
Julia Wolf

Arithmetic Structure in Sets of Integers

Synopsis

This dissertation deals with four problems concerning arithmetic structures in dense

sets of integers. In Chapter 1 we give an exposition of the state-of-the-art technique

due to Pintz, Steiger and Szemerédi which yields the best known upper bound on

the density of sets whose difference set is square-free. Inspired by the well-known

fact that Fourier analysis is not sufficient to detect progressions of length 4 or more,

we determine in Chapter 2 a necessary and sufficient condition on a system of linear

equations which guarantees the correct number of solutions in any uniform subset of

Fnp . This joint work with Tim Gowers constitutes the core of this thesis and relies

heavily on recent progress in so-called “quadratic Fourier analysis” pioneered by Gow-

ers, Green and Tao. In particular, we use a structure theorem for bounded functions

which provides a decomposition into a quadratically structured and a quadratically

uniform part. We also present an alternative decomposition leading to improved

bounds for the main result, and discuss the connections with recent results in ergodic

theory. Chapter 3 deals with improved upper and lower bounds on the minimum

number of monochromatic 4-term progressions in any two-colouring of ZN . Finally,

in Chapter 4 we investigate the structure of the set of popular differences of a subset

of ZN . More precisely, we establish that, given a subset of size linear in N , the set of

its popular differences does not always contain the complete difference set of another

large set.
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Chapter 0

Introduction and Motivation

0.1 Structures and Patterns

There is little doubt that the natural numbers were the first type of numbers to be

conceived by mankind, long before the more creative amongst us human beings came

up with the concept of rational and irrational numbers, the complex numbers and

the p-adics. In spite of this long history, many of the simplest questions we can ask

about these most primitive objects of mathematics remain unresolved to this day.

Consider one of the patterns that is most readily described, a 3-term arithmetic

progression written as a triple x, x + d, x + 2d. Given a large number N , how large

can a subset of the natural numbers 1 up to N be assuming it contains no non-trivial

3-term progressions? It seems intuitively obvious that the larger the set, the harder

it ought to be to avoid a given arithmetic pattern.

Roth [Rot53] was the first to provide a meaningful upper bound on the size of a set

without 3-term progressions, while Behrend [Beh46] gave an explicit construction of a

progression-free set of rather large density. Behrend’s example has not been surpassed

in the sixty years since its initial publication, and despite several recent improvements

on Roth’s upper bound there remains a significant gap in our understanding of this

problem.

An extension of Roth’s Theorem, namely the statement that any sufficiently dense

subset of the integers contains a k-term arithmetic progression for arbitrary fixed k,

was proved by Szemerédi [Sze75] in 1975. Both the search for better bounds in Roth’s

Theorem and the quest for effective control over long progressions have sparked the
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0.1 Structures and Patterns

development of many powerful new techniques in discrete harmonic analysis, some of

which find application in this dissertation.

Arithmetic combinatorics is the now commonly accepted term for the area of math-

ematics that deals with structural questions of precisely the kind we just described.

Both the type of structure under consideration (arithmetic progressions, square dif-

ferences, sum and difference sets) as well as the setting in which they occur (sets

of integers, graphs and hypergraphs, functions defined on the hypercube) may vary,

but the common theme throughout is what has often been termed a dichotomy be-

tween structure and randomness: either the object under consideration behaves in

a random-like way, in which case it is possible to count the desired arithmetic pat-

terns to a high degree of accuracy, or else the object was highly structured to start

with, which improves our situation from the outset. An important consequence of

this dichotomy is our ability to decompose any object (a set, graph or function)

into a structured and a random-looking component. For an extraordinarily insightful

introduction to this sphere of results the reader is referred to [Tao05].

This dissertation deals with four problems concerning a variety of different arithmetic

structures in dense sets of integers. In Chapter 1 we give an exposition of the state-

of-the-art technique due to Pintz, Steiger and Szemerédi which yields the best known

upper bound on the density of sets whose difference set is square-free. Inspired by

the well-known fact that Fourier analysis is not sufficient to detect progressions of

length 4 or more, we determine in Chapter 2 a necessary and sufficient condition on

a system of linear equations which guarantees the correct number of solutions in any

uniform subset of Fnp . This joint work with Tim Gowers constitutes the core of this

thesis and relies heavily on recent progress in so-called “quadratic Fourier analysis”

pioneered by Gowers, Green and Tao. In particular, we use a structure theorem for

bounded functions which provides a decomposition into a quadratically structured

and a quadratically uniform part. We also present an alternative decomposition

leading to improved bounds for the main result, and discuss the connections with

recent results in ergodic theory. Chapter 3 deals with improved upper and lower

bounds on the minimum number of monochromatic 4-term progressions in any two-

colouring of ZN . Finally, in Chapter 4 we investigate the structure of the set of

popular differences of a subset of ZN . More precisely, we establish that, given a

subset of size linear in N , the set of its popular differences does not always contain

the complete difference set of another large set.

The variability of these problems is reflected in the relatively wide range of techniques

needed to attack them. The next section gives a brief overview of the main results

and the methods we use, sets up the notation that will be used throughout and serves

2



0.2 Methods and Techniques

as a guide to the remaining chapters.

0.2 Methods and Techniques

We begin by setting up the basics of discrete Fourier analysis, which in one form or

another pervades every chapter of this thesis.

0.2.1 Fourier Analysis on Finite Abelian Groups

Many times a problem concerning arithmetic structures in sets of integers can be

transferred to a finite Abelian group G, which is advantageous from the point of view

of performing harmonic analysis. In particular, we shall be thinking of G as either

Fnp with p a small fixed prime and n tending to infinity, or the cyclic group ZN for N

a large prime.

For a character γ ∈ Ĝ, we define the Fourier transform f̂(γ) of f at the frequency γ

by the formula

f̂(γ) := Ex∈Gf(x)γ(−x).

We use the expectation operator Ex∈G to denote the sum over the elements of G

divided by the cardinality of G. Recall that when G = Fnp or ZN , the Pontryagin

dual Ĝ of G is isomorphic to G itself, and the characters γ(x) take the form ωt·x,

where ω denotes a pth or N th root of unity, respectively.

Amongst the very basic useful properties of the discrete Fourier transform are the

Fourier inversion formula

f(x) =
∑
γ∈ bG

f̂(γ)γ(x)

and Parseval’s Identity

Ex∈G|f(x)|2 =
∑
γ∈ bG
|f̂(γ)|2.

Another indispensable tool is that of discrete convolution, which for two functions f

and g : G→ C is defined as

f ∗ g(x) := Ey∈Gf(y)g(x− y).

It is easy to verify straight from the definitions that the Fourier transform of the

convolution of two functions equals the product of their individual Fourier transforms,

3



0.2 Methods and Techniques

in other words,

f̂ ∗ g(γ) = f̂(γ)ĝ(γ).

We shall use the norms ‖f‖ss := Ex∈G|f(x)|s on physical and ‖f̂‖ss :=
∑

γ∈ bG |f̂(γ)|s

on Fourier space. It should be clear from the context which one is being used. With

this notation, Hölder’s Inequality becomes

‖f1f2...fk‖s ≤ ‖f1‖s1‖f2‖s2 ...‖fk‖sk

whenever s−1 = s−1
1 + s−1

2 + ... + s−1
k . The Cauchy-Schwarz Inequality, our most

versatile weapon, takes the simple form

|Ex∈Gf(x)g(x)| ≤ ‖f‖2‖g‖2,

although we shall often use it on Fourier space with the appropriate normalisation.

A subset A ⊆ G will be referred to as uniform if all non-trivial Fourier coefficients of

its characteristic function are small. Small will usually mean o(1), which is a quantity

tending to 0 as the size of the group G tends to infinity.

It is then easy to see that if G has odd order, any uniform subset A ⊆ G of size

|A| = α|G| contains roughly the same number of 3-term progressions as a random

subset of G, where the elements are chosen independently at random with probability

α. Indeed, it follows by expanding the characteristic function A(x) of the set A in

terms of its Fourier coefficients that

Ex,d∈GA(x)A(x+ d)A(x+ 2d) =
∑
γ∈ bG

Â(γ)2Â(−2γ).

It is straightforward to compute that the trivial character γ0 makes a contribution of

α3, and the remaining sum can be bounded, using the Cauchy-Schwarz Inequality on

Fourier space, as

|
∑
γ 6=γ0

Â(γ)2Â(−2γ)| ≤ sup
γ 6=γ0

|Â(γ)|
∑
γ∈ bG
|Â(γ)|2.

The final sum is bounded by α as a consequence of Parseval’s Theorem, and thus for

supγ 6=γ0
|Â(t)| sufficiently small the contribution from the non-trivial Fourier modes

is negligible. We conclude that A really does contain α3|G|2 3-term progressions.

Having carefully set out Fourier analysis on a finite Abelian group, we shall use it in

Chapter 1 in the case G = ZN to give an exposition of a paper by Pintz, Steiger and

4



0.2 Methods and Techniques

Szemerédi [PSS88] improving the bound in Sárközy’s Theorem, which states that any

sufficiently dense subset of {1, . . . , N} contains two distinct elements whose difference

is a perfect square.

Theorem 1.2. Any subset A ⊆ {1, . . . , N} whose difference set is square-free has

density

α� (logN)−
1
4

log log log logN .

The original paper [PSS88] is rather difficult to digest, but the main idea is one

that deserves clarification, as it is an ingenious extension of the now classical energy

increment argument used in the proof of Szemerédi’s Theorem for progressions of

length 4, which may turn out to have other applications.

Similar to the case of 3-term progressions discussed above, the starting point is an

identity of the form

Ex,y∈ZN
A(x)A(y)S(x− y) =

∑
t∈ZN

|Â(t)|2Ŝ(t),

where S denotes the characteristic function of the set of squares. For subsets A ⊆
{1, . . . , N} containing no square differences, the left-hand side is equal to zero. It is

a well-known fact that the set of squares has small Fourier transform at frequencies

t ∈ ZN such that t/N is close to a rational with large denominator, and bounded

Fourier transform otherwise. Indeed, this observation gave rise to the development

of the circle method by Hardy and Littlewood in the 1920s.

0.2.2 Quadratic Fourier Analysis

It was first observed in [Gow98] (and in the context of ergodic theory, by Furstenberg

and Weiss [FW96]) that ordinary Fourier analysis is not sufficient to count progres-

sions of length 4 or longer. In particular, it was shown that there exist uniform sets

which contain significantly more than the expected number of 4-term progressions.

Gowers established that progressions of length k + 1 are governed by the so-called

Uk-norms, which he defined as follows.

Definition 2.2. Let G be a finite Abelian group. For any positive integer k ≥ 2 and

any function f : G→ C, define the Uk-norm by the formula

‖f‖2k

Uk := Ex,h1,...,hk∈G
∏

ω∈{0,1}k
C |ω|f(x+

∑
i

ωihi),

5



0.2 Methods and Techniques

where C |ω|f = f if
∑

i ωi is even and f otherwise.

It is not hard to see that ‖f‖4
U2 =

∑
t |f̂(t)|4, and therefore having small U2-norm

is equivalent to being uniform in the sense discussed above. If the characteristic

function of a set has small U3-norm, we say that the set is quadratically uniform.

Gowers showed, using nothing more than the Cauchy-Schwarz Inequality, that if a

set is uniform of order k in the sense that its characteristic function is small in Uk+1,

then it contains roughly the expected number of progressions of length k + 2.

Following their paper on long arithmetic progressions in the primes [GT04], Green

and Tao set out to investigate the behaviour of general linear systems in [GT06a].

They established a notion of complexity of a linear system which we shall refer to as

the Cauchy-Schwarz complexity and for whose precise definition we refer the reader

to the introduction of Chapter 2. Roughly speaking, Cauchy-Schwarz complexity

k describes precisely those linear systems for which the Cauchy-Schwarz Inequality

allows us to reduce to an estimate of the Uk+1-norm of the characteristic function of

the set. That is, Cauchy-Schwarz complexity k determines a sufficient condition for

a system to be governed by the Uk+1-norm.

The starting point of my joint investigations with Tim Gowers, which culminated

in the paper [GW07b], was the question of which types of linear systems require

which degree of uniformity. In other words, is Cauchy-Schwarz complexity k also a

necessary condition for the system to be governed by the Uk+1-norm? In particular,

are there systems of Cauchy-Schwarz complexity 2 which are in fact governed by the

U2-norm, that is, ordinary Fourier analysis? The surprising answer is yes, and in fact,

we can give a necessary and sufficient condition on a linear system of Cauchy-Schwarz

complexity 2 which guarantees that it is governed by the U2-norm.

In order to make this statement more precise, we make the following definition.

Definition 2.5. Let L be a system of m distinct linear forms L1, L2, . . . , Lm in d

variables. The true complexity of L is the smallest k with the following property.

For every ε > 0 there exists δ > 0 such that if G is any finite Abelian group and

f : G→ C is any function with ‖f‖∞ ≤ 1 and ‖f‖Uk+1 ≤ δ, then

∣∣∣Ex1,...,xd∈G

m∏
i=1

f(Li(x1, ..., xd))
∣∣∣ ≤ ε.

The main result of Chapter 2, and indeed this thesis, comes in two parts. The first

one says that if the linear system L on Fnp is such that the squares of its linear forms

6



0.2 Methods and Techniques

are linearly dependent over Fp, then we can find a uniform set A which contains

significantly more than the expected number of solutions to L.

Theorem 2.7. Let L = (L1, . . . , Lm) be a system of linear forms in d variables and

suppose that the quadratic forms LTi Li are linearly dependent over Fp. Then there

exists ε > 0 such that for every δ > 0 there exists n and a set A ⊂ Fnp with the

following two properties.

(i) A is δ-uniform of degree 1.

(ii) If x = (x1, . . . , xd) is chosen randomly from (Fnp )d, then the probability that Li(x)

is in A for every i is at least αm + ε, where α is the density of A.

In other words, the true complexity of L is at least 2.

The complementary part says that if the system L has Cauchy-Schwarz complexity

2 and is square-independent in the sense that the squares of the linear forms defining

L are linearly independent over Fp, then any uniform set A contains approximately

the expected number of solutions to L.

Corollary 2.20. For every ε > 0 there exists c > 0 with the following property.

Let A be a c-uniform subset of Fnp of density α. Let L = (L1, . . . , Lm) be a square-

independent system of linear forms in d variables, with Cauchy-Schwarz complexity

at most 2. Let x = (x1, . . . , xd) be a random element of (Fnp )d. Then the probability

that Li(x) ∈ A for every i differs from αm by at most ε.

More generally, we expect the following result to hold.

Conjecture 2.6. The true complexity of a system of linear forms L = (L1, . . . , Lm)

is equal to the smallest k such that the functions Lk+1
i are linearly independent.

Our main tool is what is known as a structure theorem for the U3-norm. It allows us to

decompose any bounded function into a quadratically structured and a quadratically

uniform part, that is, we can write f as f1 +f2, where f1 is a quadratically structured

object and f2 is small in U3. Of course, there is a trade-off between the degree of

structure we can achieve for f1 and the degree of uniformity we can obtain for f2. We

shall be using the following version in the setting Fnp due to Green and Tao [Gre05b].

Theorem 2.9. Let p be a fixed prime, let δ > 0 and suppose that n > n0(δ) is

sufficiently large. Given any function f : Fnp → [−1, 1], there exists a quadratic factor

(B1,B2) of complexity at most d = d(δ) together with a decomposition

f = f1 + f2,

7



0.2 Methods and Techniques

where

f1 := E(f |B2) and ‖f2‖U3 ≤ δ.

This structure theorem follows by iteration from the so-called U3-inverse theorem,

which was first given by Green and Tao in [GT05a] and has its roots in the work of

Gowers [Gow98]. Gowers showed that if a function on ZN has large U3-norm, then

it correlates with a quadratic phase along a long arithmetic progression. Observe

that a U2-inverse theorem is self-evident: It is easy to check that ‖f‖U2 ≤ ‖f‖1/2
∞ , so

that if a function has large U2-norm, then it automatically correlates with a linear

phase by definition of the Fourier transform. The analogous statement for U3, on the

other hand, is a deep result combining heavy combinatorial tools such as Freiman’s

Theorem and the Balog-Szemerédi-Gowers Theorem. Green and Tao added a sym-

metry argument to obtain correlation on a so-called Bohr set, which can be thought

of as more “global” than a long arithmetic progression. (These last remarks become

relevant only in the case ZN . In our model setting Fnp , correlation is always proved

on a low-codimensional subspace.)

Our use of Theorem 2.9 (or rather, a variant thereof) results in tower-type bounds

for Theorem 2.19. Using a decomposition into sums of quadratic phases rather than

an ergodic-type factor approach, we present an alternative proof of Theorem 2.19

resulting in improved bounds in Section 4.1. More precisely, we derive the following

dependence between the uniformity parameter c and the resulting error ε in the

average over the linear system.

Theorem 2.21. In Theorem 2.19, the uniformity parameter c can be taken to be a

tower of exponentials of height m+ 1 in the error ε−1.

By exploiting a more precise version of the inverse theorem the authors have been

able to improve this bound even further (to doubly exponential). This improvement

together with a proof of Theorem 2.19 in the setting ZN , where one is forced to

work with local quadratic phases (that is, phases defined on a Bohr set) from the

outset, is contained in the forthcoming paper [GW07a]. An extension to the case

k = 2 of Conjecture 2.6 for systems of Cauchy-Schwarz complexity 3, conditional on

a conjectured U4-inverse theorem, is in preparation.

Quadratic Fourier analysis also motivates some of the observations made in Chapter 3.

In particular, we use (and slightly modify) a recent construction of Gowers [Gow06b]

to exhibit a 2-colouring of ZN which contains significantly fewer than the expected

number of monochromatic 4-term progressions. This is the first non-trivial upper

bound for the minimum number of monochromatic 4-term progressions we are aware

of.
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Theorem 3.2. There exists a colouring of ZN with N a prime containing fewer than

1/16(1− 1/2025)N2 monochromatic 4-term progressions.

By a careful counting argument we also improve the best known lower bound due to

Cameron, Cilleruelo and Serra [CCS05].

Theorem 3.1. Any 2-colouring of ZN with N a prime contains at least 1/32N2

monochromatic four-term progresssions.

These results together with a discussion of the corresponding colouring problem in

graphs are due to appear in [Wol07].

0.2.3 Ergodic Theory

Motivated in part by a recent paper of Leibman [Lei07], which proves the main result

of Chapter 2 in the ergodic theoretic setting, we have included a brief discussion of

the connections between arithmetic combinatorics and ergodic theory in Section 2.5.

This is by no means the first time that the paths of these two seemingly unrelated

areas of mathematics have crossed. Following on from classical examples such as the

proof of Szemerédi’s Theorem by Furstenberg [Fur77], there is a plethora of recent

work that exemplifies the close connections between the two fields, notably by Green,

Tao and Ziegler. While some results from ergodic theory find direct applications

in number theory via the so-called Furstenberg Correspondence Principle, it is more

often the case that in fact a similar phenomenon occurs in both contexts.

For example, the question of which degree of uniformity characterises the behaviour

of a linear system corresponds to asking for the degree of the minimal characteristic

factor of the associated multiple ergodic average. In particular, saying that ordinary

Fourier analysis suffices to count solutions to a certain linear system corresponds to

saying that the so-called Kronecker factor is characteristic for the ergodic average

under consideration.

Although ergodic approaches suffer from the disadvantage that they do not give quan-

titative bounds and that they require an initial investment in acquiring the necessary

jargon, the elegance of the subject often leads the way to an intuitive understanding

of many structural questions that we are currently unable to answer quantitatively.

For example, one point of envy is that ergodic theorists are able to deal with gen-

eral polynomial (not just linear) systems of equations such as arithmetic progressions

with square common difference, without any significant leap in conceptual difficulty

9
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once the correct set-up is found. It would be of great interest to explore the parallels

between the two areas in more detail with the aim of establishing similar results in

arithmetic combinatorics.

0.2.4 Graphs and Hypergraphs

Because we shall touch upon the topic in Sections 2.3.4 and 3.4, we briefly mention

the connection with the concept of uniformity in graphs and hypergraphs.

The concept of quasirandomness was introduced by Thomason in the 1980s and

subsequently developed further through work by Chung, Graham and others. It

turns out that there is a set of equivalent conditions such that if a graph satisfies one

of them, it is guaranteed to contain the expected number of all small fixed subgraphs.

Note how this stands in stark contrast to the world of subsets of the integers which we

discussed at length in the preceding section: once we know a graph is quasirandom,

we obtain all fixed substructures for free.

The result in graph theory which is analogous to the structure theorem we discussed

above is the famous Szemerédi Regularity Lemma, which allows one to decompose any

dense graph into a bounded number of components, the bipartite graph between any

two of which behaves quasirandomly. This allows us to count almost any conceivable

structure inside such graphs, and it is therefore not surprising that the result has

found countless applications in graph theory.

The notion of quasirandomness was subsequently extended to hypergraphs by Chung

and Graham [CG90]. A more sophisticated version of quasirandomness in hyper-

graphs, together with the corresponding regularity decomposition, was developed

recently by Gowers [Gow06a] and independently by Rödl et al. [RS04],[NRS06].

0.2.5 Probabilistic Tools

Let G be a finite Abelian group of order N . Suppose that A is a subset of G of

cardinality linear in N , and define the set of γ-popular differences of A to be

Dγ(A) := {x ∈ G : A ∗ −A(x) ≥ γ},

where we have written A for the indicator function of the subset A. In other words,

DM(A) is the set of elements of G which can be written as a difference of elements

of A in at least γN different ways. Because we are considering subsets of G of size

linear in N , we shall take γ to be a small constant throughout the paper. Is it true

10
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that Dγ(A) always contains the complete difference set A0 − A0 for some large set

A0? Our aim in Chapter 4 is to show that this is not always so. More precisely, when

G = Fn2 and G = ZN with N a prime, we prove that there exists a set A of linear

size such that any set A0 whose difference set is contained in Dγ(A) has density o(1).

Here o(1) denotes a quantity tending to 0 as the order N of the group G tends to

infinity.

Theorem 4.1. Let G = Fn2 or G = ZN . Then there exists a set A ⊆ G of size greater

than N/3 with the property that any set A0 whose difference set is contained in the

set Dγ(A) of γ-popular differences of A has density o(1).

Theorem 4.1 is not only an interesting result in its own right, but it rules out certain

simpler approaches to counting sum-free sets in the spirit of Lev,  Luczak and Schoen

[L LS01] as well as Green and Ruzsa [GR05]. Theorem 4.1 is the main result of

[Wol05].

The construction we use, namely a so-called niveau set, was originally introduced

by Ruzsa [Ruz91] and has seen a number of interesting applications in arithmetic

combinatorics to date. The main tool in determining many of its properties is a

classical theorem from probability theory known as Esseen’s Inequality, which allows

us to compare two distribution functions provided we have enough information about

the higher moments of the corresponding random variables.

Theorem 4.12. Let F1, F2 be probability distribution functions with corresponding

characteristic functions φ1, φ2. Assume F ′1 exists and is pointwise bounded by a con-

stant V . Then

sup
x
|F1(x)− F2(x)| � V

T
+

∫ T

0

|φ1(t)− φ2(t)|
t

dt.

We also make use of measure concentration results in both the discrete cube Fn2
and the k-dimensional torus Tk in the form of Theorem 4.7 and Corollary 4.29,

respectively.
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Chapter 1

Sets Whose Difference Set is Square-Free

1.1 Introduction

The purpose of this chapter is to give an exposition of the best known bound on the

density of sets whose difference set contains no squares, which was first derived by

Pintz, Steiger and Szemerédi in [PSS88]. We show how their method can be brought

in line with the modern view of the energy increment strategy employed in problems

such as Szemerédi’s Theorem on arithmetic progressions, and explore the extent to

which the particularities of the method are specific to the set of squares.

Results about the types of arithmetic structures one is guaranteed to find inside dense

sets of integers have been around since the 1950s when Roth [Rot53] first proved that

any subset of the integers of positive upper density contains a 3-term arithmetic

progression. Szemerédi [Sze75], and independently Furstenberg [Fur77], extended

this result to longer progressions. Much of what drives arithmetic combinatorics

these days is closely related to the search for better bounds for this problem.

Another type of structure mathematicians have always been fascinated by is that of

perfect squares. Sárközy [Sár78a] proved the following beautiful theorem in 1978.

Theorem 1.1. Any subset A ⊆ [N ] whose difference set is square-free has density

α� (log logN)2/3

(logN)1/3
.

Throughout this chapter, we shall take the symbol “�” to mean “is bounded above

by a constant times”, and write [N ] for the set {1, 2, . . . , N}. We will be mainly

12



1.1 Introduction

concerned with outlining the main steps leading to a proof of the best known bound

for Theorem 1.1 by Pintz, Steiger and Szemerédi, which was first published in [PSS88]

with a subsequent extension of the result to kth powers in [BPPS94].

Theorem 1.2. Any subset A ⊆ [N ] whose difference set is square-free has density

α� (logN)−
1
4

log log log logN .

This bound is quite extraordinary in the sense that it is by far superior to any

bound known for the corresponding problem concerning arithmetic progressions. In

particular, the best known bound for the existence of 3-term arithmetic progressions

was very recently improved by Bourgain [Bou06] to

α� (log logN)2(logN)−2/3,

and we refer the reader to Green and Tao [GT06b] for the currently best known

bounds for progressions of length 4. For progressions of length k ≥ 5, the best known

bound is due to Gowers [Gow01] and of the form (log logN)−c, where the constant c

can be taken to be 2−2k+9
.

In fact, the bound in Theorem 1.2 is good enough to give us information about the

existence of arithmetic structure in the prime numbers, which have asymptotic density

(logN)−1. We cannot draw similar conclusions from the bounds on Roth’s Theorem,

although the existence of arithmetic progressions in the primes is now known by other

methods [GT04].

In [Sár78a] Sárközy conjectures that α � N−1/2+ε for any positive ε. He also shows

in Part II [Sár78b] of his impressive series of papers that αp1/2 > q(p)/2 for all

primes p ≡ 1 mod 4, where q(p) is the least positive quadratic non-residue of p, so

the conjecture would imply that q(p) = O(pε) for all p ≡ 1 mod 4, which is believed

to lie beyond the range of currently known techniques in analytic number theory.

Sárközy’s conjecture should also be compared with the best known construction for

this problem which is not surprisingly due to Ruzsa [Ruz84]. He constructs a subset

of [N ] of density

α ≥ N−1/2(1−log 7/ log 65),

where the exponent is approximately equal to −0.266923.

The statement of Theorem 1.1 can, by very similar methods, be extended to poly-

nomial structures other than the squares, more precisely, any polynomial that has

an integer root. For example, it is true for x2 − 1 (for a simple argument in the
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1.1 Introduction

spirit of [Gre02], see [Wol03]) but not x2 + 1: since there are no squares congruent to

2 mod 3, the set of all multiples of 3 provides a counterexample. The general poly-

nomial result is known as the Bergelson-Leibmann Theorem, and was first proved by

ergodic theoretic methods [BL96]. Although these are extremely natural and elegant,

no quantitative bounds can be obtained.

Let us also briefly mention that one can ask whether the set of differences of a dense

set necessarily contains an element which is a prime minus 1. Again, the answer is

yes and the interested reader is referred to [Sár78c]. Observe that this problem is of

no interest for differences of the form p− k with k 6= 1: If k is prime, the difference

set always contains 0 which is of the form p − k. If k is composite, the set of all

multiples of k is very dense and contains no differences of the form p−k. If k = 0, we

can take the multiples of any composite number to give us a dense counterexample.

The methods of [PSS88] were recently applied to the shifted (by 1) primes by Lucier

[Luc07], but the bounds are superseded by recent work of Ruzsa and Sanders [RS07].

We shall briefly discuss these matters in the final section.

Finally, let us remark that the corresponding problem for squares in sumsets was

settled in [LOS82] by graph theoretic methods. In this case it is possible to find a

set of density 11/32 whose sumset is square-free.

Let us first recall the comparatively simple iteration argument used by Green [Gre02]

to tackle the question of square-free difference sets, which yields the bound α �
(log logN)−1/11. It uses a standard density increment strategy: At the ith step of

this iteration argument, we have a set Ai of density αi whose difference set is square-

free. The latter property ensures the existence of a large Fourier coefficient, which

in turn can be used to establish in a standard way that Ai has increased density

on a long arithmetic progression with square common difference. After rescaling, we

obtain a set Ai+1 of increased density αi+1 ≥ αi(1+α12
i ), whose difference set is again

square-free. It is not difficult to see that if α were� (log logN)−1/11 we could repeat

this process until the density has increased beyond 1, which is clearly nonsense.

It has been shown in several instances that it can be more efficient to use a collection

of large Fourier coefficients rather than a single one. This is what we shall refer to as

the energy increment strategy, which originated in the work of Szemerédi [Sze90] in

the late 80s and was also deployed around the same time by [HB87].

In order to obtain the radical improvement stated in Theorem 1.2, Pintz, Steiger

and Szemerédi use such an energy increment argument, but in addition they employ

a further iteration sitting inside the one just described, which aims to build up a

very large collection of large Fourier coefficients. By the nature of the set of squares,
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we should be able to locate these large Fourier coefficients near rationals with small

denominator. Either we can increase the number of intervals supporting a large

Fourier coefficient at each step of the iteration significantly, and we end up with large

total L2-mass (which gives a good bound on α by Parseval’s Theorem), or we fail to

do so at some point. Using combinatorial properties of the rational numbers with

small denominators, the latter case implies a lower bound on the L2-mass of Fourier

coefficients near rationals with a specific (although unspecified) denominator, and

as usual this allows us to pass down to a subprogression on which A has increased

density.

Let us conclude the introduction by setting up our notation. Throughout the proof,

we may assume that α ≥ c (logN)−c
′ log log log logN for suitable constants c and c′. We

shall use the letter A to denote the characteristic function of the set A, and for ease

of notation we set L = logN, l = log logN and logiN = log log ... logN , where the

logarithm is always taken to base e. We also put k = e2l and K = el
2
. Fourier

analysis will be carried out on ZN by defining the Fourier coefficient of a set A ⊆ ZN

at t ∈ ẐN via the formula

Â(t) := Ex∈ZN
A(x)e(tx/N).

Also, write I(a/q, η) for the interval of length η around a/q, and let

Fi(q, η) :=
∑

t
N
∈

S
I( a

q
,η)

a≤q, (a,q)=1

|Âi(t)|2,

that is, Fi(q, η) is the sum of squares of Fourier coefficients near rationals with de-

nominator q. Parseval’s Identity takes the form

N∑
t=1

|Â(t)|2 = α,

which implies that Fi(q, η) as defined above is bounded by α.

Finally, let us briefly outline the structure of the remainder of this chapter. Section

1.2 is devoted to describing the (by now pretty standard) energy increment iteration,

which already gives some improvement over previously known bounds. Sections 1.3

and 3.2 contain the details of the inner iteration, while in Section 1.5 we will be

concerned with working out bounds. After that we will be in a position to discuss

the limitations of the method in Section 1.6. An appendix is included for readers

who are not familiar with the intricacies of traditional circle method estimates for
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the squares, although we do take some prior exposure to Fourier analysis for granted.

1.2 The Outer Iteration

At the step ith of the outer iteration we are given a set Ai ⊆ [Ni] of density αi

whose difference set is square-free. From now on we fix i, and dropping the index

we write A = Ai, α = αi, N = Ni and F (q, η) = Fi(q, η). Because we shall be

working in ZN and do not want to count square-difference that only exist modulo N ,

we set N1 := N/2 and σ−1 :=
√
N1 and consider differences between the sets A and

A ∩ [N1]. This is permissible because without loss of generality we may assume that

A has density at least α/2 on [N1]. However, for convenience we shall not explicitly

make the distinction between A and A ∩ [N1] in this exposition.

We let the function S be defined by S(x) = 2
√
x/N1T (x), where T denotes the

characteristic function of the set of squares less than N1. Working with a weighted

version S of the squares as defined above makes them uniformly distributed on [N1],

a process which does not harm the validity of (1.1) but improves the major arc esti-

mates for Ŝ(t) significantly. This is discussed in more detail together with all Fourier

estimates for S in Appendix A. Note that this strategy corresponds to replacing the

characteristic function with the von-Mangoldt function in the corresponding problem

for the primes, which is a completely standard procedure in analytic number theory.

Following the lines of the usual argument in the proof of Roth’s Theorem, we can

now regard A and T as subsets of ZN and write

Ex∈ZN
A ∗ −A(x)S(x) = 0. (1.1)

Taking the Fourier transform and subtracting the trivial mode implies that∑
t6=0

|Â(t)|2|Ŝ(t)| � α2σ. (1.2)

We shall see that Equation (1.2) implies that Â(t) takes rather large values rather

frequently. By Hölder’s Inequality, we can neglect those values of t for which |Â(t)|
or |Â(t)| takes values at most α/K provided that α� K−2/5. Indeed, we have

∑
these t

|Â(t)|2|Ŝ(t)| � sup
these t

|Â(t)|1/3
(

N∑
t=1

|Â(t)|2
)5/6( N∑

t=1

|Ŝ(t)|6
)1/6

.
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The l6-estimate for Ŝ(t), which we have postponed to Lemma A.5, implies that this

expression is bounded above by a small constant times α2σ. By a similar argument we

can also neglect those values of t for which |Ŝ(t)| is small. This is the case whenever

t belongs to a set that is traditionally known as the minor arcs. It consists of those

values of t for which t/N is close to a rational with large denominator, where “large”

is determined by a parameter R defined in Appendix A. Indeed, for t/N close to

rationals with denominator greater than R, Lemma A.4 implies that∑
these t

|Â(t)|2|Ŝ(t)| � ασ√
K/L

.

This quantity is negligible provided that α � (K/L)−1/2. It follows that we need

only consider those t for which t/N ∈ I(a/q, (qQ)−1) for q ≤ R, that is, the values of

t on the major arcs.

Next we want to perform dyadic averaging over the remaining ranges of parameters

to obtain a set of intervals on which A has large energy. For this purpose, we define

for 1 ≤ b ≤ r ≤ R with (b, r) = 1, the A-special major arcs as

τ(b, r) =

{
t 6= 0 :

t

N
∈ I

(
b

r
,

1

rQ

)
, |Â(t)| ≥ α

K

}
,

where Q = N/K throughout. It turns out that we can bound the l1-Fourier mass of

the squares on the set τ(b, r) because we can usefully estimate the Fourier coefficients

of S near rationals with small denominator.

Lemma 1.3. Let 1 ≤ b ≤ r ≤ R with (b, r) = 1. Then we have

∑
t∈τ(b,r)

|Ŝ(t)| � l3σ√
r

with τ(b, r) defined as above.

Proof. This is another instance where we have to delve into the exponential sum

estimates in the appendix. More precisely, we use Lemma A.1 and Lemma A.2 to

obtain

N
∑

t∈τ(b,r)

|Ŝ(t)| �
∑

t∈τ(b,r)

(√
log r√
r
|FS(t/N − b/r)|+

√
r log r(1 + |t/N − b/r|N)

)

�
√

log r√
r

σ−1 logK +
√
r log rK2,
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where by our choice of K the first term is bounded by l3σ/
√
r and the second term

is clearly negligible.

It follows easily from Lemma 1.3 and the preceding discussion that

α2σ �
∑
r≤R

∑
b≤r

(b,r)=1

∑
t∈τ(b,r)

|Â(t)|2|Ŝ(t)| �
∑
r≤R

∑
b≤r

(b,r)=1

sup
t∈τ(b,r)

|Â(t)|2 l
3σ√
r
.

Next we shall partition the set of relevant fractions b/r into sets of the form

LX,V =

{
b

r
: X < r ≤ 2X,

α

V
< sup

t∈τ(b,r)

|Â(t)| ≤ 2α

V

}

for integers X ≤ R, V ≤ K. There are logR logK of these sets. Hence there exist

parameters X ≤ R, V ≤ K such that

α2σ

logR logK
� |LX,V |

α2

V 2

l3σ√
X
,

which in turn immediately implies that

|LX,V | �
V 2
√
X

l3 logR logK
.

By definition, we also have the upper bound |LX,V | ≤ α−2XV 2 supX<r≤2X F (r, (rQ)−1),

and it follows easily from Parseval’s Identity that |LX,V | ≤ α−1V 2. Putting every-

thing together, we obtain a lower bound on the energy of A concentrated on Fourier

modes near rationals with denominator of magnitude around X of the form

sup
X<r≤2X

F

(
r,

1

rQ

)
� α3

(l3 logR logK)2
. (1.3)

By our choice of the parameters R and K, we will always have logR = O(l2) = logK,

so that the denominator in (1.3) is always O(l14). This bound will be useful in

conjunction with the following standard lemma, which says that we can obtain a

density increment of size about F (q, (qQ)−1) on a progression of common difference

q2 and length at least Q/(qL).

Lemma 1.4. Let q > 1, N ′ = b(ηq2L)−1c, and let A ⊂ [N ] have density α. Then we

can find a set A′ ⊂ [N ′] of density

α′ ≥ α +
F (q, η)

8α
,
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with the additional property that if A− A was square-free, so is A′ − A′.

Proof. We shall show that under the assumption that A has large Fourier mass near

rationals with denominator q, A has large intersection with some translate of an

arithmetic progression of common difference q2 which is not too short. Let this

progression be P = {q2k : 1 ≤ k ≤ |P |} with |P | = N ′, and consider

J :=
N∑
t=1

|Â ∗ P (t)|2 = Ex|A ∗ P (x)|2 = Ex

(
|A ∩ (P + x)|

N

)2

, (1.4)

which is the quantity we are trying to find a lower bound for. Now if t/N ∈ I(a/q, η),

then q2kt/N = aqk +O(ηq2|P |), so that e(q2kt/N) = 1 +O(L−1) and hence

|P̂ (t)| = 1

N

∣∣∣∣∣∣
|P |∑
k=1

e(q2kt/N)

∣∣∣∣∣∣ =
|P |
N

(
1 +O

(
L−1

))
.

It follows from this estimate and Equation (1.4) that

J =
N∑
t=1

|Â(t)|2|P̂ (t)|2 ≥ α2

(
|P |
N

)2 (
1 +O

(
L−1

))(
1 +

F (q, η)

α2

)
.

We therefore find that there exists an x such that

|A ∩ (P + x)| ≥ |P |
(
α +

F (q, η)

8α

)
,

and the lemma follows as stated.

In the proof above we deliberately glossed over the fact that we need to ensure that

P is not just a progression modulo N . This is easily achieved by discarding those

translates that would split into two progression upon unravelling ZN , a procedure

which results in a minor and ultimately insignificant loss in the density increment.

The argument so far shows that we can get a density increase of F/8α with F �
α3l−14 at each step, and the length of the progression to which we scale after d steps is

at least N/(KRL)d = Ω(N/Lcld), which means we can iterate d� L/l2 times. This

in turn gives rise to the condition L/l2 � α−1 logα−1l14, which results in a bound on

the density of A of the form

α� l17

L
. (1.5)

For the benefit of readers familiar with the paper [PSS88], we point out that the
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iteration argument presented in this section was originally phrased as a maximal

counterexample. However, we believe that our presentation helps to align the part of

the argument we have discussed so far with what follows. Using a further iteration,

which we are about to describe in more detail, we shall be able to raise the exponent

of the denominator in the bound (1.5) from 1 to a function of N tending very slowly

to infinity.

1.3 The Inner Iteration

At the mth step of what we from now on call the inner iteration, we inherit a set of

large Fourier coefficients near rationals with denominator bounded by Xm, which we

shall denote by

P(m)
Xm,Vm

=

{
u :

u

N
∈ I

(
a

q
,
m

Q

)
, 1 ≤ a ≤ q ≤ Xm, (a, q) = 1, |Â(u)| ≥ α

Vm

}
.

Here Xm and Vm are the parameters maximizing the expression |PX,V |V −2. Since

trivially sup1≤X,1≤V |PX,V |V −2 ≥ 1, we may assume that Vm ≤ Xm. Let R(m)
Xm,Vm

be

the corresponding set of centres of intervals a/q.

For fixed u ∈ P(m), write Au(x) = e(ux/N)A(x). We now consider the expression

Ex∈ZN
A ∗ −Au(x)S(x),

which is again zero under the assumption that A−A is square-free. Observe that this

is the point where we make definite use of that fact that A−A contains no squares,

as opposed to relatively few. It follows that for fixed u ∈ P(m), we have

∑
t6=0

|Â(t)Â(u+ t)Ŝ(t)| � α2σ

Vm
.

Just as before, by a simple use of Hölder’s Inequality we can neglect values of t for

which one of Â(t), Â(u+ t) or Ŝ(t) is small in modulus. Indeed, if t is such that |Â(t)|
or |Â(u+ t)| is at most α/K, then the contribution from these t is bounded by

sup
these t

|Â(t)|1/3
(

N∑
t=1

|Â(t)|2
)5/6( N∑

t=1

|Ŝ(t)|6
)1/6

� α2σ

α5/6K1/3
,

which is negligible compared with α2σV −1
m provided that α� (XmK

−1/3)6/5. On the

other hand, minor and major arc estimates for Ŝ(t) imply that for t to be taken into

20



1.3 The Inner Iteration

account, t/N needs to be close to a rational with small denominator r < Xm+1/Xm.

For if t were near a rational with denominator between Xm+1/Xm = X3
mX1 and K,

which corresponds to the fairly major arcs, Lemma A.3 yields∑
these t

|Â(t)Â(u+ t)Ŝ(t)| ≤ sup
Xm+1/Xm<r≤K

ασ

r1/3
≤ ασ

XmX
1/3
1

,

which is bounded above by α2σV −1
m provided that α� X

−1/3
1 . Similarly, for t on the

minor arcs, that is, for denominators r satisfying K ≤ r ≤ Q, we have by Lemma

A.4 that ∑
these t

|Â(t)Â(u+ t)Ŝ(t)| ≤ ασ√
K/L

,

which is bounded above by α2σV −1
m provided that α� Xm(K/L)−1/2.

We again perform dyadic averaging over the remaining ranges of parameters in order

to obtain a set of intervals which supports a large proportion of the total energy of

A. To this end, for u ∈ P(m), 1 ≤ b ≤ r ≤ Q and (b, r) = 1, we define the A-special

major arcs with respect to u as

τ(b, r, u) =

{
t 6= 0 :

t

N
∈ I

(
b

r
,

1

rQ

)
, |Â(t)| ≥ α

K
, |Â(u+ t)| ≥ α

K

}
.

With this definition it follows by averaging that for each u ∈ P(m),

α2σ

Vm
�

∑
r≤Xm+1

Xm

∑
b≤r

(b,r)=1

∑
t∈τ(b,r,u)

|Â(t)Â(u+ t)Ŝ(t)|

�
∑

r≤Xm+1
Xm

∑
b≤r

(b,r)=1

sup
t∈τ(b,r,u)

|Â(t)| sup
t∈τ(b,r,u)

|Â(u+ t)|
∑

t∈τ(b,r,u)

|Ŝ(t)|

But as before, Lemma 1.3 implies that
∑

t∈τ(b,r,u) |Ŝ(t)| � l3σr−1/2. Hence for each

u ∈ P(m), we can choose integers Vu,Wu and Xu satisfying 1 ≤ Vu ≤ K, 1 ≤ Wu ≤
K, 1 ≤ Xu ≤ Xm+1/Xm such that the set Lu given by{
b

r
: Xu < r ≤ 2Xu,

α

Vu
< sup

t∈τ(b,r,u)

|Â (t) | ≤ 2α

Vu
,
α

Wu

< sup
t∈τ(b,r,u)

|Â (u+ t) | ≤ 2α

Wu

}

has cardinality at least

VuWu

√
Xu

l3(logK)2Vm log (Xm+1/Xm)
.
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1.3 The Inner Iteration

When splitting the sum into dyadic ranges, the number of choices for Vu,Wu, Xu is

bounded above by (logK)2 log (Xm+1/Xm). Hence we can make the same choice of

Vu,Wu, Xu for at least |P(m)|/(logK)2 log (Xm+1/Xm) different u ∈ P(m). Let us

denote the set of such u by P̃(m), using parameters Ṽ , W̃ , X̃.

Observe that for each u ∈ P̃(m), we have found an element w ∈ τ(b, r, u) with the

property that |Â(u+w)| ≥ α/W̃ . We would like to count the number of distinct u+w

in order to determine whether we can achieve a significant increase in total L2-mass

by adding all points of the form u+w to the set of u where we had already located a

large Fourier coefficient. For the sake of clarity, the technical details of this counting

argument as well as the rough explanation for why we should expect it to work have

been postponed until the next section. Writing F (m) := sup eX<r≤2 eX F (r, (rQ)−1) and

τ := supq≤Xm
τ(q), we find by Lemma 1.5 below that there are at least

α2

F (m)

|P̃(m)
Xm,Vm

|
τ 4X̃ log X̃Ṽ 2

inf |Lu|2

different u + w with the property that (u + w)/N ∈ I(c/s, (m + 1)/Q) and α/W̃ <

|Â(u+ w)| ≤ 2α/W̃ , a quantity bounded below by

α2W̃ 2

F (m)

|P̃(m)
Xm,Vm

|
V 2
m

(
τ 4(logK)4+2(log (Xm+1/Xm))2+1+1(l3)2

)−1
.

This allows us to define the set P(m+1)
Xm+1,Vm+1

, where we choose parameters Vm+1 := W̃

and Xm+1 := X4
mX1. (We briefly remark that before passing to the next step of

the iteration, we may need to reset them so they correspond to the maximum of the

expression |PX,V |V −2). Thus we have just shown that

|P(m+1)
Xm+1,Vm+1

|
V 2
m+1

≥
|P(m)

Xm,Vm
|

V 2
m

α2η

F (m)
,

where we have set the parameter η to be

η := (τ 4(logK)6(log (Xm+1/Xm))4l6)−1.

When choosing our main parameters X1 and M in Section 1.5 we shall ensure that

η = Ω(L−1/2) always. Now we are faced with two possible cases.

• Suppose α2η/F (m) ≥ L1/2 for all m ≤M , then by Parseval we have α ≤ L−M/2,

and we will have completed the proof without leaving the inner iteration, simply

by building up a collection of Fourier coefficients with large total Fourier energy.
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1.4 Combinatorics of Rational Numbers

• Otherwise, there exists m ≤ M such that α2η/F (m) ≤ L1/2, i.e. F (m) ≥
α2η/L1/2. This lower bound on F (m) enables us to pass down to a subpro-

gression on which A has increased density.

Note that the density increase in the second case is significantly greater than the one

we obtained in Section 1.2.

1.4 Combinatorics of Rational Numbers

This section is dedicated to an explanation of why one would expect to be able

to locate a significant number of large Fourier modes u + w, where u was already

large, under the assumption that both u/N and w/N lie near rationals with small

denominator. Looking back on our work in the preceding section and recalling that

that u/N is assumed to lie in the interval I(a/q,m/Q), we had established that for

all u ∈ P̃ there is a large set Lu defined by{
b

r
: Xu < r ≤ 2Xu,

α

Vu
< sup

t∈τ(b,r,u)

|Â (t) | ≤ 2α

Vu
,
α

Wu

< sup
t∈τ(b,r,u)

|Â (u+ t) | ≤ 2α

Wu

}
.

Since Xm ≤ X4m

1 , the intervals I(a
q
, m
Q

) are disjoint whenever m ≤ Q/X4m

1 (which

is yet another condition we have to satisfy when choosing our parameters in Section

1.5), so that counting the number of distinct u + w is equivalent to counting the

number of distinct a/q + b/r.

In lowest terms, a
q

+ b
r

can be expressed as a gigantic fraction of the form

(ar′ + bq′)/f

(r′q′d)/f
,

where d = (q, r), q = dq′, r = dr′ and f = (ar′ + bq′, d). We immediately note that

(q′, r′) = 1 and (f, q′) = (f, r′) = 1.

For fixed a/q we associate a pair {d, f} with every b/r ∈ La/q = Lu, where u is

the unique element in P̃ associated with a/q. For each a/q, there exists a pair

{d, f} associated with lots of b/r ∈ La/q, say all b/r ∈ L̃a/q. By averaging, we

find that |L̃a/q| ≥ τ(q)−2|La/q|. Similarly, for each q, there exists {d, f} associated

with lots of a/q, say all a/q with a ∈ Ã(q). Again, by averaging, we must have

|Ã(q)| ≥ τ(q)−2|A(q)|, while
∑

q≤Xm
|A(q)| = P̃ .
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1.4 Combinatorics of Rational Numbers

Now fix c/s, and count the number of solutions to the equation

c

s
=
a

q
+
b

r
(1.6)

with a/q ∈ Q̃ = {a/q : q ≤ X̃, a ∈ Ã(q)} and b/rinL̃a/q. We write s = q′r′e and

then choose f , which immediately determines d, q, r. It is clear that a mod q′ is

determined by ar′ + bq′ = cf . Denote the number of distinct a mod f by r(q). By

the Chinese Remainder Theorem, we deduce that there are r(q)q/q′f choices for a,

which in turn automatically determines b. We conclude that the number of solutions

to (1.6) is at most
∑

q=q′r′e

∑
f≤d≤r≤ eX r(efq′)d/f , so we have an upper bound on the

number of solutions provided we have an upper bound for r(q).

Fix q, and the associated popular pair {d, f}. The crucial observation is that L̃a1/q

and L̃a2/q are disjoint if a1 6≡ a2 mod f . Then

r(q) inf |L̃a/q| ≤ |
⋃

a∈ eA(q)

L̃a/q| ≤
∣∣∣∣{ br :

b

r
∈ ∪La/q

}∣∣∣∣ ≤ ∑
r≤R,d|r

∣∣∣∣{b :
b

r
∈ ∪La/q

}∣∣∣∣ ≤ X̃

d
Br,

where Br is the number of distinct numerators b such that b/r ∈ ∪La/q, so that the

number of solutions to (1.6) is bounded above by X̃ log X̃Br/ inf |L̃a/q|. It follows

immediately that the number of distinct a/q + b/r with a/q ∈ R̃(m) and b/r ∈ La/q
is bounded below by∑

q≤ eX∑a∈ eA(q) |L̃a/q|
# solutions to (1.6)

�
∑
q≤Xm

|Ã(q)| inf |L̃a/q|

(
X̃ log X̃Br

inf |L̃a/q|

)−1

�
inf |L̃a/q|2|R̃(m)|
τ 4X̃ log X̃Br

.

But Br and the L2-mass of Fourier coefficients near rationals with denominator r are

by sheer definition related via the inequality F (m)(r, (rQ)−1) ≥ αBr/Ṽ
2. Thus we

have proved the following statement about the additive behaviour of rational numbers

with small denominators.

Lemma 1.5. Let R̃(m) be the set of centres of intervals corresponding to P̃(m), with

parameters Ṽ , W̃ , X̃ as specified in the preceding section. For u ∈ P̃, let the set Lu
be defined by{

b

r
: Xu < r ≤ 2Xu,

α

Vu
< sup

t∈τ(b,r,u)

|Â(t)| ≤ 2α

Vu
,
α

Wu

< sup
t∈τ(b,r,u)

|Â(u+ t)| ≤ 2α

Wu

}
.
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1.5 Working Out Bounds

Then the number of distinct a/q + b/r with a/q ∈ R̃(m) and b/r ∈ La/q is at least

|R̃(m)|
Ṽ 2

α2

F (m)

inf |La/q|2

τ 4X̃ log X̃
,

where F (m) := sup eX<r≤2 eX F (m)(r, (rQ)−1) and τ := supq≤Xm
τ(q).

Let us summarize what this section has achieved: We were trying to assess whether

we could increase the L2-mass of the large Fourier coefficients, and for this purpose

we counted how many of them there are. That is, we counted the number of distinct

new intervals with centres a/q + b/r. The obvious way of doing this is to divide the

number of all relevant fractions of the form a/q + b/r, that is
∑

appropriate a,q |La/q|,
by the number of solutions to c/s = a/q + b/r with a/q ∈ R(m), b/r ∈ La/q. The

inequality F (m)(r, (rQ)−1) ≥ αBr/Ṽ
2 immediately gives us the desired connection

between the L2-mass near denominator r and the number of distinct numerators b

such that b/r ∈ ∪La/q, Br. The upshot is that either we have lots of these for some

r, that is, B := supr Br is large, in which case we have (by definition) large L2-mass

near a specific denominator and we can scale. If not, that is if B is small, then by the

above counting argument we obtain lots of new intervals so that the total L2 mass

increases significantly.

1.5 Working Out Bounds

To make the combinatorial counting arguments in the preceding section work, we

need η = Ω(L−1/2) as remarked above, that is, we require that

τ := sup
q≤Xm

τ(q)� Lc and log
Xm+1

Xm

≤ l2 (1.7)

for some small constant c. It is a well-known number-theoretic fact that

log τ(Xm)� logXm

log logXm

� 4m logX1

m+ log logX1

≤ cl,

and we therefore choose

M :=
1

2
log4N as well as X1 := L(log3 N)1/4
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1.6 Remarks

in order to satisfy both conditions in (1.7). We can then check that the remaining

conditions are satisfied. It was necessary to have

α� X
−1/3
1 , α� Xm√

K/L
and α�

(
Xm

K1/3

)6/5

to ensure that we could neglect the contributions from the fairly major and the minor

arcs, and m ≤ Q/X4m

1 to force the intervals I(a/q,m/Q) to be disjoint. We have

made no attempts to optimize the constants involved here.

1.6 Remarks

The method which we have discussed was extended to cover the case of kth powers in

[BPPS94]. Only minor modifications to the argument are necessary, and these occur

almost exclusively through the Hardy-Littlewood type estimates in the appendix.

It should also be clear that similar progress can be made for polynomial differences

such as x2−1. Very recently, Lucier [Luc07] applied the method to the shifted primes

to obtain a bound of (
(log3N)4

log logN

)log5 N

on the density of the set which avoids the set of all p = 1, p a prime. However, it

should be noted that the currently best-known bound for this problem obtained in

[RS07] is of the form

exp(−c 4
√

logN)

and does not use this technique. Indeed, at least assuming GRH it is relatively

straightforward to obtain a density increment of size a constant times α in the case

of primes, which cannot be improved by the technique described in this chapter. (For

comparison, the straightforward density increase in the case of squares is of size α2,

and can be improved to α using combinatorics of rationals.)

Given the fact that the application to the primes is slightly bogus, it would be very

interesting to find a genuinely new and useful application of this method.

Acknowledgements. The author would like to thank Endre Szemerédi for helpful

comments and discussions.

26



Chapter 2

The True Complexity of a Linear System

2.1 Introduction

This chapter includes joint work with Tim Gowers. Section 2.3 has been submitted

as [GW07b]. Section 4.1 is a precursor to the forthcoming paper [GW07a].

In this chapter we look for conditions that are sufficient to guarantee that a subset A

of a finite Abelian group G contains the “expected” number of linear configurations of

a given type. The simplest non-trivial result of this kind is the well-known fact that

if G has odd order, A has density α and all Fourier coefficients of the characteristic

function of A are significantly smaller than α (except the one at zero, which equals

α), then A contains approximately α3|G|2 triples of the form (a, a+d, a+2d). This is

“expected” in the sense that a random set A of density α has approximately α3|G|2

such triples with very high probability.

More generally, it was shown in [Gow01] (in the case G = ZN for N prime, but the

proof generalizes) that a set A of density α has about αk|G|2 arithmetic progressions

of length k if the characteristic function of A is almost as small as it can be, given its

density, in a norm that is now called the Uk−1-norm. Green and Tao [GT06a] have

found the most general statement that follows from the technique used to prove this

result, introducing a notion that they call the complexity of a system of linear forms.

They prove that if A has almost minimal Uk+1-norm then it has the expected number

of linear configurations of a given type, provided that the associated complexity is at

most k. The main result of this chapter is that the converse is not true: in particular

there are certain systems of complexity 2 that are controlled by the U2-norm, whereas

the result of Green and Tao requires the stronger hypothesis of U3-control.
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2.1 Introduction

We say that a system of m linear forms L1, . . . , Lm in d variables has true complexity

k if k is the smallest positive integer such that, for any set A of density α and almost

minimal Uk+1-norm, the number of d-tuples (x1, . . . , xd) such that Li(x1, . . . , xd) ∈ A
for every i is approximately αm|G|d. We conjecture that the true complexity k is

the smallest positive integer s for which the functions Ls+1
1 , . . . , Ls+1

m are linearly

independent.

Using the “quadratic Fourier analysis” of Green and Tao we prove this conjecture

in Section 2.3 in the case where the complexity of the system (in Green and Tao’s

sense) is 2, s = 1 and G is the group Fnp for some fixed odd prime p. Section 4.1

is devoted to obtaining improved bounds for this problem. Finally, a closely related

result in ergodic theory was recently proved independently by Leibman [Lei07]. We

discuss the connections between his result and ours in Section 2.5.

Let us now turn to a more detailed description of the problem. Suppose A is a subset

of a finite Abelian group G and let α = |A|/|G| be the density of A. We say that A

is uniform if it has one of several equivalent properties, each of which says in its own

way that A “behaves like a random set”. For example, writing A for the characteristic

function of the set A, we can define the convolution A ∗ A by the formula

A ∗ A(x) = Ey+z=xA(y)A(z),

where the expectation is with respect to the uniform distribution over all pairs (y, z) ∈
G2 such that y+ z = x; one of the properties in question is that the variance of A∗A
should be small. As we have already remarked above, if this is the case and G has

odd order, then it is easy to show that A contains approximately α3|G|2 triples of the

form (x, x+ d, x+ 2d). Indeed, these triples are the solutions (x, y, z) of the equation

x+ z = 2y, and

Ex+z=2yA(x)A(y)A(z) = EyA ∗ A(2y)A(y).

The mean of the function A ∗A is α2, so if the variance is sufficiently small, then the

right-hand side is approximately α2EyA(y) = α3. This is a probabilistic way of saying

that the number of solutions of x + z = 2y inside A is approximately α3|G|2, which

is what we would expect if A was a random set with elements chosen independently

with probability α.

An easy generalization of the above argument shows that, given any linear equation

in G of the form

c1x1 + c2x2 + · · ·+ cmxm = 0,

for suitable fixed coefficients c1, c2, ..., cm, the number of solutions in A is approxi-
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2.1 Introduction

mately αm|G|m−1. Roughly speaking, you can choose x3, . . . , xm in A however you

like, and if A is sufficiently uniform then the number of ways of choosing x1 and x2

to lie in A and satisfy the equation will almost always be roughly α2|G|. By “suit-

able” we mean that there are certain divisibility problems that must be avoided. For

example, if G is the group Fn2 , x+z = 2y and x belongs to A, then z belongs to A for

the trivial reason that it equals x. Throughout this chapter we shall consider groups

of the form Fnp for some prime p and assume that p is large enough for such problems

not to arise.

When k ≥ 4, uniformity of a set A does not guarantee that A contains approxi-

mately αk|G|2 arithmetic progressions of length k. For instance, there are examples

of uniform subsets of ZN that contain significantly more, or even significantly fewer

than, the expected number of four-term progressions [Gow06b]. It was established

in [Gow98] that the appropriate measure for dealing with progressions of length 4 is

a property known as quadratic uniformity : sets which are sufficiently quadratically

uniform contain roughly the correct number of four-term progressions. We shall give

precise definitions of higher-degree uniformity in the next section, but for now let us

simply state the result, proved in [Gow01] in the case G = ZN , that if A is uniform of

degree k−2, then A contains approximately αk|G|2 arithmetic progressions of length

k. Moreover, if A is uniform of degree j for some j < k − 2, then it does not follow

that A must contain approximately αk|G|2 arithmetic progressions of length k.

The discrepancy between k and k− 2 seems slightly unnatural until one reformulates

the statement in terms of solutions of equations. We can define an arithmetic pro-

gression of length k either as a k-tuple of the form (x, x + d, . . . , x + (k − 1)d) or as

a solution (x1, x2, . . . , xk) to the system of k − 2 equations xi − 2xi+1 + xi+2 = 0,

i = 1, 2, . . . , k − 2. In all the examples we have so far discussed, we need uniformity

of degree precisely k in order to guarantee approximately the expected number of

solutions of a system of k equations. It is tempting to ask whether this is true in

general.

However, a moment’s reflection shows that it is not. For example, the system of

equations x1 − 2x2 + x3 = 0, x4 − 2x5 + x6 = 0 has about α6|G|4 solutions in a

uniform set, since the two equations are completely independent. This shows that a

sensible conjecture must take account of how the equations interact with each other.

A more interesting example is the system that consists of the
(
m
3

)
equations xij+xjk =

xik in the
(
m
2

)
unknowns xij, 1 ≤ i < j ≤ m. These equations are not all independent,

but one can of course choose an independent subsystem of them. It is not hard to

see that there is a bijection between solutions of this system of equations where every
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2.1 Introduction

xij belongs to A and m-tuples (x1, . . . , xm) such that xj − xi ∈ A whenever i < j.

Now one can form a bipartite graph with two vertex sets equal to G by joining x

to y if and only if y − x ∈ A. It is well-known that if A is uniform, then this

bipartite graph is quasirandom. The statement that every xj − xi belongs to A can

be reformulated to say that (x1, . . . , xm) form a clique in an m-partite graph that

is built out of quasirandom pieces derived from A. A “counting lemma” from the

theory of quasirandom graphs then implies easily that the number of such cliques

is approximately α(m
2 )|G|m. So uniformity of degree 1 is sufficient to guarantee that

there are about the expected number of solutions to this fairly complicated system

of equations.

In their recent work on configurations in the primes, Green and Tao [GT06a] analysed

the arguments used to prove the above results, which are fairly simple and based on

repeated use of the Cauchy-Schwarz inequality. They isolated the property that a

system of equations, or equivalently a system of linear forms, must have in order

for degree-k uniformity to be sufficient for these arguments to work, and called this

property complexity. Since in this chapter we shall have more than one notion of

complexity, we shall sometimes call their notion Cauchy-Schwarz complexity, or CS-

complexity for short.

Definition 2.1. Let L = (L1, ..., Lm) be a system of m linear forms in d variables.

For 1 ≤ i ≤ m and s ≥ 0, we say that L is s-complex at i if one can partition the

m−1 forms {Lj : j 6= i} into s+1 classes such that Li does not lie in the linear span

of any of these classes. The Cauchy-Schwarz complexity (or CS-complexity) of L is

defined to be the least s for which the system is s-complex at i for all 1 ≤ i ≤ m, or

∞ if no such s exists.

To get a feel for this definition, let us calculate the complexity of the system L of k

linear forms x, x + y, . . . , x + (k − 1)y. Any two distinct forms x + iy and x + jy in

L contain x and y in their linear span. Therefore, whichever form L we take from L,

if we wish to partition the others into classes that do not contain L in their linear

span, then we must take these classes to be singletons. Since we are partitioning k−1

forms, this tells us that the minimal s is k − 2. So L has complexity k − 2.

Next, let us briefly look at the system L of
(
m
2

)
forms xi − xj (1 ≤ i < j ≤ m) that

we discussed above. If L is the form xi− xj then no other form L′ ∈ L involves both

xi and xj, so we can partition L\{L} into the forms that involve xi (which therefore

do not involve xj) and the forms that do not involve xi. Since neither class includes

L in its linear span, the complexity of L is at most 1. When m ≥ 3 it can also be

shown to be at least 1.
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It follows from Green and Tao’s result that if A is sufficiently uniform and L =

(L1, ..., Lm) has complexity at most 1, then A contains approximately the expected

number of m-tuples of the form (L1(x1, . . . , xd), . . . , Lm(x1, . . . xd)). (If the forms are

defined over Zd, then this number is αm|G|d.)

Notice that this statement adequately explains all the cases we have so far looked at

in which uniformity implies the correct number of solutions. It is thus quite natural

to conjecture that Green and Tao’s result is tight. That is, one might guess that

if the complexity L is greater than 1 then there exist sets A that do not have the

correct number of images of L.

But is this correct? Let us look at what is known in the other direction, by discussing

briefly the simplest example that shows that uniform sets in ZN do not have to contain

the correct number of arithmetic progressions of length 4. (Here we are taking N to

be some large prime.) Roughly speaking, one takes A to be the set of all x such that

x2 mod N is small. Then one makes use of the identity

x2 − 3(x+ d)2 + 3(x+ 2d)2 − (x+ 3d)2 = 0

to prove that if x, x+ d and x+ 2d all lie in A, then x+ 3d is rather likely to lie in A

as well, because (x+ 3d)2 is a small linear combination of small elements of ZN . This

means that A has “too many” progressions of length 4. (Later, we shall generalize

this example and make it more precise.)

The above argument uses the fact that the squares of the linear forms x, x+d, x+2d

and x + 3d are linearly dependent. Later, we shall show that if L is any system of

linear forms whose squares are linearly dependent, then essentially the same example

works for L. This gives us a sort of “upper bound” for the set of systems L that

have approximately the right number of images in any uniform set: because of the

above example, we know that the squares of the forms in any such system L must be

linearly independent.

And now we arrive at the observation that motivated this project: the “upper bound”

just described does not coincide with the “lower bound” of Green and Tao. That is,

there are systems of linear forms of complexity greater than 1 with squares that are

linearly independent. One of the simplest examples is the system (x, y, z, x+y+z, x+

2y − z, x+ 2z − y). Another, which is translation-invariant (in the sense that if you

add a constant to everything in the configuration, you obtain another configuration

of the same type), is (x, x + y, x + z, x + y + z, x + y − z, x + z − y). Both these

examples have complexity 2, but it is not hard to produce examples with arbitrarily

high complexity.
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In the light of such examples, we are faced with an obvious question: which systems of

linear forms have roughly the expected number of images in any sufficiently uniform

set? We conjecture that the correct answer is given by the “upper bound”—that is,

that square independence is not just necessary but also sufficient. When the group G

is Fnp for a fixed prime p, we prove this conjecture for systems of complexity 2. This

includes the two examples above, and shows that having Cauchy-Schwarz complexity

at most 1 is not a necessary condition, even if it is a natural sufficient one.

However, the proof is much deeper for systems of complexity 2. Although the state-

ment of our result is completely linear, we use “quadratic Fourier analysis”, recently

developed by Green and Tao [GT05a], to prove it, and it seems that we are forced

to do so. Thus, it appears that Cauchy-Schwarz complexity captures the systems for

which an easy argument exists, while square independence captures the systems for

which the result is true.

Very recently, and independently, Leibman [Lei07] described a similar phenomenon

in the ergodic-theoretic context. In Section 2.5 of this chapter we shall briefly outline

how his results relate to ours.

So far, we have concentrated on uniform sets. However, in the next section we shall

define higher-degree uniformity and formulate a more complete conjecture, which

generalizes the above discussion in a straightforward way. Green and Tao proved that

a system of Cauchy-Schwarz complexity k has approximately the correct number of

images in a set A if A is sufficiently uniform of degree k + 1. Once again, it seems

that this is not the whole story, and that the following stronger statement should be

true: a linear system L = (L1, . . . , Lm) has the right number of images in any set A

that is sufficiently uniform of degree k if and only if the functions Lk+1
i are linearly

independent. The reason we have not proved this is that the natural generalization of

our existing argument would have to use an as yet undeveloped general “polynomial

Fourier analysis”, which is known only in the quadratic case. However, it is easy to

see how our arguments would generalize if such techniques were available, which is

compelling evidence that our conjecture (which we will state formally in a moment)

is true.

2.2 Uniformity Norms and True Complexity

As promised, let us now give a precise definition of higher-degree uniformity. We

begin by defining a sequence of norms, known as uniformity norms.
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Definition 2.2. Let G be a finite Abelian group. For any positive integer k ≥ 2 and

any function f : G→ C, define the Uk-norm by the formula

‖f‖2k

Uk := Ex,h1,...,hk∈G
∏

ω∈{0,1}k
C |ω|f(x+ ω · h),

where ω ·h is shorthand for
∑

i ωihi, and C |ω|f = f if
∑

i ωi is even and f otherwise.

These norms were first defined in [Gow01] (in the case where G is the group ZN). Of

particular interest in this chapter will be the U2-norm and the U3-norm. The former

can be described in many different ways. The definition above expresses it as the

fourth root of the average of

f(x)f(x+ h)f(x+ h′)f(x+ h+ h′)

over all triples (x, h, h′). It is not hard to show that this average is equal to ‖f ∗ f‖2
2,

and also to ‖f̂‖4
4. (These identities depend on appropriate normalizations—we follow

the most commonly used convention of taking averages in physical space and sums

in frequency space.)

We shall call a function f c-uniform if ‖f‖U2 ≤ c and c-quadratically uniform if

‖f‖U3 ≤ c. We shall often speak more loosely and describe a function as uniform

if it is c-uniform for some small c, and similarly for higher-degree uniformity. We

remark here that if j ≤ k then ‖f‖Uj ≤ ‖f‖Uk , so c-uniformity of degree k implies

c-uniformity of all lower degrees.

If A is a subset of an Abelian group G and the density of A is α, then we say that

A is uniform of degree k if it is close in the Uk-norm to the constant function α.

More precisely, we define the balanced function f(x) = A(x) − α and say that A is

c-uniform of degree k if ‖f‖Uk ≤ c.

The following theorem is essentially Theorem 3.2 in [Gow01]. (More precisely, in that

paper the theorem was proved for the group ZN , but the proof is the same.)

Theorem 2.3. Let k ≥ 2 and let G be a finite Abelian group such that there are no

non-trivial solutions to the equation jx = 0 for any 1 ≤ j < k. Let c > 0 and let

f1, f2, . . . , fk be functions from G to C such that ‖fi‖∞ ≤ 1 for every i. Then∣∣∣Ex,y∈Gf1(x)f2(x+ y) . . . fk(x+ (k − 1)y)
∣∣∣ ≤ ‖fk‖Uk−1 .

It follows easily from this result that if A is a set of density α and A is c-uniform

for sufficiently small c, then A contains approximately αk|G|2 arithmetic progressions
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2.2 Uniformity Norms and True Complexity

of length k. Very briefly, the reason for this is that we are trying to show that the

average

Ex,yA(x)A(x+ y) . . . A(x+ (k − 1)y)

is close to αk. Now this average is equal to

Ex,yA(x)A(x+ y) . . . f(x+ (k − 1)y) + αEx,yA(x)A(x+ y) . . . A(x+ (k − 2)y).

The first of these terms is at most c, by Theorem 2.3, and the second can be handled

inductively. The bound we obtain in this way is c(1 + α + · · ·+ αk−1) ≤ kc.

We can now state formally Green and Tao’s generalization in terms of CS-complexity

in the case where G is the group ZN , which is implicit in [GT06a].

Theorem 2.4. Let N be a prime, let f1, . . . , fm be functions from ZN to [−1, 1], and

let L be a linear system of CS-complexity k consisting of m forms in d variables.

Then, provided N ≥ k,

∣∣∣Ex1,...,xd∈ZN

m∏
i=1

f(Li(x1, ..., xd))
∣∣∣ ≤ min

i
‖fi‖Uk+1 .

Just as in the case of arithmetic progressions, it follows easily that if A is a subset

of G of density α, then the probability, given a random element (x1, ..., xd) ∈ Gd,

that all the m images Li(x1, ..., xd) lie in A is approximately αm. (The inductive

argument depends on the obvious fact that if L has complexity at most k then so

does any subsystem of L.)

Green and Tao proved the above theorem because they were investigating which linear

configurations can be found in the primes. For that purpose, they in fact needed a

more sophisticated “relative” version of the statement. Since the proof of the version

we need here is simpler (partly because we are discussing systems of complexity at

most 2, but much more because we do not need a relative version), we give it for

the convenience of the reader. This is another result where the proof is essentially

the same for all Abelian groups, give or take questions of small torsion. Since we

need it in the case G = Fnp , we shall just prove it for this group. The reader should

bear in mind that for this group, one should understand linear independence of a

system of forms as independence over Fp when one is defining complexity (and also

square-independence).

The first step of Green and Tao’s proof was to put an arbitrary linear system into

a convenient form for proofs. Given a linear form L in d variables x1, . . . , xd, let

us define the support of L to be the set of j such that L depends on xj. That is,
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2.2 Uniformity Norms and True Complexity

if L(x1, . . . , xd) = λ1x1 + · · · + λdxd then the support of L is {i : λi 6= 0}. Let

L = (L1, . . . , Lm) be a system of linear forms and let the support of Li be σi for each

i. Then L is said to be in s-normal form if it is possible to find subsets τi ⊂ σi for

each i with the following two properties.

(i) Each τi has cardinality at most s+ 1.

(ii) If i 6= j then τi is not a subset of σj.

If a linear system L is in s-normal form, then it has complexity at most s. Indeed, if

τi has r elements {i1, . . . , ir}, then one can partition the remaining forms into r sets

L1, . . . ,Lr in such a way that no form in Lh uses the variable xih . Since Li does use

the variable xih it is not in the linear span of Lh.

The converse of this statement is false, but Green and Tao prove that every linear

system of complexity s can be “extended” to one that is in s-normal form. This part

of the proof is the same in both contexts, so we do not reproduce it. All we need to

know here is that if we prove Theorem 2.4 for systems in normal form then we have

it for general systems.

Just to illustrate this, consider the obvious system associated with arithmetic pro-

gressions of length 4, namely (x, x+ y, x+ 2y, x+ 3y). This is not in 2-normal form,

because the support of the first form is contained in the supports of the other three.

However, the system (−3x − 2y − z,−2x − y + w,−x + z + 2w, y + 2z + 3w) is in

2-normal form (since the supports have size 3 and are distinct) and its images are

also uniformly distributed over all arithmetic progressions of length 4 (if we include

degenerate ones).

Now let us prove Theorem 2.4 when k = 2. Without loss of generality we may assume

that L is in 2-normal form at 1, and that it is the only form using all three variables

x1 = x, x2 = y and x3 = z. We use the shorthand h(x, y, z) = f(L1(x1, x2, ..., xd)),

and denote by b(x, y) any general bounded function in two variables x and y. It is

then possible to rewrite

Ex1,...,xd∈Fn
p

m∏
i=1

f(Li(x1, ..., xd))

as

Ex4,x5,...,xd
Ex,y,zh(x, y, z)b(x, y)b(y, z)b(x, z).

Here, the functions h and b depend on the variables x4, . . . , xd but we are suppressing

this dependence in the notation.
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2.2 Uniformity Norms and True Complexity

Estimating the expectation over (x, y, z) is a well-known argument from the theory

of quasirandom hypergraphs. (See for instance Theorem 4.1 in [Gow06a].) First, we

apply Cauchy-Schwarz and use the boundedness of b to obtain an upper bound of

(Ex,y(Ezh(x, y, z)b(x, z)b(y, z))2)1/2.

Expanding out the square and rearranging yields

(Ey,z,z′b(y, z)b(y, z
′)Exh(x, y, z)h(x, y, z′)b(x, z)b(x, z′))1/2,

and by a second application of Cauchy-Schwarz we obtain an upper bound of

(Ey,z,z′(Exh(x, y, z)h(x, y, z′)b(x, z)b(x, z′))2)1/4.

A second round of interchanging summation followed by a third application of Cauchy-

Schwarz gives us an upper bound of

(Ex,x′,z,z′(Eyh(x, y, z)h(x, y, z′)h(x′, y, z)h(x′, y, z′))2)1/8.

This expression equals the “octahedral norm” of the function h(x, y, z)—a hypergraph

analogue of the U3-norm. Because for fixed x4, . . . , xd, h depends only on the linear

expression L1(x, y, z), a simple change of variables can be used to show that it is in

fact equal to ‖f‖U3 .

Now all that remains is to take the expectation over the remaining variables and the

proof is complete. It is also not hard to generalize to arbitrary k, but this we leave

as an exercise to the reader.

Now, as we stated earlier, Theorem 2.4 does not settle the question of which systems

are controlled by which degrees of uniformity. Accordingly, we make the following

definition.

Definition 2.5. Let L be a system of m distinct linear forms L1, L2, . . . , Lm in d

variables. The true complexity of L is the smallest k with the following property.

For every ε > 0 there exists δ > 0 such that if G is any finite Abelian group and

f : G→ C is any function with ‖f‖∞ ≤ 1 and ‖f‖Uk+1 ≤ δ, then

∣∣∣Ex1,...,xd∈G

m∏
i=1

f(Li(x1, ..., xd))
∣∣∣ ≤ ε.

The main conjecture of this chapter is now simple to state precisely.
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Conjecture 2.6. The true complexity of a system of linear forms L = (L1, . . . , Lm)

is equal to the smallest k such that the functions Lk+1
i are linearly independent.

In the next section, we shall prove this conjecture in the simplest case that is not

covered by the result of Green and Tao, namely the case when k = 1 and L has

CS-complexity 2. All other cases would require a more advanced form of polynomial

Fourier analysis than the quadratic Fourier analysis that is so far known, but we shall

explain why it will almost certainly be possible to generalize our argument once such

a theory is developed.

2.3 True Complexity for Vector Spaces over Finite

Fields

We shall now follow the course that is strongly advocated by Green [Gre05a] and

restrict attention to the case where G is the group Fnp , where p is a fixed prime and

n tends to infinity. The reason for this is that it makes many arguments technically

simpler than they are for groups with large torsion such as ZN . In particular, one can

avoid the technicalities associated with Bohr sets. These arguments can then almost

always be converted into more complicated arguments for ZN . (In the forthcoming

paper [GW07a], we give a different proof for the case Fnp and carry out the conversion

process. That proof is harder than the proof here but gives significantly better bounds

and is easier to convert.)

We begin this section with the easier half of our argument, showing that if L is a

system of linear forms (L1, . . . , Lm) and if there is a linear dependence between the

squares of these forms, then the true complexity of L is greater than 1. This part

can be proved almost as easily for ZN , but we shall not do so here.

2.3.1 Square-Independence is Necessary

Let us start by briefly clarifying what we mean by square-independence of a linear

system L = (L1, . . . , Lm). When the group G is ZN , then all we mean is that the

functions L2
i are linearly independent, but when it is Fnp , then this definition does not

make sense any more. Instead, we ask for the quadratic forms LTi Li to be linearly inde-

pendent. If Li(x1, . . . , xd) =
∑

r γ
(i)
r xr, then LTi Li(x1, . . . , xd) =

∑
r

∑
s γ

(i)
r γ

(i)
s xrxs.

Therefore, what we are interested in is linear independence of the matrices Γ
(i)
rs =

γ
(i)
r γ

(i)
s over Fp. (Note that in the case of ZN , this is equivalent to independence of

the functions L2
i .)
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Theorem 2.7. Let L = (L1, . . . , Lm) be a system of linear forms in d variables and

suppose that the quadratic forms LTi Li are linearly dependent over Fp. Then there

exists ε > 0 such that for every δ > 0 there exists n and a set A ⊂ Fnp with the

following two properties.

(i) A is δ-uniform of degree 1.

(ii) If x = (x1, . . . , xd) is chosen randomly from (Fnp )d, then the probability that Li(x)

is in A for every i is at least αm + ε, where α is the density of A.

In other words, the true complexity of L is at least 2.

For the proof we require the following standard lemma, which says that certain Gauss

sums are small. A proof can be found in [Gre05b], for example.

Lemma 2.8. Suppose that q : Fnp → Fp is a quadratic form of rank r. That is,

suppose that q(x) = xTMx + bTx for some matrix M of rank r and some vector

b ∈ Fnp . Then

|Ex∈Fn
p
ωq(x)| ≤ p−r/2,

with equality if b = 0. In particular,

|Ex∈Fn
p
ωηx

T x| ≤ p−n/2

for any non-zero η ∈ Fp.

Proof of Theorem 2.7. Let A be the set {x ∈ Fnp : xTx = 0}. Then the characteristic

function of A can be written as

A(x) = Euω
uxT x,

where ω = exp(2πi/p) and the expectation is taken over Fp. Let us now take any

square-independent system L = (L1, . . . , Lm) of linear forms in x = (x1, . . . , xd) and

estimate the expectation Ex

∏
iA(Li(x)).

Using the formula for A(x), we can rewrite this expectation as

Ex∈(Fn
p )dEu1,...,um∈Fpω

P
i uiLi(x)TLi(x).

We can break this up into pm expectations over x, one for each choice of u1, . . . , um.

If the ui are all zero, then the expectation over x is just the expectation of the constant

function 1, so it is 1. Otherwise, since the quadratic forms LTi Li are linearly indepen-

dent, the sum
∑

i uiLi(x)TLi(x) is a non-zero quadratic form q(x) =
∑

i,j γijx
T
i xj.
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Without loss of generality, there exists j such that γ1j 6= 0. If in addition γ11 = 0,

then for every choice of x2, . . . , xd we can write q(x) in the form rTx1 + z, where

r =
∑

j γ1jxj and z depends on x2, . . . , xd only. This is a non-constant linear function

of x1 except when
∑

j γ1jxj = 0. Since not every γ1j is zero, this happens with

probability p−n. Therefore, |Exω
q(x)| ≤ p−n in this case. If γ11 6= 0, then this same

function has the form γ11x
T
1 x1 + rTx1 for some element r ∈ Fnp (which depends on

x2, . . . , xd). In this case, Lemma 2.29 implies that the expectation is at most p−n/2.

Since the probability that u1 = · · · = um = 0 is p−m, this shows that∣∣∣Ex∈(Fn
p )d

∏
i

A(Li(x))− p−m
∣∣∣ ≤ p−n/2.

Applying this result in the case where L consists of the single form x, we see that the

density of A differs from p−1 by at most p−n/2. Therefore, we have shown that for this

particular set A, square-independence of L guarantees approximately the “correct”

probability that every Li(x) lies in A.

This may seem like the opposite of what we were trying to prove, but in fact we

have almost finished, for the following simple reason. If we now take L to be an

arbitrary system (L1, . . . , Lm) of linear forms, then we can choose from it a max-

imal square-independent subsystem. Without loss of generality this subsystem is

(L1, . . . , Ll). Then all the quadratic forms LTi Li with i > l are linear combinations

of LT1L1, . . . , L
T
l Ll, so a sufficient condition for every LTi Li(x) to be zero is that it is

zero for every i ≤ l. But this we know happens with probability approximately p−l

by what we have just proved. Therefore, if L is not square-independent, then Am

contains “too many” m-tuples of the form (L1(x), . . . , Lm(x)).

2.3.2 A Review of Quadratic Fourier Analysis

We shall now turn our attention to the main result of this chapter, which states that if

L has CS-complexity at most 2 and is square-independent, then the true complexity

of L is at most 1. We begin with a quick review of quadratic Fourier analysis for

functions defined on Fnp . Our aim in this review is to give precise statements of the

results that we use in our proof. The reader who is prepared to use quadratic Fourier

analysis as a black box should then find that this chapter is self-contained.

So far in our discussion of uniformity, we have made no mention of Fourier analysis at

all. However, at least for the U2-norm, there is a close connection. Let f be a complex-

valued function defined on a finite Abelian group G. If γ is a character on G, the
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Fourier coefficient f̂(γ) is defined to be Exf(x)γ(x). The resulting Fourier transform

satisfies the convolution identity f̂ ∗ g = f̂ ĝ, Parseval’s identity ‖f̂‖2 = ‖f‖2 and the

inversion formula f(x) =
∑

γ f̂(γ)γ(−x). (The second and third identities depend on

the correct choice of normalization: ‖f‖2
2 is defined to be Ex|f(x)|2, whereas ‖f̂‖2

2 is

defined to be
∑

γ |f̂(γ)|2. That is, as mentioned earlier, we take averages in G and

sums in Ĝ.) It follows that ‖f‖4
U2 = ‖f̂‖4

4, since both are equal to ‖f ∗ f‖2
2.

It is often useful to split a function f up into a “structured” part and a uniform

part. One way of doing this is to let K be the set of all characters γ for which |f̂(γ)|
is larger than some δ and to write f = f1 + f2, where f1 =

∑
γ∈K f̂(γ)γ(−x) and

f2 =
∑

γ /∈K f̂(γ)γ(−x). If ‖f‖∞ ≤ 1, (as it is in many applications), then Parseval’s

identity implies that |K| ≤ δ−2, and can also be used to show that ‖f2‖U2 ≤ δ1/2.

That is, K is not too large, and f2 is δ1/2-uniform.

When G is the group Fnp , the characters all have the form x 7→ ωr
T x. Notice that

this character is constant on all sets of the form {x : rTx = u}, and that these sets

partition Fnp into p affine subspaces of codimension 1. Therefore, one can partition

Fnp into at most p|K| affine subspaces of codimension |K| such that f1 is constant on

each of them. This is the sense in which f1 is “highly structured”.

The basic aim of quadratic Fourier analysis is to carry out a similar decomposition for

the U3-norm. That is, given a function f , we would like to write f as a sum f1 + f2,

where f1 is “structured” and f2 is quadratically uniform. Now this is a stronger (in

fact, much stronger) property to demand of f2, so we are forced to accept a weaker

notion of structure for f1.

Obtaining any sort of structure at all is significantly harder than it is for the U2-

norm, and results in this direction are much more recent. The first steps were taken

in [Gow98] and [Gow01] for the group ZN in order to give an analytic proof of

Szemerédi’s theorem. The structure of that proof was as follows: Theorem 2.3 can

be used to show that if a set A is sufficiently uniform of degree k − 2, then it must

contain an arithmetic progression of length k. Then an argument that is fairly easy

when k = 3 but much harder when k ≥ 4 can be used to show that if A is not

c-uniform of degree k, then it must have “local correlation” with a function of the

form ωφ(x), where ω = exp 2πi/N and φ is a polynomial of degree d. “Local” in this

context means that one can partition ZN into arithmetic progressions of size Nη (for

some η that depends on c and k only) on a large proportion of which one can find

such a correlation.

This was strong enough to prove Szemerédi’s theorem, but for several other applica-

tions the highly local nature of the correlation is too weak. However, in the quadratic
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case, this problem has been remedied by Green and Tao [GT05a]. In this case, the

obstacle to “globalizing” the argument is that a certain globally-defined bilinear form

that occurs in the proof of [Gow01] is not symmetric, and thus does not allow one

to define a corresponding globally-defined quadratic form. (In the context of ZN ,

“global” means something like “defined on a proportional-sized Bohr set”. For Fnp
one can take it to mean “defined everywhere”.) Green and Tao discovered an in-

genious “symmetry argument” that allows one to replace the bilinear form by one

that is symmetric, and this allowed them to prove a quadratic structure theorem for

functions with large U3-norm that is closely analogous to the linear structure theorem

that follows from conventional Fourier analysis.

An excellent exposition of this structure theorem when the group G is a vector space

over a finite field can be found in [Gre05b]. This contains proofs of all the background

results that we state here.

Recall that in the linear case, we called f1 “structured” because it was constant

on affine subspaces of low codimension. For quadratic Fourier analysis, we need a

quadratic analogue of the notion of a decomposition of Fnp into parallel affine subspaces

of codimension d1. In order to define such a decomposition, one can take a surjective

linear map Γ1 : Fnp → Fd1
p and for each a ∈ Fd1

p one can set Va to equal Γ−1
1 ({a}).

If we want to make this idea quadratic, we should replace the linear map Γ1 by

a “quadratic map” Γ2, which we do in a natural way as follows. We say that a

function Γ2 : Fnp → Fd2
p is quadratic if it is of the form x 7→ (q1(x), . . . , qd2(x)), where

q1, . . . , qd2 are quadratic forms on Fnp . Then, for each b ∈ Fd2
p we define Wb to be

{x ∈ Fnp : Γ2(x) = b}.

In [GT05b], Green and Tao define B1 to be the algebra generated by the sets Va and

B2 for the finer algebra generated by the sets Va ∩Wb. They call B1 a linear factor of

complexity d1 and (B1,B2) a quadratic factor of complexity (d1, d2). This is to draw

out a close analogy with the “characteristic factors” that occur in ergodic theory.

These definitions give us a suitable notion of a “quadratically structured” function—

it is a function f1 for which we can find a linear map Γ1 : Fnp → Fd1
p and a quadratic

map Γ2 : Fnp → Fd2
p such that d1 and d2 are not too large and f1 is constant on the

sets Va ∩Wb defined above. This is equivalent to saying that f1 is measurable with

respect to the algebra B2, and also to saying that f1(x) depends on (Γ1(x),Γ2(x))

only.

The quadratic structure theorem of Green and Tao implies that a bounded function

f defined on Fnp can be written as a sum f1 + f2, where f1 is quadratically structured

in the above sense, and ‖f2‖U3 is small. In [GT05b] the result is stated explicitly for
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p = 5, but this is merely because of the emphasis placed on 4-term progressions. The

proof is not affected by the choice of p (as long as it stays fixed).

In the statement below, which is taken from [GT05b], we write E(f |B2) for the

conditional expectation, or averaging projection, of f . That is, if X = Va ∩Wb is

an atom of B2 and x ∈ X, then E(f |B2)(x) is the average of f over X. Since the

function E(f |B2) is constant on the sets Va ∩Wb, it is quadratically structured in the

sense that interests us.

Theorem 2.9. Let p be a fixed prime, let δ > 0 and suppose that n > n0(δ) is suf-

ficiently large. Given any function f : Fnp → [−1, 1], there exists a quadratic factor

(B1,B2) of complexity at most ((4δ−1)3C0+1, (4δ−1)2C0+1) together with a decomposi-

tion

f = f1 + f2,

where

f1 := E(f |B2) and ‖f2‖U3 ≤ δ.

The absolute constant C0 can be taken to be 216.

As it stands, the above theorem is not quite suitable for applications, because tech-

nical problems arise if one has to deal with quadratic forms of low rank. (Notice that

so far we have said nothing about the quadratic forms qi—not even that they are dis-

tinct.) Let Γ2 = (q1, . . . , qk) be a quadratic map and for each i let βi be the symmetric

bilinear form corresponding to qi: that is, βi(x, y) = (qi(x + y) − qi(x) − qi(y))/2.

We shall say that Γ2 is of rank at least r if the bilinear form
∑

i λiβi has rank at

least r whenever λ1, . . . , λd2 are elements of Fp that are not all zero. If Γ2 is used in

combination with some linear map Γ1 to define a quadratic factor (B1,B2), then we

shall also say that this quadratic factor has rank at least r.

Just to clarify this definition, let us prove a simple lemma that will be used later.

Lemma 2.10. Let β be a symmetric bilinear form of rank r on Fnp and let W be a

subspace of Fnp of codimension d1. Then the rank of the restriction of β to W is at

least r − 2d1.

Proof. Let V = Fnp . For every subspace W of V , let us write W⊥ for the subspace

{v ∈ V : β(v, w) = 0 for every w ∈ W}.

The rank of β is just the codimension of V ⊥, and equals r by hypothesis. Now let W

have codimension d1, and let Y be a complement for W , which will therefore have
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dimension d1. Then V ⊥ = W⊥∩Y ⊥ and Y ⊥ has dimension at least n−d1. It follows

easily that

r = codimV ⊥ ≤ codimW⊥ + codimY ⊥ ≤ codimW⊥ + d1,

which implies that the codimension of W⊥ is at least r− d1. Hence the codimension

of W⊥ inside W is at least r − 2d1.

We are now in a position to state the version of the structure theorem that we shall

be using. It can be read out of (but is not explicitly stated in) [Gre05b] and [GT05b].

Theorem 2.11. Let p be a fixed prime, let δ > 0, let r : N→ N an arbitrary function

(which may depend on δ) and suppose that n > n0(r, δ) is sufficiently large. Then

given any function f : Fnp → [−1, 1], there exists d0 = d0(r, δ) and a quadratic factor

(B1,B2) of rank at least r(d1+d2) and complexity at most (d1, d2), d1, d2 ≤ d0, together

with a decomposition

f = f1 + f2 + f3,

where

f1 := E(f |B2), ‖f2‖2 ≤ δ and ‖f3‖U3 ≤ δ.

Note that Ef1 = Ef . In particular Ef1 = 0 whenever f is the balanced function of

a subset of Fnp . It can be shown that f1 is uniform whenever f is uniform: roughly

speaking, the reason for this is that E(f |B1) is approximately zero and the atoms of

B2 are uniform subsets of the atoms of B1. However, we shall not need this fact.

We shall apply Theorem 2.11 when r is the function d 7→ 2md+C for a constant C.

Unfortunately, ensuring that factors have high rank is an expensive process: even for

this modest function the argument involves an iteration that increases d0 exponen-

tially at every step. For this reason we have stated the theorem in a qualitative way.

A quantitative version would involve a tower-type bound.

2.3.3 Square-Independence is Sufficient

We now have the tools we need to show that square-independence coupled with CS-

complexity 2 is sufficient to guarantee the correct number of solutions in uniform

sets. The basic idea of the proof is as follows. Given a set A ⊂ Fnp of density α, we

first replace it by its balanced function f(x) = A(x)−α. Given a square-independent
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linear system L of complexity at most 2, our aim is to show, assuming that ‖f‖U2 is

sufficiently small, that

Ex∈(Fn
p )d

m∏
i=1

f(Li(x))

is also small. (Once we have done that, it will be straightforward to show that the

same average, except with A replacing f , is close to αm.) In order to carry out this

estimate, we first apply the structure theorem to decompose f as f1 + f2 + f3, where

f1 is quadratically structured, f2 is small in L2 and f3 is quadratically uniform. This

then allows us to decompose the product into a sum of 3m products, one for each way

of choosing f1, f2 or f3 from each of the m brackets. If we ever choose f2, then the

Cauchy-Schwarz inequality implies that the corresponding term is small, and if we

ever choose f3 then a similar conclusion follows from Theorem 2.4. Thus, the most

important part of the proof is to use the linear uniformity and quadratic structure of

f1 to prove that the product

Ex∈(Fn
p )d

m∏
i=1

f1(Li(x))

is small. This involves a calculation that generalizes the one we used to prove Theorem

2.7. The main step is the following lemma, where we do the calculation in the case

where the linear factor B1 is trivial.

To understand its significance, let us briefly think about what happens when we map

a 4-term progression to (Fd2
p )4 using the quadratic map Γ2. Because of the relation

between the squares of the forms defining the 4-term progression, we find that there

is roughly the expected number of progression in the pre-image (Γ−1
2 (b(1)),Γ−1

2 (b(2)),

Γ−1
2 (b(3)),Γ−1

2 (b(4))) ⊆ (Fnp )4 whenever the b(i) ∈ Fd2
p satisfy b(1) − 3b(2) + 3b(3) −

b(4) = 0, and precisely no progressions otherwise. For a general square-independent

linear system, it turns out that the pre-images are roughly uniformly distributed

independent of any relations between the b(i)s.

Lemma 2.12. Let L = (L1, . . . , Lm) be a square-independent system of linear forms

and let Γ2 = (q1, . . . , qd2) be a quadratic map from Fnp to Fd2
p of rank at least r. Let

φ1, . . . , φm be linear maps from (Fnp )d to Fd2
p and let b1, . . . , bm be elements of Fd2

p . Let

x = (x1, . . . , xd) be a randomly chosen element of (Fnp )d. Then the probability that

Γ2(Li(x)) = φi(x) + bi for every i differs from p−md2 by at most p−r/2.

Proof. Let Λ be the set of all m × d2 matrices λ = (λij) over Fp and let us write

φi = (φi1, . . . , φid2) and bi = (bi1, . . . , bid2) for each i. The probability we are interested
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in is the probability that qj(Li(x)) = φij(x) + bij for every i ≤ m and every j ≤ d2.

This equals

ExEλ∈Λ

m∏
i=1

d2∏
j=1

ωλij(qj(Li(x))−φij(x)−bij),

since if qj(Li(x)) = φij(x) + bij for every i and j, then the expectation over λ is 1,

and otherwise if we choose i and j such that qj(Li(x)) 6= φij(x) + bij and consider

the expectation over λij while all other entries of λ are fixed, then we see that the

expectation over λ is zero.

We can rewrite the above expectation as

Eλ∈ΛExω
P

i,j λij(qj(Li(x))−φij(x)−bij).

If λ = 0, then obviously the expectation over x is 1. This happens with probability

p−md2 . Otherwise, for each i let us say that the coefficients of Li are ci1, . . . , cid. That

is, let Li(x) =
∑d

u=1 ciuxu. Then

qj(Li(x)) =
∑
u,v

ciucivβj(xu, xv),

where βj is the bilinear form associated with qj. Choose some j such that λij is non-

zero for at least one i. Then the square-independence of the linear forms Li implies

that there exist u and v such that
∑

i λijciuciv is not zero.

Fix such a j, u and v and do it in such a way that u = v, if this is possible. We shall

now consider the expectation as xu and xv vary with every other xw fixed. Notice

first that ∑
i,j

λijqj(Li(x)) =
∑
i,j

∑
t,w

λijcitciwβj(xt, xw).

Let us write βtw for the bilinear form
∑

i,j λijcitciwβj, so that this becomes
∑

t,w βtw(xt, xw).

Let us also write φ(x) for
∑

ij λijφij(x) and let φ1, . . . , φd be linear maps from Fnp to

Fp such that φ(x) =
∑

t φt(xt) for every x. Then∑
i,j

λij(qj(Li(x))− φij(x)) =
∑
t,w

βtw(xt, xw)−
∑
t

φt(xt).

Notice that if we cannot get u to equal v, then
∑

i λijc
2
iu = 0 for every u and every

j, which implies that βuu = 0. Notice also that the assumption that Γ2 has rank at

least r and the fact that
∑

i λijciuciw 6= 0 for at least one j imply that βuv has rank

at least r.
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If we fix every xt except for xu and xv, then
∑

t,w βtw(xt, xw)−
∑

t φt(xt) is a function

of xu and xv of the form

βuv(xu, xv) + ψu(xu) + ψv(xv),

where ψu and ψv are linear functionals on Fnp (that depend on the other xt).

Now let us estimate the expectation

Exu,xvω
P

i,j λij(qj(Li(x))−φij(x)−bij),

where we have fixed every xt apart from xu and xv. Letting b =
∑
λijbij and using

the calculations we have just made, we can write this in the form

Exu,xvω
βuv(xu,xv)+ψu(xu)+ψv(xv)−b.

If u = v, then the expectation is just over xu and the exponent has the form q(xu) +

wTu− b for some quadratic form q of rank at least r. Therefore, by Lemma 2.29, the

expectation is at most p−r/2. If u 6= v (and therefore every buu is zero) then for each

xv the exponent is linear in u. This means that either the expectation over xu is zero

or the function βuv(xu, xv) + ψu(xu) is constant. If the latter is true when xv = y

and when xv = z, then βuv(xu, y − z) is also constant, and therefore identically zero.

Since βuv has rank at least r, y − z must lie in a subspace of codimension at least

r. Therefore, the set of xv such that βuv(xu, xv) + ψu(xu) is constant is an affine

subspace of Fnp of codimension at least r, which implies that the probability (for a

randomly chosen xv) that the expectation (over xu) is non-zero is at most p−r. When

the expectation is non-zero, it has modulus 1.

In either case, we find that, for any non-zero λ ∈ Λ, the expectation over x is at most

p−r/2, and this completes the proof of the lemma.

We now want to take into account Γ1 as well as Γ2. This turns out to be a short

deduction from the previous result. First let us do a simple piece of linear algebra.

Lemma 2.13. Let L = (L1, . . . , Lm) be a collection of linear forms in d variables,

and suppose that the linear span of L1, . . . , Lm has dimension d′. Let Γ1 : Fnp → Fd1
p

be a surjective linear map and let φ : (Fnp )d → (Fd1
p )m be defined by the formula

φ : x 7→ (Γ1(L1(x)), . . . ,Γ1(Lm(x))).

Then the image of φ is the subspace Z of (Fd1
p )m that consists of all sequences
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(a1, . . . , am) such that
∑

i µiai = 0 whenever
∑

i µiLi = 0. The dimension of Z

is d′d1.

Proof. Since the m forms Li span a space of dimension d′, the set of sequences

µ = (µ1, . . . , µm) such that
∑

i µiLi = 0 is a linear subspace W of Fmp of dimension

m− d′. Therefore, the condition that
∑

i µiai = 0 for every sequence µ ∈ W restricts

(a1, . . . , am) to a subspace of (Fd1
p )m of codimension d1(m− d′). (An easy way to see

this is to write ai = (ai1, . . . , aid1) and note that for each j the sequence (a1j, . . . , amj)

is restricted to a subspace of codimension m− d′.) Therefore, the dimension of Z is

d′d1, as claimed.

Now let us show that Z is the image of φ. Since φ is linear, Z certainly contains the

image of φ, so it will be enough to prove that the rank of φ is d′d1.

Abusing notation, let us write Γ1(x) for the sequence (Γ1x1, . . . ,Γ1xd), which belongs

to (Fd1
p )d. Then φ(x) can be rewritten as (L1(Γ1(x)), . . . , Lm(Γ1(x))). Since Γ1 is a

surjection, it is also a surjection when considered as a map on (Fnp )d. Therefore, the

rank of φ is the rank of the map ψ : (Fd1
p )d → (Fd1

p )m defined by

ψ : y 7→ (L1(y), . . . , Lm(y)).

Since the Li span a space of dimension d′, the nullity of this map is d1(d− d′), so its

rank is d1d
′. Therefore, the image of φ is indeed Z.

Lemma 2.14. Let L = (L1, . . . , Lm) be a square-independent system of linear forms

in d variables, and suppose that the linear span of L1, . . . , Lm has dimension d′. Let

Γ1 : Fnp → Fd1
p be a surjective linear map and let Γ2 : Fnp → Fd2

p be a quadratic map

of rank at least r. Let a1, . . . , am be elements of Fd1
p and let b1, . . . , bm be elements of

Fd2
p , and let φ and Z be as defined in the previous lemma. Then the probability, if

x is chosen randomly from (Fnp )d, that Γ1(Li(x)) = ai and Γ2(Li(x)) = bi for every

i ≤ m is zero if (a1, . . . , am) ∈ Z, and otherwise it differs from p−d1d′−d2m by at most

pd1−d′d1−r/2.

Proof. If a = (a1, . . . , am) /∈ Z, then there exists µ ∈ Fmp such that
∑

i µiai 6= 0 and∑
i µiLi(x) = 0 for every x. Since Γ1 is linear, it follows that there is no x such that

Γ1(Li(x)) = ai for every i.

Otherwise, by Lemma 2.13, a lies in the image of φ, which has rank d′d1, so φ−1({a})
is an affine subspace of (Fnp )d of codimension d′d1. Therefore, the probability that

φ(x) = a is p−d
′d1 . Now let us use Lemma 2.12 to estimate the probability, conditional

on this, that Γ2(Li(x)) = bi for every i ≤ m.
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In the proof of Lemma 2.13, we observed that φ(x) depends on Γ1(x) only, so we shall

estimate the required probability, given the value of Γ1(x). (Recall that this is nota-

tion for (Γ1x1, . . . ,Γ1xd).) In order to specify the set on which we are conditioning,

let V be the kernel of Γ1 (considered as a map defined on Fnp ), and given a sequence

(w1, . . . , wd) ∈ (Fnp )d, let us estimate the required probability, given that xu ∈ V +wu

for every u.

Let us write xu = yu + wu. Thus, we are estimating the probability that Γ2(Li(y +

w)) = bi for every i ≤ m. But for each i we can write Γ2(Li(y + w)) as Γ2(Li(y)) +

φi(y) + b′i for some linear function φi : V d → Fd2
p and some vector b′i ∈ Fd2

p .

Because Γ2 has rank at least r and the codimension of V in Fnp is d1, Lemma 2.10

implies that the rank of the restriction of Γ2 to V is at least r − 2d1. Therefore, by

Lemma 2.12, the probability that Γ2(Li(y)) = −φi(y)+ bi− b′i for every i differs from

p−md2 by at most pd1−r/2.

Since this is true for all choices of w, we have the same estimate if we condition

on the event that φ(x) = a for some fixed a ∈ Z. Therefore, the probability that

Γ1(Li(x)) = ai and Γ2(Li(x)) = bi for every i differs from p−d
′d1−md2 by at most

pd1−d′d1−r/2, as claimed.

Next, we observe that Lemma 2.14 implies that all the atoms of B2 have approximately

the same size.

Corollary 2.15. Let Γ1 and Γ2 be as above and let x be a randomly chosen element

of Fnp . Then for every a ∈ Fd1
p and every b ∈ Fd2

p , the probability that Γ1(x) = a and

Γ2(x) = b differs from p−d1−d2 by at most p−r/2.

Proof. Let us apply Lemma 2.14 in the case where L consists of the single one-variable

linear form L(x) = x. This has linear rank 1 and is square-independent, so when we

apply the lemma we have d′ = m = 1. If we let a1 = a and b1 = b, then the conclusion

of the lemma tells us precisely what is claimed.

The next two lemmas are simple technical facts about projections on to linear factors.

The first one tells us that if g is any function that is uniform and constant on the

atoms of a linear factor, then it has small L2-norm. The second tells us that projecting

on to a linear factor decreases the U2-norm.

Lemma 2.16. Let G be a function from Fd1
p to [−1, 1], let Γ1 : Fnp → Fd1

p be a

surjective linear map and let g = G ◦ Γ1. Then ‖g‖4
2 ≤ pd1‖g‖4

U2.

48



2.3 True Complexity for Vector Spaces over Finite Fields

Proof. Since Γ1 takes each value in Fd1
p the same number of times, ‖g‖U2 = ‖G‖U2 .

But

‖G‖4
U2 = Ea(EbG(b)G(b+ a))2 ≥ p−d1(EbG(b)2)2 = p−d1‖G‖4

2,

which proves the result, since ‖g‖2 = ‖G‖2 as well.

Lemma 2.17. Let f be a function from Fnp to R, let B1 be a linear factor and let

g = E(f |B1). Then ‖g‖U2 ≤ ‖f‖U2.

Proof. On every atom of B1, g is constant and f − g averages zero. Let Γ1 be the

linear map that defines B1 and, as we did earlier, for each a ∈ Fd1
p let Va stand for

Γ−1
1 ({a}). Then

‖f‖4
U2 = Ea1+a2=a3+a4Ex1+x2=x3+x4

Γ1(xi)=ai

f(x1)f(x2)f(x3)f(x4) .

Let us fix a choice of a1 + a2 = a3 + a4 and consider the inner expectation. Setting

g′ = f − g, this has the form

Ex1+x2=x3+x4
Γ1(xi)=ai

(λ1 + g′(x1))(λ2 + g′(x2))(λ3 + g′(x3))(λ4 + g′(x4))

This splits into sixteen parts. Each part that involves at least one λi and at least one

g′(xi) is zero, because any three of the xis can vary independently and g′ averages

zero on every atom of B1. This means that the expectation is

λ1λ2λ3λ4 + Ex1+x2=x3+x4
Γ1(xi)=ai

g′(x1)g′(x2)g′(x3)g′(x4) .

If we now take expectations over a1 + a2 = a3 + a4 we find that ‖f‖4
U2 = ‖g‖4

U2 +

‖f − g‖4
U2 . Notice that this is a general result about how the U2-norm of a function

is related to the U2-norm of a projection on to a linear factor.

Now we are ready to estimate the product we are interested in, for functions that are

constant on the atoms of B2.

Lemma 2.18. Let Γ1 : Fnp → Fd1
p be a linear function and Γ2 : Fnp → Fd2

p be a

quadratic function. Let (B1,B2) be the corresponding quadratic factor and suppose

that this has rank at least r. Let c > 0 and let f : Fnp → [−1, 1] be a function with

‖f‖U2 ≤ c and let f1 = E(f |B2). Let L = (L1, . . . , Lm) be a square-independent

system of linear forms. Then

Ex∈(Fn
p )d

m∏
i=1

f1(Li(x)) ≤ 4mcpd1/4 + 2m+1pm(d1+d2)−r/2.
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Proof. Let g = E(f1|B1) and let h = f1 − g. Then ‖g‖1 ≤ ‖g‖2 ≤ pd1/4‖g‖U2 , by

Cauchy-Schwarz and Lemma 2.16. By Lemma 2.17, ‖g‖U2 ≤ ‖f‖U2 , which is at most

c, by hypothesis. Therefore, ‖g‖1 ≤ cpd1/4.

Since f1 = g + h, we can split the product up into a sum of 2m products, in each of

which we replace f1(Li(x)) by either g(Li(x)) or h(Li(x)). Since ‖g‖1 ≤ cpd1/4 and

‖h‖∞ ≤ 2, any product that involves at least one g has average at most 2mcpd1/4. It

remains to estimate

Ex∈(Fn
p )d

m∏
i=1

h(Li(x)).

Let Z be as defined in Lemma 2.13, and for each a = (a1, . . . , am) and b = (b1, . . . , bm),

let P (a,b) be the probability that Γ1(Li(x)) = ai and Γ2(Li(x)) = bi for every i. By

Lemma 2.14, we can set P (a,b) = p−d
′d1−md2 + ε(a,b), with |ε(a,b)| ≤ pd1−d′d1−r/2.

Now let H be defined by the formula h(x) = H(Γ1x,Γ2x). Because h is constant on

the atoms of B2, H is well-defined on the set of all elements of Fd1
p × Fd2

p of the form

(Γ1x,Γ2x). Since h takes values in [−2, 2], so does H.

Next, we show that EbH(a, b) is small for any fixed a ∈ Fd1
p , using the facts that h

averages 0 on every cell of B1 and that it is constant on the cells of B2. Let us fix an

a and write P (b) for the probability that Γ2(x) = b given that Γ1(x) = a—that is,

for the density of Va ∩Wb inside Va. Then

0 = Ex∈Vah(x) = Ex∈VaH(Γ1x,Γ2x) =
∑
b

P (b)H(a, b).

By Corollary 2.15, we can write P (b) = p−d2 + ε(b), with |ε(b)| ≤ pd1−r/2 for every b.

Therefore, the right-hand side differs from EbH(a, b) by at most 2pd1+d2−r/2, which

implies that |EbH(a, b)| ≤ 2pd1+d2−r/2.

Now

Ex

m∏
i=1

h(Li(x)) = Ex

m∏
i=1

H(Γ1(Li(x)),Γ2(Li(x))) =
∑
a∈Z

∑
b

P (a,b)
m∏
i=1

H(ai, bi).

Let us split up this sum as

p−d
′d1−md2

∑
a∈Z

∑
b

m∏
i=1

H(ai, bi) +
∑
a∈Z

∑
b

ε(a,b)
m∏
i=1

H(ai, bi).

The first term equals Ea∈Z
∏m

i=1(EbH(ai, b)), which is at most (2pd1+d2−r/2)m. The

second is at most p(d′d1+md2)2mpd1−d′d1−r/2 = 2mpd1+md2−r/2. Therefore, the whole
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sum is at most 2m+1pm(d1+d2)−r/2. Together with our estimate for the terms that

involved g, this proves the lemma.

We have almost finished the proof of our main result.

Theorem 2.19. For every ε > 0 there exists c > 0 with the following property.

Let f : Fnp → [−1, 1] be a c-uniform function. Let L = (L1, . . . , Lm) be a square-

independent system of linear forms in d variables, with Cauchy-Schwarz complexity

at most 2. Then ∣∣∣∣∣Ex∈(Fn
p )d

m∏
i=1

f(Li(x))

∣∣∣∣∣ ≤ ε.

Proof. Let δ > 0 be a constant to be chosen later. Let C be such that 2m+1p−C/2 ≤ ε/3

and let r be the function d 7→ 2md + C. Then according to the structure theorem

(Theorem 2.11) there exists d0, depending on r and δ only, and a quadratic factor

(B1,B2) of rank at least 2m(d1 +d2)+C and complexity (d1, d2), with d1 and d2 both

at most d0, such that we can write f = f1 + f2 + f3, with f1 = E(f |B2), ‖f2‖2 ≤ δ

and ‖f3‖U3 ≤ δ.

Let us show that the sum does not change much if we replace f(Lm(x)) by f1(Lm(x)).

The difference is what we get if we replace f(Lm(x)) by f2(Lm(x))+f3(Lm(x)). Now

‖f2‖1 ≤ ‖f2‖2 and ‖f‖∞ ≤ 1, so the contribution from the f2 part is at most δ.

As for the f3 part, since ‖f3‖U3 ≤ δ and ‖f‖∞ ≤ 1, Theorem 2.4 tells us that the

contribution is at most δ. Therefore, the total difference is at most δ + δ ≤ 2δ.

Now let us replace f by f1 in the penultimate bracket. The same argument works,

since ‖f1‖∞ ≤ 1. Indeed, we can carry on with this process, replacing every single f

by f1, and the difference we make will be at most 2mδ.

We are left needing to show that the product with every f replaced by f1 is small. This

is what Lemma 2.18 tells us. It gives us an upper bound of 4mcpd1/4+2m+1pm(d1+d2)−r/2,

where for r we can take 2m(d1 + d2) + C. Therefore, the upper bound is 4mcpd0/4 +

2m+1p−C/2, which, by our choice of C, is at most 4mcpd0/4 + ε/3.

To finish, let δ = ε/6m. This determines the value of d0 and we can then set c to be

4−mp−d0/4ε/3, which will be a function of ε only.

Because of our use of Theorem 2.11, the bounds in the above result and in the

corollary that we are about to draw from it are both very weak. However, we have

been explicit about all the bounds apart from d0, partly in order to make it clear

how the parameters depend on each other and partly to demonstrate that our weak

bound derives just from the weakness of d0 in the structure theorem.
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Corollary 2.20. For every ε > 0 there exists c > 0 with the following property.

Let A be a c-uniform subset of Fnp of density α. Let L = (L1, . . . , Lm) be a square-

independent system of linear forms in d variables, with Cauchy-Schwarz complexity

at most 2. Let x = (x1, . . . , xd) be a random element of (Fnp )d. Then the probability

that Li(x) ∈ A for every i differs from αm by at most ε.

Proof. We shall choose as our c the c that is given by the previous theorem when

ε is replaced by ε/2m. Our assumption is then that we can write A = α + f for a

c-uniform function f . The probability we are interested in is

Ex∈(Fn
p )d

m∏
i=1

A(Li(x)),

which we can split into 2m parts, obtained by replacing each occurrence of A either

by α or by f .

For each part that involves at least one occurrence of f , we have a power of α

multiplied by a product over some subsystem of L. This subsystem will also be

square-independent and have CS-complexity at most 2. Moreover, the number of

linear forms will have decreased. Therefore, the previous theorem and our choice of

c tell us that the contribution it makes is at most ε/2m. Therefore, the contribution

from all such parts is at most ε. The only remaining part is the one where every

A(Li(x)) has been replaced by α, and that gives us the main term αm.

2.3.4 Remarks

First, we remark that Corollary 2.20 allows us to deduce rather straightforwardly a

Szemerédi-type theorem for square-independent systems of CS-complexity 2 which

have the additional property that they are translation-invariant. That is, one can

show that any sufficiently dense subset of Fnp contains a configuration of the given

type.

Without the result of the preceding section, establishing that any sufficiently dense

subset contains a solution to systems of this type would require a quadratic argument

of the form used by Green and Tao to prove Szemerédi’s Theorem for progressions of

length 4 in finite fields [GT05b]. This would involve obtaining density increases on

quadratic subvarieties of Fnp , which then need to be linearized in a carefully controlled

manner. Although it is certainly possible to adapt their argument in this way, for

purely qualitative purposes it is much simpler to use the result that configurations of

this type are governed by the U2-norm, which allows one to produce a density increase
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on an affine subspace. The resulting argument is almost identical to the well-known

argument for 3-term progressions [Mes95]. Translation invariance is needed because

the subspace on which we find a density increment may be an affine and not a

strictly linear one. (It is not hard to show that the result is false if the system is not

translation invariant.)

There are several ways in which the results of Section 3 might be generalized. An

obvious one is to prove comparable results for the group ZN . As we mentioned earlier,

we have a different proof for Fnp and this can be transferred to ZN by “semi-standard”

methods. (That is, the general approach is clear, but the details can be complicated

and sometimes require more than merely technical thought.) The alternative proof for

Fnp gives a doubly exponential bound for the main result rather than the tower-type

bound obtained here.

Possibly even more obvious is to try to extend the main result of this paper to a

proof of Conjecture 2.6. This involves a generalization in two directions: to systems

of CS-complexity greater than 2, and to systems with true complexity greater than 1.

All further cases will require polynomial Fourier analysis for a degree that is greater

than 2: the simplest is likely to be to show that a square-independent system with

CS-complexity 3 has true complexity 1. In this case, we would use a decomposition

into a structured part (a projection onto a cubic factor) and a uniform part (which

would be small in U4 and therefore negligible) and then, as before, concentrate on the

structured part. Square-independence (which implies cube-indepence) would ensure

that we could reduce to the linear part of the factor as before.

This state of affairs leaves us very confident that Conjecture 2.6 is true. Although

cubic and higher-degree Fourier analysis have not yet been worked out, they do at

least exist in local form for ZN : they were developed in [Gow01] to prove the general

case of Szemerédi’s theorem. It is therefore almost certain that global forms will

eventually become available, both for ZN and for Fnp . And then, given a statement

analogous to Theorem 2.11, it is easy to see how to generalize the main steps of our

proof. In particular, the Gauss-sum estimates on which we depend so heavily have

higher-degree generalizations.

A completely different direction in which one might consider generalizing the above re-

sults is to hypergraphs. For example, very similar proofs to those of Theorems 2.3 and

2.4 can be used to prove so-called “counting lemmas” for quasirandom hypergraphs—

lemmas that assume that a certain norm is small and deduce that the hypergraph

contains approximately the expected number of small configurations of a given kind.

One can now ask whether, as with sets, weaker quasirandomness assumptions about a
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hypergraph suffice to guarantee the right number of certain configurations, and if so,

which ones. It turns out to be possible to give a complete answer to a fairly natural

formulation of this question. Unfortunately, however, the proof is rather too easy to

be interesting, so here we content ourselves with somewhat informal statements of

results concerning the special case of 3-uniform hypergraphs. The proofs we leave as

exercises for any reader who might be interested.

Recall that if X, Y and Z are finite sets and f : X×Y ×Z → R, then the octahedral

norm of f is the eighth root of

Ex(0),x(1)∈XEy(0),y(1)∈Y Ez(0),z(1)∈Z
∏

ε∈{0,1}3
f(x(ε1), y(ε2), z(ε3)).

It is easy to verify that if X = Y = Z = G for some Abelian group G and f(x, y, z) =

g(x + y + z) for some function g, then the octahedral norm of f is the same as the

U3-norm of g. Therefore, it is natural to consider the octahedral norm of functions

defined on X × Y × Z as the correct analogue of the U3-norm of functions defined

on Abelian groups.

An important fact about the octahedral norm is that f has small octahedral norm if

and only if it has a small correlation with any function of the form u(x, y)v(y, z)w(x, z).

Another important fact, the so-called “counting lemma” for quasirandom hyper-

graphs, states the following. Let X be a finite set and let H be a 3-uniform hy-

pergraph with vertex set X and density α. Suppose that H is quasirandom in the

sense that the function H(x, y, z)−α has small octahedral norm (where H(x, y, z) = 1

if {x, y, z} ∈ H and 0 otherwise). Then H has about the expected number of copies of

any fixed small hypergraph. For instance, if you choose x, y, z and w randomly from

X, then the probability that all of {x, y, z}, {x, y, w}, {x, z, w} and {y, z, w} belong

to H is approximately α4.

Now let us suppose that g is uniform but not necessarily quadratically uniform, and

that we again define f(x, y, z) to be g(x+y+z). What can we say about f? It is not

necessarily the case that f has small octahedral norm, or that it has low correlation

with functions of the form u(x, y)v(y, z)w(x, z). However, it is not hard to show that

it has low correlation with any function of the form a(x)b(y)c(z), a property that was

referred to as vertex uniformity in [Gow06a].

One might therefore ask whether vertex uniformity was sufficient to guarantee the

right number of copies of some small hypergraphs. However, well-known and easy

examples shows that it does so only for hypergraphs such that no pair {x, y} is

contained in more than one hyperedge. For instance, let u be a random symmetric
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function from X2 to {−1, 1} and let H(x, y, z) = (3 + u(x, y) + u(y, z) + u(x, z))/6.

Then H is vertex uniform and has density 1/2, but it is a simple exercise to show

that Ex,y,z,wH(x, y, z)H(x, y, w) is about 5/18 instead of the expected 1/4.

However, this is perhaps not the right question to be asking. If g is uniform, then f

has a stronger property than just vertex uniformity: one can prove that it does not

correlate with any function of the form u(x, y)w(x, z), u(x, y)v(y, z) or v(y, z)w(x, z).

If we take this as our definition of “weak quasirandomness” for functions (and call the

hypergraph H weakly quasirandom if the function H−α is), then which hypergraphs

appear with the right frequency (or with “frequency zero” if we are talking about

functions rather than sets)? The answer turns out to be that a sum over copies of a

small hypergraph H ′ will have the “right” value if and only if there is a pair {x, y}
that belongs to exactly one hyperedge {x, y, z} of H ′. The proof in the “if” direction

is an easy exercise. In particular, it does not involve any interesting results about

decomposing hypergraphs, which suggests that the main result of this chapter is, in

a certain sense, truly arithmetical.

As for the “only if” direction, here is a quick indication of how to produce an example

(in the complex case, for simplicity). Suppose that no pair {x, y} belongs to more

than m hyperedges in H ′. For each k between 2 and m let fk : X2 → C be a function

whose values are randomly chosen kth roots of unity. Then let f(x, y, z) be the sum

of all functions of the form u(x, y)v(y, z)w(x, z), where each of u, v and w is some

fk with 2 ≤ k ≤ m. When one expands out the relevant sum for this function f ,

one finds that most terms cancel, but there will be some that don’t and they will

all make a positive contribution. To find such a term, the rough idea is to choose

for each face F of H ′ a triple of functions (fk1 , fk2 , fk3), where k1, k2 and k3 are the

number of faces of H ′ that include each of the three edges that make up the face F .

For this term, each time a kth root of unity appears in the product, it is raised to

the power k, so the term is large.

2.4 Improved Bounds

In this section we derive improved bounds for Theorem 2.19. For the sake of clarity

and continuity, we briefly recall its statement.

Theorem 2.19. For every ε > 0 there exists c > 0 with the following property.

Let f : Fnp → [−1, 1] be a c-uniform function. Let L = (L1, . . . , Lm) be a square-

independent system of linear forms in d variables, with Cauchy-Schwarz complexity
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at most 2. Then ∣∣∣∣∣Ex∈(Fn
p )d

m∏
i=1

f(Li(x))

∣∣∣∣∣ ≤ ε.

In Section 2.3, the bounds obtained for the uniformity parameter c in terms of the

error ε were of tower-type as a result of using Theorem 2.11 as a black box. In the

present section we obtain the following improvement.

Theorem 2.21. In Theorem 2.19, the uniformity parameter c can be taken to be a

tower of exponentials of height m+ 1 in the error ε−1.

Of course, Theorem 2.21 immediately translates into a bound on the number of

solutions in any uniform subset A ⊆ Fnp as in Corollary 2.20.

Recall that the core of the proof of Theorem 2.19 consisted of the decomposition

of the function f into a quadratically structured and a quadratically uniform part

in the form of Theorem 2.11. In the next subsection, we shall give an alternative

decomposition for a general bounded function f which is more in the spirit of classical

harmonic analysis. In Section 2.4.2 we make use of the additional assumption that f

is uniform in order to eliminate low-rank quadratic phases from this decomposition.

In Section 2.4.3 we show how square-independence of the linear system comes into

the equation, and finally Section 2.4.4 completes the proof.

2.4.1 Decomposing f into a Sum of Quadratic Phases

Let us start almost completely from scratch and state the U3-inverse theorem [GT05b]

on which the decomposition result Theorem 2.11 is based, and whose history we have

already discussed in Section 2.3.

Theorem 2.22. Let 0 < δ ≤ 1 and let f : Fnp → C be a function with ‖f‖∞ ≤ 1 and

‖f‖U3 ≥ δ. Then there exists a quadratic form q : Fnp → Fp such that

|Exf(x)ωq(x)| ≥ exp(−Cδ−C).

Here, C is a constant that depends on p only.

As we saw in Section 2.3, Green and Tao use the above theorem to decompose an

arbitrary function f into two parts, f1 and f2, where f2 is quadratically uniform and f1

is quadratically structured, in the sense that one can partition Fnp into a small number

of quadratic subvarieties on each of which f1 is constant. In this section, we shall

take a somewhat different approach, more closely analogous to the way conventional
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Fourier analysis is used to prove Roth’s theorem. That is, we shall simply decompose

f into a sum of functions of the form ωqi , where the qi are quadratic forms, plus an

error that we can afford to ignore, and then calculate directly using this expansion

of f .

A big difference between the expansion we shall obtain and the expansion of a func-

tion into Fourier coefficients is that there does not seem to be a canonical way of

doing it, because there are far more than pn different functions of the form ωq. (In

harmonic-analysis terms, we are dealing with an “overdetermined” system.) This

creates difficulties, which Green and Tao dealt with by projecting onto “quadratic

factors”. Here we shall deal with them by applying the Hahn-Banach theorem for

finite-dimensional normed spaces.

Before we can explain why the Hahn-Banach theorem is useful, we must state both it

and one or two other simple results about duality in normed spaces. Throughout the

next few results, we shall refer to an inner product: this is just the standard inner

product on Cn (or later CFn
p ).

Theorem 2.23. Let X = (Cn, ‖.‖) be a normed space and let x ∈ X be a vector with

‖x‖ ≥ 1. Then there is a vector z such that |〈x, z〉| ≥ 1 and such that |〈y, z〉| ≤ 1

whenever ‖y‖ ≤ 1.

Recall that the dual norm ‖.‖∗ of a norm ‖.‖ on Cn is defined by the formula

‖z‖∗ = sup{|〈x, z〉| : ‖x‖ ≤ 1}

For technical reasons, we shall generalize this concept to the situation where the norm

‖.‖ is defined on a subspace V of Cn. Then the dual is a seminorm, given by the

formula

‖z‖∗ = sup{|〈x, z〉| : x ∈ V, ‖x‖ ≤ 1}

The next lemma is a standard fact in Banach space theory.

Lemma 2.24. Let k be a positive integer, and for each i between 1 and k let ‖.‖i be

a norm defined on a subspace Vi of Cn. Suppose that V1 + · · ·+ Vk = Cn, and define

a norm ‖.‖ on Cn by the formula

‖x‖ = inf{‖x1‖1 + · · ·+ ‖xk‖k : x1 + · · ·+ xk = x}

Then this formula does indeed define a norm, and its dual norm ‖.‖∗ is given by the

formula

‖z‖∗ = max{‖z‖∗1, . . . , ‖z‖∗k}
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Proof. It is a simple exercise to check that the expression does indeed define a norm.

Let us begin by supposing that ‖z‖∗i ≥ 1 for some i. Then there exists x ∈ Vi such

that ‖x‖i ≤ 1 and |〈x, z〉| ≥ 1. But then ‖x‖ ≤ 1 as well, from which it follows that

‖z‖∗ ≥ 1. Therefore, ‖z‖∗ is at least the maximum of the ‖z‖∗i .

Now let us suppose that ‖z‖∗ > 1. This means that there exists x such that ‖x‖ ≤ 1

and |〈x, z〉| ≥ 1 + ε for some ε > 0. Let us choose x1, . . . , xk such that xi ∈ Vi for

each i, x1 + · · ·+ xk = x, and ‖x1‖1 + · · ·+ ‖xk‖k < 1 + ε. Then∑
i

|〈xi, z〉| > ‖x1‖1 + · · ·+ ‖xk‖k

so there must exist i such that |〈xi, z〉| > ‖xi‖i, from which it follows that ‖z‖∗i > 1.

This proves that ‖z‖∗ is at most the maximum of the ‖z‖∗i .

Corollary 2.25. Let k be a positive integer and for each i ≤ k let ‖.‖i be a norm

defined on a subspace Vi of Cn, and suppose that V1 + · · ·+ Vk = Cn. Let α1, . . . , αk

be positive real numbers, and suppose that it is not possible to write the vector x as

a linear sum x1 + · · ·+ xk in such a way that xi ∈ Vi for each i and α1‖x1‖1 + · · ·+
αk‖xk‖k ≤ 1. Then there exists a vector z ∈ C such that |〈x, z〉| ≥ 1 and such that

‖z‖∗i ≤ αi for every i—or equivalently, |〈y, z〉| ≤ αi for every i and every y ∈ Vi with

‖y‖i ≤ 1.

Proof. Let us define a norm ‖.‖ by the formula

‖x‖ = inf{α1‖x1‖1 + · · ·+ αk‖xk‖k : x1 + · · ·+ xk = x}

Then our hypothesis is that ‖x‖ ≥ 1. Therefore, by Theorem 2.23 there is a vector z

such that |〈x, z〉| ≥ 1 and |〈y, z〉| ≤ 1 whenever ‖y‖ ≤ 1.

The second condition tells us that ‖z‖∗ ≤ 1, and Lemma 2.24, applied to the norms

αi‖.‖i, tells us that ‖z‖∗ is the maximum of the numbers α−1
i ‖z‖∗i . Therefore, ‖z‖∗i ≤

αi for every i, as stated.

Recall that the difficulty we are trying to deal with is that there is no (known)

canonical way of decomposing a function into functions of the form ωq. Corollary

2.25 is an extremely useful tool for proving the existence of decompositions under

these circumstances. Instead of trying to find a decomposition explicitly, one assumes

that there is no decomposition and uses Corollary 2.25 to derive a contradiction. The

next result illustrates the technique.
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Theorem 2.26. Let f : Fnp → C be a function such that ‖f‖2 ≤ 1. Then for every

δ > 0 and η > 0 there exists M such that f has a decomposition of the form

f(x) =
∑
i

λiω
qi(x) + g(x) + h(x),

where the qi are quadratic forms on Fnp , and

η−1‖g‖1 + δ−1‖h‖U3 +M−1
∑
i

|λi| ≤ 1.

In fact, M can be taken to be exp(C(ηδ)−C).

Proof. Suppose not. Then for every quadratic form q on Fnp let V (q) be the one-

dimensional subspace of CFn
p generated by the function ωq, with the obvious norm:

the norm of λωq is |λ|.

Applying Corollary 2.25 to these norms and subspaces, and also to the L1-norm and

U3-norm defined on all of CFn
p , we deduce that there is a function φ : Fnp → C such

that |〈f, φ〉| ≥ 1, ‖φ‖∞ ≤ η−1, ‖φ‖∗U3 ≤ δ−1 and |〈φ, ωq〉| ≤ M−1 for every quadratic

form q.

Now the fact that |〈f, φ〉| ≥ 1 implies, by Cauchy-Schwarz, that ‖φ‖2 ≥ 1. But we

also know that 〈φ, φ〉 ≤ ‖φ‖U3‖φ‖∗U3 , so ‖φ‖U3 ≥ δ. Applying the inverse theorem to

ηφ, we find that there is a quadratic form q such that |〈φ, ωq〉| ≥ exp(−C(ηδ)−C),

contradicting the fact that it has to be at most M−1.

Just before we continue, let us briefly discuss a more obvious approach to Theorem

2.26 and why it does not work. Theorem 2.22 tells us that every bounded function f

with large U3-norm correlates well with some function of the form ωq. So one might

try a simple inductive argument along the following lines. If ‖f‖U3 is large, then

Theorem 2.26 gives us a quadratic form q1 such that f correlates with ωq1 . So choose

λ1 such that ‖f − λ1ω
q1‖2 is minimized, and let f1 = f − λ1ω

q1 . Because of the

correlation, ‖f1‖2 is substantially less than ‖f‖2. Now repeat for f1, and keep going

until you reach some k for which ‖fk+1‖U3 is small.

The problem with this argument is that we lose control of the boundedness of f . As

we continually subtract the functions λiω
qi , the L2-norm goes down, but the L∞-

norm can go up. And L2 control is not enough for Theorem 2.22. (Green and Tao’s

approach to quadratic Fourier analysis uses averaging projections, which decrease

both the L2- and L∞-norms.)
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2.4.2 Eliminating Low-Rank Quadratic Phases

Our next task is to show that if the function f in Theorem 2.26 is sufficiently uniform,

then a decomposition can be found such that all the quadratic forms qi have high

rank. This is not at all surprising, since f does not correlate with functions ωq for

which q has low rank, but it is not as easy to prove as one might expect, and requires

us to look in detail at sums of the form
∑

i λiω
qi for which all the quadratic forms qi

have rank bounded above by some R.

The rough idea of what we shall do is this. It turns out that technical problems

arise when large numbers of the quadratic forms qi− qj have rank smaller than some

r, which will typically be considerably smaller than R. However, in this situation

another argument can be used. So we shall prove a couple of preliminary lemmas,

one about very low rank forms and one about sums where most of the pairs qi − qj
have reasonably high rank. Later we will combine these two lemmas into one that

applies to all sums. Before all this, however, we prove three very basic technical

lemmas.

Lemma 2.27. Let B1 be a linear factor on Fnp and let f be a function from Fnp
to C. Let ‖.‖ be any translation-invariant norm defined on such functions, and let

g = E(f |B1). Then ‖g‖ ≤ ‖f‖.

Proof. Let V be the subspace of Fnp whose translates are the atoms of B1. Then

g(x) = Ev∈V f(x + v) for every x. Therefore, if we write fv(x) for f(x + v), we find

that g = Evfv and we know that all the functions fv have the same norm as f . The

lemma therefore follows from the triangle inequality.

Lemma 2.28. Let B1 be a linear factor of complexity r on Fnp and let f be a function

from Fnp to C that is constant on the atoms of B1. Then ‖f‖U2 ≥ p−r/4‖f‖2 and

‖f‖∗U2 ≤ pr/4‖f‖2.

Proof. Again let V be the subspace of Fnp whose translates are the atoms of B1 and

let Γ be a linear map from Fnp to Frp with kernel V . Let g : Frp → C be defined by the

formula f(x) = g(Γx), which is well-defined since f is constant on translates of V . It

is easy to see that ‖f‖2 = ‖g‖2 and ‖f‖U2 = ‖g‖U2 . But

‖g‖4
U2 = Ey|Exg(x)g(x+ y)|2 ≥ p−r(Ex|g(x)|2)2 = p−r‖g‖4

2.

This proves the first part.
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For the second part, we know that ‖f‖∗U2 is the maximum of 〈f, g〉 over all functions

g such that ‖g‖U2 ≤ 1. Now replacing g by E(g|B1) does not affect the inner product

〈f, g〉 and does not increase ‖g‖U2 . Therefore, the maximum must be achieved by a

function g that is constant on the atoms of B1. But then |〈f, g〉| ≤ ‖f‖2‖g‖2, which is

at most pr/4‖f‖2‖g‖U2 , by the first part. This completes the proof of the lemma.

The next lemma is a standard fact about Gauss sums, which we have already en-

countered as Lemma 2.29.

Lemma 2.29. Let q be a quadratic form of rank r. Then |Exω
q(x)| = p−r/2.

As is to be expected, the rank of the quadratic form determines the U2- (and hence

the (U2)∗-) norm of the corresponding quadratic phase.

Lemma 2.30. Let q be a quadratic form of rank r. Then ‖ωq‖U2 = p−r/4 and

‖ωq‖∗U2 = pr/4.

Proof. Let β be as in Lemma 2.29. Then for any x, a and b in Fnp we have

q(x)− q(x+a)− q(x+ b) + q(x+a+ b) = β(x+ b, a) + q(a)− q(a)−β(x, a) = β(a, b).

Therefore,

‖ωq‖4
U2 = Ex,a,bω

β(a,b).

Now for each fixed a the function β(a, b) is linear in b. It therefore sums to zero unless

it is identically zero. But β has rank r, so the subspace of all a such that β(a, b) is

identically zero has codimension r. Therefore, the expectation on the right hand side

is p−r. This proves the first part.

Now let f be an arbitrary function from Fnp to C and let us obtain an upper bound

for |〈f, ωq〉|. Let B1 be the linear factor whose atoms are the translates of V . Then

ωq is constant on each atom, so if we let g = E(f |B1) then 〈f, ωq〉 = 〈g, ωq〉. More-

over, ‖g‖U2 ≤ ‖f‖U2 , by Lemma 2.27. But ‖g‖2 ≤ pr/4‖g‖U2 , by Lemma 2.28, and

therefore, by the Cauchy-Schwarz inequality and the fact that ‖ωq‖2 = 1,

|〈f, ωq〉| = |〈g, ωq〉| ≤ pr/4‖g‖U2 ≤ pr/4‖f‖U2 .

It follows that ‖ωq‖∗U2 ≤ pr/4. Moreover, taking f = ωq and using the first part, we

see that this inequality is in fact an equality.

We remark that an alternative argument for Lemma 2.30 is to use Lemma 2.29 to

prove that ωq has pr non-zero Fourier coefficients, each of magnitude p−r/2, and then
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use the fact that ‖f‖U2 = ‖f̂‖4. However, the argument we have used takes place

entirely in physical space and is therefore easier to generalize.

Now we are ready for the case of forms of very low rank.

Lemma 2.31. Let f =
∑

i λiω
qi, where the functions qi are quadratic forms on Fnp

of rank at most r, and
∑

i |λi| ≤M . Then for every δ > 0 there is a linear factor B1

of complexity at most δ−2M4pr such that ‖f − E(f |B1)‖2 ≤ δ.

Proof. By Lemma 2.30 we know that ‖f‖∗U2 ≤ Mpr/4, which is all we need to know

about f . The rest of the proof is a standard Bogolyubov-type argument. First of all,

since ‖f‖U2 = ‖f̂‖4, it follows that ‖f‖∗U2 = ‖f̂‖4/3. By the Fourier inversion formula,

we know that f(x) =
∑

r f̂(r)ω−r.x. Let α = δ3/2p−r/2M−2 and let K = {r : |f̂(r)| ≥
α}. Then we can decompose f as a sum f1 + f2, where f1(x) =

∑
r∈K f̂(r)ω−r.x and

f2(x) =
∑

r/∈K f̂(r)ω−r.x.

Let V be the subspace of all x such that r.x = 0 for every r ∈ K. Since ‖f̂‖4/3 ≤
Mpr/4, we know that |K| ≤ M4/3pr/3α−4/3. Therefore, V has codimension at most

M4/3pr/3α−4/3 = δ−2M4pr, which is also an upper bound for the complexity of the

linear factor B1 defined by V . Since f1 depends only on the values of the functions

ωr.x with r ∈ K, f1 is constant on the atoms of B1.

As for f2, we can bound its L2 norm as follows.

‖f2‖2
2 = ‖f̂2‖2

2 ≤ ‖f̂2‖4/3
4/3‖f̂2‖2/3

∞ ≤ α2/3M4/3pr/3 ≤ δ.

To complete the proof it remains to observe that E(f |B1) is the closest function (in

L2) to f that is constant on the atoms of B1. Therefore, the statement of the lemma

follows from our calculations.

Next, we deal with sums of forms that mostly have differences of high rank.

Lemma 2.32. Let f =
∑

i λiω
qi be a function with

∑
i |λi| ≤ M , let r be an integer

and let Z be the set of pairs (i, j) such that the rank of qi− qj is at most r. Let η > 0

and suppose that
∑

(i,j)∈Z |λi||λj| ≤ η. Then ‖f‖2
2 ≤ η + p−r/2M2.

Proof. By Lemma 2.29,

‖f‖2
2 =

∑
i,j

λiλjExω
qi(x)−qj(x) ≤

∑
(i,j)∈Z

|λi||λj|+ p−r/2
∑

(i,j)/∈Z

|λi||λj|.

By hypothesis, this is at most η + p−r/2M2, as claimed.
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We are now ready for a combined lemma that will deal with arbitrary sums of forms

of rank at most R.

Lemma 2.33. Let M ≥ 1 and let f =
∑

i λiω
qi be a function with

∑
i |λi| ≤ M ,

where each qi is a quadratic form on Fnp of rank at most R. Let δ > 0 and let

s = 218(M/δ)12. Then there is a linear factor B of complexity at most 8(M/δ)2(R+s)

such that ‖f − E(f |B)‖2 ≤ δ.

Proof. Let η = δ2/8M , let r be such that p−r/2M2 = δ2/8 and let s = η−4M4pr. (It

can be checked that this definition of s agrees with the definition in the statement.

These numbers are chosen so that we get the right bounds out of Lemmas 2.32 and

2.31, as will become clear.)

Let us define a vertex-weighted graphG as follows. The vertices ofG are the quadratic

forms qi, and the weight of qi is |λi|. And qi is joined to qj if and only if the rank of

qi − qj is at most r. Let V be the vertex set of G, and define the degree of a vertex

qi to be the sum of the weights of those qj that are joined to qi. (We will allow G to

have loops, so qi is joined to itself.)

Suppose G has a vertex qi of degree at least η. Then let V1 be the neighbourhood of

qi, and remove V1 from the vertex set of G. Now repeat this process with the induced

subgraph with vertex set V \ V1 (and the same weights). Continuing in this way we

find disjoint sets V1, V2, . . . , Vk and W such that the weight of each Vi is at least η

and every vertex in W has degree less than η.

Let us now focus on V1. If qi is the form of which V1 is the neighbourhood, then

the rank of qi − qj is at most r for every qj ∈ V1. Therefore, if we set g1 to equal∑
j λjω

qi−qj , Lemma 2.31 tells us that there is a linear factor B1 of complexity at

most s such that ‖g1 − E(g|B1)‖2 ≤ η2. It follows that ‖g1 − E(g1|B)‖2 ≤ η2 for any

linear factor B that refines B1.

Now let f1 =
∑

qj∈V1
λjω

qj = ωqig1. Since qi has rank at most R, there is a linear

factor B′1 of complexity at most R on the atoms of which qi is constant. Therefore, if

B′′1 is the smallest common refinement of B1 and B′1, we find that B′′1 has complexity

at most R + s and that ‖f1 − E(f1|B′′1)‖2 ≤ η2. (Here we have also used the fact

that the modulus of ωqi is everywhere 1.) Again, this statement is also true for every

refinement B of B′′1 .

Let us do the same for each Vi. That is, fi =
∑

qj∈Vi
λjω

qj and B′′i is a linear factor

of complexity at most R + s such that ‖fi − E(f |B′′i )‖2 ≤ η2. Let B1 be a common

refinement of all the linear factors B′′i . Then ‖fi − E(f |B)‖2 ≤ η2 as well, and B has

complexity at most η−1M(R + s).
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Finally, let g = f − (f1 + · · · + fk). Then g is a sum of the form
∑

i∈W λiω
qi ,

where each qi has degree less than η in the subgraph of G induced by W . If we

let Z be the set of all pairs (i, j) ∈ W 2 such that qi − qj has rank at most r, then∑
(i,j)∈Z |λi||λj| ≤ ηM ≤ δ2/8. From Lemma 2.32 and our choice of r, it follows that

‖g‖2
2 ≤ δ2/4.

We are now more or less done. We have

‖f − E(f |B)‖2 ≤
∑
i

‖fi − E(fi|B)‖2 + ‖g − E(g|B)‖2 ≤ η−1Mη2 + δ/2 ≤ δ.

It remains to note that η−1M(R+ s), our upper bound for the complexity of B, is at

most 8M2(R + s)/δ2, as stated.

Needless to say, the precise form of the bound for the complexity of B is not important.

What does matter, however, is the way it depends on R. In particular, for large R

the bound is significantly better than the bound of δ−2M4pR that we could read out

of Lemma 2.31. If we regard δ and M as fixed, then that bound is exponential in R,

whereas we have just proved a linear bound. (However, M and s will be rather large

constants, so this is not quite as good as it sounds.)

Theorem 2.34. Let f : Fnp → C be a function such that ‖f‖2 ≤ 1. Then for every

δ > 0, there exists a constant M such that for every R0 there exists a constant c > 0

with the following property. If ‖f‖U2 ≤ c then f has a decomposition of the form

f(x) =
∑
i

λiω
qi(x) + g(x) + h(x),

where the qi are quadratic forms on Fnp , all of which have rank at least R0, and

δ−1‖g‖1 + δ−1‖h‖U3 +M−1
∑
i

|λi| ≤ 17.

Moreover, M can be taken to be exp(C(1/δ2)C) and c can be taken to be δp−R/4, where

R ≤ (223(M/δ)12)M/δR0.

Proof. Let us begin by applying Theorem 2.26 with η replaced by δ. Then we obtain

a decomposition of the required kind, except that we do not know anything about

the ranks of the quadratic forms qi and we know that

δ−1‖g‖1 + δ−1‖h‖U3 +M−1
∑
i

|λi| ≤ 1.
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However, now we have the extra hypothesis that ‖f‖U2 ≤ c.

The next step is to find a number R1 ≥ R0 such that∑
{|λi| : R1 ≤ r(qi) < θR1 + t} ≤ δ,

where we have written r(qi) to stand for the rank of qi, we have set θ := 221(M/δ)14

and t is chosen so that pt/4 > M/δ. Since t is much less than θ and we know that∑
i |λi| ≤M , we must be able to find such an R1 with R1 ≤ (2θ)M/δR0. Let us define

R to be θR1. It is not hard to check that R satisfies the inequality stated in the

theorem.

Now let S = {i : r(qi) < R1} and L = {i : r(qi) ≥ R + t}. (These letters are chosen

to stand for “small” and “large”, respectively.) Then∑
i

λiω
qi =

∑
i∈S

λiω
qi +

∑
i∈L

λiω
qi + g1,

where ‖g1‖1 ≤ δ. Let fS =
∑

i∈S λiω
qi and fL =

∑
i∈L λiω

qi . Then we have shown

that f has a decomposition of the form fS + fL + g + h, where fS is made out of

functions ωq with q of rank at most R1, the forms used for fL have rank at least R+t,

the function g (which is the new name we have given to the old g + g1) has L1-norm

at most 2δ, and ‖h‖U3 ≤ δ.

Now Lemma 2.33 gives us a linear factor B of complexity at most 8(M/δ)2(R1 + s),

where s = 218(M/δ)12, such that ‖fS − E(fS|B)‖2 ≤ δ. In order to simplify matters,

let us bound this complexity above by θR1 = R.

So now we have a decomposition f = E(fS|B) + fL + g + h, where fS, fL and h are

as before and ‖g‖1 ≤ 3δ. (We have added fS − E(fS|B) to the old g and used the

fact that its L1-norm is at most its L2-norm.)

Without the term f ′S := E(fS|B), we would be done. To complete the proof we

shall show that fS can be absorbed into the error term g + h. More precisely, let

us suppose that we cannot write f ′S as a sum g′ + h′ with ‖g′‖1 ≤ 6δ and ‖h′‖U3 ≤
6δ. Then by Corollary 2.25 there exists a function φ such that |〈f ′S, φ〉| ≥ 1 and

6δ‖φ‖∞ + 6δ‖φ‖∗U3 ≤ 1.

Next, we apply Lemma 2.27, which allows us to replace φ by E(φ|B). The reason for

this is that the averaging projection does not increase the L∞- or (U3)∗- norms and

does not change the inner product 〈f ′S, φ〉. Let us therefore assume that φ is constant

on the atoms of B.
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We are a short step away from the contradiction we are looking for. Since ‖φ‖∞ ≤
1/6δ and ‖g‖1 ≤ 3δ, it follows that |〈g, φ〉| ≤ 1/2. Similarly, |〈h, φ〉| ≤ 1/6 because

‖φ‖∗U3 ≤ 1/6δ and ‖h‖U3 ≤ δ.

Lemma 2.28 implies that ‖φ‖∗U2 ≤ pR/4‖φ‖2, which is at most pR/4‖φ‖∞, which we

know is at most pR/4/6δ. Therefore, |〈f, φ〉| ≤ cpR/4/6δ. By our choice of c, this is

at most 1/6.

Finally, Lemma 2.30 and the triangle inequality imply between them that ‖fL‖U2 ≤
p−(R+t)/4M . Therefore, |〈fL, φ〉| ≤ pR/4p−(R+t)/4M/6δ, which, by our choice of t, is

strictly less than 1/6. This is a contradiction because f = f ′S + fL + g + h and we

have now shown that |〈f ′S, φ〉| > |〈f, φ〉|+ |〈fL, φ〉|+ |〈g, φ〉|+ |〈h, φ〉|.

This contradiction shows that we can after all write f ′S as a sum g′+h′ with ‖g′‖1 ≤ 6δ

and ‖h′‖U3 ≤ 6δ. Therefore, we can write f = fL + g + h with ‖g‖1 ≤ 9δ and

‖h‖U3 ≤ 7δ, which implies the result.

Once again, the exact bounds we obtain are not too important, but we do care about

their rough order of magnitude and the constants on which they depend. Since M

is exponential in δ−2, R is exponential in M and c depends exponentially on R,

the dependence of c on δ in Theorem 2.34 has the form c ≤ p− exp exp(C/δ2) for some

absolute constant C. That is, it has a trebly exponential dependence on δ.

Theorem 2.34 will be our main tool. Before we apply it to systems of square-

independent linear forms, we need a couple of lemmas to help us with our calcu-

lations.

2.4.3 Identifying a High-Rank Bilinear Form

The first lemma is simply a useful version of the statement that the function ωβ(x,y)

is quasirandom if the bilinear form β has sufficiently high rank.

Lemma 2.35. Let β be a bilinear form of rank at least r and let g and h be two

functions with ‖g‖∞ and ‖h‖∞ at most 1. Then |Ex,yω
β(x,y)g(x)h(y)| ≤ p−r/2.

Proof. This result can be proved quite easily, either directly (as we shall do) or indi-

rectly, by first estimating the rectangle norm of the function and applying standard

results in the theory of quasirandomness. Either way, the proof is a standard appli-

cation of the Cauchy-Schwarz inequality. We have

|Ex,yω
β(x,y)g(x)h(y)|2 ≤ Ex|Eyω

β(x,y)g(x)h(y)|2 ≤ Ex|Eyω
β(x,y)h(y)|2,
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where the latter inequality uses the boundedness of g, which in turn precisely equals

Ey,y′h(y)h(y′)Exω
β(x,y−y′) ≤ Ey,y′|Exω

β(x,y−y′)|.

Now β(x, y − y′) depends linearly on x, so Exω
β(x,y−y′) is zero unless ωβ(x,y−y′) is

constant. Let x0 be an arbitrary element of Fnp and let β′(x, y) = β(x, y)− β(x0, y).

Then β′ also has rank at least r, and if β(x, y) is constant in x then β′(x, y) is zero

for every x.

Therefore, Exω
β(x,y−y′) is zero unless y−y′ belongs to the annihilator of β′. Otherwise,

it has modulus 1. Since β has rank at least r, the probability, for each y, that y − y′

belongs to the annihilator is at most p−r. Therefore,

Ey,y′ |Exω
β(x,y−y′)| ≤ p−r.

The result follows on taking square roots.

In Section 2.3 we had a condition on the rank of the quadratic factor appearing in the

decomposition of f , which enabled us to say that any non-trivial linear combination

of quadratic forms had high rank. Forcing the factor to satisfy this condition was

precisely what lead to tower-type bounds in Theorem 2.19. Here we do better because

we have shown that the additional assumption of uniformity allows us to consider

sums of high-rank quadratic phases only. But when we compute the average along

a linear system, we need to multiply out a product of sums of high-rank quadratic

phases, and hence need to consider their linear combinations. What can we say about

their ranks? Precisely nothing, as the example of the two high-rank quadratic phases∑n
i=1 x

2
i and

∑n
i=1 x

2
i − x2

1 shows whose difference has rank 1. However, fortunately

it suffices to be able to pick out one bilinear form of high rank in order to evaluate

an average. This is the content of the next lemma.

Lemma 2.36. For each pair (u, v) ∈ [d]2 let βuv be a bilinear form on Fnp , and suppose

that the rank of βuv is at least r for at least one pair (u, v). Then∣∣∣Exω
P

u,v βuv(xu,xv)
∣∣∣ ≤ p−r/2.

Proof. Let us assume first that βuu has rank at least r for some u. If we fix the values

of xv for every v 6= u, then the sum in the exponent takes the form βuu(xu, xu)+γ(xu)

for some linear functional γ. Therefore, by Lemma 2.29 the expectation over xu has

modulus at most p−r/2. Since this is true for every choice of the other xv, the whole

expectation has modulus at most p−r/2.
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Now let us assume that βuv has rank at least r for some pair (u, v) with u 6= v. This

time, let us fix all the variables apart from xu and xv. Now the sum in the exponent

takes the form

2βuv(xu, xv) + φ(xu) + ψ(xv)

so by Lemma 2.35 the expectation over xu and xv is at most p−r/2. Again, since this

is true for every possible choice of the other variables, the whole expectation is at

most p−r/2.

In the next two lemmas we shall show that if we have a square-independent system L
and a set of bilinear forms of high rank, then at least one linear combination of these

bilinear forms resulting from the average over L must have fairly high rank. This is

the only place in the argument where we use the fact that L is square-independent.

Lemma 2.37. Let β1, . . . , βm be bilinear forms of rank at least r. Let B be an

invertible m × m matrix with entries Bij ∈ Fp. Then at least one of the bilinear

forms ηj =
∑m

i=1Bijβi has rank at least r/m.

Proof. It follows from the assumption that B is invertible that βj = B−1
ij ηj for all

j = 1, . . . ,m. But the rank of a linear combination of the ηj is clearly at most the

sum of the ranks of the ηj. Hence there must exist an index j for which ηj has rank

at least r/m.

Lemma 2.38. Suppose that L is a square-independent system consisting of linear

forms Li(x) =
∑d

u=1 ciuxu for i = 1, . . . ,m. Suppose that for each i = 1, . . . ,m, each

of the (not necessarily distinct) bilinear forms βi has rank at least r. Then at least

one of the forms βuv :=
∑m

i=1 ciucivβi has rank at least r/m.

Proof. For each i = 1, . . . ,m, let Ci denote the matrix (ciuciv)u,v. Square-independence

implies that the matrices Ci are linearly independent over Fp. Now consider the

d2 × m matrix whose ((u, v), i) entry is ciuciv. The columns of this matrix are the

matrices C1, . . . , Cm. The rows are the vectors Cuv = (c1uc1v, c2uc2v, . . . , cmucmv).

Since row-rank equals column-rank, we can find a collection of m linearly indepen-

dent vectors Cuv. It now suffices to apply Lemma 2.37 to the corresponding bilinear

forms βuv =
∑m

i=1(Cuv)iβi to obtain the result.

2.4.4 Proof of Theorem 2.21

We are now in a position to put the technical results from the preceding two subsec-

tions together to give an improved bound for Theorem 2.19.
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Proof of Theorem 2.21. Given ε > 0 and f : Fnp → [−1, 1] with ‖f‖U2 ≤ c (where c

will be chosen in terms of the parameter ε later), we first apply Theorem 2.34 with

δ1 := ε/(68m) to obtain a decomposition

f = f1 + g1 + h1,

where f1 =
∑

j λjω
q
(1)
j with

∑
j |λj| ≤ 17M1, ‖g1‖1 ≤ 17δ1 and ‖h1‖U3 ≤ 17δ1. We

have carefully ensured that each form q
(i)
j has rank at last R0 for some R0 to be chosen

later. M1 is a function of δ1 only, and can be taken to equal exp(Cδ−2C). Recall that

we want to show that

Ex∈(Fn
p )d

m∏
i=1

f(Li(x))

is bounded above in modulus by ε for a sufficiently uniform function f . We first

replace the last f in the product by g1 +h1. The product involving g1 yields an error

term of 17δ1 since all the remaining factors have L∞-norm bounded by 1, while the

product involving h1 yields an error of 17δ1 by Theorem 2.4. Our choice of δ1 implies

that the sum of these two errors is at most ε/(2m).

Now we apply Theorem 2.34 again, this time with δ2 := ε/(68mM1), to obtain a

decomposition

f = f2 + g2 + h2,

where f2 =
∑

j λjω
q
(2)
j with

∑
j |λj| ≤ 17M2, ‖g2‖1 ≤ 17δ2 and ‖h2‖U3 ≤ 17δ2. When

replacing f with g2 + h2, the product involving g2 now contributes an error term of

at most 17δ2M1 (since ‖f1‖∞ ≤M1). In order to estimate the contribution from the

product involving h2, we require a slight generalization of Theorem 2.4 to functions

whose L∞-norm is bounded, but not necessarily by the constant 1. The following

statement follows straightforwardly by applying Theorem 2.4 to the functions gi :=

fi/‖fi‖∞.

Theorem 2.39. Let f1, . . . , fm be functions from Fnp with ‖fi‖∞ ≤ κi for each i,

and let L be a linear system of CS-complexity 2 consisting of m forms in d variables.

Then ∣∣∣∣∣Ex∈(Fn
p )d

m∏
i=1

fi(Li(x))

∣∣∣∣∣ ≤ min
i
‖fi‖U3

∏
j 6=i

κj.

It follows that the contribution from the product involving h2 is bounded above by

17δ2M1. Therefore the total error incurred is at most 34δ2M1, which is at most

ε/(2m) by our choice of δ2.

When we apply Theorem 2.34 to the kth instance of f in the product, we need to do
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so with δk satisfying 34δkM1 . . .Mk−1 ≤ ε/(2m) for k = 2, . . . ,m. This ensures that

the initial average can be replaced by

Ex∈(Fn
p )d

m∏
i=1

fi(Li(x))

with an error of at most ε/2. Since each Mk is exponential in δ−1
k , and since δ1 was

chosen proportional to ε, it is easy to see that Mm will be bounded above by a tower

of exponentials of ε−1 of height m− 1.

We now concentrate on estimating the average over the product of the fi, which we

recall was of the form
∑

j λ
(i)
j ω

q
(i)
j with

∑
j |λ

(i)
j | ≤ 17Mi. Moreover, each q

(i)
j had

rank at least R0. We can therefore write

Ex∈(Fn
p )d

m∏
i=1

fi(Li(x)) =
∑

j1,...,jm

λ
(1)
j1
. . . λ

(m)
jm

Ex∈(Fn
p )d ω

Pm
i=1 q

(i)
ji

(Li(x)).

From now on we shall fix a choice of j1, . . . , jm, and simply write Qi for the quadratic

form q
(i)
ji

as well as βi for the associated bilinear form. Using the co-ordinatewise

representation
∑d

u=1 ciuxu of Li(x), the expectation over x in the preceding expression

becomes

Ex∈(Fn
p )d ω

Pd
u,v=1

Pm
i=1 ciucivβi(xu,xv) = Ex∈(Fn

p )d ω
Pd

u,v=1 βuv(xu,xv),

where we have set βuv :=
∑m

i=1 ciucivβi. At this point we are going to make use of

our results from Section 2.4.3. In particular, since each βi has rank at least R0 and

the L1, . . . , Lm are square-independent, we can apply Lemma 2.37 to conclude that

at least on the forms βuv has rank at least R0/m. Lemma 2.36 then tells us that the

expectation is bounded above in modulus by p−R0/(2m). It therefore follows that∣∣∣∣∣Ex∈(Fn
p )d

m∏
i=1

fi(Li(x))

∣∣∣∣∣ ≤ p−R0/(2m)

m∏
i=1

Mi,

and with hindsight we choose R0 to be such that 2Mm
m ≤ εpR0/(2m) in every application

of Theorem 2.34. In order to do so, we require that f satisfy ‖f‖U2 ≤ c with

c = δmp
R/4, where R ≤ (223(Mm/δm)12)Mm/δmR0. We observed earlier that Mm was

bounded above by a tower of exponentials of height m− 1 in ε−1, and conclude that

c can therefore be taken to be a tower of exponentials of height m+ 1 in ε−1.
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2.4.5 Remarks

The improvement in the bounds for Theorem 2.19 which we derived in this section

is due to the fact that we were able to make use of the additional assumption that

f is uniform to produce a decomposition of f in which only the high-rank quadratic

phases played a rôle.

In a forthcoming paper [GW07a], we improve the bound for Theorem 2.19 even

further. We show that c can in fact be taken to be a double exponential in ε−1.

This is achieved by making more refined use of Theorem 2.22, or more precisely, a

slightly stronger form of the inverse theorem which Green and Tao [GT05a] mention

but do not formally state. What they do state in [GT05a] is the following “localised”

version.

Theorem 2.40. Let f : Fnp → C be a function such that ‖f‖∞ ≤ 1 and ‖f‖U3 ≥ δ.

Then there exists a subspace V of Fnp of codimension at most (2/δ)Cp, where Cp is a

constant that depends only on p, such that

Ey‖f‖u3(y+V ) ≥ (δ/2)Cp ,

where ‖f‖u3(y+V ) denotes the maximum of |Ex∈y+V f(x)ω−q(x)| taken over all quadratic

forms q on y + V .

Note that the average maximum correlation we obtain on the coset of a subspace

is polynomial in δ−1, at the cost of a polynomial loss in the codimension of this

subspace. It is not difficult to see that this implies Theorem 2.22 by extending the

quadratic phase to all of Fnp , which can be achieved in a number of ways.

On closer inspection, Theorem 2.40 says that for each y, we can find a local quadratic

phase qy defined on y+ V such that |Ex∈y+V f(x)ωqy(x)| is at least (δ/2)Cp . In fact, it

turns out (and is remarked upon in [GT05a]) that we can do this in such a way that

the quadratic parts of the quadratic phase functions qy are all the same.

This observation allows us to prove a version of Theorem 2.34 in which each quadratic

phase is replaced by a so-called quadratic average of the form Q(x) = Ey∈x−V ω
qy(x),

where each qy(x) has the form q(x − y) + φy(x − y) for some quadratic function

q : V → Fp and some linear functionals φy : V → Fp. By arguments similar to the

ones in Section 2.4.2 each such average can be taken to be of high rank.

It turns out that this more local approach also generalizes more easily to ZN as global

correlation is too much to hope for in this setting (see the remarks in Section 2.3.2).

In ZN we do not have the vector space structure of Fnp and its plentiful supply of
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subspaces at our disposal. Instead, we need to make do with so-called Bohr sets,

which mimic an approximate subgroup structure. Almost all local versions of the

lemmas proved in this section have analogues in ZN when one replaces a subspace V

by a Bohr neighbourhood B. In particular, one can define quadratic averages with

Bohr sets as their bases. One of the main difficulties is to establish a meaningful

definition of the rank of a quadratic phase relative to the Bohr set on which it is

defined. The details are due to appear in [GW07a].

Acknowledgements. The author would like to thank Tim Gowers for his commit-

ment to the collaboration that led to the results discussed in this chapter.

2.5 The Ergodic Analogue

In this expository section we outline the analogies between two recent preprints by

Leibman [Lei07] and Gowers and the author [GW07b]. Both papers independently

describe two manifestations of the same phenomenon, the former in the context of

ergodic theory and the latter in arithmetic combinatorics. In their respective settings,

they address the question after the degree of the minimal characteristic factor of a

multiple ergodic average along a system of linear forms, or the minimal degree of

uniformity needed to accurately count solutions to the corresponding system of linear

equations. The exposition is aimed at readers with a combinatorics background and

limited prior exposure to ergodic theory.

In [GW07b] (and indeed, the earlier sections of this chapter) we investigated the

following question: for which types of systems of linear equations can we guarantee

that any subset of Fnp which is uniform of degree k contains the “expected” number

of solutions, that is, the number of solutions one would expect in a random subset of

the same density. By uniform of degree k we mean that the balanced function of the

set is small in the so-called Uk+1-norm, which originated in the work of Gowers on

Szemerédi’s Theorem for long arithmetic progressions [Gow01] and will be recalled

at the start of Section 2.5.2.

To make this question more precise, we developed a new notion of complexity of a

linear system which we called the true complexity. For example, we defined a system

of linear forms L = (L1, . . . , Lm) on (Fnp )d to have true complexity 1 if and only if it

contains the “correct” number of solutions in any uniform set. More generally, we

say a system has true complexity k if k is the least integer such that the average over

the linear forms is governed by the Uk+1-norm.
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We then proceeded to show, under one additional assumption, that linear systems

of true complexity 1 are precisely those for which the squares of the linear forms

defining the system are linearly independent. It is straightforward to show that

square-independence is a necessary condition for true complexity 1 by adapting a

well-known construction used to show that there are uniform sets which contain too

many 4-term progressions. This was achieved in Section 2.3.1. The precise qualitative

version of the fact that square-independence is also a sufficient condition for true

complexity 1 (again, under one additional assumption) was stated as follows.

Theorem 2.19. For every ε > 0 there exists c > 0 with the following property. Let

f : Fnp → [−1, 1] satisfy ‖f‖U2 ≤ c. Let L = (L1, . . . , Lm) be a square-independent

system of linear forms in d variables of Cauchy-Schwarz complexity at most 2. Then∣∣∣∣∣Ex1,...,xd∈Fn
p

m∏
i=1

f(Li(x1, . . . , xd)

∣∣∣∣∣ ≤ ε.

In other words, L has true complexity 1.

Recall that the Cauchy-Schwarz complexity of a linear system described precisely the

condition that enabled us to prove the following theorem via a simple Cauchy-Schwarz

argument.

Theorem 2.4. Let f1, . . . , fm be functions from Fnp to [−1, 1], and let L be a linear

system of Cauchy-Schwarz complexity k consisting of m forms in d variables. Then

∣∣∣Ex1,...,xd∈ZN

m∏
i=1

fi(Li(x1, ..., xd))
∣∣∣ ≤ min

i
‖fi‖Uk+1 .

The additional hypothesis of Cauchy-Schwarz complexity 2 in Theorem 2.19 is a

technical yet important condition. It stems from the fact that when considering an

average such as the one in Theorem 2.19, it is convenient to decompose the function f

into a quadratically structured part and a part that is small in U3, and then Theorem

2.4 tells us that for systems of Cauchy-Schwarz complexity 2, only the contribution

from the structured part needs to be considered. Unfortunately, we do not currently

have such a decomposition for higher-order Uk-norms, hence the restriction to systems

of Cauchy-Schwarz complexity 2.

Example 2.41. Linear systems that were previously thought to require quadratic

Fourier analysis but that have been shown to be governed by the U2-norm by Theorem

2.19 include the systems L1 = (x, n,m, x + n + m,x + 2n−m,x + 2m− n) and the

translation-invariant L2 = (x, x+ n, x+m,x+ n+m,x+ n−m,x+m− n).
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From Theorem 2.19 we deduced the following corollary concerning the number of

solutions of a square-independent linear system in uniform subsets of Fnp .

Corollary 2.20. For every ε > 0 there exists c > 0 with the following property. Let

A be a subset of Fnp of density α whose balanced function has U2-norm bounded by c.

Let L = (L1, . . . , Lm) be a square-independent system of linear forms in d variables,

with Cauchy-Schwarz complexity at most 2. Let (x1, . . . , xd) be a random element of

(Fnp )d. Then the probability that Li(x1, . . . , xd) ∈ A for every i differs from αm by at

most ε.

For a detailed discussion of the context of these results and their (conjectured) higher-

order generalizations the reader is referred to the introduction of this chapter.

Let us now have a look at the ergodic world. Ergodic theorists are concerned with

the convergence (in L∞, L1 or L2) of multiple ergodic averages of the form

1

Nd

N∑
n1,...,nd=1

T p1(n1,...,nd)f1(x) T p2(n1,...,nd)f2(x) . . . T pm(n1,...,nd)fm(x),

where T is a measure preserving transformation on a probability measure space

(X,B, µ), the functions fi belong to L∞(µ) and the pi are polynomials on Zd. For

example, the case where d = 1, pj(n) = jn for j = 1, . . . , k and fi equals the in-

dicator function 1A of a set A ∈ B with µ(A) > 0 appeared in Furstenberg’s proof

of Szemerédi’s Theorem [Fur77], which states that any subset of Z of positive upper

density contains an arithmetic progression of length k. More precisely, Furstenberg

proved that the lim infN→∞ of the average

1

Nd

N∑
n1,...,nd=1

∫
1A(x)T n1A(x) T 2n1A(x) . . . T kn1A(x)dµ(x), (2.1)

was strictly greater than 0. Ergodic theorists were the first to prove a multi-dimensional

Szemerédi Theorem, as well as polynomial extensions [BL96] which remain beyond the

reach of arithmetic combinatorics to date. However, the fact that only translation-

invariant systems can be studied using such averages and, more importantly, the

lack of quantitative bounds (but see [Tao06]) pose serious limitations and more than

justify the search for alternative approaches via arithmetic combinatorics.

The question in ergodic theory which is analogous to the one we have been studying

in this chapter concerns so-called characteristic factors for ergodic averages of the
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form

1

Nd

N∑
n1,...,nd=1

TL1(n1,...,nd)f1(x) TL2(n1,...,nd)f2(x) . . . TLm(n1,...,nd)fm(x),

where T is a measure-preserving map on a probability measure space (X,B, µ), the

functions fi belong to L∞(µ) and the Li are linear forms on Zd. Very roughly speak-

ing, a characteristic factor is a system onto which one can project without losing any

information about the convergence of the average under consideration. The aim is to

find characteristic factors which possess enough structure to allow one to establish

convergence of the above average in a rather explicit way. For example, it was shown

by Host and Kra [HK05] and Ziegler [Zie07] independently that when the linear forms

L1, . . . , Lm describe an arithmetic progression of length m, there exists a character-

istic factor for the corresponding average which is isomorphic to an inverse limit of

a sequence of (m− 2)-step nilsystems. For m = 4, these very structured objects are

closely related to the quadratic factor introduced in Section 2.3.2, on which compu-

tations can be performed rather straightforwardly. After these remarks it should not

be surprising that there is a notion of degree associated with a characteristic factor.

What we have called the true complexity of a linear system is closely analogous to

the degree of the minimal characteristic factor.

In a recent preprint [Lei07], Leibman characterizes the degree of the minimal char-

acteristic factor for general linear as well as certain polynomial systems. Using his

examples and our terminology, the system given by L3 = (x + n + m,x + 2n +

4m,x + 3n + 9m,x + 4n + 16m,x + 5n + 25m,x + 6n + 36m) has true complex-

ity strictly greater than 1 (in fact, equal to 2), while the ever so slightly different

L4 = (x+n+m,x+2n+4m,x+3n+9m,x+4n+16m,x+5n+25m,x+6n+37m) has

true complexity 1. The crucial distinguishing factor of L5 is that its squares are inde-

pendent, or, as Leibman puts it, that the six vectors (1, 1, 1, 1, 1, 1), (1, c1, c2, . . . , c5),

(1, d1, d2, . . . , d5), (1, c2
1, c

2
2, . . . , c

2
5), (1, d2

1, d
2
2, . . . , d

2
5) and (1, c1d1, c2d2, . . . , c5d5) span

R6. (Here ci, di are the cofficients of n,m, respectively, in the linear form i + 1.

Note that the special form of the ergodic average forces one to consider translation-

invariant systems only, which leads to a formulation of square-independence that is

particular to systems where one variable has coefficient 1 in all linear forms.)

In his proof of Szemerédi’s Theorem, Furstenberg [Fur77] developed an important

tool known as the Correspondence Principle, which allowed him to deduce Szemerédi’s

combinatorial statement from the recurrence properties of a dynamical system. While

the Correspondence Principle has allowed us to deduce many a combinatorial appli-
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cation from results in ergodic theory, our result in the ZN case does not appear to

follow from Leibman’s result by a standard application. We shall briefly discuss this

issue in the final section.

For an excellent introduction to ergodic theory and its connections with additive

combinatorics we refer the interested reader to [Kra06]. In this short note, we make

no attempt to give a comprehensive overview of the subject but confine ourselves

to describing the concepts needed to understand the parallels between [Lei07] and

[GW07b].

2.5.1 Basic Concepts in Ergodic Theory

Ergodic theory is the study of the dynamical behaviour of certain probability measure

preserving systems.

Definition 2.42. A probability measure-preserving system is a quadruple (X,X , µ, T )

where (X,µ) is a probability space and T : X → X is a bijective, measurable,

measure-preserving transformation. This means that for all A ∈ X , T−1A ∈ X
and µ(T−1A) = µ(A).

For our purposes, we may always assume that the system (X,X , µ, T ) is an ergodic

system, which means that the only sets which are left invariant under the action of

T have measure 0 or are in fact the whole space. This assumption is justified by a

principle called ergodic decomposition, which says, in very rough terms, that one can

decompose any measure preserving system into a number of ergodic ones. For a clear

explanation see page 17 of [CFS82].

Example 2.43. Let X = T be equipped with the Borel σ-algebra X and Haar measure

µ. Take T : X → X to be the rotation Tx = x + α mod 1 for some α ∈ R. The

measure preserving system (X,X , µ, T ) is ergodic if and only if α is irrational.

The next important notion we need is that of a factor of a measure preserving system,

that is, a subsystem which has the obvious desirable properties.

Definition 2.44. A factor of a system (X,X , µ, T ) can be defined in several equiva-

lent ways. Any T -invariant sub-σ-algebra Y of X is a factor of X . A factor can also

be thought of as a system (Y,Y , ν, S) and a measurable map π : X → Y , the factor

map, such that µ ◦ π−1 = ν and S ◦ π = π ◦ T for µ-almost every x ∈ X.

We shall be using the same letter T to denote both the transformation in the original

system and the transformation on the factor.
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Example 2.45. Let X = T × T be equipped with the Borel σ-algebra X and Haar

measure µ. Take T : X → X to be the transformation T (x, y) = (x + α, y + x) for

some α ∈ R. Then T together with the rotation x 7→ x+ α is a factor of X.

As already mentioned in the introduction, in order to study multiple ergodic averages

it is useful to work on a so-called characteristic factor. A factor is said to be charac-

teristic for an ergodic average if we can study the average of the projection onto the

factor without losing any information about the convergence of the average. In other

words, focusing on L2-convergence we make the following definition.

Definition 2.46. We say a factor Y of X is characteristic for the average

1

Nd

N∑
n1,...,nd=1

T p1(n1,...,nd)f1(x)T p2(n1,...,nd)f2(x)...T pm(n1,...,nd)fm(x)

if and only if the difference with

1

Nd

N∑
n1,...,nd=1

T p1(n1,...,nd)E(f1|Y)(x)T p2(n1,...,nd)E(f2|Y)(x)...T pm(n1,...,nd)E(fm|Y)(x)

tends to 0 in L2(µ).

Equivalently, Y is characteristic forX if the average converges to 0 whenever E(fi|Y) =

0 for at least one i = 1, 2, . . . ,m. Here we have written E(f |Y) for the conditional ex-

pectation of f with respect to the factor Y , that is, the usual Hilbert space projection

of f onto the sub-σ-algebra Y .

We have already mentioned that in arithmetic combinatorics, in order to show that

a given linear system is governed by some uniformity norm all one needs is the

Cauchy-Schwarz Inequality, multiple applications of which yield Theorem 2.4. We

shall see that in ergodic theory, in order to show that some factor is characteristic

for a particular average, one uses a multi-dimensional version of Van der Corput’s

Lemma, which is essentially an infinitary version of the Cauchy-Schwarz Inequality

(see page 13 of [Kra06] for a standard proof which makes this obvious). We shall

state Van der Corput’s Lemma in dimension 3 only, for simplicity and because it is

sufficient to deal with the examples we shall focus on shortly.

Proposition 2.47. Suppose that {un1,n2,n3 : n1, n2, n3 ∈ Z} form a bounded triple

sequence of vectors in a Hilbert space. If

lim
K→∞

1

K3

K−1∑
k1,k2,k3=0

∣∣∣∣∣ lim
N−M→∞

1

(N −M)3

N−1∑
n1,n2,n3=M

< un1,n2,n3 , un1+k1,n2+k2,n3+k3 >

∣∣∣∣∣
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equals zero, then

lim
N−M→∞

∥∥∥∥∥ 1

(N −M)3

N−1∑
n1,n2,n3=M

un1,n2,n3

∥∥∥∥∥ = 0.

This concludes the preliminaries. In the next section we will have a closer look at

how to define characteristic factors for linear systems, and collect some results about

their structural properties.

2.5.2 Gowers Norms, Host-Kra Factors and Nilmanifolds

Recall the definition of higher-degree uniformity norms in arithmetic combinatorics,

which originated in Gowers’s work on Szemerédi’s Theorem for longer progressions

[Gow01].

Definition 2.2. Let G be a finite Abelian group. For any positive integer k ≥ 2 and

any function f : G→ C, define the Uk-norm by the formula

‖f‖2k

Uk := Ex,h1,...,hk∈G
∏

ω∈{0,1}k
C |ω|f(x+

∑
i

ωihi),

where C |ω|f = f if
∑

i ωi is even and f otherwise.

By a special case of Proposition 2.4, which was in fact proved in [Gow01], the Uk+1-

norm governs the average over arithmetic progressions of length k (this is because

progressions of length k have Cauchy-Schwarz complexity k − 2). A family of semi-

norms analogous to the Uk-norms have recently appeared in the work of Host and

Kra [HK05].

Definition 2.48. For f ∈ L∞(µ) and k ∈ N, we define the Host-Kra semi-norms as

|||f |||k :=

(∫
X[k]

f ⊗ · · · ⊗ fdµ[k]

)1/k

.

Of course we haven’t actually defined the measure µ[k] yet, nor the space X [k] over

which we integrate. The definition below looks rather off-putting, and we invite

the reader to skip the details on first reading. However, even on more superficial

inspection it can be intuited that the construction of the measure µk encodes the

structure of combinatorial cubes of dimension k.
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Definition 2.49. Let X [k] = X2k
and define T [k] : X [k] → X [k] by T [k] = T × · · · × T

(2k times). We write a point x ∈ X [k] as x = (xε)ε∈{0,1}k and make the natural

identification of X [k+1] with X [k] × X [k], writing x = (x′,x′′) for a point of X [k+1],

with x′,x′′ ∈ X [k]. By induction, we define a measure µ[k] on X [k] invariant under

T [k]. Set µ[0] := µ. Let I [k] be the invariant σ-algebra of (X [k],X [k], µ[k], T [k]). Then

µ[k+1] is defined to be the relatively independent joining of µ[k] with itself over I [k],

meaning that if F and G are bounded functions on X [k],∫
X[k+1]

F (x′) ·G(x′′) dµ[k+1](x) =

∫
X[k]

E(F |I [k])(y) · E(G|I [k])(y) dµ[k](y) .

Since (X,X , µ, T ) is assumed to be ergodic, I [0] is trivial and µ[1] = µ× µ. Just like

the Uk-norms in arithmetic combinatorics, these seminorms are nested, in the sense

that they satisfy

|||f |||1 ≤ |||f |||2 ≤ · · · ≤ |||f |||k ≤ · · · ≤ ‖f‖∞,

and a Gowers-Cauchy-Schwarz -type inequality holds, that is,

∣∣ ∏
ε∈{0,1}k

fε(xε)dµ
[k]
∣∣ ≤ ∏

ε∈{0,1}k
|||fε|||k,

which can be used to show that |||.|||k is indeed a semi-norm on L∞(µ). Moreover,

it can be checked that just like the Uk-norms, the semi-norms |||.|||k can be defined

inductively via the formula

|||f |||2k+1

k+1 =

∫
Ik

E(f⊗2k |I [k])2dµ[k].

Together with the Von Neumann Ergodic Theorem, which states that for an er-

godic system (X,X , µ, T ) and f ∈ L2(µ), the L2-limit as N tends to infinity of
1
N

∑N
n=1 f(T nx) is the constant function

∫
fdµ, this can be rewritten as

|||f |||2k+1

k+1 = lim
N→∞

1

N

N∑
n=1

|||f · T nf |||2k

k .

This fact in turn is a useful ingredient in the proof of Proposition 2.50 below, which

represents the analogue of Theorem 2.4 and will be discussed in more detail at the

start of Section 2.5.3. We refer the keen reader to page 20 of [Kra06] for a proof in

the case of arithmetic progressions.

Proposition 2.50. Assume that (X,X , µ, T ) is ergodic and let d, k,m ∈ N. Suppose
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‖fi‖∞ ≤ 1 for all i = 1, 2, . . . ,m, and that the system L = (L1, L2, . . . , Lm) in d

variables has Cauchy-Schwarz complexity k. Then

lim sup
N→∞

∥∥∥∥∥ 1

Nd

N−1∑
n1,n2,...,nd=0

TL1(n1,...,nd)f1(x) . . . TLm(n1,...,nd)fm(x)

∥∥∥∥∥
2

� min
l=1,2,...,m

|||fl|||k+1.

With the definitions in place, it is now straightforward to define the sequence of

so-called Host-Kra factors, which first appeared in [HK05].

Definition 2.51. Given a measure-preserving system (X,X , µ, T ), there is a nested

sequence of factors Zk of X such that for any bounded function f on X

|||f |||k+1 = 0 if and only if E(f |Zk) = 0.

It follows straight from this definition combined with Proposition 2.50 that the factors

Zk are characteristic for systems of Cauchy-Schwarz complexity k. In particular, Z1 is

characteristic for the average along 3-term progressions, while the factor Z2 controls

4-term progressions.

Let us pause for a moment to compare this situation with our combinatorial approach:

In order to concentrate on the structured part in arithmetic combinatorics, we needed

a deep U3-inverse theorem which allowed us to decompose any bounded function into

a quadratically structured and a quadratically uniform part. In ergodic theory, the

fact that the factors Zk are characteristic for systems of Cauchy-Schwarz complexity

k follows straight from the definition and Proposition 2.50. The real difficulty lies in

giving a geometric description of the factors defined in this very “soft” way.

Having said that, it is not hard to see that the first factor in this sequence Z1

corresponds to the classical Kronecker factor. There are many equivalent ways of

describing the Kronecker factor K of a measure-preserving system which do not use

the semi-norm |||.|||2.

• K is the largest abelian group rotation factor.

• K is the smallest sub-σ-algebra of X with the property that every member of

I [1] is measurable with respect to K ⊗K.

• The measure µ[2] is relatively independent with respect to K4 and the factor K
of X is minimal with this property.

Example 2.52. Let X = T × T be equipped with the Borel σ-algebra and Haar
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measure. Fix α ∈ T and define T : X → X by

T (x, y) = (x+ α, y + x)

The system is ergodic if and only if α /∈ Q, and it is not isomorphic to a group

rotation. The Kronecker factor of X is the factor T equipped with the rotation x 7→
x+ α. We say X is a skew extension of T by another copy of T.

It is not hard to see directly that |||f |||2 equals the l4-norm of the Fourier transform of

f projected onto the Kronecker factor, and that the Kronecker factor is characteristic

for studying ergodic averages along 3-term progressions (see page 21 of [Kra06]). This

corresponds to saying that ordinary Fourier analysis suffices in this case.

In order to study longer progressions, higher-order factors are needed. The Conze-

Lesigne factor, which in modern terminology represents the second level in the series

of Host-Kra factors, was introduced by Conze and Lesigne in a series of papers [CL84],

[CL87], [CL88]. Equivalent and more explicit descriptions were given by Rudolph

[Rud95] and Host and Kra [HK01], and we refer the interested reader to these works

for more detail.

It turns out that every Conze-Lesigne system is the inverse limit of a sequence of

2-step nilsystems (see Theorem 18 in [HK04]). More generally, Host and Kra proved

the following deep structure theorem in [HK05]:

Theorem 2.53. For each integer k, the factor Zk is isomorphic to an inverse limit

of k-step nilsystems.

In order to make use of this structure theorem, we need to understand what a k-step

nilsystem is, as well as what it means to be an inverse limit of a sequence of such

systems.

Definition 2.54. Let G be a group. If g, h ∈ G, let [g, h] = g−1h−1gh denote the

commutator of g and h. If A,B ⊂ G, we write [A,B] for the subgroup of G spanned

by {[a, b] : a ∈ A, b ∈ B}. The lower central series

G = G1 ⊃ G2 ⊃ · · · ⊃ Gj ⊃ Gj+1 ⊃ . . .

of G is defined by setting G1 = G and Gj+1 = [G,Gj] for j ≥ 1. We say that G is k-

step nilpotent if Gk+1 = {1G}. If G is a k-step nilpotent Lie group and Γ is a discrete

co-compact subgroup, the compact manifold X = G/Γ is a k-step nilmanifold. The

group G acts naturally on X by left translation, that is if a ∈ G and x ∈ X, then the
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translation Ta by a is given by Ta(xΓ) = (ax)Γ. There is a unique Borel probability

measure µ (the Haar measure) on X that is invariant under this action. For a fixed

element a ∈ G, we say that the system (G/Γ,G/Γ, Ta, µ) is a k-step nilsystem.

Important examples of nilsystems include the circle nilflow (Example 2.43, easily seen

to be a 1-step nilsystem by setting G = R and Γ = Z in the above definition), the

skew torus (Example 2.52, a primitive 2-step nilsystem), and the Heisenberg nilflow,

which we shall discuss in Example 2.55 below. More information on these basic

examples can be found in both [Kra06] and [GT06c].

Example 2.55. Let G be the Heisenberg group R× R× R with multiplication given

by

(x, y, z) ∗ (u, v, w) = (x+ u, y + v, z + w + xv),

which is a 2-step nilpotent Lie group (and is perhaps more easily thought of as the

group of upper-diagonal real matrices with 1s on the diagonal). Take the discrete

co-compact subgroup Γ = Z×Z×Z, so that X = G/Γ is a 2-step nilmanifold. Then

the transformation T defined as translation by (g1, g2, g3) ∈ G together with the Borel

σ-algebra X and Haar measure µ defines a 2-step nilsystem. This system is ergodic if

and only if g1 and g2 are rationally independent. The compact abelian group G/G2Γ

is isomorphic to T2, and the rotation by (g1, g2) on T2 is ergodic. This factor of X

represents the Kronecker factor Z1.

It is not terribly important to us to know what exactly an inverse limit is, since it

behaves well enough to always allow us to concentrate on a single nilmanifold, but

for the sake of completeness we present the definition below.

Definition 2.56. The system (X,X , µ, T ) is an inverse limit of a sequence of fac-

tors {(Xj,Xj, µj, T )}j∈N if {Xj}j∈N is an increasing sequence of T -invariant sub-σ-

algebras such that
∨
j∈NXj = X up to sets of measure. If each system (Xj,Xj, µj, T )

is isomorphic to a k-step nilsystem, then (X,X , µ, T ) is an inverse limit of k-step

nilsystems.

As indicated earlier, nilmanifolds possess an enormous amount of structure, so by

reducing to the study of averages on nilmanifolds via Proposition 2.50 and Theorem

2.53, many questions about the convergence of ergodic averages on abstract measure-

preserving systems become explicit computations. Before we look at the general case,

however, let us consider in more detail the simple 2-step nilsystem that is the skew

torus.
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2.5 The Ergodic Analogue

2.5.3 A Square-Independent System on the Skew Torus

From now on we shall focus our attention on one of the examples of square-independent

systems which was mentioned in the introduction of Section 2.5, namely

L2 = (x, x+ n, x+m,x+ n+m,x+ n−m,x+m− n).

It is easy to check that this linear system has Cauchy-Schwarz complexity 2 and is

translation invariant. First, we shall see that the factor Z2 is characteristic for the

average along L2, which is a special case of Proposition 2.50. The proof uses Van der

Corput’s Lemma 2.47 and the inductive definition of the semi-norm |||.|||2 given at the

start of Section 2.5.2. It follows from a refined analysis of Proposition 5 in [Lei04]

and is left as an exercise.

Proposition 2.57. Suppose (X,X , µ, T ) is an ergodic measure-preserving system,

and let E = {(1, 0), (0, 1), (1, 1), (1,−1), (−1, 1)}. If ‖f‖∞ ≤ 1, then

lim sup
N→∞

∥∥∥∥∥ 1

N2

N∑
n,m=1

∏
ε∈E

f ◦ T ε·n
∥∥∥∥∥
L2(µ)

� |||f |||2.

In other words, the factor Z2 is characteristic for the system L2.

By Proposition 2.50 and Theorem 2.53 we are now in the fortunate position to know

that we can reduce to the case where our system is a 2-step nilmanifold. Our next

aim would be to show that, in fact, the Kronecker factor is the minimal characteristic

factor for L2. For illustrative purposes we now focus on the case of the simplest pos-

sible 2-step nilsystem only, the skew torus discussed in Example 2.52 of the previous

section.

Recall that the skew torus was defined by setting X = T × T, equipped with Borel

σ-algebra X and Haar measure µ. We take T : X → X to be the transformation

T (x, y) = (x+α, y+ x) for some α ∈ R. This is a 2-step nilsystem, whose Kronecker

factor is T together with the rotation x 7→ x+α. Iterating the transformation T , we

find that the nth iterate is given by the formula

T n(x, y) = (x+ nα, y + nx+
n(n+ 1)

2
α).

It is now not difficult to compute the average explicitly. For example, suppose f is a

Riemann integrable function. Standard approximation arguments allow us to reduce

to the case of a continuous function, and by Weierstrass approximation and linearity
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2.5 The Ergodic Analogue

we are in fact justified in thinking of f as a simple exponential. Inserting the formula

for T n in the average

1

N2

N∑
n,m=1

∏
ε∈E

f ◦ T ε·n

and replacing each instance of f by an appropriate exponential function, we find

that the square-independence of L2 implies that there is always a non-zero quadratic

coefficient of α. This fact combined with the uniform distribution of the fractional

part of n2α allows us to conclude that the orbit of the diagonal ∆X = {(x, x, . . . , x) :

x ∈ X} is uniformly distributed on the fibres over the Kronecker factor (in this case,

the second co-ordinate). This in turn means that it is in fact possible to project down

to the Kronecker factor without affecting the convergence of the limit of the average.

Since it would not be instructive to include the full details of this computation, we

leave them to the interested reader.

2.5.4 A General 2-Step Nilmanifold

The purpose of this section is to provide some intuition for the general case of a 2-step

nilmanifold, and to illustrate what we mean by “parameterising” such a manifold.

We shall not attempt to reproduce any proofs, but rather provide a tourist’s guide to

[Lei07] for the interested reader. We shall assume that we have proved Proposition

2.57 and are therefore able to restrict our attention to a 2-step nilmanifold.

Given an s-step nilmanifold X = G/Γ, there exists a sequence of natural factors

X = Xs → Xs−1 → . . . → X1 → X0 = {1X} defined by Xj = G/(ΓGj−1). For each

j, Xj is a j-step nilmanifold. This comes with a sequence of projections πj : X → Xj.

In our case s = 2, so we are looking at the sequence X2 = X → X1 = G/(ΓG2) →
X0 = {1}. The projection π1 takes the simple form G/Γ→ G/ΓG2.

We want to show that the factor X1 is characteristic for the average along L2 which

we were studying in the preceding section. In fact, it is possible to give a completely

explicit description of the orbit of the diagonal ∆X = {(x, x, . . . , x) : x ∈ X} under

a system of linear actions. For example, for a simple linear system of 5 forms in 2

variables such as L2, it can be shown that the orbit of the diagonal ∆X is of the form

π5(H) with H a rational subgroup of the form

〈
b0 b

c1
1 bd1

2 b
c21
3 bc1d1

4 b
d2

1
5

...

b0 b
c5
1 bd5

2 b
c25
3 bc5d5

4 b
d2

5
5

 : b0, b1, b2 ∈ G, b3, b4, b5 ∈ G2

〉
,
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where we have written E = {(1, 0), (0, 1), (1, 1), (1,−1), (−1, 1)} = {(ci, di) : i =

1, 2, . . . , 5} for the coefficients of n and m in L2. This is the main content of Propo-

sition 6.3 in [Lei07], which we have illustrated using an adaptation of Example 6.7 in

that paper. But for all i = 1, 2, . . . , 5, we can now rewrite

b0 b
ci
1 bdi

2 b
c2i
3 bcidi

4 b
d2

i
5

as a product

b0 b
ci
1 bdi

2 (a−di
2 a−ci1 a−1

0 a0 a
ci
1 ad2

2 ) b
c2i
3 bcidi

4 b
d2

i
5

with a0, ai, a2 ∈ G2, which in turn can be expressed as

(a−1
0 b0)(a−1

1 b1)ci(a−1
2 b2)dia0 a

ci
1 adi

2 b
c2i
3 bcidi

4 b
d2

i
5 .

This reparametrisation takes place in Corollary 5.8 of [Lei07]. Finally, we know that

because the system L2 is square-independent, the matrix of coefficients
1 c1 d1 c2

1 c1d1 d2
1

...
...

...
...

...
...

1 c5 d5 c2
5 c5d5 d2

5


has full rank, and hence the rational subgroup H takes the form

〈
b0 b

c1
1 bd1

2
...

b0 b
c5
1 bd5

2

 : b0, b1, b2 ∈ G

〉
·G5

2.

Since the projection π1 : X → X1 amounted to nothing more than quotienting out

by the commutator subgroup G2, we see that in fact the factor X1 is characteristic

for a square-independent average.

Note that a very similar parametrisation can be carried out for polynomial orbits,

details of which can be found in the later sections of [Lei07].

2.5.5 The Correspondence Principle

It is not clear whether Leibman’s ergodic theoretic result has any number theoretic

consequences of the form we saw in Corollary 2.20. In general, one uses the following

standard tool for transfering ergodic theoretic to combinatorial statements, which
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2.5 The Ergodic Analogue

originated in Furstenberg’s proof of Szemerédi’s Theorem [Fur77] and is now known

as the Correspondence Principle.

Proposition 2.58. Let E be a set of integers of positive upper density. Then there

exist an ergodic system (X,X , µ, T ) and a set A ∈ X with µ(A) = d∗(E) such that

µ(Tm1A ∩ · · · ∩ TmkA) ≤ d∗((E +m1) ∩ · · · ∩ (E +mk))

for all integers k ≥ 1 and all m1, ...,mk ∈ Z.

While it is easily seen that this proposition implies Szemerédi’s Theorem for progres-

sions of length k once a positive limit for the ergodic average (2.1) is established, when

one attempts to transfer Leibman’s result to a statement such as Corollary 2.20, one

only obtains a lower bound on the number of solutions rather than an asymptotically

exact statement.

2.5.6 Remarks

Leibman [Lei07] is able to determine the true complexity of all translation-invariant

linear systems, not just those of Cauchy-Schwarz complexity 2. The main reason for

this level of generality is that Host and Kra’s structure theorem (Theorem 2.53) is

available for all k, unlike the situation in arithmetic combinatorics where the decom-

position theorem depends on the existence of a suitable Uk-inverse theorem, which

has only been proved for k ≤ 3. The fact that ergodic theorists are able to deal with

polynomial systems is another point of envy. Indeed, it turns out that the seminorms

|||.|||k also control polynomial averages when combined with PET induction (a lin-

earization method which originated in [BL96]). In the finite combinatorial world, on

the other hand, so-called “local” Uk-norms will be required in order to control poly-

nomial averages. The reason for this is that when we consider polynomials such as

x+n2 inside an interval 1, 2, . . . , N , we are forced to restrict the range of the param-

eter n to
√
N . These local uniformity norms are currently much less well understood,

but see [TZ06] for more details on the emerging theory of local uniformity.

Acknowledgements. The author would like to thank Bryna Kra for valuable com-

ments and discussions.
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Chapter 3

The Minimum Number of Monochromatic 4-Term

Progressions in Zp

3.1 Introduction

In this short chapter we improve the lower bound given by Cameron, Cilleruelo

and Serra [CCS05] for the minimum number of monochromatic 4-term progressions

contained in any 2-colouring of Zp with p a prime. We also exhibit a colouring with

significantly fewer than the random number of monochromatic 4-term progressions,

which is based on an a recent example in additive combinatorics by Gowers [Gow06b].

In the second half of this chapter we discuss the corresponding problem in graphs,

which has received a great deal more attention to date. We give a simplified proof

of the best known lower bound on the minimum number of monochromatic K4s

contained in any 2-colouring of Kn by Giraud [Gir79], and briefly discuss the analogy

between the upper-bound graph constructions of Thomason [Tho89] and ours for

subsets of Zp.

Let p be a prime. It is a pretty and well-known fact that in any 2-colouring of the

cyclic group Zp the number of monochromatic 3-term arithmetic progressions depends

only on the densities of the colour classes R and B. Using discrete Fourier analysis,

specifically the fact that 1̂R(t) = −1̂B(t) for t 6= 0, one easily obtains the result that

the number of monochromatic 3-term progressions in any colouring equals

1/2(1− 3α + 3α2)p2,

where one of the colour classes, R say, has size αp (see also [Dat03]). Note that this
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3.1 Introduction

is precisely the number of 3-term progressions we would expect if we were to choose

the elements of the red colour class independently at random from Zp with density α.

Throughout this chapter, we shall be counting progressions without orientation, that

is we shall be considering 3, 5, 7 mod 13 as identical to 7, 5, 3 mod 13. Our results

will always be asymptotic in the order p of the group.

While a similar formula holds for other equations in three variables, for example Schur

triples of the form x + y ≡ z, this is not the case for longer progressions. It is not

difficult to see that the number of monochromatic 4-term progressions in a given 2-

colouring does not just depend on the density ratio of the colour classes. Instead, we

will ask for the minimum number of monochromatic 4-APs in any 2-colouring of Zp, a

quantity which we shall denote by M4(p). Bounding the more convenient normalised

quantity m4(p) := 2M4(p)/p2 is the aim we shall be concerned with throughout the

first two sections of this chapter.

An easy bound on m4(p) can be derived from Van der Waerden’s Theorem. We know

that the Van der Waerden number W (4) equals 35, that is, any 2-colouring of 35

numbers in arithmetic progression is guaranteed to contain a monochromatic 4-AP.

By averaging, we obtain a lower bound on m4(p) of the form

m4(p) ≥ 1

185
+ o(1).

Here o(1) denotes a quantity that tends to zero as p tends to infinity through the

primes.

This primitive estimate was significantly improved by Cameron, Cilleruelo and Serra

[CCS05] by observing that although the number 35 cannot be reduced when searching

for monochromatic 4-APs, we only need to colour 7 points in arithmetic progression

before we are guaranteed to find a monochromatic 4-AP or one which is evenly

coloured, i.e. one in which precisely 2 points are red and 2 points are blue. This

fact together with one additional ingredient, which we shall inspect in more detail in

Lemma 3.3 below, gives their bound

m4(p) ≥ 1

20
+ o(1).

A further computational improvement yields their best effort of

m4(p) ≥ 2

33
+ o(1).

In this short chapter we prove the following small improvement.

88



3.2 A Lower Bound on the Number of Monochromatic 4-APs

Theorem 3.1. Any 2-colouring of Zp with p a prime contains at least p2/32 monochro-

matic 4-term progressions. In other words,

m4(p) ≥ 1

16
+ o(1).

In the other direction, it is clear that a random colouring with probability 1/2 will

contain p2/16 monochromatic 4-APs, so that m4(p) ≤ 1/8 + o(1). In Section 3.3 we

exhibit a colouring with fewer than this random number of monochromatic 4-APs,

which shows that the critical constant must lie strictly below 1/8. More precisely, we

shall prove the following theorem.

Theorem 3.2. There exists a colouring of Zp with p a prime containing fewer than

1/16(1− 1/2025)p2 monochromatic 4-term progressions. In other words,

m4(p) ≤ 1

8

(
1− 1

2025

)
+ o(1).

A gap between the upper and lower bound remains. Perhaps we shouldn’t be too

surprised at this state of affairs in view of the fact that the corresponding problem

in graphs, where one wants to determine the minimum number of monochromatic

K4s in any 2-colouring of the complete graph Kn, has resisted a complete resolution

for quite some time and for similar reasons. In Section 3.4 we give a simplified

version of Giraud’s argument [Gir79] which yields the best known lower bound for

this problem. In the final section we review some constructions by Thomason which

yield 2-colourings of graphs with fewer than the random number of monochromatic

K4s and discuss the analogy between graphs and sets. Perhaps the gap is accounted

for by the different methods used to prove the upper and lower bounds in both cases:

while the lower bounds are obtained by simple (if somewhat ingenious) counting, the

upper bound constructions rely on Fourier analytic techniques.

3.2 A Lower Bound on the Number of Monochromatic

4-APs

Given any 2-colouring C of Zp, let m4(C, p) denote the number of monochromatic

4-term progressions in C, divided by p2/2. For i = 0, 1, 2, 3, 4, let ci := ci(C, p)

denote the number of 4-term progressions in Zp which have precisely i red elements,

divided by p2/2. We immediately note that
∑4

i=0 ci = 1 and m4(C, p) = c0 + c4.
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3.2 A Lower Bound on the Number of Monochromatic 4-APs

Write E := c0 + c2 + c4 and O := c1 + c3 for the normalised number of even- and

odd-coloured progressions, respectively.

A simple counting argument yields a further relation between the ci in terms of the

density α of the red colour class. The following lemma is borrowed from [CCS05],

although for the sake of self-containedness we give our own, more direct proof here.

Lemma 3.3. With the ci defined as above, we have that

4(c0 + c4) + (c1 + c3) = 4(1− 3α + 3α2)

for any colouring of Zp in which the red colour class has size αp.

Proof. We will perform double-counting on the edges of a bipartite graph with vertex

sets X = X1 ∪X2 and Y = Y1 ∪ Y2 ∪ Y3. Here X1 consists of all 4-APs counted by

c0 +c4, and X2 of all those counted by c1 +c3. Y1 denotes the set of all monochromatic

3-APs, while Y2 and Y3 denote the sets of all monochromatic configurations of the

form x, x + d, x + 3d and x, x + 2d, x + 3d respectively. Elements x ∈ X and y ∈ Y
are joined by an edge if and only if x contains the configuration y. It is now easy to

see that the total (normalised) out-degree of X equals 4(c0 + c4) + (c1 + c3), while

the total out-degree of Y equals twice the number of monochromatic 3-APs plus the

number of other monochromatic configurations in Y . By the second paragraph of

the introduction, the number of such monochromatic 3-term configurations equals

1/2(1 − 3α + 3α2)p2. Therefore the normalised out-degree of Y equals 4(1 − 3α +

3α2).

The preceding lemma together with the identity
∑4

i=0 ci = 1 now implies that

c0 + c4 =
1

3
c2 + (1− 4α + 4α2).

Cameron, Cilleruelo and Serra immediately discard the second term on the right-

hand side, which is indeed equal to zero for α = 1/2 and hence doesn’t appear to be

of much use. However, it will be vital for us to keep the dependence on the density

of the red colour class. From the above formula it is straightforward to see that any

lower bound on the number of even-coloured 4-APs (which we denoted by E) results

in a lower bound on m4(C, p) via the formula

m4(C, p) =
1

2
E +

3

4
(1− 4α + 4α2).
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For the remainder of this section we shall aim to bound E from below. In the process

we shall focus on a method that works for densities close to 1/2, since for densities

bounded away from 1/2 the second term in the lower bound for m4(C, p) already

provides a fairly good estimate.

Given any 3-term progression S, let pS denote the number of evenly coloured 4-APs

which contain S. Let qS be the number of 4-APs containing S which are not evenly

coloured. It is obvious from these definitions that 0 ≤ pS, qS ≤ 2 and pS + qS = 2.

Another second’s thought confirms that

ES pS = 2E while ES qS = 2O,

where the expectation operator ES denotes the sum
∑

S divided by p2/2. Any 3-term

progression S of the form x, x + d, x + 2d determines a unique (unordered) pair of

points (a, b) such that the five points and each of the quadruples a, x, x+d, x+2d and

x, x + d, x + 2d, b lie in arithmetic progression. We shall call the pair (a, b) a frame

pair. It is straightforward to see that each frame pair belongs to a unique 3-term

progression. Note that in these statements we have used the assumption that p is

prime.

The crucial observation is that the two 4-APs containing S have different colour

parities if and only if the frame pair of S is bichromatic. Therefore, pS − qS is not

equal to zero if and only if S has a monochromatic frame pair. For densities close to

1/2, the total number of monochromatic pairs is at its minimum, which will enable

us to get an acceptable estimate in this density regime. As remarked before, for

densities bounded away from 1/2 the second term in the lower bound for m4(C, p)

will take over.

We find a trivial lower bound on E of the form

2E = 2O + ES(pS − qS) ≥ 2(1− E)− ES|pS − qS|.

But ES |pS − qS| precisely equals 2 times the appropriately normalised number of

monochromatic pairs in the colouring. Now the number of monochromatic (un-

ordered) pairs in a colouring of Zp in which one colour class has density α is precisely

(α2 + (1− α)2)p2/2, which yields

E ≥ 1/2(1− (1− 2α + 2α2)) = α(1− α),
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3.3 A Colouring with Few Monochromatic 4-APs

which in turns produces the bound

m4 ≥ 1/4(α(1− α) + 3(1− 4α + 4α2)).

The minimum of this function is easily seen to be 1/16, attained at α = 1/2, conclud-

ing the proof of Theorem 3.1. The next section shows that we have at least found

the correct bound to within a factor of 2.

3.3 A Colouring with Few Monochromatic 4-APs

Very recently Gowers [Gow06b] gave an example of a uniform subset of Zp which

contains fewer than the number of 4-APs expected in a random subset of Zp of the

same density. By uniform we mean that the largest non-trivial Fourier coefficient of

the indicator function of the set is o(1) in modulus. It is easy to establish that uniform

sets always contain the number of 3-term progressions expected in a random subset of

Zp of the same density. It had been known for quite some time that ordinary Fourier

analysis was insufficient when it came to counting longer progressions. Indeed, it is

not too difficult to construct uniform sets that contain significantly more than the

expected number of progressions of length 4. It was Gowers’s intention to show that it

is possible to achieve a negative 4-AP count (compared with random) while retaining

the uniformity of the set. (For progressions of length strictly greater than 4 this is

significantly easier, see the remarks in [Gow06b]).

In this section we observe that this construction immediately gives rise to a 2-

colouring of Zp with strictly fewer than p2/16 monochromatic 4-APs. For A ⊆ Zp,

let p4(A, p) denote the number of 4-term progressions in A, divided by p2/2, and let

m4(A, p) denote the number of monochromatic 4-APs in the colouring C which is

induced by A (that is, we take R = A and B = AC), normalised in the same way.

For uniform sets, the quantities m4(A, p) and p4(A, p) are related as follows.

Lemma 3.4. Given a uniform set A ⊆ Zp of density α, we have the relation

m4(A, p) =
1

2
((1− α)4 − α4) + 2p4(A, p) + o(1).
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Proof. Writing 1A for the characteristic function of the set A, we find that

2m4(A, p) = Ex,d1A(x)1A(x+ d)1A(x+ 2d)1A(x+ 3d)

+Ex,d1AC (x)1AC (x+ d)1AC (x+ 2d)1AC (x+ 3d)

= 1− 4α + 6α2 + 4p4(A, p)

−Ex,d1A(x)1A(x+ d)1A(x+ 2d)− Ex,d1A(x+ d)1A(x+ 2d)1A(x+ 3d)

−Ex,d1A(x)1A(x+ d)1A(x+ 3d)− Ex,d1A(x)1A(x+ 2d)1A(x+ 3d).

It is easily seen that all the 3-term configurations appearing in the above sum appear

in the expected number, by writing, for example,

Ex,d1A(x)1A(x+ d)1A(x+ 2d) =
∑
t

1̂A(t)21̂A(−2t) = α3 + o(1),

assuming that the subset A is sufficiently uniform, that is supt6=0 |1̂A(t)| = o(1).

We shall briefly sketch Gowers’s construction with a slight numerical improvement

over the original version. It is included for the sake of completeness and for purposes

of comparison with the graphs case later on. We shall conclude the section with a

statement of the exact bound we obtain.

We start off by constructing a function g taking values ±1 on the cube {1, 2, 3, 4}3

which satisfies ∑
x,d

g(x)g(x+ d)g(x+ 2d)g(x+ 3d) = −72.

This is done on the basis of a geometric argument. One then proceeds to project

the cube into the interval [1, 300] using a map φ. (For the reader familiar with this

kind of argument, the map φ is a standard Freiman isomorphism.) Next we define

a new function f , which takes values ±1 and 0 on the interval [1, 300], by setting

f(x) = g(φ−1(x)) if x lies in the image of the projection φ of the cube, and f(x) = 0

otherwise. By construction, f also satisfies∑
x,d

f(x)f(x+ d)f(x+ 2d)f(x+ 3d) = −72,

that is, it has negative relative 4-AP count. Elegant and neat as this example is, it is

also rather inefficient. By an exhaustive numeric search for small examples we found

the interval [1, 18], on which we let f take successive values

−1,−1,−1, 1,−1,−1, 1,−1,−1,−1,−1, 1, 1, 1,−1, 1,−1,−1
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and for which ∑
x,d

f(x)f(x+ d)f(x+ 2d)f(x+ 3d) = −36.

Unfortunately at this point we cannot rule out the existence of even more efficient

small examples on intervals of length greater than 25.

The next stage is to blow up this small example to one that lives inside Zp for large

p. To this end, we define a function F : Zp → {−1, 0, 1} by setting F (x) = f(t)

whenever x ∈ It, where It stands for the interval [(2t− 1)m, 2tm] and m is a positive

integer between p/(5× 18) and p/(4× 18). It is easy to check that F is well-defined,

and that the 4-AP counts of F and f are related via∑
x,d

F (x)F (x+ d)F (x+ 2d)F (x+ 3d) = s
∑
x,d

f(x)f(x+ d)f(x+ 2d)f(x+ 3d)

where s ≥ m2/9. It remains to ensure that F is uniform, and to convert the ±1 func-

tion into a subset of Zp. The former is achieved by multiplying F by an appropriate

sum of quadratic exponentials, giving rise to a function G defined by

G(x) := F (x)(ωx
2

+ ω3x2

+ ω−3x2

+ ω−x
2

),

where ω is a pth root of unity (note that the negative exponents are needed to make

the resulting function G real). Since F essentially behaves like the indicator function

of a union of intervals, its Fourier transform has bounded l1-norm, and because of

the large amount of cancellation coming from the quadratic phases we can conclude

that all non-trivial Fourier coefficients of G are tiny. Finally, turning the function G

into a subset of Zp is a completely standard procedure in which, roughly speaking,

we choose an element x to lie in A ⊆ Zp with probability (1 + G(x))/2. With high

probability the resulting set A has density 1/2 and is uniform by construction but

contains at most
1

16

(
1− 36

9(5× 18)2

)
p2

4-term progressions. In conjunction with Lemma 3.4, this discussion concludes our

proof of Theorem 3.2.

Incidentally, it is also interesting to combine (via Lemma 3.4) this approach with the

lower bound on m4(p) we obtained in Section 3.2: It tells us that any uniform subset

of density 1/2 must contain at least p2/64 4-term progressions. This is related to

a question Gowers asks in [Gow06b] and which can be traced back to I. Ruzsa: If

A ⊆ Zp is uniform of density α, must A contain at least αc progressions of length 4

for some large constant c? Of course, for densities away from 1/2 the considerations
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3.4 Giraud’s Lower Bound for the Number of Monochromatic K4s

described here yield no results.

Although transferring results from the density to the colouring world and vice versa

has proved fruitful in this instance, we doubt that the correct constant for the prob-

lem of counting the minimal number of monochromatic 4-term progressions can be

obtained in this way.

3.4 Giraud’s Lower Bound for the Number of

Monochromatic K4s

In this section we give a simplified proof of Giraud’s lower bound [Gir79] on the

minimum number of monochromatic K4s which we are guaranteed to find in any 2-

colouring of the edges of the complete graph Kn on n vertices. We call this quantity

MK4(n), and its normalised sibling mK4(n) := MK4(n)/
(
n
4

)
. Since we are only con-

cerned with asymptotics, we shall for the remainder take a rather relaxed approach

to equalities: x � 1 will always mean x = 1 + o(1). We shall again be using the

expectation operator E, denoting the sum over edges or triangles normalised by
(
n
2

)
or
(
n
3

)
, respectively.

As in the case of 4-APs, a simple lower bound can be given by averaging using

Ramsey’s Theorem. Giraud proved the much superior lower bound

mK4(n) >
1

46
+ o(1),

and we shall give a concise exposition of his work here, including a simplification of

his argument. The original presentation in [Gir79] is rather convoluted, and, en plus,

in French.

Throughout, we shall fix a colouring of Kn and colour-blindly count the following

configurations on four vertices: the complete graph on 4 vertices denoted by K, the

double triangle (or K with one edge missing) DT , the triangle with a pendant edge

TE, the 4-cycle C, the ordinary triangle T and the path of length 3 denoted by P .

We shall abuse notation and use the acronyms to denote the number of occurrences

of these structures divided by
(
n
4

)
. We call the collection of these substructures Q.
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3.4 Giraud’s Lower Bound for the Number of Monochromatic K4s

Following Giraud, we define for a given edge e the quantities me := # monochromatic

triangles containing e, divided by n−2, be := normalised # bichromatic triangles con-

taining e in which e is the only edge of its colour, and ce := normalised # bichromatic

triangles containing e in which e is not the only edge of its colour.

We immediately see that me + be + ce = 1. Considering the number of mono- and

bichromatic triangles in members of Q, we find the following system of equations:

12 Ee

(
me

2

)
� 6K +DT

12 Ee mebe � TE + 3T

12 Ee mece � 4DT + 2TE

12 Ee bece � 2TE + 4P

12 Ee

(
be
2

)
� DT + 2C

Thus, taking suitable linear combinations of these equations, we obtain

K +DT + TE + C + T + P � 1

K + TE + C − (DT + T + P ) � 32K − 3Eebe + 11Eeme − 48Eem
2
e + 6Ee(me − be)2.

Still following Giraud, we define for given a triangle t the parameters pt := # even-

edged configurations in Q containing t, divided by n, and qt := normalised # odd-

edged configurations in Q containing t. Double-counting again, we find that

Et pt = K + TE + C and Et qt = DT + T + P.

Combining this with the two previous equations, we obtain

32K = 1− 12Ee me + 48Ee m
2
e − 6Ee(me − be)2 + Et(pt − qt) (3.1)

We observe the similarities with our work in Section 3.2, and note the increased level

of difficulty here due to the increased complexity of the substructures.

The remainder of the proof consists in bounding the final two terms above in modulus

by a suitable application of the Cauchy-Schwarz Inequality, and then performing an

optimization over what is essentially the mean and variance of the variables me.

Before carrying out this plan we shift our variables by setting

µe := 4me − 1 and δe := 2(me − be).
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With these definitions, the parameters with respect to which we optimize later are

s := Ee (µe − δe) =
1

3
Ee µe, r := Ee (µe − δe)2, p := Ee µ

2
e.

It is now possible to rewrite equation (3.1) as

32K = 1 + 3Ee µe + 3Ee µ
2
e −

3

2
Ee δ

2
e + Et(pt − qt). (3.2)

Our first task is to find an upper bound for Ee δ
2
e : Let B denote the number of

bichromatic triangles in the graph Kn, and set b := B/
(
n
3

)
. Using the fact that every

non-monochromatic triangle is bichromatic, it is straightforward to compute that

b = 3/4(1− s). We need some additional notation: For any vertex i, let ri denote the

number of red edges incident with i, divided by n−2, and bi the normalised number of

blue edges. For an edge e = ij, we let c′e denote the number of bichromatic triangles

including e where the two edges of the same colour meet in vertex i. Let c′′e = ce− c′e.
If the edge e = ij is coloured red, it is clear that ri � me + c′e and rj � me + c′′e . Now

the total proportion b of bichromatic triangles can also be expressed as

3/2Ee=ijribi + rjbj � 3/2Ee(me + c′e)(1− (me + c′e)) + (me + c′′e)(1− (me + c′′e)),

the right-hand side of which can be bounded above by 3/2Ee(2me+ce)−1/2(2me+ce)
2.

This in turn can be expressed in terms of δe to give the bound Ee δ
2
e ≤ 4s.

We now turn to bounding Et(pt − qt)2. We note that, given a triangle t and an edge

e = ij, the structures induced by t ∪ i and t ∪ j have different colour parities if and

only if an odd number of edge pairs (iv, jv)v∈t differ in colour. It follows that

Et ptqt � 3Ee

((
ce
3

)
+ ce

(
me + be

2

))
,

which can be rearranged to give

Et(pt − qt)2 � Ee(1− 2ce)
3.

The latter expectation can be bounded via the following simple lemma for cubes,

several rather laboured versions of which appear in [Gir79]:

Lemma 3.5. Suppose we have N variables xi ∈ [−1, 1] with Eixi = s and Eix
2
i = r.

Then we have the bound

Eix
3
i ≤

r(1 + s)− (r2 + s2)

1− s
=: g(r, s).
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Proof. Let yi = 1−xi ∈ [0, 2], and observe see that Eiyi = (1−s),Eiy
2
i = (1+ r−2s)

as well as Eiy
3
i = (1 + 3r − 3s)− Eix

3
i . Bounding Eiy

3
i below by Cauchy-Schwarz

Eiy
3
i ≥

(Eiy
2
i )

2

Eiyi
=

(1 + r − 2s)2

1− s

gives the desired result after rearranging.

It follows straightforwardly from Lemma 3.5 with xi replaced by µe − δe and the

preceding discussion that

Et(pt − qt)2 ≤ g(r, s).

Inserting this bound via the Cauchy-Schwarz Inequality into (3.2), we find that

32K ≥ 1 + 3s+ 3p−
√
g(r, s). (3.3)

For the purpose of optimizing this expression, we observe that for r ≤ (1 + s)/2, the

function g(r, s) is decreasing in r. In general, we can bound r (using nothing but the

Cauchy-Schwarz Inequality and the definitions) by

r ≤ (2
√
s+
√
p)2, (3.4)

so we distinguish the cases (2
√
s+
√
p)2 ≥ (1 + s)/2 and (2

√
s+
√
p)2 ≤ (1 + s)/2. In

the first case, we can set r = (1 + s)/2, which implies that (3.4) gives a lower bound

for p in terms of s, and we are left to find the minimum of the right-hand side of (3.3)

as a function of the single variable s. In the second case, we set r = (2
√
s +
√
p)2,

and then minimize the right-hand side of (3.3) as a function of r and s.

This is a question of seconds using a computer, and the minimum value thus obtained

turns out to be 0.0217514 . . . , which lies between 1/46 and 1/45.

3.5 Thomason’s Upper Bound for the Number of

Monochromatic K4s

In 1989 Thomason [Tho89] disproved a conjecture by Erdös which claimed that there

are always at least the random number of monochromatic K4s in every 2-colouring

of Kn. Even though there exists a wealth of counterexamples by now, this conjecture

didn’t seem quite so unreasonable back then. Indeed, the result is true if one replaces

K4s by triangles (see [Goo59], although he makes it seem like rather hard work) or

by ordinary 4-cycles. The initial construction Thomason gave to disprove Erdös’
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3.5 Thomason’s Upper Bound for the Number of Monochromatic K4s

conjecture was rather obscurely phrased in terms of quadratic forms over a finite

field, but equivalent and much clearer formulations have since appeared in [JŠT96]

and [Tho97].

It is interesting to note that the graphs constructed in these follow-up papers are quite

similar in structure to the set constructed by Gowers which we described in Section

3.3. One takes a small example exhibiting a strong bias and then uses a product

construction to produce a biased example of size growing asymptotically in n. In the

case of Gowers’s example we producted by long intervals, whereas Thomason uses a

tensor product of graphs.

Definition 3.6. Given two graphs J1 and J2, let their tensor product J1⊗ J2 be the

graph with vertex set V (J1⊗J2) = V (J1)×V (J2). The edges of J1⊗J2 are determined

by (v, w)(v′, w′) ∈ E(J1 ⊗ J2) if either vv′ ∈ E(J1) or ww′ ∈ E(J2) but not both.

(Many authors refer to this product as the Cartesian product of graphs. According to

their definition, the tensor product requires both coordinates to be edges in the factor

graphs, but we shall stick with Thomason’s notation in order to minimise confusion.)

Note also that the tensor product is commutative and associative, and observe that

if J2 is the empty graph Km, then J1 ⊗ Km is the usual m-fold cover of J1. We

now rephrase the tensor product in terms of the balanced adjacency matrices of the

graphs involved. We associate with J the matrix A(J) = (a(u, v))u,v∈V (J) whose

entries are indexed by the vertices of J and are defined by a(u, v) = −1 if uv ∈ E(J)

and a(u, v) = 1 otherwise. It is important to note that the diagonal entries of A(J)

are all equal to 1.

Definition 3.7. Given two square matrices A = (aij)
n
i,j=1 and B = (bij)

m
k,l=1, their

tensor product A⊗B is defined to be the nm× nm square matrix with entries (A⊗
B)(i,k)(j,l) = aijbkl.

It is straightforward to see that the matrix A(J1 ⊗ J2) associated with the graph

tensor product J1 ⊗ J2 is just the matrix tensor product A(J1)⊗ A(J2).

We are now in a position to count the number of monochromatic K4s occurring

in a given colouring of the complete graph Kn, or equivalently, the number of K4s

occurring in a given graph J ⊆ Kn and its complement, which we shall denote by

mK4(J). It is easy to check that mK4(J) equals∑
u1,...,u4∈V (J)

∏
ij∈E(K4)

(1− a(ui, uj)) +
∑

u1,...,u4∈V (J)

∏
ij∈E(K4)

(1 + a(ui, uj)).
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Writing

Ψ(J, F ) = |J |−4
∑

u1,...,u4∈V (J)

∏
ij∈E(F )

a(ui, uj)

for each spanning subgraph F of K4, we can rewrite mK4(J) as

2−5|J |4(1 +O(|J |−1))
∑
F⊆K4

Ψ(J, F ), (3.5)

where the sum is over all spanning subgraphs of K4 with an even number of edges.

It is clear from (3.5) that any graph J with
∑

F⊆K4
Ψ(J, F ) < 1 will have fewer than

the expected number of monochromatic K4s. Since Ψ(Km, F ) = 1 for all F ⊆ K4,

we see that in order to find a sequence of graphs with too few monochromatic K4s of

order tending to infinity, it suffices to find a small graph J with
∑

F⊆K4
Ψ(J, F ) < 1.

One can then set Jm = J ⊗Km to obtain the desired family.

The function Ψ(J, F ) has the very useful property that it is multiplicative with respect

to the tensor product of graphs defined above, in the sense that

Ψ(J1 ⊗ J2, F ) = Ψ(J1, F )Ψ(J2, F ).

This will enable us to compute the number of monochromatic K4s inside graph prod-

ucts with small factors very easily, since Ψ(J, F ) can be evaluated explicitly with

little computational effort for small graphs J . (At this point we would like to draw

the reader’s attention to how Ψ relates to the Fourier transform on Fn2 .)

According to the computer investigations conducted in [Tho97], the example which

exhibits the largest relative bias amongst all tensor products of small graphs is the

graph product K4⊗M⊗(K3 ⊗K3 ⊗K2), where M stands for the graph on 4 vertices

with two non-adjacent edges. More precisely, computations result in the bound

mK4(K4 ⊗M ⊗ (K3 ⊗K3 ⊗K2)⊗Km) <
1

33
+ o(1),

where o(1) stands for a quantity which tends to 0 as m tends to infinity. It is observed

in the final paragraph of [Tho97] that it is possible to improve this construction by

an absolutely tiny amount using a random perturbation.

3.6 Remarks

Section 3.5 completed the fourth corner of the square defined by the axes graphs - sets

and upper bound - lower bound which we have discussed in this chapter. It would be
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of great interest to close the gap between the upper and lower bound in both cases.

While we have pointed out some tentative analogies between the world of graphs

and sets, their exact nature remains somewhat elusive. In particular, Gowers’s set is

uniform yet contains the wrong number of 4-APs. In the world of graphs, a uniform

(that is, quasirandom) graph contains the correct number of K4s and will therefore

be of no use in constructing a bad example. In view of this breakdown of analogies,

it seems likely that in order to fully understand Thomason’s constructions, one needs

to instead consider notions of uniformity which have been developed in the context

of hypergraphs.

Acknowledgements. The author would like to thank Tim Gowers for making
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Chapter 4

The Structure of Popular Difference Sets

4.1 Introduction

Let G be a finite Abelian group of order N . Suppose that A is a subset of G of

cardinality linear in N , and define the set of γ-popular differences of A to be

Dγ(A) := {x ∈ G : A ∗ −A(x) ≥ γ},

where we have written A for the indicator function of the subset A. In other words,

DM(A) is the set of elements of G which can be written as a difference of elements

of A in at least γN different ways. Because we are considering subsets of G of size

linear in N , we shall take γ to be a small constant throughout this chapter. Is it true

that Dγ(A) always contains the complete difference set A0 − A0 for some large set

A0? Our aim in this chapter is to show that this is not always so. More precisely,

when G = Fn2 and G = ZN with N a prime, we prove that there exists a set A of

linear size such that any set A0 whose difference set is contained in Dγ(A) has density

o(1). Here o(1) denotes a quantity tending to 0 as the order N of the group G tends

to infinity.

Theorem 4.1. Let G = Fn2 or G = ZN . Then there exists a set A ⊆ G of size greater

than N/3 with the property that any set A0 whose difference set is contained in the

set Dγ(A) of γ-popular differences of A has density o(1).

Apart from being an interesting question in its own right, this problem has arisen

in the context of counting the number of sum-free subsets of an Abelian group G,
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notably in the work of Lev,  Luczak and Schoen [L LS01] and Green and Ruzsa [GR05].

The first team of authors pursued the following strategy: Suppose every sum-free set

A contained a small subset E with large difference set. The small cardinality of E

implies that there are relatively few such sets, and from the fact that the difference

set is large it follows that there are only few sets A corresponding to a given E, since

for a sum-free set A we have A ⊆ G\(A − A) ⊆ G\(E − E). By taking a random

subset of A with suitable probability, one can obtain a small set E which has the

property that its difference set contains the set Dγ(A) of popular differences of A.

Therefore the argument we just sketched implies an upper bound on the number of

sum-free sets A whenever Dγ(A) is large. For those A with few popular differences,

the following proposition from [L LS01] can be used in conjunction with Kneser’s

Theorem to obtain an upper bound in the remaining case. Its proof consists of a

simple averaging argument on the Cayley graph on ZN generated by Dγ(A).

Proposition 4.2. Let X be a subset of G, and let γ be a positive constant. Suppose

that the set of γ-popular differences Dγ(X) satisfies

|Dγ(X)| ≤ 2|X| − 5
√
γN |X −X|.

Then there exists a subset X ′ ⊆ X such that

|X\X ′| ≤
√
γN |X −X| and X ′ −X ′ ⊆ Dγ(X).

Green and Ruzsa [GR05] used this proposition to show that it suffices to remove εN

elements from a set of size greater than (1/3 + ε)N with few (more precisely, up to

ε3N2/27) Schur triples in order to make it sum-free, which allows them to strengthen

the result of Lev,  Luczak and Schoen on the number of sum-free subsets of G.

The result we present in this chapter shows that the condition on the size of the set

of popular differences in Proposition 4.2 cannot be removed, which by the preceding

discussion rules out simpler approaches to counting sum-free sets of Abelian groups.

Before dealing with the case of the group G = ZN with N a prime in Section 4.3, we

first describe a combinatorial approach in the model setting of G = Fn2 .

4.2 Vector Spaces over Finite Fields

The case where G is a finite-dimensional vector space over the field of two elements

is often a good model for what happens in the cyclic groups ZN , and generally easier

to deal with as we have additional geometric structure available. We refer the reader
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4.2 Vector Spaces over Finite Fields

to the excellent survey [Gre05a] for a plentiful supply of examples confirming this

assertion.

For x ∈ Fn2 , let |x| denote the number of non-zero coordinates of the vector x. In this

section we shall show that in the model setting Fn2 , the set A ⊆ Fn2 defined by

A :=

{
x ∈ Fn2 : |x| ≥ n

2
+

√
3n

2

}

is an example of a set whose popular difference set does not contain the complete

difference set of any other large set.

The set A described above can be viewed as the finite field analogue of a so-called

niveau set, which was originally introduced by Ruzsa in [Ruz87] and later used in

[Ruz91] to show that there exists a subset of ZN whose sumset does not contain any

long arithmetic progressions. It is a versatile construction that has received a fair

amount of attention since. For example, a modified version of such a set can be used

to show that Chang’s Theorem on the structure of the large Fourier spectrum of a

function is tight [Gre03]. We shall discuss the original construction in more detail in

Section 4.3.

First we need to show that the set A thus constructed has the required size, that

is, that it contains a positive proportion of all elements of Fn2 . The proof of this

well-known fact uses only very standard probabilistic estimates, but we include it for

the sake of completeness. For the remainder of this section, we write N := 2n for the

size of the group.

Lemma 4.3. The set A ⊆ Fn2 as defined above has size at least (1− exp (−1/2))N .

Proof. By definition, the size of A can be written as

|A| =
n
2

+
√

3n
2∑

j=0

(
n

j

)
,

which equals the probability that a random variable X with binomial distribution

B(n, 1/2) takes values at most
√

3n/2 above its mean. We use a standard Chernov-

type tail estimate, details of which can be found in [J LR00] or Appendix A of [AS00].

Lemma 4.4. Suppose X is a random variable with binomial distribution. Then for

any 0 ≤ ε ≤ 1, we have the estimates

P(X ≤ (1− ε)EX) ≤ exp(−ε2EX/2)
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and

P(X ≥ (1 + ε)EX) ≤ exp(−ε2EX/3).

It follows immediately from the second inequality that the density of A is at least

1 − exp (−1/2), which means that A contains more than a third of all elements of

Fn2 .

Next we show that the set of popular differences Dγ(A) is contained in a very struc-

tured subset of the discrete cube Fn2 . More precisely, Dγ(A) is contained in the

complement of a Hamming ball centred at 1, which is defined to be

Bt(1) := {x ∈ Fn2 : |x| ≥ n− t}.

Note that our finite field niveau set A is in fact itself a Hamming ball.

Lemma 4.5. Let the set A ⊆ Fn2 and the Hamming ball Bt(1) be defined as above.

Then for any real t ≤ 3n/4 log(γ−1), we have

Dγ(A) ⊆ Bt(1)C .

Proof. We shall show that if z ∈ Fn2 is such that |z| = n − t, then the number of

ways of writing z as a difference (or, equivalently, as a sum since we are performing

addition modulo 2) of two elements of A is bounded above by N exp (−3n/4t). So

suppose that z is the sum of two vectors x and y which both lie in A. Without loss of

generality, we can assume that the first t coordinates of z are 0s, and the remaining

n− t coordinates are 1s. Writing

(z1, z2, ...zt, zt+1, ..., zn) ≡ (x1, x2, ...xt, xt+1, ..., xn) + (y1, y2, ...yt, yt+1, ..., yn),

we observe (again without loss of generality) that the number of 1s amongst the

coordinates xt+1, ..., xn is bounded above by (n− t)/2. But we require that x be an

element of A, so that the number of 1s amongst x1, ..., xt is at least n/2 +
√

3n/2−
(n− t)/2 = t/2 +

√
3n/2. Hence the number of possible vectors x, which for fixed z

in turn immediately determine y, is bounded above by

2
t∑

i= t
2

+
√

3n
2

(
t

i

) 1
2

(n−t)∑
j=0

(
n− t
j

)
.

The first sum can be bounded above by 2t exp (−(
√

3n/t)2t/4) = 2t exp (−3n/4t) by

the first inequality of Lemma 4.4, and the second sum clearly equals 2n−t−1 by the
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binomial theorem. The result follows.

Finally, we need to exploit the geometric information we have just gathered. It is not

unreasonable to expect to be able to bound the size of any set whose difference set is

contained in the complement of a large Hamming ball. For this purpose we shall use

a simple instance of measure concentration on the discrete cube. More background

on the concentration of measure phenomenon in general compact metric groups will

be presented in Section 3.3.

Lemma 4.6. Let A0 be any subset of Fn2 with the property that A0 − A0 ⊆ Bt(1)C.

Then the density of A0 is bounded above by exp (−t2/4n).

Proof. For ease of notation let us also define the Hamming ball centred at 0 in the

obvious way by setting

Bt(0) := {x ∈ Fn2 : |x| < t}.

This is just the usual ball associated with the so-called Hamming metric on Fn2 defined

by setting d(x, y) = |x− y|. In other words, the distance between x and y equals the

number of coordinates in which they differ. It is easy to see that

A0 − A0 ⊆ Bt(1)C ⇒ A0 +Bt(1) ∩ A0 = ∅,

which in turn implies that

A0 +Bt(0) ∩ A0 = ∅,

where we have used the bar to denote the set (1, 1, . . . , 1) + A0 of antipodal vectors

of A0. But the set A0 +Bt(0) is just the set of elements of Fn2 at Hamming distance

less than t from some element in A0. It is this observation which inspires us to use

the following classical measure concentration result in the discrete cube, which can

be found on page 172 of [McD89] or page 31 of [Led01].

Theorem 4.7. Let µ denote the uniform measure on Fn2 . Given any subset C of Fn2 ,

we have the inequality

µ(C +Bt(0)) ≥ 1− exp (−t2/2n)

µ(C)
.

We remark that it was already shown by Harper [Har66] that this inequality is sharp

if the set C in Theorem 4.7 is a Hamming ball. Applying Theorem 4.7 to the set A0,
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we immediately deduce that

µ(A0 +Bt(0)) ≥ 1− exp (−t2/2n)

µ(A0)
,

but the fact that A0 +Bt(0) ∩ A0 = ∅ implies that

1− exp (−t2/2n)

µ(A0)
+ µ(A0) ≤ 1,

which after rearranging concludes the proof.

Combining Lemma 4.5 and Lemma 4.6, we have proved the main result of this section.

It asserts that Dγ(A) only contains the complete difference set of sets of density o(1).

Theorem 4.8. There exists a set A ⊆ Fn2 of size greater than N/3 with the property

that the set Dγ(A) of γ-popular differences does not contain the complete difference

set of any set of density greater than

exp (−9n/64 log2(γ−1)).

4.3 From the Model Case to ZN

We now focus our attention on the finite Abelian group ZN with N a large prime,

whose characters are of the form x 7→ e(rx/N) := exp (2πirx/N). In this more

general context, we define a niveau set A ⊆ ZN as the set

A :=

{
x ∈ ZN : <

k∑
i=1

γi(x) ≥ ε
√
k

}
,

for some judiciously chosen set of characters γ1, γ2, ..., γk. The precise value of the

parameters ε and k will be determined in the course of the argument, but ε should

always be thought of as a fixed constant and k as growing roughly like logN to some

small power.

As already mentioned in Section 4.2, this construction was originally introduced by

Ruzsa in [Ruz87] and later used in [Ruz91] to give an example of a subset of ZN

whose sumset does not contain any long arithmetic progressions. We shall follow

his analysis of the properties of such a set very closely in Section 4.3.1, where we

show that A contains a positive proportion of all elements of ZN . In order to be
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4.3 From the Model Case to ZN

able to give an estimate for the size of A, we need the characters to behave roughly

“independently” in the following sense:

Definition 4.9. We say that a set of characters (γi(x) = e(rix/N))ki=1 is K-independent

if
∑k

i=1 λiri ≡ 0 mod N has no solutions satisfying
∑

i |λi| ≤ K. We shall also

sometimes refer to the corresponding k-tuple (ri)
k
i=1 ⊆ Zk

N as K-independent.

We first of all need to make sure that such a set of characters actually exists, otherwise

Definition 4.9 would be rather pointless.

Lemma 4.10. The number of k-tuples in ZN which are not K-independent is bounded

above by

(2K + 1)kNk−1.

In other words, there exists a set of k characters with the K-independence property

provided that K satisfies the inequality K < N1/k/4.

Proof. A very crude but effective counting argument will do the job: Every k-tuple

which is not K-independent satisfies by definition an equation in k variables with

coefficients between −K and K. There are at most (2K + 1)k such equations.

From now on we assume that we are dealing with a set of K-independent characters

whenever we make reference to the niveau set A. Having set up the basics, we now

turn to proving the analogues of Lemmas 4.3, 4.5 and 4.6 in Sections 4.3.1, 4.3.2 and

4.3.3, respectively.

4.3.1 Estimating the Size of the Niveau Set

The following lower bound on the cardinality of the niveau set A is proved in [Ruz91].

It is the analogue of Lemma 4.3 in the case G = ZN .

Proposition 4.11. Let ε ≤ 1/4 and suppose k � logN/ log logN . Then the set A

with parameters ε and k as defined above has cardinality at least N/3.

For the sake of clarity, self-containedness and because we want to use a very similar

argument later on, we give a concise exposition of Ruzsa’s proof in this section. We

shall proceed in two steps. First, we compare the character sum appearing in the

definition of A to a sum of independent random variables distributed uniformly on

the unit circle. Second, we approximate this sum of independent random variables

by a normal distribution, which allows us to perform explicit computations.
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4.3 From the Model Case to ZN

A crucial tool in proving the first step is the following theorem in probability theory,

which is known as Esseen’s Inequality. It dates back to Esseen [Ess45] and indepen-

dently Berry [Ber41], but see Shiryayev [Shi84] for a general introductory reference.

Theorem 4.12. Let F1, F2 be probability distribution functions with corresponding

characteristic functions φ1, φ2. Assume F ′1 exists and is pointwise bounded by a con-

stant V . Then

sup
x
|F1(x)− F2(x)| � V

T
+

∫ T

0

|φ1(t)− φ2(t)|
t

dt.

We briefly recall that the characteristic function φX of a random variable X is defined

to be φX(t) := E exp(itX), and that therefore the probability density function of a

random variable is the inverse Fourier transform of its characteristic function. From

now on we shall be using the notation a� b to indicate that there exists an absolute

constant c such that a ≤ cb.

A special case of Theorem 4.12, also known as the Berry-Esseen Inequality, will help

us complete the second step. It measures the total variation distance between a sum

of independent identically distributed random variables and the normal distribution,

in other words, it gives us information about the rate of convergence in the Central

Limit Theorem. More precisely, let X1, X2, . . . , Xk be independent random variables,

each distributed uniformly on the unit circle, and define their sum to be

X :=
k∑
j=1

Xj with real part X̃ := <X.

Let σ :=
√
k/2 denote the standard deviation of X̃. The following formulation of

the Berry-Esseen Inequality is taken from page 374 of [Shi84].

Theorem 4.13. Let X̃ be defined as above, and let Φ denote the standard normal

distribution function. Then

sup
x
|F eX/σ(x)− Φ(x)| � E|X̃|3

σ4
,

provided that the third absolute moment E|X̃|3 is finite.

In order to estimate the difference between two characteristic functions effectively

using Theorem 4.12, we need to consider the moments of the corresponding random

variables. Given a random variable X̃ as defined above, we can express its lth moment

109



4.3 From the Model Case to ZN

µ̃l := EX̃ l as

µ̃l =
1

2l

l∑
i=0

(
l

i

)
µ̃i,l−i by writing µ̃i,j := EX iX

j
.

We set up analogous expressions for the character sum defining A by writing

f(x) :=
k∑
j=1

γj(x) with real part f̃(x) := <f(x) and lth moment ν̃l :=
1

N

N∑
x=1

f̃(x)l.

The lth moment of f̃ can likewise be expanded as

ν̃l =
1

2l

l∑
i=0

(
l

i

)
ν̃i,l−i upon setting ν̃i,j :=

1

N

N∑
x=1

f(x)if(x)j.

Let F eX , F ef denote the obvious distribution functions, and write φ eX , φ ef for the cor-

responding characteristic functions.

We are interested in the distribution of f̃ . More precisely, in order to estimate the

size of A we want to count the number of elements x ∈ ZN such that f̃(x) ≥ ε
√
k.

This means that 1− F ef (ε√k) is the quantity we are ultimately interested in.

Our first lemma shows that K-independence guarantees that the lower moments of

f̃ and X̃ are equal.

Lemma 4.14. With the moments µ̃l and ν̃l defined as above and the characters

γ1, γ2, . . . , γk assumed to be K-independent, we have ν̃l = µ̃l for all l = 1, 2, . . . , K.

Proof. Under the assumption of K-independence, it is not too difficult to compute

the mixed moments explicitly. Indeed, we can rewrite ν̃i,j as

1

N

N∑
x=1

(
k∑

m=1

γm(x)

)i( k∑
n=1

γn(x)

)j

=
1

N

∑
m1,...,mi

n1,...,nj

N∑
x=1

e((rm1+...+rmi
−rn1−...−rnj

)x/N).

Whenever i+j ≤ K, the latter sum equals zero by K-independence unless m1, . . . ,mi

is a permutation of n1, . . . , nj, in which case it equals N . We compare this with

µ̃i,j = E

(
k∑

m=1

Xm

)i( k∑
n=1

Xn

)j

=
k∑

m1,...,mi=1

k∑
n1,...,nj=1

EXm1 . . . Xmi
Xn1 . . . Xnj

.
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Again, since Xi is independent of Xj for i 6= j, the expectation is non-zero only when

m1, . . . ,mi is a permutation of n1, . . . , nj, in which case it equals 1. Hence ν̃i,j = µ̃i,j

for all i+ j ≤ K, and the result follows as stated.

In order to usefully estimate the difference between the two characteristic functions

we also need to infer a decent bound on the lth moment µ̃l.

Lemma 4.15. For any even integer l ≤ K and µ̃l defined as above, we have the

upper bound

µ̃l ≤ min

{
kl,

l!

2l(l/2)!
kl/2
}
.

Proof. The first part of the bound is obvious, and the second follows from the fact

that the only non-zero mixed moments µ̃i,l−i are those for which i = l/2, when they

are of magnitude kl/2(l/2)!.

We are now ready to carry out the first step of the argument, namely showing that

f̃ and X̃ are close in distribution using Theorem 4.12.

Proposition 4.16. Under the same assumptions as before, f̃ and X̃ are close in

distribution in the sense that

sup
x
|F eX(x)− F ef (x)| � min

{
1√
K
,

√
k

K

}
.

Proof. In order to apply Esseen’s Inequality, we first need to verify that F ′eX exists

and is bounded above by a suitable constant. As we have already mentioned, it is a

well-known fact in probability theory that the density function of a random variable

is the inverse Fourier transform of its characteristic function, hence

F ′eX(x) ≤
∫ ∞
−∞
|φ eX(t)|dt.

We thus require the following bounds on the characteristic function φ eX of X̃, which

we state here without proof. The interested reader is referred to [Ruz91] for details.

Lemma 4.17. There exist constants a, b > 0 and T0 > 1 such that φ eX satisfies

|φ eX(t)| ≤

exp (−akt2) |t| ≤ T0σ

(b|t|)−k/2 |t| > T0σ
.
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It is immediate to deduce that F ′eX(x) is bounded above by a constant times the

standard deviation σ. Next we observe that by Taylor’s Theorem with remainder we

can write

φ eX(t) =
l−1∑
j=1

µ̃j
j!

(it)j + δµ̃l
|t|l

l!
,

and similarly

φ ef (t) =
l−1∑
j=1

ν̃j
j!

(it)j + δν̃l
|t|l

l!

for some |δ| ≤ 1. With the benefit of hindsight, this allows us to justify why we were

so keen to compare moments in the first place. K-independence gave us through

Lemma 4.14 that all moments µ̃j and ν̃j up to order K were equal, and thus

|φ eX(t)− φ ef (t)| ≤ 2µ̃K
|t|K

K!
.

It now follows from Theorem 4.12 that for any T > 1,

sup
x
|F eX(x)− F ef (x)| � σ

T
+ µ̃K

TK

K!K
.

Using the bound on µ̃K derived in Lemma 4.15 and setting T = σ(K!/µ̃K)1/(K+1)

followed by a short computation concludes the proof of Proposition 4.16.

We have thus successfully approximated f̃ by X̃. It remains to compare a suit-

ably normalized version of X̃ to a standard normal random variable. The following

proposition states that X̃ is close to a normal distribution with mean 0 and standard

deviation σ.

Proposition 4.18. Let X̃ be defined as above, and let Φ denote the standard normal

distribution function. Then

sup
x
|F eX/σ(x)− Φ(x)| � 1

σ
.

Proof. This is a straightforward application of Theorem 4.13. The third absolute

moment E|X̃|3 can be bounded by the Cauchy-Schwarz Inequality as

E|X̃|3 ≤ (E|X̃|2)1/2(E|X̃|4)1/2.

Splitting Xj into real and imaginary parts Xj = Rj + iIj, we first observe that

ER2
j = 1/2 and EI2

j = 1/2 as well as ER4
j = 3/8. It is not hard to see that Xi and
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Xj are independent if and only if the pairs (Ri, Ii) and (Rj, Ij) are independent (but

see page 273 of [Shi84] for a justification of this claim), which yields

EX̃2 = E
k∑

j,l=1

RjRl =
k∑
j=1

ER2
j +

k∑
j 6=l=1

ERjRl =
k

2

and

EX̃4 = E
k∑
j=1

R4
j +

k∑
j,l=1

ER2
jER2

l =

(
k

2

)2

+
3

4
k.

This implies that E|X̃|3 � σ3, and the result follows as claimed from Theorem

4.13.

We remark that in fact Ruzsa [Ruz91] proves the slightly stronger error term of σ−2,

but we shall not need to do so here. Proposition 4.18 completes the second step of

the argument, so we are now in a position to estimate the size of the niveau set A.

Proof of Proposition 4.11. Bearing in mind that by definition of the distribution func-

tion F eX/σ(x) = F eX(σx), we deduce from Propositions 4.16 and 4.18 the existence of

two constants c and c′ such that

F ef (ε√k) ≤ F eX(ε
√
k) + cmin

{
1√
K
,

√
k

K

}
≤ Φ(

√
2ε) + cmin

{
1√
K
,

√
k

K

}
+ c′

1√
k
.

It is easy to compute that for ε ≤ 1/4, the value of the standard normal distribution

function Φ at
√

2ε is bounded above by 2/3, so that the size of the set A is at least

N/3. In fact, the density can be made arbitrarily close to 1/2 by choosing ε small

enough. We also need to ensure that the error term
√
k/K tends to 0 as N tends to

infinity, and that K satisfies K � N1/k. We therefore require that k grow at most like

a constant times logN/ log log(N). This proves Proposition 4.11 for N sufficiently

large.

4.3.2 Counting the Number of Representations in A− A

This section is devoted to proving the analogue of Lemma 4.5 for the finite Abelian

group ZN . More precisely, we shall show that the popular difference set Dγ(A) is

contained in the complement of a ball Bt(1), which in this context will be defined as

Bt(1) :=

{
x ∈ ZN :

k∑
i=1

|γi(x) + 1| ≤ t

}
=

{
x ∈ ZN :

k∑
i=1

cos(2πxri/N) ≤ −k + t

}
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using the same set γ1, . . . , γk of K-independent characters as the niveau set A. Of

course we hope to be able to take the radius t as large as possible.

Proposition 4.19. For every γ > 0 there exist constants ε > 0 and β > 0 with

the following property. Suppose that k � logN/ log logN , write t := βk and let the

niveau set A with parameters ε and k be defined as above. Then we have the inclusion

Dγ(A) ⊆ Bt(1)C .

Let us first observe, as is done in Ruzsa’s original paper [Ruz91], that the complete

difference set A−A is contained in the complement of the ball B4ε
√
k(1). Indeed, for

arbitrary x, y ∈ A, we have

2ε
√
k ≤ <

[
k∑
i=1

γi(x) +
k∑
i=1

γi(y)

]
,

which in turn is bounded above by∣∣∣∣∣
k∑
i=1

γi ((x+ y)/2) (γi ((x− y)/2) + γi (−(x− y)/2))

∣∣∣∣∣ ≤
k∑
i=1

|cos(π(x− y)ri/N)| .

This proves our claim. It stands to reason that the set of popular differences Dγ(A)

should be contained in the complement of a much larger ball around 1. However, a

trivial adaptation of the method we used in the model setting Fn2 , that is, coordinate-

wise counting, falls short of what is required.

Recall that we would like to show that for fixed z ∈ Bt(1), the number of represen-

tations of z as a difference x− y with x and y in A is strictly less than γN . In other

words, our aim is to establish that for fixed z ∈ Bt(1), there are few elements x such

that both x ∈ A and x−z ∈ A. This condition is equivalent to counting the number of

elements x ∈ ZN that satisfy both <
∑k

j=1 γj(x) > ε
√
k and <

∑k
j=1 γj(x− z) > ε

√
k,

under the assumption that
∑k

j=1 |γj(z) + 1| = βk with β = t/k. As before, we write

f(x) :=
k∑
j=1

γj(x) with real part f̃(x) := <f(x),

but now we also need

g(x) =
k∑
j=1

γj(x− z) with real part g̃(x) = <g(x).
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Thus we are interested in an upper bound on the probability that both f̃ and g̃ are

greater than ε
√
k, under the hypothesis that

∑k
j=1 |γj(z) + 1| = βk. It turns out

that when the parameter β is small enough, the functions f̃ and g̃ are sufficiently

negatively correlated for this probability to be less than γ.

In order to prove this, we shall use techniques very similar to the ones we used to es-

tablish a lower bound on the size of A in the preceding section. We shall first compare

the joint distribution of (f̃ , g̃) with the joint distribution of two sums of appropri-

ately defined independent random variables, and then compare their distribution to

a suitable bi-variate normal.

It should be obvious at this point that we will need a 2-dimensional analogue of

Esseen’s Inequality, which can be found in [Sad66] and [Ber45] (with better bounds

in the former).

Theorem 4.20. Let F1, F2 be 2-dimensional distribution functions, and let φ1, φ2 be

the corresponding characteristic functions. Write φ̃i(s, t) = φi(s, t) − φi(s, 0)φi(0, t)

for i = 1, 2, and set

γ1 := sup
x,y

∂F2(x, y)

∂x
, γ2 := sup

x,y

∂F2(x, y)

∂y
.

Then for any T > 0, the total variation distance supx,y |F1(x, y)−F2(x, y)| is bounded

above by

2

(2π)2

∫ T

−T

∫ T

−T

∣∣∣∣∣ φ̃1(s, t)− φ̃2(s, t)

st

∣∣∣∣∣ dsdt
plus an additional error term of the form

2

π

∫ T

−T

∣∣∣∣φ1(s, 0)− φ2(s, 0)

s

∣∣∣∣ ds+
2

π

∫ T

−T

∣∣∣∣φ1(0, t)− φ2(0, t)

t

∣∣∣∣ dt+ (6
√

2 + 8
√

3)(γ1 + γ2)

T
.

As a more or less immediate corollary we have the 2-dimensional Berry-Esseen In-

equality, the precise statement of which is taken from [Sad66].

Theorem 4.21. Let X̃ and Z̃ be sums of k independent identically distributed mean-

zero random variables X̃i, Z̃i, respectively. Let Φρ denote the distribution function of

a standard bi-variate normal distribution with correlation ρ. Suppose that X̃ and Z̃

have correlation ρ, and denote their joint distribution function by F( eX, eZ). Then

sup
x,z
|F( eX/σ, eZ/σ)(x, z)− Φρ(x, z)| �

µ̃abs3,0 + µ̃abs0,3

σ2(1− ρ2)2 min{µ̃3/2
2,0 , µ̃

3/2
0,2 }

,
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where we have written

µ̃i,j := EX̃ iZ̃j and µ̃absi,j := E|X̃ iZ̃j|.

Let us put our idea into practice and first compare the joint distribution of f̃ and g̃

to the joint distribution of two sums of sequences of independent random variables

with correlation ρ. In addition to

X :=
k∑
j=1

Xj with real part X̃ := <X,

we now also define

Z :=
k∑
j=1

γj(−z)Xj with real part Z̃ := <Z,

where the Xi are independently and uniformly distributed on the unit circle as in

Section 4.3.1. We first show that (f̃ , g̃) and (X̃, Z̃) are close in distribution using

Theorem 4.20.

Proposition 4.22. Let (X̃, Z̃) and (f̃ , g̃) be defined as above, and let their joint

distribution functions be denoted by F( eX, eZ) and F( ef,eg), respectively. Then the total

variation distance satisfies

sup
x,z
|F( eX, eZ)(x, z)− F( ef,eg)(x, z)| � min

{
1√
K
,

√
k

K

}
.

Proof. We need to consider the characteristic functions

φ( ef,eg)(s, t) =
1

N

N∑
x=1

exp (i(sf̃(x) + tg̃(x))) and φ( eX, eZ)(s, t) = E exp (i(sX̃ + tZ̃)).

It is easy to check that the partial derivatives of F( eX, eZ) are bounded above by a con-

stant times the standard deviation σ. Indeed, let η(s, t) denote the joint probability

density function of (X̃, Z̃). By definition, we have

sup
x,z

∂F( eX, eZ)(x, z)

∂x
=

∫ z

−∞
η(x, t)dt,
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which by positivity of the probability density function η is bounded above by∫ ∞
−∞

η(x, t)dt = F ′eX(x).

The final expression is exactly the same term as in the 1-dimensional case, which we

bounded by a constant times σ using Lemma 4.17. An analogous inequality holds for

the partial derivative with respect to z.

The second and third term in the bound in Theorem 4.20 are bounded above just as

in the 1-dimensional case. It remains to estimate the main error term, and we shall

proceed as before by comparing moments. As in the proof of Proposition 4.11, we

can write

φ( eX, eZ)(s, t) =
l−1∑
j=1

ij

j!
E(sX̃ + tZ̃)j + δ

E|sX̃ + tZ̃|l

l!

with |δ| ≤ 1, and similarly with (X̃, Z̃) replaced by (f̃ , g̃). Let’s have a closer look at

E(sX̃ + tZ̃)l, which can be expressed as

l∑
i=1

(
l

i

)
sitl−iEX̃ iZ̃ l−i =

1

2l

l∑
i=1

(
l

i

)
sitl−i

i∑
c=1

l−i∑
d=1

(
i

c

)(
l − i
d

)
EXcX

i−c
ZdZ

l−i−d
.

After defining the mixed moments

ξi,j,c,d := EXcX
i−c
ZdZ

j−d
and θi,j,c,d := Ef(x)cf(x)

i−c
g(x)dg(x)

j−d
,

the expression for the lth moment becomes

E(sX̃ + tZ̃)l =
1

2l

l∑
i=1

(
l

i

)
sitl−i

i∑
c=1

l−i∑
d=1

(
i

c

)(
l − i
d

)
ξi,l−i,c,d.

As in the 1-dimensional case, we need a lemma saying that for independent characters,

the low mixed moments ξi,j,c,d and θi,j,c,d are equal.

Lemma 4.23. For all 1 ≤ c ≤ i, 1 ≤ d ≤ j and i+j ≤ K, we have that ξi,j,c,d = θi,j,c,d.

Proof. It is easily checked that under the given conditions both expressions reduce

to the number of sequences (m1, . . . ,mc, n1, . . . , nc) and (m′1, . . . ,m
′
c, n
′
1, . . . , n

′
c) that

are permutations of each other.

We also need to prove a bound on E|sX̃ + tZ̃|l for even l in the style of Lemma 4.15.
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Lemma 4.24. For any even integer l ≤ K and X̃, Z̃ defined as above, we have

E|sX̃ + tZ̃|l ≤ kl/2l!

2l(l/2)!
(|s|+ |t|)l.

Proof. This is a straightforward computation just as in the 1-dimensional case. The

moment ξi,j,c,d is easily to be seen non-zero only when 2(c + d) = i + j, in which

case its absolute value is bounded above by kc+d(c+ d)!. The lth moment is therefore

bounded by

1

2l

l∑
i=1

(
l

i

)
sitl−i

i∑
c=1

(
i

c

)(
l − i
l/2− c

)
kl/2(l/2)!.

The sum over c in this expression is no greater than

l/2∑
c=1

(
i

c

)(
l − i
l/2− c

)
kl/2(l/2)!

and by Vandermonde convolution, the sum over the binomial coefficients actually

equals
(
l
l/2

)
. The statement of the lemma now follows as claimed.

We have now gathered enough information to estimate the main error term in Theo-

rem 4.20. A not too lengthy computation using Lemmas 4.23 and 4.24 concludes the

proof of Proposition 4.22 for the appropriate choice of the parameter T .

It remains to compare the joint distribution of (X̃, Z̃) to a bi-variate standard normal

distribution, and we shall do so using Theorem 4.21 in the following proposition.

Proposition 4.25. Let X̃ and Z̃ be defined as above, and write F eX, eZ for their joint

distribution function. Let Φρ denote the standard bi-variate normal distribution func-

tion with correlation ρ. Then

sup
x,z
|F( eX/σ, eZ/σ)(x, z)− Φ−1+β(x, z)| � 1

σ1/2
.

Proof. We have already seen in Proposition 4.18 that the third absolute moment of

X̃ is bounded above by σ3. A similar analysis can be carried out for Z̃. For instance,

writing zj = −zrj/N for r1, . . . , rk ∈ ZN corresponding to the characters γ1, . . . , γk,

we find that

EZ̃2 = E(
k∑
j=1

cos 2πzjRj − sin 2πzjIj)
2 =

k∑
j=1

(cos 2πzj)
2ER2

j + (sin 2πzj)
2EI2

j =
k

2
.
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4.3 From the Model Case to ZN

Therefore the third absolute moments µ̃abs3,0 and µ̃abs0,3 are both bounded by σ3. Finally,

we need to check that X̃ and Z̃ have the required correlation, so we compute the

covariance

EX̃Z̃ = E
k∑
j=1

Rj

k∑
l=1

cos 2πzlRl − sin 2πzlIl =
k∑
j=1

cos 2πzjER2
j = (−1 + β)

k

2

by the condition we imposed on the (zj)
k
j=1 by requiring that z ∈ Bt(1). Thus the

correlation, which is always a dimension-less quantity, of the two random variables

X̃/σ and Z̃/σ with mean 0 and variance 1 is

ρ =
EX̃Z̃√
EX̃2EZ̃2

= −1 + β.

Proposition 4.25 now follows from Theorem 4.21.

Last but not least, now that we have successfully approximated the distribution of

(f̃ , g̃) by a bi-variate normal distribution, we turn to computing the corresponding

bi-variate probability.

Lemma 4.26. For every γ > 0 there exist constants ε > 0 and β > 0 with the

following property. Let Φρ denote the standard bi-variate normal distribution function

with correlation ρ. Then

Φ−1+β(
√

2ε,
√

2ε) ≤ γ.

Proof. This is a straightforward computation. The probability we would like to bound

can be calculated as

Φρ(
√

2ε,
√

2ε) =
1

2π
√

1− ρ2

∫ √2ε

−∞

∫ √2ε

−∞
exp

(
− 1

2(1− ρ2)

(
y2 − 2ρyw + w2

))
dydw,

with ρ = −1 + β as before. One could use standard approximations to the bivariate

normal such as [Pol46] to obtain explicit estimates, but we shall confine ourselves to

asserting that the probability in question is less than γ provided that β and ε are

sufficiently small.

Summarising our work in this section, we have shown that Dγ(A) is contained in

the complement of a ball Bt(1), where the parameter β = t/k can be taken to be a

small constant depending on γ, that is, the radius t can be taken to be of order k.

This compares favourably with the statement of Lemma 4.5 in the model setting Fn2 ,

where n = logN played the rôle of the parameter k.
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4.3 From the Model Case to ZN

4.3.3 Using Concentration of Measure on the Torus

In this final section we prove the ZN -analogue of Lemma 4.6, that is, we show that

for an appropriately chosen parameter t the complement of a ball Bt(1) contains only

difference sets of sets of density o(1).

Proposition 4.27. Let β be a constant and write t = βk with k �
√

logN . Let A0

be any subset of ZN with the property that A0 − A0 ⊆ Bt(1)C. Then the density of

A0 is bounded above by exp(−β2k/72).

By considering the map

Ψ : ZN → Tk,

which takes x 7→ (arg γ1(x), arg γ2(x), ..., arg γk(x))/2π, we move the problem to the

k-dimensional torus Tk, where appropriate measure concentration results are known.

For an exhaustive survey of all aspects of measure concentration we recommend the

book [Led01], and in particular Chapter 4 on concentration in product spaces. It puts

into context as well as generalizes the classical probabilistic inequalities by Talagrand,

which in turn are based on martingale results by Hoeffding (1963) and Azuma (1967).

The precise statement of Theorem 4.28 below can be taken from page 71 of [Led01],

or page 173 of [McD89], whose excellent survey article emphasizes applications to

combinatorial and discrete structures.

Theorem 4.28. Let G be a compact metric group with a translation invariant metric

d and let

G = G0 ⊇ G1 ⊇ ... ⊇ Gn = {1G}

be a decreasing sequence of closed subspaces of G. Let ai = diam(Gi−1/Gi), and write

l = (
∑n

i=1 a
2
i )

1/2. Let µ be Haar measure on G. Then for any measurable subset E of

G, we have

µ(E +Bd(0, t)) ≥ 1− exp (−t2/2l2)

µ(E)
.

For the application we have in mind, let G = Tk be equipped with normalised product

measure µ and metric d(s, t) =
∑k

i=1 | sin π(si − ti)|. It is easily checked that d is

indeed a translation invariant metric on G which encapsulates the antipodal concept.

Setting Gi = Tk−i, the diameter ai of each quotient Gi−1/Gi equals 1, whence l2 = k.

Denote by Ct(1) the ball

Ct(1) :=

{
x ∈ Tk :

k∑
j=1

|γi(x) + 1| ≤ t

}
.
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4.3 From the Model Case to ZN

The reader may care to verify that Ct(1) coincides with a ball in the metric d as

defined above of radius t/2 about the point (1/2, 1/2, . . . , 1/2) ∈ Tk. We thus have

the following quantitative statement of measure concentration in Tk with respect to

the special metric d, which arises from the definition of the niveau set.

Corollary 4.29. Let the metric d be defined as above, and let E be a measurable

subset of Tk. We have the bound

µ(E + Ct(1)) ≥ 1− exp (−t2/8k)

µ(E)
,

where the bar indicates translation by (1/2, 1/2, . . . , 1/2) mod 1.

Recall that in the model setting Fn2 in Section 4.2, we used the fact that for any

subset A0 ⊆ Fn2 ,

A0 − A0 ⊆ Bt(1)C ⇒ A0 +Bt(0) ∩ A0 = ∅.

In the group ZN it follows from the fact that Ψ is linear and injective that any subset

A0 ⊆ ZN with the property that A0 − A0 ⊆ Bt(1) satisfies

Ψ(A0)−Ψ(A0) ⊆ Ψ(Bt(1)C) = Ψ(ZN) \Ψ(Bt(1)) = Ψ(ZN) ∩ Ct(1)C ⊆ Ct(1)C ,

and further that

Ψ(A0) +Ct(1)∩Ψ(A0) = ∅ ⇒ (Ψ(A0) +Ct/3(1)) +Ct/3(1)∩ (Ψ(A0) +Ct/3(1)) = ∅.

The set Ψ(A0) + Ct/3(1) is a union of balls in Tk centred at the image points of A0

under the map Ψ. Corollary 4.29 now gives us a bound on the measure of this set of

the form

µ(Ψ(A0) + Ct/3(1)) ≤ exp (−t2/72k). (4.1)

We are almost done. Because the characters γ1, . . . , γk are K-independent, we expect

the image of ZN under the map Ψ to be roughly uniformly distributed in Tk. As we

shall see shortly, this implies that the translates of the ball Ct/3(1) generate a set of

measure proportional to the density of A0, so that we will be able to infer a bound

on this density from the bound on the measure of Ψ(A0) + Ct/3(1). The remainder

of this section serves to make these remarks more precise.

We first turn to the equidistribution of ZN under the map Ψ. We have already seen

in the preceding sections that K-independence of the characters γ1, . . . , γk gives us
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4.3 From the Model Case to ZN

rather precise information about their distribution, and we are about to exploit this

fact yet again. Let us define the discrepancy of a set of points y1, ..., yN in Tk by

disc(y1, . . . , yN) := sup
B∞⊆Tk

∣∣∣∣ |{i : yi ∈ B∞}|
N

− µ(B∞)

∣∣∣∣ ,
where the supremum is taken over all L∞-balls B∞ ⊆ Tk and µ is, of course, Lebesgue

measure as before. We shall be able to give a bound on the discrepancy of the set

Ψ(ZN) using the following proposition known as the Erdős-Turán-Koksma Inequality.

It can be viewed as a quantitative version of Kronecker’s Equidistribution Theorem

and is taken from page 15 of [DT97].

Proposition 4.30. Let y1, ..., yN be points in Tk, and let K ∈ N. Then the discrep-

ancy disc(y1, . . . , yN) satisfies the bound

disc(y1, . . . , yN) ≤
(

3

2

)k 2

K + 1
+

∑
0<‖h‖∞≤K

1

r(h)

∣∣∣∣∣ 1

N

N∑
i=1

e(h · yi)

∣∣∣∣∣
 ,

where r(h) =
∏k

i=1 max{1, |hi|} for h = (h1, ..., hk) ∈ Zk.

It should be noted (and is discussed at length in [NP73]) that Proposition 4.30 is

very closely related to the Berry-Esseen Inequality. Its proof is again purely Fourier

analytic, and we use it here as a black box for pure convenience. As an immediate

corollary we have the following result for K-independent characters, once again illus-

trating the principle that K-independence of characters is the Fourier analytic (and

quantitative) analogue of the notion of independence of random variables.

Corollary 4.31. Given the map Ψ defined as above by a set γ1, . . . , γk of K-independent

characters, we have the bound

dics(Ψ(ZN))�
(

3

2

)k
1

K
.

In other words,

|{x ∈ ZN : Ψ(x) ∈ B∞η }| = µ(B∞η )N +O((3/2)kN/K)

for all L∞-balls B∞η ∈ Tk of side length η � K−1/k.

Recall that in Section 4.3 we were forced to choose K � N1/k in order for a set of

K-independent characters of cardinality k to exist. This implies that we are able to
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4.3 From the Model Case to ZN

resolve down to subcubes of side length η � N−1/k2
. It is this restriction that is

chiefly responsible for our bound in Theorem 4.1 in the case G = ZN .

Finally, we are able to make the transition from a bound on the measure of Ψ(A0) +

Ct/3(1) to a bound on the density of A0.

Lemma 4.32. Let k �
√

logN , and let γ1, . . . , γk be a set of K-independent char-

acters. Let the map Ψ be defined as above. Then for any set A0 ⊆ ZN we have

|A0| ≤ µ(Ψ(A0) + Ct/3(1))N.

Proof. First note that Ct/3(1) always contains the L∞-ball B∞t/3k of side length t/3k =

β/3, which implies

µ(Ψ(A0) + Ct/3(1)) ≥ µ(Ψ(A0) +B∞β/3).

Now divide Tk into η−k subcubes of sidelength η satisfying η � N−1/k2
and η < β/3.

This determines the constant required in the growth rate of k. By averaging and

Corollary 4.31, at least |Ψ(A0)|/ηkN of these subcubes contain at least one point of

Ψ(A0). Suppose these non-empty subcubes are indexed by the set I ⊆ [η−k], so that

|I| � |Ψ(A0)|/ηkN . But by our choice of η the subcubes Bi are smaller than the

L∞-balls B∞β/3. It follows that

µ(Ψ(A0) +B∞β/3) ≥ µ (∪i∈IBi) =
∑
i∈I

µ(Bi)�
|A0|
ηkN

ηk,

and therefore we obtain the lemma as stated.

Lemma 4.32 and Equation (4.1) combine to conclude the proof of Proposition 4.27.

We now bring together Propositions 4.11, 4.19 and 4.27 in order to state the main

result of this chapter.

Theorem 4.33. There exists a set A ⊆ ZN of size greater than N/3 with the prop-

erty that any set A0 whose difference set is contained in the set Dγ(A) of γ-popular

differences of A has density

exp (−cγ
√

logN),

where cγ is a small constant depending on γ.
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4.4 Remarks

4.4 Remarks

Our analysis in Section 4.3 only relied on measure concentration in the k-dimensional

torus and our ability to pick a set of independent characters. Therefore, it is evident

that our methods will yield the statement of Theorem 4.1 in any finite Abelian group.

It would be interesting to establish whether the bounds in Theorem 4.1 could be

improved to give a power-type decay as in Theorem 4.8.

Acknowledgements. The author would like to thank Ben Green for posing the

problem and many helpful discussions. She is also indebted to Geoffrey Grimmett

for sharing his insights into Esseen’s Inequality.
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Chapter A

Appendix: Estimates for the Weighted Squares

The material in this section is entirely standard and we give barely enough detail to

make this exposition self-contained. For an introduction to the circle method, see

[Vau81].

By Dirichlet’s Theorem, t/N ∈ I(a/q, (qQ)−1) for some 1 ≤ a ≤ q ≤ Q, (a, q) = 1.

Call the set of those t for which q ≤ R the major arcs and the set of those t for

which R < q ≤ Q = N/K the minor arcs. It is a typical feature of the Hardy-

Littlewood method that the exact values of the boundaries between the arcs need

to be determined in the course of the proof. Throughout, R will be of the order of

magnitude of K = el
2

defined in the introduction to Chapter 1.

We define the generating function of the weighted squares by

FS(θ) =
∑
x2≤N1

2x√
N1

e(x2θ).

Note that FS(t/N)/N coincides with our earlier definition of Ŝ(t) used throughout

the proof.

We would like to stress that although the estimates presented here are classical, one

could alternatively view them as a manifestation of the fact that it is possible to

decompose any bounded function into a structured and a random-looking part. In

the case of the set of squares we can be very explicit about the structure we obtain.

We start off by considering simple weighted exponential sum estimates for the squares.
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Lemma A.1. Let θ belong to the interval I(a/q, η). Then we have the bound

|FS(θ)| �
√

log q
√
q
|FS(η)|+

√
q log q(1 + |η|N).

Proof. Consider the truncated version FS(θ,m) =
∑

x≤m 2xe(x2θ)/
√
N1 of FS, as

well as the Gauss sum B(a/q,m) =
∑

x≤m e(x
2a/q). If m ≤ q, we have B(a/q,m)�

√
q log q. Using Abel’s Inequality, which says that if g is a monotone function, then

|
∑

x≤m g(x)f(x)| is bounded above by supx≤m |g(x)| supj≤m |
∑

x≤j f(x)|, we conclude

that FS(a/q,m) � m
√
q log q/N . It follows that FS(a/q) �

√
q log q. In the case

where m > q, we find FS(a/q,m) = B(a/q, q)m2/(q
√
N) +O(m

√
q log q/N) by split-

ting into segments of length q, and so FS(a/q) = B(a/q, q)
√
N/q + O(

√
q log q).

Now let θ = a/q + η with (a, q) = 1. By partial summation, we obtain FS(θ,m) −
B(a/q, q)FS(η,m)/q = O(m

√
q log q/N(1+|η|m2)), whence the final estimate FS(θ) =

B(a/q, q)FS(η)/q +O(
√
q log q(1 + |η|N)).

For small values of η, we can give a fairly good estimate for FS(η). Note that without

weighting the exponential sum, we would have a bound of σ−1|h|−1/2 here, which is

not good enough for the purposes of this paper.

Lemma A.2. Let 1
10
< h = ηN ≤ H = N1/8. Then we obtain the estimate

|FS(η)| � σ−1

|h|
.

Proof. Let us split the range of summation for FS into intervals

Rij = {x : x2 ∈ [N(i+ j/H)/h,N(i+ (j + 1)/H)/h)}.

Now break up the sum

FS(h/N) =

bh/2c−1∑
i=1

H∑
j=0

∑
x∈Rij

2xe(x2h/N)/σ +O(σ−1/|h|).

On Rij, x
2h/N is equal to an integer plus a small remainder of at most H−1, so the

sum becomes
h/2∑
i=1

T∑
j=0

e(j/H)σ
∑
x∈Rij

2x+
∑
x2≤N1

2x/(Hσ−1).

It is easily shown that
∑

x∈Rij
2x = N/(Hh)+O(σ−1), and hence the sum is bounded

by O(hH + σ−1/H)
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We next describe the behaviour of the weighted squares on what we called the major

arcs.

Lemma A.3. For t ∈ I(a/q, (qQ)−1) with q ≤ R, we have the major arcs estimate

|FS(t/N)| � σ−1

3
√
q
.

Proof. If q � K, then h > 1/10 and putting together the previous two lemmas yields

|FS(t/N)| =
√

log q/q/σ|h| + O(
√
q log qN/(qQ)). The first term clearly dominates

and thus, if q ≤ R, we have FS(t/N)� σ−1q−1/3.

We also need to investigate the behaviour on the minor arcs in more detail, which is

done in the following lemma.

Lemma A.4. For t ∈ I(a/q, (qQ)−1) with R < q ≤ Q, we have the minor arcs

estimate

|FS(t/N)| � σ−1√
K/L

.

Proof. If q ranges between R and N1/8, the result follows from the methods used

above. For very large q, that is for q > N1/8, it follows from Weyl’s Inequality that

|FS(t/N)| �
√
N logN(q−1/2 +

√
Q/N), which is clearly bounded above by

√
QL

provided that q � K.

Finally, we need the following variant of Hua’s Lemma, which is a classical ingredient

in the solution of Waring’s problem by Hardy and Littlewood.

Lemma A.5.
N∑
t=1

|FS(t/N)|6 � σ6.

We omit the proof but point out that the lemma corresponds to (a weighted version

of) the well-known fact that the number of representations of an integer n as the sum

of six squares is asymptotic to n2.
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gressions of length 4 in finite field geometries. Submitted. Available at

arXiv:math.CO/0509560, 2005.

[GT06a] B.J. Green and T. Tao. Linear equations in primes. Submitted. Available

at arXiv:math.NT/0606088, 2006.

[GT06b] B.J. Green and T. Tao. New bounds for Szemerédi’s theorem, II: A new
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[JŠT96] C. Jagger, P. Šťov́ıček, and A. Thomason. Multiplicities of subgraphs.

Combinatorica, 16(1):123–141, 1996.

[Kra06] B. Kra. Ergodic methods in additive combinatorics. Available at

arXiv:math.DS/0608105, 2006.

[Led01] M. Ledoux. The concentration of measure phenomenon. AMS Mathemat-

ical Surveys and Monographs, 2001.

[Lei04] A. Leibman. Convergence of multiple ergodic averages along poly-

nomials of several variables. Available at http://www.math.ohio-

state.edu/∼Leibman/preprints, 2004.

[Lei07] A. Leibman. Orbit of the diagonal of a power of a nilmanifold. Available

at http://www.math.ohio-state.edu/∼Leibman/preprints, 2007.

[L LS01] V. Lev, T.  Luczak, and T. Schoen. Sum-free sets in abelian groups. Israel

J. Math., 125:347–367, 2001.

[LOS82] J.C. Lagarias, A.M. Odlyzko, and J.B. Shearer. On the density of se-

quences of integers the sum of no two of which is a square. I. Arithmetic

progressions. J. Comb. Theory, Series A., 33:167–185, 1982.

[Luc07] J. Lucier. Difference sets and shifted primes. Preprint. Available at

arxiv:math.NT/0705.3749, 2007.

[McD89] C. McDiarmid. On the method of bounded differences. In Surveys in

combinatorics, 1989 (Norwich, 1989), volume 141 of London Math. Soc.

Lecture Note Ser., pages 148–188. Cambridge Univ. Press, Cambridge,

1989.

[Mes95] R. Meshulam. On subsets of finite abelian groups with no 3-term arith-

metic progressions. J. Combin. Theory Ser. A, 71(1):168–172, 1995.

[NP73] H. Niederreiter and W. Philipp. Berry-Esseen bounds and a theorem
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