside Europe (reviewed by Messenger et al., 2014), e.g. Giardia and 

Cryptosporidium. Despite the increasing interest for the everchanging relationships between animals and humans, and between domestic and 

wildlife species (Messenger et al., 2014), the flow of human and domestic animal protozoan parasites to wild carnivores has long been neglected. 

The integration of novel molecular and bioinformatics technologies is likely to aid our understanding of the transmission routes of protozoan 

parasites (e.g. Hepatozoon spp.), as well as the role that animals and humans play as reservoirs (Viana et al., 2014). 

Clearly, defining the structures of protozoan parasite populations in domestic and wild hosts has important implications for studies of the pathogen 

transmission, immunogenicity and disease pathogenesis (Sibley et al., 2009). Further research is needed to investigate the genetic diversity of 

protozoans (and, for ectoparasites, their associated pathogens) that may be shared with wild and domestic felids and canids. These studies could 

provide information on the dynamics of parasite infections among wild and domestic populations and enable the development of more effective 

control strategies, which represent the core of conservation, veterinary and public health legislations. 
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Figure legend 
 

Figure 1 General potential drivers and interactions among wild, domestic carnivores and humans which might affect parasite circulation among 

host populations in different environments.  

 

Figure 2 



A wolf (Canis lupus) on the left followed by three wolf-dog hybrid cubs in the Maremma Regional Park, a mixed mediterranean forest located on 

the Thyrrenian coast of central Italy (courtesy of Lorenzo Rigacci).       

Table 1 Parasites infecting wild canids and felids in Europe and risk for humans (references in the text). 

Parasites Carnivore wildlife host Occurrence in Europe Zoonotic aspects 

    

Leishmania infantum Red fox (Vulpes vulpes), wolf (Canis lupus), golden jackal (Canis 

aureus) 

Iberian lynx (Linx pardinus), wild cat (Felis silvestris silvestris), 

and mustelids  

Portugal, Spain, Italy, 

France, Croatia, 

Greece, Cyprus 

Visceral, cutaneous and 

rarely mucocutaneous 

leishmaniosis 

Giardia duodenalis 

complex 

Wolf (Canis lupus), red fox (Vulpes vulpes), golden jackal (Canis 

aureus) 

Poland, Croatia, 

Norway, Bosnia and 

Erzegovina 

Gastrointestinal infection 

 

Cryptosporidium spp. Wolf (Canis lupus), red fox (Vulpes vulpes), american mink 

(Mustela vison) 

Slovak Republic, 

Poland, Ireland 

 

Gastrointestinal infection 

 

Toxoplasma gondii Wild cat (Felis s. silvestris), Eurasian lynx (Lynx lynx), Iberian lynx 

(Lynx pardinus), red fox (Vulpes vulpes), wolf (Canis lupus) and 

mustelids 

All over Europe Accidental hosts: acute 

infection (influenza-like) 

and congenital infection 



(abortion and fetal 

damages, ocular problems 

later on).  

Babesia canis Red fox (Vulpes vulpes), captive Wolf (Canis lupus) 

 

Portugal, Hungary Not reported 

B. microti-like/Theileria 

annae 

Red fox (Vulpes vulpes) Portugal, Italy, Austria, 

Germany, Hungary  

Rare human cases (B. 

microti-like organisms) 

Cytauxzoon spp. Iberian Lynx (Lynx pardinus) Spain Not reported 

Anaplasma 

phagocytophilum 

Red fox (Vulpes vulpes), Eurasian lynx (Lynx lynx) 

 

Italy, Czech Republic, 

Poland, Switzerland, 

Sweden 

HGA (Human 

granulocytic 

anaplasmosis)  

Ehrlichia canis Red fox (Vulpes vulpes) Italy  Not reported 

Hepatozoon canis Red fox (Vulpes vulpes), golden jackal (Canis aureus) Croatia, Germany, 

Portugal, Hungary, 

Austria, Spain 

Not reported 
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