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Abstract

The paper presents various tests for assessing whether a time series is
subject to drift. We first consider departures from the null hypothesis of
no drift against the alternative of a deterministic and/or a non-stationary
stochastic drift with initial value zero. We show that the standard t-test
on the mean of first differences achieves high power in both directions of
the alternative hypothesis and it seems preferable to locally best invariant
tests specifically designed to test against a non-stationary drift. The test
may be modified, parametrically or nonparametrically to deal with serial
correlation. Tests for the null hypothesis of a non-stationary drift are then
examined. The simple t-statistic, now standardized by the square root of
the sample size, is again a viable alternative, but this time there is no need
to correct for serial correlation. We present the asymptotic distribution
of the test, provide critical values and compare its performance with that
of the standard augmented Dickey-Fuller test procedures. We show that
the t-test does not suffer from the large size distortions of the augmented
Dickey-Fuller test for cases in which the variance of the nonstationary drift,
the signal, is small compared to that of the stationary part of the model.
The use of the tests is illustrated with data on global warming and electricity
consumption.

KEYWORDS: Cramér-von Mises distribution, locally best invariant
test, stochastic trend, unit root, unobserved components.
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1. Introduction

The question of whether a time series exhibits drift is an important one. In other
words, does the series show a steady upward or downward movement over time
that can be extrapolated into the future? If no drift is present, first differences of
the series have zero mean and the eventual forecast function is constant.

We begin by considering how to test the null hypothesis of no drift. If the
drift is taken to be fixed, it may be estimated and a simple t—statistic formed.
The more general hypothesis of a stochastic drift may be tested by a variant of
the test proposed by Nyblom and Mékeldinen (1983) in which it is assumed that
there is no drift under the null hypothesis. The asymptotic distribution of the
test statistic under the null hypothesis belongs to the Cramér-von Mises family
and a rejection may be interpreted as indicating the presence of a drift that is
either deterministic or stochastic. Section 2 of the paper analyses the local power
of this test and compares it with the local power of the t—test. Both tests are
consistent against the hypothesis of deterministic or/and non-stationary stochastic
drift with zero starting value. When serial correlation is present, the tests can be
implemented nonparametrically or by fitting a time series model.

Section 3 reverses the roles of the null and alternative hypotheses. A test can
again be based on the t—statistic but this time the null is that a drift is present.
The test is nonparametric since when the t—statistic is divided by the square
root of the sample size it has an asymptotic distribution that does not depend on
any nuisance parameters when the drift is nonstationary. In fact because of this
asymptotic result, the test statistic is formulated more naturally as the inverse
of the coefficient of variation for first differences. The performance of this test is
evaluated under a number of different scenarios with various unit root tests used
as a benchmark for comparison. Extensions of the tests to deal with seasonally
unadjusted data are given in section 4, while section 5 provides empirical examples.
The conclusions are presented in section 6.

2. Testing against Stochastic and Deterministic Drift

Consider the data generating process

Ayt:/gt—i_nt; t= ]_,...,T (21)



where 7 is a serially uncorrelated disturbance term with mean zero and variance
0727, and (; is a drift, or slope, component that follows a random walk

By = Br1 + (¢, t=1,..,T, (2.2)

with initial value, (y, and (; is a serially uncorrelated disturbance term with mean
zero and variance ag. The forecast function is a linear trend with slope by, where
by is the estimator of (7.

If the drift is assumed to be deterministic, that is O'g = 0, and 7, is normally
distributed and serially independent, that is n; ~ NID(0, ag), the t—statistic for
testing the null hypothesis that § =0 is

ts = T1/2B/3 — Tfl/z(yT — )/ (2.3)

where § = T-'ST | Ay, = (yr — yo)/T and 52 = T-' L, (Ay, — B)2.

The test can be generalized by fitting a parametric model and testing the
significance of the estimate of the fixed slope . Either an ARMA model can be
fitted to first differences or a structural time series model, based on unobserved
component formulation, may be estimated, perhaps by using the STAMP package
of Koopman et al (2000). The latter may have some attraction when the series is
such that it is natural to include components like cycles and seasonals in a model
for the levels.

A nonparametric test can be set up in first differences by replacing 52 in (2.3)
by an estimate of the long-run variance

62 (m) = 4(0) +2 f: w (r,m) 4(7) (2.4)

where w (7,m) is a weighting function, such as the Bartlett window, w(r,m) =
1—|7|/(m+ 1), and 7(7) is the sample autocovariance of the residuals, Ay, — 3,
at lag 7. Alternative options for the kernel w(.,.) and guidelines for choosing m
may be found in Andrews (1991). Note that [ is still asymptotically efficient even
though it is computed without taking account of any serial correlation in ;.
When modified to deal with serial correlation, the distribution of both the para-
metric and nonparametric ¢—statistics, the latter denoted tg(m), will be asymp-
totically normal under fairly mild conditions as set out in the first sub-section
below. Note that if we were to fit a pure autoregressive model to the differences
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with lag length determined by some rule of thumb, as is normally done for (2.4),
then the test could quite reasonably be classed as nonparametric.

If n, ~ NID(0,07) and ¢ ~ NID(0,0¢),the LBI test of the null hypothesis of
a deterministic slope against the alternative of a nonstationary stochastic slope,
that is Ho : 0 = 0 against H; : o7 > 0 is to reject for large values of

2 T
T2A2zi§:A% 0 =T %23 (3 — 9o —15)
t=1 \i=1

= (2.5)

where 62 is as in (2.3); this is the test of Nyblom and Mikeldinen (1983) applied
to first differences. In deriving the test from the LBI principle, one initially
obtains the summations running in reverse, that is from ¢t = T to i, but, as
a consequence of fitting the slope it can be shown that the two statistics are
identical. Asymptotically, ( has the Cramér-von Mises distribution under the null
hypothesis, that is

giﬁﬂmyw, (2.6)

where B(r) = W(r) — rW(1), with W(r) being a standard Wiener process or
Brownian motion so that B(r) is a Brownian bridge. Gaussianity is not required
for the result to hold and the 7;s may simply be martingale differences.

If the test statistic is formed without subtracting a deterministic drift it will
be locally best invariant (LBI) against Hy : of > 0 for zero initial conditions,
that is Gy = 0. However, it is also a consistent test against deterministic drift.
Its asymptotic distribution under the null is as in (2.6), but with B(r) replaced
by W(r). This distribution is still a member the Cramér-von Mises family, but
denoted CvM, as opposed to CvM; for (2.6). The statistics constructed with
forward and reverse partial sums, denoted by (§ and (% respectively, are no longer
identical, but have the same asymptotic distribution under the null hypothesis.
Although (% is the LBI test, it is no more reasonable to treat 3y as zero than it
is to let By, be zero, which is why (¥ is considered as well.

To be strictly LBI, the statistics! ¢% and (% should have the sample mean
square rather than the sample variance in the denominator. However, the lim-
iting distribution under the null hypothesis is the same. The local asymptotic

1Using the mean square in (2.3) makes it an LBI (LM) test, rather than a Wald test.
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distribution is also the same, but because the modified test statistic is bigger?, it
displays higher power in small samples and there appears to be no adverse effect
on size.

Parametric and nonparametric forms of the above LBI tests may be con-
structed. In the nonparametric case, 52(m) replaces % just as in the t—test;
this device is used by Kwiatkowski, Phillips, Schmidt and Shin (1992) in their
modification of the test of Nyblom and Makeldinen. A parametric statistic can
be constructed in the ARIMA framework, as in Leybourne and McCabe (1994),
or by fitting a structural time series model, as in Harvey and Streibel (1997).

2.1. Asymptotic distributions under local alternatives

For a model given by (2.1)-(2.2) in which 7, may be serially correlated and/or

conditionally heteroscedastic, with positive long run variance, o%, we consider the

limiting behavior of the statistics

ts(m) = VTB/5(m),
ZtT:1 (22221 Ayi)Q

Zthl (Zz’T:t Ayi>2
hom) = S =mm
Zthl <Z§=1(Ayz' - B))2

where m — oo such that m?/T — 0, under the local alternative hypothesis
Hl,T . ﬁo = CdO'L/\/T, 0’2 = C?O’%/TQ, (27)

where ¢y, ¢, are fixed constants. Thus, we consider departures from the null of
no drift in the directions of both deterministic and stochastic drift. The following
proposition provides the limiting distribution of the statistics under the local
alternative hypothesis H; r; a sketched proof is contained in the appendix. These
results are then used to evaluate the local asymptotic power of the tests.

2When there is only deterministic drift, the probability limit of the denominator of the
modified statistic is equal to (02 + 3%)/0? times that of the LBI statistic.



Proposition 2.1. Consider the model (2.1)-(2.2) with 1, being a weakly depen-
dent process as in Stock (1994, p.2745), with long run variance o2 > 0. Let Wy(r)
and Wi (r) be independent standard Wiener processes for r € [0,1]. Then under
Hl,Ta

ta(m) 5 V(1;q,cs), (2.8)

2 (m) 5 /01 V(r; ca, cs)*dr, (2.9)

2m) 4 [ (V(1sea )~ Vires e dr (2.10)
¢(m) % /01 V*(r: ) 2dr, (2.11)

where
V(r;eq,cs) = Wo(r) + car + cs /r Wi (s)ds,
0

Vi(rics) = WO(T)—TWO(l)‘f—Cs/OT (Wl(s)—/o

1

|41 (u)du> ds.

Remark 1. For ¢, = 0, the limiting distribution of t3(m) is a noncentral chi-
square with one degree of freedom and noncentrality parameter equal to c3, that
of ((m) is a standard Cramér-von Mises, CvM,, as defined in (2.6).

Remark 2. For ¢, = ¢4 = 0, tg(m) is asymptotically standard normal, while the
limiting distributions of (%(m) and (%(m) are CuM,. The 5% critical value from
Cv M, is 1.656; see table 1 in Nyblom (1989).

It can also be shown that all tests are consistent against the fixed alternative
hypothesis of a stochastic drift, 02 > 0, and all but the ( test are consistent
against the alternative hypothesis of deterministic drift. This is confirmed by the
computations reported in table 1 below.



2.2. Computation of local asymptotic power

The asymptotic representations given in proposition 2.1 are used to compare the
power of the tests against local deviations from the null hypothesis in the direc-
tion of deterministic and /or stochastic drift. The results are reported in table 1 in
terms of the percentage of rejections. Specifically, we have generated 50000 repli-
cations of the limiting random variables defined in (2.8)-(2.11) by replacing the
continuous time Wiener processes Wy and W; by their discrete counterparts (di-
viding the unit interval into 1000 parts) and computing the rejection probabilities
for tests run at the 5% level of significance.

As expected, the Wald test, t3(m), is most powerful against a deterministic
drift. For example for ¢, = 2 (‘and ¢; = 0), its local asymptotic power is 0.518, as
opposed to 0.441 and 0.443 for the tests based on ¢%(m) and ¢%(m) respectively.
Note that the asymptotic power of the ((m) test against a deterministic drift is
always equal to its size.

The (%(m) test achieves the highest power against a stochastic drift starting
at zero, that is ¢4 = By = 0; indeed it corresponds to the LBI test for this case.
Thus with ¢ = 5, the power of the (%(m) test is 0.569 while that of ¢5(m) is
only 0.524. However, the t5(m) test dominates both the (%(m) and ((m) tests,
for which the powers are 0.436 and 0.310 respectively. On the other hand, the
power of (}(m) is slightly greater than that (%(m) when ¢, is high and ¢, is not
too large. Of course, if Bp; rather than (3, had been assumed to be zero, the
powers of (%(m) and ¢(%(m) would have been interchanged. Overall, it seems that
the Wald test is the best compromise. Even when c¢; = 0 and ¢; = 50 its power
is only a little below those of the (%(m) and (% (m) tests. Furthermore there may
be occasions when a one-sided alternative is plausible, in which case the tg(m)
would become even more powerful.

The ((m) test is invariant to ¢; and it is dominated by all the other tests
except when ¢; = 50. However, this may be useful insofar as a non-rejection by
¢(m) and rejection by the other tests is an indication of deterministic drift.



Table 1 Simulated local asymptotic power (x100)
Ca 0 05 10 15 20 25 30 35 40

Cs

ts(m) 49 7.7 167 322 518 706 852 93.8 97.9
0 O(m) 5.0 7.3 145 272 44.1 62.1 78.0 89.1 95.4
O(m) 49 7.1 146 274 443 623 77.8 888 95.3
C(m) 49 49 49 49 49 49 49 49 49
ts(m) 11.0 139 226 358 b51.7 669 80.0 894 951
125  (O%(m) 86 111 185 303 454 60.8 75.1 859 93.1
O(m) 12.6 15.0 21.6 326 46.1 59.8 725 83.1 90.7
¢(m) 69 69 69 69 69 69 69 69 69
ts(m) 264 285 341 424 524 625 72.6 8L.1 87.7
250  (%(m) 19.2 21.3 274 364 475 59.1 702 79.8 87.2
O(m) 30.1 315 355 42.0 499 58.0 66.7 747 81.8
Clm) 127 127 1207 127 127 127 127 127 127
ts(m) 524 531 548 572 605 642 686 73.0 77.3
500  (W(m) 43.6 44.7 469 50.7 555 60.8 66.5 72.5 77.9
O(m) 56.9 57.4 584 60.2 624 65.0 68.0 714 74.8
¢(m) 310 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0
ts(m) 743 742 745 750 756 762 76.8 77.8 78.9
100 ¢O(m) 705 70.7 711 719 729 742 756 774 79.3
O(m) 78.7 789 79.0 79.2 79.6 80.1 80.6 81.3 82.0
¢(m) 613 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3
ts(m) 869 87.0 87.0 87.1 87.1 872 87.2 87.3 874
200  (%(m) 89.1 89.1 89.3 89.3 89.5 89.8 90.0 90.4 90.6
O(m) 922 922 924 923 923 925 92.7 927 928
¢(m) 869 869 86.9 869 86.9 869 86.9 86.9 86.9
tz(m) 948 948 949 949 048 948 948 049 948
500  C%(m) 98.8 98.8 98.7 98.8 988 93.8 988 98.8 98.8
O(m) 99.1 99.1 99.1 99.1 992 99.2 99.1 99.1 99.1
¢(m) 99.1 991 99.1 99.1 99.1 99.1 99.1 99.1 99.1

3. Permanent drift as the null

A test of the null hypothesis that there is a permanent drift in (2.1) may be based
on the simple ¢4 statistic as defined in (2.3). No modification is needed along the



lines of (2.4) since when o > 0, tg/ VT has a limiting distribution that does not
depend on the process generating the stationary component, 7;. Specifically,

oV 4 D W@ (3.1)
o W(r)2dr|”

where W(r) = W(r) — Jy W(r)dr; see sub-section 3.2 below. Note that the
numerator is distributed as N (0,1/3). The test rejects for small values of #g;
that is the critical region is |tg| < kv'T. The 1%, 5%, 10% critical values, based
on the asymptotic distribution, are obtained by setting & = 0.024, 0.118, 0.239
respectively. An alternative interpretation of the statistic g/ VT is as the inverse
of the coefficient of variation of first differences. We will call this the standardized
drift and denote it as B* = 5/6. Thus the null hypothesis is rejected at the 5%
significance level if ‘B*‘ < 0.118.

The above test derives from a proposal made by Bierens (2001) in the context of
testing nonstationary cycles. Here the test can be regarded as a test (in differences)
at frequency zero. However, we have made a slight modification in that Bierens
constructs the denominator without subtracting the mean. In the present context
this leads to the statistic, 57 = 8/(2Ay?2/T)"/2. The asymptotic distribution then
has the standard Wiener process, W(r), also in the denominator. This makes
virtually no difference to the 5% critical value which is the same as before to
three decimal places. Since the statistic is smaller than the one based on B* it
will be more likely to reject. However, as the results in the next sub-section show,
this appears to make virtually no difference in practice.

What if the drift is purely deterministic? Then

i G — At — 2 2

gl_lgﬁ Boy, and gl_lgﬁ B/ oz + B2 (3.2)
In both cases the null is unlikely to be rejected unless the size of the deterministic
drift is small relative to 072]. Specifically, at the 5% level of significance, the null
is rejected with probability one as T" — oo only if || < 0.1180,. It is for this
reason that a non-rejection is best regarded as an indication of permanent drift,

irrespective of whether it be deterministic or stochastic and nonstationary.
Note that proposition 2.1 immediately shows that the standardized drift test
asymptotically has unit power against local deviations from zero drift, as expressed
by Hyr of (2.7). For this test the appropriate local asymptotic analysis has to
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consider local deviations from the null hypothesis of nonstationarity; this is done
in sub-section 3.2 below. Before doing that we analyze the finite sample behavior
of the test for the model in (2.1)-(2.2).

3.1. Size and power of the standardised drift test for a random walk
with stochastic drift.

Consider the random walk with stochastic drift, (2.1)-(2.2), with Gaussian dis-
turbances, and let ¢ = 07 /02. To evaluate the properties of the standardized drift
test, a series of Monte Carlo experiments were carried out, each with 10,000 repli-
cations. Table 2 shows the estimated probabilities of rejection for tests at the 5%
level of significance, over different values of ¢'/? for samples of size T = 50 and
100. Table 3 includes the corresponding figures for 7' = 200. Results for the aug-
mented Dickey-Fuller (ADF) test with m lags, denoted 7(m), are given as well;
7*(m) indicates the inclusion of a constant. In practice, small values of ¢ are most
likely to arise, so the case of ¢ = 0.01 (¢*/? = 0.1) is of particular importance.

The main conclusion to emerge is that the ADF tests tend to reject the null
of a nonstationary drift if ¢ is small, i.e. the size is well above the nominal
5%. The reason for this is well-known - the reduced form of second differences
contains a moving-average root close to the unit circle and hence the autoregressive
approximation is poor. On the other hand the standardized drift test does rather
well in that for 7" = 100, the rejection probability is 0.17 for ¢ = 0.01 while when
q = 0, so that the null hypothesis is no longer true, the rejection probability shoots
up to 0.76.

These simulations assumed (3, = 0. Table 3 illustrates what happens if this is
not the case. For non-zero g the rejection probabilities of both the standardized
drift tests and 7(m) are changed very little; 7(m) is unaffected anyway. This is
in accordance with the theory of the next sub-section which shows that the local
asymptotic distributions are independent of (3;. When ¢ = 0, there is a sharp
change as 3y moves from 0.1 to 0.2. This is exactly what one would expect?® given
the probability limit in (3.2).

3Note that t% has a non-central chi-squared distribution with one degree of freedom.
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Table 2. Percentage rejections for random walk with stochastic drift, (2.1)

a) T=50

qz 0 0.1 0.25 0.5 1
B 58.5 21.5 10.4 6.8 5.5
B* 58.2 21.3 10.3 6.7 5.4
7(3) 99.9 88.2 44.5 17.4 7.4
75 (3) 97.4 87.0 48.3 19.3 8.6
b) T=100

qz 0 0.1 0.25 0.5 1
Bt 76.1 16.8 8.0 5.8 5.0
B 75.9 16.7 8.0 5.8 4.9
7 (5) 100.0 71.6 24.7 8.8 5.3
75 (5) 99.7 77.8 26.7 9.4 6.1
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Table 3. Percentage rejections for random walk with stochastic drift, (2.1),
with non-zero fJy and T = 200

q2 0 0.1 0.25 0.5 1
il 90.5 12.3 6.8 5.3 5.0
Bo=0 J 90.3 12.2 6.7 5.3 4.9
7 (10) 100.0 36.3 9.5 5.6 5.1
7 (10) 99.9 415 9.6 6.0 6.0
gt 60.3 12.5 6.6 5.3 4.9
By=01 j* 59.9 12.4 6.6 5.3 4.9
7 (10) 100.0 36.0 9.5 5.6 5.1
7 (10) 99.9 41.5 9.6 6.0 6.0
gl 12.4 12.7 6.7 5.2 5.0
By=02 p* 12.1 12.5 6.7 5.2 4.9
7 (10) 99.9 35.6 9.5 5.5 5.2
7 (10) 99.9 415 9.6 6.0 6.0
i 0.00 10.1 7.0 5.4 4.8
By=05 3 0.00 10.0 6.9 5.4 4.7
7 (10) 79.3 31.6 9.3 5.9 5.4
7 (10) 99.9 41.5 9.6 6.0 6.0

3.2. Local asymptotic power for a local-to-unity autoregressive drift

The standardized drift is a ‘pure significance test’ in that it is not derived so
as to be optimal against any particular alternative. We now consider a difficult
situation for it, which is when the drift is stationary but slowly changing. Thus
(2.2) is modified to

B = ¢Bi—1 + G, (3.3)

with (3 fixed. Local asymptotic power can be analyzed within this framework:
the null hypothesis is Hj : ¢ = 1 and the local alternative is Hf 7 : ¢ =1 —¢/T.
Serial correlation in 7; can be handled by incorporating it into the equation for
the slope. Thus the disturbance in (3.3) is replaced by

G =C+m— on-1- (3.4)
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The limiting behavior of the standardized drift under Hjp is given by the
following proposition; a sketched proof is in the appendix.

Proposition 3.1. Consider the model (2.1)-(3.3) with ( in (3.4) being a weakly
dependent process as in Stock (1994, p.2745), with strictly positive long run vari-
ance. Then under H ;-

3 d fol U(r;c)dr
[fol U(r; C)er} :

, (3.5)

where U(r; c¢) is an Ornstein-Uhlenbeck process, defined by the stochastic differ-
ential equation

dU(r;c) = —cU(r;c)dr 4+ dW (r),

with W (r) being a standard Wiener process and U(0;c) = 0, that is U(r;c) =
5 e dW (s) as in Phillips (1987), and U(r;c) = U(r;c) — [y U(s;c)ds is a
demeaned Ornstein-Uhlenbeck process.

The limiting distribution of 3" is as in (3.5) except that U(r; ¢) is not demeaned
in the denominator.

Remark 3. On setting ¢ = 0, we obtain the limiting null distribution in (3.1).
It is also straightforward to show that under the fixed alternative H{ : ¢ < 1,
B* £ 0 so the test is consistent.

Unit root tests are specifically designed to test the above hypothesis. The local
asymptotic distribution of the ADF statistic without a constant included, 7(m),
is

r(m) % fol U(T;C)dU(Tz = fol U(r; C)dW(Tl) —c [/1 U(T;C)er]%7
[fol u(r; C)Zdr} ? [fol U(r; c)er} 2 0

where m — oo such that m?/T — oco. If a constant term is included, the asymp-
totic representations above holds after replacing U(r;c) by its demeaned version
U(r; c); see Phillips and Perron (1988, theorem 3) and Stock (1994 p 2772).

The local asymptotic powers of the standardized drift and ADF tests are re-
ported in table 4. As in the previous section, they are computed by simulating
the limiting distributions under the local alternative under 50000 replications.

Table 4 Simulated local asymptotic powers of standardized drift and ADF tests
for a local-to-unity autoregressive drift.
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c g 1m(m) 71°(m)
0 49 48 49
1 6.7 77 58
2 83 117 6.6
5
7

134 311 116
16.1 491  17.5
10 196 759  30.7
20 284 999  85.7
50 44.0 100.0 100.0
100 59.3 100.0 100.0

The B* test has a fairly low probability of rejecting the null hypothesis of a
unit root in the drift, though for small values of ¢, less than ten, it does quite well
when set against the ADF test with constant. Its power against moderate serial
correlation, ¢ above ten is relatively low.* However, the size distortion shown by
the ADF tests in tables 2 and 3 means that they are not really a viable alternative.

4. Seasonality

A stochastic seasonal component can be added to a structural time series model, as
in Koopman et al (2000), and a t-test carried out on the drift. In a nonparametric
framework seasonal differences, rather than first differences, must be taken if the
seasonal component is nonstationary. This removes unit roots at the seasonal
frequencies. It follows from Busetti and Taylor (2002) that this pre-filtering has
no effect on the asymptotic behavior of the tests considered here and it also makes
them robust to structural breaks in the seasonal pattern.

If the seasonal component is deterministic, it can be handled by incorporating
seasonal dummies into the model for first differences. The asymptotic distribu-
tion of ¢ and related statistics is unaffected; see Busetti (2002). Thie same is true
of the t-tests. Taking seasonal differences will result in a noninvertible process.
However, this will not affect any of the tests against permanent drift as the non-
parametric correction is based on estimating the spectrum at the origin rather
than at the seasonal frequencies. Nor will it affect the asymptotic distribution of
the standardized drift test. Hence seasonal differencing may be a safer strategy.

4Note that with ¢ = 100, setting 7' = 100 gives no serial correlation. The rejection probability
of .594 given in table 4 is not inconsistent with the probability of .78 in table 2.
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Figure 5.1: Global temperature anomalies: levels, differences and correlogram

5. Examples

Global warming - Figure 1 shows the global annual surface land and marine air
anomalies with respect to the 1950-79 average; see Parker et al (1995). Ther first
difference series is also shown, together with its correlogram.

The nonparametric test statistics for the null of no drift are as follows: ¢4(5) =
1.09; t5(10) = 1.36; ¢(5) = .198; (2(10) = .308; (%(5) = .578; ¢%(10) = 1.055.
None of the tests rejects, though it is interesting that, somewhat unexpectedly,
there is a slight tendency for the values to increase as the lag length increases
from five to ten. The stochastic drift test tells a consistent story in that §* = .052
and ' = 0.046, so the null of a permanent drift is rejected.

On the other hand fitting a simple random walk plus drift with an additive
irregular component to the levels of the observations®, using STAMP, gives a
t—statistic of 1.870. This is close to rejection at the 5% level of significance. A

5This is equivalent to modeling the first differences as a first-order moving average. The
diagnostics from this model gave no indication of further serial correlation, for example the
Box-Ljung statistic based on the first nine residual autocorrelations is Q( 9, 8) =8.524. The
estimates of the irregular and level variances are 0.0107 and 0.0013, implying a variance for the
first differences of 0.0227. The drift is estimated to be 0.0065 which is less than 0.118+/0.0227,

hence explaining the rejection with 5*.
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Figure 5.2: Coal consumption of UK Other Final Users

one-sided test would reject and this might be reasonable as it corresponds to a
hypothesis of an upward trend in global warming.

Coal- A quarterly series on consumption of coal by ‘other final users’ in the
United Kingdom is used as an example in the manual of the STAMP package of
Koopman et al (2000). Figure 2 shows the series (in logarithms) together with
the seasonally differenced series and its correlogram. It is clear from the graph of
the raw series that there is a downward drift which may be best captured by a
stochastic slope since the series falls at the outset before levelling off. Fitting a
basic structural time series model, consisting of a random walk plus deterministic
drift trend, a stochastic seasonal and an irregular yields a t—statistic of -3.93 so
the hypothesis of no drift is clearly rejected.

The nonparametric test statistics computed from seasonal differences are as
follows: t5(5) = —3.10; t5(10) = —3.28; %(5) = 4.40; (.(10) = 4.93; (%(5) = 3.05;
¢%(10) = 3.42. The nonparametric t—statistic is almost as big as the parametric
t—statistic and it clearly rejects the null of no slope. Likewise the (%(m) and ¢} (m)
tests reject at the 5% level of significance®. The fact that the series appears to
have levelled off at the end accounts for the higher values of the forward statistics,
i.e. fry1 = 01is a better assumption than 3y = 0. However, despite this apparent

SIf the slope is not removed in estimating the variance in the denominator the (LBI) test
statistics for m = 5 are only 2.85 (forward) and 1.98 (reverse). However, they still reject.
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change in the slope, the ( test is unable to reject the null hypothesis that it is
fixed since ((5) = 0.148 and ¢(10) = 0.166 and the 5% critical value is 0.461.

The nonparametric test of the null of a permanent drift does not reject as
B* = —0.289 and 3" = —0.278 and their absolute values are both greater than
the 5% critical value of 0.118. The ADF statistics formed by regressing AAy;
on lagged values and Auy;—q are: 7(5) = —2.77, 7%(5) = —3.48, 7(10) = —2.24,
7*(10) = —3.55 while the 5% critical values for no constant and constant are -1.96
and -2.89 respectively. Thus all the tests reject the null hypothesis of a unit root
in the drift.

6. Conclusion

The Wald t-test is designed to test against a deterministic slope, but it is also
consistent against the alternative hypothesis of a stochastic non-stationary slope
with an initial value of zero. Overall, it seems to be the best option for testing the
null hypothesis of no drift. If it rejects one might apply a standard stationarity
test to first differences as this has power only in the direction of a nonstationary
drift.

The t—statistic can also be used as the basis of a simple nonparametric test
of the null hypothesis of nonstationary (permanent) drift. The resulting test is
asymptotically less powerful than the ADF test against a local-to-unity autore-
gressive drift, but in finite samples it does not suffer from the large size distortions
of the ADF test when the true underlying process is a random walk plus stochastic
drift with a relatively small signal-to-noise ratio.

The examples not only provide illustrations of the tests, but they also point to
the type of data generating processes that are plausible. Parametric tests based
on fitting structural time series models to the level of a series can often do well
as they are designed to capture the effects of irregular and seasonal components
added to the level.

Finally, the t-test could also be applied if one wished to test for the presence of
a permanent level in a series. This is an unlikely hypothesis for a univariate series.
However, it may arise if two series are being compared and the null hypothesis is
that they have the same mean. In this case the t-statistic would be computed for
the difference between the series. An application in economics is testing whether
income per capita in two countries has converged to the same level.
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APPENDIX

Proof of Proposition 2.1

The proof follows by standard application of the Functional Central Limit
Theorem (FCLT) for dependent sequences and the Continuous Mapping Theorem
(CMT). In particular, by the FCLT, under H; 1

[T]
T72 Y Ay = o1 V(riea ), 7€0,1],

t=1

where = denotes weak convergence in D[0, 1], and the stochastic process V (r; cg, ¢s)
is defined in the statement of the proposition. As 67(m) % o2 | see Stock (1994,
page 2799), by an application of the CMT we immediately obtain (2.8) to (2.10).
Note that for ¢; = ¢, = 0, tg(m) converges to a standard Normal, Wp(1).

Similar arguments hold for the KPSS-type statistic ((m). Under H; r

(Tr]

Z (Ayt — B) = o, V*(r;cs),

t=1

Nl

T

and an application of the CMT delivers (2.11). Note that, since the statistic
¢(m) is constructed with demeaned first differenced, its limiting distribution is
not influenced by the presence of a (local or fixed) drift.

Proof of Proposition 3.1
Under Hj; the near integrated process Ay; weakly converges to an Ornstein-
Uhlenbeck process, )
T2 Aypry) = oc LU (15 ¢),
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where 0. is the long run variance of (;; see, e.g., Phillips (1987) and Stock
(1994, p.2770). Then by application of the CMT

~ T 1
T’%ﬁ — T3 ZAyt 4, ag*,L/O U(r;c)dr,
t—1

T . 1
TG = TN (Ay— B ok, [ UG,
t=1 T /0
which immediately deliver the limiting distribution (3.5) of the standardized drift
(5*. Note the initial value [ is asymptotically negligible as it has been assumed
to be fixed. The same result would hold true if F; were a random variable with
bounded second moments; see Tanaka (1996, p. 91).
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