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ABSTRACT

Autoregressive models are used routinely in forecasting and often lead to better
performance than more complicated models. However, empirical evidence is also
suggesting that the autoregressive representations of many macroeconomic and fi-
nancial time series are likely to be subject to structural breaks. This paper develops
a theoretical framework for the analysis of small-sample properties of forecasts from
general autoregressive models under a structural break. Our approach is quite gen-
eral and allows for unit roots both pre- and post-break. We derive finite-sample
results for the mean squared forecast error of one-step-ahead forecasts, both con-
ditionally and unconditionally and present numerical results for different types of
break specifications. Implications of breaks for the determination of the optimal
window size are also discussed.

JEL Classifications: €22, C53.
Key Words: Small sample properties of forecasts, RMSFE, structural breaks, au-

toregression.
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1 Introduction

Autoregressive models are used extensively in forecasting throughout economics and
finance and have proved so successful and difficult to outperform that they are
frequently used as benchmarks in forecast competitions. Due in large part to their
parsimonious form, autoregressive models are frequently found to produce smaller
forecast errors than those associated with models allowing for more complicated
nonlinear dynamics or additional predictor variables, c.f. Stock and Watson (1999)
and Giacomini (2002).

Despite their relative success, there is now mounting evidence that the parame-
ters of autoregressive (AR) models fitted to many economic time series are unstable
and subject to structural breaks. For example, Stock and Watson (1996) undertake
a systematic study of a wide variety of economic time series and find that the major-
ity of these are subject to structural breaks. Alogoskoufis and Smith (1991), Garcia
and Perron (1996) and Pesaran and Timmermann (2003a) are other examples of

*We are grateful to seminar participants at Cass Business School for comments on a previ-
ous version of this paper. We would also like to thank Mutita Akusuwan for excellent research

assistance.



studies that document instability related to the autoregressive terms in forecasting
models used routinely throughout economics and finance. Clements and Hendry
(1998) view structural instability as a key determinant of forecasting performance.

This suggests a need to study the behaviour of the parameter estimates of AR
models as well as their forecasting performance when these models undergo breaks.
Despite this flurry of interest in econometric models subject to structural breaks,
little is known about the small sample properties of AR models that undergo discrete
changes. In view of the widespread use of AR models in forecasting, this is clearly
an important area to investigate. The presence of breaks makes the focus on small
sample properties more relevant: even if the combined pre- and post-break sample
is very large, the occurrence of a structural break means that the post-break sample
will typically be much smaller so that asymptotic approximations may not be nearly
as accurate as is normally the case.

A key question that arises in the presence of breaks is how much data to use
to estimate the forecasting model that minimizes a loss function such as root mean
squared forecast error (RMSFE). We show that the RMSFE-minimizing estimation
window crucially depends on the size of the break as well as its direction (i.e. does the
break lead to higher or lower persistence) and which parameters it affects. In some
situations the optimal estimation window trades off an increased bias introduced by
using pre-break data against a reduction in forecast error variance resulting from
using a longer window of the data. However, in other situations the small sample
bias in the autoregressive coefficients may in fact be reduced after introducing pre-
break data if the size of the break is small or even when the break is large provided
that it is in the right direction (e.g., when persistence declines).

The main contributions of this paper are as follows. First, we present a new
procedure for computing the exact small sample properties of the parameters of AR
models of arbitrary order, thus extending the existing literature that has focused
on the AR(1) model. Our approach allows for fixed or random starting points and
both considers stationary AR models as well as models with unit root dynamics. In
addition to considering properties such as bias in the parameters, we also consider the
RMSFE in finite samples. Second, we extend existing results on exact small sample
properties of AR models to allow for a break in the underlying data generating
process. We also extend Fuller (1996)’s result on the absence of a bias in the forecast
in the presence of an intercept in the AR model to cover breaks in autoregressive
coefficients. Third, we present extensive numerical results quantifying the effect

of the size of the pre-break and post-break data window on parameter bias and



RMSFE.

The outline of the paper is as follows. Section 2 provides a brief overview of the
small sample properties of the first-order autoregressive model that has been exten-
sively studied in the extant literature. Theoretical results allowing us to characterize
the small sample distribution of the parameters and forecast errors of autoregres-
sive models are introduced in Section 3. Section 4 presents numerical results for
AR models subject to breaks and Section 5 concludes with a discussion of possible

extensions to our work.

2 Small Sample Properties of Forecasts from Au-

toregressive Models

A large literature has studied small sample properties of estimates of the parameters
of autoregressive models. The majority of studies has concentrated on deriving
either exact or approximate small sample results for the distribution of a7, ﬁT, the
Ordinary Least Squares (OLS) estimators of & and (3, in the first-order autoregressive
(AR(1)) model

yy=a+ By 1 +oe, t=1,2,....T, (1)

where &; ~ 7id(0,1). Early analysis of the small sample bias of BT include Bartlett
(1946), Hurwicz (1950), Kendall (1954), Marriott and Pope (1954) and White (1961).
These studies focus on the case where a = 0 and || < 1, namely a stationary AR(1)
model without an intercept. Extensions to higher order models with intercepts have
been proposed by Orcutt and Winoker (1969), Sawa (1978), Hoque (1985), and Bao
and Ullah (2002). Hoque and Peters (1986), Grubb and Symons (1987), Kiviet
and Phillips (1993, 2003a) further included exogenous regressors in the model and
consider the so-called ARX(1) specification. Assuming stationarity (|3] < 1), 3y
has been shown to have an asymptotic normal distribution and its finite-sample
distribution has been further studied by Phillips (1977, 1978) and Evans and Savin
(1981). The case with a unit root, 5 = 1, has been studied by, inter alia, Bannerjee,
Dolado, Hendry and Smith (1986), Phillips (1987), Stock (1987), Abadir (1993) and
Kiviet and Phillips (2003b).

To a forecaster, the bias in & and BT is of direct interest only to the extent
that it might adversely influence the forecasting performance. Based on the sample
observations, (yo, Y1, ..., yr), the one-step-ahead forecast of yr1, Jri1 = & + BTyT

and the associated forecast error, yr1 —yry1, have also received considerable atten-



tion. Box and Jenkins (1970) characterized the asymptotic mean squared forecast
error (MSFE) for a stationary first-order autoregressive process considering both
the single-period and multi-period horizon. Assuming a stationary process, Copas
(1966) used Monte Carlo methods to study the MSFE of least-squares and maximum
likelihood estimators under Gaussian innovations.

In practice, the conditional forecast error is of more interest than the uncon-
ditional error since the data needed to compute conditional forecasts is always
available. A comprehensive asymptotic analysis for the stationary AR(p) model
is provided in Fuller and Hasza (1981) and Fuller (1996). Using Theorem 8.5.3 in

Fuller (1996) it is easily seen that conditional on yr, we have

MSFE(jrlyr) = E[(yr+1 — 9r+1)° lyr]

1, 1-p a \’
= C+5)+ Tﬁ (yT— )+0<T‘3/2),

which yields the more familiar unconditional result!
. . 2 _
MSFE(§ri1) = E (yry1 — Gir1)” = o(1+ ) +O(T ).

Generalizations to AR(p) and multi-step ahead forecasts are also provided in Fuller
(1996, pp. 443-449), where it is established that the forecast error, yri1 — Uri1,
is in fact unbiased in small samples assuming &; has a symmetric distribution and
E (|gr4+1]) < oo. This is particularly interesting considering the often large small

sample bias associated with the estimates of the autoregressive parameters.

3 AR(p) Model in the Presence of Structural Breaks

In parallel with the work on the small sample properties of estimates of autoregres-
sive models, important progress has been made in testing for and estimating both
the time and the size of breakpoints, as witnessed by the recent work of Andrews
(1993), Andrews and Ploberger (1996), Bai and Perron (1998, 2003), Chu, Stinch-
combe and White (1996), Chong (2001), Elliott and Muller (2002), Hansen (1992),
Inclan and Tiao (1994) and Ploberger, Kramer and Kontrus (1989).

Building on these pioneering literatures we now consider the small sample prob-

lem of estimation and forecasting with AR(p) models in the presence of structural

1'Ullah (2003) provides an extensive discussion and survey of the properties of forecasts from
the AR(1) model.



breaks. For this purpose, we consider the following AR(p) model defined over the
period t = 1,2, ...,T; and assumed to have been subject to a single structural break
at the end of time 7} :

Yy = { (051 + 511%—1 + ﬁ12yt—2 + ...+ 61pyt—p + 01€t, for ¢ S T1> (2)
t — 9

g+ Byyi-1+ Bl + ... + BopYe—p + 028y, , for t>Ty,

where as before ¢; ~ id(0,1) for all t. For the analysis of the unit root case it is
also convenient to consider the following parameterization of the intercept terms,
a, i =1,2:

a; = py(L = G37), (3)

where —(1 — 37) represents the coefficient of 31 in the error correction representa-

tion of (2). In particular
p
ﬁ: = Z ﬁm (4)
j=1

This specification is quite general and allows for intercept and slope shifts, as
well as a change in error variances immediately after ¢t = T7. It is also possible for
the y; process to contain a unit root (or be integrated of order 1) in one or both of
the regimes. The integration property of y; under the two regimes is governed by
whether 37 =1 or 3 < 1. More specifically, we shall assume that the roots of

p

> NB;—1=0,fori=12, (5)

J=1

*

lie on or outside the unit circle.? The intercepts a; = (1 — 3;

) are therefore un-

restricted when the underlying AR processes are stationary and are set to zero in
the presence of unit roots to avoid the possibility of generating linear trends in the
y: process. In the stationary case p, represents the unconditional mean of y; under
regime . In the unit root case y; is not identified and we have E(Ay;) = 0.
Suppose y; is observed over the period t = 1,2, ...,T, and the object of interest
is the point (or probability) forecast of yr.1, conditional on y(1) = (y1, Y2, ..., Y1),
and the above autoregressive specification, equation (2), subject to the regime switch
at the end of time ¢ = T}. In the case where the post-break window size, vo = T —T}

is sufficiently large (v — 00), the structural break is relatively unimportant and

2Qur analysis can also allow for the possibility of 1; being integrated of order two in one or

both of the two regimes. But in this paper we shall only consider the unit root case explicitly.



the forecast of y7,1 can be based exclusively on the post break observations. How-
ever, when v, is small it might be worthwhile to base the forecasting exercise on
pre-break as well as the post-break observations. The number of pre-break ob-
servations, which we denote by wv;, will become a choice parameter. In what fol-
lows we assume 7T} is known but consider forecasting yr,; using the observations
Y1 (M — D) = Ym—ps Ym—p1s > Y11s YTi1-- Y1) s With Yo, Ym—ps1, ..o, Ym—1 treated
as given initial values.> The pre-break number of time periods is then given by
v; = T — m + 1, and the number of time periods used in estimation is therefore
v=uv +vy =T —m-+1. To simplify the notations we shall consider values of
vy 2 p.
The point forecast of yr,1 conditional on yr(m — p) is given by

gre1(m) = ar(m) +xpBz(m),

where X7 = (yr, yr—1, -, Yr—pt1)’, BT(m) = <31T(m)a B2T(m)a "'7ﬂpT(m)>,

A

Br(m) = X (m) M, Xq (m)] ™ X (m) Myyr(m), (6)

dT(m) _ T;yT(m) — T;U}(T (m) ﬁT(m)7 (7)

Xr(m) = (yr-1(m —1),yr—2(m —2),....yr_,(m —p)),

M, =1, — 1,(7,7,) '7

v

and 7,= (1,1, ...,1). The one-step ahead forecast error is

ery1(m) = yri1 — Yra(m) = ogeer i1 — Ep(m), (8)

where
&r(m) = [ar(m) = as] + %4 (Br(m) - B,) (9)
Bz = (Ban, Bags -+, Bap) and aa = iy (1 — B,). The size of the forecast error varies

with m, and the aim is to choose m such that E (€3, (m) [x7) is minimized:

m* = argmin {FE [}, (m)Xr]}. (10)

m=1,.,T1+1
To this end we first note that ey, and (m) are independently distributed and

E (eg,1(m) [xr) = 03 + E. (§7(m) [xr) .
3Throughout the paper we shall use the notation y7(k) = (yk, ..., yr)"-




The expectations operator F. (-) is defined with respect to the distribution of the
innovations €;. Therefore, to carry out the necessary computations an explicit ex-
pression for £,.(m) in terms of the ¢}s is required. This is complicated and depends
on the state of the process just before the first observation is used for estimation.

For a given choice of m > p and a finite sample size T', the joint distribution
of B,(m) and a&r(m) depends on the distribution of the initial values y,,_1(m —
D)= Ym—p> Ym—p+1s - Ym_1) - In the case where the pre-break regime is stationary
the distribution of y,,_1(m — p) is given by

Ym—l(m - p) ~ N(:UJlTp? O-?Vp)7 (12)

where 7, is a px 1 unit vector, and V,, is defined in terms of the pre-break parameters.
For example, for p =1, V; = 1/(1 — 83,), and for p = 2

) 1 1 —f B ‘
(1+ B2) [(1 - 512)2 - ﬁi] B 1= By,

A similar assumption concerning the initial values can be made if the pre-break

process contains a unit root. However, the covariance of y,,_i(m — p) is no longer
given by 02V,,. In this case 3] = 1 and the pre-break process is given by

p—1
Ay, = Z 01;Ay—; + 016y, for t < T3, (13)
j=1
where 61; = — > 7_ ;11 01¢- The distribution of initial values can now be specified in

terms of the stationary distribution of the first differences, (Ays, Ays, ..., Ay,), using
(13), and assuming that y; is distributed as N (7, w?), where ¢, and w are treated

as free parameters. For example, in the AR(1) case
Ym—1 ~ N [Jo,w” + (m — 2)07] . (14)
For the AR(2) case we first note that

Ym—2 = Y1+ Ays+ ... + Ayp,_o,
Yn-1 = Y1+ AU+ o+ AYpmo + AYp_1, (15)

which provide a decomposition in terms of the non-stationary level component, y;,

and stationary first differences, Ays, Ays, .... Also using (13) we have
Ay, = 1Ay, 1 + o168, £t =2,3,...,Th
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where |611] < 1, thus ensuring that y, ~ I(1). The distribution of (¥mm—2,Ym-1)
can now be derived for given assumptions concerning y; and Ay;. There are many
possibilities. Here as a simple example we consider the situation where as in the
AR(1) case y; ~ N (3o, w?), distributed independently of Ay, t = 2,3, .., and assume
that the stationary components of ¥,, > and y,,_1 are started with Ay; = 0. Under
the latter we have

Ayg = 01&2
Ay = 0110182 + 0163
m—4 m—>
Aym_g = 611 01&9 + 511 01€3 + ... + 511015m—3 + 01Em—_2
m—3 m—4 2
Aym—l = 611 01&2 + 511 01€3 + ... + 5110-1€m—3 + 6110’16m_2 + 01Em_1

Substituting these in (15) we now have

01&2 (1 — (571)173) 01€3 (1 — (571)}74) O1Em—2 (1 - 611)

Ym—z = YL 1— 611 1—o6n T 1—6n
_ n 019 (1 — 6ﬁ_2) 013 (1 — 6ﬁ_3) 01Em—2 (1 — (5%1) O1Em—1 (1 — 611)
Ym=1 s 1 — 611 1—06n 1—61 1—06n ’
Hence
.2
o2 Y (1 - 69y)
Var(y, ) = J

(1—611)°
m = 2)(1— 8%) + 81— 6) — 260 (1 + 6u)(1 — 61 2))
(1—611)" (1= 63) ’
m = 3)(1 = 8%) + 641 = 5") = 200 (1 + 1) (1 — 617
(1—61) (1—83) |
— %) + (1= 81 Y) = 6 (14 61)2(1 — 6117

(1—611)* (1 —6%) ,
(16)

07

Ral(
Var(y, ,) = w’+ (
t ((m—

Cov(Ym-1,Ym_2) = w’+

so that

( Ym=2 > NN( 07'27V2)
Ym—1

where the elements in the 2 x 2 matrix V, are given in (16).
Fixed (non-stochastic) starting values can also be accommodated by setting w =

0. In what follows we focus on the case where the pre-break regime is stationary

8



initialized stochastically according to the initial value distribution defined by (12),

but allow the post-break regime to switch into (possibly) a process with a single

unit root.

Using (12) in conjunction with (2) for ¢ = m,m + 1,...,T, in matrix notations

we have

where

¥y
D:0'1 0

0

Byr(m—p)=d+De,

0
I,
0

B =

0
0 ,d=
(02/01) L,
1, 0
By By O
0 Bs Bss

H1Tp

Ul(l - ﬁy{)Tvl )
:u2(1 - 6;)7-112

I, and I, are identity matrices of order v; and vs, respectively,

€ = (Em—ps Em—pt1, -

7€T)/ ~ N(07 Il/+p)a

¥, is a lower triangular Cholesky factor of V,, namely V, = @bpz,b;, and the sub-

matrices B;; are defined by

B21 —
V1 Xp
1 0
—Bn 1
_ﬁlp _ﬁl,p—l
0 _ﬁlp
0 0
0 0

_/Blp _/Bl,p—l
0 _ﬂlp
0 0
0 0
0 0
—B1
—B12
0
0

—Bu
—bBra
_/Blp _/Bl,p—l
0 _ﬁlp
0
0
1
By 1
0 0
0 0

0

0

0

0

0 0

~Brpa 1
_ﬁlp _ﬂll

o O O O O




00 -+ 0 =Py —0Oop1 -+ =P —Pn

00 - 0 _52;7 o _ﬁ23 _622
N 0 0 : :
B 00 -0 By —Bap
32 — )
V2 X V1 O O 0 O _6227
0 0 -0 0 0
0 0 -0 0 0
and
1 0 0 0
: : 0 O
_ _ﬁ2p _ﬁQ,p—l _ﬂ21 1 0 0
B33 -
V2 X V2 0 _ﬁ2p e =Py =Py 1 0 0 0
0 0 0 0 0 0 _527]?_1 1 0
0 0 0 0 0 0 _5219 _ﬁ21 1

Matrix B is lower triangular with diagonal elements equal to unity and is there-

fore non-singular, and we have
yr(m — p) = ¢ + He,

where
c=B"'d, and H=B"'D.

It is now easily seen that
yr-i(m — i) = Giyr(m — p) = Gic + G;He, (17)
for i = 0,1, ..., p, where G; are v X (v + p) selection matrices defined by
G; = (0yxp—i:1,:0,x;), for i =0,1,2,...,p.

Note that 0,x,—; is a v X (p — i) matrix of zeros. In particular Go = (0,x,:1,), and

G, = (L0, ).

10




The deterministic components, G;c, in the expressions for yr_;(m — i) simplify
if there is no mean shift in the model, i.e., if u; = p, = p.* First, it is easily verified
that

Tp
Broy,=| 1-0])7y |- (18a)
(1 - ﬁ;) Ty
Also
H1Tp Tp 0,1
d=| (1 =870 |=m | A=F)7n |+ 0y x1 ;
po(1 = B5)Tw, (1= 083) Tw, (1= 85) (g — f11) T,

and using (18a)
d=4;B7y4p + 8,

where
0px1
g = 0y, %1
(1= 53) (ko — 1) Ty
Hence

c=B"'d =1 Totp t B g,

and when p; = py = p (or if 85 = 1) we have (noting that G; 7,4, = 7,)
G,c=G,B'd = G Tyyp = QT

Therefore
yr_i(m —1) = pur, + G;He, for i = 0,1, ..., p. (19)

Using these results the (i, 7) element of the product moment matrix, X, (m) M, Xr (m)
is given by e H'G,M, G,;He, for i, j = 1,2, ..., p, and the 5" element of X/ (m) M, yr(m)
is given by e’ H'G M, GoHe, for j = 1,2,...,p. Hence, By (m) is a non-linear func-
tion of the quadratic forms e'H'G;M,G;He, for ¢ = 1,2,...p, and j = 0,1, ..., p,

with known matrices H and G;, and € ~ N(0,1,.,). For example, for p = 1 we

4Notice that a break in the slopes induces a change in the intercepts even if the mean of the

process remains unchanged.
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have®

A 'H'G/M, GoHe
= 2
Br(m) = SHGIM. G e (20)
and for p =2
Bup(m) (' H'G,MG,He) (¢ H'G|M,GoHe) — (¢'H'G|M,G;He) (¢’ H'G,;M,G(He)
. (e¢/H'G, M, G, He) (¢ H'G,M, G,He) — (¢ H'G/ M., G,He)? ’
(21)
and

(e H'G/M, G He) (€ H'G,M,GoHe) — (¢ HG,M,GHe) (¢ HG|M,GyHe)

(e'H'G\M,G1He) (¢'H'G,M,G,He) — (¢ H'G,M,G,He)*
(22)

From the above results it is now clear that (i) the probability distribution of

BQT(m) =

BT(m) will depend only on the ratio of the error variances, o%/03, and does not
depend on their scale. Therefore, in the case where 0% = 03 = o2, the distribution
of B(m) will be invariant to ¢2. (ii) In the absence of a mean shift or if g7 < 1
but 85 = 1, B,(m) will not depend on the unconditional mean(s) of the underlying
autoregressive process. (iii) Finally, in the case where i, = fiy, Bp(m) is an even
function of € and this property is unaffected by whether the slope coefficients and /or
the error variances are subject to structural breaks.

Consider now the distribution of é&r(m) given by (7), and to simplify the expo-

sition assume that g, = p, (or 85 = 1). Using (19) we first note that

T yr(m) = vu + 7, GoHe,

Similarly
p
7, X (m) Bp(m) = Z Bir(m) lop + 7,G,;He] .
j=1
Using these results we have
A %k p ~
ar(m) = p (1= Bp(m)) + 07" | (T, GoHe) = 3 (7,GiHe) Br(m) |, (23)
j=1

5 Allowing for a mean shift and setting p = 1, the expressions for 3,(m) and a(m) become
Bom) = (e'H' + ¢')GIM.Go(c + He)
T  (¢H +)G\M,G(c+ He)’
ar(m) = v '7}[Go(c+He) — G, (c + He)By(m)).

12



where (3.(m) = 1 ; r(m). Therefore, unlike By (m) and perhaps not surprisingly
the distribution of é&(m) does depend on the unconditional mean of the process even

under j1, = g = fL.

3.1 An Unconditional Expression for €3 ,(m)

To obtain the unconditional form of £;,.(m), we first note that xr can be written as

Spyr(m), where S, = (Opyx(v—p):Jp), Where J, is the p x p matrix

00 - 1
0 0 10
J, =1 :
01
1

Therefore, using (19) we have (noting that S,7, = 7,)
xr = S,yr(m) =S, (ut, + GoHe) ,

or

xp — putp = S,GoHe.

Hence unconditionally we have

&x(m) = (Br(m) = B,) 8,GoHe+v™" |(

(24)
Since under p; = piy = g (or By = 1), Bp(m) does not depend on o (or ay) it also
follows that unconditionally £,(mn), and hence E [e3.,(m)], will not depend on the
unconditional mean of the autoregressive process.

In the case with a break in the mean, p, # py, we have
R /
&r(m) = (Br(m) —B,) 8,Golc + He) (25)

Ll

7! Go(c + He)— ZT c—|—Hr—:)BjT(m)] — Us.

7j=1

The computation of E [eQT +1(m)} can be carried out by stochastic simulations.

We have n
R 1 . 2
B [eha(m)] = o3+ 2> [ m)]
r=1

13



where §§1"> (m) is given by

0m) = (BY (m) - B,)'8,GoHe
(T;GoHs(”) - i (T;GjH€<r>> 5§T> (m)] '

+ou7t

Due to the independence of € across 7, and the fact that §¥ ) (m) are independently

and identically distributed across r, by a standard law of large numbers we have

Eg [¢3(m)] & B [, (m)]

so long as F [62T +1(m)} does in fact exist. This clearly requires restrictions on the
size of v, the estimation window. We can provide exact conditions in the simple
case where p = 1, but there appears to be no results for the existence of moment
conditions in the more general case of p > 2.

The following proposition generalizes Theorem 8.5.2 in Fuller (1996, page 445)
to the case with a break in the slope coefficient:

Proposition: The unconditional expectation of the forecast errors from the AR(p)
model (2) subject to a break in the AR coefficients ($, # B5) or a break in the
innovation variance (o3 # o3) are unbiased provided that

"is symmetrically distributed

(1) the probability distribution of &* = (¢/,eri1)
around E(e*) =0, and its first and second order moments ezist;
(1) Elera(m)] < oo; and

(i11) there is no break in the mean of the process, p; = .

Proof: It has already been established that when p; = pu,, BT(m) can be written
as a non-linear function of quadratic forms in e, and is therefore an even function of

e. In the case where 111 = p,, using (8) and (24), the prediction error can be written

as
eT+1(m) = 0928741 — (BT(m) — ,62>I SPGQHE'
_'U—l [(T;GQHS) — Z (’T;GJ’HE') ﬁJT(m)] .
j=1
Hence

Elera(m)] = —E [a;(m)spGOHe] v {EP:E[ 7 G;He) B,7(m )]}

14



Since BjT(m), j =1,2,...,pare even functions of €, and (7/,G;He) and B,T(m)SpGOHe
are odd functions of € all the terms inside the above expectations are odd functions

of ery1(m) and (by assumptions (i) and (ii)) exist, we must have
Eleri1(m)] = 0.

In the case where p; # u, the expression for the prediction error is given by (25)

and is no longer an odd function of €, so it will, in general, not have mean zero.

One important implication of the above result is for the trade off that exists in
the estimation bias of the slope and intercept coefficients in the AR models even in

the presence of breaks so long as 11y = p,. To see this using (23) we have
Blar(m)] = p{1- B |Br(m)| }.
which can equivalently be written as
Blar(m) — (1 = B3)] = —p E | fr(m) - 53]

This provides an interesting relationship between the small sample bias of the esti-
mator of the intercept term, E [ar(m) — u(1 — 33)], and the small sample bias of the
long-run coefficient, E [B*T(m) - ﬁ;} The estimator of the intercept term, ar(m),
is unbiased only if the sample mean is zero. But, in general there is an spill-over
effect from the bias of the slope coefficient to that of the intercept term.

In the case of the AR(1) model the results simplify further and we have
Elar(m) - as] = = B |Br(m) = B, (26)
Since FE [BT(m) — 62] < 0, it therefore follows that

Elar(m) —ag] > 0if p >0,
Elar(m) —a] < 0if p <0.

Once again these results hold irrespective of whether 3, = 3, or not.

3.2 A Conditional Expression for €7 (m)

As before we have

ery1(m) = o2eri1 — Ep(m).
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Using (23) in (9) and after some algebra we have (under pi; = py = p)°

rlm) = (xr = pmy)’ (Br(m) = B) + 7"

p
(L Gobe) 3 (i) )|
j=1

(27)

Suppose p = 1 so that it is easy to characterize when xr is above or below the mean

and assume that the distribution of € is symmetric. Then
Eleraa(m) | yr] = (yr — 1) B (Br(m) - 8,)
Since, E (BT(m) - 52> <0

<0 ifyr>up
>0 ifyr<mp

and the estimated model underpredicts if the last observation is above the uncon-

Eler1(m)lyr] = {

ditional mean (yr > p), while conversely it overpredicts if the last observation is

below the unconditional mean (yr < p). In general we have

Elersy(m)lyr] = (xz = ) B (Br(m) - B,)

To compute conditional MSFE, we note that conditional on x7, £7(m) depends
on y, 01,03, B, By and can be simulated for given values of u, 01,09, 81, B5, and xp
and draws from € ~ N(0,1,,,). Denoting the " draw of € by €™, r = 1,2, ..., R,
the conditional MSFE can be computed by

Eg (€741(m) [xr) = 03 + Eg (E3(m) Ixr) ,

where

B (G m) bxr) = 53 [em]”

r=1

0m) = (e —pmy) (BY (m) - 8,)
(riGHe") = 3 (716 He0) A <m>] ,

j=1

4ot

and Béf) (m) is given by expressions such as (20), or (21) and (22) with e, replaced
by E(”)

6 Allowing for a break in the intercept, the corresponding expression becomes

&r(m) = xp (Br(m) — B,) +v™

c+He)- ) G,(c+He)j ()}—uz(l—ﬂi)-
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4 Numerical Results

Our approach is quite general and allows us to study the small sample properties
of the AR model in some detail. The existing literature has focused on the AR(1)
model without a break, where the key parameters affecting the properties of the
OLS estimators, & and B, are the sample size and the persistence parameter, [3;.
In our setting, there are many more parameters to consider. In the absence of
a break there are now p autoregressive parameters plus the intercept, «, and the
innovation variance, o2. Under a break, we need to consider both the pre- and
post-break parameters - i.e. the AR coefficients (3, 3,), the intercepts (a1, as) and
the innovation variances (0%,03%). Furthermore, how the total sample divides into
pre- and post-break periods (v; and vy) is now crucial to the bias in the post-break
parameter estimates and to the bias and variance of the forecast error.

To ensure that our results are comparable to the existing literature, our bench-
mark model is the AR(1) specification without a break (experiment la in Table
la). We next introduce breaks in this model and extend the results to cover the
AR(2) specification. This allows us to consider the effect of higher order dynam-
ics. In all cases we present results for 50,000 Monte Carlo simulations and draw
innovations from an IID Gaussian distribution. We study breaks in the autoregres-
sive parameters in the form of both moderately sized (0.3) and large (0.6) breaks
in either direction (experiments 2a-4a) as well as a shift to a unit root process in
the post-break period (experiment 5a). We also consider pure breaks in the inno-
vation variance (experiments 6a and 7a), where o changes between values of 1/2
and 2, and in the mean (experiments 8a and 9a), where u changes between 1 and
2. For convenience the parameter values assumed in each of the experiments are
summarized in Table 1a. Since our focus is on the effect of breaks on the bias and
forecasting performance of AR models, results are presented as a function of the
pre-break window size (v;) and the post-break window size (v2). We vary vy from
zero (no pre-break information) through 1, 2, 3, 4, 5, 10, 20, 30, 50 and 100, while
the post-break window, v, is set at 10, 20, 30, 50 and 100.

4.1 Results for the AR(1) Model

Results for the AR(1) model are presented in Tables 2-5. As a measure of bias in
the parameter estimates and in the resulting forecast, Table 2 shows the bias in Bl

while Table 3 shows the conditional bias in the forecast for a situation where yr

17



is above its mean, i.e., Y7 = as + 02.” To measure forecasting performance, Table
4 reports the unconditional RMSFE while Table 5 shows the conditional RMSFE
when yr = as + 02 as a function of the pre-break (v1) and post-break window size

(v2).

4.1.1 Bias Results

First consider the bias in Bl. In the absence of a break Bl is downward biased
with a bias that disappears as v; and vy increase and becomes quite small when
the combined sample v = v; + v, is large.® Notice the symmetry of the results in
vy and vy which follows since (under no break) only v; + v, matters to the bias.”
Once a break is introduced in the AR parameter, the bias in 51 continues to decline
in vy but need no longer decline monotonically as a function of v;. The reason for
this is simple: including pre-break data generated by a different (less persistent)
process introduces a new bias term in Bl. It is only to the extent that this term is
offset by a reduction in the small sample bias of the AR estimate that inclusion of
pre-break data will lead to a bias reduction. Thus, when v, is very large (e.g., 50
or 100 post-break observations) the small sample bias in Bl based purely on post-
break observations is already quite small. In this situation, inclusion of pre-break
data will not lower the bias in Bl. Conversely, when the post-break sample is small
(i.e., v = 10 — 20 observations), the small sample bias in ffl is very large and
hence including up to 30 pre-break observations will actually reduce the bias under
a moderately sized break. Naturally, if the break size is large (experiment 4a), this
effect is reduced since the true bias due to including pre-break observations in the
estimation window dominates any reduction in the small sample bias in Bl based
solely on post-break data for all but the smallest post-break window sizes.
Interestingly, when the break is in the reverse direction (experiment 3a) so that
the true value of 3, declines, including a small number of pre-break data points

"Values are computed as averages across Monte Carlo simulations relative to the true post-break

values.
8The bias estimates are in line with the well known Kendall (1954) approximation given by

By =By = —(1+36) +0(w%?),

(%

where v = v1 + vs.

9Recall from (26) that in the case of Gaussian errors the bias in a7 (m) can be exactly inferred
from the bias of 3, (m) when there is no break in the mean. For this reason we focus our analysis
on the bias in 3p(m).
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leads to a reduction in the bias in Bl even for the very large post-break windows
considered here. For example, the bias in @1 is minimized by including 3 pre-break
observations even when v, = 100. The reason is again related to the direction of
the small sample bias in Bl. As [31 is downward biased, when the break is from high
to low persistence, the (upward) bias introduced by inclusion of the more persistent
pre-break data works in the opposite direction of the small sample (downward) bias
in 3,. For this reason the biases under a decline in §, tend to be smaller than the
biases observed when 3, increases at the time of the break.

Under a post-break unit root (experiment 5a) the bias-minimizing pre-break
window size is quite constant around 20 observations. When a break occurs in the
innovation variance (experiments 6a and 7a), the smallest bias is always achieved by
the longest pre- and post-break windows. The only difference to the case without a
break is that the bias is no longer a symmetric function of v; and vy. Allowing for
a break in the mean in either direction (experiments 8a and 9a), the forecast error
is no longer unbiased unconditionally and the optimal window size rises to 100 in
both experiments irrespective of the value of v,.

Turning next to the conditional bias in the forecast, Table 3 shows that, in the
absence of a break, the bias is negative when the prediction is made conditional on
a value above the mean of the process, yr = as + 05. This is, of course, consistent
with the sign of the bias in Bl. In general, the results for the conditional bias in
the forecast error mirror those of the bias in 3, except for in the case with breaks
in the mean. Whereas the bias in 31 was reduced the larger the value of v, when
the mean increases at the time of the break, the bias in the forecast error is smallest
when v; = 0 and the mean increases assuming a large post-break sample (ve = 50
or 100) or for a pre-break window size around 10-20 observations under a decrease

in the mean.

4.1.2 Forecasting Performance

To measure forecasting performance under the AR(1) model, unconditional and
conditional RMSFE values are shown in Tables 4 and 5. Under no break the un-
conditional RMSFE is 1.15 for the smallest combined sample (v; = 0,v5 = 10)
and it again declines symmetrically as a function of v; and vy. In the presence
of a moderate break in the AR coefficient, the unconditional RMSFE continues to
decline as a function of vy but it no longer declines monotonically in the pre-break

window, v;. Furthermore, the unconditional RMSFE no longer converges to one -
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its theoretical value in the absence of parameter estimation uncertainty - whenever
the pre-break window, vy, measured as a proportion of the post-break window, s,
does not go to zero. For example, when v; = vy = 100, the unconditional RMSFE
under a moderate break in (3, is close to 1.02 as opposed to a value of 1.006 observed
in the case without a break. This difference is due to the squared bias in the AR
parameters introduced by including pre-break data points. Generally, the windows
that minimize the unconditional RMSFE tend to be smaller than the windows that
minimize the bias. Increasing the window size beyond the point that produces the
smallest bias may be acceptable if it reduces the forecast error variance by more
than the associated increase in the squared bias.

The presence of a moderately sized break in [3; implies that the optimal pre-
break window size declines to 10-20 observations under the unconditional RMSFE
criterion although it remains much longer under the conditional RMSFE criterion.
In both cases, the optimal value of v; is smaller, the higher the value of v, and the
larger the size of the break in (3; as can be seen by comparing experiments 2a and
4a.

Somewhat different patterns emerge under a post-break unit root where the con-
ditional RMSFE is minimized for the largest values of v;, whereas the unconditional
RMSFE is minimized at much smaller values of vy, typically below 10 observations.

When the innovation variance is higher post-break, it is optimal to set the pre-
break window as large as possible since this maximizes the length of the less noisy
data and thus brings down the forecast error variance without introducing a bias
in the forecast. In contrast, when the innovation variance declines at the time of
the break, the optimal pre-break window size is only long provided the post-break
window, vy, is rather short and it declines to zero for larger values of v,. Under
breaks to the mean, the lowest conditional and unconditional RMSFE values are
observed for the longer pre-break windows. This is an interesting finding. When
breaks occur in practice, they are likely to affect the mean. In such situations our
results suggest that, at least for breaks of similar size to those assumed here, it is
difficult to outperform the forecasting performance generated by a model based on

an expanding window of the data.

4.2 Results for the AR(2) Model

Results for the AR(2) model are presented in Tables 6-10, while Panel b in Table

1 shows the parameter configurations used in the experiments labelled 1b to 9b.
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It is no longer so straightforward to summarize the results as there are now more
parameters. With two AR parameters we report the bias separately for Bl and for
ﬁ* = Bl + BQ, the latter providing a measure of persistence. Our baseline scenario
assumes autoregressive roots of 0.95 and -0.20 so that 3, = 0.75 and (3, = —0.19.
A large break occurs when these coefficients shift to 0.45 and 0, while a moderate
break assumes that 5; = 0.65, 3, = —0.29. Breaks to the mean or to the innovation

variance are identical to those assumed for the AR(1) model.

4.2.1 Bias in AR coefficients

Many findings are qualitatively similar to those reported above for the AR(1) model
so we simply summarize the main results here. Table 6 shows that under no break
or a break in o (experiments 1b, 6b and 7b) the larger the pre-break window, v;, the
smaller the bias in 3,. A moderate increase in 3, (experiment 4b) now means that
the smallest bias in 31 is observed when no pre-break observations are included, i.e.
for v; = 0, while under a moderate or large decline in 3 the bias is generally smallest
for small (but non-zero) pre-break windows. Under a break in the mean, the smallest
bias in 31 is observed for v; = 100 only when v, = 10, while the optimal value of the
pre-break window, vy, is around 10-20 observations and declines for larger values of
Va.

Turning to the bias in B*, Table 7 shows that the results are qualitatively very
similar to those reported for the AR(1) case. The main exceptions are that the
bias-minimizing value of the pre-break window, v, is now quite large even under
the large break in 8. Conversely, it is no longer the case that the largest value of v;
minimizes the bias in B* in the case with a break in the mean.

Table 8 shows that the conditional forecast error bias continues to be negative
in the absence of a break or under a break in the innovation variance. For these
experiments, the forecast error bias is generally smaller the larger the value of the
pre-break window, v;. Upon introducing breaks, the bias-minimizing pre-break win-
dow continues to decline as v, gets larger and in some cases (experiments 2b and

3b), equals zero when the post-break window, ve > 50.

4.2.2 Forecasting performance

The forecasting performance results reported in Tables 9 and 10 are qualitatively
similar to those obtained for the AR(1) model. Long pre-break windows, v;, are

generally optimal in the absence of a break, under higher post-break volatility and
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for increases as well as decreases in (; at the time of the break. Smaller pre-
break windows minimize the RMSFE as vy gets larger. A smaller pre-break window
continues to be called for as the size of the break increases irrespective of whether the
break occurs in the AR coefficients or in the mean. However, the optimal window

length continues to be quite long in many experiments even when v, is large.

5 Conclusion

This paper studied the small sample properties of forecasts from autoregressive
models subject to breaks. It is insightful to compare our results for the AR(p)
model to those reported derived by Pesaran and Timmermann (2003b) under strictly
exogenous regressors. Assuming strictly exogenous regressors, the OLS estimates
based on post-break data are unbiased. Including pre-break data will therefore
always increase the bias so that there will always be a trade-off between a larger
squared bias and a smaller variance of the parameter estimates as more pre-break
information is used. This trade-off can then be used to optimally determine the
optimal window size.

As we have shown in this paper, the situation can be very different for AR
models due to the inherent small-sample bias in the estimates of the parameters of
these models. In situations where the true AR coefficient(s) declines after a break,
both the bias and the forecast error variance can in fact decline as a result of using
pre-break data in the estimation. This is likely to be an important reason why,
empirically, it is often quite difficult to improve forecasting performance over the
expanding window method by only using post-break data.

More generally, we find that there are many scenarios where the inclusion of
some pre-break data for purposes of estimation of the parameters of autoregressive
models leads to lower biases and lower mean squared forecast errors than if only
post-break data is used. This can hold even when the post-break window is large,
particularly when the post-break data generating process is highly persistent and/or
has a break in the mean.

Several extensions to our results would be interesting to consider in future work.
We have focused on the case with Gaussian innovations. Ullah (2003) observes
that the bias in the forecast error is reasonably robust to skewness and kurtosis in
the innovations of the AR model while, in contrast, the MSE can be sensitive to
higher order moments that arise in the non-Gaussian case. Our results could easily

be extended to cover the non-normal case, for example by drawing the innovations
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from a mixture of normals. Another possibility would be to consider the effect of
adding additional predictors beyond autoregressive lags as well as extensions to cases

with multiple breaks.
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Table 1a: Breakpoint Specifications by Experiments

Experiments
la: No break
2a: Moderate break in 3,

3a: Moderate break in 3, (decline)

4a: Large break in ﬁl

5a: Post-break unit root

6a: Higher post-break volatility
Ta: Lower post-break volatility

8a: Break in mean (increase)

9a: Break in mean (decrease)

RS

[ T e e e e

AR(1) Model

=
)

e e T e e e e e

B

0.9
0.6
0.9
0.3
0.6
0.9
0.9
0.9
0.9

Table 1b: AR(2) Model

Experiments

1b:
2b:
3b:
4b:
5b:
6b:
7b:
8b:
9b:

No break

Moderate break in 3

Large increase in (3,

Large decrease in 3,
Post-break unit root
Higher post-break volatility
Lower post-break volatility
Break in mean (increase)

Break in mean (decrease)

A

N == = = = e e

B

0.75
0.65
0.45
0.75
0.60
0.75
0.75
0.75
0.75

=
N

LV a a a a  a
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Bz

-0.19
-0.29
0.00

-0.19
0.20

-0.19
-0.19
-0.19
-0.19

Bra
0.9

0.9
0.6
0.9

0.9
0.9
0.9
0.9

Bar
0.75

0.75
0.75
0.45
0.80
0.75
0.75
0.75
0.75
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-0.19
-0.19
-0.19
0.00

0.20

-0.19
-0.19
-0.19
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Table 2: Small sample bias of the OLS estimate of

Experiment no. 1a : No break

Experiment no. 4a : Large break in

B as a function of pre-break ( v;) and post-break ( v,) windows - (AR(1) model).

Experiment no. 7a : Lower post-break volatility

vi/vy 10 20 30 50 100 vi/ v 10 20 30 50 100 vi/ v 10 20 30 50 100
0 -0.370 -0.200 -0.135 -0.081 -0.039 0 -0.396 -0.214 -0.145 -0.086 -0.041 0 -0.224 -0.118 -0.080 -0.052 -0.028

1 -0.344 -0.193 -0.132 -0.080 -0.039 1] -0.386 -0.221 -0.150 -0.089 -0.042 1 -0.326 -0.176 -0.118 -0.072 -0.037

2 -0.315 -0.184 -0.129 -0.078 -0.039 2 -0.371 -0.218 -0.151 -0.091 -0.044 2 -0.338 -0.188 -0.134 -0.082 -0.042

3| -0.297 -0.175 -0.125 -0.076 -0.038 3 -0.362 -0.219 -0.151 -0.093 -0.045 3 -0.330 -0.190 -0.134 -0.086 -0.046

4 -0.278 -0.170 -0.119 -0.076 -0.038 4  -0.358 -0.221 -0.154 -0.095 -0.046 4  -0.316 -0.188 -0.135 -0.089 -0.048

5 -0.262 -0.162 -0.116 -0.074 -0.037 5 -0.357 -0.222 -0.156 -0.096 -0.048 5 -0.299 -0.185 -0.135 -0.091 -0.050
10 -0.202 -0.136 -0.102 -0.068 -0.035 10 -0.363 -0.233 -0.170 -0.107 -0.054 10 -0.226 -0.157 -0.121 -0.087 -0.051
20| -0.136 -0.102 -0.081 -0.057 -0.032 200 -0.392 -0.262 -0.195 -0.127 -0.066 20 -0.150 -0.116 -0.095 -0.073 -0.048
30| -0.102 -0.082 -0.066 -0.050 -0.030 300 -0.418 -0.292 -0.220 -0.147 -0.078 30 -0.110 -0.090 -0.078 -0.061 -0.043
50| -0.067 -0.058 -0.049 -0.040 -0.026 500 -0.453 -0.334 -0.262 -0.181 -0.100 50 -0.070 -0.063 -0.057 -0.048 -0.036
100 -0.036 -0.033 -0.030 -0.026 -0.020 100, -0.499 -0.401 -0.332 -0.246 -0.145 100 -0.037 -0.035 -0.033 -0.029 -0.024

Experiment no. 2a : Moderate break in Experiment no. 5a : Post-break unit root Experiment no. 8a : Break in mean (increase)

vilvy 10 20 30 50 100 vilvy 10 20 30 50 100 vilvy 10 20 30 50 100
0| -0.392 -0.214 -0.144 -0.085 -0.041 0 -0.413 -0.233 -0.163 -0.101 -0.052 0 -0.366 -0.198 -0.134 -0.080 -0.038

1 -0.375 -0.214 -0.146 -0.087 -0.042 1 -0.391 -0.227 -0.159 -0.100 -0.052 1 -0.333 -0.189 -0.131 -0.078 -0.039

2 -0.354 -0.209 -0.144 -0.087 -0.043 2 -0.367 -0.220 -0.157 -0.098 -0.051 2 -0.311 -0.177 -0.126 -0.075 -0.038

3| -0.337 -0.204 -0.144 -0.088 -0.044 3 -0.351 -0.211 -0.152 -0.096 -0.051 3 -0.289 -0.169 -0.120 -0.075 -0.037

4 -0.324 -0.200 -0.145 -0.089 -0.044 4  -0.338 -0.207 -0.149 -0.095 -0.051 4  -0.270 -0.164 -0.115 -0.071 -0.037

5 -0.317 -0.200 -0.143 -0.091 -0.045 5 -0.325 -0.199 -0.146 -0.094 -0.050 5  -0.257 -0.156 -0.113 -0.071 -0.036
10 -0.286 -0.190 -0.144 -0.094 -0.048 10  -0.303 -0.190 -0.138 -0.089 -0.048 10 -0.196 -0.130 -0.097 -0.063 -0.033
20| -0.269 -0.191 -0.149 -0.102 -0.055 20| -0.295 -0.190 -0.138 -0.088 -0.046 20 -0.133 -0.097 -0.076 -0.053 -0.029
30| -0.268 -0.200 -0.158 -0.111 -0.062 300 -0.301 -0.197 -0.143 -0.091 -0.047 30 -0.100 -0.077 -0.062 -0.045 -0.027
50 -0.269 -0.213 -0.174 -0.126 -0.074 50 -0.313 -0.215 -0.158 -0.098 -0.048 50 -0.066 -0.054 -0.045 -0.034 -0.022
100 -0.276 -0.233 -0.200 -0.156 -0.100 100, -0.337 -0.247 -0.188 -0.119 -0.056 100 -0.035 -0.031 -0.028 -0.022 -0.015

Experiment no. 3a : Break in  (decline) Experiment no. 6a : Higher post-break volatility Experiment no. 9a : Break in mean (decrease)

vi/vy 10 20 30 50 100 vi/ V) 10 20 30 50 100 vi/ V) 10 20 30 50 100
0| -0.226 -0.125 -0.087 -0.053 -0.028 0 -0.399 -0.219 -0.147 -0.087 -0.041 0 -0.365 -0.197 -0.134 -0.081 -0.039

1 -0.156 -0.084 -0.057 -0.036 -0.017 1] -0.340 -0.202 -0.140 -0.083 -0.041 1 -0.334 -0.187 -0.128 -0.079 -0.038

2| -0.113 -0.057 -0.036 -0.022 -0.010 2l -0.301 -0.188 -0.134 -0.083 -0.041 2 -0.312 -0.178 -0.123 -0.075 -0.038

3| -0.084 -0.037 -0.021 -0.010 -0.003 3 -0.278 -0.177 -0.129 -0.080 -0.040 3 -0.289 -0.171 -0.120 -0.074 -0.037

4 -0.059 -0.020 -0.007 0.001 0.004 4 -0.263 -0.170 -0.125 -0.080 -0.039 4 -0.271 -0.164 -0.115 -0.072 -0.036

5 -0.036 -0.003 0.005 0.010 0.011 5 -0.244 -0.161 -0.118 -0.077 -0.039 5  -0.255 -0.156 -0.111 -0.070 -0.037
10 0.040 0.051 0.052 0.048 0.036 100 -0.196 -0.134 -0.105 -0.071 -0.038 10  -0.195 -0.130 -0.097 -0.064 -0.034
20| 0.117 0.117 0.112 0.098 0.076 20| -0.148 -0.111 -0.089 -0.062 -0.035 20 -0.133 -0.096 -0.076 -0.053 -0.029
30| 0.161 0.156 0.147 0.133 0.106 30 -0.122 -0.095 -0.077 -0.057 -0.033 30 -0.100 -0.077 -0.063 -0.045 -0.027
50| 0.208 0.200 0.190 0.177 0.147 50 -0.085 -0.074 -0.063 -0.048 -0.029 50 -0.066 -0.054 -0.045 -0.035 -0.021
100 0.250 0.243 0.237 0.225 0.200 1000 -0.049 -0.050 -0.045 -0.037 -0.025 100 -0.035 -0.031 -0.028 -0.022 -0.015

Note: Experiments 1a to 9a are defined in Table 1a.



Table 3: Bias of forecast error conditional on y = o, + 03 - (AR(1) model)

Experiment no. 1a : No break Experiment no. 4a : Large break in 8 Experiment no. 7a : Lower post-break volatility
Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0| -0.370 -0.200 -0.135 -0.081 -0.039 0| -0.396 -0.214 -0.145 -0.086 -0.041 0 -0.112  -0.059 -0.040 -0.026 -0.014
1 -0.344 -0.193 -0.132 -0.080 -0.039 1 -0.386  -0.221 -0.150 -0.089 -0.042 1 -0.163  -0.088 -0.059 -0.036 -0.018
2| -0.315 -0.184 -0.129 -0.078 -0.039 2 -0.371  -0.218 -0.151 -0.091 -0.044 2 -0.169  -0.094 -0.067 -0.041 -0.021
3] -0.297 -0.175 -0.125 -0.076 -0.038 3| -0.362  -0.219 -0.151 -0.093 -0.045 3 -0.165  -0.095 -0.067 -0.043 -0.023
4 -0.278 -0.170 -0.119 -0.076 -0.038 4 -0.358  -0.221 -0.154 -0.095 -0.046 4 -0.158  -0.094 -0.068 -0.045 -0.024
5 -0.262 -0.162 -0.116 -0.074 -0.037 5 -0.357  -0.222 -0.156 -0.096 -0.048 5 -0.149  -0.092 -0.068 -0.045 -0.025
10 -0.202 -0.136 -0.102 -0.068 -0.035 10| -0.363  -0.233 -0.170 -0.107 -0.054 10 -0.113  -0.078 -0.061 -0.044 -0.026
20 -0.136 -0.102 -0.081 -0.057 -0.032 20 -0.392 -0.262 -0.195 -0.127 -0.066 20 -0.075  -0.058 -0.048 -0.036 -0.024
30 -0.102 -0.082 -0.066 -0.050 -0.030 30 -0.418  -0.292 -0.220 -0.147 -0.078 30 -0.055  -0.045 -0.039 -0.031 -0.021
50 -0.067 -0.058 -0.049 -0.040 -0.026 50 -0.453  -0.334 -0.262 -0.181 -0.100 50 -0.035  -0.031 -0.028 -0.024 -0.018
100 -0.036 -0.033 -0.030 -0.026 -0.020 100 -0.499 -0.401 -0.332 -0.246 -0.145 100 -0.018  -0.017 -0.016 -0.015 -0.012
Experiment no. 2a : Moderate break in 3 Experiment no. 5a : Post-break unit root Experiment no. 8a : Break in mean (increase)
Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0| -0.392 -0.214 -0.144 -0.085 -0.041 0| -0.413  -0.233 -0.163 -0.101 -0.052 0 -0.607  -0.288 -0.178 -0.096 -0.042
1 -0.375 -0.214 -0.146 -0.087 -0.042 1 -0.391  -0.227 -0.159 -0.100 -0.052 1 -0.576  -0.285 -0.181 -0.098 -0.044
2| -0.354 -0.209 -0.144 -0.087 -0.043 2 -0.367  -0.220 -0.157 -0.098 -0.051 2 -0.556  -0.280 -0.181 -0.098 -0.045
3] -0.337 -0.204 -0.144 -0.088 -0.044 3| -0.351 -0.211 -0.152 -0.096 -0.051 3 -0.527  -0.276 -0.180 -0.101 -0.046
4 -0.324 -0.200 -0.145 -0.089 -0.044 4 -0.338  -0.207 -0.149 -0.095 -0.051 4 -0.505  -0.274 -0.178 -0.100 -0.046
5 -0.317 -0.200 -0.143 -0.091 -0.045 5 -0.325  -0.199 -0.146 -0.094 -0.050 5 -0.488  -0.267 -0.179 -0.103 -0.047
10 -0.286 -0.190 -0.144 -0.094 -0.048 10| -0.303  -0.190 -0.138 -0.089 -0.048 10 -0.402  -0.247 -0.173 -0.105 -0.050
20 -0.269 -0.191 -0.149 -0.102 -0.055 20 -0.295  -0.190 -0.138 -0.088 -0.046 20 -0.310 -0.213 -0.161 -0.105 -0.055
30 -0.268 -0.200 -0.158 -0.111 -0.062 30 -0.301  -0.197 -0.143 -0.091 -0.047 30 -0.261  -0.194 -0.152 -0.105 -0.059
50 -0.269 -0.213 -0.174 -0.126 -0.074 50 -0.313  -0.215 -0.158 -0.098 -0.048 50 -0.208  -0.168 -0.140 -0.104 -0.064
100 -0.276 -0.233 -0.200 -0.156 -0.100 100 -0.337  -0.247 -0.188 -0.119 -0.056 100 -0.158  -0.141 -0.126 -0.104 -0.073
Experiment no. 3a : Break in 3 (decline) Experiment no. 6a : Higher post-break volatility Experiment no. 9a : Break in mean (decrease)
Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0| -0.226 -0.125 -0.087 -0.053 -0.028 0 -0.798  -0.438 -0.295 -0.174 -0.083 0 -0.124  -0.109 -0.091 -0.064 -0.035
1 -0.156 -0.084 -0.057 -0.036 -0.017 1 -0.681  -0.403 -0.279 -0.167 -0.082 1 -0.091  -0.092 -0.079 -0.058 -0.032
2| -0.113 -0.057 -0.036 -0.022 -0.010 2 -0.602  -0.377 -0.268 -0.165 -0.082 2 -0.067  -0.076 -0.069 -0.052 -0.031
3] -0.084 -0.037 -0.021 -0.010 -0.003 3| -0.556  -0.354 -0.259 -0.161 -0.080 3 -0.051  -0.064 -0.060 -0.048 -0.029
4 -0.059 -0.020 -0.007 0.001 0.004 4 -0.526  -0.340 -0.250 -0.160 -0.079 4 -0.037  -0.053 -0.052 -0.043 -0.027
5 -0.036 -0.003 0.005 0.010 0.011 5 -0.488  -0.322 -0.236 -0.154 -0.079 5 -0.026  -0.044 -0.045 -0.038 -0.025
10| 0.040 0.051 0.052 0.048 0.036 10| -0.393  -0.269 -0.211 -0.143 -0.076 10 0.011  -0.014 -0.021 -0.023 -0.017
20 0.117 0.117 0.112 0.098 0.076 20 -0.295  -0.223 -0.177 -0.123 -0.070 20 0.044 0.021 0.009 0.000 -0.004
30 0.161 0.156 0.147 0.133 0.106 30 -0.244  -0.190 -0.153 -0.113 -0.066 30 0.060 0.039 0.027 0.015 0.005
50 0.208 0.200 0.190 0.177 0.147 50 -0.171  -0.148 -0.126 -0.096 -0.058 50 0.076 0.060 0.049 0.036 0.021
100 0.250 0.243 0.237 0.225 0.200 100 -0.098  -0.100 -0.090 -0.075 -0.051 100 0.089 0.079 0.071 0.060 0.043

See the note to Table 2.

Table 4: Unconditional RMSFE as a function of pre-break ( v;) and post-break window ( v,) - (AR(1) model)

Experiment no. 1a : No break Experiment no. 4a : large break in 3 Experiment no. 7a : Lower post-break volatility



viv) 10 20 30 50 100 vi/vj 10 20 30 50 100 vi/vj 10 20 30 50 100
0 1.149 1.078 1.051 1.028 1.012 0 1.129 1.070 1.048 1.028 1.013 0 0.648 0.567 0.535 0.515 0.506

1] 1.140 1.075 1.048 1.027 1.012 1 1.123 1.070 1.049 1.028 1.013 1 0.769 0.630 0.568 0.526 0.509

2 1.127 1.072 1.047 1.026 1.012 2| 1.112 1.070 1.049 1.028 1.013 2l 0.797 0.656 0.585 0.535 0.510

3 1.120 1.070 1.046 1.026 1.012 3 1.107 1.068 1.048 1.029 1.013 3 0.796 0.661 0.593 0.539 0.512

4 1.112 1.066 1.044 1.025 1.011 4 1101 1.066 1.046 1.028 1.013 4  0.795 0.666 0.595 0.542 0.513

5 1.104 1.063 1.043 1.025 1.012 5 1.101 1.065 1.046 1.028 1.013 5 0.789 0.668 0.600 0.544 0.514
10 1.075 1.051 1.037 1.023 1.011 10 1.101 1.066 1.046 1.028 1.013 100 0.739 0.648 0.595 0.549 0.516
20 1.047 1.035 1.028 1.019 1.010 20 1.132 1.079 1.056 1.033 1.015 20| 0.678 0.615 0.580 0.544 0.517
30 1.034 1.027 1.021 1.015 1.009 30 1.163 1.100 1.068 1.040 1.017 30 0.642 0.595 0.569 0.540 0.517
50 1.022 1.018 1.016 1.012 1.008 50 1.217 1.138 1.096 1.057 1.024 50| 0.598 0.571 0.555 0.534 0.516
100] 1.011 1.010 1.009 1.008 1.006 100 1.303 1.216 1.163 1.103 1.045 100 0.552 0.543 0.537 0.527 0.515

Experiment no. 2a : Moderate break in 3 Experiment no. 5a : Post-break unit root Experiment no. 8a : Break in mean (increase)

viivy 10 20 30 50 100 vi/vj 10 20 30 50 100 vi/vj 10 20 30 50 100
0 1.135 1.073 1.048 1.028 1.013 0 1.116 1.064 1.044 1.028 1.014 0 1.152 1.078 1.050 1.028 1.012

1] 1.120 1.070 1.047 1.028 1.013 1] 1.109 1.063 1.043 1.027 1.014 1] 1.139 1.075 1.048 1.027 1.012

2 1.109 1.067 1.046 1.027 1.013 2 1.101 1.061 1.042 1.027 1.014 2 1.129 1.071 1.046 1.026 1.012

3 1.100 1.063 1.045 1.027 1.013 3 1.101 1.058 1.041 1.026 1.014 3 1.122 1.069 1.045 1.025 1.011

4 1.092 1.061 1.044 1.026 1.013 4 1.103 1.058 1.041 1.026 1.014 4 1.114 1.068 1.043 1.025 1.012

5 1.087 1.059 1.043 1.026 1.012 5 1.104 1.057 1.040 1.026 1.014 5 1.108 1.064 1.043 1.024 1.011
10 1.072 1.051 1.039 1.024 1.012 10 1.116 1.062 1.042 1.026 1.013 100 1.078 1.053 1.038 1.022 1.011
20| 1.070 1.048 1.037 1.025 1.012 20| 1.145 1.079 1.052 1.029 1.013 20 1.051 1.038 1.030 1.019 1.010
30 1.075 1.051 1.039 1.026 1.013 30 1.177 1.100 1.064 1.034 1.015 30 1.039 1.030 1.024 1.017 1.009
50| 1.084 1.060 1.046 1.030 1.015 50| 1.223 1.140 1.094 1.047 1.018 50| 1.027 1.021 1.018 1.014 1.008
100] 1.110 1.081 1.063 1.045 1.023 100 1.306 1.228 1.162 1.087 1.030 100 1.017 1.014 1.012 1.010 1.007

Experiment no. 3a : Break in 3 (decline) Experiment no. 6a : Higher post-break volatility Experiment no. 9a : Break in mean (decrease)

vi/vy 10 20 30 50 100 Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0 1.118 1.054 1.035 1.020 1.010 0 2263 2.145 2.096 2.055 2.025 0 1154 1.079 1.050 1.027 1.012

1] 1.113 1.053 1.032 1.020 1.010 1] 2.217 2.125 2.088 2.052 2.024 1] 1.142 1.074 1.048 1.027 1.012

2 1.112 1.050 1.033 1.020 1.010 2l 2194 2.113 2.081 2.050 2.024 2l 1132 1.071 1.047 1.026 1.012

3 1.113 1.051 1.034 1.020 1.010 3 2.185 2.107 2.077 2.049 2.024 3 1.122 1.069 1.045 1.026 1.012

4 1.111 1.052 1.035 1.021 1.010 4 2.172 2.100 2.073 2.048 2.024 4 1.114 1.066 1.044 1.025 1.011

5 1.112 1.053 1.036 1.022 1.011 5 2.167 2.097 2.070 2.045 2.022 5 1.106 1.064 1.042 1.024 1.011
10 1.098 1.056 1.039 1.026 1.013 100 2.145 2.080 2.059 2.040 2.022 100 1.079 1.052 1.037 1.022 1.011
20| 1.079 1.055 1.043 1.030 1.018 20| 2.117 2.065 2.050 2.033 2.019 20 1.051 1.038 1.030 1.019 1.010
30 1.070 1.054 1.045 1.034 1.021 30 2.097 2.059 2.044 2.030 2.017 30 1.039 1.029 1.024 1.017 1.009
50| 1.064 1.056 1.049 1.041 1.028 50| 2.073 2.050 2.036 2.026 2.015 50| 1.027 1.021 1.018 1.013 1.008
100 1.060 1.057 1.054 1.049 1.038 1000 2.043 2.034 2.028 2.019 2.012 100 1.017 1.014 1.012 1.010 1.007

See the note to Table 2.




Table 5. RMSFE conditionalony = a5, + 02 - (AR(1) model)

Experiment no. 1a : No break Experiment no. 4a : Large break in 8 Experiment no. 7a : Lower post-break volatility
Vi/V; 10 20 30 50 100 Vi/V; 10 20 30 50 100 Vi/V; 10 20 30 50 100
0 1.421 1.164 1.088 1.038 1.013 0 1.344 1.152 1.086 1.039 1.013 0 0.922 0.619 0.551 0.519 0.506
1] 1.375 1.153 1.085 1.037 1.012 1] 1.293 1.146 1.085 1.039 1.013 1 1.177 0.710 0.591 0.530 0.508
2 1.329 1.142 1.079 1.036 1.012 2 1.254 1.128 1.078 1.037 1.013 2 1.208 0.742 0.609 0.539 0.509
3 1.301 1.130 1.075 1.034 1.012 3 1.220 1.118 1.073 1.037 1.013 3 1.178 0.745 0.618 0.542 0.510
4 1.274 1.123 1.069 1.033 1.012 4 1.197 1.109 1.070 1.035 1.013 4 1.156 0.746 0.620 0.545 0.511
5 1.248 1.115 1.067 1.032 1.011 5 1.182 1.102 1.066 1.034 1.013 5 1.118 0.744 0.623 0.547 0.512
10 1.165 1.085 1.053 1.028 1.011 10 1.141 1.084 1.057 1.032 1.013 10 0.959 0.709 0.614 0.550 0.514
20 1.086 1.054 1.037 1.021 1.009 20 1.120 1.074 1.051 1.030 1.013 20 0.786 0.651 0.593 0.545 0.515
30| 1.053 1.037 1.027 1.017 1.008 30| 1.118 1.074 1.051 1.030 1.013 30 0.701 0.618 0.577 0.541 0.515
50| 1.027 1.021 1.017 1.012 1.007 50| 1.119 1.078 1.055 1.033 1.014 50| 0.618 0.581 0.560 0.535 0.515
100 1.011 1.009 1.008 1.007 1.005 1000 1.129 1.091 1.068 1.043 1.019 100 0.555 0.545 0.538 0.526 0.514
Experiment no. 2a : Moderate break in 3 Experiment no. 5a : Post-break unit root Experiment no. 8a : Break in mean (increase)
Vi/V; 10 20 30 50 100 Vi/V; 10 20 30 50 100 Vi/V; 10 20 30 50 100
0 1.352 1.158 1.087 1.039 1.013 0 1.458 1.263 1.188 1.119 1.063 0 1.514 1.190 1.098 1.041 1.013
1] 1.303 1.145 1.083 1.038 1.013 1] 1.372 1.229 1.167 1.110 1.060 1 1.460 1.180 1.095 1.040 1.013
2| 1.260 1.129 1.076 1.037 1.013 2 1.321 1.200 1.148 1.097 1.056 2 1.419 1.169 1.092 1.039 1.013
3 1.228 1.117 1.073 1.035 1.012 3 1.276 1.172 1.130 1.087 1.052 3 1.379 1.159 1.087 1.038 1.013
4 1.197 1.106 1.068 1.034 1.012 4 1.242 1.157 1.119 1.081 1.048 4 1.348 1.152 1.083 1.037 1.013
5 1.180 1.098 1.063 1.034 1.012 5 1.214 1.141 1.106 1.075 1.046 5 1.326 1.143 1.081 1.037 1.012
10 1.118 1.073 1.050 1.029 1.012 10 1.140 1.098 1.076 1.054 1.035 10 1.221 1.113 1.068 1.033 1.012
20 1.079 1.053 1.039 1.024 1.011 20 1.095 1.068 1.052 1.038 1.025 20 1.129 1.077 1.051 1.027 1.011
30 1.065 1.046 1.034 1.022 1.011 30 1.080 1.056 1.043 1.030 1.020 30 1.089 1.058 1.040 1.023 1.010
50 1.053 1.039 1.031 1.020 1.010 50 1.069 1.048 1.036 1.025 1.015 50 1.051 1.037 1.029 1.018 1.009
100 1.046 1.036 1.029 1.020 1.011 100 1.066 1.045 1.033 1.021 1.011 100 1.025 1.021 1.018 1.013 1.008
Experiment no. 3a : Break in 3 (decline) Experiment no. 6a : Higher post-break volatility Experiment no. 9a : Break in mean (decrease)
Vi/V; 10 20 30 50 100 Vi/V; 10 20 30 50 100 Vi/V; 10 20 30 50 100
0 1.161 1.066 1.039 1.021 1.010 0 2.634 2.295 2.173 2.077 2.025 0 1.372 1.143 1.080 1.036 1.012
1] 1.136 1.057 1.034 1.019 1.009 1] 2.443 2.238 2.146 2.071 2.025 1 1.329 1.132 1.074 1.033 1.012
2 1.126 1.053 1.033 1.018 1.009 2l 2344 2.199 2.130 2.067 2.024 2 1.290 1.120 1.068 1.031 1.011
3 1.121 1.052 1.032 1.018 1.009 3 2.286 2.172 2.116 2.062 2.023 3 1.257 1.110 1.063 1.030 1.011
4 1.114 1.050 1.032 1.018 1.009 4 2.250 2.151 2.106 2.059 2.023 4 1.231 1.103 1.058 1.029 1.010
5 1.111 1.049 1.032 1.019 1.009 5 2.218 2.135 2.095 2.055 2.022 5 1.211 1.096 1.056 1.027 1.010
10 1.087 1.047 1.032 1.020 1.010 100 2.143 2.088 2.067 2.043 2.020 10 1.139 1.070 1.043 1.023 1.009
20 1.062 1.041 1.032 1.022 1.012 20 2.085 2.055 2.043 2.030 2.016 20| 1.073 1.043 1.030 1.017 1.008
30 1.051 1.038 1.031 1.024 1.015 30 2.060 2.040 2.031 2.023 2.013 30 1.045 1.030 1.022 1.014 1.007
50 1.044 1.037 1.033 1.027 1.019 50 2.034 2.026 2.021 2.016 2.010 50| 1.025 1.019 1.015 1.010 1.006
100 1.040 1.038 1.036 1.032 1.025 1000 2.014 2.013 2.011 2.009 2.006 100 1.013 1.011 1.009 1.007 1.005

See the note to Table 2.



Experiment no. 1b : No break

Table 6: Small sample bias of the OLS estimat®; 6f(AR(2) Model)

Experiment no.4b : Large decrease in

Experiment no. 7b : Lower post-break volatility

ViV, 10 20 30 50 100 vi/v, 10 20 30 50 100 Vi/V; 10 20 30 50 100
0| -0.193 -0.088 -0.058 -0.034 -0.015 0 -0.168 -0.080 -0.052 -0.030 -0.015 0 -0.136 -0.068 -0.046 -0.029 -0.015

1 -0.165 -0.081 -0.052 -0.032 -0.017 1 -0.134 -0.061 -0.038 -0.023 -0.011 1 -0.144 -0.084 -0.058 -0.037 -0.019

2| -0.157 -0.080 -0.055 -0.033 -0.016 2 -0.097 -0.046 -0.031 -0.018 -0.008 2l -0.148 -0.090 -0.066 -0.043 -0.021

3| -0.145 -0.076 -0.050 -0.031 -0.015 3 -0.062 -0.031 -0.018 -0.010 -0.003 3 -0.138 -0.088 -0.064 -0.045 -0.025

4 -0.129 -0.072 -0.049 -0.031 -0.015 4 -0.037 -0.015 -0.010 -0.006 -0.001 4  -0.125 -0.089 -0.064 -0.049 -0.025

5 -0.118 -0.069 -0.048 -0.030 -0.016 5 -0.015 -0.006 -0.001 0.002 0.002 5 -0.122 -0.085 -0.064 -0.046 -0.027
10 -0.087 -0.054 -0.042 -0.027 -0.013 10 0.063 0.046 0.036 0.026 0.015 10 -0.091 -0.068 -0.058 -0.043 -0.027
20| -0.059 -0.039 -0.034 -0.022 -0.013 20 0.145 0.112 0.091 0.064 0.039 200 -0.059 -0.051 -0.044 -0.034 -0.026
30| -0.042 -0.034 -0.028 -0.020 -0.013 30 0.183 0.148 0.125 0.094 0.059 300 -0.043 -0.038 -0.035 -0.028 -0.021
50| -0.027 -0.024 -0.020 -0.016 -0.010 50 0.224 0.193 0.168 0.135 0.091 50 -0.030 -0.026 -0.023 -0.021 -0.015
100 -0.014 -0.014 -0.012 -0.011 -0.008 100 0.258 0.236 0.218 0.189 0.142 1000 -0.016 -0.014 -0.013 -0.011 -0.010

Experiment no. 2b : Small break in B Experiment no. 5b : Break in B (post-break unit root) Experiment no. 8b : Break in mean (increase)

ViV, 10 20 30 50 100 vi/v, 10 20 30 50 100 Vi/V; 10 20 30 50 100
0| -0.193 -0.087 -0.057 -0.033 -0.017 0 -0.353 -0.179 -0.126 -0.077 -0.038 0 -0.186 -0.087 -0.055 -0.033 -0.016

1 -0.185 -0.088 -0.058 -0.035 -0.017 1 -0.325 -0.182 -0.124 -0.078 -0.038 1 -0.148 -0.074 -0.047 -0.028 -0.014

2| -0.170 -0.087 -0.057 -0.035 -0.018 2 -0.306 -0.174 -0.122 -0.076 -0.041 2l -0.125 -0.062 -0.042 -0.025 -0.013

3| -0.158 -0.087 -0.059 -0.036 -0.018 3 -0.292 -0.172 -0.121 -0.077 -0.041 3 -0.105 -0.053 -0.037 -0.022 -0.012

4 -0.154 -0.087 -0.061 -0.037 -0.019 4 -0.275 -0.168 -0.122 -0.078 -0.040 4 -0.092 -0.047 -0.031 -0.019 -0.009

5 -0.146 -0.087 -0.061 -0.037 -0.020 5 -0.267 -0.167 -0.122 -0.077 -0.042 5 -0.081 -0.041 -0.027 -0.017 -0.008
10 -0.129 -0.085 -0.063 -0.041 -0.022 10 -0.228 -0.154 -0.117 -0.079 -0.043 10 -0.046 -0.020 -0.011 -0.005 -0.001
20| -0.114 -0.086 -0.067 -0.048 -0.027 20 -0.202 -0.148 -0.118 -0.083 -0.048 20 -0.021 -0.002 0.004 0.007 0.007
30| -0.108 -0.087 -0.071 -0.053 -0.031 30 -0.193 -0.147 -0.121 -0.087 -0.053 30 -0.013 0.003 0.008 0.013 0.014
50| -0.104 -0.090 -0.076 -0.060 -0.039 50 -0.188 -0.153 -0.128 -0.098 -0.063 50 -0.006 0.008 0.014 0.020 0.020
100 -0.102 -0.091 -0.083 -0.071 -0.052 100 -0.190 -0.163 -0.142 -0.115 -0.079 100 -0.001 0.008 0.014 0.020 0.026

Experiment no. 3b : Large increase in B Experiment no. 6b : Higher post-break volatility Experiment no. 9b : Break in mean (decrease)

ViV, 10 20 30 50 100 vi/v, 10 20 30 50 100 Vi/V; 10 20 30 50 100
0| -0.199 -0.088 -0.057 -0.033 -0.016 0 -0.204 -0.092 -0.057 -0.033 -0.016 0 -0.189 -0.084 -0.054 -0.032 -0.016

1] -0.199 -0.099 -0.067 -0.039 -0.018 1 -0.183 -0.087 -0.055 -0.032 -0.015 1 -0.154 -0.074 -0.046 -0.027 -0.014

2| -0.201 -0.108 -0.070 -0.043 -0.021 2 -0.162 -0.084 -0.056 -0.032 -0.016 2l -0.126 -0.062 -0.042 -0.025 -0.012

3 -0.209 -0.115 -0.079 -0.049 -0.025 3 -0.148 -0.083 -0.053 -0.032 -0.016 3 -0.107 -0.053 -0.037 -0.023 -0.010

4 -0.212 -0.121 -0.084 -0.052 -0.026 4 -0.136 -0.075 -0.053 -0.031 -0.015 4 -0.091 -0.048 -0.031 -0.018 -0.010

5 -0.214 -0.127 -0.091 -0.056 -0.030 5 -0.131 -0.071 -0.051 -0.030 -0.016 5 -0.079 -0.039 -0.027 -0.018 -0.008
10 -0.233 -0.154 -0.115 -0.077 -0.040 10 -0.103 -0.062 -0.044 -0.030 -0.015 10 -0.045 -0.021 -0.013 -0.006 -0.002
20| -0.249 -0.187 -0.151 -0.108 -0.063 20 -0.073 -0.052 -0.039 -0.026 -0.013 20 -0.023 -0.003 0.003 0.007 0.008
30| -0.264 -0.209 -0.175 -0.130 -0.080 30 -0.060 -0.044 -0.036 -0.025 -0.014 30 -0.013 0.004 0.009 0.012 0.013
50| -0.272 -0.235 -0.205 -0.164 -0.109 50 -0.047 -0.039 -0.031 -0.020 -0.013 50 -0.006 0.007 0.014 0.018 0.020
100 -0.286 -0.261 -0.241 -0.207 -0.155 100 -0.027 -0.025 -0.023 -0.016 -0.011 1000 -0.003 0.008 0.014 0.021 0.026

Note: Experiments 1b to 9b are defined in Table 1b.




Experiment no. 1b : No break

Table 7: Small sample bias of the OLS estimate of

Experiment no. 4b : Large decrease in B

B.+ B - (AR(2) model)

Experiment no. 7b : Lower post-break volatility

vi/v 10 20 30 50 100 vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0 -0.315 -0.152 -0.098 -0.059 -0.028 0 -0.342 -0.173 -0.117 -0.071 -0.035 0 -0.159 -0.091 -0.065 -0.043 -0.024

1] -0.277 -0.143 -0.096 -0.057 -0.029 1 -0.302 -0.159 -0.106 -0.065 -0.032 1 -0.193 -0.116 -0.083 -0.056 -0.030

2 -0.256 -0.137 -0.094 -0.056 -0.028 2 -0.267 -0.146 -0.099 -0.060 -0.031 2 -0.205 -0.127 -0.095 -0.063 -0.034

3 -0.237 -0.131 -0.088 -0.055 -0.028 3 -0.231 -0.129 -0.090 -0.055 -0.028 3 -0.202 -0.131 -0.099 -0.068 -0.037

4 -0.220 -0.127 -0.087 -0.054 -0.028 4 -0.204 -0.117 -0.084 -0.053 -0.026 4 -0.195 -0.132 -0.100 -0.072 -0.039

5 -0.202 -0.118 -0.083 -0.052 -0.028 5 -0.182 -0.110 -0.078 -0.047 -0.024 5 -0.192 -0.129 -0.102 -0.071 -0.041
10 -0.147 -0.097 -0.073 -0.048 -0.025 10 -0.102 -0.066 -0.047 -0.032 -0.017 10 -0.151 -0.109 -0.093 -0.070 -0.044
20 -0.100 -0.072 -0.058 -0.041 -0.024 20 -0.023 -0.015 -0.009 -0.006 -0.002 20 -0.102 -0.084 -0.071 -0.056 -0.041
30 -0.072 -0.058 -0.048 -0.036 -0.022 30 0.013 0.014 0.013 0.012 0.009 30 -0.076 -0.066 -0.058 -0.049 -0.034
50 -0.049 -0.041 -0.036 -0.029 -0.018 50 0.047 0.043 0.040 0.035 0.026 50 -0.049 -0.044 -0.041 -0.035 -0.028
100 -0.026 -0.024 -0.022 -0.020 -0.014 100 0.076 0.072 0.068 0.062 0.049 100 -0.027 -0.025 -0.024 -0.022 -0.018

Experiment no. 2b : Small break in Experiment no. 5b : Break in B (post-break unit root) Experiment no. 8b : Break in mean (increase)

vi/v4 10 20 30 50 100 vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0 -0.317 -0.154 -0.098 -0.059 -0.030 0 -0.544 -0.290 -0.202 -0.125 -0.063 0 -0.289 -0.144 -0.096 -0.056 -0.028

1] -0.303 -0.154 -0.102 -0.061 -0.030 1 -0.503 -0.284 -0.195 -0.122 -0.062 1 -0.236 -0.121 -0.083 -0.049 -0.025

2 -0.286 -0.154 -0.101 -0.063 -0.031 2 -0.465 -0.271 -0.190 -0.120 -0.062 2 -0.202 -0.104 -0.071 -0.043 -0.021

3 -0.272 -0.154 -0.106 -0.063 -0.033 3 -0.437 -0.261 -0.184 -0.117 -0.061 3 -0.174 -0.090 -0.062 -0.036 -0.019

4 -0.264 -0.153 -0.108 -0.066 -0.034 4 -0.415 -0.250 -0.180 -0.115 -0.060 4 -0.154 -0.079 -0.052 -0.030 -0.015

5 -0.253 -0.152 -0.108 -0.067 -0.036 5 -0.395 -0.243 -0.175 -0.112 -0.060 5 -0.138 -0.069 -0.045 -0.026 -0.013
10 -0.232 -0.154 -0.114 -0.075 -0.040 10 -0.327 -0.214 -0.159 -0.105 -0.057 10 -0.084 -0.035 -0.018 -0.007 -0.001
20 -0.211 -0.157 -0.125 -0.090 -0.051 20 -0.269 -0.186 -0.142 -0.097 -0.053 20 -0.042 -0.006 0.007 0.016 0.017
30 -0.207 -0.163 -0.135 -0.100 -0.059 30 -0.244 -0.175 -0.135 -0.093 -0.051 30 -0.027 0.006 0.018 0.028 0.028
50 -0.201 -0.171 -0.147 -0.116 -0.074 50 -0.221 -0.167 -0.132 -0.091 -0.050 50 -0.014 0.013 0.026 0.039 0.041
100 -0.200 -0.179 -0.164 -0.139 -0.102 100 -0.207 -0.167 -0.137 -0.097 -0.054 100 -0.006 0.014 0.026 0.041 0.052

Experiment no. 3b : Large increase in B Experiment no. 6b : Higher post-break volatility Experiment no. 9b : Break in mean (decrease)

Vi/v 10 20 30 50 100 vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0 -0.323 -0.153 -0.100 -0.058 -0.029 0 -0.365 -0.166 -0.105 -0.061 -0.029 0 -0.289 -0.142 -0.094 -0.055 -0.028

1] -0.304 -0.151 -0.102 -0.059 -0.030 1 -0.327 -0.156 -0.102 -0.058 -0.028 1 -0.238 -0.122 -0.081 -0.050 -0.025

2 -0.282 -0.147 -0.100 -0.060 -0.029 2 -0.292 -0.150 -0.101 -0.058 -0.028 2 -0.201 -0.106 -0.072 -0.043 -0.021

3 -0.268 -0.147 -0.100 -0.060 -0.030 3 -0.265 -0.144 -0.095 -0.057 -0.029 3 -0.175 -0.091 -0.061 -0.038 -0.018

4 -0.258 -0.143 -0.100 -0.060 -0.031 4 -0.250 -0.137 -0.095 -0.057 -0.028 4 -0.154 -0.078 -0.053 -0.031 -0.016

5 -0.245 -0.140 -0.098 -0.059 -0.031 5 -0.232 -0.130 -0.090 -0.055 -0.028 5 -0.138 -0.069 -0.045 -0.027 -0.013
10 -0.209 -0.134 -0.099 -0.064 -0.033 10 -0.183 -0.116 -0.081 -0.053 -0.027 10 -0.081 -0.035 -0.019 -0.007 -0.001
20 -0.172 -0.126 -0.098 -0.066 -0.037 20 -0.132 -0.093 -0.070 -0.047 -0.026 20 -0.043 -0.006 0.008 0.016 0.017
30 -0.160 -0.120 -0.097 -0.069 -0.040 30 -0.106 -0.078 -0.062 -0.043 -0.024 30 -0.027 0.004 0.019 0.028 0.029
50 -0.140 -0.116 -0.099 -0.076 -0.046 50 -0.080 -0.064 -0.052 -0.037 -0.022 50 -0.013 0.013 0.026 0.038 0.042
100 -0.127 -0.112 -0.102 -0.084 -0.059 100 -0.046 -0.044 -0.038 -0.029 -0.019 100 -0.007 0.014 0.026 0.041 0.053

See the note to Table 6.

Table 8: Bias of forecast error conditional on y =

o, + 02 (AR(2) model)



Experiment no. 1b: No break

Experiment no. 4b: Large decrease in

Experiment no. 7b: Lower post-break volatility

vi/v4 10 20 30 50 100 vi/v4 10 20 30 50 100 Vi/Vv4 10 20 30 50 100
0 -0.315 -0.152 -0.098 -0.059 -0.028 0 -0.342 -0.173 -0.117 -0.071 -0.035 0 -0.079 -0.045 -0.033 -0.021 -0.012

1 -0.277 -0.143 -0.096 -0.057 -0.029 1 -0.302 -0.159 -0.106 -0.065 -0.032 1 -0.096 -0.058 -0.042 -0.028 -0.015

2 -0.256 -0.137 -0.094 -0.056 -0.028 2 -0.267 -0.146 -0.099 -0.060 -0.031 2 -0.102 -0.064 -0.047 -0.031 -0.017

3] -0.237 -0.131 -0.088 -0.055 -0.028 3 -0.231 -0.129 -0.090 -0.055 -0.028 3 -0.101 -0.066 -0.049 -0.034 -0.019

4 -0.220 -0.127 -0.087 -0.054 -0.028 4 -0.204 -0.117 -0.084 -0.053 -0.026 4 -0.098 -0.066 -0.050 -0.036 -0.020

5 -0.202 -0.118 -0.083 -0.052 -0.028 5 -0.182 -0.110 -0.078 -0.047 -0.024 5 -0.096 -0.064 -0.051 -0.035 -0.020
10 -0.147 -0.097 -0.073 -0.048 -0.025 10 -0.102 -0.066 -0.047 -0.032 -0.017 10 -0.076 -0.055 -0.046 -0.035 -0.022
20 -0.100 -0.072 -0.058 -0.041 -0.024 20 -0.023 -0.015 -0.009 -0.006 -0.002 20 -0.051 -0.042 -0.035 -0.028 -0.020
30| -0.072 -0.058 -0.048 -0.036 -0.022 30 0.013 0.014 0.013 0.012 0.009 30 -0.038 -0.033 -0.029 -0.024 -0.017
50 -0.049 -0.041 -0.036 -0.029 -0.018 50 0.047 0.043 0.040 0.035 0.026 50 -0.025 -0.022 -0.021 -0.017 -0.014
100 -0.026 -0.024 -0.022 -0.020 -0.014 100 0.076 0.072 0.068 0.062 0.049 100 -0.013 -0.012 -0.012 -0.011 -0.009

Experiment no. 2b: Small break in Experiment no. 5b: Break in 3 (post-break unit root) Experiment no. 8b: Break in mean (increase)

vi/v4 10 20 30 50 100 vi/v4 10 20 30 50 100 Vi/Vv4 10 20 30 50 100
0 -0.317 -0.154 -0.098 -0.059 -0.030 0 -0.544 -0.290 -0.202 -0.125 -0.063 0 -0.344 -0.160 -0.103 -0.059 -0.029

1 -0.303 -0.154 -0.102 -0.061 -0.030 1 -0.503 -0.284 -0.195 -0.122 -0.062 1  -0.339 -0.161 -0.106 -0.061 -0.030

2 -0.286 -0.154 -0.101 -0.063 -0.031 2 -0.465 -0.271 -0.190 -0.120 -0.062 2l -0.340 -0.164 -0.108 -0.064 -0.031

3] -0.272 -0.154 -0.106 -0.063 -0.033 3 -0.437 -0.261 -0.184 -0.117 -0.061 3 -0.338 -0.168 -0.111 -0.065 -0.033

4 -0.264 -0.153 -0.108 -0.066 -0.034 4 -0.415 -0.250 -0.180 -0.115 -0.060 4  -0.341 -0.173 -0.114 -0.066 -0.033

5 -0.253 -0.152 -0.108 -0.067 -0.036 5 -0.395 -0.243 -0.175 -0.112 -0.060 5 -0.342 -0.176 -0.117 -0.069 -0.035
10 -0.232 -0.154 -0.114 -0.075 -0.040 10 -0.327 -0.214 -0.159 -0.105 -0.057 10 -0.349 -0.195 -0.133 -0.082 -0.041
20 -0.211 -0.157 -0.125 -0.090 -0.051 20 -0.269 -0.186 -0.142 -0.097 -0.053 20 -0.363 -0.227 -0.165 -0.104 -0.054
30 -0.207 -0.163 -0.135 -0.100 -0.059 30 -0.244 -0.175 -0.135 -0.093 -0.051 30 -0.377 -0.253 -0.192 -0.126 -0.067
50 -0.201 -0.171 -0.147 -0.116 -0.074 50 -0.221 -0.167 -0.132 -0.091 -0.050 50 -0.392 -0.290 -0.231 -0.161 -0.091
100] -0.200 -0.179 -0.164 -0.139 -0.102 100 -0.207 -0.167 -0.137 -0.097 -0.054 100 -0.411 -0.340 -0.290 -0.223 -0.139

Experiment no. 3b: Large increase in 3 Experiment no. 6b: Higher post-break volatility Experiment no. 9b: Break in mean (decrease)

ViV, 10 20 30 50 100 Vi/V; 10 20 30 50 100 Vi/V; 10 20 30 50 100
0 -0.323 -0.153 -0.100 -0.058 -0.029 0 -0.730 -0.332 -0.209 -0.123 -0.057 0 -0.234 -0.126 -0.087 -0.052 -0.028

1 -0.304 -0.151 -0.102 -0.059 -0.030 1 -0.655 -0.311 -0.204 -0.117 -0.056 1 -0.134 -0.082 -0.058 -0.038 -0.020

2 -0.282 -0.147 -0.100 -0.060 -0.029 2 -0.584 -0.299 -0.201 -0.117 -0.056 2l -0.065 -0.046 -0.035 -0.023 -0.012

3] -0.268 -0.147 -0.100 -0.060 -0.030 3 -0.529 -0.288 -0.190 -0.113 -0.057 3 -0.013 -0.014 -0.011 -0.009 -0.004

4 -0.258 -0.143 -0.100 -0.060 -0.031 4 -0.499 -0.273 -0.190 -0.115 -0.056 4 0.033 0.014 0.008 0.005 0.002

5 -0.245 -0.140 -0.098 -0.059 -0.031 5 -0.465 -0.261 -0.180 -0.111 -0.056 5 0.067 0.038 0.027 0.016 0.009
10 -0.209 -0.134 -0.099 -0.064 -0.033 10 -0.366 -0.232 -0.161 -0.105 -0.054 10 0.183 0.124 0.096 0.067 0.039
20 -0.172 -0.126 -0.098 -0.066 -0.037 20 -0.263 -0.186 -0.140 -0.094 -0.053 20 0.279 0.216 0.180 0.136 0.087
30 -0.160 -0.120 -0.097 -0.069 -0.040 30 -0.213 -0.157 -0.125 -0.086 -0.048 30 0.323 0.265 0.228 0.181 0.123
50 -0.140 -0.116 -0.099 -0.076 -0.046 50 -0.161 -0.128 -0.105 -0.074 -0.045 50 0.364 0.317 0.284 0.238 0.174
100] -0.127 -0.112 -0.102 -0.084 -0.059 100 -0.092 -0.088 -0.076 -0.058 -0.038 100 0.399 0.367 0.342 0.304 0.244

See the note to Table 6.



Table 9: Unconditional root mean squared forecast error - (AR(2) model)

Experiment no. 1b : No break Experiment no. 4b : Large decrease in Experiment no. 7b : Lower post-break volatility
vi/vj 10 20 30 50 100 vi/vj 10 20 30 50 100 viivy 10 20 30 50 100
[ 1.192 1.083 1.054 1.031 1.015 0| 1.180 1.080 1.052 1.031 1.015 0 0.569 0.531 0.522 0.513 0.507
1] 1.166 1.078 1.051 1.030 1.015 1] 1.160 1.077 1.051 1.029 1.015 1 0.604 0.549 0.533 0.520 0.510
2 1.152 1.075 1.048 1.030 1.015 2 1.145 1.074 1.049 1.029 1.015 2 0.619 0.558 0.539 0.524 0.512
3 1.139 1.071 1.048 1.029 1.015 3 1.131 1.070 1.048 1.029 1.015 3 0.628 0.562 0.542 0.526 0.514
4 1.125 1.068 1.046 1.028 1.015 4 1.122 1.067 1.047 1.029 1.015 4 0.633 0.566 0.546 0.528 0.515
5 1.115 1.066 1.045 1.029 1.014 5 1.115 1.064 1.044 1.028 1.014 5 0.635 0.568 0.547 0.529 0.516
10 1.082 1.054 1.040 1.026 1.014 10| 1.086 1.056 1.040 1.026 1.014 10 0.635 0.572 0.551 0.533 0.518
20| 1.052 1.039 1.031 1.022 1.012 20| 1.068 1.047 1.036 1.025 1.014 20 0.615 0.570 0.551 0.532 0.518
30 1.039 1.031 1.025 1.019 1.011 30 1.058 1.042 1.036 1.024 1.014 30 0.594 0.563 0.547 0.532 0.518
50| 1.025 1.022 1.019 1.015 1.010 50| 1.052 1.042 1.034 1.025 1.015 50 0.567 0.551 0.541 0.529 0.517
100 1.014 1.013 1.012 1.010 1.008 100 1.047 1.041 1.036 1.028 1.018 100 0.539 0.533 0.529 0.523 0.515
Experiment no. 2b : Small break in B Experiment no. 5b : Break in B (post-break unit root) Experiment no. 8b : Break in mean (increase)
Vi/v4 10 20 30 50 100 vi/v4 10 20 30 50 100 vi/vy 10 20 30 50 100
0| 1.190 1.083 1.053 1.031 1.015 0| 1177 1.089 1.061 1.038 1.019 0 1.185 1.083 1.052 1.031 1.015
1] 1.170 1.080 1.052 1.031 1.015 1] 1.165 1.086 1.059 1.037 1.019 1 1.166 1.075 1.049 1.030 1.015
2 1.152 1.075 1.051 1.030 1.015 2 1.149 1.081 1.057 1.037 1.019 2 1.148 1.074 1.049 1.029 1.015
3 1.137 1.073 1.048 1.029 1.015 3 1.140 1.079 1.057 1.035 1.019 3 1.140 1.069 1.047 1.028 1.015
4 1.124 1.070 1.048 1.029 1.015 4 1.129 1.076 1.055 1.035 1.019 4 1.134 1.068 1.047 1.028 1.015
5 1.114 1.066 1.046 1.028 1.015 5 1.124 1.075 1.052 1.034 1.018 5 1.125 1.066 1.045 1.028 1.015
10 1.083 1.056 1.041 1.027 1.014 10 1.102 1.067 1.048 1.032 1.017 10 1.105 1.062 1.043 1.027 1.015
20| 1.059 1.045 1.034 1.024 1.013 20| 1.084 1.058 1.045 1.030 1.016 20 1.092 1.059 1.044 1.029 1.015
30 1.050 1.038 1.031 1.023 1.013 30 1.077 1.058 1.044 1.030 1.017 30 1.088 1.059 1.046 1.031 1.017
50| 1.039 1.033 1.027 1.021 1.013 50| 1.077 1.059 1.048 1.032 1.017 50 1.086 1.063 1.050 1.035 1.020
100 1.033 1.028 1.025 1.019 1.013 100 1.089 1.072 1.060 1.041 1.021 100 1.087 1.070 1.059 1.044 1.027
Experiment no. 3b : Large increase in Experiment no. 6b : Higher post-break volatility Experiment no. 9b : Break in mean (decrease)
Vi/v4 10 20 30 50 100 vi/v4 10 20 30 50 100 vi/vy 10 20 30 50 100
0| 1.194 1.084 1.053 1.031 1.015 0| 2.428 2.176 2111 2.063 2.030 0 1.184 1.080 1.052 1.030 1.015
1] 1.175 1.079 1.053 1.031 1.015 1] 2.367 2.164 2.107 2.062 2.030 1 1.164 1.075 1.050 1.030 1.015
2| 1.156 1.076 1.051 1.030 1.015 2 2.332 2.159 2.104 2.061 2.031 2 1.151 1.072 1.048 1.029 1.015
3 1.143 1.073 1.049 1.030 1.015 3 2.315 2.147 2.100 2.060 2.030 3 1.140 1.070 1.047 1.029 1.015
4 1.130 1.071 1.049 1.029 1.015 4 2.302 2.145 2.096 2.058 2.029 4 1.132 1.068 1.047 1.028 1.014
5 1.122 1.068 1.047 1.029 1.015 5 2.287 2.140 2.096 2.058 2.029 5 1.124 1.067 1.046 1.028 1.014
10 1.097 1.061 1.043 1.028 1.014 10| 2.238 2.124 2.087 2.055 2.029 10 1.104 1.061 1.044 1.027 1.014
20| 1.074 1.053 1.040 1.026 1.015 20| 2.194 2.106 2.076 2.049 2.027 20 1.091 1.059 1.044 1.029 1.015
30 1.065 1.048 1.038 1.026 1.015 30 2.161 2.095 2.068 2.046 2.026 30 1.088 1.060 1.045 1.031 1.017
50| 1.055 1.046 1.037 1.027 1.016 50| 2.122 2.081 2.061 2.042 2.024 50 1.086 1.063 1.050 1.035 1.020
100 1.050 1.044 1.038 1.030 1.019 100 2.080 2.061 2.049 2.034 2.021 100 1.087 1.070 1.059 1.044 1.027

See the note to Table 6.



Table 10: Root mean squared forecast error conditional on y = o, + 02 - (AR(2) model)

Experiment no. 1b : No break Experiment no. 4b : Large decrease in Experiment no. 7b : Lower post-break volatility
vi/vy 10 20 30 50 100 Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0 1.206 1.074 1.043 1.022 1.010 0| 1.214 1.084 1.051 1.027 1.012 0l 0.572 0.528 0.517 0.510 0.505
1 1.172 1.069 1.042 1.022 1.010 1 1.185 1.078 1.047 1.026 1.012 1] 0.607 0.543 0.525 0.514 0.506
2 1.155 1.066 1.040 1.022 1.010 2 1.163 1.073 1.045 1.025 1.012 2 0.621 0.549 0.530 0.516 0.507
3] 1.139 1.062 1.038 1.021 1.010 3] 1.142 1.067 1.043 1.024 1.011 3 0.628 0.553 0.533 0.518 0.508
4 1.125 1.059 1.037 1.020 1.010 4 1.128 1.063 1.041 1.023 1.011 4 0.633 0.556 0.534 0.519 0.509
5 1.111 1.054 1.035 1.020 1.010 5 1.114 1.059 1.039 1.023 1.011 5 0.635 0.559 0.537 0.520 0.509
10 1.074 1.043 1.030 1.018 1.009 10 1.073 1.045 1.031 1.020 1.010 10 0.634 0.565 0.541 0.523 0.510
20 1.043 1.030 1.022 1.015 1.008 20 1.041 1.030 1.023 1.016 1.009 20| 0.612 0.565 0.544 0.525 0.512
30 1.030 1.023 1.018 1.013 1.007 30 1.028 1.022 1.018 1.014 1.008 30 0.590 0.559 0.542 0.526 0.512
50 1.018 1.015 1.013 1.010 1.006 50 1.018 1.016 1.014 1.011 1.007 50 0.564 0.548 0.537 0.525 0.513
100 1.009 1.008 1.007 1.006 1.005 100 1.012 1.011 1.010 1.009 1.006 100 0.537 0.531 0.527 0.520 0.512
Experiment no. 2b : Small break in Experiment no. 5b : Break in B (post-break unit root) Experiment no. 8b : Break in mean (increase)
vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0 1.207 1.076 1.043 1.023 1.010 0| 1.623 1.319 1.219 1.133 1.066 0l 1.233 1.080 1.045 1.023 1.010
1 1.183 1.072 1.043 1.023 1.010 1 1.523 1.288 1.191 1.125 1.064 1] 1.215 1.077 1.044 1.023 1.010
2 1.160 1.068 1.041 1.022 1.010 2 1.436 1.248 1.177 1.111 1.061 2 1.199 1.075 1.043 1.023 1.010
3] 1.145 1.067 1.041 1.022 1.010 3] 1.376 1.219 1.157 1.103 1.059 3 1.188 1.073 1.043 1.023 1.010
4 1.129 1.063 1.039 1.022 1.010 4 1.331 1.196 1.144 1.096 1.054 4 1.177 1.072 1.042 1.022 1.010
5 1.118 1.060 1.039 1.021 1.010 5 1.295 1.176 1.129 1.088 1.051 5 1.169 1.069 1.041 1.022 1.010
10 1.085 1.050 1.034 1.020 1.010 10 1.185 1.117 1.088 1.062 1.039 10 1.140 1.064 1.039 1.022 1.010
20 1.058 1.040 1.029 1.019 1.009 20 1.104 1.069 1.053 1.039 1.026 20| 1.117 1.060 1.039 1.022 1.010
30 1.047 1.034 1.027 1.018 1.009 30 1.072 1.050 1.039 1.029 1.020 30 1.107 1.060 1.040 1.022 1.010
50 1.037 1.029 1.024 1.017 1.009 50 1.048 1.035 1.027 1.020 1.013 50 1.100 1.062 1.044 1.025 1.011
100 1.029 1.024 1.021 1.016 1.010 100 1.031 1.024 1.019 1.014 1.009 100 1.095 1.069 1.053 1.034 1.016
Experiment no. 3b : Large increase in B Experiment no. 6b : Higher post-break volatility Experiment no. 9b : Break in mean (decrease)
vi/v4 10 20 30 50 100 Vi/Vv4 10 20 30 50 100 Vi/v4 10 20 30 50 100
0 1.210 1.075 1.044 1.022 1.010 0| 2.443 2.159 2.089 2.047 2.020 0l 1.159 1.064 1.039 1.021 1.010
1 1.185 1.072 1.043 1.022 1.010 1 2.356 2.142 2.085 2.044 2.020 1] 1.118 1.053 1.033 1.019 1.009
2 1.160 1.068 1.041 1.022 1.010 2 2.296 2.132 2.081 2.043 2.020 2 1.096 1.046 1.030 1.018 1.009
3] 1.145 1.065 1.040 1.022 1.010 3] 2.259 2.122 2.075 2.042 2.019 3 1.083 1.041 1.027 1.017 1.008
4 1.132 1.061 1.039 1.021 1.010 4 2.230 2.113 2.073 2.041 2.019 4 1.073 1.038 1.026 1.016 1.008
5 1.120 1.058 1.037 1.021 1.010 5 2.209 2.106 2.069 2.040 2.019 5 1.068 1.036 1.025 1.015 1.008
10 1.087 1.049 1.033 1.019 1.009 10 2.148 2.083 2.057 2.035 2.018 10 1.056 1.033 1.023 1.015 1.008
20 1.055 1.037 1.027 1.017 1.009 20 2.097 2.061 2.044 2.029 2.016 20| 1.059 1.038 1.028 1.018 1.010
30 1.042 1.030 1.023 1.015 1.008 30 2.074 2.049 2.037 2.025 2.014 30 1.064 1.045 1.035 1.023 1.012
50 1.029 1.023 1.018 1.013 1.008 50 2.051 2.037 2.029 2.021 2.013 50 1.072 1.055 1.045 1.033 1.019
100 1.018 1.015 1.013 1.010 1.007 100 2.028 2.024 2.020 2.015 2.010 100 1.080 1.069 1.060 1.048 1.032

See the note to Table 6.



