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Summary

Studies of two-dimensional electron gases (2DEGs) in semiconductors form an ac-

tive and productive field of condensed matter physics research. As well as having

interesting inherent properties, they are used as the foundation for constructing

various nano-scale electronic devices, such as quantum wires and quantum dots.

Conventionally, low temperature measurements of 2DEGs are made by cooling

the sample to 1.5 K with liquid Helium-4, to 300 mK with liquid Helium-3, or even

down to a few mK using a dilution refrigerator. However, at lower temperatures

the electron gas becomes increasingly decoupled from the lattice in which it resides.

Below∼ 1 K the coupling can be weak enough for the electron gas to be significantly

elevated in temperature due to parasitic heating.

In this thesis we present the experimental and theoretical investigation of a re-

frigeration scheme that has the potential to cool 2DEGs below the temperatures

currently available. Cooling to ever lower temperatures would be beneficial for

studying fragile fractional quantum Hall states, non-Fermi-liquid behaviour in bi-

layer 2DEGs, or interactions like the Kondo effect that occur between quantum

dots and 2DEGs.

The scheme we investigate is called the Quantum Dot Refrigerator (or QDR)

and is based upon the energy selective transport of electrons through the single-

particle states of quantum dots. By using a pair of dots, both hot electrons and hot

holes can be selectively removed from an otherwise electrically isolated 2DEG. The

result is a net current that continuously removes heat. This type of refrigerator is

best suited to be used in conjunction with a dilution fridge or Helium-3 system to

provide a final stage of cooling. The scheme was first investigated theoretically in

1993 by Edwards et al. but, to our knowledge, has never before been demonstrated

experimentally.
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Summary

We detail the fabrication and measurement of a QDR device that is designed

to cool an isolated 6 µm2 2DEG. In order to interpret the behaviour of the device,

a model was developed to take account of electrostatic interactions between the

components of the system (the quantum dots and the isolated 2DEG). Electrostatic

interactions were found to be significant for our design, but were neglected in

previous work. Our model predicts that their presence complicates, but does not

invalidate, the principle of operation of a QDR.

By comparing measurements of the current through the QDR with predictions

of the model, we show that the observed behaviour is consistent with cooling of

the isolated 2DEG by up to 100 mK at ambient temperatures around 250 mK.

Although these temperatures are well within the reach of conventional refrigera-

tion techniques, the results are a compelling proof-of-concept demonstration that

the QDR principle is sound and can achieve significant refrigeration in the right

conditions.

Finally, we discuss future directions for improving QDR performance and char-

acterisation, and for lowering the achievable base temperature. We also suggest how

QDRs could be used to provide cold reservoirs for a nano-scale electronic device,

and explore the limitations that would apply to such an experiment.
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Chapter 1

Introduction

This thesis details the design, fabrication and measurement of a device for cooling a

two-dimensional electron gas (2DEG) with an area of 6 µm2 at temperatures below

∼ 1 K. The cooling is achieved by the energy selective injection and removal of

electrons from the 2DEG using a pair of quantum dots [1, 2]. To our knowledge,

this has never previously been demonstrated experimentally.

While our device is only found to demonstrate cooling at temperatures already

easily accessible by dilution refrigerators (∼ 100 mK), this is not a fundamental

limitation of the scheme. In principle, Quantum Dot Refrigerators (QDRs) can

operate at arbitrarily low temperatures. They are therefore an intriguing candidate

for cooling 2DEGs to the sub-mK regime, which has yet to be achieved using more

conventional techniques. In this chapter we discuss the motivation for creating such

a refrigerator for 2DEGs and outline the structure of this thesis.

1.1 Motivation

A 2DEG is formed when free electrons are confined to planar region so thin that

they behave as if they were truly two-dimensional. This situation can exist in vari-

ous materials, but often 2DEGs are created intentionally in layered semiconductor

structures (heterostructures). 2DEGs have been shown to be highly interesting

physical systems, as typified by the discovery of the quantum Hall effect in 1980

[3], and their behaviour at low temperatures continues to be the subject of ac-

tive research. In particular, significant efforts are currently focused on studying

1



Introduction 1.1

the fractional quantum Hall effect, largely because of its potential for realising

topological quantum computation [4]. These measurements require extremely low

temperatures (/ 10 mK) because of the fragile nature of the fractional quantum

Hall states involved.

As well as possessing interesting inherent behaviour, 2DEGs are also the foun-

dation on which a many nano-scale electronic devices are created. A vast number

of experiments have studied quantum wires and quantum dots that have been

made using semiconductor heterostructures combined with lithographically pat-

terned gate electrodes on the heterostructure’s surface. The result is a device that

is formed using a small part of the 2DEG in the material. The remainder of the

2DEG is usually used as an electrical reservoir to make contact with the device.

When the coupling between a device and its 2DEG reservoirs is strong, the device’s

behaviour can be strongly affected by the properties of the reservoirs. Phenomena

such as the Kondo effect, which involves many-body interactions between an iso-

lated spin trapped in a quantum dot and the sea of nearby spins in the 2DEG,

are often strongly temperature dependent. In general, the weaker the interaction,

the colder the 2DEG has to be in order to observe it; for example, a recent mea-

surement of the two-channel Kondo effect required a temperature of approximately

10 mK [5].

The usual technique for cooling 2DEG samples to the temperature required for

an experiment is to use a Helium-3 cryostat or dilution refrigerator. The latter can

cool the crystal lattice of the device down to ∼ 1 mK. However, it is common to find

that, unless great care is taken with the experimental setup, the temperature of a

2DEG is significantly higher than the lattice it resides in. The reason for this is that

the rate of inelastic scattering between 2D electrons and lattice phonons decreases

with temperature. This reduces the energy transfer and, therefore, the thermal link

between the 2DEG and the lattice. With a weak thermal link, parasitic heating

due to noise introduced by the electrical connections can be enough to elevate

the 2DEG temperature significantly. The reduction of noise in the measurement

setup is therefore of vital importance in obtaining a low temperature electron gas.

Heating can also arise from the absorption of environmental radiation and for this

reason cold radiation shields are often employed.

It is possible for the thermal contact between the 2DEG and the lattice of the

device to become so weak that the 2DEG’s primary cooling path is through its

electrical connections. Effectively thermalising the wires for these connections to

2



Introduction 1.2

the coldest point of the dilution fridge is therefore also important. However, this too

becomes increasingly difficult with decreasing temperature, since the effectiveness

of any thermal contacts used for heat-sinking will also decrease.

One possible solution to the challenge of cooling 2DEGs to sub mK temper-

atures is to employ direct electronic refrigeration. In this case, heat is pumped

out of the 2DEG directly by selectively removing hot electrons and injecting colder

ones. The decreasing inelastic electron-phonon scattering rate then becomes advan-

tageous, since it should allow the 2DEG to be cooled below the temperature of the

lattice. In this thesis we present the experimental investigation of one particular

electronic refrigeration scheme – the Quantum Dot Refrigerator [1, 2] – that has the

potential to cool 2DEGs to the sub-mK regime. While the proof-of-concept device

that we study did not achieve these exceptionally low temperatures, we present

its investigation to demonstrate the soundness of the refrigeration scheme and to

inform the design of future experiments.

In addition to providing cooling, QDR devices could be used to study the energy

flows in 2DEGs. For example, by observing the power required to change the

temperature of a 2DEG, the magnitude and temperature dependence of inelastic

electron-phonon scattering could be measured. Also, the operation of the QDR

will be sensitive to how quickly the 2DEG can re-equilibrate after the injection

(or removal) of electrons at a fixed energy. This energy relaxation is expected

to be dominated by inelastic electron-electron scattering. A QDR device could

therefore be used to investigate both inelastic electron-phonon and electron-electron

scattering in 2D systems.

Finally, although not considered in detail in this thesis, it is possible that a

Quantum Dot Refrigerator could eventually be implemented in material systems

other than a semiconductor electron gas. Indeed, it is not even necessary for the

cooled electron gas to be two-dimensional. The most stringent requirements are

placed on the quantum dots, which must be small enough to possess well spaced

single-particle states. This is already known to be achievable in systems such as

nanowires [6] and carbon nanotubes [7].

1.2 Outline

• Chapter 2 introduces several topics that are of particular relevance to the

work in this thesis. An explanation of electronic transport through quantum

3



Introduction 1.3

dots is given. The difficulties inherent in cooling semiconductor 2D electron

gases are then explored in detail, and previous work on several electronic

refrigeration schemes is reviewed. Finally, we summarise the original proposal

of the Quantum Dot Refrigerator.

• Chapter 3 details the design, fabrication and measurement of a QDR device.

Extensive characterisation of the device is presented to establish that it fulfills

the known requirements for achieving refrigeration.

• In Chapter 4 we present measurements of the QDR device operating in

a regime where cooling is expected. To interpret the results, a model is

developed. By comparing the predictions of the model with the data, it is

shown that the behaviour of the device is consistent with active cooling of

the central region.

• Chapter 5 discusses future directions for investigating QDRs. The details of

operating a non-invasive, quantum dot thermometer are demonstrated exper-

imentally. Techniques for using QDRs in conjunction with other experiments

are also discussed.

• Chapter 6 summarises the work presented in this thesis and presents the

key conclusions.

1.3 Publications

The main results of the QDR experiment have been published in:

• J. R. Prance, C. G. Smith, J. P. Griffiths, S. J. Chorley, D. Anderson, G.

A. C. Jones, I. Farrer, and D. A. Ritchie, Electronic refrigeration of a two-

dimensional electron gas, Phys. Rev. Lett. 102(14), 146602 (2009).

The above paper was selected for a Viewpoint summary in the APS journal

Physics, published as:

• Jason R. Petta, Electronic refrigeration on the micron scale, Physics 2, 27

(2009)

4



Chapter 2

Background

2.1 Low-dimensional electronic devices

Quantum mechanics predicts that a particle’s momentum will assume one of a

discrete set of values when its motion is confined to a finite region of space. A

simple example is the well-known ‘particle-in-a-box’ problem, where solving the

Schrödinger equation in a box with side lengths Lx, Ly and Lz results in states

with wavevectors (k) and energies (E) given by:

k =

(
nxπ

Lx

)
î+

(
nyπ

Ly

)
ĵ +

(
nzπ

Lz

)
k̂ (2.1)

E =
π2~2

2m

[(
nx

Lx

)2

+

(
ny

Ly

)2

+

(
nz

Lz

)2
]

(2.2)

where the values nx, ny and nz are positive, non-zero integers. Traditional electronic

devices have length scales so large that the separations between the quantised

wavevectors and energies can be safely ignored. However, technological advances

in semiconductor processing, nanotechnology and low-temperature measurement

techniques have opened the possibility of making small enough electronic devices,

and measuring them at low enough temperatures, for the quantisation of electronic

states to be revealed.

One of the most widely studied low-dimensional electronic systems is the two-

dimensional electron gas (2DEG) in semiconductors, in which carriers are confined

5



Background 2.1

z z

E E

EF EF

EC EC

EV EV

I III II

(a) (b)

Figure 2.1: The formation of a quantum well at a heterointerface. Both plots
show the energies of the conduction and valance bands (EC and EV ) as a function of
depth into the material (z). The step in band-gap energy (Egap = EC−EV ) between
materials I and II creates discontinuities in both bands leading to the situation in
(a). With appropriate doping, or the application of an external electric field, the
conduction band can be populated with free carriers in a narrow range of z. This is
shown by the small blue region in (b).

in one direction (z) on a length scale comparable to the Fermi wavelength. Con-

finement in the other two directions (x and y) is over large enough distances for

the quantisation of momentum in the x-y plane to be neglected. The energy of a

carrier with effective mass m∗ can therefore be written as:

E2D = En +
~2

2m∗
k2

2D (2.3)

where k2D is the wavevector in the x-y plane, which is assumed to be a continu-

ous quantity, and En is the energy associated with the nth quantised wavevector

component in the z direction. For example, in an infinite square well of width Lz,

Equation 2.2 shows that En = (π2~2n2)/(2m∗L2
z). Ideally, En=2 is large enough

that only states with n = 1 are populated. The carriers then behave as if they were

purely two-dimensional.

The confinement potential for a semiconductor 2DEG is created by engineering

the band-structure in the material. Typically the 2DEG is formed at the interface

between two semiconductors with different band gaps, or between a semiconductor

and an insulator. In both cases the conduction band edge has a discontinuity at

the interface. A potential well is formed in the conduction band by bending the

band structure with doping or an externally applied electric field (see Figure 2.1).

Once the bottom of the well is pulled below the Fermi energy, it becomes populated

with electrons that form the 2DEG. (Alternatively, the valance band can be pushed

above the Fermi energy to form a 2D hole gas.)

Measurements of 2D electron and hole gases at low temperatures have lead
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to the discovery of a wealth of physical phenomena too extensive to detail fully

here. Probably the most notable are the quantum Hall effect [3], the fractional

quantum Hall effect [8], and the spin Hall effect [9, 10]. All exhibit fundamentally

quantum mechanical behaviour in macroscopically measurable quantities, providing

new physical insights.

In the remainder of this section we explain in detail the GaAs/AlGaAs 2DEG

system, which all the original work presented in this thesis utilised. We also discuss

how the patterning of gate electrodes on the surface of a 2DEG device can allow

even more physical effects to be studied, including the creation and manipulation

of lower dimensional electron gases.

2.1.1 The 2D electron gas in GaAs

The band gap of the semiconductor alloy AlGaAs depends on the Al fraction (x)

via the relation Egap = (1.424+1.247x)eV [11]. But while Egap changes significantly

with x, the lattice constant changes little: for GaAs (x = 0) the lattice constant

is 5.635 Å, while for AlAs (x = 1) it is 5.660 Å. Layers of AlGaAs and GaAs can

therefore be grown on top of each other with very little lattice mismatch, minimising

the strain and the density of misfit dislocations at the interface. The GaAs/AlGaAs

system therefore provides an excellent way to produce high quality interfaces with

a tunable band-structure.

The layered structure that forms a 2DEG device is called the ‘heterostructure’.

They are produced by molecular beam epitaxy (MBE), which can deposit high

purity materials with monolayer precision. A typical 2DEG heterostructure is

shown in Figure 2.2. These are sometimes called ‘high electron mobility transistor’

(HEMT) heterostructures.

The mobility of an electron gas is a measure of the drift velocity of the electrons

in response to an applied electric field. Normally the mobility in semiconductors

is limited by scattering with dopants. However, in a HEMT device the dopants

and the carriers are physically separated by a spacer layer, leading to a decrease

in scattering and an increased mobility. Typical mobilities in HEMT devices are

∼ 106 cm2V−1s−1.

As can be seen in Figure 2.2, the 2DEG in a HEMT heterostructure resides

a significant distance below the surface (approximately 90 nm in this case). To

make an electrical (and preferably ohmic) contact to it, a conducting channel must

be formed down through the material. This can be achieved by annealing certain
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GaAs (cap)

Si doped AlxGa1−xAs

AlxGa1−xAs (spacer)

GaAs substrate

2DEG

(a) (b)

z

E
EF

EC

Figure 2.2: A standard HEMT heterostructure is shown in (a), and the correspond-
ing conduction band edge profile is shown in (b). The red dots depict the randomly
positioned Si dopants. Typically the spacer and dopant layers are 40 nm thick and
the capping layer is 10 nm thick. A typical value for the Al fraction in the AlGaAs
layers is x = 0.33.

materials into the heterostructure that provide extra localised doping. A common

choice is to pattern AuGeNi on the surface of the material, which on annealing

diffuses downwards to form conducting paths that contact the 2DEG.

2.1.2 Confinement with surface gates

In addition to their inherent behaviour, semiconductor 2DEGs are also the founda-

tion for a many of studies of mesoscopic 2D effects and lower dimensional electron

gases. This work has been facilitated by the rapid development of semiconductor

processing technology that allows sub-µm scale patterning on the surface of devices.

By varying the voltage applied to a gate electrode on the surface of a het-

erostructure, the carrier density in the 2DEG beneath the gate is changed. If a

sufficiently negative voltage is applied, the electron gas beneath the gate can be

completely depopulated (the conduction band is pushed back above the Fermi en-

ergy). This depopulation can be used as a way to create lateral confinement of the

2D carriers. Lateral confinement can also be achieved by etching the heterostruc-

ture in certain places, leaving the 2DEG intact in only the unetched regions. These

techniques are illustrated in Figure 2.3.

With the ability to laterally confine the 2D carriers on sub-µm length scales came

the possibility to observe mesoscopic effects in 2DEGs, for example the ballistic

motion of carriers [12, 13, 14] or single-particle interference [15, 16]. It also became
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(a) (b)

Figure 2.3: Lateral confinement in a 2DEG using surface gate electrodes (a), and
etching (b). The extent of the 2DEG is shown by the blue layer. In (a) the 2DEG is
depleted below the gates when a sufficiently negative voltage is applied to them. In
(b) the 2DEG is removed from below the etched pits when they are deep enough to
have a significant effect on the band structure. Etching away the doped layer from
the heterostructure will ensure that this happens.

possible to produce sufficiently strong lateral confinement to form lower dimensional

electron gases. Some of the earliest demonstrations of this were the formation of a

conducting channel less than 1 µm in width confined by two closely spaced surface

gates [17, 18]. The conductance of the constriction was found to be quantised in

units of 2e2/h, which is now known to be the case for ballistic transport through

a 1D electron gas. Subsequently, strong confinement in all directions was also

demonstrated using both surface gates [19, 20, 21] and etched pillar structures [22].

These systems, in which a small puddle of electrons are completely confined, are

known as ‘quantum dots’.

Early investigations of transport through quantum dots did not immediately

show any direct evidence for the formation of a 0D electron gas. This is because

the behaviour of dots is primarily governed by a purely classical effect known as

‘Coulomb blockade’ (this is explained in detail in Section 2.2.1). However, non-

linear transport measurements soon revealed the zero-dimensional nature of the

states in the confinement potential [23, 24, 25].

The study of quantum dots has expanded to become an immensely productive

field of solid state physics. Gated semiconductor dots in particular provide highly

tunable, few-particle, quantum mechanical systems. They have attracted atten-

tion both for their versatility for studying fundamental physics, as well as being

promising candidates for implementing several solid state quantum computation

architectures. For reviews of progress in the field, see [26, 27, 28, 29, 30].
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2.2 Quantum dots

This section outlines the effects that dominate the behaviour of quantum dots, as

observed in transport measurements. We mostly restrict discussion to the regime

of weak tunnel coupling between a dot and any nearby conductors, as this is most

relevant to the scope of this thesis.

2.2.1 Coulomb blockade

When an isolated island of charges has a sufficiently small capacitance, the energy

required to change it’s charge by even one electron may be large. Until this energy

is somehow supplied, no charge may move onto or off the island and it is said to

be ‘Coulomb blockaded’. Any current through the island will be suppressed. This

phenomenon was first observed in the tunnel current through dielectric films in

which small conducting impurities were present, and was explained in detail by

Shekhter and Kulik [31, 32].

How small must the capacitance be for Coulomb blockade to be observable? For

an island with a charge Q and a total capacitance of C, its electrostatic energy is

given by U = Q2/2C. The energy required to add the Nth electron will therefore

be:

µN = U(N)− U(N − 1) =
(Ne)2

2C
− ([N − 1]e)2

2C
=

(
n− 1

2

)
e2

C
(2.4)

This value is the electrochemical potential of the island. The ‘charging energy’ for

the island is defined as the difference in electrochemical potentials for adding two

successive charges:

ECB = µN+1 − µN =
e2

C
(2.5)

Two conditions must be satisfied for Coulomb blockade to be observable. Firstly,

the charging energy must be greater than any thermal fluctuations: e2/C � kBT ,

where kB is Boltzmann’s constant. For a typical experimental temperature of

100 mK, this implies that the total island capacitance must be much less than

19 fF. Secondly, the charges must be well localised on the island. For an isolation

resistance of R, the charging (or discharging) time of the island is given by t = RC.

If the energy uncertainty associated with this time (h/RC) is greater than ECB,

then the number of electrons on the dot will not be well defined. We find that a

resistance R� h/e2 (R� 26 kΩ) is sufficient to ensure that this is not the case.

The typical configuration of a quantum dot is depicted by an equivalent circuit
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diagram in Figure 2.4. The total capacitance of the island (CΣ) is small enough, and

the tunnel barrier resistances (R) large enough, that the dot will exhibit Coulomb

blockade at its operating temperature. The dot is tunnel coupled to conducting

source and drain reservoirs. The inclusion of a capacitively coupled gate electrode

allows the potential of the dot to be controlled. To understand how, we consider

the electrostatics of the system in Figure 2.4. The voltage of the dot (V ) is given

by:

V =
Q+ CSVS + CDVD + CgVg

CΣ

(2.6)

The electrostatic energy for an island with a charge of −Ne is found by integrating

the voltage:

U(N) =

∫ −Ne

0

V (Q)dQ =
(Ne)2

2CΣ

−NeCSVS + CDVD + CgVg
CΣ

(2.7)

The electrochemical potential of the dot [µN = U(N)−U(N − 1)] is then found to

be:

µN =

(
N − 1

2

)
e2

CΣ

− (CSVS + CDVD + CgVg)
e

CΣ

(2.8)

For certain sets of voltages it is possible to make µN lie between the potentials of

the source and drain reservoirs (assuming that VS 6= VD). In this situation the

Coulomb blockade has been lifted and current may flow between the source and

drain, as the charge state of the dot alternates between N and N−1. The presence

of the gate electrode allows this to be achieved regardless of the values of VS, VD

and N .

For quantum dots defined in a semiconductor 2DEG the situation is slightly

different to the description above. Instead of the dot being a fixed size island,

gated semiconductor dots maintain a roughly constant charge density with their

size being dependent on their occupation number (N). However, the resulting

behaviour is essentially the same.

2.2.2 Quantum confinement

In many material systems it is possible to create quantum dots with dimensions

comparable to the wavelength of electrons in the dot. In this case, the presence of

quantised states in the confinement potential can be observed. Such quantum dots

are sometimes called ‘artificial atoms’ because they exhibit phenomena also seen

for states in the potential well of an atomic nucleus, such as magic numbers, shells,
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VS Q VD

R,CS R,CD

CG

Cg

Vg

0 V

Tunnel barriers:

R,C

R

C

Figure 2.4: Equivalent circuit for a typical quantum dot. The dot has a charge Q,
and is connected by two tunnel barriers to source and drain reservoirs, which are at
voltages of VS and VD respectively. The electrochemical potential of the dot can be
controlled by the voltage of a capacitively coupled gate electrode (Vg). The charging
energy is determined by the total capacitance: CΣ = CS + CD + Cg + CG.

and filling rules [33].

The energy of an artificial-atom-like dot with an occupation number N is de-

termined by the energies of single-particle states in the confinement potential and

the interaction energy between the electrons. At high magnetic fields and low elec-

tron densities the details of the interaction are significant [34], but otherwise it is

usual to approximate the interaction energy as being constant. This assumption is

called the constant interaction model. The interaction energy is synonymous with

the charging energy of the dot from the purely classical description of Coulomb

blockade given in the previous section. The electrochemical potential of the dot in

this situation is modified to be:

µN = ∆EN +

(
N − 1

2

)
e2

CΣ

− (CSVS + CDVD + CgVg)
e

CΣ

(2.9)

The new term, ∆EN , is the spacing between the Nth and the (N − 1)th single-

particle states for the specific confinement potential of the dot.

In general it is not possible to determine precisely the shape of the potential

well in a gate defined quantum dot. The 2D harmonic potential is a commonly

used approximation for etched-pillar quantum dots, and results in single-particle

states that lie in equally spaced shells. The nth shell has a degeneracy (including

spin) of 2(n + 1) (with n ≥ 0). Applying an out-of-plane magnetic field lifts both

the orbital and spin degeneracy, leading to the well known Darwin-Fock spectrum.

The orbital degeneracy can also be lifted if the potential is not circularly symmetric

[34].
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For gate defined dots it is usual to assume that the confinement potential will not

have a particular symmetry. This implies that the spectrum of single-particle states

will be a series of spin-degenerate levels, but that the exact level spacings are hard

to predict. (This is further complicated by the fact that it is not always possible

to determine the dot’s occupancy.) Values of ∆EN can be found experimentally by

observing variations in the addition energy (µN+1−µN) [33]. The spacing of states

can also be seen in non-linear transport measurements.

2.2.3 First order transport

The transport of electrons through a quantum dot device can be largely understood

by considering sequential tunnelling across the two tunnel barriers, where the du-

ration of tunnelling events is far shorter than the time between them. A theory of

linear transport (VSD = VS−VD = 0) in this situation was given by Beenakker [35],

and for non-linear transport (VSD 6= 0) by Averin, Korotkov and Likharev [36, 37].

The energy levels for a quantum dot in the linear regime are depicted in Fig-

ure 2.5. If the electrochemical potential for adding a the Nth charge is close to

the potentials of the reservoirs, then the dot’s charge state can fluctuate between

N and N − 1 and charge can be transported between the source and drain by the

application of a small bias. The dot’s conductance (G = dI/dVSD) is therefore

non-zero. If µN is far from the reservoir potentials, the dot is Coulomb blockaded

and has zero conductance. We can move between the two situations by changing

the value of µN with a gate electrode.

The periodic peaks in the conductance of a quantum dot are commonly re-

ferred to as ‘Coulomb blockade peaks’. They are separated by a gate voltage that

corresponds to a change in µN of the charging energy plus the energy spacing of

the lowest available single-particle state. The line-shapes of the peaks depend on

the relative values of the temperature of the reservoirs (kBT ), the total tunnel

coupling (~ΓTOT , where ΓTOT is the sum of the tunnel rates of the two barriers),

and the spacing of single-particle states (∆E). The functional forms of the peak

shapes for first-order transport are given by Beenakker [35]. The width of the

peaks is determined by the thermal broadening of the source and drain (kBT ) if

kBT � ∆E, ~ΓTOT or if ~ΓTOT � kBT � ∆E. For strong coupling between the

dot and the reservoirs (large ΓTOT ), the single-particle states are broadened by

energy uncertainty due to their short lifetimes. When kBT � ~ΓTOT � ∆E, the

width of the peaks is determined by ~ΓTOT and their line-shape has a different
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(a) (b)

µS µD
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Figure 2.5: (a) Energy level diagram for a typical quantum dot in the linear trans-
port regime. The blue shaded regions represent filled states in the source and drain
reservoirs. The states are filled up to their chemical potentials (µS and µD). The
thermal broadening of reservoirs is indicated by the light blue shaded regions around
their potentials. The conductance of the dot is non-zero only when its electrochemi-
cal potential lies close to the potentials of the reservoirs. (b) Conductance of the dot
as a function of the gate electrode voltage Vg, which linearly shifts the ladder of dot
states.

functional form to the thermally broadened cases.

For biases larger than the blockade peak widths, the dot can no longer be

characterised by a linear conductance. This is the non-linear transport regime.

With increasing VSD, a window of energies is opened over which states in the

source are full and states in the drain are empty. If the potential of the dot lies

within this ‘bias window’, electrons will flow from the source to the drain.

If the bias exceeds the spacing of single-particle states in the dot, it is possible

for higher energy states to participate in transport. In this case, it is necessary to

extend the notation for the electrochemical potential of the dot: we define µN :i,j =

Ui(N)−Uj(N − 1), where Ui(N) is the energy of the dot holding N electrons with

the last electron in the ith excited state. For example, the previous definition of

µN is equivalent to µN :0,0. (The electrochemical potential for adding an electron to

the N electron ground state, with the dot starting in the N − 1 electron ground

state.) If the bias is larger than the energy difference to the first N electron excited

state, then µN :1,0 may also lie within the bias window. Transport can then involve

this excited state. Similarly, the first N − 1 electron excited state may be involved

if µN :0,1 is available. Figure 2.6 shows the energy levels for a dot in the non-linear

regime with single-particle spacings smaller than the bias.
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Source Drain

µN :0,0

µN :1,0

µN :0,1

Figure 2.6: Energy level diagram for a quantum dot, with well separated single-
particle states, in the non-linear transport regime. The electrochemical potentials
for two transitions involving excited states are shown (µN :1,0 and µN :0,1).

Even with excited states present, transport through the dot can only occur when

µN :0,0 lies in the bias window. Consider, for example, the situation where µS > µD

and µS > µN :1,0 > µD, but µN :0,0 < µD. While it is possible for the N th electron to

enter the dot in either the ground or excited state, only an electron in the excited

state is subsequently able to leave (to the drain). Therefore, when a ground state

electron eventually enters, the dot will become ‘stuck’ in the N electron ground

state and no further transport may occur. An equivalent argument applies when

considering transport through µN :0,1: the dot becomes stuck in the N − 1 electron

ground state when µN :0,0 > µS.

The total current through the dot is determined by the tunnel rates of all the

available processes. If they are all similar, the result is an increase in current every

time a new level moves within the bias window. However, if some processes have an

especially low tunnel rate, they can actually reduce the current when they become

available. In a conductance measurement this appears as a negative value. The

effect is sometimes referred to as ‘negative differential resistance’ (NDR).

The expected characteristics of the dot current as a function of the bias (VSD)

and the gate electrode voltage (Vg) are shown in Figure 2.7. The figure shows the

widening of a single Coulomb blockade peak with bias. With a large enough bias,

the widened peaks from adjacent charge states overlap leaving diamond shaped

regions of zero current between them. These are commonly referred to as ‘Coulomb

diamonds’.

The boundaries of the the Coulomb diamonds are labelled as ‘source resonance’
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Figure 2.7: Features of non-linear transport through a quantum dot with a biased
drain. Darker filled blue (red) regions, in the axes on the left, indicate regions of
greater positive (negative) current from drain to source. The blue lines show non-zero
differential conductance. The angles θS and θD are used to determine the conversion
factor between VG and dot energy. Insets (a)-(c) show the energy levels of the dot at
the corresponding points on the axes.

and ‘drain resonance’ in Figure 2.7. This is because they correspond to, respectively,

the dot level µN :0,0 being aligned with the source and drain potentials. The gradient

of these resonances can be used to calibrate the conversion factor (often called

‘lever-arm’), between ∆Vg and the change in dot energy. Following the argument

of Fühner [38], the gradients are defined as:

mS = tan(θS) =

(
∆Vg

∆VSD

)(S)

(2.10)

mD = tan(θD) =

(
∆Vg

∆VSD

)(D)

(2.11)

The superscript in the right hand expression denotes whether the gradient is of

the source or drain resonance line. The values of mS and mD determine the gate

electrode lever-arm (αG), which is the conversion factor between changes in Vg and

the electrochemical potential of the dot:

αG =
1

mD −mS

(2.12)

The lever-arm for the gating effect on the dot energy from the biased reservoir (in
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Figure 2.8: Energy level diagrams for elastic co-tunnelling (a), and the Kondo effect
(b).

this example, the drain) can also be found:

αD =
1

1− (mD/mS)
(2.13)

With the bias applied to only the drain reservoir, αS cannot be found.

The extra structure inside the bias window reveals the presence of single-particle

states in the dot. Those involving N electron excited states are commonly referred

to as ‘electron excited states’. They appear as lines parallel to the biased reservoir

resonance for positive bias, and the unbiased reservoir resonance for negative bias.

Those involving N − 1 electron excited states are called ‘hole excited states’ and

they have the opposite behaviour. The energy spacing between the states is given

by the distance between them in the direction of changing VSD.

2.2.4 Higher order transport

So far we have consider dots that are weakly coupled to their reservoirs and tun-

nelling events that occur one at a time. However, if the coupling is increased, higher

order processes involving two or more correlated tunnelling events can become im-

portant. Two examples are co-tunnelling and the Kondo effect. Both allow an

electron to tunnel through a dot in an energetically unfavourable situation via an

intermediate virtual state.

Co-tunnelling can produce non-zero conductance throughout the normally block-

aded region of a Coulomb diamond [39, 40, 41]. Transport occurs when the dot

temporarily occupies the energetically forbidden N + 1 electron state. This is al-
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lowed by uncertainty if a correlated tunnelling event quickly returns it to the N

electron state. The net result is the transfer of an electron between the source and

drain. This is illustrated in Figure 2.8(a). Co-tunnelling can be either elastic of

inelastic. In elastic co-tunnelling an electron emerges at the same energy at which

one entered, and the dot is left in its ground state. In inelastic co-tunnelling an

electron leaves with a lower energy, and the dot is left in an excited state. Inelastic

co-tunnelling may only occur when an excited state lies within the bias window,

and is therefore suppressed at low bias.

The Kondo effect is a second order tunnelling process that involves the flip of an

unpaired spin in the dot [shown in Figure 2.8(b)]. An equivalent explanation is that

the reservoir electrons screen the dot’s spin by continually causing it to flip via an

intermediate virtual state. This many-body interaction is usually described within

the context of the Anderson impurity model [42], which was developed to explain

Kondo scattering processes in metals with magnetic impurities. The Kondo effect

was first observed experimentally in quantum dots in 1998 [43, 44, 45], and since

then has attracted continued interest as a controllable system in which many-body

physics can be studied.

The typical signature of the Kondo effect in transport through a dot is a finite

conductance between blockade peaks that is suppressed by the application of a

small bias. Kondo mediated transport can only occur via a singly occupied, spin

degenerate energy level, and so only between certain pairs of blockade peaks. The

strength of the process is characterised by the ‘Kondo temperature’, above which

it is suppressed.

2.2.5 Dots as thermometers

If the lifetime broadening of a state in a dot is significantly less than kBT , then

transport through the dot will be sensitive to the electron temperature of its

reservoirs. This is often used as a method of thermometry, usually by observing

the width or height of Coulomb blockade peaks in the linear transport measure-

ment. Both the width and height are sensitive to temperature in different regimes

[21, 35, 46].

It is also possible to extract the temperatures of the reservoirs in a non-linear

measurement, provided that the dot has a large single-particle state spacing com-

pared to kBT . In this situation, the change in current at the edge of a Coulomb

diamond is directly determined by the changing density of occupied states in the
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Figure 2.9: The effect of a finite reservoir temperature on non-linear transport
through a weakly coupled dot. The energy level diagram is shown in (a), and the
corresponding current as a function of electrode voltage (Vg) is shown in (b). As Vg
is made more negative, µN increases. Current begins to flow when µN passes the
potential of the drain and stops when it passes the source. These two transitions are
given by Fermi functions (f(x) = [1 + exp(x/w)]−1) with widths (w) proportional to
the appropriate reservoir’s temperature.

reservoir [36, 37], which, in turn, is given by a thermally broadened Fermi function.

Figure 2.9 shows how a non-linear transport measurement can be used to determine

the temperature of the two reservoirs independently.

2.2.6 Point-contact detectors

One of the most significant experimental advances in gated semiconductor quantum

dot measurements was the realisation of the ‘point-contact detector’ [47]. This tool

allows the experimenter to measure changes in the charge state of a dot without

making any direct electrical connection to it. The principle of the point-contact

detector (also called ‘quantum point-contact’ or QPC detector) is to use the highly

non-linear conductance characteristics of a 1D wire (the point-contact) placed in

close proximity to the dot as a sensitive probe of the local electrostatic environ-

ment. A change of the dot’s average charge by less than a single electron can

alter the electrostatic potential of the 1D channel significantly enough to produce

a measurable change in its conductance.

Detectors have proved an invaluable tool for probing the behaviour of very

weakly coupled quantum dots for which the transport signal is too small to measure.

This is often the case when approaching the few- or single-electron regime, as
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depopulating a dot this far usually results in very opaque tunnel barriers. In

particular, the study of spin effects in few-electron dots has benefited greatly from

this technique [30].

If the bandwidth of the point-contact conductance measurement is less than the

tunnel rates of the dot barriers, the detector signal reflects the average charge state.

However, if the bandwidth is increased it becomes possible to detect individual

tunnelling events in real time [48, 49]. This makes it possible to measure the

full counting statistics of a system, which provide more information than normal

current or noise measurements [50]. It is also possible to measure sub-atto-ampere

currents by counting individual electrons passing through a device one at a time

[51].

2.3 Inelastic scattering of 2D electrons

The low temperature mobility of semiconductor electron gases is limited by elastic

scattering from impurities. However, more important to the work presented in this

thesis is inelastic scattering, which is necessary for a 2DEG to be able to exchange

energy with its environment and to achieve thermal equilibrium. In this section we

briefly outline the expected behaviour of various inelastic scattering mechanisms.

2.3.1 Electron-electron scattering

In low temperature 2D electron gases with finite disorder, electron-electron scatter-

ing is found to be dominated by two processes. The first is due to the fluctuating

background potential produced by the movement of all the electrons in the 2DEG,

which is experienced by every electron [52]. This is known as Nyquist scattering

and it transfers only small amounts of energy between pairs of electrons, compared

to the temperature or their excess energy. The scattering rate is linearly dependent

on temperature. The second scattering mechanism transfers energies comparable

with the temperature or the scatterers’ excess energy [53, 54, 55]. For this process,

the lifetime for an electron with an excess energy ε above the Fermi energy (εF ) of
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(a) (b)

Figure 2.10: (a) Electron-electron scattering induced peak broadening in a tun-
nelling spectroscopy measurement [59]. The calculated broadening is from the the-
ory in [53], from where the plot is reproduced. The ‘GQ’ prediction is from an
earlier theory [55]. (b) Measured electron energy loss rate as a function of tempera-
ture, reproduced from [61]. The ‘B = 0’ data shows a T 5 dependence, as expected for
electron-phonon coupling, with a prefactor similar to the value predicted by equation
2.17, which is 88 eVs−1K−5. The T 2 dependence comes from a different mechanism
in the experiment.

a 2DEG at a temperature T is given by [53];

τ−1
e−e(T ) = −πεF

8~

(
kBT

εF

)2

ln

(
kBT

εF

)
[for εF � kBT � ε] (2.14)

τ−1
e−e(ε) = − εF

8π~

(
ε

εF

)2

ln

(
ε

εF

)
[for εF � ε� kBT ] (2.15)

Measurements of electron dephasing have explored the behaviour of these scat-

tering mechanisms and broad agreement with theory is found [56, 57, 58]. Quanti-

tative agreement with the predicted large energy transfer scattering rate (i.e. the

combination of Equations 2.14 and 2.15, but excluding Nyquist scattering) has also

been measured directly by tunnelling spectroscopy [59, 60] [see Figure 2.10(a)].

2.3.2 Electron-phonon scattering

The interaction between electrons and phonons in GaAs is mediated by both the

deformation-potential interaction and the piezoelectric interaction. In the first,

phonons change the relative positions of the crystal atoms so as to change the

electrostatic potential experienced by the electrons. In the second, the change
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of atomic positions also changes the polarization of the unit cell. (In GaAs, for

example, by changing the relative positions of the Ga and As ions.) This produces

an electric field, which is also experienced by the electrons. The relative importance

of the two interactions depends on temperature, and for a GaAs 2D electron gas

it is found that the piezoelectric interaction dominates below approximately 2.5 K

[62].

In a crystal with more than one atom per unit cell, the spectrum of phonon states

has multiple branches. These are divided into ‘acoustic’ and ‘optical’ branches [63].

For an acoustic phonon the atoms in a unit cell move in phase, while for an optical

phonon they vibrate with respect to each other. Acoustic phonons have zero energy

at zero wavevector, while optical phonons always have some minimum energy, and

a higher energy than acoustic phonons of the same wavevector. In GaAs, the

energy of (longitudinal) optical phonons is approximately 30 meV. At the energies

and temperatures we are concered with in this thesis, it is safe to neglect optical

phonons entirely [64].

In the temperature range where optical phonons modes are not thermally pop-

ulated (� 100 K), the strength of electron-phonon scattering in a 2D electron gas

splits into two regimes: ‘equipartition’ and ‘Bloch-Grüneisen’. In the first, kBT

is much greater than the energy of phonons with a wavevector of 2kF . (kF is the

Fermi wavevector of the electron gas.) There is therefore a thermal population of

phonons available over the whole range of electron energies. The thermal occupa-

tion of phonons results in an energy of approximately kBT per phonon mode, hence

the name ‘equipartition’. The energy relaxation rate of 2D electrons in this regime

is proportional to T .

At temperatures below approximately 5 K, phonons modes with a wavevector of

2kF cease to be populated and we move to the Bloch-Grüneisen regime [65]. Scat-

tering is dominated by spontaneous phonon emission, and becomes dramatically

suppressed by the decreasing availability of empty states near the Fermi surface

of the electron gas. In this regime, the energy relaxation rate depends on T 3 for

the piezoelectric interaction, and T 5 for the deformation-potential [66]. Both inter-

actions are screened when the typical emitted phonon wavelength is greater than

the screening radius in the 2DEG. This increases the exponent of both tempera-

ture dependences by 2. Since the screening radius is usually larger than the Fermi

wavelength, the temperature below which screening is significant is lower than the

cross-over to the Bloch-Grünisen regime. In typical density GaAs 2DEGs, this
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temperature is expected to be approximately 4 K [67].

All the experiments that will be presented in this thesis were performed at

temperatures less than 0.5 K. We therefore expect electron-phonon scattering to

be dominated by a screened piezoelectric interaction with acoustic phonons in the

Bloch-Grüneisen regime. In this case, the energy loss rate from a 2D electron gas

at a temperature Te to phonons at temperature Tl is predicted to be [62, 66]:

Q̇P = ΣA(T 5
e − T 5

l ) (2.16)

where A is the area of the 2DEG, and Σ is a material dependent parameter. In-

cluding the effect of phonon spectrum anisotropy in GaAs, Σ is found to be [68, 61]:

Σ = (43.3n−1/2)fWµm−2 K−5 (2.17)

where n is the 2DEG carrier density in units of 1011 cm−2. Experimental results

have shown reasonable agreement with these theoretical predictions [69, 61, 70, 67]

[see Figure 2.10(b)].

2.4 Hot carriers

In the Bloch-Grünisen regime, inelastic scattering between the electrons in the

2DEG and the phonons in the host lattice decreases dramatically with falling tem-

perature. Essentially, the electron gas becomes thermally decoupled from the lat-

tice. Thermalisation with the lattice may occur more readily in the largely metallic

ohmic contacts, but the cooling of the 2DEG that can occur via this route is severely

limited by the contact resistance between the two (see Appendix C, Figure 2.11).

The common result is to find that the 2DEG is elevated to a temperature (Te)

that exceeds the temperature of the lattice (Tl). The elevated 2DEG temperature

is referred to as the ‘electron temperature’. Here we discuss successful techniques

for reducing electron temperatures and, conversely, experiments that make use of

intentionally elevated electron temperatures.

2.4.1 Reducing unintentional heating

The task of trying to cool a sample becomes increasingly difficult at lower temper-

atures. Increasing thermal boundary resistances make it harder to thermalise the
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sample and any wires contacting it. The thermal conductivity of a metal-to-metal

contact decreases with temperature as T−1, and for a metal-to-insulator contact,

acoustic mismatch between the phonons in the two materials typically leads to a

T−3 dependence [71]. None the less, impressively low electron temperatures can

be achieved with careful heat sinking and radiation shielding. For example, in the

work of Xia et al. [72] liquid Helium-3 was used as an electrically insulating ther-

mal conductor to heat sink a sample containing a 2DEG heterostructure, and all

electrical connections to the sample. Thermal contact with the liquid was made

via sintered silver posts, which have an extremely large surface area to counteract

the large Kapitza resistance. The final stage of cooling was provided by a PrNI5

nuclear refrigerator, which was also connected to the Helium-3 via sintered silver.

Using this arrangement, electron temperatures of 8 mK were achieved in the 2DEG

at a lattice temperature of 4 mK.

Low electron temperatures also require effective filtering of electrical noise in

the contact wires. This will otherwise cause heating across any resistive part of

the device. Some common techniques are: extensive room temperature filtering;

low temperature resistive loads or RC filters, which dissipate noise energy to a well

heat sunk point; and metal powder filters, which absorb high frequency noise as

the wires pass through a resistive epoxy loaded with metal particles. Using some

of these techniques, electron temperatures down to 10 mK have been achieved in

dilution refrigerators [73, 5]. However, implementing sufficient filtering becomes

harder at lower temperatures, where the same dissipated power will cause a greater

increase in temperature.

2.4.2 Intentional heating

The weak electron-phonon coupling also makes it possible to locally increase the

temperature of a 2DEG using a local source of heat. This has been used as a tool

to study the thermal conductance and thermopower of various devices, as well as

energy relaxation of hot 2D electrons [74, 75, 76, 77, 78, 79, 80, 81, 67, 82].

The usual technique is to pass a current through a long, narrow region of a

2DEG. The balance between Joule heating in the channel and thermal conduction

out of its ends results in an increase in Te at its middle. A device placed in contact

with this part of the channel then has access to a hot 2D reservoir, the temperature

of which is controlled by the heating current. By modulating the heating current

at a known frequency (f), it is also possible to identify purely thermal signals in
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the measurement: since Joule heating depends on I2, the temperature will be mod-

ulated at twice the frequency of the current. Any signals due to the temperature

change can be detected by a lock-in measurement at a frequency of 2f .

2.5 Low temperature electronic refrigeration

As previously discussed, traditional techniques for cooling 2DEGs are destined to

become increasingly difficult for temperatures in the mK regime and below. With

lower base temperatures it becomes increasingly hard to heat sink the 2DEG ef-

fectively, but it also becomes increasingly difficult to achieve the lower base tem-

peratures in the first instance. Typical dilution refrigerators are limited to a few

mK, and to go below this requires the additional use of one or more nuclear de-

magnetisation refrigeration stages. While this approach has been successfully used

to reach extremely low temperatures (less than 1 µK [83]), it adds an extra level of

significant complexity and does not solve the thermalisation issues.

An attractive solution to the problem is to refrigerate a 2DEG by directly re-

moving energy from its carriers. In doing this, decoupling from the lattice phonons

is an advantage, since it makes it easier to cool the electrons below the temperature

of their environment. Figure 2.11 illustrates the difference in heat flows between

traditional and direct refrigeration. With sufficient direct refrigeration providing

the final stage of cooling, the 2DEG could be driven below the base temperature of

whatever conventional refrigeration was used to cool the sample’s lattice and the

measurement wiring.

One well established method for direct electronic cooling is by using the Peltier

effect. When a current is passed across the boundary of two materials with different

Peltier coefficients (Π), heat will be deposited or removed at the junction, depending

on the direction of the current. In a typical Peltier refrigerator a cooled bath is

connected to two leads made of materials with opposite signs of Π (such as n and

p type semiconductors). A current flowing from one lead to the other, via the

bath, will then either cool or heat both junctions. Unfortunately the efficiency of

Peltier cooling decreases drastically with temperature (the maximum temperature

reduction is ∝ T 2 [84]). To date the technique has been demonstrated only down

to temperatures of ∼ 4 K. (A temperature reduction of 0.17 K at 3.5 K has been

reported by Harutyunyan et al. [85].) While this may be improved in the future by

using exotic materials with larger thermoelectric coefficients, conventional Peltier
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Figure 2.11: Heat flows for cooling a 2DEG in the normal way [in (a)] and by direct
cooling [in (b)]. For the normal case, the only heat flow out of the system is through
the mixing chamber (Q̇M ). Any parasitic heating of the 2DEG (Q̇H) is removed
via electron-phonon coupling with the lattice (Q̇P ) or electrical connection with the
ohmic contacts (Q̇OE). The temperature of the 2DEG (Te) is elevated because of the
high thermal resistances of these two paths. The ohmic contacts are cooled by their
coupling to the lattice and the measurement wires (Q̇OL and Q̇OW ), both of which
are in turn cooled by heat-sinking to the mixing chamber (Q̇LM and Q̇WM ). It is
usual to assume that the heat-sinking is good, so Tl ≈ TW ≈ TM . We also assume
that TO ≈ Tl, which is reasonable for a typical sample (see Appendix C).

In (b), a 2DEG region is cooled directly by some mechanism (Q̇COOL). Parasitic
heating (Q̇H1), phonon heating (Q̇P1), and heating from electrical connections to
other 2DEG regions (Q̇E) are all balanced by Q̇COOL. Cooling from the mixing
chamber is required to maintain a low Tl and Te in order to minimise Q̇P1 and Q̇E .
At ever lower temperatures, increasing thermal resistances to the cooled 2DEG now
reduce its heating, whereas in the normal case they reduced cooling.
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cooling is currently not a viable mechanism for providing direct refrigeration of a

2DEG at mK temperatures.

Another potential technique for directly cooling a 2DEG is by thermionic emis-

sion. In this scheme hot electrons are selectively removed from one electrode by

being pulled over (or through) a potential barrier, by an electric field, to a sec-

ond electrode. The barrier can either be in a material between the two electrodes

[86, 87] or be a vacuum gap in between them [88]. For the former case, cooling has

been demonstrated in semiconductor structures [89, 90, 91], but only at room tem-

perature or warmer. Cooling by emission across a vacuum gap has also only been

demonstrated at room temperature [92]. It may be possible to reduce the operating

temperature of vacuum gap devices by incorporating resonant tunnelling through

a quantum well into the emission process [93], but even this approach is limited to

∼ 10 K. So, as with the Peltier coolers, themionic emission devices cannot currently

operate at low enough temperatures to be used for cooling a 2DEG.

Recent experiments have demonstrated cooling using superconducting flux qubit

devices; by microwave pumping of a three-level system [94], and by ‘Sisyphus cool-

ing’ of a coupled tank circuit [95]. Impressively, the former work showed cooling

of a superconducting flux-qubit to approximately 3 mK at a 400 mK ambient tem-

perature. Unfortunately, while this is the appropriate temperature regime, these

techniques could not be applied to directly cool a 2DEG since they both operate

on systems with well separated energy levels.

The only experimentally realised technique for directly cooling an electron gas

in the mK regime is the ‘superconducting refrigerator’ (for a review, see [96]).

In the following section we discuss previous work with these devices and their

applicability for direct cooling of a 2DEG. We then review a theoretical proposal

that is conceptually similar, but utilises quantum dots instead of superconductors.

This ‘quantum dot refrigerator’ is a closely related, but more attractive, approach

to direct 2DEG cooling.

2.5.1 Superconducting coolers

The basic principle behind the operation of superconducting coolers is the energy-

dependent tunnelling of electrons between a superconductor and a normal metal

(see Figure 2.12). This arises because the density of states of quasiparticles in a

superconductor possesses a gap, corresponding to the binding energy of a single

Cooper pair. An electron cannot tunnel from the normal metal without having
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Figure 2.12: Density-of-states vs. energy at a normal-metal-superconductor tunnel
junction, with opposite bias voltages (VSN ) shown in (a) and (b). Filled states are
shown in blue. Tunnelling occurs when there are empty states on one side of the
barrier and full states on the other. The red arrows indicate the small energy range
over which this is the case in the two situations. In (a) electrons are only injected into
the normal metal below EFN (its Fermi energy), and in (b) electrons are removed
from the normal metal above EFN . As long as the occupation of states in the normal
metal can relax quickly back to a Fermi function (by electron-electron scattering),
the net result of tunnelling in both cases will be a slight lowering of its temperature.

enough energy to break a Cooper pair, and so the tunnelling process is energy-

dependent. Furthermore, by biasing the junction, the cut-off energy relative to the

Fermi energy of the normal metal can be changed. The system is often referred to

as a ‘SIN’ junction (S = superconductor, I = insulator (the tunnel barrier), and N

= normal metal).

By biasing a SIN junction appropriately, as shown in Figure 2.12, the energy-

selective tunnelling at the junction can be made to cool the electron gas in the

normal metal. A SIN junction can also be used as a thermometer of the nor-

mal metal, as the characteristics of I vs. VSN are temperature dependent. The

first demonstration of a refrigerator of a normal metal based on these techniques

used one SIN junction for cooling and another as a thermometer [97]. This work

showed cooling of the normal metal electron gas by about 10 mK below a lattice

temperature of 100 mK.1

Further work on superconducting coolers showed that a superior arrangement

1Similar experiments had been done previously, but with a different superconducting material
in the place of the normal metal island [98, 99, 100, 101, 102, 103]. These experiments studied
the enhancement of superconductivity in the island that could be achieved by the energy-selective
removal of normal carriers from above the gap.
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(a)

(b)

(c)

Figure 2.13: Details of a SINIS cooler from [104]. (a) shows the experimental
setup, with the NIS junctions indicated by the four bisected rectangles in the shaded
square. The cooling current is driven through two junctions by Vrefr. The voltage
between the other two junctions with a current bias of Ith is used to measure the
temperature of the normal metal island. (b) shows an AFM image of the device,
which was fabricated using shadow mask evaporation. The normal metal island is
Cu, the superconducting leads are Al, and the tunnel barriers are a native oxide
layer. (c) shows the measured island temperature as a function of bias voltage. The
two temperature minima are centred at the optimum biases of Vrefr = ±∆/e.

was to use two SIN junctions in series to form a SINIS structure, similar to a

traditional Peltier cooler [104] (see Figure 2.13). One junction is biased to inject

electrons below the Fermi energy of the normal metal, and the other to extract

above it (as if the two halves of Figure 2.12 were joined in the middle). Numerous

measurements of such devices have shown them able of achieving cooling powers

up to 30 pW [105, 106] and temperature reductions up to 200 mK [104] at ambient

temperatures around 300 mK.

The base temperature of SINIS coolers is found to be limited by several factors.

Firstly, at ambient temperatures below approximately 100 mK the rate of electron-

electron scattering in the normal metal is usually found to be small compared to the

rate of electron injection and removal [97, 107]. In this case, the electron gas in the

normal metal does not have sufficient time to relax between tunnelling events and
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the distribution of occupied states is driven from the equilibrium Fermi function.

Such non-equilibrium distributions can be observed in the I-V characteristics of

a probe NIS junction [108, 107], but it is not easy to apply a temperature to

the electron gas in this situation. Furthermore, the cooling power also becomes

significantly reduced. To lower the temperature at which this out-of-equilibrium

regime occurs, the cooled area must be made larger, or the tunnel junctions more

resistive [2]. Naturally, both changes will lower the performance of the cooler,

requiring the device to operate at a lower ambient temperature.

A second factor limiting the performance of SINIS coolers is the presence of

states within the superconducting gaps in the leads. These can be caused by the

proximity effect from contact with normal metals, or by inelastic scattering in the

superconductor. Tunnelling to and from these states leads to parasitic heating

of the normal metal. Pekola et al. [107] find that the minimum temperature

achievable in a SINIS cooler is given by: Tmin = 2.5TCη
2/3, where TC is the critical

temperature of the superconductors and η is the density of extra states in the gaps.

They also find an upper limit for η in their device of 0.01.

A third limitation is due to heat deposited in the superconducting electrodes.

This directly reduces the cooling power and also heats the cooled island indirectly

by the emission of hot phonons [109]. Clark et al. showed how this effect could be

reduced by increasing the volume of the superconducting electrodes in the vicinity

of the tunnel junctions [110].

As well as cooling normal metal islands affixed to a substrate, superconducting

refrigerators have also used to cool the lattice of various suspended micro-structures

[111, 112, 113, 114, 115], a thermally contacted Germanium resistance thermometer

[116], and the leads of a superconducting single electron transistor [117]. However,

of particular relevance here are experiments where the electron gas in a semicon-

ductor, instead of in a normal metal, is cooled [118, 119, 120]. In these experiments

the Schottky barrier between a superconducting electrode and heavily doped sil-

icon forms an ‘SSm’ tunnel junction (Sm = semiconductor). Cooling in ‘SSmS’

devices has been successfully demonstrated, achieving reductions in the semicon-

ductor electron temperature of almost 100 mK from an equilibrium value of 150 mK

[120].

The ‘SSmS’ scheme initially seems an ideal candidate to provide direct cooling

of a 2DEG; however, the formation of the Schottky barriers presents a significant

obstacle. In the experiment of Savin et al., [120], the best refrigerator performance
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was found with a carrier concentration in the silicon of (4 · 1019) cm−3, and tun-

nelling contact-resistances of (7 · 10−3) Ωcm2. In contrast, typical 2DEG carrier

concentrations are ∼ (1 · 1011 )cm−2, and since the 2DEG resides some significant

distance below the surface of its heterostructure, tunnelling contact resistances are

many orders of magnitude larger. It is not clear how a suitable tunnel contact

between a superconductor and a 2DEG could be formed, and for this reason it

seems unlikely that a superconducting cooler could provide the direct cooling we

require. However, much of the physics underlying such devices, and the behaviour

they exhibit, is shared with a more promising direct cooling scheme that we discuss

below.

2.5.2 The quantum dot refrigerator

The ‘quantum dot refrigerator’, or ‘QDR’, was proposed by Edwards et al. [1, 2]

as a scheme for cooling a 2DEG. The basic principle of operation is similar to

the SINIS coolers discussed above: electrons are injected into and removed from

an electron gas through two points of energy-dependent tunnelling. When the

injection is made to occur at a lower energy than the removal, the net effect of

the resulting current is to continuously pump energy out of the electron gas. In

a QDR, the energy-dependent tunnelling is achieved by using quantum dots with

well separated single-particle states. The principle of QDR operation is illustrated

by the energy level diagram given in Figure 2.14.

The work of Edwards et al. studied the theoretical behaviour and limitations

of a QDR and provides some interesting results, which we now summarise. The

current (I) and energy flow to the cooled 2DEG (Q̇T ) were calculated for the

system shown in Figure 2.14. The central region was assumed to be at a constant

potential (µC). The two dots were given a ladder of well separated single particle

states, spaced by an energy ∆E. Lifetime broadening of the dot states (of width δ)

was included in the calculation. The dots were generally given a large state spacing

(∆E � kBTe) to provide the energy selectivity required for cooling.

A simulation of the QDR was performed to find the lowest temperatures attain-

able in the central region. This is defined as the ‘base temperature’ (Tb). Although

trivially it seems as though cooling might continue indefinitely, it was found that

off-resonance tunnelling through the wide Lorentzian tails of the dot states results

in a heat-leak. At a low enough temperature this negates the cooling effect, leading

to Q̇T = 0 and a minimum attainable value of the central region temperature. The
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Figure 2.14: Energy levels of a QDR operating in the cooling regime. Occupied
states in the ‘Source’, ‘Centre’ and ‘Drain’ 2DEGs are shown by the blue shaded
areas, and the light blue shading around their respective Fermi energies (µS , µC ,
and µD) indicates their thermal broadening. Dots A and B both have a single-
particle state available for transport in the energy range shown, with electrochemical
potentials of µA and µB respectively. The net transfer of an electron from source to
drain removes and energy (µB − µA) from the central region.

results of the simulations showed that the temperature reduction (Te/Tb) is max-

imised by increasing the separation of the dot states and decreasing their lifetime

broadening. Cooling is also maximised when (µB − µA) ≈ kBTb and δ . kBTb.

The results of the simulations were also used justify the validity of two approx-

imate expressions for I and Q̇T . These were found by assuming that (µB − µA) =

kBTb, that each dot has only a single state involved in transport, and that the

lifetime broadening of the dot states can be approximated by a step function of

width δ. This leads to:

I = (1.8 nAK−1) ·Tb (2.18)

Q̇T = (0.31 pWK−2) ·T 2
b (2.19)

These expressions are approximately equal to the results of the full calculation,

provided Tb does not approach its fundamental limit. One significant limitation of

the theory presented in [2] is that the peak conductance of the two dots is assumed

to be 2e2/h. In reality this situation is rarely achieved, and would in any case be

associated with a large lifetime broadening. The expressions above are therefore

upper estimates corresponding to a physically unlikely situation, but are still correct

to within a common constant factor.

Having investigated the fundamental limitations of a QDR, Edwards et al. then
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included the effects of heat flow due to electron-phonon coupling. This was modelled

as Q̇P ∝ A(T 5
l − T 5

b ) (where Tl is the lattice temperature), with a constant of

proportionality approximately in agreement with that given by Equation 2.17. By

solving for the steady thermal state (Q̇T + Q̇P = 0), the following approximate

expression linking the base temperature, ambient temperature, and 2DEG area

was found; 10.3T 2
b = A(T 5

l − T 5
b ).

So far it has been implicitly assumed that the occupation of states in the cen-

tral 2DEG is always given by a Fermi function; however, the energy-dependent

injection and removal of electrons will try to drive away from this situation. If the

injected electrons cannot quickly scatter out of the injection energy window, then

the occupation of states will be given by some non-equilibrium distribution with

which a temperature cannot be easily associated. The cooling power will also be

drastically reduced. The rate of scattering out of the injection energy window is

given by the large-energy-transfer electron-electron scattering rate (τ−1
e−e, given by

Equations 2.14 and 2.15), multiplied by the number of states in the central 2DEG

that lie within the window (N ≈ nAδ, where n is the carrier density, A is the

central 2DEG area, and δ is the dot state’s lifetime broadening).

Taking into account both the electron-phonon coupling and the electron-electron

scattering rates, the expected behaviour of a QDR is split into three regimes:

• Equilibrium: the phonon heating overwhelms the QDR cooling, leaving the

central 2DEG in equilibrium with the lattice.

• Quasi-equilibrium: the QDR cooling successfully overcomes the phonon heat-

ing, and the electron-electron scattering is fast compared to the injection rate.

The density of occupied states in the centre is therefore given by a Fermi func-

tion but at a temperature different from the lattice.

• Out-of-equilibrium: The rate of electron-electron scattering is slow, and so

the central 2DEG is driven from equilibrium by the cooling current. Equa-

tions 2.18 and 2.19 are no longer valid and the cooling power is reduced.

Edwards et al. determined that, in general, a QDR with a larger central 2DEG

can be cooled to lower temperatures before entering the out-of-equilibrium regime;

however, it must be operated at a lower ambient temperature to minimise phonon

heating. Two specific examples that are given are: a 100 µm2 2DEG can be cooled

from 200 mK to 120 mK, and a 1 cm2 2DEG can be cooled from 1 mK to 120 µK.

Provided the cooled 2DEG can be made large enough, the dot states made narrow
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enough, and the operating temperature low enough, there should be no limit on

the base temperature that a QDR can achieve.
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Chapter 3

Quantum dot refrigerator:

experimental realisation

This chapter details the design, fabrication and characterisation of a proof-of-

concept Quantum Dot Refrigerator (QDR). The device was found to satisfy the

known requirements for QDR operation, but also exhibited unexpectedly large elec-

trostatic effects. The significance of this is discussed, and an analysis that takes

account of electrostatic coupling in a QDR is subsequently detailed in Chapter 4.

3.1 Design

The design of the QDR device was primarily based on the requirement that it func-

tions in the temperature range accessible by a dilution refrigerator: approximately

50 mK to 300 mK. It was also desirable for all regimes of operation to be accessible

within this range to allow a full investigation of the device’s behaviour.

The final design is shown in Figure 3.1. It shows surface gates for isolating a

small area of 2D electron gas, and for forming up to three quantum dots around its

perimeter. Only two dots are required for a QDR device. The third was to be used

as a thermometer of the isolated region. There are also three gates for defining short

1D channels adjacent to each of the dots. These can serve as sensitive detectors of

the charge states of the dots, as discussed in Section 2.2.6. The remainder of this

section discusses the considerations behind this design in detail.
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Figure 3.1: QDR surface gate design with a central region of 6.76 µm2 area. The
actual area of an electron gas in this region, accounting for lateral depletion from the
gates, is expected to be less than 5.8 µm2. All three of the dots around the perimeter
have identical proportions.

3.1.1 Size of the cooled electron gas

The primary factor in designing a QDR is the size of the cooled electron gas;

if it is too large the available cooling power will be less than heating from the

phonon bath; if it is too small the distribution of occupied states will be too easily

driven from quasi-equilibrium by the cooling current. More fundamentally, the

electron gas must also be large enough that its discrete energy level spectrum may

be approximated as a continuum.

We consider first the average energy separation between states (∆EC). In a

2D electron gas of area A, this can be found from the density of states: g2D(ε) =

(m∗/π~2). Discounting the zero energy separation between spin degenerate states,

the average energy separation is given by:

∆EC = (2π~2/m∗A) (3.1)

For the spectrum of states to be approximately continuous, we require that ∆EC

be less than kBT . At 50 mK, this implies ∆EC < 4.3 µeV. The isolated electron

gas must therefore have an area larger than 1.7 µm2. Solutions to ∆EC = kBT , in

the range 10 mK to 300 mK, are given as the solid line in Figure 3.2.

A second consideration for the size of the cooled electron gas is the requirement

36



Quantum dot refrigerator: experimental realisation 3.1

that the distribution of its occupied states should ideally be in quasi-equilibrium

(determined by a Fermi function, but at a non-equilibrium temperature). While

it is true that cooling, i.e. energy extraction, still occurs if the distribution of

occupied states is driven out of equilibrium, the temperature becomes hard to

define. Furthermore, the cooling power is expected to be significantly reduced in

this regime [2].

To maintain quasi-equilibrium in the isolated electron gas, the rate at which

carriers are injected must be less than the rate at which they scatter out of the

states they are injected into. The injection rate is I/e, where I is the current

through the QDR. The size of the energy range over which carriers are injected

into the isolated, central 2DEG is determined by the lifetime broadening of the

dot states (≈ 4~I/e).1 The scattering rate out of the energy range is given by the

product of the temperature dependent, large energy-transfer scattering rate (τ−1
e−e,

from Equation 2.14 and 2.15), and the number of states available within that range;

4g2DA~I/e. By requiring that

(4g2DA~I/e)τ−1
e−e > I/e ⇒ 4g2DA~τ−1

e−e > 1 (3.2)

we find that the cooled electron gas must have an area greater than 80 µm2 to

remain in quasi-equilibrium when cooled to a base temperature of Tb = 50 mK.

Similarly, for Tb = 150 mK the area must be greater than 10 µm2, and for Tb =

300 mK it must only be larger than 3 µm2. The solutions to 4g2DA~τ−1
e−e = 1,

calculated from 10 mK to 300 mK, are given as the dashed line in Figure 3.2.

The upper bound for the size of the cooled electron gas is determined by compar-

ing the incoming heat from the phonon bath (Q̇P ) with the available cooling power

of the system due to charge transport (Q̇T ). For a fully optimised QDR, cooling to

a base temperature of Tb, the cooling power is given by (see Section 2.5.2):

Q̇T ≈ (0.31 pW K−2) ·T 2
b (3.3)

As discussed in Section 2.3.2, the heat transfer between a 2D electron gas, of

area A and at a temperature Te, and lattice phonons, at a temperature Tl, is given

by:

Q̇P = ΣA(T 5
e − T 5

l ) (3.4)

1The current through both dots is I ≈ eΓ0/2, where Γ0 is the tunnel rate of the dot barriers.
The lifetime broadening of the states in each dot is ~Γtotal = 2~Γ0 = 4~I/e.

37



Quantum dot refrigerator: experimental realisation 3.1

where Σ is a material parameter. The material chosen for fabricating the devices

(wafer T567 ; see Appendix A.1) has a 2D carrier density of n = 1.37 · 1011 cm
−2

,

giving Σ ≈ 40 fWµm−2 K−5 according to Equation 2.17.

For a QDR cooling an isolated electron gas to a base temperature of Tb =

50 mK, Equation 3.3 estimates the available cooling power as 0.78 fW. For a lattice

temperature of Tl = 300 mK, Equation 3.4 implies that this cooling power can

overcome the incoming heat from phonons if the electron gas has an area less than

8 µm2. Solutions to Q̇T < Q̇P , for lattice temperatures between 50 mK 300 mK and

base temperatures from 10 mK to 300 mK, are indicated by the shaded regions in

Figure 3.2.

Motivated by these considerations, but also taking into account that Equa-

tion 3.3 is based upon a fully optimised QDR, an area of approximately 6 µm2 was

chosen for the cooled electron gas. Such an area should be large enough for the

energy spectrum of states to continuous, and also small enough for the QDR to

overcome phonon heating, even if the available cooling power is significantly less

than expected.

For a 6 µm2 2DEG, the calculations here predict that the cross-over from the

quasi-equilibrium to out-of-equilibrium regimes will occur at Tb ≈ 200 mK. This

would allow the study of both regimes within the available temperature range,

although it would also limit the lowest achievable temperature.

3.1.2 Size of the quantum dots

The only constraint on the design of the dots for a QDR is that they have a

significant energy separation between their states due to quantum confinement.

Specifically, the state separation should be much greater than kBTe, where Te is

the electron temperature in the reservoirs.

To ensure a large level separation in the dots they were made as small as prac-

tically possible. The material chosen for fabrication is a standard 90 nm HEMT,

meaning that the 2DEG resides 90 nm below the surface. As such, no feature

smaller than this can be defined in the 2DEG by surface gates. The dots were

designed to have a radius of 150 nm, and also to have around 150 nm wide entrance

and exit channels.
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Figure 3.2: Expected regimes of QDR operation as a function of the isolated 2DEG
temperature (Tb) and area (A). The functional forms of the curves are detailed in
the text.
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(a) (b) (c)

Figure 3.3: Optical lithography steps of the general purpose JStar pattern.

3.2 Fabrication

QDR devices were fabricated using standard semiconductor processing techniques,

with a mixture of optical and electron-beam lithography. The surface gate pattern

shown in Figure 3.1 necessarily required electron-beam lithography to realise due

to its small feature size. However, larger scale features, such as bond pads and

ohmic contacts, were also required. For these, a set of pre-existing optical masks,

named JStar, was used. The basic processing steps for fabricating a JStar pattern

are shown in Figure 3.3, and summarised below;

(a) An etch removes the 2DEG from the majority of the chip, leaving a central

200 µm x 200 µm mesa in which to place a device, and 20 connecting legs.

The etchant used is H2SO4 : H2O2 : H2O, in the proportions 1:8:80.

(b) Annealed ohmic contacts are defined on bond pads at the end of each of the

legs. The contacts are patterned from evaporated AuGeNi, using a lift-off

process. They are then annealed at 430 ◦C for 80 s to contact the 2DEG.

(c) Metal gates with bond pads are evaporated. The gates rise up onto the

central mesa where they can be extended by further lithography to form a

device. The gates are patterned, again via lift-off, from evaporated Ti/Au or

NiCr/Au of approximately 10 nm/300 nm thickness.

To define the fine-feature surface gates, an electron beam lithography stage was

performed between steps (b) and (c) above. The resist used was a 100nm thick

layer of PMMA, deposited as two 50nm thick layers, spun one on top of the other.
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Figure 3.4: (a) Initial resist layers. (b) Resist profile after exposure and devel-
opment. The undercut comes from the difference in development rates of the two
PMMA layers. (c) Metal evaporation. The resist profile aids lift-off by preventing
evaporated metal that may have coated the resist walls from joining onto the gate.
(d) Gate metal after removal of resist.

The two layers were of different molecular weight, the lower being 100K and the

upper being 950K. Higher molecular weight PMMA produces a higher contrast

ratio for a given exposure dose and dissolves slower in a solvent developer. It was

hoped that this two-layer process would produce a resist profile to aid the lift-off

of the evaporated metal, as shown in Figure 3.4. The evaporated metal for the

fine-feature gates was typically a sticking layer of 5− 10 nm of NiCr or Ti, followed

by a 20 nm layer of Au.

Figure 3.5 shows SEM images of a typical completed device that has been

packaged in a 20-pin LCC chip holder.

3.3 Measurement setup

All of the measurements presented in this chapter, were made on the device dc5-

4a (see Appendix A.2). The device was cooled in a dilution refrigerator with a

base temperature of approximately 40 mK. The fridge is located in a screened

room to reduce the coupling of environmental RF radiation to the experiment and

the measurement electronics. Standard high-frequency line filters are used on all

electrical connections passing through the screened room walls.

Electrical connection to the device was made via twenty, low-frequency lines.

These run from a break-out box at room temperature, into the vacuum space of the

dilution fridge, and down to the sample holder. Before the sample holder, all twenty

lines pass through low-pass, three-pole, RC filters, which are thermally anchored to

the mixing chamber of the fridge. These reduce noise in the measurement wiring,

and the related increase of electron temperature in the device. The filters were de-

41



Quantum dot refrigerator: experimental realisation 3.3

1 2

3

3

3

(a) (b)

(c)

1 mm 100 µm

2
µ
m

Key:
(1) Au bond wire, to chip package.
(2) Annealed AuGeNi ohmic contact.
(3) Ti/Au gate.

Figure 3.5: (a)-(c) Sequentially smaller scale SEM images of a completed device.
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signed to have a cut-off frequency of approximately 3 MHz. In addition, the device

was enclosed in a metal can, also thermally anchored to the mixing chamber, to

shield from radiation from nearby 4 K surfaces. These techniques of ‘cold shielding’

and ‘cold filtering’ are widely used for achieving low electron temperatures. For

details of the filters and the shield, see Appendix B.2.

The voltages applied to the twelve surface gates were supplied by digital-to-

analogue converters (DACs).2 Every connection to a gate was made to pass through

a room temperature RCR filter, consisting of two 1 MΩ resistors in series and a

0.1 µF capacitor to ground. These provided protection to the fragile gates from

sudden voltage spikes or large injections of charge. The filters were connected to

every gate line on the break-out box before inserting the device into the sample

holder, and remained connected throughout the experiment.

The transport properties of the device were studied by measuring two different

quantities: differential conductance, measured with a lock-in amplifier, and direct

current, measured with an electrometer. To measure non-linear transport, a con-

stant bias voltage, VSD, could also be applied across the device.3 Details of the two

different measurement setups are given in Figures 3.6 and 3.7.

3.4 Device characterisation

The first measurements performed on the device were to characterise separately its

logical components, namely the three quantum dots and the isolated 2DEG. The

aim of these measurements was to confirm that at least two quantum dots could be

created on the perimeter of the isolated 2DEG; that these dots were small enough

to have state spacings much larger than kBT ; and that the isolated 2DEG was large

enough for its own state spacings to be smaller than kBT .

3.4.1 Quantum dots

Of the device’s twelve surface gates, nine were required to form the three quantum

dots. These gates have names, as shown in Figure 3.1, which end with ‘PL’ (for

‘plunger’), ‘IN’ (for ‘inside barrier’), or ‘OUT’ (for ‘outside barrier’). The first

2The DACs used were Keithley KUSB3116 modules (re-branded Data Translation DT9834 ).
Each provides 4 output voltages with 16-bit resolution over a range of ±10 V. These were scaled
to a ±5 V or ±1 V range, as required, using simple resistor networks.

3The bias voltage was provided by one channel of a 12-bit, IOTECH 488 DAC, which, in both
types of measurement, was divided by 103 using a resistor network.
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Figure 3.6: Schematic diagram of a typical differential conductance measurement
using a Signal Recovery SR7265 lock-in amplifier. The J883 module is a current-
to-voltage amplifier (see Appendix B.1). It equalises the voltage on its input (‘IN’)
with the applied reference voltage (on ‘REF’). The voltage on ‘OUT’ is equal to the
corresponding current through the device multiplied by a gain of 107 or 108 V/A. The
resistor network divides a small (∼ 100 mV), audio-frequency, AC signal from the
lock-in by 104, and a DC voltage ‘Vb’ by 103. Their sum is applied to the amplifier’s
reference, and hence across the device. (Alternatively, it could also be connect to
the ohmic contact ‘J1’ and the amplifier reference grounded.) The lock-in detects
the component of the resulting signal on ‘OUT’ that is at the oscillator frequency;
its in-phase component is proportional to the conductance of the device; its out-of-
phase component is proportional to the susceptance. The readings from the lock-in
are recorded by a PC, using a GPIB interface.

The lock-in amplifier is located outside the screened room. The dotted breaks
in some lines indicate where they pass through the screened room walls, and the
associated RF filters.

The ‘1:1’ module is an audio-frequency transformer, which is used to isolate the
lock-in ground from the experimental ground. ‘RTF’ is a filter to remove kHz noise
from the lock-in excitation signal. ‘DMP’ puts a resistive load between both the high
and low of the preamp output, and the screened room filters. (The preamp is prone
to oscillate if it tries to directly drive the capacitance of the filters.) ‘A-B’ serves to
isolate the lock-in ground from the experimental ground. Details of all these modules
can be found in Appendix B.3.
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Figure 3.7: Schematic diagram of the direct current measurement setup. A Keithley
6514 electrometer is used to measure the current flowing between the ohmic contact
‘J2’ and ground, under the application of a bias voltage (VSD = Vb/103) to the ohmic
contact ‘A1’. The electrometer is located inside the screened room. An analogue
output, proportional to the electrometer’s reading, is sent outside the screened room,
where it is measured by a Keithley 2000 multimeter. The multimeter is read by a
PC, using a GPIB interface.

part of the gate name is either ‘T’, ‘L’ or ‘R’, indicating that it is associated with

the top, left or right dot. To find the voltages required on these gates to form

a particular dot, the differential conductance of the device was measured while

sweeping the appropriate ‘-PL’ gate. (A measurement setup similar to that shown

in Figure 3.6 was used, but connecting to different ohmic contacts depending on

the dot being probed.) If the ‘IN’ and ‘OUT’ barrier gate voltages had been chosen

correctly to form a dot, the measurement showed the expected signature of Coulomb

blockade: periodic peaks in conductance, separated by regions of zero conductance.

An example of such a result seen in the right dot is shown in Figure 3.8.

Having identified the barrier gate voltages that produced a Coulomb blockade-

like signal, the presence of each dot was confirmed by measuring its conductance

over a range of bias voltages (VSD). Such measurements are expected to show

Coulomb diamonds (as discussed in Section 2.2.3). Figure 3.9 shows finite-bias

measurements made on each of the three dots.4 They all show the zero-bias con-

ductance peaks evolving as expected for Coulomb blockade: the peaks split linearly

with bias, revealing structure due to the dot’s spectrum of states within the result-

4For the measurement shown in Figure 3.9(a), the lock-in excitation was applied directly to the
ohmic contact ‘A1’, while the DC bias was applied to the reference input of the preamplifier. The
preamplifier was connected to the ohmic contact ‘J1’. For Figure 3.9(b), the setup was identical
to that in Figure 3.6. For Figure 3.9(c), the sum of the excitation and the bias were applied to
‘A1’, and the preamplifier was connected to ‘J1’. The preamplifier reference was grounded.
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Figure 3.8: Typical signature of Coulomb blockade, measured in the right dot with
the barrier gate voltages of VR−IN = −0.670 V, and VR−OUT = −0.540 V. The mixing
chamber temperature was 43 mK.

ing triangles.

The charging energies of the dots can be found from the data in Figure 3.9.

The dotted lines in the figure follow the edges of the Coulomb diamonds and their

gradients can be used to find the conversion ratio between the plunger gate voltage,

and dot energy. For the top, left, and right dots, these ‘lever-arms’ are found to

be αT
G = 0.0811 eV/V, αL

G = 0.0533 eV/V and αR
G = 0.0336 eV/V respectively.

Using these values, the zero-bias peak spacings can be converted into energies.

This gives charging energies for the top, left, and right dots of ET
CB = 1.5 meV,

EL
CB = 1.2 meV, and ER

CB = 0.9 meV respectively.

One of the requirements for realising an efficient QDR is that the quantum dots

have large energy separation between their single-particle states, compared to kBT .

As discussed in Section 2.2.2, the separation of excited states in a dot is expected to

be dependent on the number of electrons it holds and the strength and particular

shape of the confining potential. Given that neither of these can be determined or

predicted easily, it is necessary to check the lowest excited state energies in each

dot for every different tuning of the device.

Figure 3.10 shows a non-linear measurement of differential conductance of the

top dot, focusing on a single Coulomb blockade peak. Structure due to the first

electron excited state can clearly be seen, with the energy of this state being ap-

proximately 200 µeV above the ground state. Such a separation should, in principle,

be sufficient for the QDR to operate up to temperatures around 2 K. From this,

and other similar measurements, it was clear that the dots were able to achieve the

46



Quantum dot refrigerator: experimental realisation 3.4

V
SD

 /
 m

V

VT-PL / V

Top dot G / µS

-1.2

-0.6

0.0

0.6

1.2

-0.88 -0.87 -0.86 -0.85 -0.84 -0.83 -0.82 -0.81 -0.80
-40
-30
-20
-10
 0
 10
 20
 30
 40

V
SD

 /
 m

V

VL-PL / V

Left dot G / µS

-0.8

-0.4

0.0

0.4

0.8

-0.86 -0.84 -0.82 -0.80 -0.78
-12

-8

-4

 0

 4

 8

 12

V
SD

 /
 m

V

VR-PL / V

Right dot G / µS

-0.4

-0.2

0.0

0.2

0.4

-0.82 -0.80 -0.78 -0.76 -0.74
-20
-15
-10
-5
 0
 5
 10
 15
 20

(a)

(b)

(c)

Figure 3.9: Finite bias conductance measurements of the three quantum dots. The
dashed lines are linear fits (by eye) to the blockade diamond edges. The arrows
indicate the blockade diamond widths. The lock-in excitation for (a) and (b) was
100 mV/104 = 10 µV, and for (c) was 50 mV/104 = 5 µV. (a) VT−IN = −0.631 V,
VT−OUT = −0.460 V. (b) VL−IN = −0.8093 V, VL−OUT = −0.380 V. (c) VR−IN =
−0.678 V, VR−OUT = −0.542 V.
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Figure 3.10: Differential conductance of the top dot under bias. (The bias is
applied to the ohmic contact ‘J1’.) The first electron excited state is clearly visible,
and has an energy approximately 200 µeV higher than the ground state. The fridge
mixing chamber temperature was 45 mK. The lock-in excitation was 10 µV, and gate
voltages were VT−IN = −0.637 V and VT−OUT = −0.471 V. A bias offset of 70 µV,
which is present the input of the preamplifier, has been subtracted for clarity.

large state separations required.

3.4.2 Central region spectroscopy

Some unexpected results were observed while taking non-linear transport mea-

surements of the three dots: when unrelated gates were defined, many additional

excited states seemed to appear in the dots. This is in fact the case in Figure 3.9(c),

where many excited-state-like lines (running up and to the right) are seen inside

all three unblockaded regions. However, it is impossible to identify the origin of

these features from this measurement alone. In trying to identify the cause of this

behaviour, and to confirm that the spacing of states in the dots was really as large

as suggested above, a method for measuring the spectrum of states in the central

region was unintentionally found.

After some investigation it was found that the additional excited-state-like fea-

tures occurred when the side of the central region opposite the relevant dot was

defined. For example, Figure 3.11(a) indicates the gates that were defined during

the measurement in Figure 3.9(c). In this configuration the source electron gas is

confined, in the vicinity of the right dot, by a potential well along the x-axis with
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Figure 3.11: (a) Configuration of the device for central region spectroscopy mea-
surements. Gates in black were defined during the measurement, while the others
were held at 0 V. The light blue regions depict the extent of the source and drain elec-
tron gases in this configuration. The left hand dot was always completely pinched
off. (b) Energy level diagram of 1D-0D-2D tunnelling. (c) Density of states in a
quasi-1D system. En is the energy of the nth sub-band.

a width of approximately 2.4 µm.5 This suggested that the extra features could be

due to this confinement being strong enough to form a quasi-1D electron gas in

the source. Transport through the system would then be determined not only by

the spectrum of states in the quantum dot, but also by the non-constant (non-2D)

density of states in the source.

The density of states of an ideal 1D electron gas is given by [121]:

g1D(E) =
1

π

(
2m∗

~2

)1/2
1√
E

(3.5)

In a quasi-1D electron gas multiple 1D ‘sub-bands’ can exist. The nth sub-band will

be offset by an energy En. The values of En are found by solving for the quantised

momenta allowed in the lateral confinement potential. For a harmonic potential

well, the values of En are equally spaced in energy. For an infinite square well of

width w, the sub-band energies are given by:

En =
~2π2

2m∗

(n
w

)2

(3.6)

The density of states for a real quantum wire is the sum of the individual densities

5This well width assumes 100 nm of lateral depletion around the gates
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for each sub-band. Figure 3.11(c) shows the density of states in a quasi-1D wire,

laterally confined by a square-well potential.

To understand how transport through the dot is affected by the densities of

states in the reservoirs, we consider first the general case of tunnelling through a dot

with 2D reservoirs in the source and drain (2D-0D-2D tunnelling). By considering

the balance of charge flows into and out of the dot, the current is found to be;

I ∝
∫ ∞
−∞

Gdot(fS − fD)dE (3.7)

In this expression, fS and fD are Fermi functions about the source and drain

energies, which give the distribution of occupied states in the reservoirs. Gdot is a

function describing the density of states in the dot. The tunnel couplings to the

source and drain are assumed to be energy-independent.

When the dot is under a bias much larger than the thermal broadening of fS

and fD, the result of the integral in Equation 3.7 will be dominated by an energy

range over which fS = 1 and fD = 0. The only energy-dependent term remaining

in the expression is then Gdot. This is the why non-linear transport through a dot is

a good probe of its energy level spectrum; by shifting Gdot in energy we can probe

its structure without having to consider the leads too closely.

With a quasi-1D electron gas in the source (1D-0D-2D tunnelling), the situation

becomes more complicated. The tunnel coupling of the dot to the source reservoir

is now intrinsically energy-dependent due to the non-constant form of the quasi-1D

density of states. This implies that the coupling will be larger at a sub-band edge

than between sub-bands, even with completely uniform tunnel barriers. Includ-

ing the tunnel couplings to the source and drain reservoirs (γS, γD) modifies the

expression for the current in the following way;

I ∝
∫ ∞
−∞

[
1

1 + γS/γD

]
Gdot(fS − fD)dE (3.8)

A qualitative understanding of 1D-0D-2D tunnelling can be gained from the

simple case of a dot with a single, narrow energy level. If we make the approxi-

mation Gdot(E) = δ(E − E0) (where E0 is the energy of the dot state), and allow

the tunnel coupling to the source to be energy dependent, then the integral in
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Equation 3.8 reduces to;

I ∝
[

1

1 + γS(E0)/γD

]
(fS(E0)− fD(E0)) (3.9)

In the situation where the dot is under a large bias and its energy is in the

range where fS = 1 and fD = 0, the only remaining energy dependent term in

Equation 3.9 is γS. Therefore, in the case of a weakly-coupled dot with large energy

spacings, transport through the system will be primarily determined by the tunnel

coupling to the source, sampled at the energy of the dot’s ground state. Assuming a

uniform tunnel barrier to the source, this coupling will in turn be determined by the

quasi-1D density of states. In a non-linear measurement of transport through the

dot, we expect this to result in lines of non-zero differential conductance where the

dot state aligns with each 1D sub-band. The lines should be parallel to the source-

resonant edge of the blockade diamonds for both positive and negative biases. This

is distinct from electron or hole excited states, which result in lines that follow one

resonance for positive bias and the other for negative bias. The lines should also

alternate between positive and negative differential conductance. (Due to the form

of the 1D density of states, an increase in bias may pull the dot ground state below

a 1D sub-band minimum, resulting in a reduction in current.)

With close inspection, all the features described above can be seen in Fig-

ure 3.9(c). Further evidence that most of the excited-state-like lines seen in this

measurement are due to the confinement of the source reservoir can be found in the

results shown in Figure 3.12. This shows similar measurements in which transport

through the device is measured under a constant bias, as nearby gate voltages are

changed. The excited-state-like features in the measurement are found to move in

response the the gate ‘L-PL’, but not ‘L-IN’, while the dot energy is not affected

appreciably by either. This indicates that the extra features are not due to the dot,

and most likely originate from the region of the source adjacent to the dot.

Figure 3.12(d) shows that approximately six of the extra peaks fit within the

bias-window. If these peaks are due to the dot ground state passing 1D sub-bands

in the source, then the sub-bands would have an energy spacing of approximately

0.7 meV/6 = 117 µeV.

To find if this is a plausible value for the 1D sub-band spacing, we return to

Equation 3.6. Differentiating with respect to n gives an expression for the energy
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Figure 3.12: Differential conductance of the device with gates defined as per Fig-
ure 3.11(a). In (a) and (b) a bias of −0.5 mV is applied to the source. In (c) and (d)
the bias is −0.7 mV. (a)-(d) show a bias-split region of transport through the right
hand dot. (a) As VL−PL is made more negative the fine structure shifts to higher
energies. The region itself does not move. (b) Neither the fine structure or region
moves appreciably with VL−IN . (c) shows the same as (a), but at the higher bias.
The extra line at VR−PL ≈ −0.731 V, which does not move with VL−PL in the same
way as the fine structure, is an excited state of the dot that now lies within the bias
window. (d) shows a single line-scan from (c) at a position of VL−PL = −0.791 V.
The arrows indicate the approximate position of peaks in the fine structure.
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level separation in a square well:

∆E(n) =

(
~2π2

m∗

)
n

w2
(3.10)

For a well width of 2.4 µm, and a sub-band spacing of 117 µeV, this implies that

approximately 60 1D sub-bands are populated in the source. Given a Fermi energy

of 4.68 meV for this material, Equation 3.6 predicts that a 2.4 µm well should be

populated up to the 69th sub-band, and have a sub-band separation at the Fermi

energy of 134 µeV. Any discrepancy between the two values could come from and

over-estimation of the well width, an under-estimation of the Fermi energy, or the

fact that the lateral confining potential is not exactly square.

From this measurement we can estimate what the state separation in the central

region will be once it is fully isolated. From the lithographic symmetry of the device

we assume there will be 60 allowed values of ky as well as 60 allowed values of kx.

The total number of trapped electrons will be 602π/2 ≈ 5655.6 Accounting for spin

degenerate states, this yields an average state separation of EF/2828 = 1.7 µeV.

In conclusion, the appearance of extra excited-state like structure in non-linear

transport measurements of the dots is attributed to a formation of a quasi-1D

electron gas in the partially formed central region. Using the right hand quantum

dot to probe the source’s density of states, a sub-band spacing of approximately

117 µeV is found. This is similar to the predicted value for a square-well potential

of width 2.4 µm. From the device’s symmetry an average energy state separation

of 1.7 µeV is predicted for the fully isolated central region. This corresponds to a

temperature of 20 mK, and so we expect this region to behave as a 2D electron gas

in the temperature range of the experiment, as required.

3.4.3 Fully isolated central region

The final stage of characterising the device was to study the fully defined central

region. Both differential conductance and DC transport were measured while only

defining the ‘-PL’ and ‘-IN’ gates. Of the three possible openings around the edge

of the central region (between each pair of ‘-PL’ and ‘-IN’ gates) one was always

kept completely pinched off, while two were left open as connecting leads to the

6The number of electrons is given by a quarter of the area of a circle in k-space (with a radius
of 60), multiplied by a factor of 2 to account for spin degeneracy. The value found compares well
with the prediction from the carrier density in the material; nA ≈ 7500.
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Figure 3.13: Differential conductance of the device, with no applied DC bias.
The measurement setup is as per Figure 3.6, but with the lock-in excitation applied
directly to the ohmic contact ‘A1’, and the preamplifier connected to ‘J1’. The lock-in
excitation was 5 µV. The period of the oscillations is approximately 1.1 mV.

source and drain reservoirs.

When the two leads were set to have one or more populated 1D sub-bands,

the conductance showed reproducible fluctuations in response to sweeping various

gates. This behaviour was most likely due to Universal Conductance Fluctuations

(UCFs) in the central region. Such fluctuations are known to occur due to changes

in the complex pattern of interfering wavefunctions, created when electrons are

confined to a region smaller than their phase coherence length. [122]

When the leads were tuned to low conductances (� e2/h), the UCFs were

suppressed and the conductance became dominated by regular peaks. (See Fig-

ure 3.13.) This was suggestive of Coulomb blockade, which would imply a central

region capacitance small enough to produce a significant charging energy. To ver-

ify the presence of Coulomb blockade, a non-linear transport measurement was

made (Figure 3.14), as well as a magnetic field sweep. The non-linear transport

showed a weak signature of Coulomb blockade, with an estimated charging energy

of 100 µeV.7 The magnetic field dependence showed the position and shape of the

peaks to be largely insensitive to field up to 2 T, which is expected for Coulomb

blockade given that it is an electrostatic effect.

With a small total capacitance for the central region it is likely that the capac-

itive coupling to the adjacent dots would be significant. To investigate this, the

central region was set up in the Coulomb blockade regime with leads in the top and

7This value is found more rigorously in Section 4.3.4
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Figure 3.14: (a) Current through the device, measured using the setup shown in
Figure 3.7. (An offset in bias, due to a small voltage on the electrometer input, has
been subtracted for clarity.) Periodic peaks in current are seen at low bias. These
widen with increasing bias until, when |VSD| ' 130 µV, they completely overlap and
merge together. This widening with bias is indicative of Coulomb blockade, although
the signature is much weaker than in the results shown earlier for the smaller dots.
The dotted lines highlight the widening of two adjacent peaks, and the diamond
region between them within which conduction is suppressed. From the height of this
diamond, the charging energy of the central region is estimated to be 100 µeV.

(b) Two line-scans taken from (a) at the points indicated by the red and blue
arrows (appropriate values of VR−OUT are indicated in the key). The red trace shows
nearly ohmic behaviour at the centre of a conductance peak. Taken from between
two peaks, the blue trace shows a bias range within which transport is suppressed.
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left sides, and additionally the right hand dot was formed in an extremely isolated

regime. Coulomb blockade oscillations in the central region could then be measured

while simultaneously altering the charge state of the adjacent dot. If a significant

capacitive coupling existed between the two, then the ejection of a single electron

from the dot should decrease the energy of the central region, resulting in a sudden

shift in the phase of the observed Coulomb blockade peaks.

The current through the central region as a function of the gates VR−PL and

VR−OUT is shown in Figure 3.15(a). It shows Coulomb blockade oscillations in

the central region, which, as expected, are more sensitive to VR−PL than VR−OUT .

(The former gate is closer to the central region.) It also shows a step in the

otherwise regular CB oscillations at VR−OUT ≈ −0.550 V. The position of the step

evolves linearly with VR−PL and is more sensitive to VR−OUT than VR−PL. This

is consistent with it being due to a change in charge state of the right hand dot.

Figure 3.15(b) shows that the step is approximately 24% of the distance between

the Coulomb blockade peaks. Therefore, the ‘back-action’ energy between the dot

and the central region is 24% of the central region’s charging energy.

Neither the presence of Coulomb blockade in the cooled electron gas of a QDR

or strong capacitive coupling between its components were fully considered in the

original proposal of Edwards et al. [1, 2]. Their primary consequence was that

the planned method for measuring the central region temperature, which was to

use a third, weakly coupled dot, was not feasible. The back-action would cause

the energy of the central region to depend on the charge state of the thermometer

dot. Therefore, the temperature measurement would no longer be non-invasive.

Furthermore, the back-action also cast doubt on whether the device could function

as a QDR at all. Both problems were finally solved by the development of a model

that included electrostatic interactions, which is discussed in Chapter 4.

3.5 Thermometry measurements

Central to assessing the performance of the QDR is a measurement of the equi-

librium temperature of a 2DEG in the device (Te). As discussed in Section 2.4,

weak coupling between 2D carriers and lattice phonons will likely result in Te being

greater than the lattice temperature. Only if the QDR produces a temperature

lower than Te in the central region has it succeeded in cooling. It would also be

interesting to know whether cooling below the lattice temperature (Tl) occurs.
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Figure 3.15: (a) Current through the central region under an applied bias of 25 µV
(accounting for the electrometer offset). An offset in the current of approximately
−4 pA has been subtracted for clarity. The arrow indicates a step-like feature in
the Coulomb blockade peaks which is attributed to the change in charge state of an
adjacent, isolated dot by one electron. (b) A single line-scan taken from (a) at a
position VR−PL = −0.8521 V. The average normal peak spacing is 1

3(δ1 + δ3 + δ4) =
3.8 mV. The peak spacing including the step is δ2 = 4.7 mV, which is 24% larger.
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The lattice temperature of the device was not measured directly. Instead, the

temperature of a Germanium thermometer on the cold finger is measured. (The

fitting of this thermometer is shown in Appendix B.2.) A four-terminal, lock-in

measurement was used to find the resistance of this thermometer and hence its

temperature via a known calibration. It is assumed that the device lattice, the cold

finger, and the mixing chamber of the fridge are all at the same temperature.

The equilibrium electron temperature was found at various mixing chamber

temperatures from measurements of a single quantum dot. As discussed in Sec-

tion 2.2.5, the widths of low-bias Coulomb-blockade peaks in a well-isolated dot

are determined by the temperature of the 2D reservoirs. The line-shape of current

through a biased dot is also determined by the temperature of the reservoirs, but

here the source and drain temperatures can be determined independently.

Non-linear DC measurements of the left dot were used to measure Te. The

measurement setup shown in Figure 3.7 was chosen because, as will be discussed

later, it was the same as used for measuring the QDR. This is significant because

it is possible for the electron temperature, which is sensitive to electrical noise, to

be dependent on the setup.

The dot was measured at several different mixing chamber temperatures. The

temperature was elevated using a heater built into the mixing chamber. The heater

was powered by a battery to avoid introducing additional electrical noise. An

example result is shown in Figure 3.16. This was taken with the gates surrounding

the central region defined, but with the opening between ‘T-PL’ and ‘T-IN’ set

to a large conductance (� e2/h). (The opening between ‘R-PL’ and ‘R-IN’ was

completely pinched off.) The gate ‘L-QPC’ has a small capacitance to the left dot,

and so it was used to provide fine adjustments of its energy.

Given the previously determined spacing of dot states, it is clear that transport

through the dot at low bias will be through the ground state alone. In this bias

range (−0.15 mV < VSD < 0.15 mV), the maximum absolute current is roughly

80 pA. This corresponds to a tunnel rate for the dot barriers of Γ ≈ 1 GHz, and a

lifetime broadening of the ground state of 2~Γ/kB = 15 mK [25, 123]. It is therefore

likely that, at the base temperature of the fridge, the line-shape will be determined

partially by lifetime broadening of the dot state as well as the thermal broadening

of the reservoirs. However, since 2~Γ < kBTl, and Tl < Te, the thermal broadening

will dominate. At higher temperatures the lifetime broadening should be even less

significant.
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Figure 3.16: (a) Non-linear DC measurement of a single blockade peak in the
left dot, at a mixing chamber temperature of 47 mK. (b) Line-shape of current
vs. VL−QPC , taken from (a) at the position indicated by the dashed line (VSD =
−0.2 mV)

Two values are required to find Te from the data in Figure 3.16. Firstly, the aver-

age width of Fermi functions that fit the line-shapes in current [e.g. Figure 3.16(b)]

and secondly, the lever-arm for the dot. The temperature is given by the average

width, converted from a voltage to an energy using the lever-arm. An analysis rou-

tine was written (in GNU Octave) to find both of these values from the raw data.

The routine takes each sweep of gate voltage, such as in Figure 3.16(b), and fits one

of two functions to the data. For low bias the fitted function is a top-hat, but with

edges given by two Fermi functions of equal width, and the whole multiplied by a

linear background. The linear background accounts for energy dependent tunnel

rates, to first order. For higher biases, when the presence of excited states compli-

cates the data, the fitted function allows for the Fermi functions to have different

heights and different linear backgrounds. This is only fitted to data in a range

of 6kBTe about the centre of the two steps, as it will not describe the data well

between them.

The analysis routine produces a graph of the fitted step positions and a mean

value of the fitted step widths. A simple linear fit to the step positions is used

to find the lever-arm (αG), as explained in Section 2.2.3. Figure 3.17 shows the

results of the analysis performed on the data shown in Figure 3.16. The mean of

all the fitted Fermi function widths for this measurement is w = (2.73± 0.05) mV.
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Figure 3.17: Analysis of the data shown in Figure 3.16. (a) The circles are fitted
positions of the blockaded region edges. The black lines are linear fits to these points.
Their gradients are used to find the lever-arms; αG = (0.00336± 0.00002) eV/V and
αD = (0.195± 0.002) eV/V. (b) The black lines are an example of a fit to a single
line-scan, at a bias of VSD = −0.2 mV. The blue circles are the data; only every 10th
point is plotted for clarity.

Converting this to a temperature gives Te = w · (αGe/kB) = (106± 2) mK.

The analysis detailed above was repeated on several measurements taken at

various temperatures. The results are shown in Figure 3.18.8 The relation between

electron and lattice temperatures is found to be approximately linear over this

range. A weighted least-squares fit to the data gives the following relation and

associated error:

Te = (1.183 ·Tl) + 41 mK (3.11)

σ(Te) =
√

(0.094 ·Tl)2 + (10.6 mK)2 (3.12)

That the relation between the two temperatures is approximately linear is not

surprising given the small range in question. Additionally, the relatively small

number of data points would make it difficult to resolve a more complicated trend.

8When converting fitted widths to temperatures, the lever-arm found from the data shown in
Figure 3.16 was always used. Being the coldest measurement, it showed most clearly the blockaded
region edges and the fits to their position were therefore the most reliable. The lever-arm is not
expected to change significantly with temperature.
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Figure 3.18: Electron temperature vs. lattice temperature. Circles are the electron
temperatures extracted from several measurements. The black line is a weighted
linear fit to these values (Equation 3.12).

3.6 Preliminary results

After characterising the individual components of the device, its behaviour as a full

QDR-like system was investigated; the central region was defined and connected to

the source (drain) reservoir via the left (top) quantum dot. The right dot was not

formed, and ‘R-IN’ and ‘R-OUT’ were set to a voltage that depleted the channel

between them. Current through the system, under the application of a constant

bias voltage, was measured using the setup shown in Figure 3.7.

A DC measurement was chosen because of the complications of a lock-in mea-

surement of such a device. In a lock-in measurement a small excitation is added to

either the bias across a device (VSD) or a gate voltage (VG). In this way, either of

the differential conductances G(b) = ∂I/∂VSD or G(g) = ∂I/∂VG can be measured.

For a QDR, G(b) is not expected to yield any useful information: in the cooling

regime, as depicted in Figure 2.14, G(b) should be zero as a small change in bias

does not change the current. (In reality energy-dependent tunnel barriers and ex-

cited states in the two dots may cause the current to change, but neither of these

effects are of immediate interest.)

Instead of measuring G(b), a gate excitation could be used to measure G(g).

However, in this case it is unclear which gate should be used. Any gate which

perturbs µA, µB or µC is expected to have a significant effect on the current in some,
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Figure 3.19: Transport through the QDR, under a bias of −75 µV, as a function
of the top and left dot energies. Both dots are open in the bottom right of the plot,
and more isolated in the top left. Tl = 49 mK, Te = (99± 12) mK.

but not all, situations. The best choice would be to apply an excitation to two gates,

such that µA and µB are modulated simultaneously but 180◦ out of phase. This

would measure the response of the current to changes in (µA − µB), which should

show useful information in the cooling regime. However, this is difficult to realise

in practice as it requires thorough characterisation of the lines connecting to the

gates; their resistance and reactance when cold must be known and accounted for

in order to produce a balanced excitation of the dots. Because of these difficulties,

a DC measurement was chosen.

Figure 3.19 shows the measured current through the device as a function of the

top and left dot plunger (‘-PL’) gates. The result is a set of points of conduction

arranged on a roughly square grid. These points occur when both of the two dots are

unblockaded; i.e. they have a state available for transport within the bias window.

The spacings of the points are therefore determined by the charging energies of the

dots. Along the bottom of the plot, where the left dot is open, and along the right

side, where the top dot is open, the Coulomb blockade signatures for the individual

dots are recovered. Overlayed on the entire plot, but most visible in the bottom

right, are a series of faint, closely spaced lines. These are due to Coulomb blockade

in the central region.
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Figure 3.20: Detail of a conduction under two different biases. (a) Large bias
point; VSD = −500 µV, Tl = 41 mK, Te = (89± 11) mK. (b) Smaller bias point;
VSD = −300 µV, Tl = 43 mK, Te = (92± 11) mK.

Because current flows while states in both dots lie within the bias window,

the size of the conduction points is proportional to the bias. Figure 3.20 shows a

single conduction point under two different biases. Its exact shape is determined

by electrostatic interactions in the system. (This is discussed in more detail in

Section 4.3.1.) The fact that the points resemble two similar, overlapping shapes

is attributed to the presence of an excited state in one of the small dots, with an

energy smaller than the bias. In both these measurements, therefore, the bias is too

large to achieve efficient cooling: the refrigeration scheme requires that transport

through both of the dots can only occur through a single state.

To achieve optimum operation of the QDR, a bias voltage greater than kBTe/e

is needed. This ensures that, when cooling, there is a high probability that states

in the source are full and states in the drain are empty at the dot energies. A

bias of 75 µV ≈ (870 mK)kB/e was chosen, being less than both the excited state

energies in the dots, and the charging energy of the central region. With this bias,

the energy levels of the device most closely resemble the ideal case of Fig. 2.14.

A further complication of measuring the device was the coupling between the

central region and the gates used for probing dot energies. To remove this effect

the couplings were calibrated so that, by changing pairs of gates simultaneously,

the net change of the central region energy would be zero. Figure 3.21 shows the

results of two calibration measurements, which allowed the effect of ‘T-QPC’ and
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‘L-QPC’ on the central region to be compensated by using ‘R-OUT’.

When making measurements using the gates ‘T-QPC’ and ‘L-QPC’, the most

commonly used procedure was to obtain data while sweeping the gates in opposite

directions. A diamond shaped area of the ‘T-QPC’ vs. ‘L-QPC’ plane could then be

mapped out from many such sweeps. Because the couplings of the two gates to the

central region were found to be essentially the same, no compensation was necessary

during each sweep. All that was required was an appropriate change in ‘R-OUT’

between each sweep, when both the two gates were stepped by a small amount

in the same direction. Figure 3.22 shows the results of a calibration measurement

which achieves this. Unless otherwise stated, all subsequent measurements include

such compensation.

Figure 3.23 shows a conduction point with a bias of VSD = 75 µV. For the

particular point shown here both the dots were well isolated, but open just enough

to give a measurable current. This was done to keep the lifetime broadening of the

states in the dots below kBTe, which is a further requirement for efficient operation

of a QDR. This measurement is, therefore, the first example of the device being

configured as a QDR in a regime where cooling might be expected.

It is instructive to consider how the energies of the two dots change over a

conduction point. In Figure 3.23, in the diagonal direction from top right to bottom

left the two dot energies are changing in opposite directions at roughly equal rates.

In the direction perpendicular to this, they are changing equally. Bearing in mind

the energy level diagram in Figure 2.14, we can deduce that the bottom left edge of

the conduction point corresponds to the condition that µA ≈ µB. Below and to the

left of this, µA � µB and so no current may flow. Above and to the right, µA > µB

and so current may flow while both µA and µB remain within the bias window. It

is therefore in the vicinity of this bottom left edge that the QDR should be tuned

to the cooling regime.

After extensive characterisation of the device, it was now possible to obtain

measurements, such as in Figure 3.23, in which the region of parameter space

where the device should be acting as a QDR could be readily identified. However,

without a way to measure the temperature of the isolated electron gas, it was not

possibly to ascertain directly whether or not any cooling was taking place. To

solve this problem a more involved analysis was required, and this is discussed in

the following chapter.
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Figure 3.21: The plots (a) and (c) show current through the central region, mea-
sured with tunnel barriers defined at the top and left openings. The energy of the
central region is probed by a pair of gates in each plot. Coulomb blockade peaks are
observed and, as expected, their positions are linearly dependent on each gate voltage.
From linear fits, by eye, to the peak positions (dotted lines), a ratio is found from each
plot: (∆VR−OUT /∆VT−QPC) ≈ 0.15, for plot (a), and (∆VR−OUT /∆VL−QPC) ≈ 0.15,
for plot (c).

The plots (b) and (d) show a single conduction point of the fully defined QDR,
under a bias of−75 µV. Both the top and left dots are relatively open and so Coulomb
blockade in the central region can be seen as faint lines. The current scale has been
reduced to show them more clearly. Blue regions indicate no data (in the corners),
or I < −30 pA (in the centre). In (b) the effect of ‘T-QPC’ on the central region
energy has been compensated for by simultaneously varying ‘R-OUT’ according to
the ratio found from (a). In (d) the same has been done for ‘L-QPC’, using the ratio
from (b).

65



Quantum dot refrigerator: experimental realisation 3.6

V
R

-O
U

T
 /

 V

VL-QPC, VT-QPC / V

I / nA

-0.508
-0.507
-0.506
-0.505
-0.504

-0.80 -0.75 -0.70 -0.65 -0.60

-0.2 -0.1  0

V
L-

Q
P

C
 /

 V

VT-QPC / V

I / pA

-0.65

-0.60

-0.55

-0.65 -0.60 -0.55

-30 -20 -10  0

(a) (b)

Figure 3.22: (a) Blockade peaks in the central region as ‘T-QPC’ and ‘L-
QPC’ are swept together and ‘R-OUT’ is stepped. The dotted lines show
(∆VR−OUT /∆[VL−QPC , VT−QPC ]) ≈ 0.37. (b) The conduction point from Fig-
ure 3.21(b) and (d), with the effect of ‘T-QPC’ and ‘L-QPC’ on the central region
cancelled by varying ‘R-OUT’ according to the ratio found in (a).
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Figure 3.23: Measurement of a single conduction point, with VSD = 75 µV. Along
the red line µA ≈ µB. Along the direction blue line the dot energies change in
opposite directions and are equal at approximately 1

2(µS + µD).
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Chapter 4

Quantum dot refrigerator:

analysis

In the previous chapter, the design and characterisation of a Quantum Dot Re-

frigerator (QDR) device was discussed. The device was found to satisfy almost

all known requirements for operating as a QDR, but the presence of significant

electrostatic couplings between components of the system invalidated the planned

scheme to use a third quantum dot to probe the temperature (TC) of the cooled

2DEG.

In the absence of an independent thermometer, the only alternative for finding

TC was to use the characteristics of the current through the QDR itself. The

basic principle of how this is achieved is illustrated in Figure 4.1. In this simple

situation, the QDR current is affected by the temperature of the reservoirs and the

isolated 2DEG in a way that allows the two to be determined independently. The

measurement is based on exactly the same physical principle as the independent

thermometer (tunnelling through single-particle, quantum dot states), but applied

in a more complex situation.

For the simplest case of a constant TC it is relatively straightforward to calculate

the exact form of the line-shape in Figure 4.1(b). However, we expect the central

2DEG to be heated and cooled by the current flowing through it. To predict

the current in this situation, some a priori theory of how TC changes with the

electrochemical potentials of the dots is also required.
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CentreDrain Source

eVSD

µB
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0 eVSD

I D
S

µA − µB

∝ TC ∝ Te

(a) (b)

Figure 4.1: (a) QDR energy levels. Thermal broadening in the three 2D electron
gases (source, drain and centre) is indicated by the light shaded regions. (b) Cur-
rent from drain to source (electron flow from source to drain) as the electrochemical
potenials of the two dots (µA and µB) are moved simultaneously in opposite direc-
tions, as indicated by the arrows in (a). The onset of current at µA − µB = eVSD is
broadened by the temperature of the reservoirs (Te), while the switch-off of current
at µA − µB = 0 is broadened by the temperature of the centre (TC).

This chapter presents measurements of the QDR current made at various tem-

peratures and their subsequent analysis. A simple model, which assumes constant

TC and neglects electrostatic effects, is initially fitted to the data. A reasonable

agreement is found between the measured and predicted line-shapes of current, and

this analysis strongly suggests that TC is frequently lower than the equilibrium elec-

tron temperature (Te). A more complex model is then developed, which includes

both electrostatic effects and changes in TC , and this is also compared to measured

line-shapes.

4.1 Temperature dependence results

A series of detailed measurements of the current through the device were made

at different mixing chamber temperatures. Low-current conduction points were

investigated because well-isolated dots are required for efficient cooling. Figure 4.2

shows three such points along with line-scans of current taken through the middle

of each. In these line-scans, the right sides of the peaks correspond to the onset

of transport as the dot levels pass the source and drain reservoirs. The left sides

correspond to the switch-off of transport as the two dot levels pass each other.

As the temperature increases, the right sides increase in width. This is expected

because of the increasing thermal broadening of the reservoirs. The left sides,

however, do not change as significantly.
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Figure 4.2: Conduction points with line-scans taken at the positions of the dotted
lines. The three measurements were made at different lattice temperatures (Tl).
(a) and (b): Tl = 54 mK, Te = (105± 12) mK. (c) and (d): Tl = 85 mK, Te =
(141± 13) mK. (e) and (f): Tl = 150 mK, Te = (218± 18) mK.
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Figure 4.3: QDR current while probing the central region with the gate ‘R-OUT’.
Along the x-axes the gates ‘L-QPC’ and ‘T-QPC’ are changed simultaneously so as
to pass through the middle of a conduction point. Tl = 41 mK, Te = (89± 11) mK.
(b) Two example line-scans taken from the data in (a) at the positions indicated by
the red and blue dotted lines.

The simple model for the QDR current shown in Figure 4.1 assumes that the

electrochemical potential of the centre (µC) lies half way between the potentials

of the source and drain. While there is no way to measure µC directly, it can

be probed using nearby gates. Figure 4.3 shows the effect of changing µC on the

line-shape of current through the centre of a conduction point. As expected, the

right side of the peak changes little, but the width and position of the left side are

seen to oscillate. The period of the oscillations matches the previously observed

period of Coulomb blockade oscillations in the centre (see Figure 3.14), and they

are therefore attributed to the movement of successive charge states through the

bias window. Therefore, the energy levels of the device will resemble the simplified

picture shown in Figure 4.1(a) once each period.

Measurements were made at several different mixing chamber temperatures in

the range of 50 mK – 200 mK. The tuning of the gate voltages and the general

stability of the device were often found to change significantly with temperature.

Having chosen a conduction point to investigate at each temperature, non-linear

measurements of the corresponding Coulomb blockade peaks in both dots were

made. These measurements were used to determine the equilibrium electron tem-

perature, as described in Section 3.5, and also to verify that the energies of the

excited states in both dots were greater than eVSD. Measurements similar to those
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shown in Figures 4.2 and 4.3 were then made to record the current across the

conduction point and many diagonal scans through its centre.

4.2 Simple QDR model

The measurements described in the previous section were first compared to a pre-

diction of the QDR current in the limit of a constant temperature of the central

region. Electrostatic coupling between the dots and the central 2DEG was also

initially neglected. The derivation of this model and the comparison with the data

are detailed in this section.

4.2.1 Master equation

We use the orthodox theory of single-electron tunnelling [36, 37, 123] to calculate

the current through the device. The fundamental assumptions are that the system

is Markovian and that the time between tunnelling events is much longer than

their duration.1 Second order processes such as co-tunnelling are neglected. The

behaviour of the system is therefore reduced to transitions between well defined

states via single stochastic tunnelling events. This approach can be used to find

either typical time-dependent results or long-time-average results. As the mea-

surements of our system are made on much longer time scales than the tunnelling

events, we choose the latter.

A master equation describes the time evolution of the occupation probabilities

of the different states of a system. The QDR is modelled as three charge islands (the

two dots and the central region) in series, and the states of the system correspond

to the combinations of charge occupancies on these islands. For an individual state

i, the time evolution of its occupation probability (pi) is given by:

ṗi =
∑
j 6=i

pjΓji − pi
∑
j 6=i

Γij (4.1)

where Γij is the transition rate from the state i to the state j. The first term is

the total inward flow of probability density to the state i, and the second term is the

total outward flow. A master equation is formed by combining similar expressions

1The duration of tunnelling events in is expected to be ∼ ps [124].
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Figure 4.4: Allowed transitions between QDR charge states. For a state (l,m, n),
the charge in dot B is el, the charge in the central region is em, and the charge in
dot A is en.

for all N possible states:
ṗ1

ṗ2

...

˙pN

 =


−Γ1 Γ21 . . . ΓN1

Γ12 −Γ2 . . . ΓN2

...
...

. . .
...

Γ1N Γ2N . . . −ΓN




p1

p2

...

pN

 ⇒ d

dt
(p) = Γp (4.2)

where Γi =
∑

j 6=i Γij. The steady-state solution for p can then be found by

solving the equation Γp = 0, subject to the condition
∑

i pi = 1. Given the matrix

Γ, this can be solved either numerically [125] or, in simple cases, analytically.

Once the steady-state value of p is known, the long-time-average of the current

through the system can be found. For each transition there is an associated move-

ment of charge: if qDij (qSij) is the charge moved to the drain (source) during the

transition from state i to j, the average current from source to drain is given by:

I =
∑
i

∑
j 6=i

piΓijq
D
ij = −

∑
i

∑
j 6=i

piΓijq
S
ij (4.3)

To calculate the current we must fully define the matrix Γ by identifying all the

allowed transitions in the system and calculating their rates. Figure 4.4 shows the

possible system states when dots A and B can hold either 0 or 1 excess electrons and

the central region can hold -1, 0 or 1. The blue lines show the allowed transitions

between states, which correspond to the movement of a single electron between

adjacent charge islands or to one of the reservoirs. The four transitions highlighted

in red in Figure 4.4 indicate an example of a cyclic path, moving around which

results in the net transfer of a single charge from the source to the drain.

Individual transition rates are calculated assuming that dots A and B both
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have symmetric tunnel barriers with energy-independent tunnel rates of Γ0. The

spectra of states for the dots are modelled as just a single infinitely narrow state.

This assumes that the lifetime broadening of dot states (~Γtotal) is less than kBTe.

The system must be Markovian, which means that the distribution of occupied

states in the central region must be independent of the history of the system. We

assume that it is always given by a Fermi distribution, implying that the scattering

of carriers, and hence the re-equilibration of the central 2DEG, is fast compared to

the frequency of tunnelling events.

From these simplifications, the tunnel rates highlighted in Figure 4.4 (and,

similarly, all other transition rates) can be found by considering the probability

of finding empty (full) states at the appropriate energies for an electron to enter

(leave) one of the three 2DEGs:

Γa = Γ0

[
fS

(
µf
A − µS

)]
(4.4)

Γb = Γ0

[
1− fC

(
µi
A − µf

C

)]
(4.5)

Γc = Γ0

[
fC

(
µf
B − µi

C

)]
(4.6)

Γd = Γ0

[
1− fD

(
µi
B − µD

)]
(4.7)

where fS, fC and fD are Fermi functions (f(x) = [1+exp(x/w)]−1) with widths (w)

given by the thermal broadening of the source, center and drain 2DEGs respectively.

The electrochemical potentials of the dots A and B (µA and µB) and of the central

region (µC) depend on the charge state of the system. The superscript ‘i’ or ‘f ’

indicates whether these values apply to the initial or final state. Here we limit the

charge occupancy of the dots to either 0 or 1 excess electrons, and use the following

simple forms for µA and µB:

µA(n) =
[
(n− 1)e2 − eCGVA

]
/CΣ (4.8)

µB(l) =
[
(l − 1)e2 − eCGVB

]
/CΣ (4.9)

Both dots are assumed to have the same total capacitance (CΣ), and the same

capacitance to their respective gate electrodes (CG). These expressions imply that

the electrochemical potentials increase by one charging energy (e2/CΣ) per electron

added to the dot, and scale linearly with gate voltage according to the correct lever-
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arm (CG/CΣ). A similar expression is used for µC :

µC(m) =
[
(m− 1)e2 − eCCGVC

]
/CCΣ (4.10)

The expressions 4.8—4.10 are correct only to within a constant offset, but this

is acceptable, provided that only differences in gate voltages are considered.

4.2.2 Predictions

Figure 4.5 shows the current through the system calculated using the method de-

tailed in the previous section. The master equation is solved numerically [125] with

10 allowed charge states in the center region. Both plots show the line-shape of the

current as the two dots energies are moved simultaneously in opposite directions

by changing the gate voltages VA and VB. The results confirm the prediction from

Figure 4.1: that the width of the left hand side of the peak is determined by TC ,

and the right hand side by Te.

There are two obvious reasons why the model might fail to describe the data

well. Firstly, it assumes a constant TC . If TC actually varies significantly, then

the shape of the left side of peaks in current will not fit the model well for any

TC . Secondly, by neglecting capacitive coupling between the charge islands we

have greatly limited the number and complexity of charge-transporting processes

in the system. For example, moving around the red loop in Figure 4.4 is essentially

identical to moving around the same loop shifted one place to the right. In both

cases electrons move between the islands at the same energies (because µB does not

depend on m and n, etc.), the only difference is that the tunnelling events happen

in a different order. However, if coupling between the islands is included then

the degeneracy of the various energies is lifted and the two loops become distinct.

They will switch on and off at different gate voltages and conduct over different

gate voltage ranges. This will result in transport occurring over a larger range of

gate voltages than expected.

When fitting the model to the data, the presence of numerous charge transport-

ing processes can be accounted for in a simplistic fashion by allowing the peaks in

current to have arbitrary widths. The line-shapes of both sides of a peak are still

found from the model described above, but the two sides are calculated indepen-

dently and can be centred on different voltages. A constant current is assumed

between the sides. The justification for this approach is that while many compet-
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Figure 4.5: Predicted drain to source current (electron flow from source to drain)
as the two dot energies are simultaneously moved in opposite directions. In (a), the
sharpness of the left side of the peak is shown to be determined by the temperature
in the centre (TC). In (b), the sharpness of the right side is shown to be determined
by the temperature of the reservoirs (Te).
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ing transport processes may exist, the switch-on and off of current at the sides will

likely be dominated by single processes only — there will always be one process

which is the first to switch on, and one which is the last to switch off.

To increase the speed of calculating the current, analytic solutions to the QDR

master equation were found in two limiting cases. In the first case, µA(1) ≈ µS,

µB(1) ≈ µD, and both are far (several kBTC) from µC(1). This is the situation at

the switch-on of current when the dot energies pass the source and drain reservoirs.

In the second case, µA(1) ≈ µB(1) ≈ µC(1), and all three energies are far (several

kBTe) from µS and µD. This is the situation at the switch-off of current when the

dot energies pass each other. In both situations the bias is symmetric (µS = −µD),

and the central region energy is assumed to lie mid-way between the reservoirs

(µC(1) = 0). As usual, it is also assumed that the two dots are being probed

simultaneously in opposite directions (VB = −VA).

The two analytic solutions of the master equation, with three allowed central

region charge states, lead to two expressions for the line-shapes of the left and right

sides of a peak in current. An approximation to the total current over the whole

peak (I) is found by combining them:

IRHS = eΓ0

[
2f 2

R + 3fR
2fR + 12

]
(4.11)

ILHS = eΓ0

[
2f 2

C − 7fC + 5

4f 2
C − 6fC + 14

]
(4.12)

I = ILHS + IRHS −
5

14
eΓ0 (4.13)

In these expressions ‘fR’ and ‘fC ’ are Fermi functions of VB (= −VA): fR,C(VB) =

[1 + exp((VB − V 0
R,C)/wR,C)]−1. The width (wR) of ‘fR’ is proportional to the

thermal broadening of the reservoirs, and the width (wC) of ‘fC ’ is proportional

to the thermal broadening of the centre. The constants of proportionality are the

lever-arms that convert changes in each dot’s energy to changes in gate voltage.

Both ILHS and IRHS are broadened step functions with a step height of (5/14)eΓ0.

To make I be a top-hat-like function, with I = 0 at VB → ±∞, a constant term

equal to the step height must be subtracted from the sum of ILHS and IRHS. The

position and width of the peak in I is set by shifting ILHS (via V 0
C) and IRHS (via

V 0
R). The analytic and numerical solutions are found to be in good agreement for

kBTe,C � |µS−µD|, with the analytic solution being far more efficient to calculate.

The analytic form for the current is also found to be a satisfactory approximation
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Figure 4.6: Widths of fR and fC found by fitting Equation 4.13 to the current
given by the full master equation. The fits are good over the whole range of µC , and
the widths found at µC = 0 are exactly correct. (TC = 40 mK and Te = 60 mK.)
However, once µC has moved significantly away from zero, fitting to the left side of
the peak over-estimates the central region temperature by approximately 5%.

when µC 6= 0. Given that the range of dot energies over which conduction can occur

is largest when µC(1) lies mid-way between the source and drain, the primary effect

of changing µC (via the voltage VC) is to reduce the width of the peak in current.

This is already taken into account by allowing fR and fC to be centred at different

points. A secondary effect is that the line-shape of the left side of the peak deviates

slightly from Equation 4.12. Figure 4.6 shows that this difference results only in a

marginal over -estimation of the central region temperature.

4.2.3 Analysis

The analytic expression for the QDR current (Equation 4.13) was fitted to vari-

ous measurements of current through the middle of conduction points. The fitting

parameters were Γ0 (which determines the peak height), and the widths and po-

sitions of fR and fC . Figure 4.7 shows six example fits for data taken at various

temperatures.

The results in Figure 4.7(b) and (e) are examples of where many repeated

measurements have been averaged to reduce the noise in the current. For the

highest temperature data [Figure 4.7(f)] the data was averaged as µC was changed

over a range approximately equal to one charging energy of the central region.

This was done because at this temperature the Coulomb blockade of the centre
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was not visible (in contrast to e.g. Figure 4.3). It would therefore be impossible to

determine µC from the data, and averaging over a single charging period was the

only way to eliminate it as as an unknown parameter. (This is discussed in more

detail in Section 4.3.5.)

Of the six measurements in Figure 4.7, the worst fit is found in plot (b). Here the

prediction clearly deviates systematically from the data. (A possible explanation

for this is given in Section 4.3.5.) There is some suggestion of a similar deviation in

the centre of the peak in Figure 4.7(a), but the data is too noisy to be conclusive.

At higher temperatures [Figure 4.7(c)–(f)] the predicted current is found to fit the

data very well on the right hand side of the peak. In Figure 4.7(d)–(f) there are

small systematic deviations on the left hand side of the peaks.

Most measurements were actually made in sets that consisted of repeated scans

through the centre of a conduction point while stepping VC to probe the Coulomb

blockade of the central region. An example of fitting to such a data set is given in

Figure 4.8. From Figure 4.8(b) average widths, in gate voltage, for fC and fR and

standard deviations for each can be found.

The most striking feature of the measurements is that line-scans were often

observed to have a significant asymmetry, with the left side always being sharper

than the right. Within the model developed in the preceding section, this implies

that the central region must be at a lower temperature than the external reservoirs.

This would be expected for a successfully working QDR. To gain an overview of

how frequently asymmetric peaks were seen, the analytic expression for the QDR

current was fitted to all available data sets.2

Figure 4.9 shows the average fitted widths, in gate voltage, of fR and fC found

from all available data sets in the manner shown in Figure 4.8. In general, wR

follows fairly closely the widths observed in measurements of the equilibrium elec-

tron temperature. This is expected since both should be equal to the thermal

broadening in the source and drain reservoirs, multiplied by similar lever-arms.

Figure 4.9 shows the approximate thermal broadening (in mK) corresponding to

different widths in gate voltage, using the lever-arm found for the left dot as a

conversion factor (see Section 3.5). The validity of relating these temperatures to

the fitted values of wR and wC would be limited if the gate capacitances for the

two dots are unequel, or if capacitances between dot B(A) and the gate for dot

A(B) are non-zero. Both would modify the lever-arm for measurements of the full

2Measurements were only discarded due to poor device stability.
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Figure 4.7: (a)-(f) Fits of the analytic form for the QDR current (black lines) to
measurements (blue circles) at various mixing chamber temperatures. Each line-scan
is taken through the centre of a conduction point. (a), (c) and (d) are the same data
as shown in Figure 4.2. (b) and (e) are averages of many identical sweeps, to reduce
noise. (f) is the average of many sweeps as only VC is varied.
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as VC is stepped. Overlayed is the fitted position of fR (red line) and fC (blue line).
The fluctuations in the position of fC are due to Coulomb blockade in the central
region. (b) Fitted widths of fR and fC . [Tl = 84 mK, Te = (140± 13) mK]
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the standard deviation.) The black line is a best fit to the Fermi-function widths from
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used (see Section 3.5).
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device, compared to just a single dot, but neither are expected to be large.

The average widths of fC vary more widely than those of fR. This would

be expected for a working QDR since the amount of cooling the device achieves

depends on its detailed setup, which was not well controlled during the experiment.

However, the average width of fC was found to always be less than that of fR.

All of the trends observed in Figure 4.9 are consistent with a working QDR.

An alternative explanation could be that the central region, once isolated, becomes

fixed to the lattice temperature of the device. This seems unlikely given the large

spread in the widths of fC . (We might expect a trend at least as clear as that in

the widths of fR.) Furthermore, the most obvious explanation for the systematic

deviations between data and predictions observed on the left hand sides of the

peaks in Figure 4.7 is that the temperature of the central region is not actually

constant over the whole peak.

Another possible reason for this analysis to be invalid is that the density of

occupied states in the central region may be being driven away from equilibrium.

In this situation the model no longer provides a good description of the system.

Following the argument in Section 3.1.1, we calculate the maximum rate of injection

into one central region state as the total rate of injection (≈ I/e), divided by the

number of central region states in the energy range of the lifetime-broadened state

of the injecting dot. However, whereas we previously assumed that Γ0 ≈ 2I/e,

Equations 4.11 and 4.12 now show that Γ0 = (14/5e)I (assuming symmetric and

identical dots). The injection rate (1/τin) is therefore given by:

1

τin
=

5

14

(
π~

2m∗

)
1

A
⇒ τin ≈ 6 ns (4.14)

From Equation 2.14, we find that this rate is exceeded by the rate of large-

energy-transfer electron-electron scattering only for Te > 175 mK. This suggests

that we may be close to the cross-over into the out-of-equilibrium regime. However,

in calculating τin we have assumed that the current is at its maximum value, while

in comparing it to Equation 2.14 we have assumed that the carriers are being

injected close to the Fermi energy of the central region. This is never the case

and Figure 4.5 shows that, when injecting close to the Fermi energy, the current

will roughly be halved (τin will double). Asymmetric tunnel barriers in the dots

can increase lifetime broadening without increasing the current, also pushing the

crossover to lower temperatures. It therefore seems very unlikely that the central
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region is in quasi-equilibrium above 120 mK (the cross-over for τin = 12 ns).

In conclusion, this preliminary analysis found the line-shapes of current through

the device to be quite well described by a simple prediction based on the theory of

single-electron tunnelling and assuming constant temperatures in all three 2DEGs.

The observation of significantly asymmetric peaks in current implies that, if this

theory is valid, the central region of the device must routinely be at a lower temper-

ature than the reservoirs. However, this treatment offers no physical mechanism

for the temperature difference and, since complications due to electrostatic cou-

pling are neglected, it certainly does not provide a complete model for current flow

through the device. To address these issues and gain a better understanding, a

more complete model was developed. This is detailed in the following section.

4.3 Full QDR model

Developing a more realistic model to describe the measured device requires the

inclusion of two important effects: electrostatic interactions between the charge

islands and a changing TC caused by the net heating or cooling effect of current

through the device. Once these are taken into account it should be possible to

answer the questions of whether a QDR can still cool a 2DEG with a small ca-

pacitance, and whether the behaviour of our device is consistent with such cooling

being achieved.

4.3.1 Electrostatics

The standard technique for modelling electrostatic interactions in coupled quantum

dot systems is to use an equivalent capacitor network. This has proved successful

in predicting charge-stability diagrams for double-dots [126, 127, 29], triple dots

[128, 129, 130], and can in principle be generalised to any number of dots [123].

Following the work on triple dots, we define an equivalent capacitor network for a

QDR-like device, which is shown in Figure 4.10.

We define the following quantities: The components of the vector q are the

charges on each node in the capacitor network and the components of the vector v

are the voltages of each node. C is the matrix of capacitances, where off-diagonal

elements−Cij are the capacitance between the nodes i and j, and diagonal elements

Cii are the total capacitance of the node i. Given these definitions, it can be shown

that q = Cv.
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Figure 4.10: Capacitor network for three gated charge islands in series. The charges
on the three islands are −el, −em and −en. The tunnel junctions (denoted by a
rectangle with a line through the centre) each have an associated capacitance and
tunnel rate. Capacitors shown in grey account for cross-coupling effects and are, in
general, relatively small.

Two types of nodes form the network in Figure 4.10: those for which the volt-

age is known (“voltage nodes”) and those for which the charge is known (“charge

nodes”). We subdivide q, v and C to allow the two to be considered separately:(
qc

qv

)
=

(
Ccc Ccv

Cvc Cvv

)(
vc

vv

)
(4.15)

where qc (vc) is the charge (voltage) on the charge nodes and qv (vv) is the charge

(voltage) on the voltage nodes. From the above expression we can define the voltage

on the charge nodes in terms of known properties of the capacitor network:

vc = (Ccc)−1(qc −Ccvvv) (4.16)

When producing charge stability diagrams from a capacitor network it is usual

to consider the free energy. However, Wasshuber [123] points out that this is

not necessary for modelling single-electron tunnelling events. The probability of a

given transition depends only on the voltage difference across the tunnel barrier

in question, plus a charge-state independent term. Therefore, simply using the

difference in voltages between the nodes of the capacitor network is acceptable,

and Equation 4.16 provides all the necessary information about the electrostatic

interactions in the system.
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Following the argument of Wasshuber [123], we define the changes in electro-

static energy due to a single electron tunnelling from a voltage node to a charge

node (∆UV→C), from a charge node to a voltage node (∆UC→V ), and from a charge

node to a charge node (∆UC→C):

∆UV→C = −e(vcj − vvi ) +
[
(Ccc)−1

jj

]
e2/2 (4.17)

∆UC→V = −e(vvj − vci) +
[
(Ccc)−1

ii

]
e2/2 (4.18)

∆UC→C = −e(vcj − vci) +
[
(Ccc)−1

ii + (Ccc)−1
jj − 2(Ccc)−1

ij

]
e2/2 (4.19)

where i and j are the indices of the initial and final nodes. [(Ccc)−1
ij is the ijth

element of the inverse of the matrix Ccc.] The voltages are calculated before the

tunnelling event for both nodes.

To incorporate the predictions of the capacitor network into the master equa-

tion, the expressions for the tunnel rates between the charge states of the system

(e.g. Equations 4.4–4.7) are modified by replacing the arguments of the Fermi

functions with the appropriate changes in electrostatic energy. Essentially, we re-

quire that any excess (deficit) of energy associated with a tunnelling event must be

absorbed (provided) by one of the three electron gases. For example, the rates Γa

(for tunnelling from the source to dot A), and Γb (for tunnelling from dot A to the

central region), previously defined by Equations 4.4 and 4.5, are now given by:

Γa = Γ0fS (∆Ua) (4.20)

Γb = Γ0 [1− fC (−∆Ub)] = Γ0fC (∆Ub) (4.21)

where ∆Ua is calculated using Equation 4.17, and ∆Ub is calculated using Equa-

tion 4.19. With Γ fully defined using the capacitor network, we have confirmed that

the predicted current is equivalent to that found using the simpler model detailed

in Section 4.2, if neither back-action or cross-coupling of gates are included.

The success of the capacitor network in describing the measurements can most

readily be seen in the large bias regime. In Figure 4.11, the current through the

device under biases of 0.5 mV and 0.3 mV is shown to be reproduced accurately by

the model, including the unexpected trapezoidal shape of the conduction points.

Figures 4.12 and 4.13 illustrate that the origin of this shape is the capacitive cou-

pling between the dots and the central region, and therefore cannot be predicted

by the simpler model.

For the simulations shown in Figures 4.11—4.13, the capacitances used to fill the
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Figure 4.11: (a) and (c) are the measured QDR current under biases of −500 µV
and −300 µV respectively at Te ≈ 90 mK. (b) and (d) are the predicted current
under the same biases. The extra structure seen in the measured data is due to an
excited state in the top dot with an energy less than 300 µeV. In these simulations the
source and drain temperature (Te) is set to 90 mK, but the central region temperature
(TC) is elevated to 275 mK . This is reasonable as significant heating of the centre
is expected under large biases. If this effect is not included, the upper right side
of the calculated conduction points show periodic modulations due to the Coulomb
blockade of the central region.
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matrix C were determined by separate measurements of the two dots and the central

region. Lever-arms (conversion factors between voltages and dot energies) are found

from non-linear measurements of the two dots: for the gate electrode voltages we

find αT
G = 0.081 eV/V and αL

G = 0.053 eV/V (the superscripts indicate the top (T)

or left (L) dot of the device), which determine CgA and CgB; for the drain’s bias

voltage we find αT
D = 0.29 eV/V and αL

D = 0.20 eV/V, which determine CBD and

CAC . The source was not biased, and so we must deduce CCB and CSA by assuming

that αT
S = αL

D and αL
S = αT

D (from the lithographic symmetry of the device). Non-

linear measurements of the central region show its charging energy to be 100 µeV,

giving CCT . (The determination of the central region charging energy is discussed

in more detail in Section 4.3.4.) The lever-arm for probing the central region with

‘L-PL’ is found to be 0.091 eV/V, and we assume the same lever-arm for ‘T-PL’.

These determine CCgA and CCgB. The voltage VC remains constant throughout

the simulations, and so the capacitances CgC , CAgC and CBgC are unimportant.

The cross-couplings due to CAgB and CBgA were neglected because of lack of a

suitable calibration measurement. However, these capacitances are expected to be

the smallest in the system and to have little effect.

Using the values above, the capacitance model reproduces the measured shapes

of both conduction points in Figure 4.11; however, the calculated points are slightly

too small in both the VB and VA dimensions. Closer agreement is found if both

CgA and CgB are increased by 25%. This discrepancy probably arises from the

fact that no data was available to determine the lever-arms αR
G and αL

G for the

specific tunings used in the measurements. It is therefore not surprising that some

adjustment is necessary. The overall good agreement between the shape of the

measured and predicted conduction points is a strong indication that the capacitor

network is accurately modelling the behaviour of the device.

Further evidence of the validity of the capacitor network is that it predicts the

back-action of the dot charges on the central region energy to be approximately

20% of the central region charging energy. This compares well with the measured

value of 24%. The predicted value is determined only by the capacitances CAC ,

CCB and CCT which were found or inferred from independent measurements.

4.3.2 Thermal equilibrium

The final component of the full QDR model is a mechanism for predicting variation

of the central region temperature (TC). Only by considering this can we answer the
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Figure 4.12: Calculated current with VSD = −500 µV and Te = TC = 10 mK. The
low temperatures reveal the internal structure of this high-bias conduction point. In
(a) no back-action or cross-coupling is included (CAC = CCB = CCgA = CCgB = 0).
The pattern of squares is due to multiple charge states of the central region lying
within the bias window. (b) includes the back-action between dot A and the centre
(CAC 6= 0). The charge on the centre now alters the energy of dot A. This can
be seen along the bottom of the conduction point where the value of VA at which
transport stops depends on how far the centre can be charged. (c) also includes the
back-action for dot B (CCB 6= 0), producing the same effect on the left side. Finally,
(d) includes cross couplings (CCgA = CCgB 6= 0). This skews the internal structure
of the conduction point as the potential of the centre becomes coupled to VA and VB.
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Figure 4.13: (a)—(d) are identical to the calculations in Figure 4.12(a)—(d), except
with Te = 90 mK and TC = 275 mK. The internal structure of the conduction point
now obscured by the thermal broadening of the three 2DEGs.
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question of whether it is plausible for a QDR to function in the regime of strong

electrostatic interactions and, if so, whether this provides an explanation for the

observed results.

To find TC for a particular configuration of the device we must take account

of all the thermal processes which are expected to heat or cool the central 2DEG.

The steady-state solution for TC is the temperature for which the total heat flow

into the centre is zero. In practice, the solution for TC is found by simulating its

time-dependent behaviour in response to the calculated heat flow. The solution

is then said to be found once dTC/dt < γ, where γ is some small threshold rate

(typically 1 mK/s).

The method of heat-flow balancing has previously been used to successfully

predict self-heating in metal SETs [131, 132, 133] and large semiconductor quantum

dots [134, 135, 136], and cooling in superconducting refrigerators (see Section 2.5.1).

Indeed, encouraging recent work on SINIS refrigerators has demonstrated successful

cooling of a mesoscopic, Coulomb-blockaded metal island [137, 138]. In this work

only one charge island is present and so electrostatic coupling in the system will

not introduce multiple transport processes and unwanted heat leaks. Therefore, the

question of whether a QDR like ours can cool a mesoscopic, Coulomb blockaded

island is not resolved by this work.

Two processes are expected to dominate the flow of heat into and out of the

central region: the current from the dots and the coupling of the 2DEG to the lattice

via electron-phonon scattering. The latter was discussed previously in Section 2.3.2.

Given the carrier density in the material, and the fact that the central 2DEG is

approximately a 2.4 µm wide square,3 the heat flow due to electron-phonon coupling

will be given by:

Q̇P ≈ (230 fW K−5)(T 5
e − T 5

l ) (4.22)

The heat flow due to the current through the device (Q̇T ) depends on the

energies and rates at which electrons are injected into and removed from the central

region. Fortunately, in formulating the master equation we have already found

everything needed to quantify this contribution. For 0D to 2D tunnelling, the

heating or cooling of the 2D region associated with an individual tunnelling event is

simply given by the change in electrostatic energy, as calculated by Equations 4.17–

4.19. By analogy with Equation 4.3, dQC
ij is defined to be the energy imparted to

the central 2DEG in tunnelling from charge state i to j. The total heat flow into

3This size assumes 100 nm of lateral depletion around the enclosing gates.
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the centre due to charge transport can then be found from the transition rates (Γ)

and the steady-state solution for the occupation probabilities (p):

Q̇T =
∑
i

∑
j 6=i

piΓijdQ
C
ij (4.23)

In calculating Q̇T in this way we are approximating the states of the dots as

delta functions with perfect energy selectivity. If the lifetime broadening of the

dot states is less than kBTe, this approximation will be acceptable for determining

the current. However, the contribution from infrequent off-resonance tunnelling can

still be significant as these events can carry vastly different energies to on-resonance

tunnelling. As discussed in Section 2.5.2, Edwards’ original proposal found that

tunnelling through the tails of the many lifetime-broadened states of the dots was

a fundamental limitation of QDR performance.

It is not clear whether the inclusion of energy flow through lifetime-broadened

dot states is fully compatible with the orthodox theory of single-electron tunnelling.

While it is relatively simple to calculate the current in the presence of lifetime

broadened dot states [123], allowing tunnelling away from resonance appears to

necessarily violate either energy conservation or the Markovian nature of the sys-

tem: the excess or deficit of energy must either be ignored or remembered. In the

simple case of a single quantum dot, there is no need to remember the energy dif-

ference as its average does not depend on the history of the system. Thus Edwards

was able to account for off-resonance tunnelling in a model where the two dots

are essentially independent. However, it does not seem that generalising this to a

system of three coupled charge islands is possible.

To include the effect of off-resonance tunnelling in the model, the following sim-

plification is made: the net effect of the overlapping tails of multiple lifetime broad-

ened dot states is approximated as an energy-independent background tunnelling

probability. The electrical conductance of the tails is not expected to contribute

significantly to the current and is disregarded. However, the thermal conductance

is included as a third term in the heat balance by modelling it as being due to

a pair of energy-independent tunnel barriers connecting the central region to the

source and drain.

The thermal conductance of an energy-independent tunnel barrier should obey

the Wiedemann-Franz law; Q̇ = −[L0TG]∆T , where L0 = (k2
Bπ

2/3e2) is the Lorenz

number, G is the electrical conductance of the barrier, and T and ∆T are the mean

90



Quantum dot refrigerator: analysis 4.3

and difference of the temperatures of the electron gases on either side. This has been

confirmed in experiments on 1D wires [74, 79]. Alternatively, if the temperature

difference across the barrier is zero but a bias voltage (V ) is applied, then the heat

dissipated in each of the reservoirs is equal to half the Joule heating; Q̇ = GV 2/2.

To calculate the heat flow into a thermally isolated region connected to two

reservoirs, we must consider barriers having both unequal temperatures and volt-

ages on either side. In this situation, both the processes described above contribute

to give a total heat flow of:

Q̇B = 2GB

[
V 2
SD

2
−
(
k2
Bπ

2

3e2

)
T∆T

]
(4.24)

where GB is the conductance of the tunnel barriers, VSD is the voltage difference

between the reservoirs, ∆T is the difference in temperature between the isolated

region and the reservoirs, and T is the mean of the temperatures of the isolated

region and the reservoirs. For Q̇B = 0, this expression is equivalent to that used to

successfully model self-heating in large quantum dots [134, 135].

By including Equation 4.24 in the balance of heat flow into the central region,

the contribution of off-resonance tunnelling can be approximated in a way that is

compatible with the orthodox theory of single-electron tunnelling. As far as such

processes can be reasonably well described by a uniform background conductance,

it should give a value of Q̇B with roughly the correct dependence on temperature

and bias, and with a realistic magnitude, given an appropriate GB.

The main weakness of this approach is that it is extremely difficult to predict

a value for GB. It will be determined by the strength of all four tunnel barri-

ers forming the two dots, as well as the separation of excited states in the dots.

This parameter must therefore be found by comparison with the data, and then

afterwards checked to see if it is reasonable.

4.3.3 Predictions

By considering the three heat flows detailed in the previous section, the temperature

of the central region can now be found for a given configuration of the QDR by

converging to a value of TC for which Q̇P + Q̇T + Q̇B = 0. This section presents

some important predictions of this model.

Initially, only the heat flows due to the ‘ideal’ QDR current (Q̇T ) and the

electron-phonon coupling (Q̇P ) are considered. In assuming that Q̇B = 0, the
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validity of the results are limited to the regime where the lifetime broadening of

the ground states of both dots are much less than the thermal broadening, and

where all excited states are far away in energy. A finite charging energy for the

central region is included, but the capacitive coupling between the dots and the

central region is initially neglected. Figure 4.14 shows a typical QDR current and

the corresponding profile of TC , given these assumptions.

Moving from right to left in Figure 4.14(a), we see that the central region is

initially heated, because the gate voltages imply that µA > µB. Then around

VB = −265 mV, the behaviour switches to cooling once µA < µB. In the situation

considered here, where µA and µB do not depend on the central charge state, and

the small bias ensures that only one central region charge state is available for

transport, the behaviour of the system is similar to the ‘ideal’ QDR described by

Edwards [2].

Next we consider the effect of introducing electrostatic coupling between the

QDR components. The capacitances CAC and CCB are set such that the the energy

of the central region shifts by approximately the measured value (24% of the central

region charging energy) on the addition of a single extra electron to either dot A

or B. Figure 4.15 shows the predicted current and TC profile in this situation,

with all other parameters the same as for Figure 4.14. The most obvious effect

of including this ‘back-action’ is an increase in the size of the conduction point.

However, most importantly, the model predicts that the QDR is still able to cool

the central region. The base temperature [Tb = min(TC)] is slightly reduced as

compared to the uncoupled case, but it is still below both Te and Tl. This shows

that a QDR can, in principle, still function in the regime of strong electrostatic

coupling between its components.

Figure 4.16(a) shows the change in base temperature for small back-action en-

ergies (less than half the central region charging energy). There is no noticeable

change below approximately 1 µeV, presumably because this is much less than

kBTC . Above this value, a moderate increase in back-action reduces the QDR per-

formance slightly. However this trend soon saturates, and the overall effect is quite

small. (The ∼ 10 mK rise in base temperature is caused by a reduction in the total

cooling effect from the QDR current (Q̇T ) of less than 1%.)

For larger coupling, the lost performance is actually recovered as the back-action

energy approaches the central region charging energy. Figure 4.16(b) illustrates

this for three different charging energies. This is probably because, as the back-
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Figure 4.14: QDR model assuming no electrostatic coupling between its com-
ponents and no off-resonance tunnelling. Notable parameters are Tl = 150 mK,
Te = 180 mK, VSD = 75 µV, and the central region charging energy is 100 µeV. (b)
shows the QDR current and (c) the central region temperature, both as a function of
the two dot gate voltages. In (a), the blue lines show the predicted current and TC
profile taken along the dotted lines in (b) and (c). The base temperature achieved
[Tb = min(TC)] is approximately 50 mK. For comparison, the red lines show the
situation when the thermal model is not used and TC is fixed at 180 mK.
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Figure 4.15: QDR model including a back-action of approximately 25 µeV between
the dots and the central region. Notable parameters are CAC = CCB = 22 aF,
Tl = 150 mK, Te = 180 mK, and VSD = 75 µV. (b) shows the QDR current and (c)
the central region temperature, both as a function of the two dot gate voltages. In
(a), the blue lines show the predicted current and TC profile taken along the dotted
lines in (b) and (c). The red lines show the situation when the thermal model is not
used and TC is fixed at 180 mK.
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Figure 4.16: Base temperature (Tb) as a function of dot-to-centre electrostatic
coupling. (a) Detail of low-coupling behaviour for the same simulation parameters as
Figure 4.15. (b) Tb over the full range of possible couplings for central region charging
energies of roughly 50 µeV (green line), 100 µeV (red line), and 150 µeV (blue line).

action energy approaches the central region charging energy, transport processes

that are affected by the back-action would start to populate the next central region

charge state. Once the back-action equalled the charging energy, they would match

up perfectly and become equivalent to normal transport processes, but operating

through the higher charge state. Significantly, the results in Figure 4.16 imply that

electrostatic coupling can never have more than a small effect on the performance

of a QDR.

Finally, we investigate the effect of including the approximation for off-resonance

tunnelling through the dots. Figure 4.17 gives the predicted QDR current and

temperature profiles for several values of Q̇B. It shows that as the conductance of

the hypothetical tunnel barriers (GB) is increased, the base temperature rises. The
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Figure 4.17: (a) QDR current and central region temperature profile for different
values of Q̇B. The barrier conductances (GB) increase regularly from 0 nS (solid
red line) to 80 nS (solid blue line), producing an increase in base temperature. For
the warmest trace (solid blue line), the lowest TC is greater than the equilibrium
electron temperature (180 mK), and all cooling has been lost. (b) Base temperature
as a function of barrier conductance.

values of TC at the extremes of the peak also rise since Q̇B is heating the central

region due to the applied bias, even when the the resonant transport is suppressed.

Once GB has reached a value of 80 nS, the QDR is no longer acting to cool the

central region at all (Tb > Te), and the line-shape of the current becomes symmetric.

A conductance of 80 nS implies that the transport due to off-resonance tunnelling

should be of comparable size to the resonant current (≈ 6 pA). This is clearly

outside the valid regime for the model, as the contribution to the current from

off-resonance tunnelling is assumed to be small. However, even comparably small

values of GB produce significant increases in the base temperature and changes to

the line-shape of the current peak.

Another observation from Figure 4.17 is that the value of GB has little effect

on the shape of the right side of the current peak. This is because on the right the

electrochemical potentials of the dots are close to the electrochemical potentials

of the source and drain, and the line-shape is mostly determined by the thermal
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broadening in the reservoirs, provided that kBTC � eVSD. On the far right of the

peak, where changes in Q̇B strongly affect TC , this condition is easily satisfied and

the current is unaltered. Towards the centre of the peak Q̇B has less effect since it

is exceeded by the heating from resonant transport. So even though here TC may

be elevated sufficiently to alter the current, the shape of the right side is insensitive

to changes in GB.

To summarise the results of this section; by including thermal balancing into

the QDR model it has been shown that such a device can still function with strong

electrostatic coupling between its components, and that the cooling of a mesoscopic

charge island should therefore be possible. Furthermore, the postulated variations

in TC result in asymmetric peaks in the current through the device, with one side

of the peak being far less sensitive to variations in the isolated 2DEG than the

other. This behaviour agrees qualitatively with the measurements, and in the final

two sections of this chapter we try to establish a quantitative agreement.

4.3.4 Determining capacitances

To make a quantitative comparison between the model and the measured data, sev-

eral device parameters must be determined. Most important was that the capacitor

network in the model be fully populated with accurate values. To do this, inde-

pendent measurements of the components of the device (the dots and the central

region) were used wherever possible. Using these simpler measurements allowed

the capacitances to be determined with the least ambiguity.

The total capacitances of the two dots were assumed to be the same; CAT =

CBT = 89 aF. This implies a charging energy for both dots of 1.8 meV, which differs

from the measured values (see Section 3.4.1). However, their value does not affect

the results of the model. This is because only a single charge state transition in

each of the two dots is ever considered (their occupations in the model are limited

to 0 or 1) and so the spacing between transitions, which is set by the charging

energy, is unimportant. By choosing CAT = CBT , it was simpler to make later

comparisons between other capacitances affecting the two dots.

From non-linear measurements of the two dots, the capacitances of their drain

barriers were found to be characterised by the factors αT
D = 0.29 eV/V and αL

D =

0.20 eV/V. Given the chosen values of CAT and CBT , this implies that CDB = 26 aF

and CAC = 18 aF. From the lithographic symmetry of the device, it was assumed

that CSA = CDB and CCB = CAC .
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Figure 4.18: Non-linear DC measurements of a single blockade peak of the top dot.
A small offset in bias has been subtracted for clarity. The black lines show the edges
of the unblockaded regions, as determined by the method detailed in Section 3.5. In
(a), the lever-arm for probing the dot energy with the gate ‘T-QPC’ alone is found
to be αG2 = 0.00379 eV/V. In (b), both the gates ‘T-QPC’ and ‘L-QPC’ are varied
to calibrate the cross coupling between ‘L-QPC’ and the top dot, resulting in a lever-
arm of α′G2 = 0.00338 eV/V. The coupling between ‘L-QPC’ and the top dot is then
given by (αG2 − α′G2).

When probing the dot energies with the gates ‘T-QPC’ and ‘L-QPC’, non-linear

measurements of the dots show the gate lever-arms to be αT
G2 = 0.00379 eV/V and

αL
G2 = 0.00336 eV/V. These define the capacitances CgA = 299 zF and CgB =

338 zF. By repeating these measurements while additionally sweeping the opposing

dot’s gate in the opposite direction, the bare cross-coupling capacitances were found

to be CBgA ≈ CAgB ≈ 35 zF. Figure 4.18 shows how this value was determined for

the top dot.

During the measurements of conduction points, the change in central region

energy due to changes in VT−QPC and VL−QPC was compensated for by varying

VR−OUT appropriately (see Figure 3.22). In the model we therefore assume that

CCgA = CCgB = 0 and that VC (the analogue to VR−OUT ) is always constant. How-

ever, this makes the determination of CAgB and CBgA more complex than described

above: ‘R-OUT’ also coupled to the two dots, but in assuming that VC is constant

we are neglecting this effect. Remembering that during the experiment the compen-
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sation was governed by ∆VR−OUT = −(0.1835∆VL−QPC)− (0.1835∆VT−QPC), and

assuming that CBgC ≈ CAgC ≈ CAgB ≈ CBgA (from the physical arrangement of the

gates), the effect of changing VR−OUT can be accounted for by reducing CBgA and

CAgB by a factor of 0.1835. In the model we therefore use CAgB = CBgA = 28 zF.

To find accurate values for the capacitances characterising the central region,

a different analysis was required. Because the centre formed a large dot with a

continuum of states, non-linear measurements of current showed a series of peaks

which widened with increasing bias. In contrast, the small dots with well defined

single-particle states show sharply bounded triangular regions of conduction. To

extract values for the charging energy and the gate lever-arm, the cental region

measurements were fitted to a calculation of current through a large dot. Fur-

thermore, to model this current accurately, it was essential to include the effect of

self-heating of the central region due to Joule heating at the biased tunnel barriers

[134, 135]. Balancing Joule heating with cooling from the thermal conductance of

the tunnel barriers and electron-phonon coupling, the equilibrium temperature in

the centre was predicted.

Following the method of Kautz et al. [131], a numerical simulation of the

current through a self-heated dot was implemented and fitted simultaneously to

several line-scans from a non-linear measurement of current through the central

region. The fitting parameters were the resistances of the two tunnel barriers, the

total capacitance of the centre, the capacitances of the biased barrier and the gate

electrode, and an offset in the gate voltage. The result is shown in Figure 4.19, and

predicts a charging energy of 101 µeV.

4.3.5 Analysis

The preliminary analysis of measurements of the fully defined QDR presented in

Section 4.2 showed that, as long as the behaviour of the device is consistent with

the model described therein, the data could only be explained by a reduction in the

temperature of the central region. Using the full model for the QDR, detailed in

the preceding parts of Section 4.3, we now address the question of whether such an

explanation is consistent with the known parameters of the device and a physically

reasonable mechanism for temperature variation in the centre.

To simulate the device, the parameters of the model determined by independent

measurements were: the external electron temperature, and all capacitances in the

capacitor network except for the gate capacitances for the two dots (CgA and CgB).
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Figure 4.19: The result of fitting a model of current through a large quantum dot
to 7 line-scans from the non-linear measurement of current through the central region
[shown in Figure 3.14(a)]. The line-scans were taken at roughly equal spacings in the
bias range indicated. The fitted parameters are: a total central region capacitance
of 1602 aF (= CCT ) and a gate voltage capacitance of 39 aF (= CgC). The total
capacitance implies a charging energy of 101 µeV. The fitted resistances of the source
and drain tunnel barriers were 505 kΩ and 104 kΩ respectively, and the capacitance
of the source barrier was 195 aF.
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While values for CgA and CgB could be determined from independent measurements,

they were found to be very sensitive to the tuning of the device. The value of the

top dot gate capacitance (CgB) extracted from measurements of conduction points

differed by up to 32% from the value found from measuring the top dot alone.

For the left dot the biggest difference was only 12%, but this was still sufficient to

jeopardise any comparison between the model and the measured data.

The model was fitted to measurements of conduction points at low bias using

the following parameters: CgA and CgB determine the size of a conduction point;

the position of the point gives offsets in the two dots’ gate voltages; the height of

the point gives the tunnel rate of the dots’ barriers (Γ0);4 the shape of a conduction

point is determined by the offset of VC and the value of GB (this is illustrated in

Figure 4.20).

The fitting was performed using Levenberg-Marquardt nonlinear regression, as

implemented in the function ‘leasqr’ in GNU Octave. The predicted current was

fitted simultaneously to several (typically 20) line-scans from the data. Figure 4.21

shows an example fit of the full QDR model to the measurement of a low-bias

conduction point. The result is that the measured conduction point implies a

minimum temperature in the central region of approximately 110 mK. Given that

the equilibrium electron temperature during this measurement was 140 mK, this

means that that the data are consistent with a cooling of the central region of

approximately 30 mK.

The analysis shown in Figure 4.21 was repeated on three other measurements

taken at two different temperatures of the dilution fridge. The results are sum-

marised in Figure 4.22. In all three cases the predictions are found to fit well with

the measured current, and show the data to be consistent with cooling of the central

region. In the best case, the temperature reduction is over 100 mK. This shows

that, with realistic parameters and a physically reasonable mechanism for cooling,

the model predicts variations in TC that result in line-shapes of current that are

consistent with those observed. Specifically, it is the left side of the line-shapes that

are affected by the profile of TC . The extent of this correlation and an estimate for

the sensitivity of the fit to Tb are illustrated in Figure 4.23.

In an attempt to make measurements of line-shapes with a lower noise in the

current, measurements were made where the signal was averaged over a long time.

A single line-scan through a conduction point was repeatedly measured, and the

4All four barriers are assumed to be equal. In tuning the device the dots were kept as similar
and as symmetric as possible.
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Figure 4.20: The shape of a conduction point changes with the gate voltage VC ,
as shown by the series of simulations in (a). The shape of the bottom left edge of a
point varies as successive charge states of the central region are moved through the
bias window. (b) shows data from repeated measurements of a line-scan through the
middle of a conduction point as VR−OUT (equivalent to VC in the model) is varied.
The changing shape of the point appears as the periodic modulation of the left side
of the peak. This behaviour is reproduced by the QDR model, as shown in (c).
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Figure 4.21: (a) shows the measured current through the device with a bias of
VSD = 75 µV. The current from the model is fitted simultaneously to several line-
scans from the data in (a). This gives the parameters used to calculate the predicted
QDR current and TC profile shown in (b). (c) shows a single line-scan from the data
(blue circles) compared to the calculated current (black line). The corresponding
calculated profile of TC is also shown. The line-scan was chosen to pass through a
region of the conduction point where low values of TC are found.
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Figure 4.22: (a)—(c) are line-scans from fits of the full QDR model to measured
conduction points. The particular sweeps were selected to include the lowest pre-
dicted values of TC . (In (b), the coldest sweep fitted the data poorly due to a charge
switching event during the measurement. A nearby sweep is shown instead.) Al-
though the data in (a) and (b) were taken at the same temperature, they correspond
to different tunings of the device.
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Figure 4.23: The data shown in both plots (blue circles) is the same as in Fig-
ure 4.22(a). The predicted current is recalculated with different values of GB. (a)
The larger value gives almost no cooling at all (Te/Tb ≈ 1), while the smaller value
gives more cooling than observed in any data set (Te/Tb > 5). The resulting change
in the profile of TC produces line-shapes that vary significantly from the measure-
ment. (b) The values of GB are chosen to illustrate the effect that a 20% increase or
decrease in Tb has on the shape of the left side of the peak. The blue shaded region
indicates where the lowest temperatures are expected (TC is within 3 mK of Tb). In
this region, the difference between the calculated curves is largest, and the fitted
(black) curve is clearly seen to be the best description of the data. For differences in
Tb smaller than 20% the separation between the calculated curves is usually smaller
than the noise in the current. We therefore assign a rough estimate for the error on
Tb of ±20%.
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many resulting line-scans then averaged together. Figure 4.24(a) shows the result

of fitting the full model to the average of several line-scans taken over a 5 hour

period. In fitting to the data, all parameters except for Γ0 and GB were found from

a preceding measurement of the full conduction point. The fit was then performed

by varying only these values, which were found to change slightly between the two

measurements and during the measurement period. That these parameters were

the most unstable is not surprising as they both related to tunnelling rates, which

depend exponentially on tunnel barrier widths.

The resulting fit provides a good description of the averaged data. The base

temperature is higher than that found from the associated measurement of the

whole conduction point [Figure 4.22(b)]. This is due to the fact that the averaged

line-scan did not pass through the lowest temperature region of the conduction

point. However, in averaging the data over such a long time it is also likely that

the line-shape was broadened by the effect of small charge-switching events. These

primarily move the conduction point by small, random distances in the VA-VB

space. The main results here are that the asymmetric line-shapes persist over long

times, and that only small systematic deviations from the model arise once the

noise in the current measurement is reduced.

Figure 4.24(b) shows the results of fitting to another averaged data set, but

in this case the averaged line-scans were not identical. The high Te during this

measurement meant that the dependence of the conduction point shape on the

value of VC was hard to discern. Therefore, to exclude the possibility that a poorly

fitted value of VC could produced an erroneous result, the effect of VC was averaged

out. To do this, line-scans were repeatedly measured, but with a different value

of VR−OUT (equivalent to VC in the model) for each. The line-scans were then

averaged over a range of VR−OUT corresponding to a change in the central region

charge of one electron. The result was fitted to a similarly averaged prediction

from the model. Both this prediction and the data are independent of the initial

potential of the central region.

The prediction in Figure 4.24(b) fits well to the averaged data. The resulting

calculated base temperature (Tb) is now averaged over all the possible values for

the central region potential. It is therefore an upper limit for the base temperature,

but one that is independent of the particular value of VC that was found from the

shape of the conduction point.

Table 4.1 shows the temperatures, important fitted parameters, and predicted
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Tl = 152 mK

Te = (221± 18) mK

Tb = 176 mK

⇒ Te/Tb ≈ 1.3

Tl = 203 mK

Te = (281± 22) mK

Tb = 194 mK

⇒ Te/Tb ≈ 1.4

Figure 4.24: Fits of the full QDR model (black lines) to averaged measurements
taken over several hours (blue circles). In fitting the model, only the parameters GB

and Γ0 were allowed to vary. All other parameters were determined from comple-
mentary measurements of the appropriate conduction points.
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Data set Full model Simp. model
Figure Tl

/mK
Te
/mK

CgA

/zF
CgB

/zF
Γ0

/GHz
GB

/nS
Tb
/mK

Te/Tb Tb
/mK

Te/Tb

4.21 85 140 331 311 1.27 86.1 107 1.3 90 1.6
4.22(a) 150 218 299 372 1.24 87.3 115 1.9 113 1.9
4.22(b) 152 220 335 275 2.70 161 136 1.6 136 1.6
4.24(a) 2.68 234 176 1.3 153 1.4
4.22(c) 202 279 299 231 2.56 207 174 1.6 186 1.5
4.24(b) 2.75 229 176 1.4 170 1.6

Table 4.1: Results of fitting the full QDR model to all measurements shown in
Section 4.3.5. For averaged data (rows 4 and 6) most parameters for fitting are taken
from the preceding conduction point measurement (rows 3 and 5). For comparison,
values for Tb found using the simple model (see Section 4.2) are also shown.

base temperatures for all the measurements shown in this section. In all cases the

fitted tunnel rates give reasonable values, and the fitted values of CgA (CgB) are

within 12% (32%) of the independently measured value. The fitted values of GB,

however, are larger than expected: the largest value (234 nS) implies a current

due to off-resonance tunnelling of almost 18 pA. Such a current should be clearly

visible, and is not consistent with the lifetime broadening given by the fitted value

of Γ0. The most likely reason for this discrepancy is that the over-large value of

GB is accounting for other thermal processes in addition to the heat leak from

off-resonance tunnelling.

For the small temperature differences that occur on the left side of the line-

shapes, Q̇B is approximately linear in GB. It could therefore account for any

temperature-independent (or weakly dependent) thermal processes, for example

irradiation by comparatively hot 4 K surfaces, or capacitive coupling to voltage

noise in the gate electrodes. If true, this would imply that the highly elevated

values of TC predicted on the right sides of the line-shapes may not be accurate.

Since the current is not sensitive to the temperature here, this is entirely possible.

The performance of the device is characterised by the ratio Te/Tb, which is found

to be always less than 2. This is consistent with the work of Edwards et al. [2], who

calculated optimum values for Te/Tb for different device configurations. Because

the fundamental performance of a QDR is theoretically limited by off-resonance

tunnelling, the most important device parameter is the separation of excited states

in the entrance and exit dots. For Te/Tb > 1.22, they found that the excited state
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spacing must be greater than 13.9kBTb. For our highest temperature results this

gives an energy of 210 µeV, which is largely consistent with observed excited state

spacings in the two dots.5

For three of the measurements the analysis predicts that the central region

electron gas has been cooled below the lattice temperature of the sample. Given

the number of steps required to reach this conclusion, it should be treated with

some degree of caution. In particular, the parameters CgA and CgB are found

by fitting the full QDR model to the data and cannot be independently verified.

These values determine the conversion factor between dot gate voltage and energy

(i.e. temperature). Therefore, while the relation between Te and Tb is sound, the

absolute values of both may be subject to a largely invisible systematic error. This

could be produced by, for example, a change in Te between an electron-temperature

measurement and a following conduction point measurement.

It should also be noted, however, that the heat-leak due to electron-phonon

coupling is expected to be a relatively small contribution (typically being an order

of magnitude smaller than the two other thermal processes in the model) and so

there is little reason to expect that cooling below the lattice temperature should

not be possible. Furthermore, there is also little evidence of serious instability in

Te that could produce such a result erroneously. It is therefore likely that cooling

below the lattice temperature was achieved, but without a measurement of TC that

can be well calibrated, it is hard to rigorously support such a claim.

In the preliminary analysis presented in Section 4.2, the data were compared to

a model for QDR transport that assumed a constant but reduced TC . Given that

this resulted in good fits to the measured line-shapes (some better than the full

QDR model provides), it is obvious to ask whether this is not a better explanation

of the observed results. A simple modification of the full QDR model shows that

this is not the case. Figure 4.25, gives the result of fitting a measured conduction

point to both the full QDR model, and a modification of the model which disregards

the thermal balancing and instead uses a constant, fitted value of TC . The result

for the constant temperature model is clearly far worse, despite both fits having

the same number of fitting parameters. This is the case for all the data presented

in this section. The good fits seen previously were likely due to a large number of

5While excited state energies around 210 µeV were often seen in the left dot, the value for the
top dot was almost always around 400 µeV. Such an asymmetric situation was not considered
by Edwards, but we expect that the larger spacing in one dot will compensate for the smaller
spacing in the other.
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Figure 4.25: (a) Measured conduction point with Tl = 202 mK, Te = (280± 22) mK
and VSD = 75 µV. (b) Best fit of the full QDR model to 20 line-scans from the data
in (a). (c) Best fit of the constant TC model to 20 line-scans from the data in (a).

parameters (5) being used to fit to a single line-scan. Once the whole conduction

point is considered, the constant-temperature model is insufficient.

The full QDR model was not entirely successful in explaining the behaviour of

the device. At equilibrium electron temperatures of 120 mK and below, the model

did not provide good fits to the measurements. Figure 4.26 shows two examples of

poor fits of the model to low temperature data. In general, the low-temperature

data shows mostly symmetric line-shapes, which are found to be well described

by the sum of two Gaussian peaks. This fitting involves 6 parameter for each

single line-scan and should therefore be treated with caution. However, there is

a plausible physical justification for fitting a set of peaks to the low temperature

data. The most likely cause of deviation from the full QDR model is that the
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electron-electron scattering rate in the central region has decreased enough to move

the system into the out-of-equilibrium regime. This was discussed previously in

Section 4.2.3, and was predicted to occur around 120 mK in this device. In this

situation, current through the device would be suppressed except at gate voltages

where electrons are injected and removed from the central region at the same energy.

Trivially, this should occur at a unique value of VA and VB; however, with the

inclusion of electrostatic coupling between the device components, the condition

may be satisfied at several pairs of voltages. We might therefore expect to observe

a collection of peaks in current.

In conclusion, we find that the full QDR model describes the observed behaviour

of the device well for Te > 120 mK. The model’s physically motivated mechanism

for predicting variations of the central region temperature results in calculated line-

shapes that agree with those measured. Given the quality of the fits, the reasonable

values of the fitting parameters, and the well-known applicability of the orthodox

theory of single electron tunnelling, we assert that the model is highly likely to be

an accurate description of the system. Given this assumption, the data are shown

to imply successful cooling of the central region by amounts that are consistent with

predictions for an ideal QDR. In the best cases, we observe temperature reductions

of over 100 mK at ambient electron temperatures around 250 mK.
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Figure 4.26: (a) shows an example line-scans from fitting the full QDR model to a
conduction point measurement taken with Tl = 54 mK and Te = (105± 12) mK. (As
in previous analyses, the particular sweep was selected to include the lowest predicted
value of TC .) The observed line-shape is roughly symmetrical, and the model does
not fit the data particularly well. Similarly poor fits are seen for other measurements
with Te ≤ 120 mK. In (b), the fit to an averaged measurement is shown. (As usual,
the best fit was found by varying Γ0 and GB.) The averaged data also shows a largely
symmetric line-shape. We find that the data are better described by the sum of two
Gaussian peaks, as shown in (c). Possible reasons for this are discussed in the text.
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Chapter 5

Future measurements and

improvements

In this chapter we discuss new directions for the study of quantum dot refrigera-

tors. Firstly, we explore the utility and limitations of using a third quantum dot,

coupled to the cooled 2DEG, as a probe of QDR behaviour. An experiment that

demonstrates the basic principle of operation for such a probe is described. Sec-

ondly, we discuss how a pair of QDRs could potentially be used to provide a cooled

environment for an arbitrary nano-scale electronic device.

5.1 A quantum dot thermometer

The addition of a third quantum dot to a QDR to provide an independent ther-

mometer of the cooled 2DEG was discussed in the original proposal [2]. However,

with a cooled region that is small enough to form a charge island at the device’s

operating temperature, this principle is no longer valid. The addition of a third

dot would result in a system with four coupled charge islands, with the potential

of the cooled region depending on the charge state of all four. The thermometer

dot could not be considered a non-invasive probe in this situation, as changes in

its charge state would have a strong perturbing effect on the rest of the system.

In future designs, the integration of a thermometer dot could be achieved by

increasing the capacitance of the isolated region, thereby decreasing its charging

energy and its coupling to the dots. This could be done simply by increasing the
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isolated region’s size, or by fabricating a large grounded gate on the surface above

it. The latter technique has been used in recent investigations of the influence of

Coulomb blockade in Fabry-Perot interferometers to reduce the charging energy of

an 18 µm2 2DEG region [139].

Given the agreement we have observed between predicted and measured QDR

performance, it is reasonable to assume that the original theoretical analysis is

largely sound. In this case, 2DEG regions with areas of ∼ 100 µm2 should be able

to be cooled at temperatures accessible by a dilution refrigerator (see Figure 3.2).

The capacitance between a 100 µm2 top-gate and a 90 nm deep 2DEG is 127 fF.

This implies that the charging energy for a region of this size with such a gate

above it would be less than 1.3 µeV. (This neglects the region’s self-capacitance

and lateral capacitances to adjacent 2D regions, which would further reduce the

charging energy.) It therefore seems highly likely that a QDR device with an

isolated region of 100 µm2 or larger could incorporate a thermometer dot.

The usefulness of a third dot would be greatly increased by the incorporation

of an adjacent point-contact detector. This is a common technique used to non-

invasively measure the charge state of a dot (see Section 2.2.6). With a direct

measure of its charge state, it would not be necessary to pass any current through

the dot. The thermometer would therefore have a negligible heat leak to the cooled

region. Furthermore, the coupling between the thermometer and the cooled region

could be reduced significantly, even to the regime where individual charging events

in the dot could be observed and counted. Reducing the coupling increases the

lifetime of the states in the dot, and therefore the intrinsic resolution of the ther-

mometer. In the single-electron counting regime, the lifetime broadening of the

dot states could trivially be reduced to ∼ nK. All of the relevant techniques for

implementing this measurement have been demonstrated [48, 50, 140, 141].

Incorporating a thermometer dot into a QDR would provide an independent,

well calibrated measure of the temperature of the cooled 2DEG. It could also be

used to provide information when operating in the out-of-equilibrium regime. In

this situation we expect the distribution of occupied states in the isolated region

to be driven away from a Fermi function because of the inability of the electrons

to redistribute their energy through fast scattering. The thermometer dot should

be able to reveal the shape of the distribution of occupied states in the out-of-

equilibrium regime, just as in the quasi-equilibrium regime.

A preliminary experiment was performed to demonstrate the thermometer dot
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concept using the same surface gate design as the QDR device. This is described

in the following two sections.

5.1.1 Measurement setup

The measurements presented here were made on the device dc-test1-2a (for details,

see Appendix A.2). The surface gate design was largely similar to the device

considered in the previous two chapters, except that the area of the isolated region

was only 4 µm2. All measurements were made in a Helium-3 cryostat with a base

temperature of just under 300 mK.

The electrical measurement setup is described in Figure 5.1. It allowed the

conductance of one dot to be measured at the same time as the current through

its adjacent point-contact detector. The maximum bandwidth when measuring the

point-contact current was 3 kHz, but in practice this had to be limited to less than

1 kHz to maintain an acceptable signal-to-noise ratio.

5.1.2 Results

Three gates (‘L-PL’, ‘L-OUT’ and ‘L-IN’) were tuned to define the left of the three

dots in the device [see Figure 5.2(a)]. The adjacent point-contact was set to region

of highly non-linear conductance, and therefore high detector sensitivity, with the

gate ‘L-QPC’. A point-contact conductance of approximately 5 µS was found to

give the best detector sensitivity. The value of VL−QPC was typically tuned to give

this value before every measurement.

Figure 5.2(b) shows the conductance of the dot and the detector current as a

function of the voltage (VL−PL) on the plunger gate of the dot. As expected, the

detector current shows clear upward steps each time the charge occupancy of the

dot decreases by one electron. The steps persist long after transport through the

dot is visible, providing information about the dot when it is very weakly coupled

to its reservoirs. On the far left side of the plot the tunnel rates of the dot barriers

are lower than the measurement bandwidth of IQPC . The QPC signal therefore no

longer reflects the average charge occupancy of the dot, but shows sharp steps that

correspond to single electron tunnelling events.

Figure 5.3 shows the conductance of the dot and the current through the de-

tector over a range of biases (VSD) applied across the dot. On the right side of

the plots (where there is significant transport through the dot) the detector sig-
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Figure 5.1: Setup for measuring simultaneously the conductance of the left hand dot
and the current through its adjacent point-contact detector. The dot’s conductance is
measured using the Signal Recovery SR7265 lock-in amplifier and the J883 current-
to-voltage preamplifier. The excitation for this lock-in measurement is provided by
the built-in oscillator of the SR7265. This signal is added to a constant bias voltage
(Vb), then both are divided down by a factor of 1000 and applied to the reference
input of the preamplifier. The amplitude of the AC excitation applied across J1
and J2 is 100 µV, and the DC bias is VSD = Vb/1000. The 1:1 audio frequency
transformer breaks an earth-loop.

The setup for measuring the current through the point-contact detector was de-
signed to allow the observation of single electron tunnelling events up to ∼ kHz. The
“×106 V/A” preamplifier drives a current through the point-contact due to an offset
voltage on its input of approximately 200 µV. This amplifier has a bandwidth of
3 kHz. Its output is amplified by a further factor of 1000 and filtered (typically with
a low-pass filter) by the Stanford Research Systems SR560 amplifier. The result is
then measured using an ADC channel of a Keithley KUSB3116 DAC/ADC module,
which can sample the signal at up to 500 kS/s.

Voltages on all the gates are provided by further Keithley KUSB3116 modules
(not shown.)
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Figure 5.2: The gates used during this experiment are shown as black in (a), with
the blue regions depicting the undepleted 2DEG. Both the conductance of the dot
(GDOT = dIDOT

dVSD
) and the current through the adjacent point-contact (IQPC) are

plotted in (b). On the right side of the plot, the steps in IQPC coincide with the
Coulomb blockade peaks of the dot. They are interpreted as being caused by the
change in charge state of the dot.

nal shows some, but not all features seen in the conductance of the dot. This is

because, depending on the relative tunnel rates of the dot barriers, some features

do not result in a change of the average charge state of the dot. These will be

invisible to the detector. In the weakly coupled regime (on the left of the plots) the

only visible feature in the detector signal is the dot’s resonance with the unbiased

reservoir. This implies that of the two tunnel barriers, the barrier to the unbiased

reservoir has a significantly larger coupling.

Switching noise is observed in both plots in Figure 5.3. The detector signal

is more noisy because it is intentionally very sensitive to the local electrostatic

environment. In general, switching noise was a problem throughout the experiment

and was most likely due to the particular material used.

In order to use a dot as a thermometer for just one of its reservoirs, it is

necessary to tune its tunnel barriers to be appropriately asymmetric. The detector

signal can be used to do this, as illustrated in Figure 5.4. With a constant, non-

zero bias across the dot, a change of barrier asymmetry will produce a shift in

the position of the detector steps. This corresponds to the steps moving from one

edge of the Coulomb diamonds to the other. Such a shift is seen in Figure 5.4(b),

and the change of dominant barrier is confirmed by measurements of the Coulomb

diamonds either side of the transition.

The dot gates were set to a tuning for which the tunnel coupling to the biased
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Figure 5.3: The conductance of the dot (a) and the point-contact current (b), as
a function of the dot’s bias voltage (VSD). In (b), the average value of every sweep
has been subtracted to keep the signals within the same range.
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Figure 5.4: The relative strengths of the dot barriers were tuned by changing
VL−IN and VL−OUT . (b) shows the detector signal with VSD = 0.75 mV as VL−IN
is increased and VL−OUT is decreased. Around VL−IN = −0.345 V, the steps shift
to the right as the dominant barrier switches. After this point, the tunnel coupling
to the biased reservoir is strongest. (a) and (c) show detected Coulomb diamonds of
the dot at two different tunings of VL−IN and VL−OUT . The direction of the steps
in (a) shows that the tunnel barrier to the biased reservoir dominates. In (c), the
tunnel coupling to the unbiased reservoir is stronger, although the two barriers are
roughly similar. This is deduced from the fact that the signal in (c) shows evidence
of both edges of the Coulomb diamonds at some points.
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reservoir was much stronger than to the unbiased reservoir, and the regime where

its tunnel rate was lower than the detector bandwidth was explored. While stepping

across a single charge transition, the detector signal was sampled at a rate of 1 kHz

for 2 s intervals. The results showed clear evidence of single electron charging

events close to the transition [see Figure 5.5(a)]. By averaging the detector signal

over a sufficiently long time, the Fermi-function shape of the transition is found,

corresponding to the density of occupied states in the biased reservoir. The result

is shown in Figure 5.5(b). The width of this transition is directly proportional

to the temperature of the biased reservoir, with the conversion factor being found

from the gradients of the Coulomb diamond edges.

From the plots (a) and (c) in Figure 5.4, the lever-arm for the gate ‘L-PL’

is found to be αG = (0.0997± 0.0132) eV/V. The width of the Fermi function

fitted to the averaged data in Figure 5.5(b) is (0.239± 0.006) mV. This gives in

a temperature of (277± 37) mK, which is consistent with the base temperature of

the cryostat being 305 mK during this measurement.

The relatively large error on the temperature comes from the estimated error

on αG. This in turn is due to the measurement in Figure 5.4(c) having been made

with almost symmetric tunnel barriers. The detector signal therefore showed some

features of both sides of the Coulomb diamonds, as well as some excited states.

This made it hard to determine the gradient of the unbiased reservoir resonance.

In general, this error could easily be reduced by using more asymmetric tunnel

barriers when determining the gradients of each side of the Coulomb diamonds.

The tunnelling rates across the dominant barrier can be found by analysing

the statistics of the single electron tunnelling events seen in the detector signal.

For Poissonian tunnelling, the probability of an electron staying on (off) the dot

for a time ton (toff) is expected to be proportional to exp(−Γoffton) [exp(−Γontoff)],

where Γoff (Γon) is the rate of tunnelling off (onto) the dot. The measurements were

analysed to extract the statistics of ton and toff in the middle of the charge-state

transition, where we expect Γon ≈ Γoff . Figure 5.5(c) shows that the frequency of

longer dwell times (ton) falls exponentially, as expected. A fitted exponential decay

gives a rate of Γoff = 79 Hz, and a similar analysis of toff gives Γon = 74 Hz.

To find the true tunnel rates, the finite bandwidth of the detector must be taken

into account. For a detector bandwidth of ΓD, the true tunnel rates (Γ∗on and Γ∗off)

are given by [142, 143]:

Γ∗on = Γon
ΓD

ΓD − Γon − Γoff

(5.1)
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Γ∗off = Γoff
ΓD

ΓD − Γon − Γoff

(5.2)

From the time taken to resolve a single charge transition, the bandwidth of our

detector is estimated to be approximately 250 Hz. This implies that the true tunnel

rates in the dot are Γ∗on ≈ 180 Hz and Γ∗off ≈ 210 Hz.

In conclusion, this experiment demonstrated the ability of a single dot of the

same design as used in the QDR device to act as a non-invasive thermometer. Via

the use of an adjacent point-contact detector, the thermometer can measure either

its reservoirs independently with extremely low tunnel couplings to both. Low

coupling minimises the heat leak through the dot. With single electron counting

techniques, both the heat leak and lifetime broadening of the dot states can both

be reduced to levels which pose no limitation at all on the use of this scheme in

conjunction with a QDR.

5.2 An experimental platform

A primary motivation for developing a QDR is to obtain cold 2D electron gases

with which other experiments may be performed. In achieving this, great care

must be taken to keep dissipation and heat leaks small enough that the cooling

power of the QDR is not overwhelmed. In particular, any direct electrical contact

to the cooled regions is likely to provide too large a heat leak, meaning that most

measurements must be performed non-invasively.

Figure 5.6 outlines a scheme for how two QDRs could be used to provide source

and drain reservoirs for an arbitrary device. The device could be probed using a

point-contact detector, which implies that the observable phenomena are limited

to those which produce changes in its average charge state. One possible system

would be a single quantum dot. By tuning its tunnel barriers, most signatures

visible in a transport measurement could be made to result in a change of charge

state. Investigating a dot with cold reservoirs could provide further insight into

interactions between the two, such as the Kondo effect. More complicated systems

could also be measured. For example, previous experiments have demonstrated

that point-contact detectors can be used to observe the current though a double

dot [140], the charge states of a quantum-cellular-automata cell [144], and single-

particle interference via the Aharonov-Bohm effect [145].

If a bias voltage is applied across the device under test, a current may be able
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Figure 5.5: Results of single-electron counting with the point-contact detector. For
this experiment the dot was tuned to have a single dominant tunnel barrier. The
average QPC current over a single charge-state transition in the dot is shown in (b),
along with a fitted Fermi function (black line). Each point is the average of 14 s of
data. A constant linear background has been subtracted from the line-shape. An
example of the measured QPC current (taken from VL−PL = −0.4333 V) is given
in (a). The signal shows switching between two distinct states, reflecting the real-
time changes in the dot’s charge-state. The statistics of ton over 14 s of data at
VL−PL = −0.4333 V are shown in (c). As expected, the probability for an electron
to dwell on the dot falls exponentially with time. Fitting an exponential decay to
the data (the red line) gives a tunnel rate for the dominant barrier of Γoff = 79 Hz.
In the fitting we assume an error on each point proportional to 1/

√
N , where N is

the point’s value.

122



Future measurements and improvements 5.2
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Figure 5.6: The two large squares depict the cooled 2D regions. A cooling cur-
rent passes through each region via a pair of quantum dots (circles). By choosing
appropriately the potentials of the four external reservoirs (VS1, VS2, VD1, VD2), the
cooled source and drain may have an arbitrary bias voltage between them. A proxi-
mal point-contact detector is used as a non-invasive probe of the charge state of the
device under test (DUT).

to flow between the cooled reservoirs. Not only must this current remain small

compared to the cooling currents but, if temperatures are to remain constant in

the system, the associated heating must also be significantly less than the available

cooling power. It is not possible to have both a high biases and strong coupling

to the reservoir in a device under test. As an quantitative example, we consider

the limitations on the applied bias and tunnel couplings for a single quantum dot

placed between the reservoirs.

In the limit that the bias is much greater than the thermal broadening of the

reservoirs (|eVSD| � kBT ), the maximum heat that a dot can dissipate in a single

reservoir is approximately (Γ/2)|eVSD| (where Γ is the tunnel rate of both dot

barriers). We use an approximate expression from Edwards [2] for the cooling

power of the current through a QDR: Q̇T = (0.31 pW/K2) ·T 2. Given that the

heating from the dot must be much less than Q̇T , the following relation is true:

ΓVSD � (0.62 pW/K2)
T 2

e
(5.3)

At 100 mK, this implies that ΓVSD � 40 MHz · mV, while at 1 mK the result is

ΓVSD � 4 kHz · mV. The dot must therefore become more isolated from the reser-

voirs as their temperature reduces in order to avoid excess heating. Alternatively,

the maximum applied bias must be reduced. For a given bias (coupling), the dot’s
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tunnel coupling (bias) must decrease as T 2. Similar considerations must be taken

for whatever device is to be placed between the biased reservoirs.

As well as using QDRs to cool the environment for other nano-scale electronic

devices, it may be possible that a QDR device could be a useful tool for investigating

various properties of 2D electron gases. For example, in the out-of-equilibrium

regime, the distribution of occupied states in the isolated region of a QDR will be

strongly affected by electron-electron scattering processes. By using a third dot

to measure the shape of this distribution, the dependence of scattering on energy,

temperature and, magnetic field could be characterised.
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Chapter 6

Conclusions

In this thesis we have presented the design, fabrication and experimental investiga-

tion of a device for cooling an isolated 6 µm2 two-dimensional electron gas (2DEG)

using the energy-selective transport of electrons through a pair of quantum dots.

This Quantum Dot Refrigerator (QDR) scheme was first suggested by Edwards et

al. in 1993 [1, 2], but to our knowledge this is the first time it has been realised in

practice.

Initial measurements of the device showed it to satisfy all the known require-

ments for achieving refrigeration: the 6 µm2 region was large enough to be treated

as a 2D electron gas, and the quantum dots were small enough to have widely spaced

single-particle states. However, a complication arose because of the strength of the

electrostatic interactions in the system. It was found that not only did the isolated

2DEG possess a significant charging energy, but also that charging either of the

adjacent quantum dots with a single extra electron caused the isolated 2DEG’s

energy to increase by a significant amount. This capacitive coupling invalidated

one of the fundamental assumptions of the original work of Edwards, namely that

the cooled 2DEG be at a constant energy.

To ascertain whether a QDR could still function with significant capacitive

coupling between its components, a model that took account of the electrostatic

interactions in the system was developed. The results of the model indicated that

the QDR could indeed still function successfully, with the coupling causing only a

slight decrease in the cooling power.

While a QDR should still work in the presence of strong electrostatic inter-

actions, it invalidated the planned scheme for measuring the temperature of the

125



Conclusions

isolated 2DEG. The preferred method for measuring this temperature would be to

use a third quantum dot, weakly coupled to the isolated 2DEG. However, this can-

not work if changes in the charge state of the dot alter the energy of the 2DEG it is

probing. Using predictions from the model, an alternative method of determining

the temperature was identified. It was found that the line-shape of the current

through the QDR, as a function of the electrochemical potentials of the two dots

involved in cooling, is directly affected by the temperature of the isolated 2DEG.

In fact, if the QDR is successful in cooling, the line-shape will be affected by the

changing temperature of the isolated 2DEG. By including in the model the change

in temperature as a function of the electrochemical potentials of the dots, it was

possible to predict how the line-shapes would be affected by different amounts of

cooling.

We found that the behaviour of our device is well explained by the QDR model

at ambient electron temperatures above approximately 120 mK. In the best cases,

the data are consistent with cooling of the isolated 2DEG by up to 100 mK at

ambient temperatures around 250 mK. Below ambient electron temperatures of

approximately 120 mK the model does not provide a good description of the data.

The most likely reason for this was identified as being the reduction in the rate

of electron-electron scattering to below the rate at which electrons are injected

and removed from the 2DEG. This is not a fundamental limitation for QDRs: the

accessible base temperature can be lowered arbitrarily by increasing the size of the

cooled region. This introduces more states to participate in scattering. Of course,

increasing the 2DEG area also increases its thermal contact with the lattice, which

necessitates a lower operating temperature. We conclude that the isolated 2DEG

area in our device is best suited to operating at temperatures around 250 mK or

above.

Finally, we explored future approaches for studying QDRs. In particular, an

experimental demonstration showed how an additional quantum dot would be used

as an independent thermometer of the isolated 2DEG. This would provide a superior

measurement of a device’s behaviour in all its regimes of operation (equilibrium,

quasi-equilibrium, and out-of-equilibrium). However, to use this scheme would

require the capacitance of the isolated 2DEG to be significantly increased in order

to keep its potential constant. This could be done by fabricating a large area surface

gate above it.

It may also be possible to use the cooled 2DEGs of one or more QDRs to provide
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cold reservoirs for an arbitrary nano-scale device. We showed that this is viable,

as long as the bias between the cooled 2DEGs and the conductance of the device

are both kept low enough to avoid excessive heating.

In summary, we believe the work we have presented in this thesis demonstrates,

both theoretically and experimentally, that electronic cooling with quantum dots

is a practical reality. We have shown that, as a technique for cooling semiconduc-

tor 2DEGs in the mK regime, it has significant advantages over other electronic

refrigeration mechanisms. It may also eventually prove preferable to standard re-

frigeration methods, which require a good thermal contact between the 2DEG and

a separate cold bath. Hopefully further study of QDRs will result in a more rigor-

ous understanding of their limitations, improvements in performance, and perhaps

new insights into the flow of heat in low-dimensional electronic systems.
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Appendix A

Wafers and devices

A.1 Wafers

Wafer µ / cm2V−1s−1 n / cm−2 EF /meV

T567 : 90nm HEMT (see Figure A.1). 1.25 · 106 1.37 · 1011 4.68

A3589 : 90nm HEMT (see Figure A.1). 0.93 · 106 1.7 · 1011 6.1

A.2 Devices

Device Experiment Wafer Gate metal

dc5-4a QDR. T567 Ti/Au

dc-test1-2a Quantum dot thermometer test. A3589 NiCr/Au

10 nm GaAs (cap)

40 nm Si doped Al0.33Ga0.66As

40 nm Al0.33Ga0.66As (spacer)

GaAs substrate

2DEG

Figure A.1: Layers of a standard 90nm HEMT.
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Appendix B

Measurement setup

B.1 Current-to-voltage amplifier

(a)

(b)

J883 preamplifier, designed by the Cavendish electronics workshop. The amplifier is

shown in (a), and (b) shows the regulation and conditioning of the supply voltages.
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Measurement setup B.2

B.2 Cold finger

(a) (b)
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LED (hidden)

Ge thermometer
(hidden)

top

bottom

(a) Dilution fridge used in the QDR experiment. The yellow box indicates the metal

shield around the cold finger. (b) The cold finger. When in use, the metal shield fits

tightly around the cold resistor plates and the RC filter module. Measurement wires

enter the shield above the first resistor plate and pass through a resistor in both plates

and a 3-pole RC filter in the filter module before connecting to the sample. (c) The

filter module under construction. Each filter is fabricated on an individual PCB using

surface-mount components. (200 Ω metal film resistors and COG dielectric capacitors.

The capacitances of the three poles were 100 pF, 10 pF and 1 pF. This filter is inspired

by a design by Ron Potok [146].) The filter boards are affixed to two concentric copper

tubes, and a third tube eventually encloses both. After assembly, the spaces between the

tubes were filled with copper-matched Stycast to improve the heat-sinking of the filter

components. (d) The upper part of the cold finger. The 200 Ω resistors that feed through

the resistor plates have their normal encapsulation removed and are potted in place with

GE varnish. This method was first used in Charlie Marcus’ lab [147].
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Measurement setup B.3

B.3 Room temperature electronics

(a)

(b)

(c)

RTF

DMP

1:1

RTF1 kΩ 1 kΩ 1 kΩ 1 kΩ

0
.1

µ
F

0
.1

µ
F

0
.1

µ
F

DMP
10 kΩ

10 kΩ

1:1

Various modules used in the room temperature measurement setups. The black

bounding boxes depict metal enclosures, and the circular connection nodes are BNC

sockets. (a) 3-pole low-pass filter with a cut-off frequency of 10 kHz. (b) In-line resis-

tors for the signal and ground of a coaxial line (for damping vibrations that occur when

the J883 amplifier is drives the capacitive load of the screened room filters). (c) 1-to-1

audio-frequency transformer, for isolating the ground of a lock-in excitation from the rest

of the circuit.

The ‘A-B’ module (not shown) simply routes the inner and outer of one coaxial

connection to the inners of two further coaxial connections. The metal enclosure is

connected to the outers of these last two connections, but isolated from the outer of the

first.
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Appendix C

2DEG thermal coupling

Figure C.1 shows the calculated heat flows for a typical device. (The device geometry is

based on the JStar optical mask.) The heat flow between the 2DEG and the lattice is

characterised by the constant 40 fWµm−2K−5 (see Section 2.3.2), and a 2DEG area of

approximately (3 · 106) µm2. The heat flow between the ohmic contacts and the lattice is

found assuming a total volume of (5 · 104) µm3 and using the electron-phonon coupling

constant for Au: (2.4 · 106) fWµm−3K−5 [148, 96]. The heat flow between the 2DEG and

the electron gas in the ohmic contacts is calculated using the Wiedemann-Franz law, for

electrical resistances of both 1 kΩ and 10 kΩ for each of the 20 contacts.

The thermal coupling between the ohmics and the lattice is consistently three orders

of magnitude greater than the coupling between the 2DEG and the lattice. It is therefore

reasonable to assume that, unless the electron temperature of the 2DEG is found to be

greatly elevated, there is unlikely to be sufficient power being dissipated in the device to

drive the electron gas in the ohmic contacts away from the lattice temperature. However,

the strong thermalisation in the ohmics does not necessarily lead to efficient cooling of the

2DEG, because the electrical resistance between the two limits their thermal contact. For

the particular parameters in this calculation, and ohmic resistances of 1 kΩ, we find that

cooling through the ohmics will dominate for small increases in 2DEG electron tempera-

ture, but for Te > 120 mK the cooling will be mainly via coupling to the lattice phonons.

For ohmic resistances of 10 kΩ, the electron-phonon coupling is always dominant. This

suggests that low ohmic contact resistances (< 1 kΩ) should result in reduced electron

temperatures.
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Figure C.1: Calculated heat flows between the ohmic contacts, 2DEG, and lattice of
a typical device. For the ‘2DEG→lattice’ and ‘ohmics→lattice’ heat flows, the lattice
temperature is 50 mK and the 2DEG or ohmic temperature is the x-axis. For the
‘2DEG→ohmics’ flow, the ohmic temperature is 50 mK and the 2DEG temperature
is the x-axis.
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