
The time scale in concrete fracture: A model based on partitions of unity

G.P.A.G. van Zijl
Faculty of Architecture, Delft University of Technology, The Netherlands/
Civil Engineering Department, University of Stellenbosch, South Africa

G. N. Wells
Koiter Institute Delft, Delft University of Technology, The Netherlands

ABSTRACT: Intense research efforts have been put in the formulation of theories for crack initiation and
propagation in concrete. Yet, little attention has been paid to the time-dependence of fracture, despite evidence
of its significance. This paper reports a finite element modelwhich captures the time scale in concrete fracture.
Visco-elasticity is employed to capture bulk creep. In the fracture process zone a different time scale acts.
Therefore, a rate-dependent cracking resistance is modelled. A recently developed finite element method for
modelling cohesive cracks is employed. It is based on partitions of unity, by which means displacement jumps
are introduced independently of the mesh structure. This avoids the requirement of dense meshes by regularised
continuum approaches to model localisation, and a priori knowledge of where cracks occur for standard discrete
cracking approaches via interfaces.

1 INTRODUCTION
The behaviour of concrete is highly time- and rate-
dependent. The significant increase in structural resis-
tance upon loading rate increase in the dynamic range
is well-documented. However, more recently experi-
mental evidence of rate dependence in the quasi-static
range, i.e. where inertia and wave effects are neg-
ligible, has been produced by, for example Bažant
and Gettu (1992), Zhou (1992) and Bažant and Xiang
(1997). The time-dependent crack growth can cause
delayed structural collapse, rendering the incorpora-
tion of the time scale in computational models impe-
rative.

The mechanisms of the time dependence are not
yet fully understood. The micro-structural processes
in concrete, which hold the key to the rate ef-
fects, are governed by an intricate hygro-thermal-
mechanical inter-dependence. This has inspired cou-
pled approaches to model concrete behaviour (Biot
1955; Coussy 1955; Lewis and Schrefler 1998). Such
an approach is computationally costly, even if a
macroscopic approach is followed. This is worsened
by the requirement of dense finite element meshes
in localisation zones (Askes et al. 1998; de Borst et
al. 2001). The alternative cohesive zone concept for
modelling cracking in concrete, as traditionally ap-
plied in terms of interface elements by (Rots 1988;

Schellekens and De Borst 1993), suffers from the
requirement of a priori knowledge of crack paths.
A promising solution lies in a discontinuous model
based on the partitions of unity concept (Wells and
Sluys 2001). Such an approach is followed in this pa-
per.

In a step towards formulating a fully coupled
hygro-thermo-mechanical model for concrete frac-
ture, which employs a discontinuous model formula-
tion, the mechanical part is formulated in this paper.
To capture the time dependence, a phenomenological
approach is followed, by modelling bulk creep with
linear visco-elasticity, while the finite cracking rate is
captured with a rate-dependent cohesive behaviour in
the discontinuity. To verify the model, the creep fail-
ure experiments by Zhou (1992) are analysed.

2 PARTITIONS OF UNITY BASED CRACK
MODELLING

The displacement field in a body crossed by a discon-
tinuity, figure 1, can be expressed as (Wells and Sluys
2001)

u = û+HΓd
ũ (1)

whereû andũ are continuous functions onΩ,HΓd
is

the Heaviside jump centered at the discontinuity sur-
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Figure 1: BodyΩ crossed by a displacement discon-
tinuity Γd.

faceΓd. For finite element implementation, equation
(1) is discretised to read

u = Na+HΓd
Nb (2)

where N is a matrix containing the usual element
shape functions,a are the regular nodal degrees of
freedom andb are ‘enhanced’ nodal degrees of free-
dom. The displacement jump at a discontinuity is
given byNb, x 2 Γd. Formally, the interpolation can
be interpreted as an interpolation based on the par-
tition of unity concept (Babuška and Melenk 1997;
Duarte and Oden 1996; Wells and Sluys 2001).

The infinitesimal strain field is obtained by taking
the symmetric gradient of the displacement field:

∇∇∇sû = Ba;∇∇∇sũ = Bb (3)

whereB is the usual matrix containing spatial deriva-
tives of the element shape functions. The superscripts

indicates that only the symmetric part of the displace-
ment field gradient is taken. For convenience, the su-
perscript will be left out of the subsequent elabora-
tions.

The starting point for the finite element formula-
tion is the virtual work equation, which reads without
body forces:Z

Ω
∇∇∇ηηη :σσσ dΩ = Z

Γu

ηηη���t̄ dΓ (4)

whereηηη are admissible displacement variations, de-
composed as

ηηη = η̂̂η̂η +HΓd
η̃̃η̃η; (5)

σσσ is the stress field and̄t are external traction forces
(see figure 1). The gradient of admissible displace-
ment variations is given by

∇∇∇ηηη = ∇∇∇η̂̂η̂η +HΓd
∇∇∇η̃̃η̃η +δΓd

(η̃̃η̃η
n) ; (6)

with δΓd
the Dirac-delta function, centered at the dis-

continuity andn is the normal vector to the disconti-
nuity, pointing toΩ+.

Inserting equations (5) and (6) into the virtual work
equation (4) leads to:Z

Ω
∇∇∇η̂̂η̂η :σσσ dΩ+Z

Ω+ ∇∇∇η̃̃η̃η:σσσ dΩ+Z
Γd

η̃̃η̃ηΓd
���t dΓ = Z

Γu

�
η̂̂η̂η +HΓd

η̃̃η̃η
� ���t̄ dΓ (7)

wheret (= σσσn) are the traction forces acting at the
surfaceΓd. The Dirac-delta term has been eliminated
using the well-known integration property of the dis-
tribution.

Since equation (7) must hold for allη̂̂η̂η (η̃̃η̃η = 0), as
well as for allη̃̃η̃η (η̂̂η̂η = 0), inserting the discretised ex-
pressions from equations (2) and (3) into equation (7)
leads to two discrete weak governing equations (Wells
and Sluys 2001):Z

Ω
BTσσσ dΩ = Z

Γu

NT t̄ dΓ (8a)Z
Ω+ BTσσσ dΩ+Z

Γd

NTt dΓ = Z
Γu

HΓd
NT t̄ dΓ: (8b)

The stress rate in a visco-elastic continuum can be
expressed as (van Zijl et al. 2001)

σ̇̇σ̇σ = Dve
�

Bȧ+HΓd
Bḃ
�+ΣΣΣ (9)

whereDve is an equivalent, time-dependent stiffness
modulus andΣΣΣ is a viscous stress term which accounts
for the history. The traction rate at a discontinuity can
be expressed as

ṫ = TNḃ (10)

whereT relates the instantaneous traction and dis-
placement jump rates. Inserting the stress and trac-
tion rate expressions into equation (8) and employing
a linear time integration scheme gives

K
�

∆a
∆b

�=�fe;a
fe;b���f i;a

f i;b� (11)

where the stiffness matrixK has the form:24 R
Ω BTDveBdΩ

R
Ω+ BTDveBdΩR

Ω+ BTDveBdΩ
R

Ω+ BTDveBdΩ+ R
Γd

NTTN dΓ

35
(12)

Note that a semi-analytical time integration is per-
formed (van Zijl et al. 2001b) for an accurate solution
of the history. Thereby, the history term is assumed to



be constant during a time increment and does not ap-
pear in the stiffness matrix. The internal and external
force vectors are equal to:

fe;a= Z
Γu

NT t̄ dΓ (13a)

fe;b = Z
Γu

HΓd
NT t̄ dΓ (13b)

f i;a= Z
Ω

BTσσσ dΩ (13c)

f i;b = Z
Ω+ BTσσσ dΩ+Z

Γd

NTt dΓ: (13d)

See Wells and Sluys (2001) for a detailed discussion
of implementation aspects.

3 CONSTITUTIVE MODEL
The stress rate equation (9) can be integrated with a
linear scheme, which produces the stress increment
during the time increment∆t

∆σσσ = Dve
�

B∆a+HΓd
B∆b

�+ t σ̃σσ ; (14)

where

Dve = 264E0(t�)+ N

∑
n=1

0B�1�e
�∆t

ζn

1CA En(t�)
∆t=ζn

375D

t σ̃σσ = � N

∑
n=1

0B�1�e
�∆t

ζn

1CA tσσσn:
(15)

In this model an aging Maxwell chain can be iden-
tified, with time dependent element stiffnessesEn(t)
and viscositiesηn = Enζn, ζn being the relaxation
time of chain elementn=1,2,...,N. The stress vector
tσσσn contains the stress components in chain element
n at the end of the previous time step, i.e. at time
t. Note that the parameters are assumed to be con-
stant in each time interval and are evaluated at a time
t � t� � t +∆t. D is the matrix representation of the
fourth order tensor

Di jkl = 1
1+ν

�
ν

1�2ν
δi j δ jk+ 1

2

�
δikδ jl +δil δ jk

��
(16)

which is dependent on Poisson’s ratioν.

A discontinuity is extended when the maximum
principal stress at any integration point in the ele-
ment ahead of the discontinuity tip exceeds the tensile
strength ft . A rate-dependent cracking normal trac-
tion (Wu and Bažant 1993; van Zijl et al. 2001) of the
form

tn = ft exp

 � ft
Gf

κ

!�
1+k0 sinh�1

�
κ̇
κ̇r

��
+k0 k1 ft sinh�1

�
κ̇
κ̇r

�
(17)

is assumed in the discontinuity, whereκ is the his-
torically largest crack normal opening displacement,
Gf is the fracture energy anḋκr is a constant, refer-
ence crack opening velocity, which, together with the
model parametersk0 andk1 are obtained by inverse
analysis of experiments at various (quasi-static) loa-
ding rates.

The shearing tractionts is given by:

ts= ksũs (18)

whereks is independent of the normal opening to pre-
serve symmetry of the global stiffness matrix.

For unloading, the secant stiffness is used. The
loading and unloading behaviour of a body containing
the described discontinuity is illustrated in figure 2.
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Figure 2: Uniaxial loading and unloading behaviour.

4 CASE STUDY
To study the time scale in concrete fracture, the case
of failure under sustained load is investigated. The
three-point bending experiments by Zhou (1992) are
analysed. The specimens were 800mm long concrete
beams with section 100mm� 100mm and a cen-
tral notch 4mm wide and 50mm deep. The speci-
mens were sealed to avoid drying. The results of
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Figure 3: Three-point bending test experimental re-
sults (Zhou 1992).

two displacement-controlled experiments at a con-
stant, central deflection rate of 5µm.s�1, as well as
creep experiments at sustained loads of 92%, 85%,
80% and 76% of the peak load are shown in figure 3.

The experiments were analysed recently with a
rate-dependent continuum plasticity model by van
Zijl et al. (2001). They are re-analysed to verify the
current model, before turning to cases where the su-
periority of the partition of unity based model is ex-
ploited.

The material parameters were obtained by van
Zijl et al. (2001) from separate experiments by
Zhou (1992): Young’s modulus 30 kN.mm�2, ten-
sile strength ft=2.66 N.mm�2 and fracture energy
Gf =0.035 N.mm�1. For this particular case the re-
sponse is insensitive to the shear stiffness coefficient
ks. A 10-element Maxwell chain was fitted to relax-
ation test data (figure 4).

0 1000 2000 3000 4000
Time (s)

15

25

35

R
el

ax
at

io
n 

m
od

ul
us

 (k
N

.m
m−

2
) Experimental (Zhou 1992)

Maxwell model fit

Figure 4: Relaxation modulus employed.

Furthermore, Zhou performed three-point bending
tests at various loading rates on notched beams, from
which the cracking rate model parameters could be
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Figure 5: Loading rate effect on peak strength.

obtained by inverse analysis. The parameters obtained
in this way arek0 = 0:05;k1 = 0:01; κ̇r = 4� 10�7

mm.s�1. The rate dependence of the peak strength is
shown in figure 5. The first two parameters are the
same as employed by van Zijl et al. (2001), while the
reference cracking rate is obtained from the reference
strainrate by multiplication with the crack band width
lb=4 mm. A weaker rate enhancement can be seen in
figure 5 for the current model. This is due to the dif-
ferent constitutive model employed here. No attempt
has been made to improve the paramaters to obtain a
better agreement with the experimental results.

Firstly, the displacement-controlled case (central
deflection rate 5µm.s�1) is analysed. Good agree-
ment is obtained with the experimental results, as well
as with the continuum model results (figure 6).
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Figure 6: Three-point bending results at fixed loading
rate.

To study the mesh dependence, a coarse mesh and a
refined mesh are employed for the analysis. In figure 7
it can be seen that the response is insensitive to the
mesh. In the subsequent analyses, the coarse mesh is
employed.

Next, the creep experiments are analysed. The nu-
merical responses are shown in figure 8. The expe-
rimental observation (figure 3) that the constant ve-
locity response forms an envelope for creep failure is
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Figure 7: Load-displacement response for three-point
bending analysis.
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Figure 8: Numerical prediction of failure under sus-
tained load.

confirmed by the numerical results. In the creep ana-
lyses by van Zijl et al. (2001), displacement control
was resumed once the point of failure under the sus-
tained load was approached, to ensure that failure, or
the inability of the beams to resist the sustained cen-
tral load, was indeed imminent. In the current study
a negative diagonal term in the stiffness matrix is as-
sumed to indicate failure under the sustained load.

It is most important that the time scale of fracture
is captured accurately. In figure 9 the times between
the instant the full sustained load is applied and fail-
ure are shown. Good agreement is found with the ex-
periments. The discrepancy with the numerical results
by van Zijl et al. (2001) is ascribed to the different
constitutive model, which also led to the lower peak
load enhancement with loading rate, seen in figure 5.
Also shown in figure 9 are the times to failure if the fi-
nite cracking rate is not considered, in which case the
times to failure are overestimated by several orders of
magnitude.
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Figure 9: Time to failure under sustained load.

5 CONCLUSIONS
The extension of a cohesive zone model to incor-
porate the time scale in concrete fracture, has been
presented. The model is based on partitions of unity.
Displacement discontinuities can traverse arbitrarily
through a finite element mesh avoiding a priori crack
path knowledge required by discontinuity modelling
via interfaces. Also, there is no requirement for dense
meshes in fracture process zones, as in the case of re-
gularised continuum approaches to crack modelling.

To capture the time scale of concrete fracture, a
phenomenological approach has been followed. Two
sources of time dependence have been included in
the mechanical constitutive behaviour, namely li-
near visco-elasticity in the continuum to capture bulk
creep, and a rate-dependent normal traction in the dis-
placement discontinuity, to simulate the finite crack
rate. This simplified approach has been shown to in-
troduce the time scale accurately, through the analy-
ses of creep failure experiments.
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