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During active transcription and replication chromatin architecture is altered, allowing formation 14 

of DNA secondary structures
1
. G-quadruplexes (G4s) have emerged as important regulatory DNA 15 

structures and have been associated with genomic instability, genetic diseases and cancer 16 

progression
2-4

. Experimental evidence for G4 prevalence in the entire human genome is still 17 

lacking. We present a high-resolution sequencing-based method that detected 716,310 distinct 18 

G4s in the human genome, more than predicted by computational methods
5-7

, including structural 19 

variants previously uncharacterised in a genomic context
8,9

. We observed high G4-density in 20 

functional regions, such as 5’ UTRs and splicing sites, and in genes not predicted to have such 21 

structures (BRCA1 and BRCA2). We found a significant association of G4 formation with 22 

oncogenes and tumor suppressors, and with Somatic Copy-Number Alterations (SCNAs) that act 23 

as cancer drivers
10

. Our results support that G4s are promising targets for cancer intervention and 24 

suggest novel candidates for further biological and mechanistic studies.  25 
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The formation of DNA and RNA secondary structures is of vital importance to fundamental 32 

biological processes, such as replication, translation and splicing
11,12

. While RNA structure-33 

mapping on a genomic-scale is established
13,14

, extending these methodologies to interrogate 34 

DNA secondary-structure formation remains a challenge.  G4s are a particular class of DNA 35 

secondary structures that is emerging as a regulatory element for key biological processes and an 36 

important therapeutic target
2-4

. G4 structures can form in guanine-rich sequences from the 37 

interaction of four guanine bases to generate a planar G-tetrad, which can subsequently self-38 

stack
15

. G4 formation is kinetically fast and they are thermodynamically very stable under 39 

physiological conditions, particularly in the presence of K
+ 15

. Recently, G4 formation has been 40 

visualised in human cells and tissues by means of immuno-fluorescence
16-18

. These and other 41 

studies highlight the importance of G4 formation in specific genes, underpinning the value of 42 

studying these structures at a larger scale. The formation of G4s can be assessed in vitro by 43 

measuring the stalling of a polymerase along its template at G4 sites (polymerase stop assay)
19

. 44 

Here, we adapt the polymerase stop assay together with Illumina® next-generation sequencing
20

 45 

to establish G4-Seq, the first method to detect and map DNA secondary structures on a genome-46 

wide scale. We altered sequencing conditions to either disfavour or promote G4 formation on the 47 

sequencing array, comparing the respective sequencing readouts to elucidate the exact position of 48 

the DNA structure (Fig. 1). We used two independent approaches to promote DNA G4 49 

stabilisation: i) adding K
+
; ii) adding the G4 stabilising ligand pyridostatin (PDS, 1 μM)

21
. For 50 

each condition, we compared sequencing quality and base calling before and after G4 51 

stabilisation in a human genomic DNA library spiked with four known control sequences 52 

(Methods, Fig. 1): two containing stable G4 structures (c-myc and c-kit), one mutated to prevent 53 

G4 formation (c-myc mut) and the complementary C-rich strand of c-myc (c-myc-opp) that cannot 54 

fold into a G4.  55 

In our experiments, we supplemented standard Illumina sequencing buffers with either 50 mM 56 

LiCl or NaCl, which do not cause strong G4 stabilization, or KCl that does stabilizes G4 57 

structure
22 

(Methods), keeping the ionic strength of all buffers constant. The overall sequencing 58 

quality, as quantified by Phred Quality scores
23

 (Q, Methods), was not globally affected by any of 59 

the added cations (Extended Data Fig. 1). However, quality was reduced only in the presence of 60 

K
+
 for a subset of sequences, including the G4-positive controls c-myc and c-kit and sequences 61 

computationally predicted to form a G4
 5
. Conversely, the G4-negative controls c-myc-opp and c-62 

myc-mut showed no change in quality under any condition (Extended Data Fig. 2a). Sequencing 63 

of the controls under Li
+
 and Na

+
 conditions revealed no alterations compared to the known input 64 
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sequences (i.e. base mismatches <2%), whereas under K
+
 conditions the G4-positive controls c-65 

kit and c-myc displayed 34% and 46% mismatches respectively (Extended Data Fig. 2b). 66 

Therefore, we sequenced each genomic DNA template twice, with an initial sequencing run 67 

(Read-1) in Na
+
, to ensure accurate sequencing and correct identification by alignment to the 68 

human reference genome (hg19), and a second sequencing run (Read-2) under G4 stabilising 69 

conditions (K
+
), to detect structure formation by mismatch quantification based on the sequence 70 

obtained in Read-1. 71 

We next explored whether specific stabilisation of G4s by the ligand PDS, previously shown to 72 

induce polymerase stalling at G4 sites in cells
24

, could also induce targeted sequencing errors.  73 

We performed Read-1 in Na
+
 and Read-2 under the same cation conditions but with addition of 74 

PDS (1 M, Methods). Herein, we measured mismatches of 45% for c-kit and 66% for c-myc but 75 

little effect (< 5% mismatches) for c-myc-opp and c-myc-mut that are unable to form G4s 76 

(Extended Data Fig. 3). The inspection of mismatches along the c-kit control, which contains two 77 

independent G4 motifs c-kit1 and c-kit2,
25,26

 revealed that sequencing errors accumulated only 78 

after the G4 start sites, suggesting that under both K
+
 and PDS conditions the formation of DNA 79 

G4s cause polymerase stalling and mismatches in sequencing readout (Fig. 2a). In fact, when the 80 

polymerase encounters a stable G4 in the DNA template a pausing is induced, which can 81 

effectively truncate the reading of the template sequence. When this happens, the sequencer will 82 

continue to generate what appears to be a scrambled sequence beyond this point, as illustrated by 83 

Supplementary Figures 1 and 2. Ordinarily such reads are removed during the data analysis, 84 

whereas we have retained them in our experiment to detect G4 sites. Our approach therefore 85 

enables both the identification of G4-containing sequences and the exact location of the structure. 86 

Interestingly, only PDS addition induced significant polymerase stalling at c-kit1 in agreement 87 

with the relative stability of the two G4s
25

.  88 

The analysis of 32 million reads, comprising a subset of ~110,000 Predicted Quadruplexes
5
 89 

(PQs), showed higher mismatch-levels (median of 20% in K
+
 and 35% in PDS) in sequences 90 

containing PQs as opposed to those without (non PQs; < 2%) (Fig. 2b). Mismatch levels were 91 

generally high (> 38%) immediately after the PQ motif and negligible (< 1%) beforehand (Fig. 92 

2c), confirming a G4-dependent effect, as observed for c-kit. Although, mismatch levels for non-93 

PQs were low on average (< 2%), a small fraction (~0.01) was found to have relatively high 94 

mismatch levels (> 20%; ~149,000 sequences in K
+
 and ~216,000 in PDS), far greater than the 95 

number of predicted PQs (~110,000; Fig 2b). Thus, suggesting that the number and nature of 96 

human genomic G4s is substantially broader than previously predicted
5
.  97 
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This method, which we call G4-Seq, was applied to generate a high-resolution map of G4 98 

structures in the human genome (NA18507, Methods), using the Illumina HiSeq platform, under 99 

Na
+
 conditions in Read-1 and either K

+
 or PDS in Read-2. Each experiment was performed in 100 

duplicate and yielded at least 285 million reads with an average coverage of 14x for the human 101 

genome (Supplementary Table 1). We set thresholds of 25% and 18% mismatches for PDS and 102 

K
+
, respectively, to ensure a similar false positive rate of ~2% (Methods). Thus, any read with 103 

mismatches above these thresholds is considered a reliable indication of G4 formation and is 104 

termed observed G4 sequence (OQ). By applying these criteria, we identified 716,310 OQs in 105 

PDS and 525,890 OQs in K
+
 within the human genome. Furthermore, 73% (in PDS) and 60% (in 106 

K
+
) of all 361,424 predicted canonical G4 forming sequences (PQs) were present in the 107 

experimentally detected OQs (Extended Data Table 1). 90% of PQs found in K
+
 were also 108 

detected in PDS and 383,984 of the overall OQs were common to both conditions (p<10
-16

). The 109 

high overlap between distinct G4 stabilising conditions provides independent validation of the 110 

assignment of OQs. Our data indicates that the OQs detected exclusively with PDS do in fact also 111 

display significantly high mismatch levels in K
+
 (compared to random genomic intervals) and 112 

accordingly for OQs detected exclusively in K
+
 (Supplementary Figure 3), suggesting that it is the 113 

extent of stabilisation under a given set of conditions that affects the likelihood of a G4 being 114 

detected by G4-seq. The OQs detected in the presence of PDS could also reflect the binding 115 

properties and specificity of the small-molecule for G4 stabilisation
27

. The use of a different G4-116 

stabilising ligand, PhenDC3
28

, showed a strong overlap (85%) with OQs detected in PDS 117 

(Supplementary Figure 4), suggesting that no major differences in binding specificity were 118 

observed with these two ligands.   119 

Notably, the majority (~70%) of the OQs were actually not predicted from a classical description 120 

of G4 structure
5
. Recent structural and biophysical studies have identified a small number of 121 

cases of stable non-canonical G4 structures in which either the loops are exceptionally long (>7 122 

bases)
9,29

, or a discontinuity in the G-tracts leads to bulges
8
 (Extended Data Fig. 4). To elucidate 123 

distinct structural features, the OQs were grouped as follows (Methods): 1) Canonical PQs: in 124 

three categories according to loop length; 2) Long loops: sequences with any loop > 7 bases; 3) 125 

Bulges: sequences with singe-nucleotide interruptions in one or more of the G-runs or a longer 126 

interruption in one G-run (e.g. GGH1-7G); 4) Other: sequences not belonging to the previous 127 

categories (Fig. 3a). Structural families are defined by a hierarchical assignment based on 128 

sequence only (Methods). There is potential for multiple folding scenarios or polymorphism, that 129 

is not accounted for in our assignment, but which could be assessed by dedicated structural 130 
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studies on a case-by-case basis. Long loops and Bulges accounted respectively for 21.5% and 131 

21.6% of total OQs in K
+
 and 24% and 30% in PDS. The remaining OQs (category Other) may 132 

have the potential to form G4s, such as structures containing multi-nucleotide bulges, two-tetrads 133 

G4s, or topologies comprising both long loops and bulges (Extended Data Table 2).  Collectively, 134 

these findings have unraveled a dataset of stable G4 sequences that could not have been easily 135 

identified a priori in genomic DNA by computational approaches. 136 

We measured the fold enrichment of OQs compared to random genomic intervals to assess the 137 

likelihood of each class to be detected by G4-Seq (Methods). Sequences with short loops have 138 

high enrichment (>25 fold) under both PDS and K
+
 conditions, whereas sequences with longer 139 

loops or bulges displayed lower enrichment (<15 fold; Fig. 3b) consistent with the relative 140 

thermodynamic stability of the different G4 structures
8,9,30

. Also, less stable G4s were more easily 141 

detected by PDS (Extended Data Fig. 5).  142 

To understand the potential functions of G4s we evaluated the existence of OQs in genomic 143 

regions associated with promoters, 3' and 5'-UTRs, exons, introns and splicing junctions 144 

(Extended Data Table 3). Notably, a large proportion of these regions (up to 49% in PDS and 145 

46% in K
+
) comprise exclusively non-canonical G4s (i.e. Long loops or Bulges). The highest 146 

density of G4s was found in 5' UTRs and splicing sites, consistent with a role in post-147 

transcriptional regulation, as supported by the recent finding in the 5' UTR of eIF4A
2
. 148 

Visual inspection of genes with biologically important G4s (SRC, MYC)
24,31

 or genes rich in PQs 149 

(MYL5, MYL9; Fig. 4a, Extended Data Fig. 6) confirmed that G4-Seq is a powerful tool to 150 

identify both predicted and uncharacterised G4s, and is highly specific for the G-rich strand 151 

(Extended Data Fig. 7, Supplementary Table 2). We found non-canonical G4s within many genes 152 

that have few or no PQs (Supplementary Table 3), including important cancer-related genes such 153 

as BRCA1, BRCA2 and MAP3K8. Genes with a high number of G4s may be particularly sensitive 154 

to treatment with G4-stabilising ligands, as shown for the oncogene SRC
24

. Our experimental map 155 

also identified oncogenes and tumor suppressors with a notably high G4 density, such as CUL7, 156 

FOXA1, TUSC2 and HOXB13 (Supplementary Table 4). This map further revealed significant 157 

enrichment of G4s (p = 4.5e
-8

) in somatic copy number alterations (SCNAs), which are signatures 158 

of cancer
10

 (Fig. 4b). In particular, high G4 density is observed in regions containing oncogenes 159 

such as MYC, TERT, AKT1, FGFR3 and BCL2L1 (Supplementary Table 5) that specifically relate 160 

to SCN amplifications (p = 2e
-7

) rather than deletions (p = 0.01). This is consistent with a 161 

mechanistic link between G4s and the sites of genomic instability, a hallmark of cancer
3,32

.  162 
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We have established a high-throughput, genome-wide method that profiles G4 DNA secondary 163 

structure with high resolution. Our study reveals new insights into the nature of G4s that form in 164 

the human genome, including non-canonical structural features. Our experimental dataset shows 165 

enrichment of G4s in regulatory regions, in addition to oncogenes and SCNAs and provides a 166 

resource of novel genomic targets for further biological and mechanistic studies and potential 167 

future therapeutic intervention. We anticipate that our approach can be extended to study the 168 

prevalence of G4s, and potentially other DNA secondary structures, in any genome. Furthermore, 169 

G4-Seq can be   exploited to detect DNA-small molecules interaction in a genomic context. 170 
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Figure 1: A schematic of the G4-Seq method. In a typical G4-Seq experiment sequencing is 265 

performed twice. A first sequencing run under Na
+
 conditions (Read-1) enables accurate 266 

sequencing and alignment of DNA fragments. Subsequently, the DNA synthesised during 267 

sequencing is removed and the original template re-sequenced (Read-2) under conditions that 268 

promote G-quadruplex (G4) stabilization: either by the addition of the G4-ligand PDS or by 269 

supplementing sequencing buffers with K
+
. G4-induced polymerase stalling alters the sequencing 270 

readout from the beginning of the G4 structure resulting in a drop in sequencing quality from that 271 

point in Read-2 only. Differences in sequencing quality and mismatches between Read-1 and 272 

Read-2 are analysed to provide a map of G4 structures in the human genome. 273 

http://www.nature.com/reprints
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 274 

Figure 2: Analysis of G4-seq for known G-quadruplex sequences. a) Identification of base 275 

mismatches for the c-kit control sequence depicted in a heat-map plot under different sequencing 276 

conditions. Each row is an independent sequenced template, while each column corresponds to 277 

each the sequenced bases. Yellow background indicates no difference to the known input 278 

sequence and the sequence experimentally obtained, while red indicates mismatches. The two G-279 

quadruplex motifs are indicated in green (c-kit1) and purple (c-kit2). Top: sequencing in Na
+
, 280 

where negligible mismatches were observed. Middle: sequencing in K
+
 showed mismatches 281 

accumulation starting at c-kit2, thus suggesting polymerase stalling. Bottom: sequencing in 282 

presence of PDS revealed stalling already at the first G4 motif (c-kit1) and significant mismatch 283 

accumulation. b) Boxplots showing the mismatch percentage between Read-1 and Read-2 for 284 

reads with Quadparser-predicted PQs (PQs; N~110,000) and without (non-PQs; N~32 million) 285 

for K
+ 

(left) and PDS (right). c) Boxplots representing the percentage mismatches for the reads 286 

containing a PQ, before or after the motif start site, for K
+ 

(left) and PDS (right). 287 
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 288 

Figure 3: Structural analysis of Observed G-quadruplex sequences (OQs). a) Number of 289 

OQs found in different G-quadruplex structural families, for Na
+
 + PDS or K

+
 sequencing 290 

conditions (Methods). The different families are defined as follows. Loop 1-3; Loop 4-5; Loop 6-291 

7: OQs with at least one loop of the indicated length; Long loops: OQs with any loop of length > 292 

7; Bulges: OQs with a bulge of 1-7 bases in one G-run or multiple 1-base bulges; Other: 293 

sequences which do not fall into the categories above. b) Fold enrichment (ratio) of each 294 

structural family represented in OQs over random genomic sequences measured for Na
+
 + PDS 295 

(top) and K
+
 (bottom) conditions. Error bars are SEM of 3 independent randomizations. Fold 296 

enrichment values follow the relative thermodynamic stability of the different G4 families, with 297 

highest enrichment for G4 structures with short loops compared to longer loop counterparts. 298 

Treatment with PDS enables the detection of G4 structural variants with lower intrinsic stability.  299 

 300 
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 301 

Figure 4: Genomic distribution of experimentally-determined OQs. a) Genome browser view 302 

of PQs and OQs across the SRC oncogene. Red and orange show tracks for mismatches in reads 303 

aligning to the reverse strand (-) for PDS and K
+
, respectively. Bars of the same colors indicate 304 

OQ regions above threshold, while black bars indicate Quadparser PQs. OQs not predicted by 305 

Quadparser are indicated by * (sequences in Supplementary Table 2). G4-Seq enables detection 306 

of G4 sequences that were not previously predicted by computational algorithms in this 307 

oncogene.  b) OQs density (red) in different SCNAs
10

 compared to random intervals (black), 308 

measured as number of OQs per kilobase. Blue gene labels: SCNAs representing amplifications. 309 

Green gene labels: SCNAs representing deletions. Dotted lines: values corresponding to 0.5 and 2 310 

times the average random density (0.22). Bars are sorted according to the fold enrichment of OQs 311 

density over random (Supplementary Table 5). A correlation was observed between the OQs 312 

density per kilobase and with SCNAs associated with amplifications, suggesting a potential role 313 

of G4 structure in carcinogenesis. 314 

 315 

 316 

 317 

 318 



 12 

Methods 319 

Design of control sequences 320 

Full-length control sequences (sequence of interest underlined) are as follows: 321 

Control 1 (Positive): c-kit 322 

5’-Adapter 1-AGAGCCGCGAGCGGCGAGCAGCAGCCCTCTCCTCCCAGCGCCCTCCCTCTGCGCGCCGG 323 

CCACGCCCCTCCTCGCCTCCCTCCCTCCGCCCGCCCGGGGCTCGCG-Adapter 2-3’.  324 

Control 2 (Negative): c-myc-opp 325 

5’-Adapter 1- ATTAGCGAGAGAGGATCTTTTTTCTTTTCCCCCACGCCCTCTGCTTTGGGAACCCGGGA 326 

GGGGCGCTTATGGGGAGGGTGGGGAGGGTGGGGAAGGGGGAGGAGAG-Adapter 2-3’. 327 

Control 3 (Positive): c-myc 328 

5’-Adapter 1- TCTCCTCCCCACCTTCCCCACCCTCCCCACCCTCCCCATAAGCGCCCCTCCCGGGTTCCC 329 

AAAGCAGAGGGCGTGGGGGAAAAGAAAAAAGATCCTCTTCGCTAATAG-Adapter 2-3’.  330 

Control 4 (Negative): c-myc-mut 331 

5’-Adapter 1- CTCCTCTTCACCTTCTTCACTCTCTTCACTCTCTTCATAAGCGCCCCTCCCGGGTTCCCAA 332 

AGCAGAGGGCGTGGGGGAAAAAAAAAAAGATCCTCTCTCGCTAATAG-Adapter 2-3’.  333 

 334 

where: 335 

Adapter 1- 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’ 336 

Adapter 2- 5’-AGATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATATCTCGTATGCCGTCTT 337 

CTGCTTG-3’ 338 

 339 

The c-myc and c-kit positive controls were designed based on the human genomic sequence of 340 

two regions in the promoter of the oncogenes MYC and KIT, respectively, which are well-studied 341 

examples of G-quadruplex (G4) forming motifs
25,26,28

. Crucially, controls were designed 342 

complementary to the G4 motif i.e. the C-rich sequence to ensure that during Illumina cluster 343 

generation the G-rich sequence becomes immobilised to the flow cell surface and acts as the 344 

template for sequencing. This protocol is necessary to allow the study of G4 structures on 345 

polymerase procession. Two negative control sequences were also designed based on the c-myc 346 

sequence: 1) c-myc-opp: the complementary G-rich strand of the c-myc G4, which becomes the 347 

C-rich template sequence upon cluster generation; 2) c-myc-mut: a mutant of c-myc that can no 348 

longer form a G4. 349 

Control sequence library preparation 350 

Synthetic oligonucleotides of the control sequences, and their complement sequences, with a 5’-351 

phosphate group and an A overhang (Biomers) were prepared using nuclease free water at the 352 

final concentration of 1 μg/ml. The two complementary oligonucleotide sequences of each 353 
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control (100 ng/μl) were annealed in 10 mM Tris, 50 mM NaCl buffer by heating to 95 °C for 10 354 

min and then cooled to 20 °C at 1 °C/min. The annealed DNA was prepared for Illumina 355 

sequencing by ligation of Illumina adapters using a T4 DNA ligase at 30 °C for 10 min. 356 

Following AMPure® bead clean-up, the adapted sequences were PCR amplified using standard 357 

Illumina PCR primers and gel purified (Qiagen MinElute Gel Extraction kit). Purified fragments 358 

were ligated into Life technologies PCR®-Blunt Vectors and transformed according to standard 359 

methods. Plasmid DNA was purified from selected clones (Thermo scientific GeneJET plasmid 360 

Miniprep Kit), followed by Sanger sequencing (GATC) to confirm the sequence identity and 361 

directionality. DNA inserts of the chosen clones (C-rich variant of the insert in the case of c-myc, 362 

c-kit and c-myc-mut and G-rich for c-myc-opp) were isolated by EcoRI-HF digestion and gel 363 

purification to generate sequences ready for use in sequencing. Sequences were quantified using a 364 

Qubit Fluorimeter (Life Technologies) and denatured according to standard Illumina protocols. 365 

Control sequences were spiked into a human genomic library at a final concentration of 0.01 pM 366 

for all sequencing experiments. 367 

Genomic library preparation 368 

Purified Human Genomic DNA isolated from primary human B-lymphocytes (NA18507) was 369 

purchased from Coriell Institute for Medical Research and prepared for sequencing using TruSeq 370 

DNA sample prep kit (Illumina) according to the manufacturers protocol. Human template DNA 371 

was denatured as in standard Illumina protocols and used at 8 pM for sequencing on MiSeq 372 

instruments (Illumina) and 12 pM for all sequencing on an Illumina HiSeq 2500 in Rapid Run 373 

mode (with the addition of 0.01 pM of each control sequence).  374 

Modified sequencing buffer preparation 375 

In collaboration with Illumina, the standard sequencing buffers (incorporation, wash and cleavage 376 

buffers) were supplemented with K
+
, Na

+
 or Li

+
 at a final concentration of 50 mM for the 377 

incorporation and wash buffers and 1 M for the cleavage buffer. In addition, for small-molecule 378 

experiments with PDS, all buffers were prepared using Na
+
 at 50 mM final concentration, and 379 

PDS
4
 (1 μM) was added to the incorporation buffer on the instrument. All other reagents used 380 

were from standard proprietary Illumina sequencing kits.  381 

G4-Seq Protocol 382 

Illumina sequencing was performed using either MiSeq or HiSeq 2500 Rapid Run 383 

instrumentation, using the same basic protocol. A human genomic library containing synthetic 384 

control sequences (prepared as above) was used as template. Cluster generation and amplification 385 

javascript:%20toggle(%22https://tools.lifetechnologies.com/content/sfs/gallery/high/1990.jpg%22,%22pCR%C2%AE-Blunt%20Vector%22,%22%22);
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were carried out according to standard procedures. The template DNA was then sequenced using 386 

buffer conditions containing Na
+
 (Read-1) for 250 cycles (MiSeq) or 150 cycles (HiSeq 2500). 387 

The newly synthesised DNA strand was removed by denaturation to leave the original template 388 

DNA strand. The Read-1 sequencing primer (HP10) was then added to the flow-cell and 389 

hybridised as per standard sequencing protocols. Annealing buffer (10mM Tris and 100mM KCl, 390 

pH 7.4) was added to the flow cell and the temperature increased to 65°C for 5 min, followed by 391 

cooling to 20 °C at 1 °C/min, in order to promote G4 formation in immobilised template DNA. 392 

For sequencing experiments with PDS or PhenDC3, the small-molecule was added to the flow 393 

cell (1 μM in annealing buffer) and equilibrated for 30 min at room temperature. Sequencing was 394 

then performed on the template DNA (Read-2) in G4-stabilisation conditions, i.e. either K
+
 395 

sequencing buffers or with PDS addition in Na
+
 buffer. The sequencing read length was 250 and 396 

150 base pairs (bp) for the MiSeq and HiSeq 2500 respectively. Base-calling log (bcl) files from 397 

the sequencing run were processed to generate FASTQ files for further analysis.  398 

FASTQ files 399 

The FASTQ format
33

 consists of: 1) a read identifier to allow identification of sequences from the 400 

same cluster when performing different sequencing reads, hence Read-1 and Read-2; 2) a 401 

measure of base-calling quality- the Phred quality score, Q, which is inversely related to the 402 

probability that the corresponding base-call is incorrect (i.e. a high Q score indicates a low 403 

probability of erroneously calling the given base, while a lower Q score indicates greater 404 

probability that the given base is incorrectly called); 3) the actual base-call, where the nucleotide 405 

with highest confidence is assigned to each sequencing position. Read quality was calculated as 406 

the average Phred quality of all bases; the quality difference was calculated as Read-1 quality 407 

minus Read-2 quality; the percentage of mismatches was calculated comparing base calling at 408 

Read-1 and Read-2 and counting the fraction of different calls across the whole read. 409 

Different cation analysis 410 

Sequencing was performed in Li
+
, Na

+
 and K

+
 as described above. Two replicates were 411 

performed for K
+
 and Li

+
 conditions and three replicates for Na

+
 conditions. FASTQ files were 412 

obtained from MiSeq 250 bp single-end reads. Files were aligned to the human genome (hg19) by 413 

using the bwa mem aligner with default parameters (http://bio-bwa.sourceforge.net/).  414 

K
+
 and PDS genomic analysis 415 

Sequencing was performed as described above. Two technical replicates were performed for each 416 

G4-stabilisation condition on HiSeq instrumentation. FASTQ files were obtained from HiSeq 417 

http://bio-bwa.sourceforge.net/
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2500 150 bp single-end reads. FASTQ files from Read-1 were aligned to the human genome 418 

(hg19) using the bwa mem aligner with default parameters (http://bio-bwa.sourceforge.net/). Bam 419 

alignment files were processed using bedtools (https://code.google.com/p/bedtools/): 1) bam files 420 

were converted to bed files (command bamToBed); 2) bed files were expanded 30 bases 421 

downstream (command slopBed -s -r 30); 3) expanded bed files were grouped to keep only the 422 

best alignments for each read (command groupBy -g 4 -c 5 -o max); 4) FASTA sequence files 423 

were extracted from the bed intervals (command bedtools getfasta -s); 5) FASTA sequence files 424 

and the FASTQ files from both Read-1 and Read-2 were loaded in R (http://www.r-project.org/) 425 

for analysis. Sequence tails beyond poly-A tails (≥ 9 bases) were trimmed as they represent the 426 

end of the DNA fragment attached to the flow cell. The difference in the quality score and 427 

percentage of mismatches (% mismatches) between Read-1 and Read-2 for each individual base 428 

was calculated and stored for each read, together with coverage count of +1. All single-base 429 

values calculated from the processed reads were then pooled to generate genomic tracks of 430 

mismatch percentage (average of values) and total coverage (sum of values). To ease data 431 

handling, genomic tracks were finally binned in intervals of length 15 bases and smoothed with a 432 

moving average of order 15 (i.e. window size around the point value to be smoothed). 433 

Control sequences analysis 434 

FASTQ files were generated from the MiSeq (cations experiments) or the HiSeq 2500 (K
+
 and 435 

PDS experiments) sequencing platforms. FASTQ were aligned to a FASTA file containing only 436 

the control sequences by using the bwa mem aligner with default parameters (http://bio-437 

bwa.sourceforge.net/). The Phred quality score (Q) and the base-calling extracted from reads 438 

were successfully aligned to each control sequence then were analysed.  439 

PQs identification and positional analysis 440 

For each sequencing read, the aligned sequence information was extracted as above and PQs were 441 

identified according to the Quadparser algorithm by searching for the regular expression 442 

'(G{3,}[ATGC]{1,7}){3,}G{3,}'. For positional analysis, “before PQs start” is defined as the 443 

sequence up to 12 bases upstream of the PQ start site (12 bases is the approximate footprint of 444 

DNA polymerase). “After PQs start” is defined as the remaining sequence, from 12 bases 445 

upstream the PQ start site until the end of the sequence (excluding any sequencing beyond the 446 

poly-A tail).  447 

http://bio-bwa.sourceforge.net/
https://code.google.com/p/bedtools/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
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OQ detection 448 

Quadparser-predicted PQs were considered as a positive set (PQs) and reads without PQs as a 449 

negative set (non PQs). For all reads, % mismatches were calculated (range 0-100 %). For each 450 

threshold ti, the following numbers were calculated: TPi - true positives i.e. reads with PQs above 451 

the threshold ti, FPi -false positives, i.e. reads without PQs above the threshold ti, FNi - false 452 

negatives i.e. reads with PQs below the threshold ti and TNi - true negatives, i.e. reads without 453 

PQs below the threshold ti. The false positive rate, FPRi= (FPi/(FPi+TNi) was calculated for each 454 

threshold ti and the thresholds for OQ detection were set in order to have FPR ≈ 0.02 (high 455 

specificity), i.e. 2% of the non PQs would be detected as OQs. This yielded thresholds of 18% 456 

and 25 for K
+
 and PDS sequencing respectively. A sequence with a % mismatch value above 457 

these thresholds was defined as an Observed G-quadruplex Sequence (OQs). For the genomic 458 

analysis, continuous regions with a maximal peak summit above the threshold (18% for K
+
 and 459 

25% for PDS) were considered as OQ regions. OQ regions displaying multiple peak were split 460 

into separated OQs using PeakSplitter (http://www.ebi.ac.uk/research/bertone/software). Regions 461 

from two replicates were analysed independently, keeping strand information separated. We only 462 

considered high confidence OQ regions in genomic intervals common to both replicates for 463 

further analyses (command intersectBed -s of the bedtools). 464 

Structural analysis of OQ categories 465 

OQ sequences were stratified into different OQ categories by searching for different regular 466 

expressions (Fig. 3). To assign univocally an OQ region to a specified category and avoid 467 

considering the same region multiple times, we followed priority rules based on the predicted 468 

stability from high to low (Loop 1-3 > Loop 4-5 > Loop 6-7 > Long loops > Bulges > Other). The 469 

different categories were defined as follows: Loop 1-3: (G{3,}N{1,3}){3,}G{3,}, with N = 470 

[ATCG]; Loop 4-5: (G{3,}N{1,5}){3,}G{3,}  and not in previous category; Loop 6-7: 471 

(G{3,}N{1,7}){3,}G{3,} and not in a previous category; Long loops: (G{3,}N{1,12}){3,}G{3,} 472 

or G{3,}N{1,7}G{3,}N{13,21}G{3,}N{1,7}G{3,} and not in a previous category; Bulges: OQ 473 

sequences with any G-run being GH1-7GG or GHGGN{1,7}GGHG, with H = [ATC] and not in a 474 

previous category; Other: not in any other category. The other category was further stratified into 475 

sub-categories containing OQs having either multiple bulges with more than one nucleotide (e.g., 476 

GH{2,5}GGN{1,7}GGH{2,5}G) or two-tetrads motifs (GGN{1,7}GGN{1,7}GGN{1,7}GG) 477 

(Extended Data Table 2). Finally, the ratio of the numbers of each category in PDS and K
+
 was 478 

calculated (Extended Data Fig. 5). 479 

http://www.ebi.ac.uk/research/bertone/software
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Fold-enrichment analysis of OQ structural categories 480 

The 525,890 K
+
 OQ intervals were randomly shuffled three times across the genome (command 481 

shuffleBed in bedtools) to generate random sequences of the same size distribution as the OQs. 482 

This was also done for the 716,310 PDS OQ intervals. The different OQ categories were 483 

identified and counted in both the experimental OQs and the three randomized intervals. For each 484 

category, the ratio of real OQ over the average of three random cases was calculated and plotted 485 

as fold-enrichment for PDS and K
+ 

(Fig. 4b). Error bars were calculated for each category as the 486 

standard error of the mean (SEM) of three random replicates, and each SEM was then divided by 487 

the average of random counts in the category to adapt it to the fold enrichment plot.  488 

Genomic regions analysis 489 

Gene annotation files were downloaded from the UCSC genome browser website 490 

(https://genome.ucsc.edu/), genome version hg19, and different genomic regions (5’UTRs, 491 

3’UTRs, exons, introns, promoters, TSSs and splice regions) were extracted and stored as 492 

genomic intervals (bed file format). For each region, the total number of regions, the total region 493 

size and the number of PDS or K
+
 OQs overlapping to the region intervals (command 494 

intersectBed of the bedtools) were calculated. The number of regions overlapping exclusively 495 

with Quadparser PQs and with non-canonical PQs (i.e., Long loops and Bulges) were calculated 496 

(Extended Data Table 3). Any intervals overlapping sequences from both categories were 497 

excluded from analysis to avoid ambiguity.  498 

Genes and oncogenes analysis 499 

For each gene annotated in the version hg19 of the human genome, the number of Quadparser 500 

predicted PQs, of OQs in PDS and OQs in K
+ 

were counted. The density of PQs or OQs was 501 

calculated by dividing the respective counts by the gene body length and multiplying by 1000 502 

(i.e. density is the number of structures per kilobase). For oncogene analyses, we considered 498 503 

oncogenes and 766 tumour suppressors
24

. Genes with a PQs density less than half of SRC PQs 504 

density but with a OQs density higher than SRC OQs density were extracted (Supplementary 505 

Table 4).  506 

Somatic copy number alteration (SCNA) analysis 507 

140 SCNAs previously identified as being associated with cancer were considered
10

, of which 70 508 

were amplifications and 70 were deletions. Only SCNA less than 10 Mb in size were analysed, 509 

leaving a total of 123 regions (50 deletions and 73 amplifications). For each region t 510 
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he number of OQs was counted. OQ genomic intervals were then randomly reshuffled three times 511 

(random-OQs) and the number of random-OQs in each SCNA was calculated and averaged. The 512 

OQs and random-OQs counts were divided by each region size and multiplied by 1000, to give a 513 

density per kilobase. The OQs and random-OQs densities were then compared and their ratio 514 

calculated such that SCNA regions with ratio > 1 are enriched in OQs compared to random, 515 

whereas SCNAs with ratio < 1 are depleted (Supplementary Table 5; Fig. 4b). The difference 516 

between OQs and random densities was statistically assessed for the 123 regions using the two-517 

tailed t-test; SNCA amplifications (n=73) and deletions (n=50) were also tested in the same way 518 

against their counterpart (random-OQs for amplification and deletion regions only, respectively). 519 

 520 

31. Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L. & Rice, P. M. The Sanger FASTQ file 521 
format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. 522 
Nucleic Acids Res. 38, 1767-1771, (2010). 523 
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Extended Data Figure 1: Overall sequencing quality in sequencing experiments with the 547 

different cations Li
+
, Na

+
 and K

+
. Each plot visually shows base calling quality (Phred quality 548 

score, Q; y-axes) for the 250 sequenced bases (x-axes), in two independent experiments, with 549 

sequencing buffers containing Li
+
 (top), Na

+
 (middle) and K

+
 (bottom), as generated by the 550 

program FastQC  (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Yellow bars and 551 

black whiskers are box plots for the respective base positions; red lines are median values; blue 552 

lines are mean values. 553 

 554 

Extended Data Figure 2: Sequencing quality and sequencing errors (% mismatches) for 555 

control sequences. Bar plots showing the average Phred quality score (Q) (a) and % mismatches 556 

(b) for the 4 control sequences when sequencing with different cations Li
+
 (left), Na

+
 (middle) 557 

and K
+
 (right). c-kit, c-myc: positive controls; c-myc-opp, c-myc-mut: negative controls (see 558 

Methods). Data is taken from a number of independent sequencing experiments: 3 for Na
+
, 2 for 559 

Li
+
 and K

+
. The numbers of different control sequences (i.e. independent sequencing clusters on 560 

the flow cell) in the combined experiments are (order; c-kit, c-myc-opp, c-myc, c-myc-mut): 2741, 561 

1139, 1040, 10945 for Li
+
; 8235, 3076, 2787, 26974 for Na

+
; 2935, 1315, 1, 12809 for K

+
. Bars 562 

are standard deviations. No error bar present for c-myc in K
+
 (n=1). 563 

Extended Data Figure 3: Sequencing errors for controls in PDS conditions. % mismatches 564 

for the control sequences in the same sequencing experiment with Na
+
 sequencing buffers during 565 

the first read (Read-1; left) followed by the addition of the small-molecule PDS in Na
+
 throughout 566 

the second read (Read-2; right). Error bars are SEMs (respectively: 0.16, 0.02, 0.18 and 0.07 for 567 

left plot; 0.12, 0.08, 0.15 and 0.09 for right plot). N = 948, 367, 367 and 3990 for c-kit, c-myc-568 

opp, c-myc, c-myc-mut. 569 

Extended Data Figure 4: Different families of G-quadruplex structures: Left: canonical PQs 570 

predicted by Quadparser (L1-3=N1-7, with N=A|C|T|G). Middle: PQs with longer loops (L1-571 

3=N8-12 or L2=N8-21). Right: PQs with a single bulge B1=H1-7 or multiple bulges B2=H1-5 572 

(H=A|T|C).  573 

 574 
Extended Data Figure 5: Detection of OQs representing different G-quadruplex structural 575 

families in PDS versus K
+
 conditions. Fold enrichment (ratio) between the numbers of OQs in 576 

PDS over K
+
 for each category (see B). Values > 1 indicate higher numbers in PDS. G-577 

quadruplex structural families: Loop 1-3; Loop 4-5; Loop 6-7: OQs with at least one loop of the 578 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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indicated length; Long loops: OQs with any loop of length 8 to 12 for L1-3 or 8 to 21 for L2; 579 

Bulges: OQs with one bulge of 1 to 7 bases (A, T, C) or multiple bulges of 1 base. 580 

Extended Data Figure 6: Comparison of genomic regions in PDS and K
+
 sequencing 581 

conditions. a) Genome browser view of a genomic region within MYC oncogene. Red and orange 582 

tracks: % mismatches in reads aligning to the reverse strand (-) for PDS and K
+
, respectively. OQ 583 

intervals are shown as red and orange bars below the corresponding peaks.. b) Genome browser 584 

view of a genomic region within the MYL5-MFSD7 gene. Black and blue tracks: % mismatches 585 

in reads aligning to the forward strand (+) for PDS and K
+
, respectively. OQ intervals are shown 586 

as black and blue bars below the corresponding peaks. c) Genome browser view of a genomic 587 

region within the MYL9 gene. All colours and features as in a). See Supplementary Table 2 for 588 

sequence details. For all panels, OQs not predicted by Quadparser are indicated by * and 589 

Quadparser PQs are shown as black bars. 590 

Extended Data Figure 7: Comparison of forward versus reverse strands in PDS sequencing 591 

conditions. A) Genomic region within the MYL9 gene. Red and black tracks: % mismatches in 592 

reads aligning to the reverse strand (-) and forward strand (+), respectively. OQs intervals are 593 

shown as red and black bars below corresponding peaks. Quadparser PQs are shown below in 594 

black. OQs not predicted by Quadparser are indicated by asterisks (*). See Supplementary Table 595 

2 for sequence details. 596 

Extended Data Table 1: Quadparser PQs detected by G4-Seq. The number and percentage of 597 

Quadparser PQs detected by G4-Seq under PDS or K
+
 conditions or common to both. Two 598 

replicate Illumina HiSeq sequencing runs were performed for each condition. These data show 599 

the high degree of reproducibility and overlap between two different G-quadruplex stabilisation 600 

conditions. 601 

Extended Data Table 2: Number of OQs in the category “Other”. Multiple bulges = 602 

G[ATC]2-5GGLGG[ATC]2-5G; two-tetrads = GGLGGLGGLGG, with L = N1-7; % G content = 603 

percentage of G nucleotides in the OQ sequence. 604 

 605 

  606 
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Extended Data Table 3: Distribution of OQs in different genomic regions. Several 607 

measurements reporting the genomic distribution of OQs in PDS (top half) or K
+
 (bottom half) 608 

are listed in the table; columns are as follows. Region: genomic features- UTR: untranslated 609 

region; TSS: transcription start site; promoters 1000 up: 1000 bases upstream the TSS; TSS 1000 610 

up down: 1000 bases up- and down-stream the TSS; splice 50: 50 bases up- and down-stream 611 

splice sites (i.e. exon-intron junctions); # regions: number of disjoint genomic regions; total 612 

region size: sum of all disjoint genomic regions; OQs density: 1000 * (# OQs) / (total region 613 

size); # regions with OQs: number of genomic regions overlapping with at least one OQ. # 614 

regions with non-canonical OQs: number of genomic regions overlapping exclusively with OQs 615 

having a long loop or a bulge; # regions with PQs: number of genomic regions overlapping 616 

exclusively with Quadparser-predicted PQs (loop size 1-7). Ratio non-canonical OQs / PQs: ratio 617 

of the number of regions with non-canonical and canonical PQs. 618 


