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The contact property for magnetic flows on surfaces

Gabriele Benedetti

SUMMARY

This work investigates the dynamics of magnetic flows on closed orientable Rie-
mannian surfaces. These flows are determined by triples (M, g, 0), where M is the
surface, ¢ is the metric and o is a 2-form on M. Such dynamical systems are de-
scribed by the Hamiltonian equations of a function E on the tangent bundle T'M
endowed with a symplectic form w,, where E is the kinetic energy. Our main goal
is to prove existence results for

a) periodic orbits and b) Poincaré sections

for motions on a fixed energy level ¥, := {E = m?/2} c TM.
We tackle this problem by studying the contact geometry of the level set X,,.
This will allow us to

a) count periodic orbits using algebraic invariants such as the Symplectic Cohomol-
ogy SH of the sublevels ({E < m?/2},w,);

b) find Poincaré sections starting from pseudo-holomorphic foliations, using the
techniques developed by Hofer, Wysocki and Zehnder in 1998.

In Chapter 3 we give a proof of the invariance of SH under deformation in an
abstract setting, suitable for the applications.

In Chapter 4 we present some new results on the energy values of contact type.
First, we give explicit examples of exact magnetic systems on T? which are of contact
type at the strict critical value. Then, we analyse the case of non-exact systems on
M # T? and prove that, for large m and for small m with symplectic o, %,, is of
contact type. Finally, we compute SH in all cases where X, is convex.

On the other hand, we are also interested in non-exact examples where the
contact property fails. While for surfaces of genus at least two, there is always a
level not of contact type for topological reasons, this is not true anymore for S?. In
Chapter 5, after developing the theory of magnetic flows on surfaces of revolution,
we exhibit the first example on S? of an energy level not of contact type. We also
give a numerical algorithm to check the contact property when the level has positive
magnetic curvature.

In Chapter 7 we restrict the attention to low energy levels on S? with a symplectic
o and we show that these levels are of dynamically convex contact type. Hence, we
prove that, in the non-degenerate case, there exists a Poincaré section of disc-type
and at least an elliptic periodic orbit. In the general case, we show that there are
either 2 or infinitely many periodic orbits on ¥,,, and that we can divide the periodic
orbits in two distinguished classes, short and long, depending on their period. Then,
we look at the case of surfaces of revolution, where we give a sufficient condition for
the existence of infinitely many periodic orbits. Finally, we discuss a generalisation
of dynamical convexity introduced recently by Abreu and Macarini, which applies
also to surfaces with genus at least two.
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Malo mortuum impendere quam vivum occidere.

Petronius, Satyricon

Then there is an intellectual or a student or two, very few
of them though, here and there, with ideas in their heads
that are often vague or twisted. Their “country” consists of
words, or at the most of some books. But as they fight they
find that those words of theirs no longer have any meaning,
and they make new discoveries about men’s struggles, and
they just fight on without asking themselves questions, until
they find new words and rediscover the old ones, changed

now, with unsuspected meanings.

Italo Calvino, The Path to the Spiders’ Nests

Every two or three days, at the moment of the check, he
told me: ”I've finished that book. Have you another one to
lend me? But not in Russian: you know that I have dif-
ficulty with Russian.” Not that he was a polyglot: in fact,
he was practically illiterate. But he still ‘read’ every book,
from the first line to the last, identifying the individual let-
ters with satisfaction, pronouncing them with his lips and
laboriously reconstructing the words without bothering about
their meaning. That was enough for him as, on different
levels, others take pleasure in solving crossword puzzles, or
integrating differential equations or calculating the orbits of

the asteroids.

Primo Levi, The Truce
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CHAPTER 1

Introduction

1.1. Overview of the problem

Let the triple (M, g, o) represent a magnetic system, where M is a closed man-
ifold, g is a Riemannian metric and ¢ is a closed 2-form on M. We say that a
magnetic system is exact, non-exact or symplectic if o is such. Such data give rise
to a Hamiltonian vector field X¢ on the symplectic manifold (T'M, w, := d\ —7*0),
where 7 is the footpoint projection from T'M to M and X is the pull-back of the
Liouville 1-form on the cotangent bundle via the duality isomorphism given by g.
The kinetic energy E(z,v) = %g,(v,v) is the Hamiltonian function associated to
X%. These systems model the motion of a charged particle on the manifold M
under the influence of a magnetic force, which enters the evolution equations via
the term —7*o in the symplectic form. In the absence of a magnetic force, namely
when o = 0, the particle is free to move and we get back the geodesic flow of the
Riemannian manifold (M, g). The zero section is the set of rest points for the flow
and all the smooth hypersurfaces %, := {F = %2}, with m > 0, are invariant
sets. Hence, we can analyse the vector fields Xj‘;‘zm separately for every m and
compare the dynamics for different value of such parameter. In the geodesic case,
no interesting phenomenon arises from this point of view. Even if the dynamics of
the geodesic flow has a very rich structure and its understanding requires a deep
study, the flows on ¥,, and X, are conjugated up to a constant time factor and,
therefore, the parameter m does not play any role in the analysis.

On the other hand, the situation for a general magnetic term o is quite dif-
ferent. As the parameter m varies and passes through some distinguished values,
the dynamics on 3, can undergo significant transformations, in the same way as
the topology of the levels of a Morse function changes when we cross a critical
value [CMPO04]. How do we detect and measure these differences? Since the flows
PXE ‘Em can exhibit a very complicated behaviour, we have to focus our analysis on
some simple property of these systems. In the present work we have chosen to look
at the periodic orbits. In particular, we examine

a) existence and multiplicity of periodic orbits on a given free homotopy class;

b) knottedness of a single periodic orbit and linking of pairs, through the existence
of global Poincaré sections and periodic points of the associated return map;

¢) local properties of the flow at a periodic orbit (e.g. stability), that are related to
the linearisation of the flow (elliptic/hyperbolic orbits).

Periodic orbits of magnetic flows received much attention in the last thirty years and

here we seize the occasion to mention some of the relevant literature on the subject.
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2 1. INTRODUCTION

When M is a surface, the two classical approaches that have been pursued
are Morse-Novikov theory and symplectic topology (see Taimanov’s [Tai92] and
Ginzburg’s [Gin96| surveys for details and further references). Refinements of these
old techniques and completely new strategies have been developed recently. Some au-
thors work with (weakly) exact magnetic forms [BT98, [Pol98, [Mac04, [CMP04,
Osu05,, [Con06), [Pat06l, FS07, Mer10, [Tail0, [ AMP13, AMMP14, (AB14].
Others seek periodic solutions with low kinetic energy [Sch06], the majority of
them assuming further that o is symplectic [Ker99, IGK99, (GK02a, Mac03,
CGKO04, IGG04), Ker05, Lu06, [GG09, [Ush09]. Schneider’s approach [Sch11l,
Sch12al, [Sch12b] for orientable surfaces and symplectic o uses a suitable index
theory for vector fields on a space of loops and shows in a very transparent way
how the Riemannian geometry of g influences the problem. Finally, we point out
[Koh09] where heat flow techniques are employed and [Mer11l, FMP12), FMP13]|
which construct a Floer theory for particular classes of magnetic fields.

This thesis would like to give its contribution to the understanding of magnetic
fields on closed orientable surfaces by studying the contact geometry of the level

sets 3. In reference to point a), b), and c¢) presented above, this will allow us to

a) count periodic orbits in a given free homotopy class v using algebraic invariants
such as the Symplectic Cohomology SH, of the sublevels ({E < mTQ}, Wo);

b) find Poincaré sections starting from pseudo-holomorphic foliations [HWZ98,
HLS13|;

c¢) determine whether a periodic orbit is elliptic or hyperbolic by looking at its
Conley-Zehnder index [DDE95, [AM].

1.2. Contact hypersurfaces and Symplectic Cohomology

We say that a closed hypersurface ¥ in a symplectic manifold (W, w) is of contact
type if there exists a primitive of w on ¥ which is a contact form. Hypersurfaces of
contact type have been intensively studied in relation to the problem of the existence
of closed orbits. Indeed, in this case the Hamiltonian dynamics on ¥ is the dynamics
of the Reeb flow associated to the contact form, up to a time reparametrisation.
After some positive results in particular cases [Wei78), Rab78, Rab79], in 1978
Alan Weinstein conjectured that every closed hypersurface of contact type (under
some additional homological condition now thought to be unnecessary) carries a
periodic orbit [Wei79]. The conjecture is still open in its full generality, but for
magnetic systems on orientable surfaces is a consequence of the solution to the
conjecture for every closed 3-manifolds by Taubes [Tau07] (see also [Hut10| for an
expository account). Such proof uses Embedded Contact Homology (another kind
of algebraic invariant) to count periodic orbits. Recently, Cristofaro-Gardiner and
Hutchings have refined Taubes’ approach and raised the lower bound on the number
of periodic orbits in dimension 3 to two [CGH12]. The case of irrational ellipsoids
in C? shows that their estimate is sharp, at least for lens spaces [HIT09].
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When ¥ bounds a compact region W* C W, we can also compare the orientation
induced by the ambient manifold and the one induced by the contact form. We say
that the hypersurface is of positive contact type if these two orientations agree and
it is of megative contact type otherwise. The importance of such distinction relies
on the fact that in the positive case, and under some additional assumption on the
Chern class of w, we can define the Symplectic cohomology SH* of (W*,w). Its
defining complex is generated by the cohomology of W* and the periodic orbits on
3. Since the cohomology of the interior is known, if we can compute SH*, we gain
information about the periodic orbits on the boundary. As is typical in Floer theory,

such computation is divided into two steps:

(1) finding explicitly SH* in simple model cases;
(2) proving that SH* is invariant under a particular class of deformations, that
bring the case of interest to one of the models.

We prove such invariance in Chapter [3] in a setting that will be useful for the
applications to magnetic flows on surfaces. This result has been inspired to us by
reading [Rit10], where a similar invariance is proven in the setting of ALE spaces
(see [Rit10, Theorem 33 and Lemma 50]. We warmly thank Alexander Ritter for

several useful discussions on this topic. Let us now give the precise statement.

THEOREM A. Let W be an open manifold and let ws be a family of symplectic
forms on W, with s € [0,1]. Suppose Wy C W is a family of zero-codimensional
embedded compact submanifold in W, which are all diffeomorphic to a model W’'.
Let (Ws,ws‘ws,js

W' ~ Wy such that the contact forms ag and «y are both v-non-degenerate. If c1(ws)

) be a convex deformation. Fizx a free homotopy class of loops v in

is v-atoroidal for every s € [0,1] and s — wy is projectively constant on v-tori, then
SH:(W()a WO,jO) =~ SH:(Wla wl)jl)-

Before commenting on this result, we clarify the terminology used. We refer
to Chapter [3| for a more thorough discussion. The map js denotes a collar of the
boundary. The normal vector field associated to js induces the contact form as on
OWs. By convex deformation, we mean a deformation for which the boundary stays
of positive contact type. A contact form is v-non-degenerate, if all its periodic orbits
in the class v are transversally non-degenerate. A two-form p on W’ is said to be
v-atoroidal if the cohomology class of its transgression [7(p)] € H(Z,W') is zero.

A family of two-forms {w’} on W’ is said to be projectively constant on v-tori, if the

/

*)] is independent of s up to a positive factor.

class [T(w

Symplectic Cohomology for manifolds with boundary of positive contact type
was introduced by Viterbo in [Vit99]. In [Vit99, Theorem 1.7] (see also [Oan04,
Theorem 2.2]) he proves the invariance of SH* for contractible loops when all the ws
are 0-atoroidal (in other words, they are aspherical). However, we do not understand
his proof. In particular, when he deals with the “Generalized maximum principle”
(Lemma 1.8), the coordinate z is treated in the differentiation as if it did not depend

explicitly on the variable s in contrast to what happens in the general case.
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In [BF11], Bae and Frauenfelder prove a similar result for the Symplectic Co-
homology of contractible loops on a closed manifolds and for Rabinowitz Floer Ho-
mology of twisted cotangent bundles. In their setting all the ws are aspherical and
the primitives of ws to the universal cover of W grow at most linearly at infinity.
It would interesting to find out whether the deformation invariance that we get in
Theorem [A| and the one Bae and Frauenfelder get in [BF11] fit into the long exact
sequence between Symplectic Homology, Symplectic Cohomology and Rabinowitz
Floer Homology |[CFO10].

As far as the hypotheses on the symplectic forms are concerned we observe two
things. First, the fact that ¢j(ws) is v-atoroidal has two consequences: Symplectic
Cohomology is well-defined since ¢;(ws) is also aspherical and, hence, no holomor-
phic sphere can bubble off [HS95]; Symplectic Cohomology is Z-graded. Second,
the fact that ws is projectively constant on v-tori implies that the local system of
coefficients associated to 7(ws), which appears as a weight in the definition of the
Floer differential, is independent of s up to isomorphism.

We construct the isomorphism mentioned in Theorem [A] in two steps. First,
in virtue of Gray’s Theorem we find an auxiliary family of symplectic manifolds
(W/,w?) such that (W},w.) is isomorphic to (Wj,ws) and the support of w} — wy
is disjoint from the boundary. Then, we define a class of admissible paths of pairs
{(Hs, Js)} such that Hg is uniformly small and Jg is uniformly bounded on the
support of w, — w(,. In this way the 1-periodic orbits of X, does not depend on
s. The moduli spaces of Floer cylinders corresponding to {(Hs, Js)} satisfy uniform
bounds on the energy, since by a Palais-Smale Lemma, the time they spend on the
support of w!, — wy(, is uniformly bounded. This implies that the moduli spaces are
compact and, therefore, we can use them to define continuation homomorphisms
between the chain complexes SC} (W, w’, j., Hs, Js). Such homomorphisms will be
weighted using the local system of coefficients associated to 7(ws), so that they will
commute with the Floer differentials, yielding maps in cohomology. Two homotopies
of homotopies arguments show that these maps are isomorphisms and that they
commute with the direct limit.

In Chapter [4) we apply the general theory of contact hypersurfaces to magnetic
systems (M, g,0), in order to prove the existence of periodic orbits. We denote by
Con™(g,0), respectively Con™ (g, o), the set of all m such that ¥,, is of positive,
respectively negative, contact type.

Historically, the first examples that have been studied are exact systems, since
these can be equivalently described using tools from Lagrangian mechanics. In this
case we can define my(g, o) and m(g, o) the Mané critical values of the abelian and
universal cover, respectively (after the reparametrisation m — %2) As far as the

contact property is concerned, it is known that

e for m > mq(g,0), m € Cont(g,0) and, up to time reparametrisation, the
dynamics is given by the geodesic flow of a Finsler metric [CIPP98];
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e for m < myg(g,0), X, is not of restricted contact type, namely the contact
form cannot be extended to the interior, since there exists M,, C M a
compact manifold with non-empty boundary such that dM,, is the union of
supports of periodic orbits whose total action is negative [Tai91l, (CMPO04].
Each of these orbits is a waist: namely a local minimiser for the action
functional. If M # T2, this implies that Con™(g,0) = (mo(g,0),+o0),
while, if M = T2, there are examples such that mg(g,0) € Con™(g,0)
[CMPO04].

As far as the periodic orbits are concerned, it is known that

e for m > m(g,o) there exists at least a periodic orbit in every non-trivial
free homotopy class;

e for almost every m < m(g, o) there is a contractible periodic orbit [Con06]
and infinitely many periodic orbits in the same homotopy class of a waist
[AMP13, AMMP14]|. Each of these orbits is a mountain pass, namely is
obtained by a minimax argument on a 1-dimensional family of loops.

We give a survey of the results about the contact property in Section The
only original element we add is an explicit construction of the contact structures at
mo(g, o) for the two-torus. Indeed, the argument in the original paper [CMP04]
was not constructive. As in the supercritical case, the Symplectic Cohomology of
the filling is isomorphic to the singular homology of the loop space. In particu-
lar, SH; # 0. For restricted contact type hypersurfaces, Ritter proved in [Rit13]
Theorem 13.3] that the non-vanishing of Symplectic Cohomology implies the non-
vanishing of Rabinowitz Floer Homology (see [CEFO10| for the relation between
these two homology theories). By Theorem 1.2 in [CF09], the non-vanishing of
RFH implies the non-displaceability of the boundary. Hence, if Ritter’s theorem
could be generalised to the filling of arbitrary hypersurfaces of contact type, we
would have proven that the critical energy level is non-displaceable (see [CFP10]
for a discussion of displaceability of hypersurfaces in twisted tangent bundles).

We proceed to the non-exact case in Section The first condition we need
is for the 2-form w, to be exact on ,,. This happens if and only if M # TZ2.
Then, we look for a contact form within the class of primitives defined in . In
Corollary and Corollary we find that m € Con™ (g, o) for m large enough
and we compute the Symplectic Cohomology of the filling in terms of the Symplectic
Cohomology of the model cases.

PROPOSITION B. Let (M, g,0) be a magnetic system on a surface different from
the two-torus. If m belongs to the unbounded component of Con™ (g, o), then

SH* ({E < m2} ,wa> H_(ZM,Z) if M has positive genus,
2 0 if M = 52

If the magnetic form is symplectic we also show in Section and Section
[4:2.3) that low energy levels are

e of positive contact type, if M = S?;
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e of negative contact type, if M is a surface of higher genus.

In the first case, we compute SH and we again find that it vanishes. In the second
case, we cannot define S H of the filling, since the Liouville vector field points inwards
at the boundary. However, it would be interesting to find a compact symplectic
manifold (W', w’) with boundary of positive contact type that can be glued to %,
in such a way that ({£ < %2}, we) Us,, (W' W) is a closed symplectic manifold.

Finally, in Section [£.4] we use the computation of Symplectic Cohomology to
reprove some known lower bounds on the number of periodic orbits in the exact and
non-exact case. We collect them in the following proposition.

PROPOSITION C. Let (M, g,0) be a magnetic system and suppose that m belongs

either to the unbounded component of Con™ (g, ), or, if M = S? and o is symplectic,

to the component of Con™ (g, o) containing 0. Then,

o if M = S2?, there exists a periodic orbit on ,,. If all the iterates of this
periodic orbit are non-degenerate, then there exists another geometrically
distinct periodic orbit;

o if M = T2, there exists a periodic orbit on ¥, in every non-trivial free
homotopy class. If such orbit is non-degenerate, then there exists another
geometrically distinct periodic orbit in the same class;

o if M is a surface of higher genus, there exists one periodic orbits on 3, in

every non-trivial free homotopy class.

1.3. The contact property on surfaces of revolution

In Chapter [5| we look at the contact property on surfaces of revolution, in order
to test the general results contained in Chapter [4in a concrete case. We construct
the surface S% C R? by rotating a profile curve (y,d) C R? parametrised by arc-
length. We study the magnetic system (S,%, G, 1) Where g, is the restriction of the
Euclidean metric on R? to S% and (1, is the area form associated to this metric. Up
to a homothety, we also assume that the area of the surface is 47. From the previous
discussion, we know that there exists two positive values m_ , < m4 5 such that
[0,m_ ) U (m4 ,+00) C Con™ (g, ty) =: Con,. These can be taken to be the two
roots of the quadratic equation m? —m-,m+1 = 0 (where m,, > 0 is defined below) if
such roots are real. In this case m, > 2 and the length of the gap m gamma —m—
is 4 /m% — 4 and, hence, it increases with m,. If the roots are not real, or, in other
words, m~ < 2, then we simply have Con,, = [0, +00). The number m, depends on
the Riemannian geometry of Sg. It is defined by

My = ﬂeP(ilan)““f Hﬁ”v
where K is the Gaussian curvature and P05 is the set of primitives of (1—K ).
We give an explicit formula for m., in terms of the function 7 in Proposition It
can be used to get the following estimate on the contact property.
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ProposiTiON D. If S% s symmetric with respect to the equator and the curvature
increases from the poles to the equator, then m~, < 1. Therefore, Con, = [0, +00).
On the other hand, for every C' > 0, there exists a convex S,% such that m~ > C.

The second part of the proposition above relies on the fact that m, can be
arbitrarily big provided the curvature is sufficiently concentrated around at least
one of the poles. Thus, for these surfaces, the contact property can be proved only
for a small set of parameters.

Hence, we are led to ask, in general, how good is the set [0, m_ ) U (m4 -, +00)
in approximating Con,, the actual set of energies where the contact property holds.
For this purpose we employ McDuff’s criterion [McD8T7], which says that %, is
of contact type provided all the invariant measures supported on this hypersurface
have positive action. Finding the actions of an invariant measure is usually a difficult
task. However, for surfaces of revolution there are always some latitudes that are
the supports of periodic orbits. We compute the action of such latitudes in Propo-
sition If the magnetic curvature K,, : ¥,, — R, defined as K,,, :== m?>K + 1 is
positive, we only have two periodic orbits which are latitudes (see Proposition .
By Proposition their action is positive. Therefore, they do not represent an
obstruction to the contact property. In addition, under the same curvature assump-
tion, we have a simple description of the dynamics of the system after reduction by
the rotational symmetry. In particular, this allows us to devise a numerical strategy
to compute the action of all the ergodic invariant measures as we explain in Section
The data we have collected suggest that all such actions are positive, hinting,

therefore, at the following conjecture.

CONJECTURE E. Let (82, g,0) be a symplectic magnetic system and suppose that

for some m > 0, the magnetic curvature is positive. Then, X, is of contact type.

The numerical computations, and possibly an affirmative answer to the conjec-
ture, would then indicate that the system (S%, G, l) associated to a convex sur-
face would be of contact type at every energy level. This shows that the inclusion
[0,m_ 5)U(my , +00) C Cony will be strict, in general. Establishing the conjecture
would also yield another proof of Corollary 1.3 in [Sch12a] about the existence of
two closed orbits on every energy level, when K >0 and f > 0.

To complete the picture, we see in Proposition that positive magnetic cur-
vature is not necessary for having the contact property. Moreover, using again
Proposition we give the first known example of an energy level on a non-exact
magnetic system on S? which is not of contact type (Proposition [5.12)). This shows

that the inclusion Con, C [0, +00) can be strict, as well.

1.4. Low energy levels of contact type on the two-sphere

In the last chapter of the thesis we focus on low energy levels of general symplectic
magnetic systems on S2. We can write o = fu, where p is the Riemannian area
and f: 5? — R is a function. Without loss of generality we assume that |, g2 0 =dm
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and that f is positive. By the previous discussion, we know that these levels are of
contact type. Hence, there exists a family of primitives m +— A, of w,|x,, made of
contact forms. In Lemma [7.4] we see that, using Gray Stability Theorem, one can
find diffeomorphisms F}, : 31 — X,, such that
A = Fidm = 20 + o(m?), where pp, :==1— m
Pm 2f
The form )¢ is an S'-connection on $S52% := ¥; with curvature . In Lemma
we show that the Reeb vector field of g /pm can be written as the composition of
the o-Hamiltonian flow with Hamiltonian p,, on the base S? and a rotation in the
fibres with angular speed p,,. This allows us to expand Ginzburg’s action function
S+ 9582 — R for the form Xm, defined in Section in the parameter m around
zero. This function was introduced for the first time in [Gin87] using local Poincaré
sections. Its critical points are those periodic orbits of the Reeb flow of A, which

are close to a curve that winds once around a fibre of SS? — S2.

ProprosiTION F. The following expansion holds
T
f(x)

As a consequence, if x € S? is a non-degenerate critical point of f, then there exists

Sm(x,v) =27 + m? 4 o(m?). (1.1)

a family of loops m + Yy, such that v winds uniformly once around S,S> in the

positive sense and the support of Fu(vm) is a periodic orbit on X,,.

The existence of periodic orbits close to non-degenerate critical points is stated
without proof in [Gin96].

Now we move to analyse the Conley-Zehnder indices of the Reeb flow of A, and
present some dynamical corollaries of this analysis. As M = 82, ¥, is diffeomorphic
to the lens space L(2,1) ~ RP3. On lens spaces we can identify the distinguished
class of dynamically convexr contact forms. We say that a contact form is dynamically
convex if the Conley-Zehnder index pcyz of every contractible periodic orbit of the
Reeb flow is at least 3. Such forms were introduced by Hofer, Wysocki and Zehnder
[HWZ98| on S° as a contact-invariant generalisation of convex hypersurfaces in C.
If 7 € QY(L(p,q)) is a dynamically convex contact form, we have the following two

implications on the dynamics of the associated Reeb flow R”.

(i) There exists a global Poincaré section of disc-type for R, under the condition
that, when p > 1 (namely L(p, q) # S?%), all periodic orbits are non-degenerate.

(i) When p > 1 and all periodic orbits are non-degenerate, there exists an elliptic
periodic orbit for R7.

Point was proven in [HWZ98| for p = 1. The proof for p > 1 is contained in
[HLS13]. Probably the non-degeneracy assumption can be removed by running the
same lengthy approximation argument contained in [HWZ98]. Point was proven
for convex hypersurfaces in C? symmetric with respect to the origin in [DDE95].

A proof of the general case stated above was recently announced in [AM].
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Dynamical convexity was proven in the context of the standard tangent bundle
by Harris and G. Paternain [HPO8]. They showed that, if (52, g) is a Riemannian
two-sphere with 1/4-pinched curvature, the geodesic flow is dynamically convex on
every energy level. In this thesis we prove dynamical convexity for twisted tangent
bundles (see also the forthcoming paper [Benl14]).

THEOREM G. Let (8%, g,0) be a symplectic magnetic system. If m is low enough,

there exists a primitive A, of wy on X, which is a dynamically convex contact form.

We give two different arguments to show this result.

e In Section [7.3, we construct a hypersurface S, C C2 and a double cover
Pm f?m — X, such that py, A\, = —/\St’im. The hypersurface i?m is convex
for small m, since it tends to the sphere of radius 2 when m goes to zero.

e In Section [7.4] we give a direct estimate of the Conley-Zehnder index of
contractible periodic orbits of R .

The latter argument follows closely the strategy of proof of [HPOS8]: the fact that
the magnetic form is symplectic and the energy is low, plays the same role as the
pinching condition on the curvature. Moreover, this second proof can be adapted to
surfaces of higher genus to show that, if v is a periodic solution of R*» which is free
homotopic to |eps| times a vertical fibre, then pcz(vy) < 2epr + 1 (here ey denotes
the Euler characteristic). This inequality fits into a notion of generalised dynamical
convexity which is currently being developed by Abreu and Macarini [AM]. They
claim that they can prove the existence of an elliptic periodic orbit in this wider
setting (see Point ) However, it is not known so far, if it is possible to extend
results on the existence of global Poincaré sections to this case (see Point )

Theorem [G] can be used to obtain the following information on the dynamics.

COROLLARY H. Let (52, g,0) be a symplectic magnetic system and let m be low
enough. On %, there are either two periodic orbits homotopic to a wvertical fibre
or infinitely many periodic orbits. If f has three distinct critical points Timin, TMax
and Tpondeg SUch that xmin is an absolute minimiser, Tnax 18 an absolute mazimiser
and Tyondeg 95 non-degenerate, then the second alternative holds. Moreover, if Y,

s non-degenerate

o there exists a Poincaré section of disc-type for the magnetic flow on ¥, ;

e there exists an elliptic periodic orbit v on X, and, therefore, generically,
there exists a flow-invariant fundamental system of neighbourhoods for ~.
Hence, the dynamical system is not ergodic with respect to the Liouville

Measure on Yy, .

We do not have any example where there are exactly two non-contractible pe-
riodic orbits on low energy levels. However, by [Gin87, Assertion 3] we know that
these two orbits are short, namely they are close to curves that wind around a verti-
cal fibre once. In the next theorem, we show that we can make rigorous a dichotomy

between short and long orbits.
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THEOREM 1. Let (S%,g,0 = fu) be a symplectic magnetic system. Given & > 0
and a positive integer n, there exists me, > 0 such that for every m < mg, the

projection w(v) of a periodic prime solution y on L, either is a simple curve on S*

with length in (I%f;;jfm, ﬁg;‘;m) or has at least n self-intersections and length larger
than 2.

This result is an adaptation to the magnetic settings of [HS12, Theorem 1.6]
for Reeb flows of convex hypersurfaces close to S C C2. That paper brings in
the contact category classical results for pinched Riemannian metrics on S? [Bal83]
and on spheres of any dimension [Ban86]. Theorem 1.6 in [HS12] also contain a
lower bound on the linking number between short and long orbits. This statement
is substituted in Theorem [[] by a lower bound on the number of self-intersections
for long orbits. It is likely that the estimates on the linking number obtained by
Hryniewicz and Salomao can be used as a black box to get our estimates for the
self-intersections, but we did not pursue this strategy explicitly. Instead, our proof
is based on an application of the Gauss-Bonnet formula for surfaces.

Even if we do not know if it is possible to have an energy level with exactly two
periodic orbits, it has been proven by Schneider in [Sch11l Theorem 1.3] that there
are examples with exactly two short orbits. In Section we have a closer look
at this problem for surfaces of revolution (Sg, Gv, fiiy), where f is a rotationally
invariant function. We show the existence of a smooth family of embedded tori
Crm i [0, 4]/~ X Tor < %,,,, where £ is the length of v and ~ is the equivalence
relation which identifies —¢ and +/¢. They are defined by the formula

(—u, —7/2,7) if u <0,

Cn(u, ) = _
(u,m/2,¢ +m) if u>0,

where we have put on X, the triple of coordinates (¢,¢,6). The first and third
one are the latitude and longitude, respectively. The second one is the angle in the
vertical fibre counted starting from the longitudinal direction. Each C,, is obtained

by gluing two global Poincaré sections of cylinder-type, C,. and C.!, along their

m
common boundary. This boundary is made by the two unique periodic orbits that
project to latitudes on 53. The two smooth return maps defined on the interior of
C.. and C; extend to a global continuous map F2, : Cy, — Cp, (Proposition .
Denote by Qf : 5’3 — R the extension of the function —A/—J;?, to the poles and set

Q; :=inf[Qy[. We have the following result for the return map.

PROPOSITION J. The family of maps F2, : [—, 4]/~ X Tox — [—€, +£]/~ X Tox
admits the expansion

an(u, Y) = (u, Y+ WQme + o(m2)) .

Hence, if Qf is not constant, there are infinitely many periodic orbits on every low
energy level. Such condition is satisfied if, for example, f—];(O) =+ —f—f3(€). IfQ; >0
(namely f =0 only at the poles and f # 0 there), the period T of a Reeb orbit of
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R | different from a latitude, satisfies

2 1
T > — .
- o)

In particular, there are only two short orbits and their projection to S,% 1s supported

on two latitudes.

Finally, we observe that this proposition also gives potential candidates for mag-

netic systems with only two closed orbits. Namely, those for which {2 is constant.






CHAPTER 2

Preliminaries

In this chapter we set the notation and recall the prerequisites needed in the
subsequent discussion. The first section describes the conventions and symbols used
in the paper. The second section is devoted to the basic properties of the tangent
bundle of an oriented Riemannian surface. The third section introduces magnetic
fields. The fourth section deals with Hamiltonian structures on three-manifolds.
Magnetic flows on a positive energy level are particular instances of this general

class of dynamical systems.

2.1. General notation

All objects are supposed to be smooth unless otherwise specified.

If T'> 0 is a real number, we set Ty := R/TZ.

If p, q are coprime positive integers, we write L(p, q) for the associated lens space.
It is the quotient of S C C? by the Z/pZ-action given by

-k

-k
k|- (z1,22) = 627”5,21,6 v
[

ZQ).

If v and 4/ are two knots in S® we denote by 1k(v,v’) their linking number.

If M is a manifold we write Q¥ (M) for the space of k-differential forms on M and
(M) for the space of vector fields on M. The interior product between Z € I'(M)
and w € QF(M) will be written as 1zw. If w € Q¥(M), we denote by P the set of
its primitives. Namely, P = {7 € Q*"}(M) | w = dr}.

If Z € T(M), we denote by Lz the associated Lie derivative and by ®Z the flow
of Z defined on some subset of R x M. We write its time ¢ flow map as ®7. A
periodic orbit for Z is a loop v : Ty — M, such that 4 = Z,. When we want to
make the period of the orbit explicit we use the notation (v, 7). We call Q% (M) the
space of Z-invariant k-forms: 7 belongs to Q% (M) if and only if L7 = 0.

If v is a free homotopy class of loops in M, we denote by %4, M the space of
loops in v.

Let 7 : E — M be an S'-bundle over a surface M with orientation 0;;. We
denote by V the generator of the S'-action and we endow E with the orientation
Op = oy ® —V. An S'-connection form on F is a 7 € Q'(E) such that 7(V) =1
and dr = —7*o for some o € Q?(M) called the curvature form.

If (M,w) is a symplectic manifold and H : M — R is a real function, the
Hamiltonian vector field X is defined by

1xyw = —dH. (2.1)

13
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We define now some objects on C" ~ R?". Denote by Ji the standard complex
structure and by gst the Fuclidean inner product. Define the standard Liouville form
Ast € QHCM) as (Ast):(W) := 2ga(Jt(2), W), for 2 € C" and W € T,C" ~ C™.
Finally, the standard symplectic form is defined as wg := dAgt, or in standard real

coordinates wg = ) dzt A dy'.

2.2. The geometry of an oriented Riemannian surface

Let M be a closed orientable surface and let ej; € Z be its Euler characteristic.
Let m : TM — M be the tangent bundle of M, Ly,  : ToM — T, ,)TM the
associated vertical lift and write T'My for the complement of the zero section in
TM. Suppose that we also have fixed an orientation o on M. If o € Q?(M) we use
the shorthand [o] := [}, o (where the integral is with respect to o).

Let ¢ be a Riemannian metric on M. It yields an isomorphism b : TM — T*M
which we use to push forward the metric for tangent vectors to a dual metric g for
1-forms. Call § : T*M — T'M the inverse isomorphism. We write | -| for the induced
norms on each T, M and Ty M. From the duality construction we have the identity
|I| = supjy=1 [[(v)], VI € T; M. We collect this family of norms together to get a

supremum norm || - || for sections:
VZ e (M), |Z| := sup |Z]; VB € QY(M), ||B|| := sup | Bl (2.2)
xeM xeM

The Riemannian metric induces a kinetic energy function E : TM — R defined by
E((z,v)) := 2gs(v,v). The level sets ¥, := {E = im?} C TM are such that

e the zero level ¥y is the zero section {(z,0) |z € M};
e form >0, m : X, — M is an S1-bundle.

Let V be the Levi Civita connection of g and % be the associated covariant deriv-
ative along a curve v on M. For every (x,v) € TM, V gives rise to a horizontal lift
L&v) :TyM — T, )T M. Tt has the property that d, 7o in’v) = Idg, ps. Finally,
denote by p € Q%(M) the positive Riemannian area form and by K the Gaussian
curvature. We combine them to obtain the curvature form o, € Q*(M) associated

to g. It is defined by o, := Kp.

We introduce a frame of T'(T'Mj) and a coframe of T*(T' M) depending on (g, 0).
The first element of the frame is Y, which is defined as Y(, . := L](i, ()
The geodesic equation

\R

Vi 2.
=0 (2.3)

for curves v in M gives rise to a flow on T'M. The second element of the frame
is the generator X of such flow. It is called the geodesic vector field and can be
equivalently defined as X(, ) = ng)(v).

Consider the 2m-periodic flow <I>¥ : TM — TM, which rotates every fibre of =
by an angle ¢. We choose as the third element of our frame, V' the generator of
this flow. If we denote by 7 : TM — TM the rotation of /2 in every fibre, then
Vizgw) = L](fv,v) (yzv) and V!Em € I'(%,,) is the generator of the S'-action on %,,.
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Finally, the last element of the frame is H, defined by H, ) := LZ;U) (Jzv).

The first element of the coframe is dF, the differential of the kinetic energy.

The second element is A, the pull-back under b of the standard Liouville form
on T*M. Tt acts by A )(§) = gz(v,d(zyTE) on & € T(,\TM. The exterior
differential w := dA yields a symplectic form on TM. We denote by 9 the orientation
associated to w A w. Every ¥,, inherits an orientation Oy, , which is obtained from
9 following the convention of putting the outward normal to ¥,, (namely Y) first.
Observe that such orientation matches with the orientation of an S'-bundle over an
oriented surface as defined in Section 2.1l

The third element is 7, the angular component of the Levi-Civita connection.
On & € T(,,)T'M, it acts by 7 ,)(§) = gu (920, %@), where (&, ) is any path passing
through (x,v) with tangent vector &.

The fourth element is given by 1 := j*A.

We now recall the main properties of the frame and the coframe, which are a
particular case of the results contained in [GKO02b].

PROPOSITION 2.1. The frame (X,Y, H, V) is O-positive with dual coframe
AdE n T
2E’2FE’2FE’2E )
We have the following bracket relations for the frame

Y,X] = X [V.H] = H [V.V] =0

V.X] = H [V,H] = -X [X,H] = 2EKV. (2.4)
Accordingly, we get the following structural equations for the coframe
( A A dE n T
i(35) = 5" "2 oE
dE
(i) - o
2F
(2.5)
d(l) _ AT 4B T
2B/ ~ 2E" 2E 2E " 2FE’
T A N
d(ﬁ) = —2BK - ASL.
The last equation in (2.5 can be rewritten as
T *
d(55) = =" (Kn). (2.6)

It implies that 55 is an St-connection form on every ¥, with curvature o.

For the following discussion it will be convenient to have also a corresponding

statement for the restriction to SM := ¥ of the frame and coframe defined above.

COROLLARY 2.2. The triple (X,V, H) is an Ogpr-positive frame of T(SM) with
dual coframe (X, T,m). We have the following relations

{ V,X] = H [H,V] = X [X,H] = KV; 27

d\ = TAn dr = KnAX = —1'oy dn = AAT.
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DEFINITION 2.3. The volume form y € Q3(SM) defined by
X:=AANTAN=—T AT p, (2.8)

associated to the dual coframe, is called the Liouville volume form.

We end up the general discussion about the geometry of M by proving some
properties related to local sections of SM.

Consider an open set U C M and denote by SU the unit sphere bundle over U.
Let Z : U — SU be a section and associate to Z an angular function ¢z : SU — Ta.
The value of ¢z at the point (x,v) is the angle between v and Z,. In the next lemma
we compute the differential of the angular function. First, observe that, if v € T, U,
we have gw((VvZ)x, Zw) = 0. Thus, there exists /@f € T M such that

(VoZ): = Hf(@)]ngﬁ, (2'9>

LEMMA 2.4. If Z is a section of SU, we have
dpz(X)(z,v) = —K7 (v),
dpz(V)(z,v) =1, (2.10)
doz(H)(w,v) = —#7 (3:0).

PROOF. We can write the angle ¢, as an element of S' C C:

(COS (pz(.%’, 1)), sin @Z(xv ’U)) = (gm(va Zw)vgm(vajl‘zl‘))’ (2'11)

Differentiating along X this map, we get

(e (c08 92)(X), d(z0) (sin 02)(X)) = (92((VoZ), 1), =02((Vo2), , J2v))-

On the other hand, we also have

(d(x’v)(cos @Z)(X),d(x’v)(sin <pZ)(X)) = dgoZ(X)(x,v)-(—singoz(a;,v),cos cpz(a;,v)).
Thus, we can express dpz(X)(z,v) as the standard inner product in R? between
(gz((VvZ)x ), —92(Vo2), ,jv)) and ( — sin ¢z, cos cpZ).
dpz(X)(z,v) = —sinpz(z,0)g((VeZ),,v) + cospz(2,v)gz( (Vo Z), , Jov)
= —sinpz(@, 0w (0)g: (322, v) = cos pz(x,0)K7 (V)92 (3o Z, 1)
Z

= —hRg (U)

For the second statement we differentiate in ¢ the identity oz o ®} = 7 + t.
The third statement follows by using the identity H = d,371(X,):

a2z (Hp) = dor#2 (degnrs™ Kiog) )
= d(x,]zv)(SOZ o.]_l)(X(ac,jzv))

= d(z,3,0)97 (X(z,300))
= _“f(]xv) O



2.3. MAGNETIC FIELDS 17

We give an explicit formula for £Z in the next lemma. First, define the geodesic
curvature of Z as the function
k‘Z U — R

(2.12)
T gx((vZZ)xv.]xe)-
LEMMA 2.5. At every x € M, we have §kZ = kz(2)Zy + kyz(2) 9224
PROOF. Let us evaluate xZ on the basis (Z,, J.Z4):
= kz(x); = 92(92(V)22) 2, 12 (32 Z2))
= gx((v]Z]Z)xa]x(]xe))
= kyz(2).
O

2.3. Magnetic fields

In the previous section we introduced various geometrical objects associated to
(M, g). Historically, the geodesics equation has been used as the main tool to
understand the geometry of Riemannian manifolds [K1i95, Pat99al. It is a classical
result that the geodesic flow can be studied in the framework of symplectic geometry,
since X is the dA-Hamiltonian vector field associated to the kinetic energy function
(see [K1i95| Chapter 3]). In other words,

1xd\ = —dE. (2.13)

From this equation we see that X is the set of rest points for X and for every
positive m, ¥,, is invariant under the geodesic flow. Hence, we can study X |Em
for a fixed value of m > 0. By the homogeneity of (which is translated in
the bracket relation [Y, X] = X), X|, and X ‘Em have the same dynamics up to
reparametrisation by a constant factor. The map conjugating the two flows is given
by the flow of Y:

AP oy - Xy, =mX|g_ (2.14)

log m
One of the guiding principles of this thesis is to see how the introduction of a
magnetic perturbation in the geodesic equation breaks the homogeneity and gives
rise to a family of systems whose dynamics changes with m.

For any o € Q?(M) consider the symplectic form w, := d\ — w*c € Q*(TM).
When o is not zero, we refer to the symplectic manifold (T'M,w,) as a twisted
tangent bundle to distinguish it from the standard tangent bundle (T'M,wy = d\).

We will see later some remarkable differences (in terms of Symplectic Coho-
mology and displaceability, for example) between the geometry of the standard and
twisted tangent bundle. Such phenomena show, in this setting, the contrast between

symplectic and volume-preserving geometry. Indeed, we claim that

We N\ We = wo N\ wp. (2.15)
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Hence, the twisted and the standard tangent bundle have the same volume form,
although they are different in the symplectic category. To prove the claim notice
that 7*c A m*c = 0 and that dA A 7*c = d(A A m¥0) = 0, since A A 70 = 0 by
Proposition [2.1] above.

In the next proposition we prove that also the first Chern class of the underlying

class of compatible almost complex structures is unaffected by the twist.
PROPOSITION 2.6. If o is a 2-form on M, then ¢1(TM,ws) = 0.

PrOOF. Consider the vertical distribution V — T'M. It is a Lagrangian sub-
bundle of the symplectic bundle (T(T'M),w,) — TM. If J, is an almost complex
structure compatible with w,, then V is totally real with respect to J,. As a conse-

quence, we have the isomorphism of complex bundles
Ve, i) — (T(TM), Jo)
(u+iv) — u+ Jyu,

where (V¢, 1) is the complexification of V. Therefore, ¢1(T'M, J;) = ¢1(Ve,i). On
the other hand, ¢;(V¢,i) = 0 since (Ve,i) ~ (Vc, —1), c1(Vc, —i) = —c1(Ve, i) and
H?*(TM,Z) is torsion-free (see [MS74, Lemma 14.9]. Alternatively, notice that
V — TM is orientable and therefore det(V) — T'M is trivial. Since taking the
determinant bundle and taking the complexification do commute, we get

c1(Ve, i) = e1(det(Ve),det(i)) = c1((det V)¢, i) = 0. O

DEFINITION 2.7. We call o a magnetic form and the triple (M, g,c) a magnetic
system. If we fix M, we write Mag(M) for the space of all pairs (g,o) such that
(M, g,0) is a magnetic system. For every (g,0) € Mag(M ), there exists a unique
function f : M — R called the magnetic strength such that ¢ = fu. We say that the
magnetic system is exact, non-exact, or symplectic, if such is the magnetic form ¢ in
O%(M). We denote by Mag, (M) C Mag(M) the subset of exact magnetic systems.

Finally, we define the magnetic vector field X¢ € T'(T'M) as the w,-Hamiltonian
vector field associated to E and we refer to ®X& as the magnetic flow.

As the geodesic flow, X7 comes from a second order ODE for curves in M:

%7 =F,(%). (2.16)

Here F': TM — TM is the Lorentz force. It is a bundle map given by
g(Fy(v),w) := 04(v,w) (2.17)

and can be expressed using the magnetic strength as F(v) = f(x)j,v. Using the

relation between the Levi Civita connection and the horizontal lifts, one finds that
XE =X+ fV. (2.18)

The kinetic energy E is still an integral of motion for the magnetic flow: ¥ is
the set of rest points for X7 and, for m > 0, X% restricts to a nowhere vanishing

vector field on X,,.
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However, the bracket relations now imply

g

—mX (2.19)

){SM {SM'

dOY 1y - XE|s, = (mX + fV
From this equality we infer two things. First, that, unlike the geodesic flow, the
magnetic flow is not homogeneous. Second, that studying the dynamics of the
magnetic system (M, g,0) on 3, is the same as studying the rescaled magnetic
system (M, g, Z) on SM. The advantage of the latter formulation is that it describes
the dynamics of the magnetic flow by using a 1-parameter family of flows on a fized
closed three-manifold. We also introduce the real parameter s, which is related to
m by the equation sm = 1. In the following discussion, we will use both parameters,
choosing every time the one that most simplify the notation. As a heuristic rule,
the parameter m will be more convenient for low values of £ (m close to 0), while
s will be more convenient for high values of E (s close to 0). When there is no risk
of confusion, we adopt the shorthand X® := X }‘}"‘ gy and ws 1= wse, when we use s,

o

and X™ = mXEE’SM

Notice that we have the limits

=mX + fV and wy, := mwe = md\ — 7*0, when we use m.

lim X* = X, lim X™ = [V,
s—0 m—0
limws = dX; lim w,, = -7'o.
s—0 m—0

In the standard tangent bundle, the properties of the linearisation of the geodesic
flow on SM are influenced by the curvature K (see also the bracket relations above).
Analogously, when there is a magnetic term, for every m > 0, we can define the
magnetic curvature function K, : SM — R as K,, := m?K — m(df o j) + f, which
is related to the linearisation of X™ [Ada97| (see also Chapter [5]).

REMARK 2.8. The duality isomorphism b : TM — T*M yields a symplectomor-
phism between the twisted tangent bundle (T'M,w,) and (T*M,w} := d\* — 7*0),
where A\* is the standard Liouville form on the cotangent bundle and we denote
with 7 also the footpoint projection T*M — M. The w,-Hamiltonian system X
is sent through b to the w}-Hamiltonian system associated to E* := Eob~!. Ob-
serve that E* is the kinetic energy function on T*M associated to the dual metric,
namely E*(z,1) = 3g,(1,1). In particular 3%, = b(2,,) = {E* = im?}. Unlike w,,
w} depends only on ¢ and not on g, which enters in the picture only through the
Hamiltonian E*.

The tangent bundle and the cotangent bundle formulation are equivalent but
have different advantages and disadvantages as far as the exposition of the material
is concerned. In the tangent bundle we have an intuitive understanding of the flow
given by the second order ODE. On the other hand, in the cotangent bundle we
have seen that g and o contributes separately to determine the magnetic flow: the
former through the Hamiltonian and the latter through the symplectic form.

We have seen that looking at different energy levels of a fixed magnetic system

g

(M, g,0) corresponds to a suitable rescaling of the magnetic field: X, ‘Em ~Xpg ‘21‘
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What happens when we rescale the metric g — m?g? In the cotangent bundle for-

: EX
mulation, we have that £*, = —%. Thus, X%. ~ X7, and, consequently.
’ m2g m ) Em29 E} ) )

o =5

Xgm%\zl ~ X, (2.20)

5,0

2.3.1. The Maupertuis’ principle. In this subsection we discuss how a mag-
netic system (M, g,0) is affected by the introduction of a potential U : M — R. In
this case we speak of a mechanical system (M, g,o,U). The Hamiltonian has an
additional term E(z,v) = $g,(v,v) + U(z) while the symplectic form remains the
same w, = dA — w*c. In this case the topology of the energy levels depends on
U. Consider the map 7| : ¥, — M, where %, := {E = m?/2}. Its image is the
sublevel M,, := {U < m?/2} and the preimage of a point & € M,, are the vectors in
T, M with norm \/m . This is either a single point, namely the zero vector
of T, M, if U(x) = m?/2, or a circle, if U(z) < m?/2. In particular, 7| : 3, — M is
an S'-bundle if and only if m?/2 > maxU. We claim that in this case the dynamics
on X, is equivalent, up to reparametrisation, to the dynamics of the magnetic flow
associated to (M, gmu := (m? — 2U)g, sigma) on SM (where the sphere bundle is
taken with respect to the metric gy, 7). To prove the claim, we work in the cotangent
bundle formulation. We start by observing that {E* = m?/2} = {%% =1}
Therefore, the w?-Hamiltonian flow of E* and the one of E*(z,1) := %%IUI)(@ are
the same up to reparametrisation on this common energy level. Finally, we observe

that E is the kinetic energy function for the metric which is the dual of g, 1.

wroan

From the discussion above, we see that the results contained in this thesis can
also be applied to magnetic systems with potential, provided we know U and m well
enough to understand the properties of (M, gy 7, 0). For example, fix m > 0 and
take a potential U whose C°-norm is small compared to m?. We claim that the
mechanical system (M, g,0,U) and the magnetic system (M, g,o) will be close to
each other on ¥,,,. By Equation and , we know that the magnetic system

associated to (M, gm,,0) is equivalent, up to reparametrisation, to the magnetic

system associated to (M, g;’;’QU, ). Moreover,
oy ) 201 Vol
|22 — o = =l (2:21)

Thus, if ||U]| is small compared to m?, the magnetic flow of (M, g, 7, 0) on the unit
tangent bundle of g,, 7 is close, up to reparametrisation, to the magnetic flow of
(M, g, ) on the unit tangent bundle of g.

2.3.2. Physical interpretation: constrained particles and rigid bodies
with symmetry. The adjective 'magnetic’ for the systems we have introduced
in the present section is due to the fact that they describe the following simple
phenomenon in the theory of classical electromagnetism. Consider a particle ¢ of
unit mass constrained to move on a frictionless surface M in the Euclidean space
(R3, gst). The metric induces by pull-back a metric g on M and a corresponding
Levi-Civita connection V. With this assumption the motion of ¢ will obey to the
geodesic equation . Suppose now that ¢ has unit charge and that M is immersed
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in a stationary magnetic field ? In this case the particle is subject to a Lorentz
force F = @ x B. The force F is obtained from the 2-form o := 133 volg,, as
prescribed by Equation . Here voly,, denotes the Euclidean volume form in
R3. The motion of ¢ will obey to the Equation .

Making the natural assumption that § is defined on the whole R3, we see that
o is the pull-back of a closed 2-form on R? and, hence, it is ezact. With this physical
interpretation, non-exact magnetic systems on M correspond to fields ﬁ generated

by a Dirac monopole located in a region outside the surface.

Even if a magnetic monopole has not been observed so far, non-exact mag-
netic flows on S? have, nonetheless, a concrete importance since they are symplectic
reductions of certain physical systems with phase space T'SO(3), possessing an S'-
symmetry. The study of the periodic orbits of these systems was initiated in the
early Eighties by Novikov in a series of papers [NS81l, Nov81al, Nov81bl, Nov82].
His interest was motivated by the fact that in these cases the Lagrangian action func-
tional is multivalued and, hence, one needs a generalisation of the standard Morse
theory (nowadays known as Novikov theory) for proving the existence of critical
points.

Among the many examples considered by Novikov, here we only look at the
motion of a rigid body with rotational symmetry and a fixed point. We refer the
reader to [Kha79] for a careful explanation of the setting and for the proofs of the
statement we make.

A rigid body with a fixed point is described by a positive orthonormal basis
e = (e1,e2,e3) in R3. Given a fixed positive orthonormal basis n = (n1, n2, n3), to
every e we can associate a unique element in SO(3) which is the isometry of R3
sending n to e. Hence, the configuration space of a rigid body with a fixed point
can be identified with the group SO(3).

The kinetic energy of the body is obtained from a left-invariant Riemannian

metric g on SO(3), which, in the standard basis of so(3), is represented by the

matrix
I 0 0
I = 0 Iy O (2.22)
0 0 I3

for some positive numbers I7, Is and I3. Let us consider the To-action on the
configuration space that rotates the rigid body around the fixed axis nz. In SO(3)
this corresponds to left multiplication by the subgroup G of rotations with axis ns.
Call Z € I'(SO(3)) the infinitesimal generator of G.

The quotient map for this action is the S'-bundle map

p:SO(3) — S*CR?

aq gst(e1,m3)
(61562763) — (0%) = gSt(627n3) )

a3 st (63, na)
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which yields the coordinates of the vector ng in the frame n. Denote by g the
metric induced on S? by p. It is obtained pushing forward the restriction of ¢ to the
orthogonal of ker dp. Notice that the function e — \/m is invariant under G,
so that it descends to a function v : S? — (0, +00) such that v/ge(Z, Z) = v(p(e)).

Finally, suppose that the rigid body is immersed in a conservative force field,
which is invariant under rotations around n3. Thus, the force is described by a
potential U : SO(3) — R which is invariant under the Tyr-action. Namely, there
exists U : $2 — R such that U = U o p.

The dynamics of the body is given by the Hamiltonian vector field on T'SO(3)
associated to the mechanical system (SO(3), g,0,U). The Tor-symmetry arises from
a momentum map J : T'SO(3) — g ~ R, which is an integral of motion. For every
k € R, we look at the dynamics on the invariant set {.J = k} projected to T.S? via
the quotient map p. It is the dynamics of the Hamiltonian vector field associated
to (52,4, kag,f]k), where U, = U + % A computation shows that the Gaussian
curvature of § is always positive and, hence, the magnetic form is symplectic.

Applying Maupertuis’ principle, we know that, on ¥,, such that m?/2 > max Uy,
the reduced system above is equivalent to the magnetic system (SQ,Qm,Uk,kag).
Moreover, if HUkH is small compared to m?, up to reparametrisation, the dynamics
is close to that of (52, g, %Jg) on the unit tangent bundle of g.

2.3.3. From dynamics to geometry. We come back to the general discussion
on magnetic flows associated to (M, g,0). We saw that the dynamics of X§, on TM
can be studied by looking at the dynamics of X% := X g"‘ g0 for positive values
of the parameter s. We are going to look at this new problem from a geometric
point of view, by investigating what geometric structure the symplectic manifold
T M induces on the three-manifold SM.

Consider the restriction w/, := wg‘ SM-
on the unit tangent bundle. Hence, it has an orientable 1-dimensional kernel ker w/,

It is a closed, nowhere vanishing 2-form

at every point. We fix for it an orientation Oy, satisfying the relation

DSM = Dkorw; 2] Dwév (223>
where D% is the orientation on igf%) induced by w/. Since x = AAdA = A A W,

we readily see that

_ a I
ZX%‘SMX—)\(XE‘SM)wJ AN %‘SM

Therefore, Equation ([2.23)) implies that the magnetic vector field X7|,, is a positive

nowhere vanishing section of ker w/,.

L =uwl. (2.24)

We

From the previous discussion, we argue that the real object of interest for un-
derstanding the geometric properties of the orbits, and not their actual parametri-
sation, is ker w/ rather than X }’3‘ gpr- The 2-form w), is a particular instance of what
is called a Hamiltonian Structure (or HS for brevity). We introduce such objects in

an abstract setting in the next section.
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2.4. Hamiltonian structures

We develop below the notion of HS and we identify the special subclass of HS
of contact type. Proving that a HS is of contact type has striking consequences for
the dynamics, since in this case we can describe the dynamical system associated to
the HS by the means of a Reeb flow. This yields the following two advantages.

a) We can count periodic orbits of Reeb flows using algebraic invariants, such as
Contact Homology [Bou09] and Embedded Contact Homology [Tau07], since
closed orbits are generator for the corresponding chain complexes. When the
contact manifold is the positive boundary of a symplectic manifold, like in the
case of SM, one can define a further invariant called Symplectic Homology, which
takes into account the interplay between the contact structure on the boundary
and the symplectic structure of the filling. In the next chapter we are going to
define Symplectic Homology [Vit99, [Sei08] (or, more precisely, its cohomological
version) in detail and prove an abstract invariance result which we will use in
Chapter [4 to compute it in the case of magnetic systems. This will yield a lower
bound on the number of periodic orbits for such systems.

b) The theory of pseudo-holomorphic foliations developed by Hofer, Wysocki and
Zehnder [HWZ98] allows to find Poincaré sections for dynamically convexr Reeb
flows. This allows for a description of the flow in terms of an area-preserving dis-
crete dynamical system on the two-dimensional disc. Information about periodic
points of such systems are then obtained applying results by Brouwer [Brol2]
and Franks [Fra92]. The abstract setting will be presented in Chapter [6] and
applied to magnetic systems in Chapter [7]

In the rest of this section let (N,9O) be a three-manifold N endowed with an
orientation ©.

DEFINITION 2.9. A closed and nowhere vanishing 2-form w on N is called a
Hamiltonian Structure. We say that the Hamiltonian Structure is ezact, if w is
such. The 1-dimensional distribution kerw is called the characteristic distribution
associated to w. It has an orientation Oy, satisfying the relation 9 = Oyer, B OY,

TN

where D¢ is the orientation on o~ induced by w. Alternatively, if x is any positive

volume form, ZX € I'(N) defined by 2zxx = w is a positive section of kerw.

DEFINITION 2.10. Let w be a HS and let Z € I'(IV) be a positive section of the
characteristic line bundle associated with w. We say that a periodic orbit (v, T)
for ®Z is non-degenerate if the multiplicity of 1 in the spectrum of d@% is exactly
one. Observe that this property does not depend on the choice of Z. If (v,T)
is transversally non-degenerate, call transverse spectrum the set made of the two

eigenvalues of d®Z different from 1. We say that v is
(1) elliptic, if the transverse spectrum lies on the unit circle in C;
(2) hyperbolic, if the transverse spectrum lies on the real line.
Finally, we say that w is v-non-degenerate if all the periodic orbits in the class

v are non-degenerate.
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REMARK 2.11. If (W,w) is a symplectic four-manifold and N < W is an ori-
entable embedded hypersurface, then w‘ y is a Hamiltonian Structure on W. If we
take N to be the regular level of a Hamiltonian function H : W — R, we can endow
N with the orientation induced from w A w by putting the gradient of H first. Us-
ing the Hamilton equation , we see that Xp|, is a positive section of kerw‘ N
Moreover, w| y 18 v-non-degenerate if and only if all the periodic orbits of H on N
with free homotopy class v are transversally non-degenerate (see next chapter).

This observation shows that the dynamics up to reparametrisation of an au-
tonomous Hamiltonian system on a four-dimensional symplectic manifold (W, w)
at a regular level N can be read off the geometry of the oriented one-dimensional

distribution kerw‘ N associated to the Hamiltonian structure w Jes

2.4.1. Hamiltonian structures of contact type. We now introduce Hamil-
tonian structures of contact type for which the characteristic distribution has a
section with special properties.

DEFINITION 2.12. We say that w is of contact type if it is exact and there exists a
contact form 7 € P“. Denote by R” the Reeb vector field of T, defined by 1p-dr =0
and 7(R7) = 1. One among R™ and —R" is a positive section of ker w. We say that

w is of positive or negative contact type accordingly.

REMARK 2.13. If we fix a positive section Z of kerw, being of positive (respec-
tively negative) contact type is equivalent to finding 7 € P such that 7(Z) : N - R

is a positive (respectively negative) function. In this case R = T(ZZ).

EXAMPLE 2.14. If (M, g) is a Riemannian surface as above, then w(, = d)\|SM
is a HS of positive contact type. Indeed, X is a positive section of kerw; and
Azw)(X) = gz (v,d(gy7X) = 1. This implies that )\|SM is a positive contact form
and X is its Reeb vector field.

EXAMPLE 2.15. Suppose that 7 : E — M is an S'-bundle over an oriented sur-
face (M, 0y;). If 0 € Q%(M) is a positive symplectic form, then 7*o is a Hamiltonian
structure. We claim that 7*¢ is exact if and only if E' is non-trivial. To prove neces-
sity, we observe that if F is trivial, the integral of 7*¢ over a section of 7 is non-zero.
To prove sufficiency, we define e # 0 the Euler number of the S'-bundle. Then, we
use the classical result [Kob56] saying that a 2-form on M, whose integral is 2me,
is a curvature form for an S'-connection on E. Thus, it is exact. This implies that
there exists 7 € Q(F) such that

o 7(V) =1, e dr = ——7'0. (2.25)

In this case —%T is a primitive of 7*¢ and a contact form with Reeb vector field

—%V. Therefore, 7% is a Hamiltonian structure of contact type. It is positive if

and only if e is positive.

EXAMPLE 2.16. For examples of structures of contact type in the context of the
circular planar restricted three-body problem, we refer to [AFvKP12].
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The most direct way to detect the contact property is to use Remark
However, this method could be difficult to apply, especially if we want to prove that
a HS is not of contact type, since we should check that every function 7(Z) vanishes
at some point. This problem is overcome by the following necessary and sufficient
criterion contained in McDuff [McD87].

PROPOSITION 2.17. Let w' be an exact HS and Z be a positive section of ker w'.
Then, w' is of positive (respectively negative) contact type if and only if the action

of every null-homologous Z-invariant measure is positive (respectively negative).

We end this subsection by recalling the basic notions about invariant measures
needed in the statement of the proposition above.
If Z is a vector field on a closed manifold N, a Z-invariant measure ¢ is a Borel

probability measure on N, such that
Vh:N =R, / dh(Z)¢ = 0. (2.26)
N

We denote the set of Z-invariant measure by 9(Z). We associate to every ¢ € IMM(Z)
an element p(¢) in H'(N,R)* = H;(N,R) defined as

V(g € H'N,R), < p(C),[f] > = /N B(Z)C. (2.27)

Suppose Z is a positive section of kerw, with w an exact HS on an oriented three-
manifold N, ¢ € M(Z) and 7 € P, The action of ¢ is defined as

AL - M(Z) — R

¢ / H(Z)C. (2.28)
N

If ¢ is null-homologous (namely p(¢) = 0), then A7(() is independent of 7 and,
therefore, in this case we write A% (¢) := A% ().

2.4.2. The Conley-Zehnder index. We finish this section by associating an
integer, called the Conley-Zehnder indez, to a periodic orbit of a Hamiltonian struc-
ture. It encodes information about the linearisation of the system along the orbit
and will play a crucial role in defining the notion of dynamical convexity for HS of
contact type. We refer to [HK99] for proofs and further details.

We start with the definition of the Maslov index for a path with values in Sp(1),

the group of 2 x 2-symplectic matrices. For any T > 0, we set
Spr(1) == { : [0,7] — Sp(1) | ¥(0) = Id}.

We call ¥ € Spy(1) non-degenerate if W(T) does not have 1 as eigenvalue.
Given ¥ € Spy(1), we associate to every u € R2\ {0} a winding number AO(¥, u)
as follows. Identify R? with C and let

Yt _ oz

W (t)ul ’

(2.29)
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for some function 6 : [0,7] — R. We define AQ(¥,u) := 0 (T) — 6.7 (0). Let

I(V) = {;WAQ(\IJ,U) u e R\ {0}} . (2.30)

The interval I(¥) is closed and its length is strictly less than 1/2. We notice that
the set e2™/(¥) ¢ S is completely determined by the endpoint ¥(T'). In particular,
we see that U is non-degenerate if and only if ZN9OI(¥) = (). We define the Maslov
index for a non-degenerate path as

2k, if kK € I(V), for some k € 7Z;
WD) = { ) (231)

| 2k41, if I(¥) C (k,k+ 1), for some k € Z.

We extend the definition to the degenerate case either by taking the maximal lower
semi-continuous extension u! or the minimal upper semi-continuous extension p*.
This amounts to using the same recipe as in the non-degenerate case, but in the
definition of y!, respectively of u*, we shift the interval I(¥) to the left, respectively
to the right, by an arbitrarily small amount. For any k € Z, there hold

pi(0) >2k+1 = (V) C (k,+o0) = p*(¥)>2k+1, (2.32)
pt(0)<2k—1 = I(¥)C (o0, k) = p* (V) <2k-—1, (2.33)
where we have used p* to denote both u! and p®.

We move now to describe the Conley-Zehnder index for a Hamiltonian structure

w on (N,9). Consider the 2-dimensional distribution &, := kj‘;ﬁ) and observe that

(€w,w) — N is a symplectic vector bundle, where @ is the symplectic form on the
fibres induced by w. Let v be a free-homotopy class of loops in N and choose 7, a
reference loop in v together with a symplectic trivialisation Y, of £, along ~,. If
v is the trivial class, just choose a constant loop with the constant trivialisation.
Suppose that ¢;1(&,) is v-atoroidal. This means that the integral of ¢;(§,) over a
cylinder ¢ : C :=[0,1] x Ty — N such that (0, ) = v, (-) depends only on i(1, ).
Let Z be a positive section of kerw and observe that d®7 acts on (&,,@) as a
symplectic bundle map. Let (7,7 be a periodic orbit of Z in the class v. Choose
a cylinder i : C — N connecting ~, with v and let T : (i*&,,i*w) — (€%, ws) be a
w-symplectic trivialisation of i*¢, on C extending Y,. Here e% is the trivial rank

2-vector bundle over C. We form the path of symplectic matrices \Dg T e Spr(1)
WS (t) i= Ty © dyo)®F © T € Sp(1). (2.34)

DEFINITION 2.18. The Conley-Zehnder index of v is ué&,(v,Y,) = ,u*(\I!g’T).
This number does not depend on the choice of Z and the hypothesis on the Chern
class ensures that it is also independent of the pair (C,T). If we choose a different
v, with a different trivialisation T, the index gets shifted by an integer which is the
same for every closed orbit v in v.

REMARK 2.19. If w is of contact type, the vector bundle (ker T,u;!ke”) is sym-
plectic and isomorphic to (&,,w). Hence, we can use the former bundle for the
computation of the index.



CHAPTER 3

Symplectic Cohomology and deformations

The material we present in this chapter build up from the work contained in
[Rit10]. On the one hand, it grew out of several fruitful discussions with Alexander
Ritter and it is likely to appear in a forthcoming paper [BR]. On the other hand,
the statement and proof of the crucial Proposition [3.35] which enables us to prove
the main result of this section (Theorem [3.30), are due exclusively to the author of
the present thesis.

The focus is Symplectic Cohomology for general convex manifolds as first deve-
loped by Viterbo in [Vit99)]. In the next chapter, we will apply the abstract results
proved here to magnetic systems.

In Section we recall the notion of convex symplectic manifold (W,w, j) in
the open and compact case and we give a notion of isomorphism in such categories.
In Section we introduce the Symplectic Cohomology of such manifolds, a set of
algebraic invariants SH;, counting 1-periodic orbits of Hamiltonian flows in the free
homotopy class v. We will work under the hypothesis that ¢j(w) is v-atoroidal.

In Section we see how to define SH} perturbing autonomous Hamiltonian
functions close to the non-constant periodic orbits.

In Section we define SH;, using a subclass of autonomous Hamiltonians,
whose non-constant periodic orbits are reparametrised Reeb orbits for the contact
form at infinity. For such Hamiltonians we have filtrations on the complex yielding
SH; given by the action (when (W, w) a Liouville domain) and, in general, by the
period of Reeb orbits. These filtrations will be used for the applications in the next
chapter.

In Section we quote the results contained in [Rit10], asserting that SH;
does not depend on the isomorphism class of a convex manifold.

In Section we prove the invariance of SH) for compact manifolds under

convex deformations (W, ws, js) which are projectively constant on v-tori.

3.1. Convex symplectic manifolds

Let us start by treating the non-compact case. First, we define the manifolds

we are interested in.

DEFINITION 3.1. Let W be an open manifold (non-compact and without bound-
ary) of dimension 2m and let ¥ be a closed manifold of dimension 2m — 1. We say
that W is an open manifold with cylindrical end (modelled on ¥) if there exists a
diffeomorphism j = (r,p) : U — (a,+0o0) x X. Here U is an open subset of W, such
that W\ 571((b, +00) x X) is a compact subset of W with boundary j~1({b} x %),

27
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for every (or, equivalently, some) b > a. We write i : ¥ — W for the embedding
C_ -1
L= ‘{b}xE'

We call j (or less precisely U) a cylindrical end of W and we denote by 9, € TU
the vector field generated by the coordinate 7.

We now fix some additional notation for open manifolds with cylindrical end.

DEFINITION 3.2. If f: ¥ — (a,+00), define by I'y : 3 — (a, +00) x ¥ the map
I't(z) = (f(x),z) and by X the image of I'; inside W. Denote by W/ and W the
compact and non-compact submanifolds of W with boundary ;. If we have two
functions fy, f1 : ¥ — (a,+00), with fo < f1, let W;;l be the compact submanifold
between Xz and Xy, .

We proceed to consider the subclass of open manifolds for which the symplectic

structure at infinity is compatible with some contact structure on the model X..

DEFINITION 3.3. Let (W,w) be a symplectic manifold having a cylindrical end
j: U — (a,+00) x 3. Suppose that (W,w) is ezxact at infinity, meaning that w
is exact on U. We say that the triple (W,w,j) is a convex symplectic manifold if
6 := 15w € Q(U) is a primitive for w on U, or, equivalently, if (j7!)*0 = e"p*« for
some (unique) contact form « on 3. We denote by R* € I'(X) the Reeb vector field
of o and we define the auxiliary function p := e”". We call 0, the Liouville vector
field and 6 the Liouwville form.

We say that a convex symplectic manifold is a Liouville domain, if 0 extends to
W in such a way that w = df on the whole manifold.

REMARK 3.4. Since w is a symplectic form, an « satisfying the equality above
is automatically a contact form on ¥ inducing the orientation obtained from w”‘U
putting the vector 9, first. Using the language introduced in the previous chapter

we can say that every Xy is a hypersurface of positive contact type in (W, w).
We now define isomorphisms of convex symplectic manifolds.

DEFINITION 3.5. Let (W, w;, j;), for i = 0,1, be two convex symplectic mani-
folds. An isomorphism between (Wp,wo, jo) and (W1, wi,71) is a diffeomorphism
F: Wy — Wy with the following properties:

(1) F is a symplectomorphism, i.e. F*w; = wy,

(2) there exist open cylindrical ends V; C U; such that F(Vy) C Vi,

(3) j1i o Fojg ']y, (ro,p0) = (ro — f(po), 4 (po)) with ¢*a1 = efaq.
The third condition is equivalent to (F |V0)*01 = . Furthermore, a simple argument
shows that 1 : ¥ — X is indeed a diffeomorphism.

REMARK 3.6. Let (W,w) be a symplectic manifold with cylindrical end and
suppose we are given two convex ends jp and ji. If 6y = 61 (or, equivalently,
Or, = Or,) on some common cylindrical end, then Id : (W, w, jo) — (W, w, j1) is an
isomorphism. For this reason, we will also use the notation (M,w,#) to designate

any convex symplectic manifold (M, w, j) such that 6 := 15 w.
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For compact symplectic manifolds we can give an analogous notion of convexity.

DEFINITION 3.7. Let (W, w) be a compact symplectic manifold with boundary %
andlet j = (r,p) : U — (—¢,0] x X be a collar of the boundary. We say that (W, w, j)
is a (compact) convex symplectic manifold if 0 = ig w € QY(U) is a primitive for w
on U, or equivalently, if (j71)*§ = e"p*«a for some (unique) contact form o on .

A standard construction called completion yields an open convex symplectic
manifold (W, d},j) starting from a compact convex symplectic manifold (W, w, j):
(W,@,5) = (Wow, ) | ] (=, +00) x T, d(e"a),1d ), (3.1)
J
The new object is obtained by gluing along j the original convex symplectic manifold

with a positive cylindrical end of the symplectisation of (X, a).

DEFINITION 3.8. We say that two convex compact symplectic manifolds are

isomorphic if their completions are isomorphic according to Definition [3.5

REMARK 3.9. Let (WW,w) be a symplectic manifold with convex cylindrical end
j:U — (a,+00) x 8. Let f: % — (a,+00) be any function and consider W/ (see
Definition . Then, (W7, w!W P j|W ;) is a compact convex manifold. We do not
lose any information by passing from W to W/. Indeed, we observe that we can
get back the whole open manifold by taking the completion as explained above. In
other words,

W@y dls) = (Wow,5). (3.2)
We can rephrase by saying that every open convex symplectic manifold (W, w)
is the completion of a compact convex submanifold (W', w‘W,) C (W,w). This has a
natural generalisation for a family of open convex symplectic manifolds (W, ws, js)-
Namely, there exists a corresponding family of zero-codimensional compact subman-
ifolds W5 C W such that OW; is js-convex and

A~

(W, ws

~ (W, ws, js)- (3.3)

’WS,:]\.S WS)

3.2. Symplectic Cohomology of convex symplectic manifolds

Assume for the rest of this section that (W, w, j) is an open convex symplectic

manifold and v is a free homotopy class of loops in W.

3.2.1. Preliminary conditions. We now define the Symplectic Cohomology

of (W,w,7) in the class v under the assumption that

(S1) all the Reeb orbits of the associated contact form « in the classes i; (v)
are non-degenerate (in this case we say that « is v-non-degenerate);
(S2) ¢1(w) is v-atoroidal.
Denote by Spec(a,v) the set of periods and by T'(a, ) > 0 the minimal period of
a Reeb orbit of « in the class v. Assumption (S1) guarantees that Spec(a,v) is a
discrete subset of [T'(«, V), +00).
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3.2.2. Admissible Hamiltonians. Symplectic Cohomology counts the num-
ber of 1-periodic orbits in the class v for a particular kind of 1-periodic Hamiltonians.
To introduce them, we need first the following two general definitions.

DEFINITION 3.10. Let (W, w) be a symplectic manifold and consider a function
H : Ty xW — R. We say that a 1-periodic orbit x for Xy is non-degenerate if 1
does not belong to the spectrum of dx(o)q)f . We say that H is v-non-degenerate, if
all the 1-periodic orbits in the class v are non-degenerate.

DEFINITION 3.11. Let (W,w,j) be a symplectic manifold with cylindrical end.
A function H : Ty x W — R is said to have constant slope at infinity, if there exist
constants Ty € (0,+00) and ag € R such that H o j~' = Tye" + ag on some
cylindrical end V' C U. The number T} is called the slope of H.

We are now ready to introduce the class of Hamiltonians that we are going to
use on (W, w, j).

DEFINITION 3.12. A function H : T{ x W — R is called v-admissible if it satisfies

the following two properties:

(H1) it is v-non-degenerate,

(H2) it has constant slope at infinity and Ty does not belong to Spec(a, v).
We denote the set of all v-admissible Hamiltonians by H,,.

3.2.3. The action 1-form, the grading and the moduli spaces. Consider
H € H,. Its 1-periodic orbits are the zeroes of a closed 1-form dAY on Z,W. If
r € LW and £ € I'(x*TW) is an element in T, (%, W), the 1-form is defined by

de Afy - & = /11‘ (vaty)Wa(r) + doy H (8, 2(t))) - £(t) dt. (3.4)

The action 1-form yields a function A% on the set of v-cylinders by integration.
If u:[a,b) = Z,W is a v-cylinder, we set

Ay = [ A G5 ds

= —w(u) + H(t,u(b,t))dt — H(t,u(a,t))dt,
Ty Ty

where w(u) is the integral of w over u. Observe that A%, (u) does not change if we
homotope the cylinder u keeping the end points fixed.

We can associate a degree |z| to every 1-periodic orbit x in v as follows. Choose
a reference loop x,, in the class v and fix a symplectic trivialisation Y, of z},(T'W).
Take a connecting cylinder C,, from z, to x and extend the trivialisation over C,.
This will induce a symplectic trivialisation Y, of z*TW, whose homotopy class
depends only on Y, since ¢(w) is v-atoroidal. Writing the linearisation of the
Hamiltonian flow d@tX H using Y, yields a path of symplectic matrices along x.
We call Conley-Zehnder index the Maslov index of this path and we denote it by

pcz(z) € Z. Finally, we set |z| := &%W — pez(z).
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We now define a moduli space of cylinders connecting two 1-periodic orbits using

a particular kind of almost complex structures compatible with convexity.

DEFINITION 3.13. Let (W,w,j) be a convex manifold. An w-compatible 1-
periodic almost complex structure J is convex if for big r, J is independent of

time and (dp) o J = —0.

Take a 1-periodic w-compatible convex almost complex structure J and consider

Floer’s equation for cylinders u: R x Ty — W

Osu+ J(Ou — Xpg) =0. (3.5)
If u is a Floer trajectory we denote its energy by
E(u) := / |0sul|? ds = / |05u|? ds dt (3.6)
R Rx T
Using Floer’s equation (3.5)), one gets the identity
E(u) = —A%(u). (3.7)

Call M'(H, J,z_,x;) the space of Floer trajectories that converge uniformly
to the l-periodic orbits x4 for s — 4oo. Suppose that J is H-regular, namely
that the operator u +— dsu + J(Oyu — Xpr) on the space of all cylinders is regular
at M'(H, J,x_,x;). This implies that all the moduli spaces are smooth manifolds
and, if non-empty, dim M'(H, J,z_,x1) = pcez(xy) — pcz(z—) = |z—| — Jz4].

Let M(H,J,z_,z4) be the quotient of M'(H,J,xz_,z,) under the R-action
obtained by shifting the variable s. If A is a homotopy class of cylinders relative
ends, we denote by MA(H ,J,x_, x4 ) the subset of the moduli space whose elements
belong to A.

3.2.4. The cochain complex and the differential. We build a complex
SCY(W,w, j, H) as the free A-module generated by the 1-periodic orbits = of H.
Here A is the Novikov ring defined as

+o0
A= {Znit“i n; €7Z, a; € R, lim a; = +oo} .

ﬁ
e 1—+00

The differential §; : SC(W,w, j, H) — SC+1(W,w, j, H) of such complex is defined
on the generators as

0y = Z e(u) ARy

weM(H, Jy,)
lyl—|z|=1

where €(u) is an orientation sign defined in [Rit13l, Appendix 2]. We extend it on
the whole SC}(W,w,j, H) by A-linearity. If x and y are two periodic orbits, we
denote by < djx,y >, the component of §;z along the subspace generated by .

By a standard argument in Floer theory, in order to prove that J; is a well-
defined map of A-modules and that §; o d; = 0, we need to prove that the elements
of MA(H, J,x_, x,) have:

a) Uniform C%bounds; these stem from a maximum principle.
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b) Uniform C'-bounds; these follow from Lemma below, where we show that
c1(w) is aspherical (see [HS95]).
¢) Uniform energy bounds; these follow readily from ([3.7)).

LEMMA 3.14. If o € Q2(W) is v-atoroidal, then o is aspherical.

PROOF. We have an action § : mo(W) x Hy(W,Z) — Ho(W,Z) by connected
sum. Moreover, if ([S?],[M]) € m2(W) x Ha(W,Z), then

[o1([$%8M]) = [0](1S°]) + [o]([M])).

Therefore, the lemma is proven if we show that the action preserves classes repre-
sented by v-tori. Indeed, in this case the above identity would become

0 = [o]([5]) + 0.

Suppose M is a v-torus parametrised by (s, t) — ['M(s,t) = vM (¢), with 74 € v and
(s,t) € Ty x Ty. The connected sum between M and some S? can be represented
by a map [S*M Ty x Ty — W, which concides with I'™ outside a small square

[s0, s1] X [to,t1] and inside the square it coincides with the map
[80781] X [to,tl] ; 52 \ D2 — W,

where D? is the small disc that we remove from S? in order to perform the connected
sum. Hence, S?$M is still a torus and the curves ¢ — 7§2ﬁM(t) = FSQﬁM(s,t) are
still in the class v because 7§2ﬂM =M if 5 ¢ [s9, 51]. O

Thanks to the lemma, we have well-defined cohomology groups obtained from
d7. We denote them by SH (W, w, j, H, J). We put a partial order on pairs (H,J),
where H and J are as above, by saying that (H*,J") < (H—,J") if and only if
T+ < Ty- (we use the reverse notation for the signs, since in the definition of maps
on a generator z, we take the moduli space of cylinders arriving at x).

When (H*,J") X (H~,J~) we can construct continuation maps

I SH(Wow, j, HY, JY) — SHE(W,w,j, H,J7)

such that,

_ _ HO,JO H+,J+ H+’J+
(HT,JN) 2 (HY,JY) 2 (H™,J7) = oy 0@ =@y

Such maps are defined as follows. We consider a homotopy (H?®, J®) with s ranging
in R, which is equal to (H~,J™), for s very negative, and to (H™,J"), for s very

positive. Such homotopy yields an s-dependent Floer equation
Osu + J*(Opu — Xpgs) = 0. (3.8)

As before, we denote by MA({H*},{J;},z_,x;) the moduli spaces of solutions
in the class A, connecting a 1-periodic orbit of Xpy- with a 1-periodic orbit of
Xpg+. They are smooth manifolds and, when they are non-empty, we have that
dim MA{H}, {J}, 2, 24) = pez(zy) — pog(x_) = |x_| — |z, |. For these moduli
spaces we have to show properties a), b), ¢) as before. Property a) stems again from
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the maximum principle, which holds provided %THS < 0. Property b) is once more
a consequence of Lemma Property c), stems from the modified energy-action
identity

B(w) = ~Afs () + [

(H- — HY)(t, 2 ())dt + / (0. H®) (1, u(s, t))dsdt , (3.9)
Ty

RxTq

which replaces for s-dependent cylinders. Notice that the rightmost term of
(3.9) is bounded thanks to the uniform C°-bounds and the fact that dsH* # 0 only
on a finite interval. If we define n(z_) := [ (H" — H™)(t,v_(t))dt, then at the
chain level

o = > e(u) 7 (4 (3.10)
UEM({HS}v{JS}vva)
ly|—|z|=0

An argument similar to the one at the end of Section shows that such a map
intertwines 0 ;- and d ;+, and, therefore, yields the desired map in cohomology.

The Symplectic Cohomology (in the class v) is defined to be the direct limit of

the direct system (SH;(W,w,j, H,J), cpgtjt)

SH;(W,w,j):= lim SH;(W,w,j,H,J).
(H,J)
We define the Symplectic Cohomology of a compact convex symplectic manifold
as the Symplectic Cohomology of its completion: SH(W,w, j) := SH;‘(W,@,;’).

3.3. Perturbing a non-degenerate autonomous Hamiltonian

We saw that the Symplectic Cohomology of (W,w, j) is defined starting from
a Hamiltonian function whose 1-periodic orbits are non-degenerate. However, if
H : W — R is an autonomous Hamiltonian and z is a non-constant 1-periodic
orbit for the flow of Xy, x belongs to an S'-worth of periodic orbits. Hence, z is

degenerate. In this setting, we have to look to a weaker notion of non-degeneracy.

DEFINITION 3.15. Let = be a 1-periodic orbit of Xz, where H is an autonomous
Hamiltonian and denote by S, the connected component of set of 1-periodic orbits

of X to which x belongs. We say that z is transversally non-degenerate

e cither if x is a constant orbit and it is non-degenerate according to Definition
(namely, dw(o)(b{(H does not have 1 in the spectrum);
e or if x is non-constant and 1 has algebraic multiplicity 2 in the spectrum
of dac(O) <I>‘1XH .
We say that H is transversally v-non-degenerate if all 1-periodic orbits in the class

v are transversally non-degenerate.

REMARK 3.16. When dimW = 4 the notion of transversally non-degenerate
coincides with the notion given for Hamiltonian structures in Definition [2.10

REMARK 3.17. If z is transversally non-degenerate, then S, = {x(- + t')}yer, -

Therefore, S, = {x}, if = is constant and S, ~ Ty, if « is not constant.



34 3. SYMPLECTIC COHOMOLOGY AND DEFORMATIONS

If H is an autonomous Hamiltonian such that all the 1-periodic orbits of X in
the class v are transversally non-degenerate, we can construct a small perturbation
H.: W x S' — R such that

e H. differs from H only in a small neighbourhood U, of the non-constant
periodic orbits of Xy and ||H — H,|| is small;

e the constant periodic orbits of Xp_ are the same as the constant periodic
orbits of Xg;

e for every non-constant 1-periodic orbit x of Xy there are two periodic orbits
Zmin and Tyax of X g, supported in U,. All the non-constant periodic orbits
of Xy, arise in this way.

Consider a function H : W — R that satisfies the following two properties:

(H’1) it is transversally v-non-degenerate,

(H’2) it has constant slope at infinity and T does not belong to Spec(a, ).

Denote the set of such functions by H,,. We readily see that if we carry out the above
perturbation to H € H!, the resulting function H. belongs to H, (see Definition
and we can use it to compute Symplectic Cohomology.
The degree of the new non-constant orbits is given by
dim(W) dim(W)
2

where picz(x) is the transverse Conley-Zehnder index. It will be interesting for the

L4 |1'min’ = - MCZ(x)a L4 ‘xMax| = - /,ch(l’) -1, (311)

applications to compute < 07&Max, Tmin >. Proposition 3.9(ii) in [BO0O9b]| tells us
that
0 if x is good,

< 5J$Max>$min > = (312)
+2t%* if x is bad,

where a, is a small positive number. Recall that an orbit is bad if it is an even

iteration of a hyperbolic orbit with odd index and it is good otherwise.

3.4. Reeb orbits and two filtrations of the Floer Complex

In this section we restrict the admissible Hamiltonians to a subclass 7:[1, C Hy,
whose non-constant periodic orbits are in strict relation with Reeb orbits of a.

DEFINITION 3.18. Fix some b belonging to the image of the function r : U — R
and denote py, := e’. Fix also a C%-small Morse function Hp : W — R, such that
close to the boundary Hp = hy(e") for some strictly increasing convex function hy,.
Let H : W — R be an element of H!, with the following additional properties

(H1) on W°, H = H,,

(H2) on W, H = h(e") for a function h : [py, +00) — which is strictly increasing
and strictly convex on some interval [pp, ppr) and satisfies h(p) = Tup+am,
for some Ty ¢ Spec(a,v) and ag € R, on [pg, +00).

We denote by 7, the subset of all the Hamiltonians in H/, satisfying these two
properties and by H, C H, the corresponding set of perturbations inside H,,.
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The 1-periodic orbits of H € 7:[’V fall into two classes: constant periodic orbits
inside W? and non-constant periodic orbits inside W,. Observe that in the region
Wy, Xg = W' R* where I/ is the derivative of h. Hence, x(t) = (r(t),p(t)) is a
1-periodic orbit for Xy if and only if r(¢) is constant and equal to some log p,, and
there exists a h'(p,)-periodic Reeb orbit v : Ty — ¥ such that p(t) = v(h'(pz)t).
Since b is increasing and h'(py) < T'(«r,v), the non-constant periodic orbits of X
are in bijection with all the Reeb orbits with period smaller than Tp.

Consider now the Floer Complex (SC(W,w, j, H.), ;) with H. € #, and some
J which is H.-admissible. In the next subsections we show that we have two ways
of filtrating this complex.

The first one is a filtration by the action and it works when (W, w) is a Liouville
domain. In this case we can define the action functional A‘ﬁg : LW — R on the
space of loops in the class v.

The second one is a filtration by the period of Reeb orbits. It works for general
convex manifolds but we have to restrict the class of admissible complex structures
to some J(H) (see Definition [3.22)), so that we can apply the maximum principle
(see [BO09al page 654] and Lemma [3.23)).

When v = 0, both filtrations imply that the singular cohomology complex
(C*T(W, A), dp) shifted by n is a subcomplex of (SC}(W,w, j, H:),d7).

3.4.1. Filtration by the action for Liouville domains. Suppose (W,w) is
a Liouville domain. This means that the Lioville form 6 extends to a global primitive
for w on the whole W. If H : Ty x W — R is any Hamiltonian function, we define
the action functional A%, : £, W — R by

A (z) = —/ 0+ | H(t ()it
T, T
If w is a Floer cylinder connecting z_ and x4, (3.7)) yields
0 < Bu) = —A5(u) = A (0-) — A5 (w4).

This implies that A%, (z—) > A% (z4). Therefore, if H is v-non-degenerate and J
is H-admissible, then d; preserves the superlevels of A% and we get the following

corollary.

COROLLARY 3.19. If x and y are two different 1-periodic orbits for H and
A5 (y) < AY (), then
<djx,y >=0. (3.13)

We denote by SC;~*(W,w, j, H) the subspace of SC(W,w, j, H) generated by

all the orbits with action bigger than some a € R. Corollary shows that d;

restricts to a linear operator on this subspace, and the inclusion induces a map in
cohomology:

SH»”*(W,w,j,H,J) — SHI(W,w,j,H,J). (3.14)

Let (H*,J") < (H~,J") and let (H®, J%) be a homotopy between the two pairs

satisfying %THS < 0. If u is an s-dependent Floer cylinder, relation can be
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rewritten as
A§4mg—Ag4Lq:—E@yﬁ/ (O H®)(t, u(s, t))dsdt .
Rx Tl

From this equation we see that the continuation map preserves the filtration, pro-
vided that 0;H° < 0. Under this additional hypothesis, gpfltit induces a map

SHyZ (Wow, j, H, JY) — SHYZ*(W,w,j, H™,J"). (3.15)

Let us now specialise to Hamiltonians H € 7:15, Call ap, : [pp, +o0) — R, the
function ay(p) := h(p) — ph/(p). The absolute value of ap(pp) is small and

ay,(p) = —ph"(p). (3.16)

Hence, ay, is strictly decreasing on [py, pgr] and ap, = ag on [pg, +00).
If x is a non-constant periodic orbit in the class v, then x C W, and we can
write z(t) = (log pz, vz (W (pz)t)), for some Reeb orbit ;. We compute

W (pz)
@) = = [ oorta + hes) = an(en). (317)
0
Fix a € R and take H* and H~ in ), such that T+ < Ty and H~ = HT on
some W€ where a = ap+(e¢) = ap- (). In particular, a > max{ag+,ay-}. Take
perturbations H and H_ and let (HZ, J*) be a homotopy between them such that
0sH? < 0 and which is constant on W¢. We readily see that

SCHZ W, w,j, HT) = SCH>*(W,w,j, H).

Consider continuation cylinders between the generators of these two subcomplexes.
The maximum principle shows that they are contained inside W€. However, in this
region JsH® = 0 and the transversality of the moduli spaces shows that we only
have the constant cylinders. We have proved the following corollary.

COROLLARY 3.20. Under the hypotheses of the paragraph above, the filtered con-
tinuation map SCyp~*(W,w,j, HT) — SCy~*(W,w, j, H) is the identity.

Take now v = 0 and assume that H € H}. We want to use the map (3.14) to
single out the constant orbits of H among all contractible orbits. If T is a constant
orbit, we readily compute

Ay (@) = H(z) > min H (3.18)

If 2(t) = (log pz, vz (R (pz)t)) is non-constant, we know that A%, (z) = ap(pz). More-
over, (3.16) implies that aj, < —pph” and, therefore,

an(pz) < an(ps) = po(h (pz) — B (pv)) -
Since h'(p;) > T(a,v) > 0, we see that there exists ag < 0 such that
A% (x) < ag < Af(T) .

Taking a small perturbation H. € 7:[0, this inequality still holds and we find that
SCS’MO (W,w, j, H:) is generated by the constant periodic orbits only. A further
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analysis analogous to the case of closed symplectic manifolds shows that &; re-
stricted to this subcomplex is the differential for the Morse Cohomology of the
function H.|y» = Hp (see [Vit99, Section 1.2]), where we identify constant periodic
orbits of Xp_ with critical points of H. up to a shifting of degrees by n. Thus,
we have SHy” (W, w, j, He, J) ~ H**"(W,A). If (HF,J*) < (HZ,J~) and HY,
H~ belong to Hj, then SHy”*(W,w,j, H-,JT) ~ SHY”*(W,w,j, H-,J~), by
Corollary Since 7:[0 is cofinal in Hg, we can take direct limits and arrive to the
following corollary.

COROLLARY 3.21. If (W,w,j) is a Liouville domain, then, for every x € Z, there
exists a map
H*T™(W,A) — SH;(W,w,j). (3.19)
If a does not have any Reeb periodic orbit v contractible in W such that
pcz(y) € {dimW/2 —x, dimW/2 —*x+1},

then such map is an isomorphism.

3.4.2. Filtration by the period. Let (W,w) be a general open convex mani-

fold. We restrict the class of admissible almost complex structures as follows.

DEFINITION 3.22. Fix an w-compatible almost complex structure Jy such that
(dp) o Jo = —0 on Wy,. For every H € H!, let J(H) be the set of the w-compatible
almost complex structures J. which are small compact perturbations of Jy and which

are H.-admissible for some H, € 7:L,,.

The next lemma, which is taken from [BO09a, page 654], gives us some infor-
mation on the behaviour of Floer cylinders for (H,.Jy) which are asymptotic to a
reparametrisation of a Reeb orbit for s — —oo.

LEMMA 3.23. Take H € 7:[’V and suppose that u : (—o0, s.] X T1 — Wy, is a non-
constant Floer half-cylinder for the pair (H,Jy). If u is asymptotic for s — —oo
to x(t) = (rg, v (W' (e™)t)), a non-constant 1-periodic orbit for Xy, then u is not
contained in W',

PRrROOF. Using the cylindrical end j = (r,p), we write u(s,t) = (r(s,t),p(s,1)).
If we employ the splitting TWp, ~ < 0, > & < R* > & ker a, the Floer equation for
u takes the following form:
Osr — a(Op) + W (") = 0
a(0sp) + Or = 0 (3.20)
7rkeroz(asp) + JOWkera(atp) = 07
where Tyer o is the projection on the third factor of the splitting.

Now define the real functions 7 and @ on the interval (—oo, s,| by integrating in
the t-direction:
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By Stokes’s Theorem we have that
a(s1) —a(sog) = / prda. (3.21)
[s0,81]xT1
Since Jy leaves ker v invariant and it is w-compatible, the third equation yields

that the rightmost term in (3.21)) is non-negative and, therefore, @ is a non-decreasing

function.
We integrate the first equation of (3.20)) in ¢ and use this monotonicity property:
d
N$2—/h%mMﬁ+Mﬂm:HWﬂ—/h%mmﬁ. (3.22)
ds T, Ty

Suppose now, by contradiction that r(s,t) < r, for every (s,t) € (—oo,s.] x T;.
Since p — h'(p) is increasing, we find that the rightmost term in (3.22)) is non-
negative. Hence, %?(s) > 0. We have two possibilities. Either there exists a point
Ssx < Sy such that %F(s**) > 0, or %? = 0 on the whole cylinder. In the first
case, we must have 7(s..) > r,, which is a contradiction. In the second case, 7 = r,
and, since 7(s,t) < 1, we see that r(s,t) = r, on the whole cylinder. By the first

equation in (3.20) @ is also constant and by (3.21]), we have that

/ p*da=0.
(—00,8x]xT1

Putting this together with the fact that the function r(s,t) is constant, we get that
E(u) = 0, which contradicts the fact that u is not constant. Since both cases led to

a contradiction, we see that w is not contained in W"* and the lemma is proven. [J
We have the following immediate corollary.

COROLLARY 3.24. Suppose u : R x Ty — W is a non-constant Floer cylinder
for the pair (H, Jy), with H € 7—1;,, which connects two 1-periodic orbits for Xy . If
x_ = (ry_,v—(T-t)) for some T_-periodic Reeb orbit v_, with T = h'(e"*~), then
4 = (1o, 74 (T4t)) for some Ty -periodic Reeb orbit vy, with Ty = h/(e""+), such
that

T, > T_. (3.23)

PROOF. Consider the function r(s,t) := r(u(s,t)). By the lemma we just proved,
maxr > 7, _. By the maximum principle, x, is not contained in W"*-. Hence,
ry = (rg,v4+(T4t)) is a non-constant periodic orbit and r,, > 7,_. The thesis
follows since p — h/(p) is strictly increasing in the interval [py, pr]- O

The previous corollary gives important information on SH,, once we take a
perturbation in order to achieve transversality.

COROLLARY 3.25. Given H € H!,, there exist H. € H, and J. € J(H) such
that the following statement is true. Let x and y be 1-periodic orbits of Xy with
Sy # Sy such that x is associated with a Reeb orbit of period T, and y is either
constant or it is associated with a Reeb orbit of period T,, with T, < T,. If x. and

Ye are l-periodic orbits of Xg_ close to x and y, then

<Oyaeye>= 0. (3.24)
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ProOOF. We argue by contradiction and suppose that there exists e, — 0 and a
sequence of cylinders uy, € M'(Hg,, Jz, , Tz, , Yz, )-

We claim that, up to taking a subsequence, there is an m € N such that for
every ¢ = 1,...,m there exists a shift s}; € R and for every ¢ = 0, ..., m there exists
a 1-periodic orbit z; for Xz with the following properties:

e o=z and z,, = v,

o foreveryi=1,...,m—1, sfg < sfjl,
e for every i = 1,...,m, ug(- + S}C) — ul_, in the CRe-topology, for some

cylinders ! satisfying the Floer Equation (3.5)) for the pair (H,Jy) and
with asymptotic conditions

ul (—o0) € Sy, ul (+00) € Sy, . (3.25)

The claim follows from Proposition 4.7 in [BO09b] with the only difference that in
our case also the complex structure is allowed to vary with k. This however does not
represent a problem, since such proposition relies on Floer’s compactness theorem
[F1lo89, Proposition 3(c)], in which the almost complex structure is allowed to vary
as well.

Using inductively Corollary and the fact that the positive end of u’g! co-
incides with the negative end of ul_,
zi(t) = (13,7 (Tit)) and that T; < T;yq. Since Sy # Sy, there exists a non-constant
uzog This implies that T;, _; < T;, and, therefore, that T, > T,. This contradiction
proves the corollary. O

we see that z; is a non-constant orbit with

As happened for the action filtration, Corollary shows that for any 7" > 0,
4. leaves invariant the subspace SC; «7(W,w, j, H.) generated by the periodic or-
bits in v associate with Reeb orbits with period smaller than 7" and by the con-
stant periodic orbits (when v = 0). We call the associated cohomology group
SH) p(W,w,j, He, Je). )

Fix T > 0 and take H" and H~ in Hj, such that Ty+ < Ty- and H~ = H"
on some W€, where T' = (ht)/(e) = (h™)'(€°). In particular, T < min{Ty+, Ty~ }.
Take perturbations H and H_ and let (HZ, J¥) be a homotopy such that 9;HS < 0

and which is constant on W¢. We readily see that
SC:,<T(Ww7j7 H:) = SC;,<T(I/V’ w?j? Hg_) .

Consider continuation cylinders between the generators of these two subcomplexes.
The maximum principle shows that they are contained inside W€. Since in this
region d;H? = 0, the transversality of the the moduli spaces of such cylinders shows

that we only have constant cylinders. We have proved the following corollary.

COROLLARY 3.26. Under the hypotheses of the paragraph above, the filtered con-
tinuation map SC’;KT(W,w,j, HY) — SH;“KT(VV, w, j, H) is the identity.

Take now v = 0 and assume that H € Hj. If Ty := T(a,0), we find that
SC& <TO(W,w, Jj, H:) is generated by the constant periodic orbits only. As before,
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SH g (Ww, j, He, Jo) ~ H*™(W,A). If H*, H™ belong to Hj and (HF,J) =
(HZ,J: ), then Corollary implies that
SH§,<T0(VVﬂw7j7H:?J:) = SH8,<T0(VV7wvj7 He_an_)

Taking direct limits we arrive at a generalisation of Corollary for general convex
manifolds.

COROLLARY 3.27. If (W,w,j) is a convex symplectic manifold, then, for every
* € 7, there exists a map

H*T™(W,A) — SH;(W,w,j). (3.26)

If the contact structure at infinity does not have any Reeb periodic orbit ~y contractible
i W such that

pez(y) € {dimW/2 —x, dimW/2 —x+1},

then such map is an isomorphism.

3.5. Invariance under isomorphism and rescaling

Alexander Ritter proved in [Rit10] that SH is an invariant of convex symplectic

manifolds up to isomorphism.

THEOREM 3.28. If F' : (W, wo, jo) — (Wi,w1,j1) is an isomorphism of convex
symplectic manifolds , then

SH:(W07w07j0) = SH;'(V)(thlvjl)'

Moreover, SH is also invariant under multiplication of the symplectic form w by
a positive constant c.

PROPOSITION 3.29. If (W,w,j) is a convex symplectic manifold and c is a posi-
tive number, then

SH;(W,w,j) ~ SH, (W, cw, j).

The isomorphism is constructed from a rescaling p. : A — A of the Novikov ring,
defined by pc (D ; nit) = >, nit°. The rescaling yields the chain isomorphisms

SC:(va7j7H) — SC:(VV,CLU,j,CH)
E AT — Z Pe( k) Tk
k k

3.6. Invariance under deformations projectively constant on tori

In this section we address the problem of the invariance of SH under convex
deformations (W, ws, js). We are going to analyse the case of compact manifolds W
contained in a bigger open manifold W. Thanks to Remark this is also enough
for studying deformations of an open convex symplectic manifold (W, ws, js).

From the case of ALE spaces, considered in [Rit10] and from the discussion in

the next section, we know that we cannot expect SH to be invariant under general
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convex deformations. Our goal will be to prove the invariance of SH, under the
additional assumption that the deformation is projectively constant on v-tori. The
relevance of this assumption is due to the fact that it ensures that the systems
of local coefficients A,y on £, W are all isomorphic. Let us start by giving the
relevant definitions and clarifying the statement we have just made.

The transgression 7 : Q*(W) — QY(ZL,W) is defined by integration on paths
w:[0,1] - LW as

7(0)(u) = /01 ds </Tl ou(0su, Opu) dt> = /ua =o(u)

where we identify the path u with the underlying cylinder, which is a map from
[0,1] x Ty to W. The transgression yields a map [7] : H>(W,R) — H'(%,W,R)
between the de Rham cohomologies. We call a closed 2-form on W v-atoroidal if it
belongs to ker[r] or, equivalently, if there exists n : £, W — R such that 7(c) = dn.
One such primitive can be obtained by setting n(x) = o(u,), where u,, is any cylinder
connecting a fixed reference loop x, to x.

A family of 2-forms w; is called projectively constant on v-tori if there exists a
family of positive real numbers ¢, such that ¢y = 1 and c; }[7(ws)] is constant in
H'(%,W). This is equivalent to the existence of v-atoroidal forms oy, with og = 0,
such that

T(Us) = dns (3‘27)
ws = cs(wo + 05).

Define A,y as the trivial A-bundle over .2, W together with the multiplication
isomorphism ¢« : A, — A, for every cylinder u connecting z to #/. Since
ws is projectively constant on v-tori, we use to construct the multiplication
map " : A7'(&)0) - A‘F(wo+¢75 r(estws) 7 A7'(405)‘

The fact that these two maps are isomorphisms of local systems follows from the

y and the rescaling map pc, : A

commutativity of the two diagrams below for every cylinder u connecting x to x’.

t—wo(u) tfcsfle(U)
A, Ay A, Ay
t*”?s(m) \L ltnS(z/) Pcs \L lpcs
4~ (wotos)(u) f—ws ()
A, Ay A, Ay

Therefore, we conclude that A, y and A, are isomorphic if w; is projectively
constant on v-tori.

One can define a version of Symplectic Cohomology with twisted coeflicients
denoted by SH}(W,w,j;A,) using any local system A, with structure ring A. The
main result in [Rit10] says that SH; (W, dA+o,5) ~ SH (W, dA, j; A, (), where o
is a sufficiently small 2-form with compact support. In view of this isomorphism, it is
natural to study the invariance of Symplectic Cohomology for convex perturbations
(Ws,ws, js) which preserve the isomorphism class of A, ).

After this introductory discussion let us state the theorem we aim to prove.
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THEOREM 3.30. Let W be an open manifold and let ws be a family of symplectic
forms on W. Suppose Wy C W is a family of zero-codimensional embedded compact
submanifold in W, which are all diffeomorphic to a model W'. Let (Ws,ws‘ws,js)
be a convexr deformation. Fiz v a free homotopy class of loops in W' ~ Wy such that
the contact forms ag and oy are both v-non-degenerate. If ci(ws) is v-atoroidal for

every s € [0,1] and s — ws is projectively constant on v-tori, then
SH;,(Wo,wo, jo) = SH;, (W1, w1, j1)-

COROLLARY 3.31. Let (W,ws,js) be a family of open convexr symplectic mani-
folds. Fiz v a free homotopy class of loops in W such that the contact forms ag and
aq, associated to jo and ji, are both v-non-degenerate. If c1(ws) is v-atoroidal for

every s € [0,1] and s — ws is projectively constant on v-tori, then
SH;(VVv UJO,jO) = SH;(VV, wl?jl)'

PRrROOF. Use Remark to find a family of compact manifolds Wy C W satis-
fying the hypothesis of Theorem [3.30 O

The theorem can also be used to prove that in the compact case, Symplectic

Cohomology does not depend on the choice of a convex collar.

COROLLARY 3.32. Let (W,w) be a compact symplectic manifold and suppose that
c1(w) is v-atoroidal for some class v. If jo and ji are two v-non-degenerate conver
collars of the boundary, then

SH,(W,w, jo) ~ SH(W,w, j1). (3.28)

PROOF. Let ag and a; be the two contact forms induced on the boundary.
Define the family oy := (1 — s)ag + sa; and observe that das = i*w. Hence,
as Ndag = (1 — s)ag Aw + sa; Aw is a positive contact form. Now apply Theorem
to the deformation (W, w, js), where j, is any family of convex collars inducing
as on OW and connecting jg to ji. O

REMARK 3.33. Thanks to the corollary we just proved, if (W,w,j) is a convex
symplectic manifold with v-non-degenerate boundary, its Symplectic Cohomology

depends only on w and not on j. Thus, we will use the notation
SH;(W,w) i= SH(W,w, j). (3.29)

We point out that we were not able to prove a statement analogous to Corollary
[3:32] for open convex symplectic manifolds, since we ignore if the space of convex
cylindrical ends is path connected.

We now proceed to the proof of the theorem, by making three preliminary re-
ductions. First, thanks to Proposition [3.:29] we can assume that ¢, = 1.

Second, it is enough to prove invariance of symplectic cohomology for all the
non-degenerate parameters belonging to a small interval around any fixed s, € [0, 1]
(a parameter s is non-degenerate if the corresponding «; is non-degenerate, so that
SH is well defined). Then, the theorem follows by observing that the compactness
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of [0,1] implies that there is a finite number of non-degenerate s; € [0,1] with
0=sp<s1 <--- <8 =1such that

SH;(WSi s Wsys Js;) = SH;k(WSi-Q—l s Wsit1sJsit )- (3.30)

Hence, the isomorphism claimed in Theorem [3.30]is obtained by taking the compo-
sition of all the intermediate isomorphisms.

Third, by the second reduction, we can make the following assumptions.

e All the W are contained in a fixed symplectic manifold W with cylindrical
end j = (r,p) : U — R x ¥ such that the boundary of Wj is contained in
U and transverse to 9,. Thus, there exists a family of functions fs: ¥ — R
such that Wy = W¥s. To ease the notation we also set I'y := Ly, X=Xy,
(see Definition [3.2).
e The convex collars js of OW, = 3¢ extend to a family of convex neighbour-
hoods js = (rs,ps) : Us — (—€s,65) X X of X4 such that r4(3s) = 0 and
Os := 19, ws is a Liouville form for ws. Observe that with this choice, we
have j; (r, ps) = B0 (T (ps)-
Thanks to these two assumptions, we can define the family of positive contact forms
as =T%0s € QL(D).
To prove the invariance when the variation of the parameter is small and ¢s = 1,
we first bring the convex manifolds in a special form through a suitable isomorphism.
In the following discussion let rg, 1 be two real numbers such that ro < < fs(z),

for every s in [0,1] and z in X.

PROPOSITION 3.34. For every parameter s, € [0,1], there exists ds, such that for
|s — s«| < ds,, there exists a family of symplectic forms wl, on W, with the following
properties:

a) Wl = ws, on a neighbourhood of Xy, ;
b) there exists a family of isomorphisms Fy : (Ws*,@g,js*) — (WS, W, Js), Testricting

to the identity on W',

ProOF. Gray Stability Theorem applied to the family of contact forms a; on X
yields a family of functions us : ¥ — R and of diffeomorphisms 5 : ¥ — 3, such
that

Yias =e “as,, us, =0, s, =Idy. (3.31)

Consider the associated map between the symplectisations
U (Rx X eas,) — (Rx X e™ay)
(Ts*yps*) = (Ts* + Us (ps*)a s (ps*))-

Equation is equivalent to the fact that Wy = Idgxy and ¥, is an exact
symplectomorphism: Wk (e ay) = e+, .

As ¥, is the graph of the function fs, the vector fields 0,, and 0, are both
positively transverse to X;. Hence, we can define a vector field Y, on a neighbourhood
Vs of Wff C W in such a way that
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e it is equal to J,, on a neighbourhood U, of X3 compactly contained in Usg;
e it is equal to O, close to ¥, ;

e every flow line hits ¥,, in the past.

Such vector field is obtained by considering a convex combination
YVS = a’S(Tap)aTs + (1 - as(rvp))ah
where as : Ug — [0, 1] is a function with compact support, which is 1 close ¥5. We

are now ready to construct the map Fs dividing WS* and WS in four pieces.

i) Take d5, in such a way that, for [s — s.| < d,,, Us((—5, 55¢) x B) C U, and set

Fy = \I’s\ : {(Ts*vps*) | Ts, = 0} — {(T&ps” Ts 2 us(ps)}.

ii) Define A : ¥ — W by A(ps,) = j: ' o Uy(0,ps,). In particular, A, = Ly, .
Then, 0,, is transverse to X, := A4(X) since it is close to ¥, =3, .

For every ps, in X, consider the first negative time 75(ps,) < 0 such that

@Z:(ps )(As(ps.)) € Bry. Let Qs : X=X be defined as Qs := pocbf;s(ps  (As(ps.)-
Furthermore, take a diffeomorphism T2** : [~1,0] — [5(ps,),0] which is the

identity near 0. We have diffeomorphisms
Bs:[-1,0]x % — W

Ys
(tvps*) — <I>T§’S* (t) (As(ps*))

We set Fs := Bgo Bs_*1 : erf* — WEIS. By definition

Js© BS(t>ps*) = jS((I)}:S (AS(ps*))) = (t + US(ps*)>¢8(ps*)) = \IIS(t7ps*)

for ¢ close to zero. Hence, the two definitions of Fs; match along X, .

iti) Close to X, the map B, takes the form B;(t,ps,) = (11 — 1 — t,Qs(ps.))-
Therefore, in that region we have that Fy = B, o By !(r,p) = (r,Qs 0 Q3.1 (p)).
Now, define

Fy(r,p) = (7, Qu(rys+ (1—b(r))s. © Qa, (p)) : Wi — Wi

where b : [rg,r1] — [0,1] is equal to 0 near ry and equal to 1 near r.
i) Close to ¥, the previous definition yields Fy(r,p) = (r,Qs, o Q5.1 (p)) = (r, p).
Thus, we simply let Fy := Idyr : W™ — W70,
O

By the proposition we just proved, for every non-degenerate s in Bs, (s, ),
SH}(Ws,ws, js) ~ SH}(Ws,,w,, js.) and w, = w,,. Notice that [w]] = [ws] so
that w! is still constant on v-tori. Thus, in order to prove the invariance un-
der a small variation of the parameter s around s,, it is enough to show that
SHy(Ws.,wy, js.) = SHy (W, ,ws,s Js. ).

The argument is contained in the next proposition.

PROPOSITION 3.35. Let (W, wo,j) be a compact convex symplectic manifold and

v a free homotopy class of loops, such that ag is non-degenerate on v. Suppose we
have a family of o5 € Q2(W) for s € [0,1], supported in W \ U, such that
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a) oo =0;
b) os is v-atoroidal;
¢) ws :=wg + 05 s a path of symplectic forms.

Then, the following isomorphism holds
SHy(W,wo, j) = SH,(W,wr, j).

The proof of this proposition requires several steps and will occupy the rest of

the present section.

3.6.1. Admissible pairs compatible with a symplectic deformation.
Consider (W,d)s, j) the completion of the compact symplectic manifolds contained
in the statement of the proposition. Observe that W does not depend on s, since
supp os NU is empty. In particular, ay = a9 and hence, SH,, is defined for every s.
Define the total support of the 1-parameter family {os} as

supp{os} := (Jsupp os.
S
It is compact and contained in W\ U.
We define a subclass of admissible Hamiltonians 7—[{5%} C H, on W, depending

on the deformation {ws}.

DEFINITION 3.36. Fix once and for all a function K : W — R without critical
points on supp{os}. Then, take a sufficiently small £k in such a way that, for every
s € [0,1], X;"; x does not have 1-periodic orbits intersecting supp{os}.

We say that a function H € H, belongs to Hiw3} (in the following discussion
we drop the subscript v, since the free homotopy class is fixed), if H = ex K on a
neighbourhood of supp{o,}.

Define the sets Ps; made of pairs (H,Js) such that

o H e Hlwsl,

e J, is an ws-compatible convex almost complex structure which is H-regular.
Namely, it is regular for the solutions u(s’, t) of the Floer equation which
in this case reads

38/11, + Js(atu — XIU:IIS) =0.

We also assume that the following three properties can be achieved.

i) The projection Py — H1¥s} is surjective.

i1) Denote by Js the image of the projection (H,Js) — Js from Ps and define
Jlwst = Useo,1)Js-  Then, Js}t is bounded on supp{c,}. This can be
rephrased by saying that there exists B > 1 such that, if J; and Jy belong
to j{‘*’s}, then

1
gl 1 <1-1 < Bl-1s, on supp{os}. (3.32)

This property will be used below to get a uniform bound on the norm of the

Hamiltonian vector field on supp{os}.
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iti) Given H € Hiws} denote by \7[3%} the set of all Jg such that (H,Js) € Ps
for some s. There exists a cylindrical end Uy such that every Js € J, ;IWS} is
convex on Uy, H has constant slope on Uy and Js is uniformly bounded on

Ujf;. Namely, there exists By > 1 such that, for every J, and Jy in EIWS} ,
1
5ol =115 < Bul-1s, onUg. (3.33)
H

This property implies that the distance induced by Jg on Uj; are all Lipschitz
equivalent. This will be used to get a constant €g, which is uniform in Js in
Lemma [3.37 below.

To ease the notation, set Vi := Uj; Nsupp{o,}©. It is a relatively compact
neighbourhood of the periodic orbits of Xy disjoint from supp{os}.

We readily see from the construction that each Py is a cofinal set in the set of all
admissible pairs for (W, d)s,j'). Thus, it is enough to use continuation maps between
elements of Py in order to define SH*(W, s, ).

3.6.2. A Palais-Smale lemma. Now we show that, given H € Hiws} a loop
x in Uf; which is almost a critical point for d.A7; cannot intersect the support of the
perturbation. The following lemma is taken from [Sal99| Exercise 1.22]. The only
difference here is that we require that ey does not depend on J.

LEMMA 3.37. There exists ey such that, if x C Ug;, then for every J, € *7[5%};
lde A% |, <ew = xCVq. (3.34)
PROOF. First, we claim that, for every C' > 0, the set of smooth loops
L={xCcUg||d A}, <C, for some s and J, € j}le}}

is relatively compact for the C°-topology. By the Arzeld-Ascoli Theorem, the claim
follows by showing that the elements of L are equicontinuous with respect to the
distance induced by some Js,. We compute

1
2

C > |d, A%y, = ( |¢—XH($)|3sdt>

Ty

)2
z(/ |x|Jsdt) CIXal.
Ty

By (3:33), | Xx|ls, < €’ uniformly in J;. Thus, the L:-norm of & with respect to
Js is uniformly bounded and, hence, x is uniformly 1/2-Hélder continuous for the
distance induced by Js. Since all these distances are Lipschitz equivalent thanks to
again, the equicontinuity follows.
Now, let us prove the lemma. Arguing by contradiction, we can find a sequence
of loops (z,,), such that
lim |y, A" |, =0, r, ¢ U§y Nsupp{os}© = Vy. (3.35)
n—=-+oo
By the claim, passing to a subsequence, which we denote in the same way, x,

converges in the C%-norm to zo ¢ Vg. By compactness of the interval, we can
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also suppose that s,, — so. We claim that x, is differentiable and it is a critical
point of dA7>. Indeed, X7 (zn) = X5 (2s0) in the L?-topology. By ,
in — X5 (Too) in the L?-topology. Thus, 2 is in W12 and its weak derivative is
X7 (20). Since X ;7% (zs) is continuous, we conclude that i« () exists at every
t and @00 (t) = X (20(t)). Therefore, zo is a periodic orbit of H, contradicting
the fact that xo & V. 0

3.6.3. Subdividing the deformation in substeps. We decompose the de-
formation ws in shorter perturbations by a suitable smooth change of parameters
539 : R — [sq, 51], such that

s0(8) =

S1

S0 lfSSO
S1 ifSZl.

We set wg™™! = W30 () Notice that there exists C' > 0 such that, if J, € Jiws},
then

@ ||, < Cls1 — sol- (3.36)

I,
To ease the notation, we drop the superscript and we write wg for wfqo’sl. More-

over, we denote sy by — and s by +.

3.6.4. Two kind of homotopies and two kind of homotopies of homo-
topies. Let H € H{“s} and let (H,J_) € P_ and (H,Jy) € Py. A symplectic
homotopy or s-homotopy S — (ws, H,Jg) is a path connecting (H,J_) to (H,J4)
and constant at infinity.

Given S € R and (H',JJ) < (H™,Jg) in Ps, a monotone homotopy or m-
homotopy is a path r — (H",Jg), with r € R, connecting (H~,Jg) to (H+,J§)
and constant at infinity, such that

e cach H" has constant slope at infinity;
e 0, Tyr <0;
e (Jg) is a family of wg-compatible convex almost complex structures satis-

fying bounds analogous to the ones described in condition %) and 4ii) of
Section 3.6.11

Let H~ and H* be in H“s} and let J—, Jo, JT, Jj_’ be almost complex struc-
tures such that (H*,J*) < (H~,J-) in P_ and (H',J{) < (H,J;) in Py. A
symplectic-monotone homotopy or sm-homotopy is a map (S,7) — (ws, H", J§) with
(S,7) € R? such that

e restricting it to r = 00, we get two s-homotopies;
e restricting it to S = £oo, we get two m-homotopies.

Consider a path r — o7 of 2-forms constant at infinity and such that g = 0 and
ag = o, Suppose that all the elements of the 2-parameters family wf = w + 0¥
satisfy the hypotheses of Proposition We can define a class %195} of admissible
Hamiltonians associated to {w§} in the same way we defined H{ws} for a 1-parameter
deformation. As before, this class yields a set of admissible pairs Pg, which enjoys
properties similar to i), i), i) outlined before for P*. Notice that when |S| is
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sufficiently big, P¢ = P+ does not depend on 7 (and on S). Given (H, J_) € P_ and
(H, Jy) € Py, a symplectic-symplectic homotopy or ss-homotopy is the 2-parameter
family (wg, H,Jg) such that Jg = Jy for big |S| and such that restricting it to
r = +o00, we get two s-homotopies.

We remark that the Palais-Smale lemma still holds for sm- and ss-homotopies.

3.6.5. Moduli spaces for s-homotopies and chain maps. We know that
we can associate chain maps called continuation maps to monotone homotopies by
considering suitable moduli spaces. We now carry out a similar construction to
associate chain maps to symplectic homotopies (wg, H, Jg) as well. For this we will
need first to have |s; — so| < dp, for some dy > 0. The general definition of the
chain map will then be as the composition of intermediate maps as we did before in
. More precisely, we choose dg in such a way that

1
pa = osup ol < Con < 2

SR — (3.37)
(,J5) €Rx T (s} 2 Xkl +1

where we have defined
[ Xkl = sup sup | Xk(2)]s,-
JseJlws} zesupp{os}
Observe that || Xf|| is finite thanks to condition ) in Section [3.6.1]

Thus, let (wg, H,Js) be a symplectic homotopy satisfying and define
the moduli spaces M(H,{Js},z_,z4) of S-dependent Floer cylinders relative to
such homotopy, connecting two 1-periodic orbits _ and x4 of H. Choosing the
family {Js} in a generic way, we can suppose that M(H,{Js},z_,z) is a smooth
manifold. If this space is non-empty, we have

dim M(H, {Js}, 27— 24) = poz(es) —pog(a) = |a_| - |z

If A is a homotopy class of cylinders relative ends, let MA(H, {Js},z_,2) be the
subset of the moduli space whose elements belong to A.
We claim that MA(H,{Js},z_,x ) is relatively compact in the > -topology.

As before, this is achieved in a standard way once we have the three ingredients
below.

a) Uniform C%bounds. They stem from the fact that the perturbation og is com-
pactly supported and, hence, the maximum principle still applies.

b) Uniform C'-bounds. As before, they stem from the fact that bubbling off of
holomorphic spheres generically does not occur by Lemma

¢) Uniform bounds on the energy F as defined in . These require a longer
argument, which we describe below.

First, observe that Lemma [3.37] allows to bound the amount of time an S-

dependent Floer cylinder v in MA(H, {Js},z_, ) spends on supp{c,}. Define
S(u, H) := {5 € R|u(S) Nsupp{os} # 0},

where we have denoted by u(S) the loop ¢ +— u(S,1).
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LEmMA 3.38. The following estimate holds
E(u)
e

|5 (u, H)| <

)

where | - | denotes the Lebesgue measure on R.

PROOF. Observe that S(u,H) x Ty C {(S,t) | |Osul;s > ep} and then use
Chebyshev’s inequality. O

We claim that for an S-dependent Floer cylinder wu, identity (3.7)) must be re-

placed with the more general
E(u) = —AG (u) + / ws(ulzs) dS, (3.38)
R
where Z% := (—00, 5] x T;. Indeed,
du d DAY
E - _ ws 7 — _ el ws _ H
() = [ dusy st - Ga1a5 == [ |26 (A7 ulze) — (%L ) ()] as

— A7)+ [ (‘O‘g‘;) (ul ) dS

The claim follows by observing that (% (u|zs) = ws(ulzs).
The first summand on the right of (3.38) depends only on the homotopy class

of u relative ends, so we need to bound only the second one:

1
/d)s(u|Zs)dS:/ ws(ulgs)dS < sup ws (u] ),
R 0 Sel0,1]

where we have used the fact that wg = 0 for S ¢ [0,1]. We now estimate the last

term, remembering that, for every S € [0, 1], wg vanishes outside supp{o,}:
wg (U|Zs) < / ‘(ws)u(aslu, atu)‘ ds'dt
A
S / ‘(ws)u<85/u, 8tu)‘ dS,dt
S(u,H)XTl

< / (sl Osul |yl St
S(u,H)XTl

< (sup uws\u) / sl Brulsr dSdL.
S u,H x Ty

Js€

Using Floer’s equation, the quantity under the integral sign can be bounded by

|Osruls|Opulsr < \%/MS/(WS/U!S/ + \XH(U)!S/) < |0srulf + ex | Xx|[|0sruls.
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Therefore,

/ |851u\g/\8tu|5/ dS/dtS/ \85%]%/ dSIClt—I-EKHXKH/ |85/U‘S/ dS/dt
S’(uH)X'[h S(uH)XTl uH XTl

1

< B(u) + x| Xx| ( /S o 57l ds'dt) 1S(u, H)|

u,H)XTl

[ I

< B(u) + ex | Xxc| Byt 22

- (1 " anm) B(u).

Putting all the estimates together, we find

: €
[ ostulzs)ds < (1+ 1] ) Bl
R €H
Plugging this inequality into (3.38)), we finally get the desired bound for the energy
— Ay (u)

E(u) < .
1 gy (14 51Xk )

(3.39)

After this preparation, we define n by dn = 7(w+) — 7(w_) and claim that
pUesh U . SCH W @ j, H) — SCH(W, &y, j, H)

x — Z 6(21)7577("’“")7“4;?1+ @)y

veM(H {Js}a' x)
|2’ |—|z|=0

is well-defined and a chain map. The good definition stems from the fact that,
thanks to for every C' € R, there are only finitely many connecting cylinders
v € M(H,{Js},2',z) such that n(z) — A} (v) < C. Moreover, the properties a),
b), ¢) above implies that the boundary of a component of M (H,{Js},y',z) with

. . . !
"I —|z| = 1 is either empty or consists of two elements v%, * u*, and u® % vY, where
x Y vy

uy € M(H,J_,y,z),
M(H, T4,y 2),
M(H,{Js}, 2, x),
vy € M(H, {Js}, v, y).
The gluing construction in Floer theory shows also that every vy, x u:’y“”,/ with the pro-

perties above arises as a boundary element of a component of some M (H,{Js}, v, x).

Therefore, to see that 90({“5 BHAJsY) i a chain map, we only have to prove that
— A () + (n(m) — A (Uil)) = (n(y) — A (vz,)) — A} (uy)- (3.40)
First, since wy — w_ is v-atoroidal, we have

A (uy) = Ay (uy) + (wy — w-)(uy) = A (uy) +n(y) — n(=).
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Plugging this relation into (3.40)), we get

— A (uy) = AGf (vf) = = AGF (vl)) — At (u),

. . . !
which is true since v}, * uj, and uf vz

, are homotopic relative ends and, as we
w . . . .
observed before, A" is invariant under such homotopies. Thus, we have proved

that oU{wsh#{Js}) is a chain map. We denote the induced map in cohomology by
[w({WSLH,{Js})].

3.6.6. Moduli spaces for sm-homotopies and commutative diagrams.
In the previous subsection, we showed the existence of chain maps associated to

s-homotopies. Hence, an sm-homotopy (S,r) — (ws, H", J§) yields a diagram

pUeshiat IEy

SC:(W,UJ,,‘]',H—’_) SC:(W7W+’j7H+) (341)
(HT,0) (=TI
P=.07) (I

HwshH ™ LI5 D)

SC;(WW‘)—?].?Hi) SC;(W7W+7].7H7)

We claim that such diagram is commutative.

The proof follows an argument similar to the one we used to define 90({‘“5}’}[ AJs}).
We subdivide the sm-homotopy in rectangles [S;, S;+1] X R, so that the corresponding
constants uf}}fi}“, defined in the same way as pp, are sufficiently small. From the
commutativity of the intermediate diagrams, we infer the commutativity of the

original one.

3.6.7. Moduli spaces for ss-homotopies and bijectivity of cohomology
maps. Since diagram is commutative, the system of maps [@({“’S}’H’{JS})]
yields a map [¢] : SH;(W,w_,j) — SH}(W,w4,j). The purpose of this subsection
is to show that [p] is actually an isomorphism, hence proving Proposition m

From the properties of the direct limit of groups, is enough to show that each
[np({“’s B s })] is an isomorphism. We claim that its inverse is the map which is ob-
tained by inverting the s-homotopy. Namely, [(p({“’S}’H’{JS})TI = [¢({w—5}’H7{J—S})].

First, we notice that the composition of maps in cohomology intertwines with
the concatenation of s-homotopies:

[SO({W—SLH:{J—S})] o {(puw_s},H,{J_s})} — [(p({ws}*{w—s}»Hv{Js}*{J—s})} _

We omit the details of this fact. Thus, it is enough to prove that
[SO({WS}*{wa}:Hv{JS}*{JfS})} —1d. (3.42)

Consider the standard ss-homotopy that connects the concatenated s-homotopy
({ws}, H,{Js}) * ({w_s}, H,{J_s}) to the constant s-homotopy (w—_,H,J_) and
notice that the chain map associated to the latter s-homotopy is the identity. There-
fore, to show , we need to prove that if two s-homotopies are connected by an
ss-homotopy, they induce the same map in cohomology. This is done by adjusting
the argument above for s- and sm-homotopies to ss-homotopies.

The proof of Proposition and, hence of Theorem [3.30} is completed.






CHAPTER 4

Energy levels of contact type

In this chapter we give sufficient conditions for an energy level of a magnetic
system to be of contact type and we apply the results of the previous chapter to
establish lower bounds on the number of periodic orbits, when the contact structure
is positive.

First, we observe that because of Proposition condition (S2) on the first
Chern class is satisfied for every v. Thus, if DM = {E < %}, it is possible to
define the groups SH}(DM,ws), whenever w) := ws
of positive contact type (see Definition .

‘ gp 18 a v-non-degenerate HS

DEFINITION 4.1. We say that a parameter s is v-non-degenerate if w, is transver-

sally v-non-degenerate.

We saw that the dynamics of the magnetic flow associated to (M, g,o) can be
studied by looking at the family of HS w!, where s is a real parameter. We now
want to understand when such structures are of contact type so that we can apply
techniques from Reeb dynamics and, in particular, use the abstract results proved in
the previous chapter for the computation of Symplectic Cohomology. The first step
is to determine when W/, is exact. The answer is given by the following proposition.

PROPOSITION 4.2. The 2-form W, is exact if and only if one of the two alterna-
tives holds
(E) either o is exact,

(NE) or o is not exact and M is not the 2-torus.

PrOOF. We are going to prove the proposition by defining suitable classes of
primitives for w!. If o is exact on M, we just consider the injection

P7 s P

Br— Asgi=A—smf. (4.1)

When o is not exact and M # T2, then 27E§]MO' is a curvature form for the S'-
bundle 7 : SM — M, since ejps is the Euler number of the bundle [Kob56]. By
the discussion contained in Example we know that 7*0, and hence W, is exact.
More explicitly, since 7 is also a connection form on SM with curvature o,, we have

the injection

__lo]
’PU 2#6]\/109 N ’Pw‘;

[o] ‘
Br— Mg ::)\—|—3<27TU€MT—7T ) (4.2)

53
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(notice, that if M # T? and o is also exact, this formula reduces to above).

It only remains to show that if o is not exact and M = T?, then W’ is not exact.
This follows from the fact that 7 : ST? — T2 is a trivial bundle, as we mentioned in
Example More precisely, take Z : T? — ST? a section of this bundle. Then, Z
is a surface embedded in ST? and

/TQZ* g:/Tzd(Z*A)_/TQZ*(S”*U):—S/TQU#O. .

From now on we restrict our discussion only to case (E) and (NE) contained in
the statement of Proposition We refer to them as the exact and non-exact case.

Non-exact magnetic form on T? will not play any role in the rest of this thesis.

DEFINITION 4.3. Let (M, g,0) be a magnetic system of type (E) or (NE) and
define

e Cont(g,0):= {s € [0, 400) ‘ w’, is of positive contact type} , (4.3)
e Con (g,0) := {5 € [0, 400) ‘ W’ is of negative contact type} . (4.4)

If we fix the manifold M and we vary the pairs (g, ) defined on M, we get the space
of all magnetic systems of positive, respectively negative, contact type on M:

e Con™(M) := U {(g,0,5)|s € Con™(g,0)} C Mag(M) x [0,400) (4.5)
(9,0)

o Con™ (M) := | {(g,0,5)|s € Con™(g,0)} C Mag(M) x [0, +00) (4.6)
(9,0)

We now prove the following proposition about the sets we have just introduced.

PROPOSITION 4.4. The sets Con™ (M) and Con™ (M) are open in the space
Mag(M) x [0,4+0). As a consequence, the sets Con™(g,0) and Con™(g,0) are
open in [0, +00).

If s € Con™(g,0) is v-nondegenerate, then SHY(DM,ws) is well defined. The

isomorphism class of SH}; is constant on the connected components of
a) Con* (M) N (Mage(M) % [0, —l—oo));

b) Con™ (M), if M has positive genus;

¢) Con*(S2)\ (Mage(SQ) % [0, +00) U Mag(S2) x {0}).

PROOF. Since a small perturbation of a contact form is still a contact form, the
first statement readily follows.

Then, observe that (DM, w;) is convex if and only if s € Cont(g,0). Since
c1(ws) = 0 by Proposition its Symplectic Cohomology is well defined as soon
as s is non-degenerate. In order to prove the statement about its isomorphism
class, we apply Theorem [3.30] We only need to check that the cohomology class
[7(ws)] € HY(Z, TM,R) is projectively constant in each of the three cases presented
above. The base M is a deformation retraction of 7'M and under this deformation
the cohomology class [ws] € H?(TM,R) is sent to [so] € H?(M,R). Thus, we only
need to check the analogous statement for [r(o)] € H2(L,M,R).
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In case a), o is exact on M and, therefore, [7(c)] = 0.

In case b), we consider any v-torus u : T2 — M. Lemma 2.2 in [Mer10] implies
that u*c is an exact form. Therefore, [7(0)] = 0.

In case c), we only have the class of contractible loops. There are isomorphisms
m(ZLS%) 5 m(S?) 5 Ho(S%,Z) = Z. Hence, H1(£S? Z) ~ Z and consequently
[7] : H?(S?,R) — H'Y(ZS% R) is an isomorphism. Consider two triples (g, 0, s)
and (¢',0’, ") such that s,s’ are positive and 0,0’ are not exact. Then, [T(wsy)] and
[T(wsor)] are the same up to a positive factor if and only if the same is true for
[0] and [0]. This happens if and only if the two magnetic systems lie in the same
connected component of Mag(S5?) \ <Mage(S2) x [0, 4+00) U Mag(S?) x {0}) O

In the next two subsections we are going to use the injections (4.1)) and (4.2) in
order to find sufficient conditions for an energy level to be of contact type. Thanks
to Remark and Remark we just need to study the sign of the functions

/\S,B(Xs)(x,v) = (/\ — Sﬂ*ﬁ)(X + SfV)(x,v)
=1—pz(v)s (4.7)

for case (E) and the functions

)‘g,B(XS)(:E,U) = (A + 2?_[_[2-]]\/[7' - 57'('*6) (X + va)(x,v)
=1—[z(v)s+ [(;1:;(;)82 (4.8)

for case (NE).

Before performing this task, we single out some necessary conditions for w! to
be of contact type. Indeed, the next proposition shows that the normalised Liouville
measure is a null-homologous invariant measure for X*. Combining the computation
of its action (see [Pat09]) and McDuff’s criterion, contained in Proposition [2.17)),
we find the mentioned necessary conditions in Corollary [4.7]

PROPOSITION 4.5. The normalised Liouville measure X := %[u} belongs to the
set M(X?). Its rotation vector is the Poincaré dual of wal | Therefore p(x) = 0 if

2m[p]
and only if W’ is exact. In case (E), its action is given by
AY%(X) = 1. (4.9)
In case (NE), its action is given by
li~ [0]? 2
A%s =14 — 5" 4.10
=1+ g0 (4.10)

PROOF. If ¢ is any 1-form on SM, then by (2.24))
/
wS

. 4.11

27 [u) (1)

(1x2 Q)X = CA (1xsX) = C A

[w:]

Integrating this equality over SM, we see that the p(x) is the Poincaré dual of SEmE
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We now proceed to compute the action of x. First, define I : SM — SM the
flip I(z,v) = (z, —v) and observe that I*y = x. We readily see that
/Bx(U)X = / 6m(_U)I*X = - 5:::(?1))(-
SM SM

SM
Therefore, [¢,, Bz(v)x = 0.
Consider first case (E) and let A; g be a primitive of w),. Then,
A0 = [ ax)T= [ 1A=t
SM SM

Consider now case (NE) and let A\ 5 be a primitive of w.. Then,

[a]f(:v)52> X

2me s

A= [ ae= [ <1 — Baw)s +

SM

—1+ e [ ey
2men Jsmr

_ 0] o 1
=1+ 27T€Ms STl 27T/M f(z)p

2
P /) 0
2ren ]
The corollary below relates the action of X and the contact property. For the
case (NE) on surfaces of genus at least two, we first need the following definition

[Mof69, [AK98), [Pat09].

DEFINITION 4.6. Let (M, g,0) be a non-exact magnetic system on a surface of
genus at least 2. Define its helicity s,(g,0) € (0,+0) as

sn(g,0) = W (4.12)

COROLLARY 4.7. For exact magnetic systems or for non-exact magnetic systems
on 8%, W' cannot be of negative contact type. Namely, Con™ (g,0) = 0.
For non-exact magnetic systems on a surface of genus at least 2, we have the

inclusions
e Con"(g,0) C (0,s1(g,0)) (4.13)
e Con™ (g,0) C (sn(g,0),+00). (4.14)

In particular, for s = sp(g,0), W, is not of contact type.

4.1. Contact property for case (E)

The results of this section are classical and well-known by the experts, except
possibly the computation of the subcritical Symplectic Cohomology on T2. Anyway,
we decided to include them here in order to put case (NE) in a wider context.

From Corollary @, we know that we only need to check when A, 5 is a positive
contact form. Identity implies that

As 8(X%)(@w) = 1= Bz(v)s > 1 —[Bz]s 21— ||B]]s. (4.15)
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Therefore, A\s 5(X?) is positive provided s < ||3||~!. Hence, there exists a 3 € P
such that (DM, ws, \s g) is convex provided

-1
s <salao) = (ng 161)

REMARK 4.8. Observe that combining [PP97, Theorem 1.1] with [CITPP98|
Theorem A], one finds that so(g,0) is the Mané critical value of the Abelian cover
of the Lagrangian function Lg(z,v) := E(x,v) — B;(v) after the reparametrisation

ch(s)zﬁ.

If we call [0, s1(g, o)) the connected component of Con™ (g, o) containing 0. The
above computation shows that so(g,0) < si(g,0). By Proposition for all v-
non-degenerate s < s1(g,0), SH}(DM,ws) ~ SH}(DM,wy, jo). The latter coho-
mology is known by the results of Viterbo [Vit96], Salamon-Weber [SW06] and
Abbondandolo-Schwarz [AS06] and we get the following statement.

PROPOSITION 4.9. If s < s1(g,0) is v-non-degenerate, then (DM, ws) is convex
and
SH(DM,ws) ~ H_,(£,M,A\). (4.16)

REMARK 4.10. Observe that usually the isomorphism above is stated over Z-
coefficients. However, it holds true also with A-coefficients since A is torsion free

and, therefore,
H.(L M, AN) ~H(ZLM,Z)®AN, SH,(DM,ws)~ SH,(DM,ws,Z)@A. (4.17)

Here we have denoted by SH; (DM, ws,Z) the direct limit of the cohomology of the
complexes (SC;(DM,ws, H,7),6%), where SC; (DM, ws, H,7) is generated over Z
by the 1-periodic orbitsof Xy and (5% is defined as ¢y but without using the weights

t—A% (W) Namely,
6%x = Z e(u)y,

weM(H,Jy,r)
lyl—|z|=1

The map 6% is a well-defined differential, as (DM, w;) is a Liouville domain.

The value of s1(g,o) can be exactly estimated when M # T? as the following
proposition due to Contreras, Macarini and G. Paternain shows (see [CMP04]).

PROPOSITION 4.11. If s > so(g,0), there exists an invariant measure (s such
that
o mp(C) =0 Hi(M,R), eV¥BeP’, A (C)<0. (4.18)

Therefore, ZfM 7é T27 C0n+(g,a) = [07 30(97 O')) and Sl(gv U) = 50(93 U)'
If M = T2, W is not of restricted contact type for s > so(g,0). However there

S

are examples for which so(g,0) < s1(g,0).

REMARK 4.12. It is an open question to determine whether on T? Con™ (g, ) is

always connected, namely to see whether [0, s1(g,0)) = Con™ (g, ), or not.
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In [CMPO04], the existence of a magnetic system which is of contact type at
so(g,0) was proven using McDufl’s sufficient criterion, which we stated in Propo-
sition The drawback of this method is that the criterion is not constructive,
since it finally relies on an application of the Hahn-Banach Theorem. In the subsec-
tion below, we outline an explicit construction of the contact form for the kind of
systems considered in [CMP04].

4.1.1. Mané Critical values of contact type on T2. The key observation is
that when M = T2, 7* : HY(M,R) — H'(SM,R) is not surjective. To pick a class
which is not in the image, just consider Z : T? — ST? a section of the S'-bundle
7 : ST? — T2. This yields the angular coordinate ¢z : TT2 — Ta,. Therefore,
dpz € QYTT3) is a closed form which is not in the image of 7*. If r € R, we
consider the family of primitives

P7 — P
8 — )\Zg = A—st B+ rdpy, (4.19)
which reduces to the class introduced in (4.1)) for » = 0. Namely, )\S’BZ = X 8-
Recall the definition of k4 € Q'(T?) from Equation ([2.9). Exploiting Formula

[2.10), we get on ST?
Z
A5 (X)) = 1= Bulv)s +r(f(x)s — K7 (v))
> 1~ |Bals +r(f(x)s — |x7]) - (4.20)
Now we are going to define a distinguished class of magnetic forms ¢ for which
the right-hand side of (4.20) is positive for s = so(g,0).
Fix t ++ v(t) an embedded contractible closed curve on T? parametrised by arc
length. Suppose that its period is T, and that its geodesic curvature k., satisfies
ko (8) = [6Z| > &, (4.21)
for some € > 0. Fix a B € I'(T?) such that
(1) v is an integral curve for B;
(2) if Mp :={z € T? | |B:| = ||B||}, then Mp = supp~y and ||B|| = 1.
Finally, let 8 = bB and set o := df.
We claim that f(y(t)) = k,(t). Indeed,

f1BP = fu(B.sB) = dOB)(B.3B) ¥ B(B(B)) ~ 1B (6B(B))  (0B)((B.1B))

0 — JB(B]?) - g(B, VB — V,5B)

1
= —B(BI*) + 9(VBB,B) - §JB(!B|2)

3
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where we used Cartan formula for the exterior derivative in () and the symmetry

= |BI*kp — 52B(1BP),

of the Levi-Civita connection in (xx). Remember that kp is the geodesic curvature
of B defined in (2.12). The claim follows noticing that on supp~y
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o [Bl=Bl=1;
e kp = k, since v is an integral line for B;
e )B(|B|?) = 0, because the function |B|? attains its global maximum there.
As a by-product, we obtain that ¢ — (y(t),5(t) = B, ) € ST? is a periodic orbit

for X! because ~ satisfies the magnetic equation (2.16)).
We claim that so(g,0) = ||B]| = 1. If we take any 3’ € P7,

T’Y
= = Y(t))dt = T,. i
L 8 / 8= [ Bl =T, (4.22)
On the other hand,

Ty
[ 8= B9, (4.23)
¥ 0

therefore, ||5’]] > ||8|| = 1. So, the infimum in the definition of sy(g, o) is equal to
1, it is a minimum and it is attained at 3. Hence, the claim is proven.

We can now estimate from below (4.20). When s = 1,
Z
AT5(X) > (1= |Ba]) + r(f () — [KZ)). (4.24)
The right-hand side is the sum of two pieces:

i) r(f(z)—|kZ]). When r > 0, this quantity is bigger than r-5 on a neighbourhood
U of supp~;

i1) 1 — |B|. This quantity is strictly positive outside supp~ and it vanishes on it.
In particular, there exists § > 0 such that 1 — [3;| > § on T? \ U.

This means that the right-hand side is positive on U and on T? \ U as soon as

1)
0<r< . 4.25
max (0, supy g0, [WZ] — 7(2)) (4.25)

Therefore, for r in this range, we see that (DT?,w,, )\qg) is convex. We conclude
that 1 € Con™(g,0) and s1(g,0) > so(g,0) = 1.

4.2. Contact property for case (NE)

To ease the notation, in this section we suppose that the magnetic form o is
rescaled by a constant factor, in such a way that [0] = 2meps. This operation will
only induce a corresponding rescaling of the parameter s and, hence, will not affect
our study. We begin with two easy examples and then we move to the general
discussion subdivided in the subsections below.

EXAMPLE 4.13. Denote by go the metric of curvature [K,| = 1 on M and

[Ng()}
2mens 290

we can choose 8 = 0 and the corresponding family of primitives )‘g?o-
If M = 5%, then ([@.8) yields AJ(X*) = 14 s*. Thus, Con™ (go, s1g,) = [0, +00).
If M is a surface of genus at least 2, (4.8) reduces to AJ{(X*) =1 — s2. Thus,
Con™(go, f1g,) = [0,1) and Con™ (go, ptgy) = (1,+00). Notice that in this case,
sn(9o, ftgy) = 1 is the only value of the parameter which is not of contact type.

consider the magnetic systems (M, go, f1g,). We see that g, — = 0. Hence,
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EXAMPLE 4.14. Consider a convex two-sphere. Namely, we endow S? with a
metric g of positive curvature. Take the magnetic system (S2, g, o = Kp). Asin
the example above, we can choose g = 0 and the family of primitives )\570. In this
case, ([@.8) reduces to A ((X*) =1+ Ks? > 0. Thus, Con™(g,0,) = [0,+00). This
is one of the hints to Conjecture [E]

4.2.1. High energy levels. Let us start by checking when s € Con™(g,0).
Identity (4.8) implies that

A 5(X) @) = 1 = Bu(v)s + f(z)s* > 1 —||B]||s + inf fs* (4.26)

Consider the quadratic equation 1 — ||3||s + inf fs?> = 0. If inf f < 0, we have only
one positive root. If inf f > 0 we either have two positive roots or two non-real roots.
In any case, call s_(g,0, /) the smallest positive root and set s_(g,0,3) = +oo if
the equation does not have real roots. Observe that 1 — ||3||s + inf fs?> > 0 for
s €[0,s-(g,0,0)), no matter the sign of inf f. We write
s_(g,0):= sup s_(g,0,0). (4.27)
BePT=9

Notice that s_(g, o) is the smallest positive root (with the same convention as before
if there are no real roots) of the quadratic equation 1 —m(g, o)s+inf fs?> = 0, where
mig.o) = inf ||A]. (4.28)

BEPT 9
Thus, we conclude that there exists 5_(g,0) > s_(g,0) such that [0,5_(g,0)) is
(

the connected component of Con™ (g, o) containing 0.

Proposition [4.4] implies the following corollary for surfaces of high genus.

COROLLARY 4.15. If M is a surface of genus at least 2 and s < S_(g,0) is
v-non-degenerate, then (DM, ws) is convex and

SH: (DM, w,) ~ SH(DM,wo) ~ H_,(Z,M, A). (4.29)

We now deal with the case of S2. If we fix s < s_(g, o), there exists 3 € P77
such that s < s_(g,0,3). Consider the Riemannian metric gy with K% = 1 and
let g, := rg + (1 — r)go be the linear interpolation between g and go. Define a
corresponding family of 8, € P?~%r such that f; = . By compactness of the

interval,

5_(g,0,8) = Teil[})fl] s_(gr,0,B)

is positive.

Take s, < s such that 0 < s, < §_(g,0, ) and consider the deformation
s € [se, 8], & (DS2’WSIO.7)\'?,’B),

Since s’ < s, the boundary stays convex for every s’. Moreover, the deformation is

projectively constant because s’ > 0. Then, define a second deformation

rel0,1], 7~ (D9S% wI )‘g:,ﬁr)’

Sx0 )
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where we have made explicit the dependence of the disc bundle and the symplectic
form on the metric using the superscript g,. Since s, < §_(g,0, ), the boundary
remains convex also in this case. Moreover, the cohomology class of w?, does not
change.

Finally, consider a last deformation with a parameter u € [0,1]. Define the
1-parameter family of 2-forms o, = uo + (1 — u)oy, = o4, + udfy and take the
corresponding family

u (DQOSQ,wngu, A?i,uﬁo)-
Let fi° be the function such that o, = fi°ug,. Then, fi° = uf{® + (1 — u) K% and
inf f° = winf fo, + (1 — w)K% > inf f{° (observe that fi° and K% have the same
integral over M). Therefore, s, < §_(g,0,8) < s—(g0,0,50) < $—(g0,0u,ubo), for
every u € [0,1]. Hence, the boundary stays convex also during this last deformation
and the cohomology class of wd’,, does not change since [s.0,] is fixed.

Summing up, we have shown that for s < s_(g,0), (g,0,s) and (go, o4y, 5«) lie in
the same connected component of Con™(S52)\ ( Mag,(S5?) x [0, +00)UMag(S5?) x {O}) ,
for any s, > 0 (remember that in Example [4.13] we proved that s_(go, 0g,) = +00).
We can now apply Proposition [£.4]

COROLLARY 4.16. If M = S? and 0 < s < 5_(g,0) is non-degenerate, then

(DS?% w;) is convex and

SH*(DIS? wi ) ~ SH*(D%S? wh_ ), (4.30)

Sx0gq

where gg is the metric with constant curvature 1 and s, is any positive number.

In the next section, we are going to compute the right-hand side of . In the
remainder of this section we are going to discuss other two cases where we can use
Identity to find energy levels of contact type. The original idea is contained in
[Pat09, Remark 2.2].

4.2.2. Low energy levels on S?. Let us go back to Inequality and see
what happens when the polynomial 1 — s||3|| + s?inf f has a second positive root
si(g, o, 3). We observed that this happens if and only if inf f > 0. Because of the
normalisation we made at the beginning of this section, we see that this can happen

only if o is a symplectic form on S2. Under these hypotheses, we have that the
right-hand side of (4.26)) is positive for s € s1(g,0,8). As before we denote

st(g,0) = BG;}g{Jg st (g,0,8), (4.31)

which can also be defined as the biggest positive root of 1 —m(g,o)s + inf fs? = 0.
We conclude that there exists 51 (g,0) < sI(g,0) such that (31(g,0),+o0) is

the unbounded connected component of Con™ (g, 7).

COROLLARY 4.17. Let M = S? and o be a symplectic form. If s > Ei(g,a) is

non-degenerate, then (DS? wy) is conver and

SH*(DIS? wi ) ~ SH*(D%S? wh ), (4.32)

Sx0g
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where gy is the metric with constant curvature 1 and s, is any positive number.

Again, we refer to the next section for the computation of the right-hand side.

4.2.3. Low energy levels on a surface of high genus. We now want to
investigate levels of negative contact type. Thanks to Corollary 4.7 they can arise
only on a surface of genus at least 2. Let us bound \? ,B(X #) from above using (4.8):

X 5(X%) (@) = 1 = Be(v)s + f(2)s® <1+ ||Blls + sup fs>.
If sup f > 0 the right-hand side cannot be less than zero. If inf f < 0, there exists
a unique positive root of the associated quadratic equation s7 (g, 0, 3) such that the
right-hand side is less than zero, for every s > s, (g, 0, ). Denote

si(g,0):= inf s (g,0,p), (4.33)
BEPT 9

which can also be defined as the unique positive root of 1 + m(g,c)s — inf fs? = 0.
Therefore, we conclude that there exists 5, (g,0) < s (g, 0) such that (5, (g, ), +00)
is the unbounded connected component of Con™ (g, 0).

We cannot compute Symplectic Cohomology for compact concave symplectic
manifolds (namely, for symplectic manifolds whose boundary is of negative contact
type). A possible solution to this problem would be to consider only invariants
of the boundary such as (embedded) contact homology. Another possibility would
be to look for a compact convex symplectic manifold (W,w) that could be used
to cap off (DM, ws) from outside in order to form a closed symplectic manifold
(DM Ugpyr Wows Ugar w). We plan to deal with this second approach in a future
research project.

REMARK 4.18. Thanks to Corollary [4.7, we have the chain of inequalities
0<5-(g9,0) < snlg,0) <5.(g,0). (4.34)

Moreover, G. Paternain proved in [Pat09] that

0< SC(gaU) < Sh(g,O'), (435)
where
se(g,0) = inf [|0]]3
oepe
is the critical value of the universal cover after the reparametrisation c¢(s) = ﬁ It

is an open problem to study the relation between s_(g,0) and s.(g, o).

4.3. Symplectic Cohomology of a round sphere

In this subsection we compute the Symplectic Cohomology of (DS?, w, go), for
s > 0, when gg is the metric of constant curvature 1.

First, we look for a primitive ;\g?o of wsgs,, on the whole TS3 which extends
XZ?O = A+ s7 € Q1(SS?%). Using Identity (2.6), we readily find 5\??0 = A+ s55.

Integrating the Liouville vector field associated to 5\27?0 starting from SS5? yields a
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convex neighbourhood j = (75, ps) TS2 < R x S5?% such that SS% = {r; = 0}.
Let us differentiate E with respect to this coordinate:

dE
drs

Dividing both sides by 2E + s? and integrating between 0 and r,, we get

2F 1 5
re =log 1/ Tii (4.36)

or, using the auxiliary variable, Ry = e”*,

2F + s?
Ry= /=25
3 1+ s2

From this equation we see two things. First, that Ry (or equivalently ry) is also

= dE(0r,) = Wia,, (0., X ) = MG (X5 ") = 2B + 5%,

smooth at the zero section and, hence, it can be extended to a smooth function on the
whole tangent bundle. Second, that the image of jg?o is (log (ﬁ) ,—I—oo) x 552,
In particular, the flow of 9,, € I'(T'S?) is positively complete and, therefore, jg?o is
actually a cylindrical end. Thus, (T 52,wsggo,5\g?0) is the symplectic completion of
(DSQ,wsggo,)\gf’o).

Let us look now at the dynamics on SS2. We claim that all orbits are periodic

21
V1452
be proven either by finding explicitly all the curves with constant geodesic curvature

. The claim can

and the prime orbits have all the same minimal period Ts =

(these are the boundaries of geodesic balls) or by using Gray Stability Theorem. The
latter strategy yields an isotopy Fy : SS? — SS2%, with s’ € [0, s], such that
1
—\.
1+ (s)2

Since the Reeb vector field corresponding to A is X, whose orbits are all periodic

Fi(A+$T)=

and with minimal period 27, the claim follows.

We are ready to compute the Symplectic Cohomology. Take as a family of
increasing Hamiltonian, linear at infinity, the functions H* := kv/1 + s2R,, with
k € N. The associated Hamiltonian flow generates an S'-action on 7'S? with period
27k. Hence, the only 1-periodic orbits of the flow are the constant orbits, which lie on
the zero section. Let us compute their Conley-Zehnder index (for the computation
in the Lagrangian setting we refer to [FMP13] Lemma 5.4]).

The linearisation of the flow d@iﬁ : T(gcyo)TS2 — T(%O)TS2 can be described
as follows. First, we choose standard coordinates on 7'S?, close to the point (z,0).
Then, we compute the differential of the vector field Xpyx at (z,0) using these

coordinates. We find the matrix

0 Id
oy X = k
(2.0) X a% (0 SJI)

k
Since d(x,o)(bf * = exp(t-dyyXpr) (here exp denote the exponential of a linear endo-
morphism), the eigenvalues of the linearisation are 1 and e*st both with algebraic

multiplicity 2. Observe that since 1 is an eigenvalue, (x,0) is degenerate (actually,
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the zero section form a Morse-Bott component of critical points since the eigenvalue

ikst

in the normal directions is €', which is different from 1 when ¢ is positive). For

this reason, we take the lower semi-continuous extension of the index and find

ks

b (2,0) = 2 {%J +1+(-1)=2 {;ﬂ ,

where we used the additivity of the Conley-Zehnder index under direct products.

Consider now a time-dependent compact perturbation H f 5 of H f such that
all the 1-periodic orbits of the new system are non-degenerate. Here d; > 0 is a
perturbative parameter that we take arbitrarily small depending on k. We claim that
the direct limit for & — 400 of the symplectic cohomology groups with Hamiltonian
H f 5, is zero. Indeed, let v be a 1-periodic orbit of the Hamiltonian system associated
to H f IR Since dj is small, v is close to a constant solution on the zero section. By
the lower semicontinuity of the index, |[7]| = 2 — pcz(y) < 2 — 2| 42|, Therefore,
the symplectic cohomology with Hamiltonian H f 5, 1S zero in degree bigger than
2—-2 L’;—;J Since 2 — 2 L%J — —oo as k — 400, the direct limit is zero in every
degree. Thus, we have proven the following proposition.

PROPOSITION 4.19. For every s > 0, there holds S’H*(DS2,wsggo) =0.

COROLLARY 4.20. If (5%, g,0) is a non-evact magnetic system and s is a non-

degenerate parameter such that s < §_(g,0) or s > §i(g, o), then
SH*(DS? w;) = 0. (4.37)

4.4. Lower bound on the number of periodic orbits

The computation of Symplectic Cohomology we performed in the previous sec-
tions can be used to prove the existence of periodic orbits on SM.

PROPOSITION 4.21. Let (S2,g,0) be an exact magnetic system. If s < so(g, o),
then X*® € I'(SS?) has at least one periodic orbit. If the iterates of such orbit are
transversally non-degenerate, then there is another geometrically distinct periodic
orbit on SS2.

PRrROOF. From [Zil77], we know the singular homology with Z-coefficients of the
free loop space of S2. It is zero in negative degree and, for k € N, we have
9 Z if k=0 or k is odd,
Hy(£S5%7) = (4.38)
Z@®Z/2Z if k is even and positive.
Since H_.(£S? Z) # H**2(S%,Z), we have H_.(£S? A) # H*2(S% A) by
Remark Therefore there exists at least one prime periodic orbit v by Corollary
Call T its period.

Suppose that v and all its iterates are transversally non-degenerate. Construct
inductively a sequence k — H* € 7:[6 (see Definition i on the completion DS?
of the disc bundle, so that

° 1}7k < J}{k+1;



4.4. LOWER BOUND ON THE NUMBER OF PERIODIC ORBITS 65

o kT < Ty
o H* = H¥1 on DS2™ | where kT = (h*)(e%) = (hWF+1)(e*).

Take small perturbations H* € Hy and let J* be a H*-admissible almost complex

structure. Define SC*(k) := SC{(DS? ws, HEF), let & be the Floer differentials

O« SC*(k) — SC*(k), let SH*(k) be the associated cohomology groups and let

o+ SC*(k) — SC*(k) be the continuation maps. Denote by SH*(co) the direct

limit of SH*(k). For every k = 1,...,k, we have two non-constant generators

of SC*(k): %finn and 'yﬁax. They have degree 2 — MCZ(’Y];) and 2 — MCZ(W’]}) -1,

respectively. By Corollary we know that ¢y, is the inclusion map.

Since SH*(c0) is non-zero in arbitrarily low degree, pcz(7*) > 0 for every k > 1,
by the properties of the index. We distinguish three cases.

a) pcz(y) > 2. If this happens, then for every k, ,ucz('yi“ﬂ) - ,ucz(fyi“) > 1. Hence,
for + < —2, there can be at most one generator for SC*(k). This contradicts the
fact that SH~%(c0) ~ A @ A/2A.

b) ncz(y) = 1 and « is hyperbolic. If k > 1, SC'(k) is generated by Ymin and
SCO(k) generated by Yax, 7r2nin and p, where p is the image under the map
C?(S8%,A) — SC?(k) of a generating cochain in C?(S?, A) ~ A. We claim that &
is zero in degree 1 and 0. This would imply that the class of vy, is non-trivial in
SH' (k). Together with the fact that ¢y is the inclusion, we get a contradiction
to the fact that SH'(occ) = 0.

Since there are no generators in degree 2, it is clear that Jy is zero in degree 1.
Since 7 is a good orbit, dpymax = 0 and since p is the image of a cochain under a
chain map, we also have d;p = 0. Finally, we compute 0 = 6292, = 6x(2t%2,.),
which implies that 672, = 0 as well.

¢) pcz(y) = 1 and « is elliptic. Under these hypotheses, there exists a maximum
ko > 1 such that pcz(y*) = 1. If k > ko, SC*(k) is generated by the elements
yr’im, with k € [1, ko] and SC(k) is generated by p and the elements fyﬁax, with
k € [1,ko]. As the action A% is decreasing with the period, we know that

& .
H€ min

has action smaller than v&ax, for k < k. By Corollary < 6;{37{\;/[3)(, ’yfrf’in >=0.
Moreover, §;p = 0 and, since v is a good orbit, also < 5k7§/?ax7 ’yﬁﬁn >=0. We
conclude that ’yﬁ{’in is a cochain, which is not a coboundary in SC!(k). Together
with the fact that ¢ is the inclusion, we get a contradiction to the fact that
SH'(c0) = 0.

Since each case leads to a contradiction, we have proved that there exists a periodic

orbit geometrically distinct from ~. O

PROPOSITION 4.22. Let (T2, g,0) be an exact magnetic system. If s < s1(g,0),
then X° € T'(ST?) has at least one periodic orbit in every non-trivial free homotopy
class. If such periodic orbit is transversally non-degenerate, then there is another

periodic orbit in the same class.

PROOF. If there are no periodic orbits SH*(DT?,w,) = 0. If we only have one
periodic orbit and such orbit is non degenerate, then rtk SH(DT? ws) € {0,2}.
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In any case tk SH}(DT? ws) < 2. On the other hand, we claim that £, T? is
homotopy equivalent to T?. If «y, is a reference loop in the class v, the two homotopy

equivalences are given by
T? — £, T £,T% — T?
T Yz(t) =1 (t) + x; v +— ~(0).
Thanks to Proposition [£.9] this leads to the contradiction
2 > 1k SHY(DT?, w,) =tk H (L, T? A) =k H_.(T?, A) = 4. O

PROPOSITION 4.23. Let (M, g,0) be a magnetic system on a surface of genus at
least two. If o is exact and s < so(g,0) or o is not exact and s < 5_(g,0), then

X* € I'(SM) has at least one periodic orbit in every non-trivial free homotopy class.

PROOF. If there are no orbits in the class v # 0, SH,;(DM,ws) = 0. However,
%, M is homotopy equivalent to S', if v is non-trivial. Thanks to Proposition
or Corollary this leads to the contradiction

0=SH!(DM,w,) = H .(£,M,\) = H_.(S',A) #0. O

PROPOSITION 4.24. Let (S%,g,0) be a non-exact magnetic system. If the para-
meter s belongs to (0,5_(g,0))U(5L(g,0),+00), then X* € T'(S5?) has at least one
periodic orbit. If the iterates of such periodic orbit are transversally non-degenerate,
then there is another geometrically distinct periodic orbit on SS?.

PROOF. The proof is similar to the one of Proposition and, therefore, we
only discuss the parts where we have to argue differently from there.

Since SH*(DS?,ws) = 0 # H**2(S82, A), there exists at least one prime periodic
orbit v by Corollary Call T its period.

Suppose that v and all its iterates are transversally non-degenerate. Construct
the sequences H* and HF as in Proposition and let J* be a sequence in J(H")
(see Definition [3.22)). Define SC*(k), 8x, SH*(k), ¢ and SH*(c0) as before.

For every k = 1,...,k, we have two non-constant generators of SC*(k): 'yfnin
and 'y{\;/[ax. They have degree 2 — ,ucz(yfc) and 2 — ucz(fy’;) — 1, respectively. By
Corollary we know that ¢y, is the inclusion map.

If poz(v*) < 0 for every k > 1, then the degrees of the non-constant periodic
orbits are all positive. By Corollary this means that SH 2(c0) ~ H?(S?%,A),
which is a contradiction. Therefore, we assume that pcz(7*) > 0, for every k > 1.

We distinguish four cases.

a) pcz(y) > 3. We claim that there exists kg such that pcz(7¥+) — pez(v*0) > 2
and v* is good. This implies that 'y{f/}’ax represents a non-zero class on SC*(k),
for k > ko. Taking the direct limit, we conclude that SH*(c0) # 0, contradicting
our assumption. Thus, we only need to prove the claim.

We use the iteration formula for the index (see [Lon02]):
. 2[k9] +1, ¥ € (0,+00) \ Q, if v is elliptic;

poz(v") =
kEucz (), if v is hyperbolic.
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k+1)

If ~ is hyperbolic, then pcz(y — ucz(v®) = poz(y) > 2 and the claim is

satisfied by any good iterate of . If  is elliptic, then ¥ > 1 and

pez(V) = pez(Vh) = 2+ 2(L(k+ )9 = 1)) = k(9 — 1))

Therefore, there exists kg such that | (ko +1)(9—1)| — [ko(9 —1)| > 1. For such
ko we have pcz(7*+1) — ucz(y*0) > 2. Since all the iterates of an elliptic orbit
are good, the claim is proven also in this case.

b) pcz(y) = 2. In this case Ymin has degree zero and SC*(k) = 0 for * > 0.
Therefore, 6;Ymin = 0. Moreover, SC~1(k) is generated only by ynax and since
~ is a good orbit, we know that < dpyMax, Ymin >= 0. This implies that ymin
represents a non-zero class in SH°(k). Taking the direct limit, we conclude that
SH®(c0) # 0, contradicting our assumption.

¢) pez(y) = 1 and v is hyperbolic. This case leads to a contradiction following the
same argument given in Proposition

d) pcz(y) =1 and + is elliptic. Also this case leads to a contradiction following the
same argument given in Proposition but we have to use the filtration with
the period (see Section , instead of the filtration with the action.

Since each case leads to a contradiction, we have proved that there exists a periodic

orbit geometrically distinct from ~. O

REMARK 4.25. For the case of 52, we do not know whether the orbits we find

are homotopic to a fibre or not.






CHAPTER 5

Rotationally symmetric magnetic systems on S?

In this chapter we aim at studying the contact property when (S%, g) is a surface
of revolution with profile function v and o = 1 is the area form. We are going to
estimate the interval [s_(g-, 1), si (G ty)] in terms of geometric properties of v and
try to understand, at least with numerical methods, the gaps [s_ (g, ty), 5— (g, f1v)]
and [51(gy, f1y), 51 (gys ity)]. To ease the notation we are going to use the parameter
m instead of s in this chapter. Hence, we define

X = me””‘SSQ , Wi,y 1= MW
1 1
My y = —F—~, M_ =
’ $—(Gvy, f1v) ! (G H1y)
1 1
m+’ =z ) m_y = — 9
’ 8—(Gys Hy) ! 31(9%#«1)

1
Con, := {m € (0,4+00) € Con™ (g, p1) } u{0}.

5.1. The geometry of a surface of revolution

To construct a surface of revolution, take a function v : [0,4,] — R and consider
the conditions:

1) v(t) =0if t =0 or t = £, and is positive otherwise,
2) 4(0) =1, 4(¢y) = =1 and |[§(t)| < 1 for t € (0,£,),
3) all even derivatives of y vanish for ¢ € {0, ¢, },

4) the following equality is satisfied

/ ) dt = 2. (5.1)
0

DEFINITION 5.1. A function v satisfying the first three hypotheses of the list is

called a profile function. If also the fourth one holds, we say that v is normalised.

Let S% be the quotient of [0, £,] x Tor with respect to the equivalence relation
that collapses the set {0} x Tar to a point and the set {£,} x T2, to another point.
We call these points the south and the north pole. Outside the poles the smooth
structure is given by the coordinates (t,60) € (0,¢y) x Tor, which also determine a
well-defined orientation on S,%.

On S% we put the Riemannian metric g, defined in the (¢,6) coordinates by the
formula g, = dt? 4+ v(t)?d6?. This metric extends smoothly to the poles because of
conditions 2) and 3) listed before. Moreover, condition 4) yields the normalisation
volg, (52) = 4.

69
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Let us denote by (¢, 0, vy, vg) the associated coordinates on the tangent bundle. If
@ := g, : S(52\ {south pole, north pole}) — Tay is the angular function associated
to the section J;, we have the relations
sin ¢
0

As a consequence, (t, ¢, 0) are coordinates on SS%, which are compatible with the

vy = COS @, vg = (5.2)

orientation D gg2 defined in Section Using the coframe (A, 7,7), we can express

the coordinate frame (9, Oy, dp) in terms of the frame (X, V, H) and vice versa:

0y = cospX —sinpH
0, =V (5.3)
0y = ~sinpX +ycospH + V.

X = cos cpgt _ e ('OQD + i 4,059
V = 0, (5.4)
H = —sinpd; — fycosgpap_l_coscpge,

We have put a tilde on 5t and 59 to distinguish them from the coordinate vectors 0
and Oy associated to the coordinates (¢,6) on Sg.

As anticipated at the beginning of this chapter, we consider as the magnetic
form on the surface SS,%, the Riemannian area form p.. This is a symplectic form
which satisfies the normalisation 4] = 47 introduced in Section In coordinates
(t,0) we have p1, = ydt A df. With this choice f =1 and p, — 0y = (1 — K)py. We

recall that the Gaussian curvature for surfaces of revolution is K = —%.
If we define
Moy 1= MGy, fy) = ﬁepg?*fm“w 181
we have the formula
mey oy /m2 —4
M4y = 5 .

In particular, the length of the interval [m_ ,, m+’,y] is equal to m% — 4, amonotone
increasing function of m,. This observation readily gives a sufficient condition for

having the contact property at every energy level.
COROLLARY 5.2. If m, < 2, then Con, = [0, +00).

In the next section we compute m., showing that the infimum in its definition

is actually a minimum. Namely, there exists 37 € P05 such that m., = ||87].

5.2. Estimating the set of energy levels of contact type

Consider an arbitrary closed Riemannian manifold (M, g). Let Z € T'(M) be a
vector field that generates a 2m-periodic flow of isometries on M. The projection
operator on the space of Z-invariant k-forms 1% : QF(M) — Q& (M) is defined as

1 2
vr e QF (M), T(r) = 277/0 (D) T db. (5.5)
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PropPOSITION 5.3. The operators Hl% commute with exterior differentiation:
dollfy, =15 o d. (5.6)
The projection 11}, does not increase the norm || - || defined in (2.2)):

VB e QN (M), |TZ(B)] < I8l (5.7)

PROOF. For the proof of the first part we refer to [Boo86, Section: The De
Rham groups of Lie groups]. For the latter statement we use that ®Z is a flow of
isometries. We take some (z,v) € TM and compute
1 f2r

Z
% ) B@ezl () (dxq)gl’l))del

T4(8). (0)] =

1 27
< — D7 !
< 5 [ 18ld.a50]

1 2m
- = 4
5 | 18lield

= [1BIl}v]-
Thus, |T15(8)z| < ||8]|. The proposition follows by taking the supremum over z. [J

Let us apply this general result to S?,. Consider the coordinate vector field 0y.
This extends to a smooth vector field also at the poles and ®% is a 2r-periodic
flow of isometries on the surface. Applying Proposition to this case, we get the
following corollary.

COROLLARY 5.4. The 2-form (1 — K)u~ is Og-invariant. Hence, H}Bo sends
PU=E)1y into itself.

PROOF. The first statement is true because ®% is a flow of isometries and thus
pr and K are invariant under the flow. To prove the second statement, we observe
that, if 8 € PA=EK)iy_ the previous proposition yields

d(IL3,(8)) = 13,(dB) = 115, ((1 = K)py) = (1 = K)py.
Hence, Hég(ﬁ) e pU-Kuy, O

Suppose now that 3 lies in P51 N QL (S2). Thus, 8 = Bi(t)dt + Bo(t)d6.
The function By = 3(0p) is uniquely defined by df = (1 — K)u, and the fact that it
vanishes on the boundary of [0, /,]. Indeed,

8 = d(ﬁtdt n 59d0> — Bpdt A df = %M (5.8)
Recalling the formula for K, we have 8y = v + 5. Hence, By = I' + 4, where
I' : [0,4,] = [~1,1] is the only primitive of v such that I'(0) = —1. Notice that

1) I is increasing,
2) T(L,) = —1+ i y(t)dt = —1+2=1,
3) the odd derivatives of I" vanish at {0,¢,}.
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Since 3y and its derivatives of odd orders are zero for ¢ = 0 and ¢ = £,, the 1-form
BY := Bpdf is well defined also at the poles and belongs to P~k 0 Qée (Sg)

Finally, the norm of this new primitive is less than or equal to the norm of j3:

B2 Bo
Buo)| =1\[B+ =5 = |
|Bt.0)] (e b

Summing up, we have proven the following proposition.

=180 (5.9)

PROPOSITION 5.5. There ezists a unique 87 € PAy that can be written in
the form 37 = B, (t)d0. It satisfies m = ||87|. Moreover B =T ++ and

L(t) +4(t) ‘
v(t)

Thus, we see that we can compute m, directly from the function v. As an

187]] = sup
t€(0,4,]

(5.10)

application, we now produce a simple case where m. can be bounded from above.

PROPOSITION 5.6. Suppose v : [0,4y] = R is a normalised profile function such
that v(t) = v(ly —t). If K is increasing in the variable t, for t € [0,¢,/2], then
m~ < 1. Therefore, Con,, = [0, +00).

PROOF. We observe that the functions I', 4 and, hence, ﬁg are odd with respect
to t = £,/2. This means, for example, that ) (t) = —f, (¢ —t). Therefore, in order
to compute m., we can restrict the attention to the interval [0,¢,/2]. We know
that 3] (0) = B;(¢,/2) = 0 and we claim that, if K is increasing, £, is positive in
the interior. Indeed, observe that {t € [0,¢,/2]| 3] = 0} is an interval and that
Bg is positive before this interval and it is negative after. Therefore, either Bg is
constantly zero or it does not have a local minimum in the interior. Thus, it cannot
assume negative values.

Let us estimate f8)/y at an interior absolute maximiser ¢y. The condition

d By _

Ftli—ty 0 is equivalent to

(T(to) +4(to))7(to)
72(to)
Since I'(to) +(to) = By (to) > 0 and (to) > 0, we see that 1 — K (ty) > 0. Moreover,
using that I'(tp) < 0, we get

=1- K(to). (5.11)

(V(to)
7(to)
Finally, exploiting Equation again, we find
m., = B (ko) _ (1- K(to))7(t0) <\1-K(t) < 1. (5.13)
7(to) Y(to)
The fact that Con, = [0, 400) now follows from Corollary O

)2 > 1 — K(to). (5.12)

To complement the previous proposition we show that if, on the contrary, we
assume that the curvature of 53 is sufficiently concentrated at one of the poles,

m., can be arbitrarily large. We are going to prove this behaviour in the class of
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convex surfaces since in this case we also have a strategy, explained in Section
to compute numerically the action of invariant measures. Using McDuff’s criterion,
this will enable us to estimate the gaps [m_ y,m_ 5] and [, my 4]

Before we need a preliminary lemma. Recall that 5’3 is convex, i.e. K > 0, if
and only if 4 < 0.

LEMMA 5.7. For every 0 < 0 < 5 and for every € > 0, there exists a normalised
profile function 5. such that S%E is conver and

Y5,:(0) < €. (5.14)

PRrOOF. Given § and &, we find a € (2?6, 1) such that 0 < cos (g) < e. This is

achieved by taking g very close to m/2 from below. Consider the profile function
Ta Ta

Ya : [=5, 5] = [0, a] of a round sphere of radius a, where the domain is taken to be

symmetric to zero to ease the following notation. It is defined by 74(t) := acos(%).
Then, 4,(—"5* +9) = cos (g) < ¢ and so, up to shifting the domain again, Inequality
(5.14) is satisfied. However, 7, is not normalised since

wa

? 2
/ Yo (t)dt = 2a° < 2.
_7r2a

In order to get the normalisation in such a way that Inequality is not spoiled,
we are going to stretch the sphere in the interval (—(% —0), 5 — )

We claim that, for every C' > 0 there exists a diffeomorphism F : R — R with
the property that

e it isodd: Vt € R, F(t) = —Fo(—t);

o fort > — 4, Fo(t) =t+C and for t < —(7¢ —9), Fo(t) =t - C;
o Fo > 1;

e for t <0, Fo(t) > 0 and for t > 0, Fg(t) < 0.

Such a map can be constructed as a time C flow map CI%, where 1) : R — R is an
odd increasing function such that, for t > % — 9, ¥ (t) = 1.

Consider the function 7§ : [-C — Z&,C + Z2] — R, where 7$ (s) := Ya(F1(5)).
One readily check that v& (up to a shift of the domain) is a profile function satisfying
the convexity conditions and for which holds. To finish the proof it is enough
to find a positive real number Cy such that fR &2 =

p 2. Since we know that fyg =
and fR Yo < 2, it suffices to show that

lim 7& (s)ds = +oo.

C—+oo R
Observe that b := 7$(—C — Z2 + ) = 7a(—3¢ 4+ 6) = asin(g) > 0. Then, for
s€[-C—22+6,C+ % —],75(s) > b and we have the lower bound
C+M_ C+M_
/yac(s)ds 2/ © 7 C(s)ds z/ P hds = 20+ X 5y,
R —C-Z2 45 —C-T845 2

The last quantity tends to infinity as C' tends to infinity. g
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PROPOSITION 5.8. For every C' > 0, there exists a convex surface with total area
4m such that m, > C.

PROOF. Fix an ¢y < 1. Take any § < /1 —¢p and consider the normalised
profile function s, given by the lemma. We know that

Yoo (8) = /0 s (0t < /0 Ldi=s

In the same way we find I's.,(§) < —1 + §2. From this last inequality we get
Tse0(6) + A5e0(8) < =1+ 6% + 9 < 0.

This yields the following lower bound for Meys .

r ) —
Mg . > ‘ 5.20(9) +Z(5,ao(5)‘ > 1 580 _
'76,50( )

The proposition is proven taking ¢ small enough. ]

J.

To sum up, we saw that the rotational symmetry gives us a good understanding
of the set [0,m_ ) U (my ,+00). Understanding the set [0,m_ ) U (M_ 5, +00),
or even better Con,, is more subtle. In Section we perform this task only
numerically and when the magnetic curvature K,, = m?K + 1 is positive.

As a first step, in the next section we will briefly study the symplectic reduction
associated to the symmetry and the associated reduced dynamics (for the general
theory of symplectic reduction we refer to [AMT8]). Proposition and the
numerical computation outlined in Section suggest that, if K, > 0, the contact
property holds. In particular, if K > 0, every energy level should be of contact
type. To complete the picture, we show in Proposition that the assumption on
the magnetic curvature is not necessary and in Proposition [5.12| that there are cases

where the magnetic curvature is not positive and that are not of contact type.

5.3. The symplectic reduction

Observe that the flow ®% on 5’3 lifts to a flow d®? on SS’%. Since ®% is
a flow of isometries, d@g? in coordinates is simply translation in the variable 6:
d@g? (t,0,0) = (t,,0+0'). Hence, d®% is generated by dp. As the flow D% — qpoe
is 2m-periodic and acts freely on S S%, we can take its quotient STSE with respect to
this Tor-action. Furthermore, the quotient map 7 : SS,% — STS\% is a submersion.
The variables ¢ and ¢ descend to coordinates defined on §ST% minus two points, which
are the fibres of the unit tangent bundle over the south and north pole. In these
coordinates we simply have 7(t,p,0) = (t,¢). In particular, 5573 is diffeomorphic
to a 2-sphere.

Any 7 € Q%Q (SS,%) such that 25 7 = 0 passes to the quotient and yields a well-

defined form on 5/’573 The 2-form 15,V falls into this class and, hence, there exists
0, € QZ(S/ST?Y) such that u5 v, = 7*©,. Moreover, the form ©, is symplectic on
SS,%. On the other hand, X" is also dp-invariant thanks to Equation (5.4). So there
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exists )?IY” € F(STS?) such that dm(XT') = X’;” We claim that this new vector field
is ©,-Hamiltonian. We start by noticing that if 57 is as defined in Proposition
and A, := mA — 787 + 7, then A}, € Q' 0ii4e0,(SS3). Then, Cartan identity

implies
zxgz(zégyv) = —259(1)@1/7) = —15,Wm,y = —13, (dA},) = L5 Am T d(259)\7n)
@) )

Define I, 5 := A (59) Since I, 5 is 59 invariant, there exists IAmV : 515’\2 — R such
that I,y =7 Im,Y Thus, reducing equality (5.15) - to 5’52 we find that X ™ is the
©,-Hamiltonian vector field generated by —Im,y. Using Equation (5 , we ﬁnd the
coordinate expression

fmﬂ(t, ) = my(t)sing — I'(¢). (5.16)
As a by-product, we also observe that I, is an integral of motion for X

Let us consider now the two auxiliary functions fﬁy : [0,4y] — R defined by
fi,w(t) = fmﬁ(tu +7/2) = £my(t) — ['(t). We know that

L (t) < Iyt 0) < I (1), (5.17)
with equalities if and only if ¢ = £7/2. On the one hand we have T + 4> —1and
I;,LL’,Y( ) = —1if and only if t = £,. On the other hand, I, 4.~ attains its maximum in
the interior. Indeed,

d =, .
%Im,'y =my — 7. (5.18)

and so dtI+ (0) = m > 0. Since f;;W(O) =1, the maximllm is also strictly bigger
than 1. A similar argument tells us that the maximum of I,  is 1 and it is attained
at 0 and the minimum of f . 18 strictly less than —1 and it is attained in (0, ;).

As a consequence, max I,,, , = max IJr > 1 and mlnI my = mlnI < —1.

In the next proposition we deal with the critical points @mﬁ of IAm,7 and study
their relations with the critical points C/lr?ti:w of fnilﬁ. We are going to show that, if
K, > 0, the only elements in Crit,, , are the (unique) maximiser and the (unique)
minimiser. In this case the dynamics of )?;” is very simple: besides the two rest
points, all the other orbits are periodic and wind once in the complement of these

two points.

PROPOSITION 5.9. There holds
= - m 1+ T
Critp, = Crit,, , ¥ {—5} U Crit,y, ,, X {—|—§} .

Moreover, ty € @ciﬁ if and only if £m~A(to) = v(to) and {(to, £7/2,0)} is the
support of a closed orbit for XI'. All the periodic orbits, whose projection to S,QY 18
a latitude, arise in this way. Every regular level of Ip, , is the support of a closed
orbit of )?;” and its preimage in SS?, is an XJ'-invariant torus.

Finally, if K, > 0, C/h?tjw contains only the absolute mazximiser (respectively

minimiser) of fiv We denote this unique element by t;—zﬁ
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1

FIGURE 1. Graphs of the functions ./T\,_m7 and IA,;FM

PRrROOF. The first statement follows from the fact that dpfnm = 0 if and only if
¢ = £7/2. Recalling we see that £m5(t) = v(t) is exactly the equation for
the critical points of f$7 The statement about the relation between closed orbits
of X' and latitudes follows from the fact that at a critical point of I, 5, X' = 0.
Hence, on its preimage XT" is parallel to dyp. By the implicit function theorem the
regular level sets of I,,,  and Iy, , are closed submanifolds of codimension 1. In the
latter case they are tori since X" is tangent to them and nowhere vanishing.

We prove now uniqueness under the hypothesis on the curvature. We carry out
the computations for fﬂ;v only. To prove that the absolute maximiser is the only

critical point, we show that if ¢ is critical, the function is concave at ty. Indeed,

2 - o L J(to)  (to)
@I;’,Y(to) = mH(to) —¥(to) = m~(to) <7(t3) - m’y(io))

= —m~(to) <K(t0) + T;) < 0. O

The picture above shows qualitatively fn_%,y and f;,;,y when K, is positive.

In order to decide whether w/ . is of contact type or not, the first thing to do

m7'y

is to compute the action of latitudes.

PROPOSITION 5.10. Take to € (0,¢y) such that ¥(ty) # 0 and let my, := ‘zggg )

The lift of the latitude curve {t = to} parametrised by arc length and oriented by
(sign ‘y(to))ﬁg is the support of a periodic orbit for X;mo. We call (y, the associated

mwvariant probability measure. Its action is given by

(to)* = #(to)L (to)
5.19
¥(to)? (5.19)
and Imtoﬂ{suppgto = Y(t0) At ). As a result, if Kp,, >0, then A(Cy,) > 0.

wiﬂtow
‘AX;’”O (Cto) =
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7 msignj(to)
27 ~(to)

previous proposition. On the support of this orbit we have
7(to)
¥(to)

Proo¥F. The curve u +— (tg,sign A(to) u) is a periodic orbit by the

signy(to) 1
W) A(to) (5.20)

mtove = ‘

and, as a consequence,

to)? 1 v(to)? = 4 (to)T (to)
v (x Moy — 7( o) _ B (to) - +1= . . 5.21
N TV R ALETOY 302 20
Since this is a constant, we get Identity (5.19]) for the action.
The second identity is proved using the definition of I,
_ [2(t) 7(to)* = 9(to)T'(to)
o sunnciy = [3(z) W

Under the curvature assumption, Ly iy 18 maximised or minimised at supp (z, ac-

v(to) signy(to) — I'(to) = ¥(to)

cording to the sign of 4(¢yg). In both cases Imtoﬁ’ and 4(tp) have the same

supp Gt
sign. Hence, also the third statement is proved. ]

This proposition shows that, when K, > 0, the action of the periodic orbits that
project to latitudes is not an obstruction for w;nﬁ to be of contact type. Thus, as we
also discuss in the next subsection, one could conjecture that under this hypothesis
wfnﬂ is of contact type. On the other hand, we claim that having K,, > 0 is
not a necessary condition for the contact property to hold. For this purpose it is
enough to exhibit a non-convex surface for which m, < 2. This can be achieved as
a consequence of the fact that the curvature depends on the second derivative of +,
whereas m, depends only on the first derivative.

We can start from 530, the round sphere of radius 1, and find a non-convex

surface of revolution 5’%, which is C'-close to the sphere and coincides with it around

the poles. This implies that m, = SUDye[o,¢, ] %’ can be taken smaller than 2
since it is close as we like to m,, = 0. Hence, every energy level of (S,%, Grys Iby) is Of

contact type and the following proposition is proved.

ProposiTIiON 5.11. The condition K, > 0 is not necessary for ¥, to be of
contact type.

On the other hand, we now show that is not true, in general, that the contact

property holds on every energy level.

PROPOSITION 5.12. There exists a symplectic magnetic system (S?,g,0) that

has an energy level not of contact type.

ProOF. We will achieve this goal by finding m and v such that X" has a closed
orbit projecting to a latitude with negative action. Then, the proof is complete
applying Proposition [2.17

Fix some ¢ € (0,1). We claim that, for every 6 € (0,7/2), there exists a
normalised profile function ;5. such that

Yo,(0) < —e. (5.22)
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Such profile function can be obtained as in Lemma Take an a € (%, %/2) (this

is equivalent to § € (%,Wa)) such that — sin (g — g) < —e. Consider the profile
function v, : [-ma/2,ma/2] — R of a round sphere of radius a. Thanks to the last
inequality, 4,(6 — %) < —e and, therefore, v, satisfies (up to a shift of the
domain). Now we stretch an interval compactly supported in (6 — %*,ma/2) by a
family of diffeomorphisms Fo as we did in Lemma (though here the condition
on the second derivative of F is not necessary). In this way we obtain a family of
profile functions ¢ satisfying . Since the area diverges with C', we find Cy > 0
such that v¢2 is normalised. This finishes the proof of the claim.

Since H&E(é)l < 1, we have that 75.(6) < 6 and I's () < —1 + 6%, The latitude
¥s,e(9)

£

at height ¢t = § of such surface is a closed orbit for X;?i , where ms. =

N0
Using formula (5.19) we see that the action of the corresponding invariant measure

(s, is negative for § small enough:

RPLTC O e N DA .

5.4. Action of ergodic measures

When K, > 0, we also have a way to compute numerically the action of ergodic
invariant measures. We consider only ergodic measures since they are the extremal
points of the set of probability invariant measures by Choquet’s Theorem and, there-
fore, it is enough to check the positivity of the action of these measures, in order
to apply Proposition [2.171 Every ergodic measure ( is concentrated on a unique
level set {I;m~, = I({)}, for some I(¢) € R. Moreover, if I(¢) = I(¢’) there exists
a rotation @g,g such that (@g?)*{’ = (’. Since the action is 59—invariant, we deduce
that it is a function of I(¢) only and we can define A : [min I, ,, max I,, ,| = R. We
already have an expression for the action at the minimum and maximum of I, .
We now give a formula for the action when I € (min I, ,, max I, ~).

Every integral line z : R — S.5? of X1, such that Iy, ,(2) = I oscillates between
the latitudes at height ¢~ (I) and ¢*(I). Their numerical values can be easily read
off from the graphs of fiv drawn in Figure |1l If we take z with ¢(2(0)) = ¢~ (),
there exists a smallest u(I) > 0 such that ¢(z(u(I))) = t*(I). By Birkhoff’s ergodic

theorem . oD B)s

AT = /0 <m2 _ mHT;mp(z(u)) + 1) du. (5.23)
Using this identity, we computed with Mathematica the action when Sg is an ellip-
soid. We found that is positive on every energy level in the interval [m_ 5, m4 ,]. By
Proposition this shows numerically that Con, = [0, +00), hence corroborating
the conjecture that X, is of contact type if K,, > 0. On the other hand, we know
that, when the ellipsoid is very thin, its curvature is concentrated on its poles and
hence, by Proposition the set [m_ ,,m4 5] is not empty. Therefore, these data
would also show numerically that the inclusion [0, m_ ) U (m4 5, 4+00) C Con, can

be strict.



CHAPTER 6

Dynamically convex Hamiltonian structures

In this chapter we introduce dynamically convex Hamiltonian structures, for
which we have sharper results on the set of periodic orbits. They were introduced
by Hofer, Wysocki and Zehnder in [HWZ98| as a way of generalising the contact
structures arising on the boundary of convex domains in C? (see Example [6.4] below)
with a notion which makes sense in the contact category. Later on, this notion has
been extended by Hryniewicz, Licata and Salomao [HLS13] to lens spaces and, at
the moment this thesis is being written, Abreu and Macarini [AM] are developing a
general theory of dynamical convexity, which will eventually embrace also non-exact
magnetic systems on surfaces of higher genus (see Section .

The abstract results we present below will play a crucial role in Chapter [7, when

we will analyse symplectic magnetic systems on S2.

DEFINITION 6.1. Let w be a HS of contact type on L(p,q). We say that w is
dynamically convez if, for every contractible periodic orbit +, ,ulcz(’y) > 3. By abuse

of terminology, we will call a contact primitive of w dynamically convex, as well.

REMARK 6.2. Thanks to (2.32) the condition on the index is equivalent to
I(U5Y) € (1,400) (see (2:39)).

REMARK 6.3. If 7 : S3 — L(p,q) is the quotient map, then w is dynamically

convex if and only if 7*w is dynamically convex.

EXAMPLE 6.4. If ¥ < C? is a closed hypersurface bounding a convex domain,

then A is dynamically convex.

St‘z

EXAMPLE 6.5. We remarked in Example that, if (M, g) is a Riemannian
surface, A’SM is a contact form. Let M = S? and notice that SM ~ L(2,1). Harris
and G. Paternain showed in [HPOS] that, if 1 < K < 1, then A| gg2 18 dynamically

convex.

For further examples of dynamical convexity, in the context of the circular planar
restricted three-body problem and of the rotating Kepler problem, we refer the
reader to JAFF™12] and [AFFvK13], respectively.

As we show in the next two sections, dynamical convexity has two main conse-
quences for the associated Reeb flow: the existence of a symplectic Poincaré section

and the existence of an elliptic periodic orbit.

6.1. Poincaré sections

The main result on the dynamics of dynamically convex Hamiltonian Structures
reads as follows.

79
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THEOREM 6.6 ([HWZ98|,[HLS13]). Let w be a HS on L(p,q) and suppose,
furthermore, that, if p > 1, w is non-degenerate. If w is dynamically convez, then
there exists a Poincaré section of disc-type D* — L(p, q) (which is a p-sheeted cover
on OD?) for the characteristic distribution of w.

REMARK 6.7. The case of S3, namely p = 1, is due to Hofer, Wysocki and
Zehnder, while the case p > 1 is due to Hryniewicz, Licata and Salomao. It is
likely that the non-degeneracy condition for p > 1 can be dropped by repeating the
lengthy argument contained in [HWZ98|, Section 6-8]. However, for the applications
to periodic orbits of a degenerate system we can simply apply Theorem after we
have lifted the problem from L(p,q) to S3. The details of such argument will be
explained below.

For the convenience of the reader we now recall the notion of Poincaré section.

DEFINITION 6.8. Let N be a closed 3-manifold. A Poincaré section for Z € T'(N)
is a compact surface ¢ : S — N such that

e it is an embedding on the interior S := S\ 85;

e (0S) is the disjoint union of a finite collection of embedded loops {7} and
i‘i_l(%) i (k) = 7k is a finite cover;

e the vector field Z is transverse to i(S) and every ~; is the support of a
periodic orbit for Z;

e every flow line of Z hits the surface in forward and backward time.

If z € S, let ¢(z) be the smallest positive number such that Fe(z) = <I>tZ(Z)(z) €s.
The map Fj : S — S defines a diffeomorphism called the Poincaré first return map.
Finally, if Z is a positive section for kerw, where w is a HS on N, a map ¢

satisfying the requirements above is called a Poincaré section for w.

If Z and N are as in Definition the discrete dynamical system (S, F ) carries
important information about the qualitative dynamics on N, since periodic points
of Fg correspond to the periodic orbits of Z different from the ~’s.

When Z is a positive section of ker w, with w € Q?(N) a Hamiltonian Structure,
(S ,i*w) is a symplectic manifold with finite area and Fyg is a symplectomorphism.

If we suppose, in addition, that S is a disc, then N ~ L(p,q) (see [HLS13])
and Proposition 5.4 in [HWZ98]| implies that Fy is CY-conjugated to a homeomor-
phism of the disc preserving the standard Lebesgue measure. The work of Brouwer
([Brol2]) and Franks ([Fra92] and [Fra96]) on area-preserving homeomorphisms
of the disc imply that either Fg has only a single periodic point, which is a fixed
point for Fg, or there are infinitely many periodic points.

COROLLARY 6.9. Suppose w € Q?(L(p,q)) is a HS having a Poincaré section of
disc-type. Then, kerw has 2 periodic orbits y1 and o whose lifts to S3, 31 and A,
form a Hopf link (namely they are unknotted and |1k(5,7")| = 1). Either these are
the only periodic orbits of kerw or there are infinitely many of them. The second
alternative holds if there exists a periodic orbit whose lift to S® is knotted or if there
are two periodic orbits v and ' such that |1k(7,7")| # 1.
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EXAMPLE 6.10. Let us verify the above general results in a concrete example.
For any pair (p, q) of positive real numbers, consider the ellipsoid
qu = {(21,22) E(CQ ‘ |Zl’2+‘22q|2 = } CCQ.

Since ¥, , is convex, we know by Example [6.4] that it is also dynamically convex

and, hence, by Theorem its Reeb flow has a Poincaré section of disc-type. We

can construct explicitly one such disc as follows. First, using the Hamilton equation

for the Hamiltonian (21, z2) — ‘Z1| + |ZQ‘ , we get R = % + 892, where 0; is the

angular coordinate in the zi—plane. Thus, @ﬁx(zl,m) = (epzl,eqt z9) and we see
that, for any 6 € Tar, Sp := {(21,22) € Epq ! 01 = 0} is a Poincaré section of disc-
type parametrised by z9. The return map is Fe, (z2) = 6%%22, namely a rotation
by the angle 27r§. Such rotation has the origin as the unique fixed point if and only

if % is irrational. When % is rational, every orbit is periodic.

If w is dynamically convex and, when p > 1, it is also assumed to be non-
degenerate, Theorem directly implies that the hypotheses of Corollary are
satisfied and, thus, we have a dichotomy between two and infinitely many periodic
orbits for ker w. We now aim to prove that the dichotomy still holds for a dynamically
convex HS, without any non-degeneracy assumption.

We restrict to p = 2, since SS? ~ L(2,1) and we will need only this case in the
applications.

Regard L(2,1) as the quotient of S by the antipodal map A : S — S3. The
quotient map 7 : S* — L(2,1) is a double cover with A as the only non-trivial deck
transformation. There is a bijection Z — Z between I'(L(2,1)) and T'4($3) C I'(S3)
the subset of A-invariant vector fields. The antipodal map permutes the flow lines
of Z. Moreover, a lift of a trajectory for Z is a trajectory for Z and the projection
of a trajectory for 7 is a trajectory for Z. In the next lemma we restrict this
correspondence to prime contractible periodic orbits of Z. We are grateful to Marco
Golla for communicating to us the elegant proof about the parity of the linking

number presented below.

LEMMA 6.11. There is a bijection between contractible prime orbits z of Z and
pairs of antipodal prime orbits {z, A(Z)} of Z such that Z and A(Z) are disjoint.

Furthermore, the linking number lk(Z, A(Z)) between them is even.

PROOF. Associate to a contractible periodic orbit z its two distinct lifts 23 and
Zo = A(Z1). Since z is contractible both lifts are closed. They are also prime since
a lift of an embedded path is still embedded. Suppose that the two lifts intersect.
This implies that there exist points ¢; and to such that 21 (t1) = 22(t2). Applying 7
to this equality, we find z(t;) = 2z(t2) and so t; = t2 modulo the period of z. Hence,
21 = 2o contradicting the fact that the two lifts are distinct.

For the inverse correspondence, associate to two antipodal disjoint prime periodic
orbits {z, A(2)} their common projection 7(z). The projected curve is contractible

since its lifts are closed. Furthermore, it is also prime since, if 7(2)(¢t1) = 7(2)(t2),
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either 2(t1) = A(2)(t2) and 2N A(2) # 0 or Z(t1) = Z(t2) and t; = t2 modulo the
period of Z.

We now compute the linking number between the two knots. Consider S® as
the boundary of B* the unit ball inside R* and denote still by A the antipodal
map on B*, which extends the antipodal map on S3. Take an embedded surface
S1 C B* such that 9S; = z; and transverse to the boundary of B*. By a small
perturbation we can also assume that 0 € B* does not belong to the surface. The
antipodal surface So := A(S7) has the curve 23 as boundary and [k(z1,Z2) is equal
to the intersection number between S7 and Sy. By perturbing again S; we can
suppose that all the intersections are transverse. Indeed, if we change S close to
a point z of intersection, this will affect So = A(S7) only near the antipodal point
A(z) = —z, which is different from z since the origin does not belong to S;. Now that
transversality is achieved, we claim that the number of intersections is even. This
stems from the fact that, if z € S; N So, then A(z) € A(S1) N A(S2) = S2 N S; and
z and A(z) are different since z # 0. As a consequence, the algebraic intersection

number between the two surfaces is even as well and the lemma follows. O

REMARK 6.12. In the proof of the lemma, the sign of the intersection between
S1 and So at z is the same as the sign at A(z), since A preserves the orientation.
Thus, we cannot conclude that the total intersection number is zero. Indeed, for

any k € Z one can find a pair of antipodal knots, whose linking number is 2k.

PROPOSITION 6.13. If w is a dynamically convex HS on L(2,1), then kerw has
either two or infinitely many periodic orbits. In the first case, the two orbits are

non-contractible.

PROOF. By Corollary [6.9]there exist two prime closed orbits z1 and 23 of ker m*w
forming a Hopf link and if there is any other periodic orbit geometrically distinct
from these two, ker m*w has infinitely many periodic orbits.

We claim that 21 := 7(21) and 22 := 7(z2) are geometrically distinct closed orbits
for kerw on L(2,1). If, by contradiction, z; coincides with zo, by Lemma 1
and Z are antipodal and their linking number is even. This is a contradiction since
|lk(Z1,%22)| = 1. Therefore, we conclude that z; and zy are distinct. On the other
hand, if ker 7*w has infinitely many periodic orbits the same is true for ker w. Hence,
also ker w has either 2 or infinitely many distinct periodic orbits.

If ker w has a prime contractible periodic orbit w, its lifts wy and s, are disjoint,
antipodal and prime periodic orbits for ker 7*w by Lemma Since lk(wy, ws) is
even, {Wi,ws} # {z1,%2} and, therefore, there are at least three distinct periodic
orbits for ker 7*w. So there are infinitely many periodic orbits for ker 7*w and,
hence, also for kerw. O

6.2. Elliptic periodic orbits

Generally speaking, once we have established the existence of a periodic orbit

(v,T) for a flow ®Z, we can use it to understand the behaviour of the dynamical
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system in a neighbourhood of v by looking at the spectral properties of ¢ d7(0)®f ,
the linearisation of the flow at the periodic orbit.

We have seen in Definition that when v is a non-degenerate periodic orbit
of a Hamiltonian Structure w, we have only two possibilities: either the transverse
spectrum lies on the real line (7 hyperbolic) or it lies on the unit circle of the complex
plane (v elliptic).

As a sample of the applications one might get in the first case we mention the
work of Hofer, Wysocki and Zehnder in [HWZ03]. The authors proved in Theorem
1.9 that a generic Reeb flow R” on S3 without Poincaré sections of disc-type, has
a hyperbolic orbit whose stable and unstable manifolds intersect in a homoclinic
orbit. Following [Mos65|, Chapter III], this yields the existence of a Bernoulli shift
embedded in the flow of R™ through the construction of local Poincaré sections.
Since a Bernoulli shift has infinitely many periodic points, ®%" has infinitely many
periodic orbits as well.

In contrast to the chaotic behaviour caused by the presence of the Bernoulli-
shift, when ~ is elliptic the flow is expected to be stable and quasi-periodic close
to the periodic orbit. As explained in [Mos65, Section 2.4.d], if the transverse
spectrum does not contain any root of unity, the KAM theorem implies the existence
of a fundamental system of open neighbourhoods of the orbit, whose boundaries are
invariant under the flow. In particular, each of these neighbourhoods is R™-invariant.
Hence, v is a stable periodic orbit and, as a result, the Reeb flow is non-ergodic.

Existence of elliptic periodic orbits for the Reeb flow on the boundary of convex
domains in C? has been proved in particular cases and it is an open problem raised
by Ekeland [Eke90, page 198] to determine whether an elliptic orbit is to be found

on every system of this kind. Its existence has been showed if

e the curvature satisfies a suitable pinching condition [Eke86];
e the hypersurface is symmetric with respect to the origin [DDE95].
The latter case is the most interesting to us since, in view of the double cover
S3 — 852, lifted contact forms will automatically be invariant with respect to the
antipodal map.
Recently, Abreu and Macarini have announced an extension of the results con-

tained in [DDE95] to dynamically convex symmetric systems.

THEOREM 6.14 ([AM]). If w is a dynamically convex Hamiltonian Structure on
L(p,q), with p > 1, then it has an elliptic periodic orbit.

In the same work, the authors will also define a notion of dynamical convexity
for contact forms not necessarily on lens spaces. This has potential applications to
symplectic magnetic fields on surfaces of genus at least two on low energy levels. We
will comment on such generalisation in Section






CHAPTER 7

Low energy levels of symplectic magnetic flows on S?

In this chapter we study in more detail low energy levels of magnetic flows
(S%,g,0) when o is a symplectic form normalised in such a way that [0] = 4.
Throughout this chapter we are going to use the parameter m and the associated
notation introduced in Section just before Remark

REMARK 7.1. Consider more generally a mechanical system (S2,g,0,U) with o
symplectic. We saw in Section[2.3.1]that when m is small and ||U|| is small compared
to m?, the dynamics on Y, is the dynamics of a corresponding magnetic system on
low energy level. Thus, we can apply to this case the results presented below.

Moreover, we saw in Section [2.3.2] a concrete example of mechanical system
(82,4, %ag,f]k) obtained by reduction from (SO(3),g,0,U). The associated mag-

. . A . A A U,
netic system is (S2vgm,f]k7 %Ug), with Hgm’Uk — |l < 2|7|an|\ and

~ k‘2
20l _ 200+l _2vl R |1
m2 m2 ~ m2 +W 2|

Thus, we are allowed to approximate the reduced dynamics of (SO(3),¢,0,U) with
momentum k and energy %2, with a symplectic magnetic system on a low energy

level provided ||U|| and k? are small with respect to m?.

7.1. Contact forms on low energy levels

Given g € P?~ % fix for the rest of the chapter a primitive )\fn 5= mA—n*f+T1
of w},. We know that there exists mg > 0 such that, for m € [0, mg), the function

hn, (2, 0) == X 5(X™) (20) = m? — By (v)m + f(x) (7.1)
is positive and, as a consequence )\fm 3 is a positive contact form. Denote by R™f :=
R)‘fnvﬁ, the Reeb vector field, by ®™# its flow and by £™# := ker )‘gn,ﬁ the contact
distribution. We readily compute

xm m f

R™P = = X+
hmg  hmp .8

V. (7.2)

We proceed to relate the time parameter of a flow line for ™7 and the length of

its projection on S2.
LEMMA 7.2. If v:[0,T] — SS? is a flow line of ®™°, then

T </{U(n(y)) < T, (7.3)

max hy, g min Ay, g
where ¢ denotes the length of a curve in S% with respect to the metric g.

85
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PROOF. We compute the norm of the tangent vector of 7(y):
m m
=|—" =— 7.4
ey (7.0

)| = [ () -

dt
Plugging this identity into the formula for the length of m(v), we get

T T
e = [ | Gron|de= [T (7.5)
0 dt 0 hm,ﬁ
and the lemma follows bounding the integrand from below and from above. 0

We define a global w/, -symplectic trivialisation of £€™P in the next lemma.

LEMMA 7.3. The contact structure £€™° admits a global !, -symplectic frame:

i H A Be(u)V
hmB

b X + (Bzs(v) —m)V
vV hmB

Call Y™B . ¢mbB (6%52,w5t) the symplectic trivialisation associated to this frame.
It is given by Y™P(Z) = VhmB(n(Z),\(Z)) € R2.

PROOF. To find a basis for €™ we set H™B = H+agV and XmbB = X+axV,
for some ap,ax € R. Imposing )\ilﬂ(ﬁm”g) =0, we get

0=mANH+agV)—7"6(H+agV)+7(H+agV) =0— :(Jzv) + am.

Hence, we have ag = (;(),v). In the same way we find ax = ;(v) —m. In order
to turn this basis into a symplectic one, we compute
W (H™P X™PY) = ! (H+ayV,X +axV)
=w, (H,X)+axw,,(H,V)+apgw,,(V, X)
—(=f)+ax-(—m)+ag-0
= Iy 8.

Thus (H B Xm.pB ), as defined in the statement of this lemma, is a symplectic basis.
We now find the coordinates of Z = a' H™P + a2 X™# with respect to this basis:

77(Z) = n(alﬁm75 + aQXmﬁ) — aln(Hmﬁ) + GQT](Xm’B) _

In the same way, A\(Z) = 22 , so that (a',a?) = \/hm s(n(2),\(Z)).

o
O

When m = 0, the objects defined above reduce to

)\gIB:—TF*ﬂ—FT Ro’ﬂ:V
A = (1 + 8,0)V) X0 = (X +8.0)7).
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In particular, Ag 3 is an S'-connection form on SS? with curvature o. Therefore, we
can think of m — AY, pasa deformation of an S'-connection with positive curvature
through contact forms. This observation leads to the following result.

LEMMA 7.4. There exists a diffeomorphism Fy, g : 552 = 8S5?% and a real func-
tion qm.g : 852 = R such that

F:;L,B)‘fn,g = eq’"vﬁAgﬁ. (7.6)
The family of diffeomorphisms is generated by the vector field
H™P 1
Z7mB = _ 7(H + m(hv)v) € ker A7, . (7.7)
hm,ﬂ hm,ﬁ m,

The map
[0,mg) — C*°(SS% R)
m —— dm.B

is smooth and admits the Taylor expansion at m =0

G = 21fm2 + o(m2). (7.8)

PrRoOF. We apply Gray Stability Theorem (see for example [Gei08, Theorem
2.2.2]) to the family m — X, 5 and get the equation

d
A=), with Z™ € ker\! (7.9)

o % m?/B m7ﬁ7

for Z™P and the equation

0 d m
Q.3 = )\ R™P —
om ™" <dm P ) (B0 Ews hin,6 © Fin (7.10)

!/
ZZm,ﬂwm -

qo,3 =0

for the function g, g. There exists a unique pair (7 mB gm,3) satisfying such rela-
tions. By Lemma we know that 2" = ayH™P + ax X™P. Using the fact
that (Hm’ﬁ, Xm’ﬁ) is an w/, -symplectic basis, we get

1

hm.p

ap = tgmewl, (X™P) = —\(X™) = —

ax = —tgmpwl,(A™P) = \(H™P) = 0.

Since the function (m,2) — &gy, 5(2) is smooth on [0,mz) x SS?, the same
is true for (m,z) — ¢n(2). Therefore, the map m +— ¢, g is smooth in the
C*°-topology and we can expand it at m = 0. From ([7.10)) we see that go g = 0,

2
amtos =0 and 575005 = jo—tm = 7 Thus, (7.8) follows. O

After this preliminary discussion we are ready to prove the results on periodic
orbits we outlined in the introduction. In the next section we start with the expan-
sion in the parameter m of the action function S, : $S? — R defined by Ginzburg
in [Gin87]. We point out that this results holds true also for magnetic systems on
surfaces of higher genus.
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PROPOSITION 7.5. There exists a smooth family of smooth functions m +— Sy,
where Sy, : S5% = R, such that

e the critical points of Sy, are the support of those periodic orbits of X which
are close to a vertical fibre;

e the following expansion holds

S = 27 + §m2 + o(m?). (7.11)

COROLLARY 7.6. If x € S? is a non-degenerate critical point of f : S? — R,

then there exists a smooth family of curves m — v, such that

e o winds uniformly once around S,S? in the positive sense;

o the support of vm is a periodic orbit for X™.

REMARK 7.7. Corollary was already known by the experts, even if there is
no explicit proof in the literature. Ginzburg mentions it in its survey paper [Gin96]
in the paragraph after Remark 3.5 on page 136. Moreover, Castilho, using Arnold’s
approach of the guiding centre approximation [Arn86|, constructs a local normal
form for a magnetic system on low energy levels which is similar to the one we found
in Lemma (see [Cas01), Theorem 3.1]). It could be used to prove a local version
of Proposition and, hence, the corollary.

In Section [7.3] and Section [7.4] we are going to give two independent proofs of
the following theorem.

THEOREM 7.8. The 1-form )\fn’ﬁ € Q1(8S?) is dynamically convex for small m.

Combining this theorem with the abstract results contained in Chapter [ we get
the result below.

COROLLARY 7.9. Let (S2,g,0) be a symplectic magnetic system. If m is small
enough, then the magnetic flow on X,, has either two or infinitely many periodic
orbits. In the first case, the two orbits are non-contractible. Therefore, the second
alternative holds if there exists a prime contractible periodic orbit.

If we suppose in addition that 3, is a non-degenerate level, then

a) there is an elliptic periodic orbit (hence the system is not ergodic);

b) there is a Poincaré section of disc-type.

REMARK 7.10. The existence of two periodic orbits on low energy levels of sym-
plectic magnetic systems is not new. In [Gin87, Assertion 3|, Ginzburg proves the
existence of 2 periodic orbits on S? and of 3 periodic orbits on surfaces of genus at
least 1. Such orbits are close to the fibres of ¥,, — M. Furthermore, when the
energy level is non-degenerate, he improves these lower bounds by finding at least
4 — eps periodic orbits, 2 of which are elliptic (see the characterisation of the return
map as the Hessian of the action at the end of page 104 in |[Gin87]).

REMARK 7.11. Example exhibits energy levels where all orbits are periodic

and no prime periodic orbit is contractible. Theorem 1.3 in [Sch11] (see also Section
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below) shows that there exists an energy level with only two periodic orbits close
to the fibres. It is still an open problem to find an energy level on a non-exact
magnetic system on S? with exactly two periodic orbits. We point out that in the
class of exact magnetic systems such example has been found. Indeed, Katok showed
in [Kat73] that there are Randers metrics on S? with only two closed geodesics (see
also |Zil83]) and G. Paternain in [Pat99bl Section 2] showed that every geodesic
flow of a Randers metric arises, up to time reparametrisation, on a supercritical

energy level of some exact magnetic field on S2.

Combining Corollary with Corollary we can formulate a sufficient con-
dition for the existence of infinitely many periodic orbits.

COROLLARY T7.12. Let (S?%,9,0 = fu) be a symplectic magnetic system. If the
function f : S? — R has three distinct critical points Tmin, Tyvax and Tnondeg Such
that wmin s an absolute minimiser, Tnax 95 an absolute mazimiser and Tynondeg 1S
non-degenerate, then there exist infinitely many periodic orbits of the magnetic flow

on every sufficiently small energy level.

In Section we prove Theorem [[} establishing a dichotomy between short and
long periodic orbits. We rephrase it here for the convenience of the reader.

THEOREM 7.13. Suppose (g,0) € Mag(S?) and o is symplectic. Given & > 0
and a positive integer n, there exists me, > 0 such that for every m < mg, the

projection w(y) of a periodic prime solution ~y : Tp of X™ either is a simple curve

on S? with length in (ig;jcm, rznﬁr'f;m) or has at least n self-intersections and length

larger than 2.

This result was inspired to us by [HS12], where a completely analogous state-
ment for Reeb flows on convex hypersurface in C2 close to the round S is proved.
In that paper the authors show that short orbits are unknotted, the linking number
between two short orbits is 1, while the linking number between shorts and long
orbits goes to infinity as the hypersurface approaches the round S3. In view of
Corollary it is likely that Theorem [7.13| can also be proven as a corollary of
Theorem 1.6 in [HS12] by making explicit the relation between linking numbers on
53 and self-intersections of the projected curve on S2.

Finally, the aim of Section is to prove Proposition [J] regarding rotationally
symmetric magnetic flows. In such proposition we formulate a sufficient condition for
having infinitely many periodic orbits and a sufficient condition for having exactly

two short periodic orbits, on every low energy level.

7.2. The expansion of the Ginzburg action function

We recall the definition of S,,. Set Ao := )\g’ﬁ, A i= €9mB8Ng. Let R™ = RAm
be the associated Reeb vector field. For each (z,v) € SS? we construct a local
Poincaré section as follows. If 3 is a curve on S2, denote by P{ : S’y(o)SQ — Sy 52
the parallel transport with respect to the S'-connection \g. Let Bg C 52 be a small
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geodesic ball centered at x. For every z’ € Bg, let y%, : [0,1] — S? be the geodesic

connecting z to 2’ and define
i(x,v) :Bg — SS2
z — (a:’, P (v)) :

The map i, is a local section of the S'-bundle S5 such that i(, . (x) = (z,v).
Therefore, it is transverse to R™ for every m sufficiently small and there exists a
first positive return time ¢,,(z,v) such that @ﬁj}m 0 = @) (x],(x,v)), for some
2}, (z,v) € BZ. Define the path ¥, (z,v) : [0,1] — SS? by
s Yol (a0
i 0)0) = (12, (0 P ) )
and define %, (z, v) to be the inverse path. Notice that d%’ym(:r, v) € ker \g = ker \,,,.
The 1oop Y (7, v) : [0,2] — SS? is obtained by concatenation
PR” T,V for r € [0, 1],
Y (2, 0)(r) = im(l‘,’u)r( ) [0,1] (7.12)
Am(x,v)(r—1) for r € [1,2].
Denote by C'>® (T3, SS?) the space of piecewise smooth loops of period 2 in SS? and
notice that the family of maps m ('ym : 852 — C(Ty, SSQ)> is smooth. Finally,

define 5, as the composition of the action functional associated with A, and the

above embedding of SS? inside the space of loops:

Sm ::./45"”Ofym:552 — R

(x,v) —> Y (2, 0) A =t (x,0) —|—/ Fm (2, 0) A
TQ Tl

= tm(z,v).

It is proven in [Gin96l Lemma 3, page 104] that, if (x,v) is a critical point of Sy,

then @5:2%1]) = (z,v) and, therefore, (x,v) is in the support of a periodic orbit.
Notice that since the family m — S, is smooth, it admits an approximating

Taylor expansion truncated at any order. To find such expansion, we observe that

2

A = f‘om +o(m?) by Lemma where p,,, : S? — R is given by pp,(z) := 1— 582~

m = Tp 2f(z)"
Thus, we prove Proposition [7.5]in two steps:

i) we find an expansion for S/, : SS? — R, the action function for the 1-form

5\’m = ﬂ*’\gm and we see that is equal to the desired expansion of Sy,;

ii) we show that S, — S/, = o(m?).

For the first step we need the lemma below.

LEMMA 7.14. Let m: E — M be an S'-bundle over a closed orientable surface.
Let 7 be an S*-connection on E with positive curvature form o. Fiz p : M — (0, +00)
a positive function and define the contact form 7, := —— € QYE). Then, the Reeb

T*p

vector field of T, splits as

Rz—;,v) = _Lz-é,v) ((Xﬂ)x) + p(x)vv(x,'u)a (713)



7.2. THE EXPANSION OF THE GINZBURG ACTION FUNCTION 91

where L* s the horizontal lift with respect to kert and X, € T'(M) is the o-

Hamiltonian vector field associated to p (namely, 1x,0 = —dp).

PROOF. Since o is positive, 7 is a contact form. Hence, also 7,, which is obtained
multiplying 7 by a positive function, is a contact form as well. Without loss of
generality we write R(T;U) = L&v)(Z(x,U)) + a(z,v) Vg, where Z(z,v) € T, M and
a(z,v) € R are to be determined. Imposing that 1 = 7,(R™), we obtain that

a(z,v) = p(x). Imposing that 0 = 1gmd7,, we get

—r*o L [ dp
0= ZLH(Z)-HT*;)V <7‘[‘*p — T <p2) A\ T)

*(—ZZU+dP) *(dp(Z)>

=n|—— -7 5 T

P P

This implies that —1z0 + dp = 0 and dolZ) — (). The first condition implies that

o2
—Z is the o-Hamiltonian vector field with Hamiltonian p. Since the Hamiltonian

function is a constant of motion, the second condition is also satisfied and the lemma
is proven. ]

Let us proceed to the proof of the proposition following steps i) and ).

PROOF OF PROPOSITION [Z.Bl Let us find the expansion for m — S/,. Since we
already know that this expansion will be uniform, we can fix the point (z,v) € S.5?
and expand the function m — S] (z,v). We denote with a prime all the objects
associated with . Denote by (Z(t),7(t)) the flow line of R"™ going through (z,v)
at time 0. Consider Ptiin(ac,v) (v) € Sx;ﬂ(m’v)SQ, the parallel transport of v along z. The
angle between Pj (v) and 4/, (x,v)(1) is equal to the integral of the curvature
o on a disc bounding the concatenated loop Z x m (,(x,v)). Since this loop is
contained inside a ball of radius d(x,x},(x,v)), we can bound the area of the disc by
some constant times d(x, z}, (z,v))%. However, %f = X,,, = —m?Xy,; implies that
d(z, 2}, (x,v)) < tm(z,v)-m? || Xo,¢||. Hence, the area of the disc goes to zero faster

than m?

. As a consequence, the angle between Pg (2.0) (v) and 4/ (z,v)(1) is of
order o(m?). Consider the continuous loop ¥/, (x,v) obtained by the concatenation
of three paths:

e the path (Z(t), PF(v));

e a path contained in the fibre over 2/, (x,v) and connecting Ptazn (o

)(v) with
i (x,v)(1) following the shortest angle;
e the path ¥/ (z,v).
Since 7 (), (x,v)) = w(y,,(x,v)), we can consider the increment in the angle between
Ao (x,v) and ~,,(x,v) along this loop. As 4., (z,v)(0) = ~,,(x,v)(0), this angle will
be a multiple of 27. For m = 0 we readily see that the angle is 27, hence it remains

27 by continuity. However, the derivative of the increment of this angle is
o 1@, 0)pm(z), over
e of order o(m?), over the path contained in the fibre of a/,(z,v);
e zero, over m(¥. (x,v)).
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Putting things together, we find 27 =t/ (z,v)py () + o(m?), which implies Step 1):

2

S (z,v) =t (z,0) = 27 <1 - 2%» + o(md).

For Step i) we observe that there exists a smooth path m ~ A/, € Q(SS?)
such that A, = A +m3X.. As a consequence, R’ = R + m3R! | for some
smooth family m +— R/ € I'(SS?). This implies that t,,(z,v) — t, (z,v) = o(m?)
and, hence, S, = t,, = t,, + o(m?) = S, + o(m?). This establish Step 7i) and the
entire proposition. O

We now have all the tools to prove the corollary.

PROOF OF COROLLARY [Z.6l Applying the proposition we just proved, we find
that S, = 27 + m2S,,, where Sy = % Therefore, the critical points of S,, are
the same as the critical points of S,,. Notice that the critical points of Sy are the
vertical fibres S,52, where x € S? is a critical point of f. Let x be a non-degenerate
critical point of f and consider a tubular neighbourhood Tor x Bs of S,S? with
coordinates (1, z). For every 1) € To, consider the restriction of S, to {¢} x B;s
and call it S%. Since z is a non-degenerate critical point, the functions S'g) have
0 € Bs as non-degenerate critical point. Therefore, by the inverse function theorem,
for every sufficiently small m there is a path z,, : Tor — Bs such that z,(¢) is
the unique critical point of Sk,. We claim that v, (¢) := (1, zm (1)) € Tax X By is
a critical point for S,,. Indeed, the function Sy, o ¥ : Toxr — R has at least one
critical point v, so that dwm(qﬁ*)Sm(ﬁvm(@b*)) = 0. Since ﬁym(ip*) is transverse
to {O} X sz(¢*)Bg C T,Ym(lp*)Tgﬂ X Bs and

— e
dWm(’l’*)Sm‘{o}xTme*)B& - dzm(d}*)sm - O’

we have that ~,,(14) is a critical point for S,,. However, the critical points for S,
comes in S'-families since they correspond to periodic orbits of R™. This implies

the claim and finishes the proof of the corollary. O

REMARK 7.15. The approximation of the magnetic flow with the Reeb flow of
R*» is called the guiding centre approzimation. A precise formulation can be found
in [Arn97]. It was used by Castilho in [CasO1] to prove a theorem on region
of stabilities for the magnetic flow via Moser’s invariant curve theorem [Mos77].
Recently, Raymond and Vu Ngoc [RVN13| employed this approach to study the
semiclassical limit of a magnetic flow with low energy close to a non-degenerate

minimum of f.

7.3. Contactomorphism with a convex hypersurface

The main goal of this section is to construct a convex hypersurface in C? which
is a contact double cover of (552, )\fm B)' Example will then imply that )\fm g is
dynamically convex and give a first proof of Theorem [7.8|

PROPOSITION 7.16. If m € [0,mg), there exists a double cover py, 5 : S3 — SS?

and an embedding vy, g : S3 — C? bounding a region starshaped around the origin
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and such that p}, B)\fnﬁ = —uy, 5>\st- Furthermore, as m goes to zero, vy, g tends
in the C?-topology to the embedding of S* as the Euclidean sphere of radius 2. In

particular, v, g is a convex embedding for m sufficiently small.

We construct the double cover p,, g in three steps. Let (52, go, o) be the mag-
netic system on the round sphere of radius 1 given by the area form. We denote by
SS2 the unit sphere bundle, by 79 the rotation by 7/2 and by 7 the vertical form
associated with the metric go. We have already seen in Lemma[7.4] that there exists
a contactomorphism £}, g3 between e%n.# /\g’ 5 and /\g@’ 5 Our next task is to relate
)\g’ 5 with 9. For this purpose, we need the following proposition due to Weinstein
[WeiT5]. For a proof we refer to [Gui76, Appendix B].

PROPOSITION 7.17. Suppose E; — S?, withi = 0,1, are two S'-bundles endowed
with S*-connection forms 7; € QY(E;). Call o; € Q?(S?) their curvature forms and

suppose they are both symplectic and such that

52 s?

Then, there is an S'-equivariant diffeomorphism B : Ey — Ey such that B*1 = 9.

, (7.14)

Thanks to the normalisation [o] = 47 and the fact that A\ 5 is an S'-connection

form on SS2, we get the following corollary.

COROLLARY 7.18. There is an S*-equivariant diffeomorphism Bg : SS& — 952
such that BE)\g 5 = To-

What we have found so far tells us that we only need to study the pull-back of 7y
to S3. This will be our next task. The ideas we use are taken from [CO04, [HPO0S].

We identify C? with the space of quaternions by setting 1 := (1,0), i := (4,0),
j:=1(0,1) and k := (0,7). With this choice left multiplication by i corresponds to the
action of Jg;. Let v : §3 — C? be the inclusion of the unit Euclidean sphere. Identify
the Euclidean space R? with the vector space spanned by 1i,j,k endowed with the
restricted inner product. We think the round sphere (S?,go) as embedded in this
version of the Euclidean space. Thus, the unit sphere bundle SS3 is embedded in
R3 x R3 as the pair of vectors (u1,uz) such that uy,us € S? and gg(ug,u2) = 0.

If 2 = (u1,u2) € SS2 CR3 x R® and Z = (v1,v2) € T.SS2 C R? x R3, then

(10):(Z) = g0 (02 — st (02, U1)U1,Jou1(u2)) = gt (V2, oy, (u2)) (7.15)

as a consequence of the relation between the Levi Civita connections on S? and R3.

For any U € S3, we define a map Cy; : R?* — R? using quaternionic multiplication
and inverse by Cy(U’) = U~'U'U. The quaternionic commutation relations and the
compatibility between the metric and the multiplication tell us that Cy restricts to
an isometry of S2. Hence, dCy yields a diffeomorphism of the unit sphere bundle
onto itself given by (u1,u2) — dy, Cy(uz) = (Cy(ur), Cy(usz)). Moreover, since Cy
is an isometry, (dCy)*mo = 70.

We are now ready to define the covering map pg : S° — SS(%. It is given by
po(U) := d;iCy(j). Let us compute the pull-back of 79 by po.
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PROPOSITION 7.19. The covering map pg relates o and Mg in the following way:

PoTo = — 40" Ags. (7.16)

PROOF. First of all we prove that both sides of ((7.16)) are invariant under right
multiplication. For every U € S2, we define Ry : S® — S% as Ry (U’) := U'U. Thus,
the identity pg o Ry = dCy o po holds. Let us show that pj7 is right invariant:

Rt (p70) = (po © Ru)*10 = (dCy o po)*10 = pj ((dCu)*(10)) = py70-

On the other hand, v* A is also right invariant:
(B (0" 20)) (W) = (0°Ast) oy (dRUW) = %gst((iU’)U, W)
= %gst (iu', w)
= (V") (W),

where we used that Ry : C2 — C2 is an isometry.

Therefore, it is enough to check equality ([7.16]) only at the point 1. A generic
element W of 715 can be written as si + wj = si + jw, where w := w1 4+ wsi and
w := w11l — wei with s, w; and ws real numbers. On the one hand,

1, ... . s
(V" Ast)1 (W) = §gst(11,W) = 595t (i, si+wj) = 7 (7.17)
On the other hand, we have that dipo(W) = (iW — Wi, jW — Wj). From the

definition of 79 we see that we are only interested in the second component:
W —=Wj=j(si+jw) — (si+wj)j = —2sk + (w —w) = —2sk + 2woi.

Now we apply formula (7.15) with (u1,u2) = (i,j) and vy = —2sk + 2wei. In this
case Jo,, is left multiplication by i, so that jo,,, (u2) = ij = k and we find that

gt ( — 25k + 2woi, k) = —2s. (7.18)
Comparing (|7.17)) with (7.18) we finally get (pj70)1 = —4(v* Ast)1- O

Putting things together, we arrive at the following intermediate step.

PROPOSITION 7.20. There exists a covering map pm,.g : S3 — 852 and a real

function G p : S* — R such that
p:‘nﬁ)\fmﬁ = —4edmBy* ).

Moreover the function @n, g tends to 0 in the C*°-topology as m goes to zero.

PRroOOF. Lemmagives us i, 5: 552 — 852 and Gm.g SS? — R. gives
us Bg : SS% — SS2. If we set Dm.g = FmpoBgopg: 53 — §52, then

Prn s Mmyp = D0 (BE(Fr s A0, 5)) = 26 (B (e 5))
= pietmBem)

= —4e9m.BoBaoPo ¥ )
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Defining ¢, 8 := ¢m.g © Bg o po we only need to show that g, g goes to 0 in the C>
topology. This is true since, by Lemma the same holds for ¢y, s. O

PROOF OF PROPOSITION [.16. The final step in the proof is to notice that con-
tact forms of the type pv*Ag € Q'(S3) with p : S3 — (0,400) arise from em-
beddings of S% in C? as the boundary of a star-shaped domain. To see this, define
U5 S3 s C?as v /5(2) == /p(2)v(2). A computation shows that Uf/ﬁ)\st = pv*Ag.

Using this observation we see that ﬁ:n,ﬁ)‘gm,g = —U;’B)\ﬂ with v, g = N
and py, g = 4em.6 . For small m, Pm,g is C?-close to the constant 4 and, therefore,
the embedding vy, g is C*-close to the sphere of radius 2. This shows that v, 5(S?)
for small m and the proof is complete. O

REMARK 7.21. In general the convexity of the embedding v, can be verified
defining the function Q, : C* — [0,+00), where Q,(z) = ]z\Q/p(é) Then,
v\/p(S?’) = {Q, = 1} and v\/ﬁ(5’3) is convex if and only if the Hessian of @, is
positive.

7.4. A direct estimate of the index

In this subsection we present an alternative proof of Theorem showing that
)\fn’ s is dynamically convex via a direct estimate of the index, as prescribed by
Definition [6.1] The advantage of this method is that it generalises to systems on
surfaces of genus at least two as we discuss in Subsection We can think of this
proof as the magnetic analogue of what Harris and Paternain did for the geodesic
flow, where the pinching condition on the curvature plays the same role as assuming
m small and o symplectic. After writing this proof, we discovered a similar argument
in [HS12] Section 3.2].

To compute the index, we consider for each z = (x,v) € S5? the path

—1
A (1) = ’r’;i,{?ﬂ o d,®"" o (T’;ﬁ) € Sp(1).

(2)
We define the auxiliary path BI"?(t) = 7% (07#)=1 ¢ gI(2,R). The bracket
relations (2.7) for (X, V, H) allow us to give the following estimate for this path.

LEMMA 7.22. We can write B;”’B = Jy + p?”B, where pT’B R = gl(2,R) is a
path of matrices, whose supremum norm is of order O(m) uniformly in z as m goes

to zero. In other words, there exist m > 0 and C > 0 not depending on z, but only
onsup f, inf f, ||df]| and ||B]|, such that

vm <m, |p™P|| < Cm. (7.19)

PROOF. For any point z € §5? and for any vector al = (a(l), a%) € R? we have a
path @ = (a',a?) : R — R? defined by the relation

a =", (7.20)
Using the definition of ‘IIT’B , we see that d satisfies

_ ) ! 3
Z5(t) .= d. @)’ (agH’;”ﬁ + agxg%ﬁ) = al(t)H;:fB(z) + aQ(t)thfB(z).
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If we differentiate with respect to t the identity

abHI? + a3 X = dyy @2 (), (7.21)
we get the following differential equation for a:
— A 1 ] m:ﬁ -2 V muB
0=a (t)H<1>?175(Z) +a (t)det“’B(z) 7o
vl [R50yt [, k] '
o0 (2) @70 (2)

To estimate the first Lie bracket, we observe that m — [R™7 H™8] is a T'(SS?)-
valued map which is continuous in the C°-topology since the maps m ~— R™P
and m — H™P are continuous in the C'-topology. As a result, we have that
[Rm’ﬂ, ﬂmﬁ] = [Ro’ﬂ, fIO’B] + p, where p is an O(m) in the C°-topology, as m goes
to zero. Furthermore,

[RO,ﬂ,HO,B} — [V,\/lf(H+ (ﬁOJ)V)} = \}?
1

= (-x-av)
— _x0s8

= —X"P 4.

(v, H)+ V(8o V)

Putting things together, [Rm’ﬁ, I:Im’ﬁ] = —X™PB + pi, where p; is an O(m) in the
C%-topology. In a similar way we find that [Rm’ﬂ, Xm’ﬂ] = H™P 4 py. Substituting
these expressions for the Lie brackets inside ([7.22)), we find

Gl H™P a2 X™F = gl X™F — o2 A™P — alpy — a®po.
Applying the trivialisation Y"? we get
@ = (Ju + PP, (7.23)

where pI’ € gl(2,R) is of order O(m).
On the other hand, differentiating Equation ((7.20]), we have

. . . ~1
T U N L (mp;“ﬁ) 7 = B™Ag. (7.24)
Thus, comparing (7.23) and (7.24), we finally arrive at BT" = Jy + po”. O

The previous lemma together with the following proposition reduces dynamical
convexity to a condition on the period of Reeb orbits. First, we need the following
notation. For each Z € I'(N) we call Tp(Z) the minimal period of a closed con-
tractible orbit of ®4. We set Ty(Z) = 0, if ®Z has a rest point. We remark that the
map Z + To(Z) is lower semicontinuous with respect to the C%-topology.

PROPOSITION 7.23. Let C' be the constant contained in (7.19). If the inequality

2T

—_— <1 2
To(R™P) < Cm, (7.25)

1s satisfied, then )\fn 5 is dynamically conver.
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PROOF. Let 7 be a contractible periodic orbit for R™# with period T and such
that v(0) = z. Consider ‘Illn’ﬁ‘[oj] € Spp(1) defined as before and fix a u € R?\ {0}.
If Y 2 is defined by Equation , we can bound its first derivative by means of
Lemma as follows:

g _ g (V20w W2 ) g (BETU P, S U )
w2 W2
gt ((Jse + pE VTP, T 0T )
N )2
PP 4 g (02 PO, BT )
E w2 u?

> 1l

Hence, we can estimate the normalised increment in the interval [0, 7] by

T
/ e ’ﬂ(t)dt > (1- C’m)z

A(w™P ! .
0 27T

z ‘[O,T]’u) ~or

Therefore, by Remark (6.2)), by, (v) > 3 provided (1 — Cm)L > 1. Asking this
condition for every contractible periodic orbit is the same as asking Inequality (|7.25))
to hold. The proposition is thus proved. [l

We are now ready to reprove Theorem

SECOND PROOF OF [Z.8l Thanks to Proposition [7.23] it is enough to show that
Inequality holds for small m. First, we compute the periods of contractible
orbits for R%% = V. A loop going around the vertical fibre k times with unit
angular speed has period 27k and is contractible if and only if k is even. Hence,
To(ROP) = 4.

Using the lower semicontinuity of the minimal period, we find that

2T 2T 1
li — + (O < —+4+0==<1
1311_8)131) <T0(Rmﬁ) + m) S + 5

and, therefore, the inequality is still true for m small enough. ]

7.4.1. Generalised dynamical convexity. Abreu and Macarini [AM] have
recently defined a generalisation of dynamical convexity to arbitrary contact mani-
folds. We give a brief sketch of it in this subsection since it applies to low energy
values of symplectic magnetic systems on surfaces of genus at least two.

Let (N,&) be a closed contact manifold and let v be a free homotopy class of
loops in N. Suppose that the contact homology HC" (N, &) of (N,§) in the class v
is well defined and that ¢;(§) is v-atoroidal, so that the homology is also Z-graded.

DEFINITION 7.24. Define k_ and k4 in Z U {—o00, 400} by

o ko= inf {Hc,';(N,g) ” o}, o hy i=sup {HO;;(N,g) £ o}. (7.26)
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A v-nondegenerate contact form « supporting £ is called positively v-dynamically
convez if k_ € Z and pcyz(y) > k_ for every Reeb orbit of « in the class v. Similarly,
a is called negatively v-dynamically convez if ky € Z and pcz(y) < k4 for every
Reeb orbit of « in the class v.

Notice that a contact form a supporting (53, &), that is dynamically convex
according to Definition [6.1] is indeed positively dynamically convex according to Def-
inition with k_ = 3. The new notion of convexity allows Abreu and Macarini

to prove the existence of an elliptic orbit for Reeb flows on Boothby-Wang manifolds.

DEFINITION 7.25. A contact manifold (IV, §) is called Boothby- Wanyg if it admits
a supporting contact form 3 whose Reeb flow gives a free S'-action.

THEOREM 7.26 ([AM]). Let (N, = ker 3) be a Boothby-Wang contact manifold
and let v be the free homotopy class of the simple closed orbits of RP. Assume that
one of the following hypotheses holds:

e M/S' admits a Morse function whose critical points have all even index;

e all the iterates of v are non-contractible.

If G < S' is a non-trivial finite subgroup, then the Reeb flow of every G-invariant
positively (respectively, negatively) v-dynamically convex contact form o supporting

& up to isotopy has an elliptic closed orbit v representing v such that pcy(vy) = k-
(respectively, pcz(y) = k).

Let M be a surface with genus at least two and let o be a symplectic magnetic
form such that [0] = 2meps. In Subsection we proved that when m is low the
primitives of w/,, of the type )\g% 5 are contact forms. Consider the cover p: N — SM
which restricts to the standard |e,/|-sheeted cover above every fibre S, M. Let vas be
the class on N corresponding to the lift of a curve in SM winding |eps| times around
Sz M. Then, (N, ker Agﬁ) and the class vy satisfy the hypotheses of the theorem (a
curve going around S, M once is a free element in 71 (SM) as can be seen from the
long exact sequence of homotopy groups for the fibration SM — M). Moreover,
Abreu and Macarini computed HCY (N, ker p*)\fm ﬁ) and proved that k. = 2ep; + 1.

Therefore, in order to prove that p*)\g%ﬁ is negatively r-dynamically convex,
and be able to apply the theorem, it is enough to show that, for every periodic
orbit (y,7T) of RMns homotopic to a curve winding |ejs| times around the fibres of
SM — M, the following inequality holds:

ucz(y) < 2ep + 1. (7.27)

Now we briefly explain how to adapt the argument used on S? to get Inequality
(7.27). First of all, R™# converges to —V (and not to V), for m tending to 0.
This difference of sign leads to the estimate | B — (—Ji)| = Cm (compare with
Lemma . We can use this inequality to obtain the upper bound

T
AP gpyu) < (<14 Cm)g—y Vu€ &l o)
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On the other hand, by the lower semicontinuity of the minimal period in the class
var, we have T' > 27(|eps| — €), for an arbitrary € and m < m.. Putting together

these two inequalities we get
I(\IJ;”’ﬁ‘[O’T]) C (—oo,epr + Cmllens| —€) +€) C (—o0,enr + 1)
for m < mg small enough. This inclusion implies ([7.27)), thanks to (2.32).

7.4.2. A geometric estimate of the minimal period. We end this section
by giving a geometric proof of Inequality for small values of m giving an
ad hoc proof of the lower semicontinuity of the minimal period in this case. The
construction we present here will turn useful again in Section

We consider a finite collection of closed discs D := {D; | D; C S?} such that
the open discs D := {D;} cover S2. We also fix a collection of vector fields of unit
norm Z = {Z; | Z; € I'(D;), |Zi| = 1}. Let 6 be the Lebesgue number of the cover
D with respect to the Riemannian distance. Finally, let ¢; : SD; — Tar be the
angular function associated to Z;. We set

C(BD,Z) (m) = Sl;.p <Sgllp |di:f)’>

8
(D,Z)

write down the condition of lower semicontinuity for the minimal period explicitly.

and we observe that m — C (m) is locally bounded around m = 0. We now
Let € > 0 be arbitrary. We claim that there exists m. > 0 such that, for m < m,,
the period T of a contractible periodic orbit v of R™# is bigger than 4w — e. The

claim will follow from the next two lemmas.

LEMMA 7.27. Suppose that (v,T) is a periodic orbit for R™P and that m(v) is
not contained in any D;. If Ty is any positive real number and m < 251%#, then

T >T..

PROOF. By assumption m(7y) is not contained in any ball of radius . Thus,

m 20
20 </ <———T< =T
<R € T < BT,
where the second inequality is obtained using Lemma Multiplying both sides
by :2% yields the desired conclusion. O

LEMMA 7.28. Suppose that (v,T) is a periodic orbit for R™P and that m(v) is
contained in some D;,. Let @;, : [0,T] — R be a lift of ¢;, o 7‘[0,T] :10,T] — Tor
and let 2rN := @i, (T) — ¢4, (0), with N € Z. For every ¢’ > 0, there exists m., >0
small enough and independent of (v, T) such that N > 1 and

T >2rN(1—¢). (7.28)

ProOF. Using the fundamental theorem of calculus we get

~ ~ T d(pio T m,[3
Pio (T) — Pip (0) = dt dt = dgpio (R ' )dt'
0 0
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Since di;, (R™P) = mdp;, (ﬁ) + ﬁ and ﬁ = 1, we have, for m small enough,

. f 8
do; (R™P) > inf —— — mC > 0. 7.29
Pio(R™") 2 inf oy " (D.2)(M) (7.29)

This implies that N > 1 and, moreover, that

T
2N < / dpi, (R™P)dt < (Sup I + mC(BD z) (m)) T.
0 552 m, B '

Exploiting ﬁ = 1 again, we see that there exists m., such that, if m < m.,
2T N
2rN(1—¢') < 7 i <T O
8
SUP oy Moz (m)
We now prove the claim taking m. := min {%, m’g,}, where m/, is ob-

tained from Lemma with a value of ¢’ given by the equation 47(1—¢’) = 47 —e¢.
If v is not contained in a D;, the claim follows from Lemma with Ty = 47 — €.
If v is contained in some D;,, then N is even since 7 is contractible. Therefore,

T > 4n(1 — ') = 47 — € and the claim is proved also in this case.

7.5. A dichotomy between short and long orbits

In this section we prove Theorem (and, hence, Theorem . The statement
will readily follow from the general Corollary after we show that
e periodic orbits, whose projection on the base S? has a fixed number of
self-intersections, have bounded length (Corollary ;
e the projection on S? of periodic orbits with period close to 27 is a simple

curve (Lemma, [7.34]).

The foundational result for our proof is Proposition 1 of [Ban&86].

PROPOSITION 7.29 (Bangert). Let ®:R x M — M be a C'-flow and p € M a
periodic point of prime period T > 0. Then, for every € > 0 there exist a neigh-
bourhood 4 of ® in the weak C*-topology on C1(M x R, M) and a neighbourhood
U of p in M such that the following is true: If a flow ® € U has a periodic point
p € U with prime period T then T > ¢~ or there exists a positive integer k such
that |kT — T| < € and the linear map dz®=% : TzM — Tz M has an eigenvalue which
generates the group of k-th roots of unity.

We can apply this proposition to T-periodic flows. A flow is T-periodic if and
only if through every point there is a prime periodic orbit whose period is 7.

COROLLARY 7.30. Let ® be a T-periodic flow on a compact manifold M. Then,
for every € > 0 there exists a C'-neighbourhood i\ of ®, such that if v is a periodic
orbit of ® € Y with prime period T, either T > e~ or |T —T| < .

Let us go back to symplectic magnetic systems on low energy levels on S2. We
observed before that for m = 0 the Reeb vector field is equal to the vector field V.
Hence its flow is 27-periodic and we can apply Bangert result for m small.
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COROLLARY 7.31. For every € > 0, there exists m. > 0, such that, if m < m.,
every prime periodic orbit v of R™? on SS?% either has period bigger than e~' or in
the interval (2w —€,2m + ¢).

In the next lemma we prove that knowing the number of self intersections of
m(7y) gives a uniform bound on ¢(m(v)). Thanks to Lemma this will imply a
bound on the period, as well.

LEMMA 7.32. Let  : I — S? be a closed curve which is a smooth immersion
except possibly at ng points and has no more than ny self-intersections. Suppose
moreover that, when defined, the geodesic curvature of x is bounded away from zero.
Namely, mink, > 0. Then,

lz) <

PRrROOF. We argue by induction on n;. Suppose n1 = 0, then x bounds a disc D

m(4ny + 2 + no) + (n1 + 1)| min K| vol,(S?)
min k,

(7.30)

and we can apply the Gauss-Bonnet formula:

no
/k:x(t)dt =27 — / KdA =) "0,
@ b i=1

Since ¥; > —, the right-hand side is smaller than 27 + | min K| vol,(S?) +nom. The
left-hand side is bigger than ¢(x)mink, and dividing both sides by min k, we get
in this case.

Take now a curve x with ny > 1 self-intersections. Then, there exists a smooth
loop x1 inside . Up to a change of basepoint, x is the concatenation of x1 and xo,
where xo has at most ny — 1 self-intersections and ng + 1 corners. By induction we
can apply inequality to the two pieces:
37 + | min K| vol,(S?)

min kg,
m(4ny — 2+ ng + 1) + ny| min K| vol,(S?)
min kg,

l(z1) <

)

l(z2) <

Since min k,; = min{min k,, , min k,, } we can substitute it in the denominators above

without affecting the inequality. Adding up the resulting relations we get

m(3+4n1 — 2+ ng+ 1) + (n1 + 1)| min K| voly(S?)
min k,,

which is the desired result. O

Uzx) = L(x1) +L(z2) <

)

We get immediately the following corollary.
COROLLARY 7.33. Let «y be a periodic orbit of R™P such that w(vy) has at most
n self-intersections. Then,

Um(y)) < 4n + 2 + (n + 1)| min K| voly(S?)
m min f

and, therefore,

4n + 2+ (n + 1)| min K| vol,(S?)
min f

T < maxhpy, g =: C),. (7.31)
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PrOOF. To get the first inequality, we apply Lemma to m(7y), which has

at most n self-intersections and no corners, and observe that k) = W The

second inequality follows from Lemma [7.2] O

If we fix n € N, Corollaries and show that, for m small enough, a
solution with n self-intersections can exist if and only if its period is close to 2.

The next step will be to prove that this happens only if 7(7) is a simple curve.

LEMMA 7.34. For every &' > 0, there exists my > 0 such that, if m < M. and
v is a prime periodic orbit whose projection w(y) has at least 1 self-intersection, the
period of 7y is bigger than 4w — ¢’

PROOF. We use the same strategy of Section [7.4.2] and we consider a collection
of discs and unit vector field (D,Z). The lemma is proven once we show that, if
7(y) C D;, for some D;, then N > 2. We achieve this goal by making a particular
choice of (D,Z). Namely, we take D; contained in some orthogonal chart (z},z?)
and we take Z; := 0,1/|0,1].

Suppose without IZOSS Olf generality that the self-intersection is happening at ¢ = 0.
Thus, we know that there exists t, € (0,7") such that w(y(0)) = w(y(t)). By
precomposing the coordinate chart with an orthogonal linear map we can assume
that the tangent vector at zero is parallel to 0,1, namely that ¢;(0) = 0. We consider
the function 1‘22 o7 : Ty — R and compute itslderivative. Since the parametrisation
is orthogonal we know that

d d Oy O
@WW)— 'dtﬂﬁ)‘ COS(Pz‘W-i—SlH%’@ .

1
However, in coordinates we always have

d d, |

d 2
S = (et o)y + (et o)y,

Comparing the two expressions we find

_ [dm()]sin s

d 2
(xi Ofy) ‘6332‘

— 7.32
o (7.32)
A point tg is critical for 22 o v if and only if p;(tg) = 0 or ¢;(tg) = 7. Computing
the second derivative at a critical point we get

d? 2 ‘%77(’7” .
@(t:to (zi07) = o] s

(7.33)

=ty
Since ¢; > 0 by ((7.29), we know that ¢ is a strict local minimum if ¢;(tp) = 0 and
a strict local maximum if ¢;(¢9) = m. From the previous discussion we know that
t = 0 is a strict minimum and that 22 o v(0) = 2? o y(t.). Hence, there must exist

two strict maxima t; € (0,¢.) and to € (t.,T). At these points ¢; = 7 and, thus,
N > 2. ]

We are now ready to prove Theorem |7.13
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PrROOF OF THEOREM [Z13l Given € and n, take any &, ,, such that the following
inequalities hold for small m:
1

o L, <min{l,e}, o Cp < o &l ,maxhy,p <e,

/ 9
en

where Cj,_1 is the constant defined in (7.31). Define mc, = min{m. ,m. },

where m., ~and m., = are given by Corollary and Lemma respectively.

If m < mg, and v is a periodic orbit with period smaller than E%

Corollary [7.31} we find that T € (27 — L ,,,2m + €. ,,). Thus T' < 47 — sén and, by

Lemma 7(7y) is a simple curve in S2. We use Lemma to estimate the length
of 7(7) in this case:

, using

2 —el 21 + €.
- =M<y < ——= 7.34
max hm,gm < Ur(n) < min h,, g ( )

Shrinking the interval [0, m. ;] if necessary, we find some m, , < m. p, such that, if
m € [0, me ], inequalities (7.34)) imply

27r—em < Un(y)) < 2m+ €

max f

as required. If the period T is bigger than 6,1 > %, then () has at least n self-

1
7
€en

intersections by the condition C,,_1 <

and Corollary [7.33] In this case we also

have
m m

l >
(r(v)) = ELpmaxh, g — €
This finishes the proof of the theorem. ([

7.6. A twist theorem for surfaces of revolution

As observed in Remark we do not have any example of a contact-type
energy level for a non-exact magnetic system on S? with exactly two periodic orbits.
This is due to the fact that the only case where we can compute all the trajectories
of the magnetic flow is Example where all the orbits are shown to be periodic.

Observe, indeed, that knowing that the flow of X™ € I'(S5?) is a perturbation
of a flow with exactly two periodic orbits, whose iterations are assumed to be non-
degenerate, is not enough to deduce that the magnetic flow has only two periodic
orbits. The only thing that we can deduce is that X™ has exactly two short periodic
orbits [Sch11]. However, long periodic orbits may appear in the perturbed system.

On the other hand, if the perturbation satisfies a suitable twist condition, we
can prove the existence of infinitely many long periodic orbits for the new flow.

In this section we are going to use such perturbative approach on surfaces of revo-
lution. Unlike Chapter we consider more general systems of the kind (S%, Gy flby),
where f : S,% — (0, +00) is any positive function invariant under the rotations around
the axis of symmetry. This means that f depends on the ¢t-variable only and we can
write f:[0,4,] — (0,400).

We know that for m small, )\i% gy is a dynamically convex contact form and,

hence, at least in the non degenerate case, ™7 has a Poincaré section of disc-type
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impgr 2 D — SS?/. Moreover, since ®%8” is 27r-periodic, we know that the return
map F,, gv : D — D for m = 0 is the identity. Then, if we could find explicitly a
smooth isotopy m + i,, gv of Poincaré sections, we could try to expand the maps
F,, gv in the parameter m around zero to get some information on the dynamics.
However, it is in general a difficult task to construct by hand a Poincaré section
and the rotational symmetry does not seem to help finding a disc in this case. On
the other hand, we claim that such symmetry allows to find a Poincaré section of

annulus type, as we will show in the next subsection.

Historically, annuli were the first kind of Poincaré sections to be studied. The
discovery of such section in the restricted 3-body problem [Poi87] led Poincaré to
formulate his Last Geometric Theorem [Poil2]. It asserts the existence of infinitely
many periodic points of the return map F', if such map satisfies the so-called twist
condition: namely, F' extends continuously to the boundary of the annulus and it
rotates the inner and outer circle by different angles. One year later Birkhoff proved
Poincaré’s Theorem [Birl3| and in subsequent research found a section of annulus
type for the geodesic flow of a convex two-sphere [Bir66l, Chapter VI.10].

In the last subsection we are going to give a condition on v and f that ensures
that the Poincaré maps for small values of m are twist. By contrast, the complemen-
tary condition will single out a class of magnetic systems whose long periodic orbits
have period or order O(m~2) or higher. It would be interesting to compare this
estimate with the abstract divergence rate coming from Bangert’s proof of Proposi-
tion A direction of future research would be to look for systems with exactly
2 periodic orbits within this class.

From now on, we consider a fixed profile function v and the rotationally invariant
primitive 37 = 3/)d0, so that we can safely suppress the symbols v and § from the

subscripts and superscripts.

7.6.1. Definition of the Poincaré map. Take the loop ¢ : [/, /]/ — SS?,
where ~ is the relation that identifies the boundary of the interval. It is defined in

the coordinates (¢, p,0), as

(—u,—m/2,0), ifu<O,

W=V wram,  Huso

We extend it smoothly for u € {—¢,0,¢} and we observe that t(c(u)) = |u|. Using
the Ta,-action given by the rotational symmetry we can move transversally c in §.5?
and form an embedded 2-torus C : [—¢,¢]/~ x Tar — SS%:

Ol ) (—u,—7/2,v), ifu<0,
u, ) =
(u,m/2,¢ +m), if u>0.

In particular, notice that ¥ = 6, for u < 0 and ¥ = 6 + «, for v > 0. Since m
is sufficiently small, Proposition implies that X" := mX + fV has only two
periodic orbits ¢,. and (;} supported on latitudes ¢, and ¢ .
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The sign tells us whether the projection of ¢ rotates in the same direction as

Jp or not. The numbers ¢ satisfy the equation

+my(t) = f{)y(1).

With our choices we have ¢}, < ¢, . These two orbits lie inside the image of the torus
C. If we define u;,, := —t_. and w;}, := t}, then o — C(u} 1)) is a reparametrisation
of ¢£. Hence, the 2-torus is divided into the union of two closed cylinders C;,. and C}};
with the two orbits as common boundary. Each of the cylinders is a Poincaré section
for X and we would like to compute its first return map Fif : C’i — C,j,i If we look
at the first return map Fy, : [—£, €]/ \{u,, u},} X Tox — [—€, €]/~ X Tar, we see that
this map swaps the cylinders and Ff = m‘cf,i' We have Fy(u,v) = (—u, + m)
and, as we expected, Fgc(u, V) = (u,1). We know that F,, is a smooth family of
smooth maps and we claim that it extends on the whole torus to a smooth family of

continuous maps.

ProOPOSITION 7.35. The family m — F,, admits an extension to a smooth family
of continuous maps m — Fy, : [—€, 0]/~ x Tox — [—£, ]/~ x Tay.

For the proof of the proposition, we need first to compute the projection of the
differential of the Reeb vector field R™ at (& on the contact distribution &,,.

LEMMA 7.36. At a point (t:, ig,m#) we have the identity

1 e I N A N e I s - as
xm r™ )\ -1 0 xm | (7.35)

PROOF. Thanks to Lemma the matrix above is given by

n(iE™ B) (U™, B™)
vV hm 5 5 . (7.36)
n([X™ R™]) A([X™, R™)
Thus, we have to compute the Lie brackets only up to multiples of V. Below we use
the symbol = between two vectors that are equal up to a multiple of V. Observe
that on the support of (% we have the identities
Bo B B B B 5 Oy
ef=+— efo3j=0, eV(f)=poy=0, eH=—40, eX==1—.
Y 8
We compute

[H™, R™] = {Hm hﬁX }jnv}
= ™ <h1> X+ fZ[Hm X] + hJ:n[Hm,V]
= = [HX) 4 T m,v]
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Similarly,

Applying the trivialisation T, we get the desired formula. O

We now prove a lemma which yields a local version of the proposition, under a

further assumption on the differential of the vector field.

LEMMA 7.37. Consider coordinates (z = (x,y),¢) on R? x Ty, and let (r,0)
be polar coordinates on the first factor. Let Bs := {r < 6} C R? be the open
disc of radius § and ’]I‘fg := By x To, be the solid torus with section Bgs. Suppose
that m — Z,, € F(Tg) is a smooth family of smooth vector fields and decompose
T = ZE* + dp(Zm)0,. Assume that

a) V(m, ), (fo)(o’w) = 0 and the endomorphism d%%Q fof is antisymmetric;

#)

b) the smooth family of functions an, : Tor — R defined by d]%%;)Zﬂ%Q = amdJst 18
uniformly bounded from below by a positive constant.

Under these hypotheses, there exists some &' < & and a smooth family of first return

maps on the set {(O,y, ©) ‘ 0 <yl < 5’}. Such family extends to a smooth family
of continuous maps P, : {(0,y,¢) | [yl <8} —= {(0,y,¢) | |y| <&}

PrOOF. We claim that the family of functions m — d@(Z}}f) extends to a smooth
family of continuous functions m + @, on the whole ’]Tg. Indeed, observe that

dizp)0(-) = w§2 (z,-)/r2. As a consequence,

2 2 2
R2 w§2(z, ZELQ) Wiy (2’, d]%%wZ}fL z+ 0(7"))
dep)0(Zm ) = 2 - r2
_ gz Iudfy ) Zn 7)o (2,0(r)
= am + 0(1)

Since the term o(1) is uniform in m and ¢, the claim follows.

From the fact that a,, is bounded away from zero, we deduce that on some small
T3, d(z,p)0(Zm) = d(z,w)O(Zrﬂ,%Q) is also bounded away from zero and, hence, there is a
well defined first return time ¢, (y, ¢) for the flow of Z, on {(0,y,¢)) | 0 < |y| < §'}.
It is uniquely determined by the equation

tm (y,) w2 tm(ye)
T = /0 d©f7n(0,y7@)9(zm )dt = /0 am(q)tm(oay’gp)) dt.
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Hence, t,,(y, ¢) is defined also for z = 0 and m + t,, is a smooth family of continuous
functions because the same is true for m — @,,. The required extension of the

Poincaré map is given by P, (y,¢) = (I)i:?(y @)(0, Y, ). O
We are now ready to prove the proposition.

PROOF OF PROPOSITION [7.35l We need only to consider the system close to
the latitudes (%. Since m is small, ¢, and ¢, will be near the north and south
pole, respectively. We only analyse the case of the south pole, since for the north
pole we can use a similar argument. Consider the vector field Xm = b, X ™ where

m 1 89? — (0,400) is a rotationally invariant function to be determined later.
Notice that such vector field is transverse to C' at the south pole, namely when
u = 0. Therefore, the map (,, U, P) — @f: (C'(um +ut, 1)) yields a well-defined
smooth family of diffeomorphisms between a neighbourhood of the fibre over the
south pole and Bs x Tor C R? x Tor. We use these maps to pull back the Reeb
vector field to Bs x To,. We still denote by R™ the pull-back.

We show that R™ satisfies the hypotheses of Lemma[7.37 On z,, = 0, we have

im = Oy = —H = —\/hy H™,

oaxm:)z'm:mem e 0

so that (0s,,,0y,,) is a basis of §m|{x —o}° Denote by

bm 0
AZ:(O m)

the change of basis matrix. We also have dual relations on &;,:

vVhm, Vhm
o dr,, = ——A\ o duy, = ————=1.
bm, Vhm,
Notice that, since b, and /h,, are rotationally invariant, at {z,, = 0}, we have
[0, R™] = bp[X™, R™] and [0y, R"] = —v/hm|[H™, R™]. Then, we compute the

matrix of dg ) (R’”)R2 in the (z,, u,,) coordinates
R d:cm([(?xm,Rm]) dmm( umaRm])>
di,g)(R™)F =
(0,1/1)( ) (dum([amanm]) dum( um’Rm])
_ Al(mx([Xm,Rm]) VimA([F
Vi ([X™ R™)  v/hon([H™, R™])

H(hn)
_ 1( 0 %—m h2, )A
-1 0

by,
Vi 0
Therefore, we need \/b;LLm = \{)LZ” (% — mH]SZm)> Namely,
H(hp,
by =+ f— (om)
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In this case we have

mAR2 f H(h,,
d(o,w)(R )R _\/h_m 1(12 )Jst

which gives at once that both hypothesis a) and b) are satisfied. Thanks to Lemma
the Reeb flow admits a smooth family of continuous first return maps on
{(0,um, ) | |um| < &} € C. Since this set is an open neighbourhood of ¢, in C,
the proposition follows. O

REMARK 7.38. We do not know if the extended return maps can be taken to be
smooth.

The rotational symmetry of the system implies that F;, can be written in the
form Fp,(u,v) = (um(w), ¥ + m(uw)). When u and up,(u) are not in {—¢,0, £}, then
we can also define the longitude 6 of the starting point and the longitude 6 + 60, (u)
of the ending point. If v and wu,,(u) have the same sign, then 6,,(u) = ¥, (u), while
if w and w,, (u) have opposite sign 6, (u) = ¥, (u) + 7.

The system has also another type of symmetries given by the reflections along
planes in R? containing the axis of rotation. In coordinates these maps can be
written as (¢,6) — (t,26p —6), for some 0y € Ta,. Trajectories of the flow are sent to
trajectories of the flow travelled in the opposite direction. Therefore, if u and wu,, (u)
are not in {—¢, 0, ¢}, then wy, (um,(u)) = v and Oy, (um(u)) = 0 (w). This implies that
VY (U (w)) = Y (u) for every u € [—€, +£]/~. Thus, F2 (u,) = (u, ) + 2, (u)).

When |u] is different from 0 and ¢, and m is suitably small (m will be smaller
and smaller as |u| is close to 0 or £), u and u,,(u) have different signs and we can
write an integral formula for i, (u) = 0p(u) + 7. Without loss of generality, we
fix some u < 0 for the forthcoming computation. Let z% : [0, R] — SS5? be the
only solution of the magnetic flow, passing through C(u,0) at time 0 and through
C(um(u), ¥Ym(u)) at time R. Then, p o z% : [0,R] — [—7/2,7/2] is a monotone

increasing function, such that ¢(z%(0)) = —n/2 and (2% (R)) = 7/2. Indeed,
thanks to Equation (5.4, its derivative satisfies the equation
d

— ;y 1
—p=f——msingp
dr 0%

(where we dropped the composition with z% in the notation). Hence, we can

reparametrise zy, using the variable ¢ and get the following expression for 6,,(u):

> df 2 df d 2 i
Gm(u):/2 clcpz/2 7,dcp:/2 wmp, (7.37)
—z dy —z dr dp —z ~vf —Amsin
where we substituted % = @, using Equation (5.4) again.

In the next section we expand 6,,(u) with respect to the variable m around

m = 0. We aim at computing the first non-zero term.

7.6.2. The Taylor expansion of the return map. For small m we have that
t(z2) = |u| + Oyu(m) (the size of O,(m) depending on u), hence ~yf is big compared
to ymsin . Thus, we expand the denominator in the integrand in ([7.37)), up to a



7.6. A TWIST THEOREM FOR SURFACES OF REVOLUTION 109

2

term of order m~, using the formula for the geometric series:

msin msin @ Am sin ¢ 9
— = 1+ ) + oy(m
vf —dmsing  yf ( vf o)
L. 2 V2 2
=m—sinp +m sin“ ¢ 4 0, (Mm~). 7.38
vf (vf)? W) (738)

Discarding the o,(m?) remainder, we plug (7.38)) into (7.37) and compute the two
resulting integrals separately.

We use integration by parts for the first one

mlsimpdgp—m/g (dl) ﬂcosgpdgp
-z vf _x \dtvyf) dy

2
2 (d 1\ mcosy 9
=-m - cos p dp + oy (m
/_g<dt7f> 7 ()
4
v

INIE]

Putting things together we get

Il =5 ((577) 7+ 7z (b +outm?

271_ . 3 1 .
N <_ <vzf " 7§2> 7 (77‘)2) (ful) + ou(m)

2 ;
= <_’Yff3> (Ju]) + 0u(m?).

By Proposition we know that ¥, (u) = 0,,(u) + 7 is a smooth family of func-
tions. Hence, the expansion above translates in an expansion for 1, that holds
on the whole torus and such that the remainder is of order o(m?) uniformly in w.
Indeed, observe that f(0) = f(¢) = 0 and, therefore, the function —f /(v f3) extends
smoothly at the poles, taking the value — f/ f? at the south pole and f /f3 at the
north pole. Call this extension Q : S? — R and set Q; := inf |[Qf|. We have arrived
at the final result for this section.

3

M‘S w‘

PROPOSITION 7.39. The family F2, : [—{,+{]/~ X Tox — [, +£]/~ x Tor admits
the expansion

F2 (u,) = (u,p + 7Qpm? + o(m?)) . (7.39)
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COROLLARY 7.40. If_T]Ji:” is not constant, the magnetic flow has infinitely many
periodic orbits on every low energy level. Such condition is satisfied if, for example,
%(O) #+ —f%(ﬂ) and in this case both F.} and F),, are twist maps for small m.

If Q; > 0 (namely f =0 only at the poles and f # 0 there), the period T of an
orbit different from the latitudes (E satisfies

T> 2 +O<1>. (7.40)

=2 3
Qfm m

In particular, ¢, and ¢, are the only two short orbits.

From the expansion (7.39)), it follows that a necessary condition for having .,

constant for some small m is to require that
i

v

for some k£ € R. We are interested in this condition, because the only way of having

— 2k,

exactly two closed periodic orbits for X™ is to have 1, = a,,, € R/Q. The equation

above can be rewritten as

d 1
dt f?
and integrating in the variable ¢ we find the solution
_ 1
f_VﬁT7
where I" : [0,¢] — R is a primitive of 7 such that I'(0) = 0, I'(¢) = ;%1 and h € R is

any constant such that

(7.41)

h> —kxel - if | <0,

h >0, if k>0,
so that the quantity under square root is strictly positive.
A direction of future research would be to study magnetic systems with f given
by for suitable choices of «, k and h, to see if the flow of any of them can be
written down explicitly. In this way one could check if ¥, = a,, € R/Q, for some

value of m.
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