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Chapter 1

Introduction

Understanding the physical basis of star formation is one of the major challenges still facing as-

trophysics. On the scale of individual stars much progress has been made since the advent of tele-

scopes capable of working in the sub-millimetre band. Such studies have concentrated on single,

isolated, stars where the physics of the outflows, stellar winds, accretion discs etc. can be more eas-

ily investigated. Most stars are however, born in clusters and associations, and it is in these dense

environments, enveloped by the still collapsing and fragmenting molecular cloud, that the interac-

tion between cloud material and newly-forming stars becomes an important consideration. Super-

nova explosions, arising from the death of super-massive stars which have already raced through

their life whilst lower mass stars are still forming, also play a major role by heating and shocking

the interstellar material, creating expanding cavities of ionised gas. It is this complexity which

makes a detailed understanding of star formation such a formidable goal.

On larger scales, we know that the galactic star formation rate varies with certain global char-

acteristics of the galaxy concerned, for example, the total mass and the gas fraction. Detailed stud-

ies of star forming regions generally take little account of such considerations – for example we

might consider the proximity of a collapsing molecular cloud to a spiral arm to be an important

factor controlling the overall properties of the star clusters formed. Unfortunately it is not pos-

sible to model a whole galaxy with sufficient resolution (both spatial and temporal) such that the

creation of individual stars can be followed in a global context. On the largest scales of whole

galaxies, modelling has concentrated on the dynamics and resulting overall structures, with star

formation being added in an often ad hoc manner.

The model described in this dissertation occupies a half-way position, both in the scale ranges

of the physics considered and also the computational techniques used to model the galaxies. Star

formation is considered at the level of giant molecular cloud complexes – the same clouds are fol-

lowed dynamically as they orbit in the overall galactic potential and collide both with each other

and supershells (resulting from supernovae explosions), but without having recourse to a full self-

gravitating model. The star formation process is based on the theory of ‘propagating star form-

ation’ (PSF), a stochastic approach which allows the detailed physics controlling the creation of

1



2 CHAPTER 1. INTRODUCTION

new stars (e.g. the presence of magnetic fields, turbulence etc.) to be subsumed into a single para-

meter which determines the probability of star formation occurring. The model is described in

much greater detail in Chapter 3.

The observational evidence for the reality of triggered star formation is wide and varied – a

brief overview is provided in §2.1.1 below. The history of models based upon propagating star

formation is considered in §2.1.2, whilst in §2.2 I review some alternative galactic models based

on other schemes and ideas.

The principle outputs from the new model consist of the star formation rate and the physical

structures produced. I will show in Chapter 4 how the star formation rate varies as function of the

input parameters. Importantly this will permit a prediction of the star formation rate of our Galaxy

to be made; a forecast which is shown to be extremely accurate (§4.2). Furthermore, from similar

considerations, it will be shown that the model predicts a simple power-law relationship between

the star formation rate and the average gas density; such a dependency is commonly known as

a Schmidt–Law (see §4.3). The spatial distribution of star-forming regions will be considered in

Chapter 5, where it will be shown that unlike many simulations of galactic star formation, the new

model can reproduce the whole family of disc galaxies.

No computer model, however elegant, is worth anything if it is unable to be compared with

observational data. I have taken catalogues of H II regions from the literature for a sample of spiral

galaxies (Chapter 6), since such regions trace the location of current star formation. To compare

with the results obtained from the model, we require a way in which to classify the morphology of

the galaxy. Many such schemes already exist – I provide a brief summary as Appendix C. These

are all somewhat subjective however, ultimately coming down to the decision of the observer, and

perusing a catalogue compiled from the results of many authors, it is clear that a consensus often

cannot reached. It would therefore be useful if a more quantitative method for classifying galaxies

existed. I have adopted a number of approaches in an attempt to come up with, ideally, a single

index with which to specify a galaxy. More importantly still this would hopefully permit a direct

comparison of observational with simulated data in a way which treated each sort equally. The

results of these trials are reported in Chapter 7.

The model as described within this dissertation was designed with two main criteria in mind:

that the physics should be as realistic as possible and that the resulting computer code would be suf-

ficiently fast and compact such that it would run on the workstations available at that time (1992–

93). Propagating star formation provides a natural framework which satisfies these requirements –

however, even within the duration of the project, the speed of workstations has improved dramat-

ically, and hence in Chapter 8, I provide some ideas for ways in which the model could be extended

and developed. There of course also remain many things that could be done with the current ver-

sion, and these, together with a summary of the studies performed to date, are also discussed in

this chapter.

Finally, for reference purposes I include further information on the code, including an example

input parameter file, details of the internal system of units, some UNIX scripts to assist in running
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the program (all as Appendix A) and a complete source code listing (Appendix B). These are in-

tended to provide any future user of the model with sufficient information to be able to achieve res-

ults with the minimum of difficulties, and also constitute a convenient reference source for those

developing the code further.

This dissertation is concerned with a dynamical, evolving galaxy model. Clearly this is diffi-

cult to show in a book such as this, but in an attempt to illustrate the sort of results obtained, when

the pages are flicked through from the back to the front then the small images in the bottom corner

will form a short animated sequence. Each frame is separated by a simulated 2 Myr, and hence

the total duration of the animation is 214 Myr. The galaxy was computed using the ‘standard’

parameters (§4.1), and only star clusters younger than 20 Myr have been shown for clarity.





Chapter 2

Review of galactic models

By combining aspects of both propagating star formation and N-body simulations, the new model

is able to describe both the small scale dynamics of molecular clouds and the larger scale galactic

structures that arise due to the star formation process. In this chapter I review other models of

galactic star formation that have used one or either of these approaches and also consider some of

the observational evidence for propagating star formation.

2.1 Propagating star formation

The concept of propagating star formation is based on the idea that the collapse of molecular clouds

and subsequent star formation can be triggered by the interaction of the cloud with a supernova

shock wave. The shock wave arises from the explosive death of a massive member of a previ-

ous generation of stars. The idea, originally proposed by Öpik (1953), has since been the basis of

many computer simulations. First we must consider the observational evidence for propagating

star formation.

2.1.1 Observational evidence

Observations of star formation triggered by expanding shocks from nearby OB associations were

first remarked upon by Baade (1963) from his studies of star formation in irregular galaxies:

“: : : when star formation is going on in an area it spreads in some

way like a disease; that is the definite impression one gets.”

More recently, efforts to determine the reality of propagating star formation have concentrated on

the Large Magellanic Cloud (LMC) and our own Galaxy, for it is only in studies of these systems

that sufficient angular resolution is available to determine age progressions and propagating struc-

tures. Many examples of old dispersed clusters surrounded by much younger H II regions and

compact OB associations have been found. One particularly good case is DEM 34 (N11) in the

5



6 CHAPTER 2. REVIEW OF GALACTIC MODELS

LMC, a large filamentary shell surrounding a central OB association (LH 9). The periphery of the

shell contains three OB associations (LH 10, LH 13 and LH 14) together with associated H II re-

gions connected by ionised filaments. The kinematics of DEM 34 have been studied by Meaburn

et al. (1989) – they find that the object is best described as several radially expanding shells, which

are ascribed to be the result of a combination of stellar winds and multiple supernova explosions

arising from the most massive stars. Particularly interesting in the context of propagating star

formation is the work of Heydari-Malayeri & Testor (1983) and Heydari-Malayeri et al. (1987;

1988) on this object who show that the central OB association LH 9 is in fact older than the oth-

ers around the periphery. This contradicts earlier work due to their re-classification of a number

of objects, previously identified as extremely massive stars as compact clusters of more moderate

mass OB stars, indicative of the problems associated with these sort of observations.

The LMC is a non-rotating system, and we might expect differential galactic rotation to have an

important affect on any star formation mechanism. Thus we need, in addition, to consider Galactic

examples of propagating star formation. On the smallest scales the OB association and molecular

cloud complex Cepheus OB3 shows the formation of one cluster triggered by a nearby association.

The scenario envisaged for this molecular cloud (Elmegreen 1991) is of a cluster which formed 8

Myr ago pushing on a neighbouring cloud through the interaction of stellar winds and supernova

explosions. After some 4 million years this resulted in the formation of a new cluster moving with

a radial speed of�5 km s�1 relative to the cloud towards us. The embedding gas of the new cluster

shares its radial velocity whereas the rest of the cloud is at the original velocity of the earlier cluster.

Other good examples of similar structures include W4/W3 (Elmegreen & Wang 1988) and M17

(Hobson et al. 1993).

Looking at larger scales there are again a number of Galactic systems which provide strong

evidence for propagating star formation. In the nearby Orion Arm we find the old OB association

Tau-Gem which is surrounded by, and would appear to have provided the energy required to ac-

celerate, the Lindblad ring, a slowly expanding shell of both atomic and molecular gas. On the

periphery of the Ring we find a second generation of star formation concentrated in the Ori OB1,

Per OB2 and Sco-Cen-Oph associations (Elmegreen 1985). Blaauw (1984) has considered these

regions in conjunction with all the OB associations which are judged to be members of the Or-

ion Arm within a distance of 1.5 kpc from the Sun. He finds that the triggered star formation has

propagated in many different directions within the arm, consistent with a stochastic picture, but

not what would be expected if the star formation arose from the passage of a spiral density wave.

In this latter case there should be a systematic progression of association ages across the arm which

is not found.

At greater distances from the Sun (2–3 kpc) we find the Sagittarius-Carina spiral arm. Avedis-

ova (1988) has studied the star-forming regions along the arm between l = 280��025� and finds

that they naturally group into three segments. Two of the complexes (labelled A and B) contain

most of the extremely young clusters and the most luminous H II regions. Sandwiched between

them, the third segment (C) contains only older clusters (estimated to be older than 107:5 yr) and
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a small number of faint H II regions excited by the B stars in the clusters, despite it covering an

approximately equal area on the sky to each of areas A and B. The hypothesis is that shells and

shocks powered by stellar winds and supernovae explosions from the O stars which must originally

have been present in segment C, resulted in the triggering of star formation in the neighbouring

areas A and B. Again note that in this case the age progression is not across the arm as would be

expected if the star formation was triggered by a spiral density wave, but rather along it, consistent

with the hypothesis of stochastic propagating star formation.

Although limited by the spatial resolution available, further evidence can be gleaned from

external galaxies as well. Radio observations of the irregular galaxy NGC 1569 at 1.5 GHz and

8.4 GHz (Wilding et al. 1993) suggest that the two extremely luminous clusters seen optically in

the centre of the galaxy have ceased to form stars – however two adjacent regions do show up as

thermal continuum radio sources, including some areas which are optically thick at 1.5 GHz sug-

gesting that in these areas we see current star formation which is propagating outwards from the

bright clusters.

Many reviews of the observational evidence for propagating star formation are available – see

for example Elmegreen (1992) and references therein.

2.1.2 Computer models

The first computer simulations based on this idea (which they named Self-Propagating Star Forma-

tion, SPSF) were performed by Mueller & Arnett (1976). Galaxies were modelled on a two-dimen-

sional polar grid, consisting of approximately 2500 cells which rotated differentially. Each cell

was labelled to indicate whether star formation was currently occurring within it, and if not, how

long it had been since the previous star formation episode. At the next discrete timestep (25 Myr),

all cells which bordered a cell containing a newly formed star cluster would themselves undergo

star formation, provided that the time elapsed since the last creation event was greater than some

regeneration time (chosen to be between 3 and 10 timesteps). The cell containing the star cluster

doing the triggering was then re-labelled as not undergoing current star formation, and its elapsed

time counter reset. Star formation could also occur spontaneously, modelled by randomly chosing

cells at each timestep to be considered as undergoing star formation, normally at the level of 1%

of the total number of cells. The simulation was initiated by sprinkling new stars at random across

the grid. Spiral density waves could also be incorporated in a primitive way by simply reducing

the regeneration time along the arms.

The results showed ragged, flocculent structures with no realistic spiral structures reproduced.

If a strong spiral density wave was imposed (i.e. a large difference in the arm and inter-arm regen-

eration times) then the images improved, although it was still not possible to reproduce a classic

two-armed grand-design spiral. But most importantly, no quantitative link between the model and

its input parameters with observational data was established.

The work of Mueller & Arnett was developed and much enhanced by Gerola & Seiden (1978).

They introduced the idea of Stochastic Self-Propagating Star Formation (SSPSF), that is the pres-
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ence of a newly formed star no longer implied that star formation would definitely occur in neigh-

bouring clouds. Rather, star formation was a stochastic process with a well defined probability

that star formation would occur in a cell, given that there existed a nearby, new star cluster, of

the form P = Pst t=τ where Pst was an input parameter to the model, t was the time elapsed since

the previous star formation episode and τ was now known as the ‘refractory time’ rather than the

‘regeneration time’. In addition the number of cells used was much larger (7350) to reduce the

influence of edge effects. In all other respects this new model was basically the same as its pre-

decessor. This so called ‘stellar-model’ produced spiral structures which looked far more realistic

than those of Mueller & Arnett: however, the same criticisms apply – only flocculent spirals could

be modelled and there was no attempt to compare with observations in a quantitative manner. In-

terestingly, as a consequence of its stochastic nature it demonstrated the usual properties associated

with a percolating system (see §2.1.3 and Schulman & Seiden 1983).

The next development was the incorporation of interstellar gas into an SSPSF model. Stars

result from the gravitational collapse of gas, and so clearly any useful model must represent this

process in some form. The new ‘gas-model’ (Seiden & Gerola 1982) was based on the same grid

as that used by the earlier models, but now each cell contained two gas components as well as

(possibly) new star clusters. The gas components for the purpose of the simulation were labelled

‘active’ and ‘inactive’, with the probability of star formation, given the presence of a nearby su-

pernova, being P = Pstρn
active, where ρactive is the density of ‘active’ gas. Note that this is assum-

ing a Schmidt law (Schmidt 1959, 1963) type dependency for the star formation rate, i.e. the star

formation rate is assumed to have a simple power-law dependence on the local gas density. If star

formation did occur in a cell then all the gas became ‘inactive’ but was converted to ‘active’ again

as the simulation progressed with a characteristic timescale τ. The total gas was distributed as

an exponential disc with scale length chosen such that the star formation rate naturally tended to

zero at the circumference of the grid, to reduce edge-effects arising from the finite, discrete nature

of the simulation. A subsequent paper (Seiden 1983) re-interpreted the SSPSF mechanism as a

two-step star formation process. The first is the creation of molecular clouds, and the second the

formation of stars from the subsequent collapse of the cloud. This latter step occurs rapidly and

(in the model) is guaranteed to occur. Therefore it is the formation of clouds that constitutes the

rate-determining step and hence the ‘active’ gas can be identified as H I, i.e. the gas from which

the clouds form and the ‘inactive’ as H II since once the gas is in this form there is nothing that

can be done to enhance star formation in the cloud.

A more detailed review of the SSPSF gas-model can be found in Seiden & Schulman (1990).

This form of the model was used to investigate a wide range of galactic structures ranging from

large spirals to dwarf galaxies. The applicability of this model to dwarf galaxies must however be

limited by edge effects – it was in an attempt to avoid such problems that Seiden & Gerola used a

larger grid than Mueller & Arnett. Nonetheless, grids with as few as seven cells were used (Gerola

et al. 1980) – the star formation rate is such systems was found to be oscillatory. I used my own

codification of the model (Sleath 1992) to investigate the generation of starbursts, i.e. episodes
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Figure 2.1. Typical output from my codification of the SSPSF gas-model. The symbol size indic-

ates the age of the cluster (largest being youngest and therefore brightest) and the circle delineates

the edge of the grid.

of extremely rapid, unsustainable star formation which observations (Wynn-Williams 1986) had

suggested often occur in systems of two or more interacting galaxies. Specifically, I introduced a

radial infall of gas following a suggestion by Mihos et al. (1991) that such a flow is a consequence

of the interaction of two galaxies. Star bursts could indeed be produced in this manner. Other

N-body simulations (Olson & Kwan 1986) suggested that the gravitational interactions between

galaxies led to starbursts through an enhancement in the collisional rate for molecular clouds. This

was approximated in the simulations by enhancing the spontaneous star formation rate, but it was

not found that starbursts could be induced in this manner.

The most recent studies using an SSPSF code are due to Jungwiert & Palouš (1994) who in-

corporated an anisotropic spatial probability distribution in an attempt to represent the differential

shearing of the material swept up by supernova shocks. Rather than the triggering shock wave

expanding spherically from the supernova centre, the shock front expands as an ellipse with ec-

centricity defined as an input to the model. The authors postulate that the Hubble sequence Sa-Sb-

Sc-Sd-Sm-Irr follows from the variation of the eccentricity of the probability ellipse, and suggest

that they can reproduce galaxy types which are modelled poorly by standard SSPSF. Once again

however, it is flocculent and not grand-design spirals which are produced.

2.1.3 Percolation theory – a digression

Percolation theory, which was first introduced into the mathematical literature by Broadbent &

Hammersley (1957), provides a simple theoretical framework for the study of a wide range of

disordered, stochastic processes. Table 2.1 (reproduced here from Zallen 1983) lists some phys-

ical applications to which percolation theory has been successfully applied. Note that the range
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Table 2.1. Applications of percolation theory. Table reproduced from Zallen (1983).

Phenomenon or system Transition

Flow of liquid in a porous medium Local/extended wetting

Spread of disease in a population Containment/epidemic

Communication or electrical networks Disconnected/connected

Conductor-insulator composite materials Insulator/metal

Composite superconductor-metal materials Normal/superconducting

Discontinuous metal films Insulator/metal

Stochastic star formation in spiral galaxies Nonpropagation/propagation

Quarks in nuclear matter Confinement/nonconfinement

Thin helium films on surfaces Normal/superfluid

Metal-atom dispersions in insulators Insulator/metal

Dilute magnets Para/ferromagnetic

Polymer gelation, vulcanisation Liquid/gel

The glass transition liquid/glass

Mobility edge in amorphous semiconductors Localised/extended states

of scale-lengths involved spans some �35 orders of magnitude, all the way from quark confine-

ment in the nucleus (characteristic size 10�15 m) to star formation in galaxies (characteristic size

1020 m). Also note that the majority of applications come from solid-state physics and are related

to phase transitions between states; it is the presence of a natural phase transition within percola-

tion theory that makes it useful for investigating such systems.

For a detailed mathematical treatment there are a number of textbooks available (e.g. Grimmett

1989) – however, a useful feel for the ideas involved can be gained from considering a forest fire, a

simple example which lends itself well to percolation studies. The rate at which such a fire spreads

through the forest depends on many environmental conditions, for example the wind strength, local

topography (fires travel faster uphill), age and type of trees (thick bark is more fire resistant) and

recent rainfall. However, we can group all these factors together into a single constant P, the prob-

ability of the fire spreading from one tree to any of its nearest neighbours. A forest is modelled as

a two-dimensional lattice (usually either square or triangular) with each vertex a tree. Trees can

be in one of four states; (i) unburnt, (ii) burning, (iii) ‘warm’ (i.e. unburnt but adjacent to burning

trees) and (iv) burnt, and hence not re-ignitable. The simulation is begun with one tree burning at

the centre of the grid.

Clearly if P = 1 then the whole forest will be consumed whereas if P = 0 then the fire will not

spread at all. For a percolating system there is a critical probability Pc for which the number of

burning trees at any given time is approximately constant. For P < Pc the number of burning trees

tends to zero as time t ! ∞, whereas for P > Pc then the number rises linearly with time (MacKay
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Figure 2.2
Example shape of the forest fire

spreading speed as a function of the

percolation probability P. The curve

is plotted for Pc = 0:3 and critical

exponent β = 0:2. For P < Pc the fire

dies out completely.

Figure 2.3
The phase transition in the star form-

ation rate exhibited by the stellar

SSPSF model as a function of the

circular rotation velocity. Figure

reproduced from Seiden & Gerola

(1982) – the region of phase space

deemed by them to exhibit good

spirals is marked with a dashed line.

& Jan 1984). Equivalently the fire will reach the boundary of the grid in half of all realisations

if P = Pc (von Niessen & Blumen 1986). If we consider the asymptotic value of the spreading

speed of the fire, ν, then at P = Pc the system undergoes what is known as a ‘percolation phase

transition’ when the asymptotic spreading speed suddenly takes on non-zero values (Fig. 2.2). In

common with other critical phenomena, for P > Pc the spreading velocity is characterised by a

critical exponent such that ν ∝ (P�Pc)β, where β is a function of the exact nature of the system

under consideration (i.e. the form of the grid and its dimensionality) (Ohtsuki & Keyes 1986).

The SSPSF stellar model is a much modified percolation process from the simple example

above. For example, the grid on which the percolation is occurring is rotating differentially, and

any given site can undergo star formation many times, with the only proviso being that a refract-

ory time must elapse between subsequent events. However, it nonetheless demonstrates many of

the characteristic features of the simple percolation. Figure 2.3 shows the variation of the star
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formation rate with Pst – it shows a clear phase transition at a critical value for Pst which is a func-

tion of the refractory time used. The added complexity of the SSPSF gas model tends to blur the

phase transition somewhat – there still exists a critical value of Pst, but the rise in SFR is much less

rapid. My experiments with this model also suggested that the finite size of the grid also softened

the phase transition, an effect known from more ‘traditional’ percolation studies. A detailed study

of the percolation aspects of the SSPSF models is to be found in Schulman & Seiden (1983).

Although the new model (to be described in Chapter 3) is based on similar principles to the

SSPSF models of Seiden, Gerola and Schulman, it incorporates a considerably more detailed rep-

resentation of the propagating star formation mechanism, and perhaps more significantly, an at-

tempt has been made to simulate the complicated dynamics of the ISM. Hence it is sufficiently far

removed from a simple percolation model that the techniques developed for analysing percolation

processes are unfortunately no longer useful.

2.2 Other galaxy models

The vast majority of galactic models have focussed on the dynamics of the stellar, and more re-

cently, gaseous components, with in general little emphasis placed on star formation and its implic-

ations for galactic structure. The simulations divide naturally into two categories: N-body codes

in which a collection of self-gravitating particles evolve under the Newtonian equations of mo-

tion, and hydrodynamic codes in which a continuous fluid is represented as discrete elements and

allowed to evolve according to the appropriate equations for a compressible fluid. I will discuss

N-body simulations first.

2.2.1 N-body codes

Many astrophysical systems have been investigatedwith N-body codes ranging in scale from small

clusters of stars through globular clusters and galaxies to cosmological structures. Such models

consider the systems of interest to be a collection of self-gravitating points with the simulation

proceeding by calculating, at each discrete time-step, the force on each particle due to every other

thus allowing the particle’s position and velocity to be updated. The most elementary method for

doing this is the so called Particle–Particle (PP) approach where the total force is considered as

the vector sum of all the two-body interactions. In its simplest form we have

Fi = ∑
j; j 6=i

Fi j;
vnew

i = vold
i + Fi

mi
∆t;

xnew
i = xold

i +vi∆t;
(Hockney & Eastwood 1981). There are however problems with this technique. The first is re-

laxation of the system due to close encounters. A real galaxy is essentially a collisionless system
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at least as far as the stellar dynamics are concerned. However by representing a galaxy with, say,

105 particles rather than the 1011 required for one per star we increase the mass of each particle

relative to the total by many orders of magnitude. This leads to a corresponding rise in the min-

imum impact parameter and frequency of strong deflections and the resulting scattering causes an

unphysical dynamical relaxation of the system. To reduce this a ‘softened’ potential of the form

φ =� GM(r2 +ε2)1=2
(2.1)

is generally used, essentially replacing the point masses by finite sized particles (Sellwood 1987).

However a more fundamental restriction on the use of the direct N-body simulations is their scaling

with increasing particle number N, the computational effort required increasing ∝ N(N�1). Many

refinements of the naı̈ve implementation are possible: the use of force polynomials to allow higher

order integration using information from several previous epochs increases the accuracy available

for given ∆t, or alternatively, a larger ∆t (and thus faster simulation) for the same level of accuracy.

Regularisation (Stiefel & Scheifele 1971) permits a more rigorous treatment of close encounters by

transforming the non-linear equation of motion (ẍ ∝ x�2) to a linear form (u00 ∝ u) via the relations

x = u2 and dτ = dx=x, although this is more important for small N collisional systems. Finally

choosing an individual time-step for each particle according to its circumstances (large ∆t if the

potential is smooth, small if it’s varying rapidly) can again lead to substantial improvements in

the speed of the code. For a recent summary of such techniques see Aarseth (1994). However

for N � 104 the time penalty associated with a direct integration method is too severe, and other

approaches must be adopted.

The Particle–Mesh (PM) approach differs from PP in the method used to calculate the inter-

particle forces: rather than a direct sum, the particles are gridded into M cells (typically with M�
N) and each cell assigned the corresponding total mass. Poisson’s equation is solved at the centre

of each cell using a Fast Fourier Transform (FFT):

ρ(x)��!
FFT

ρ̃(k)�!
k2

φ(k)��!
FFT

φ(x)�!
∇

g(x)
where ρ is the mass density of the cell and g is the resulting gravitational field. The force for each

particle is then interpolated from the grid. The main advantage of this method is that the time re-

quired now scales as O(M log2 M) (Press et al. 1992), but with the penalty of reducing the spatial

resolution to that of the mesh, or worse when allowance is made for numerical errors. Moreover,

the grid can impose an artificial geometry on the simulation and problems will be encountered if

material should escape from the grid as the simulation proceeds. Some attempts have been made

to combine multiple grids in an effort to overcome the resolution problem (for example in model-

ling two interacting galaxies, James & Weeks 1986) but this cannot be used in general when the

locations of regions of particularly high particle density are unknown a priori.

A hybrid approach, the Particle–Particle–Particle–Mesh (P3M) combines some of the advant-

ages of both the PP and PM techniques by directly summing the force from nearest neighbours and

using the PM method for larger distances. The resulting codes are faster than PP and have much
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θ2

Figure 2.4
Schematic illustrating the partition

of a distribution of particles (filled

circles) in a tree-code simulation.

The angles θ1 and θ2 show the angle

subtended by two cells of different

size with centre-of-masses indicated

by open circles. Figure based on

Aarseth (1993).

greater spatial dynamic range then PM. The restrictions due to the fixed grid still apply though, and

the PP calculations for nearest neighbours result in code which is considerably slower than PM.

The technique has been successfully applied to systems with particularly large contrasts in dens-

ity such as cosmological simulations of the early universe (Baugh & Efstathiou 1994; Efstathiou

et al. 1985).

The most efficient methods, however, for dealing with large N are based on so called tree-

codes. The system is partitioned into cells starting from the ‘root’ which contains all the particles.

Using the Barnes–Hut (1986) formulation, subdivisionsby factors of two (in length) are performed

until each cell contains only one particle, thus building an oct tree (8 descendants per node in three

dimensions) with each node representing a physical volume of space and containing information

giving the total mass and position of centre-of-mass for the volume. (Fig. 2.4). The total force on

any given particle is calculated by descending the tree from the root considering the angle subten-

ded by the cells at the current level, θ = s=r where s is the size of the cell and r is the distance to

its centre-of-mass from the particle in question. For some specified critical opening angle, θc, if

θ < θc then the force on the particle due to that cell is expressed as a multipole expansion about the

cell’s centre-of-mass using a softened potential of the same form as equation 2.1 above. Clearly

this condition will not generally be satisfied for the largest cells, in which case the descendants

are considered until either a) a single particle is found or b) the angle subtended becomes suffi-

ciently small. The accuracy that can be obtained in this manner is a compromise between critical

angle θc and the order of the multipole expansion used. The method again scales as O(N logN)
and it is now the preferred method for large N. A more detailed description of the traditional tree-

code method can be found in Hernquist (1987). More recently McMillan & Aarseth (1993) have

introduced a collisional tree-code method incorporating the refinements discussed above for the
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PP method, including a high-order integration scheme, variable time-steps and regularisation to

deal with close approaches, enhancing the accuracy obtainable at the expense of speed – only for

N & 104 does the new code out perform a direct approach.

2.2.2 SPH and hybrid schemes

An alternative to the ‘traditional’ N-body approaches, Smoothed Particle Hydrodynamics (SPH),

was introduced by Lucy (1977) and Gingold & Monaghan (1977) as a technique for modelling

continuous fluids. The equations of motion are solved using a Lagrangian formulation in which

the fluid is represented by a collection of particles with the particle mass density proportional at

any given point in space to the fluid density ρ. Clearly the number of particles is finite and hence

to estimate ρ (and quantities related through the equations of motion) at later times it is necessary

to interpolate between them to represent the smooth, continuous fields. If each particle has a mass

mi then

ρ(r) = N

∑
i=1

miW(r�ri;h)
where W(r;h) is an appropriate smoothing kernel and h is the smoothing length. Many kernels

have been used in SPH codes; the easiest to interpret physically is Gaussian (Gingold & Monaghan

1977),

W(x;h) = 1
h
p

π
e�(x2=h2)

whilst the form currently most favoured is based on spline functions (Monaghan & Lattanzio 1985).

For further information on the implementation of SPH codes, including a derivation of the hydro-

dynamical equations expressed in terms of particle motions see Monaghan (1992).

One of SPH’s inherent advantages is that it is naturally adaptive with what is effectively a vari-

able geometry grid to cope with regions with high density contrast. Codes have also been written

in which the smoothing length h is itself variable both in space (thus varying the spatial resolution)

and time (permitting each particle to have its own timestep to reduce unnecessary computation for

a given accuracy), although doubts have been raised over the reliability of codes incorporating

variable smoothing length (Hernquist 1993).

Recent studies employing SPH codes have ranged over the full range of astrophysical scales

including; the impact of comet Shoemaker–Levy into Jupiter (Takata et al. 1994), merging neutron

stars (Davies et al. 1994), accretion disks (Chakrabarti & Molteni 1995), collisionsbetween clouds

in the ISM (Habe & Ohta 1992), chemical evolution of the Galactic bulge (Tsujimoto et al. 1993),

galaxy clusters (Metzler & Evrard 1994) and the formation of large-scale structure in the early

universe (Navarro & White 1993). Plus, of course, spiral structure in normal galaxies (Patsis et al.

1994).

Smoothed particle hydrodynamics has been combined successfully with gravity tree-codes by

Hernquist & Katz (1989), allowing a galactic model incorporating both evolution of a stellar com-

ponent (tree-code to calculate inter-particle forces) and an ISM (using SPH). This formulation has
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been employed in models of disk galaxy mergers (e.g. Hernquist & Weil 1993; Mihos & Hernquist

1994a) and galaxy formation (Katz & Gunn 1991; Katz 1992). Moreover, it is one of the only

models based on an N-body/SPH approach which has been used to explicitly model star forma-

tion on a galactic scale (Mihos & Hernquist 1994b). The details of the mechanism, however, are

not considered at all – the star formation rate is simply related to the local gas density through a

Schmidt Law (Schmidt 1959, 1963), and is not in any way a consequence of the simulation. As

will be shown below (§4.3), the new model presented here predicts a Schmidt Law on the basis of

a simple model of the star formation process (Chapter 3).
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Chapter 3

The model

In this chapter I discuss the physical basis underlying the model together with its implementation

as a FORTRAN algorithm. The fundamental idea of the SSPSF approach is retained, and hence

the detailed physics of the star formation process are largely subsumed into a single parameter Mst

which plays a similar role to that of Pst in the simple SSPSF models (§2.1.2). The gas dynamics of

the ISM are, however, modelled in considerably greater detail than has previously been done with

a propagating star formation model. First, I consider the reasons why supernova/supershell shocks

are considered suitable triggers for massive star formation, followed by a description of the man-

ner in which the physics of the shock–cloud interactions plus the gas dynamics are implemented.

Finally, some of the finer details of the computer code are discussed.

3.1 The physics of propagating star formation

One of the principal advantages of the propagating star formation approach is its simplicity – the

detailed physics are lumped together into a single parameter. It must be remembered however that

we are not modelling all modes of star formation since we are stating that a shock is required to

initiate the process. This scenario ties in well with the scheme envisaged for massive star forma-

tion from giant molecular clouds (GMCs) (Turner 1988), but is not appropriate for the creation of

low mass stars from small clouds. In this latter case proto-stellar clumps are created as a result of

dissipation through intra-cloud turbulence, and a shock is not required.

If we now consider the interaction of a shock wave with an interstellar cloud we find that on the

largest scales (i.e. the complete front) a shock increases the internal kinetic energy of the cloud, sta-

bilising it against collapse, and possibly disrupting it. Thus star formation is inhibited. However,

on scales of order the front thickness the shock enhances the density increasing the dissipation–

collapse rate proportional to n1=2, where n is the number density of the cloud. An increased particle

density also leads to a higher rate of ambipolar diffusion, i.e. the rate at which the redistribution of

magnetic flux occurs through the movement of charged species relative to the neutrals in the lightly

ionised (by cosmic rays) cloud gas. The ions experience electromagnetic forces directly whilst the

19
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neutrals can only interact indirectly with the field through collisions with the ions. Since the net

force on the ions must be zero, by equating the Lorentz force with that arising from inter-particle

collisions it can be shown that the rate of ambipolar diffusion scales as�B2n�3=2L�2 (Shu 1992),

where the ionisation fraction has been taken as ∝ n�1=2, appropriate if all recombinations occur

in the gas phase and the ionisation rate is proportional to the gas density. Shocks parallel to the

cloud’s magnetic field conserve B and nL and hence the ambipolar diffusion rate is ∝ n1=2, whilst

perpendicular shocks conserve B=n and nL and therefore the diffusion rate for the field is ∝ n5=2.

The third consequence of a local density enhancement is the removal of angular momentum

from the cloud. As the gas is translated to form regions of increased density it does so preferentially

along field lines and hence its rate of rotation does not vary. Its angular momentum is reduced

by the resulting tension in the B-lines acting as a torque. Hence, by three distinct mechanisms

energy is removed from the cloud (in turbulent, magnetic and rotational forms) resulting in a more

gravitationally bound cloud which is thus more prone to collapse – the first crucial step towards

the formation of new stars.

Consequently, the scenario for massive star formation is the Jeans collapse of a giant molecular

cloud triggered by a loss of supporting pressure due to an impinging shock. Initially the collapse

is isothermal, but as the opacity rises it tends towards adiabatic. Under these conditions the tem-

perature of the gas post-shock is important since it determines the minimum mass of the stars that

can be formed through the relation

Mmin = 0:01

�
M

M��� T
10K

�2+δ
M�;

where T is the temperature of the cloud before the onset of the collapse and δ is a function of the

grain composition, taking values in the range 1–2 (Turner 1988).

In contrast low mass star formation can proceed without external stimulus. If a molecular cloud

(of size L) is stabilised by turbulence, then it will have supersonic internal motions according to the

empirical turbulence law ∆ν = 1:2(L=pc)0:3 km s�1 where ∆ν is the internal velocity dispersion

of the cloud. Hence internal shocks will exist and as a result distinct sub-units of enhanced density

will be created which may be small enough such that their internal motions are entirely subsonic.

The shock condensation of further, smaller units is then halted, and instead the clumps simply

collapse gravitationally on a timescale comparable to the free-fall time, as their remaining internal

energy is dissipated. We can identify a minimum mass for this process also – assuming that the

clumps are supported only by thermal pressure then knowing typical cloud temperatures allows

the internal velocity dispersion (∆ν) to be estimated which through the turbulence law, allows the

size of such clumps to be determined. Furthermore if the clumps are in virial equilibrium then

∆ν = 0:48(M=M�)0:188 km s�1 permitting a minimum mass to be estimated. For subsonic clump

temperature of 10 K the minimum clump size is �0:1 pc and minimum mass is �0:12 M�with

large uncertainties (Turner 1988). This latter estimate is consistent with the observational fact that

the IMF in the local vicinity shows a downward trend below. 0.1 M�.
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3.2 The implementation

The simulation uses three components to model a galaxy. These are

(i) a diffuse gaseous component,

(ii) gas clouds,

(iii) star clusters and associations, the distinction being unimportant for this work.

The clouds and stars are represented as test particles moving in an overall galactic potential which

has both axisymmetric and spiral components. The number of cloud particles is fixed (typically at

32 000) whilst the number of star particles is allowed to vary – usually about 15 000 star particles

are followed at any time. Whilst the central bulge and halo contribute to the potential, these regions

are not populated with particles in this model since star formation has essentially ceased in these

areas. As a result any pictorial representation of the results from the model shows a central hole

(e.g. Fig. 5.4).

Although it would be easiest simply to label the gas clouds as being H2 and the diffuse gas

as H I, the model actually represents the ISM more realistically than this. As will be discussed

below (§3.2.1), the clouds accrete from the diffuse gas component so that a reasonable picture

of them would be a molecular core surrounded by an atomic hydrogen halo. This seems to be in

accord with observations – direct measurements of nearby clouds that are resolved show molecular

cores surrounded by atomic envelopes (Wannier, Lichten & Morris 1983; Elmegreen 1985) and

on a larger scale, Elmegreen & Elmegreen (1987) find that many CO complexes are associated

with H I clouds. Observationally, the mass fraction of the molecular component decreases with

galactocentric distance (Burton 1988), which we model by having the number of clouds at a given

radius follow the H2 distribution (Fig. 5.9).

This model represents an attempt to simulate a steady-state system in order that the effects

of the propagation mechanism, galactic dynamics and cloud growth can be studied without the

additional complications associated with the overall evolution of the galactic system. The Milky

Way has had an approximately constant star formation rate over the last few Gyr (Noh & Scalo

1990) and it is galaxies in this state that we wish to study here. This aim is reflected in a number

of simplifying assumptions concerning, for example, the orbital dynamics, the tenuous component

of the ISM and the disc temperature, all of which are discussed in more detail below.

3.2.1 The star formation mechanism

The basic concept behind the star formation mechanism employed is stochastic, self-propagating

star formation in which we take the propagating mechanism to be the triggering of cloud collapse

by a supershell shock. Such a shock wave arises from a combination of stellar winds and super-

novae explosions due to the most massive stars in the association (Tenorio-Tagle & Bodenheimer

1988). In the model, each cluster site is the source for one such super-bubble and we assume that it

is a potential trigger for star formation up to the point at which its radius reaches 200 pc. If such a
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shock wave impinges on a nearby molecular cloud then there is a chance, with well-defined prob-

ability, that star formation will be triggered within the cloud. Star formation is complete within

106 yr, and hence we are only following the formation of the most massive stars. Lower mass

star formation is not modelled explicitly but would be expected to continue over a much longer

period (�107 yr) (Bodenheimer 1992). Recent observations (Zinneker 1996) suggest that the ini-

tial mass function (IMF) of stars born in OB associations shows no truncation at low masses, and

hence all stars may be born as part of OB associations, a suggestion originally made by Miller &

Scalo (1978).

In general the probability of star formation occurring will be a complicated function of the

prevailing physical conditions, but without modelling the detailed interior dynamics of the clouds,

we can expect the dominant term to be that due to the mass of the clouds. In general we expect

the probability to be expressible as a power series in the cloud mass:

Pst = ∑
k=1

ak

�
Mi

Mst

�k ;
where Mi is the cloud mass, Mst is a scaling mass controlling the stimulated star formation and

the coefficients ak will in general depend on the pressure, temperature and velocity structure of

the cloud. For simplicity we take only the leading term of this series and assign the probability of

stimulated star formation to be

Pst = Mi

Mst
;

putting a1 = 1. Star formation can also occur spontaneously – if a cloud grows too large, then

star formation will occur without external stimulus. Again we assume that this process can also

be expressed as a power series in Mi of which we retain only the leading term:

Psp = Mi

Msp
;

where in this case Msp determines the rate of spontaneous star formation. In every simulation dis-

cussed in this dissertation Mst�Msp, typically by six orders of magnitude – therefore, propagating

star formation is always the dominant mechanism.

When star formation occurs, the molecular cloud is disrupted and its mass is reduced so that

Mi ! εMi with (1�ε)Mi locked into newly formed stars or dispersed into the neutral ISM. Typ-

ically we take ε = 10�3 – note that this is not the same as the star formation efficiency, a typical

value for which would be �1–5% (Lada et al. 1992), it is simply the factor by which the cloud is

disrupted. That is not to say that we would expect a cloud to be almost totally destroyed by star

formation – the creation of intermediate- to low-mass stars would continue. However, this is the

simplest manner in which to model the effects which are thought to occur in a cloud which prevent

subsequent episodes of massive star formation.

Clouds are not however destroyed permanently by a star formation episode. As each cloud

orbits the galaxy it accretes matter from the interstellar H I, such that its mass is a function of the

time elapsed since the most recent episode of star formation. Since the model is not concerned
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with the evolution of the galaxy as a whole but rather with the development and rate of the star

formation process, we consider the tenuous H I component to be fixed both spatially and in total

mass. Processes such as stellar mass loss and the disruption of clouds are assumed to be capable

of maintaining the constant H I distribution, although they are not modelled in detail.

We consider the accretion rate by the clouds of material from the ISM to be proportional to the

cloud velocity, and hence

Ṁi ∝ ΣiνρH I;
where Σi is the cloud cross-section. Since Σi ∝ M

2
3
i for a cloud of uniform density this gives

Ṁi ∝ M
2
3
i νρH I;

and hence

Mi(t) = (γρH Iνt)3+ initial mass: (3.1)

The constant γ is chosen by comparison with Galactic values – we require a mean cloud growth

time of�2�108 yr (Kwan & Valdes 1987) when typical values of ρH I (Burton 1988) and ν (Stark

& Brand 1989) are used. The interstellar H I is distributed in a manner appropriate for our Galaxy

(Burton 1988), and remains unchanged as the simulation proceeds.

Ten million years after the formation of a star cluster, the O/B stars contained within it will

explode as supernovae (SNe). We are interested in the formation of massive stars – in our model

therefore, all star clusters act as progenitors for SNe. The expanding shell, which remains centred

on the star cluster, is responsible for triggering subsequent star formation if it encounters a nearby

cloud with sufficient mass. The shock is followed for a further 107 years (with radius increasing

∝ t2=5, i.e. adiabatic expansion) after which time it is considered to be too weak to trigger star

formation. This corresponds to a maximum propagation radius of 200 pc, and is consistent with

the size of supershells within our own Galaxy (Tenorio-Tagle & Bodenheimer 1988).

Note again that the star formation mechanism is purely self-propagating; there are no trigger-

ing effects from, for example, spiral shocks. In the next section we discuss the dynamics of the

model – the clouds move in a gravitational potential which includes a component from a spiral

density wave (SDW), the effect of which is to enhance the H2 cloud density in the vicinity of the

arm, and thus increase the chance that a supernova shock will cause stars to be formed.

3.2.2 The galactic potential and the SDW

Although the cloud particles are each assigned a mass, this is only used in the implementation of

the propagating star formation mechanism. Both star and cloud particles orbit as test masses in an

axisymmetric galactic potential due to Allen & Santillán (1991) upon which is superposed a spiral

perturbation. The axisymmetric potential is considered to arise from three mass components:

(i) a central bulge,

φ1(r;z) = �M1(r2+ z2 +b2
1) 1

2

;
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M1 1:41�1010 M�
b1 0.3873 kpc

M2 8:56�1010 M�
a2 5.3178 kpc

b2 0.2500 kpc

M3 1:071�1011 M�
a3 12.0 kpc

Table 3.1
Constants defining the Galactic potential. Reproduced from Allen

& Santillán (1991).

(ii) a disc component,

φ2(r;z) = �M2fr2+[a2 +(z2 +b2
2) 1

2 ]2g 1
2

;

(iii) and a spherical halo,

φ3(R) =�M3R1:02

a2:02
3

"
1+� R

a3

�1:02
#� M3

1:02a3

( �1:02[1+( R
a3
)1:02] + ln

"
1+� R

a3

�1:02
#)100 kpc

R

;
where,

R =pr2+ z2:
The constants a2, a3, b1, b2, M1, M2 and M3 (Table 3.1) are determined by considering the

Galactic rotation curve and the orbits of stars with a large z-velocity, such that they sample the

potential over a large volume. As such, the potential they produce is only strictly appropriate for

an Sbc galaxy such as our own. The rotation curve is shown as Fig. 3.1 together with observational

constraints from Allen & Martos (1986). Note also that the potential is well behaved everywhere

(Fig. 3.2) and that the corresponding density is positive at all points, unlike certain other commonly

used galactic potential models, for example that due to Ollongren (1962).

Superimposed on this potential is a logarithmic spiral component:

φ4 =� Ar2(a2
4 + r2 + z2)2

cos[nθ�nΩp t +χ(r)];
where n is the number of arms, Ωp is the pattern speed and χ(r) is the spiral shape function,

χ(r) = ln
h
1+� r

r0

�pi
p tan i0

:
The spiral is barlike for r < r0 and spiral outside, whilst p determines the sharpness of this trans-

ition. The pitch angle is defined as the angle, at the point of intersection between the spiral and a

circle, of the respective tangents. Figure 3.3 shows the initial position of the crest of the potential

perturbation.
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The Galactic rotation curve. The solid

curve is derived from the potential

model of Allen & Santillán (1991)

and the points with error bars are ob-

servational constraints (Allen & Mar-

tos 1986).

Figure 3.2. The gravitational potential. Shown are equipotential contours for two cases: (a) un-

perturbed, axisymmetric field and (b) with a spiral density wave of amplitude 0.08 pc4 yr�2 super-

posed. Contours are plotted every 1010 m2 s�2 from�1:8�1011 to�7:0�1010 m2 s�2 and every

109 m2 s�2 between�7:0�1010 and �5:0�1010 m2 s�2. Axes are labelled in units of 200 pc.

(a) (b)
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i0

Figure 3.3
The position of the crest of the SDW

at time t = 0. The spiral is described

by n = 2, i0 = 20�, p = 5:0 and r0 =
5:0 L (see Appendix A for a descrip-

tion of ‘model’ units).

The constant a4 is chosen such that the strength of the SDW peaks at a radius of 7 kpc (Roberts

& Hausman 1984) whilst A is typically fixed such that the SDW contributes about 5% of the total

radial force – for a given SDW amplitude the maximum relative strength of the perturbation is

given by
max SDW contribution to radial force

total radial force
= 0:56045

�
A

pc4 yr�2

�
whilst the radial variation of the SDW contribution, normalised against the maximum value (r =
a4) is shown as Fig. 3.4.

Until the 1950s the majority consensus was that the arms of spiral galaxies were in some way

a consequence of the galactic magnetic field. Lindblad however deduced that the spiral structure

results from dynamical interactions between stellar orbits and the overall galactic potential. A for-

mulation based on density waves was introduced by Lin & Shu (1964; 1966) – in particular they

proposed that spiral arms were the visible effects of a quasi-stationary density wave. It is their hy-

pothesis which underlies the treatment of spiral waves in most current studies of galactic structure

and dynamics, including the current model.

A full N-body simulation would not require the spiral component of the potential to be imple-

mented in this somewhat artificial manner, since an SDW arises as a natural instability of a thin,

differentially rotating disc in such experiments (Thomasson et al. 1990), a fact also predicted by

perturbation analysis (Binney & Tremaine 1987) and even laboratory experiments (Nezlin et al.

1986). Furthermore, although our potential is constant, we would expect the strength of the wave

to vary as a function of time, for example, as a consequence of swing amplification. Nevertheless,

current observations support the Lin–Shu hypothesis of a quasi-stationary wave, which is mod-

elled satisfactorily by using a fixed potential as in our model. A detailed discussion of the physics
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Figure 3.4
The radial force perturbation due to

a spiral density wave as a function

of galactocentric radius. The curve

is normalised against its maximum

value.

of spiral density waves can be found in Binney & Tremaine (1987) and Shu (1992). For a slightly

less formal approach, Bowers & Deeming (1984) provide a good introduction.

A logarithmic spiral form for the potential was chosen for being, most importantly, a good fit to

observational data. The most comprehensive survey of galactic spiral form is still that of Danver

(1942) who tested six theoretical spirals against observations and concluded that the best fit was

obtained with logarithmic spirals. As a consequence it is this form which is most commonly used

in studies of galactic structure and dynamics.

3.2.3 The kinetic temperature of the cloud particles

If two clouds approach within a cross-sectional diameter of one another then a collision is said to

have occurred. We take the collision to be inelastic and write

v1 ! ηv2;
v2 ! ηv1; (3.2)

as an approximation to the details of the collision. The energy and momentum dissipated is con-

sidered to be taken up by internal motions of the cloud and since the internal energy of the cloud

is dissipated radiatively through collisional de-excitation of the gas atoms/molecules, cloud-cloud

collisions reduce the total energy of the galactic system. We allow for the heating of the ISM by

shocks etc. resulting from collisions between the clouds and the expanding supernova remnants

(SNR) by giving any cloud which collides with a remnant an impulse along the line joining the

cloud and SNR centres of size inversely proportional to their separation. The size of the velocity

impulse is restricted to be less than some value νmax. We also introduce a feedback mechanism to

maintain an approximately constant cloud kinetic temperature since the ISM is observed to be in an

approximately equilibrium state. As the galactic disc temperature rises, so the cloud cross-section

is also increased to enhance the cloud-cloud collision frequency, and hence the cooling rate. This

approach is consistent with our aim to model a steady-state system.
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3.3 Computational considerations

Due to the natural symmetry of the simulation it is sensible to use cylindrical polar coordinates

throughout. To ensure that all coordinates (r;θ;z; ṙ; θ̇; ż) take values which can be represented ac-

curately in single precision, all lengths, times and masses are scaled. Lengths are expressed in units

of L= 200 pc, times in T = 107 yr and masses in M = M�. In all cases discussed in the following

chapters, the actual timestep used in the model has been 106 yr = 0:1T , although it could in prin-

ciple be varied since it is specified as an input to the model. All results quoted in this dissertation

have been converted to physical units for the convenience of the reader.

The code has been written to be as fast and compact as possible allowing the simulations to

be run on workstations rather than on the supercomputers required by many galaxy models. The

CPU time needed on a Sun SPARC 10 is approximately 7 h for a simulated time of 109 yr. Typ-

ically a simulation reaches steady-state (i.e. a roughly constant SFR, see Fig. 3.9) after about this

time, but results are not normally taken until the model has been running for at least �18 h (an

equivalent time of 2:5� 109 yr), to provide a sufficient interval over which to average the SFR.

To ensure that the code is as fast as possible care has been taken to ensure that the best choice of

compiler optimisation has been made, that the number of computationally expensive operations

(such as trigonometric functions and square roots) is minimised by the judicious use of dummy

variables, and where necessary, techniques have been adopted to maximise speed at the expense

of the memory required (§3.3.1).

A complete source code listing is provided as Appendix B.

3.3.1 Calculation of near neighbours

SN

Figure 3.5.

To propagate the star formation it is necessary to determine

which clouds are within the supernova shock at any instant.

The direct approach of calculating the distance of each cloud

from the relevant supernova centre, is prohibitively expensive

however: at any timestep (106 yr) there are �1000 supernova

sites, so a simulation of 2:5� 109 yr would require �1011 dis-

tance calculations. I adopt an alternative approach and grid the

cloud particles after each rotation. The cell size is chosen to be

the largest possible size of the supershell – the shocks are only

deemed to be strong enough to trigger star formation for 107 yr

in which time they attain a radius of 200 pc. In this manner only

the 27 cells around the supershell centre need to be searched for

clouds which are within the supershell (see Fig. 3.5). There are almost always less then 50 clouds

per cell, thus less than �1300 distance calculations per supershell per timestep have to be made.

For�1000 sites and a total run time of 2:5�109 yr, this results in a total of�109 calculations, a re-

duction of about one hundred over the direct method. This leads to a much improved performance
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x x+H

2 steps
4 steps
6 steps

Extrapolation to zero step-size

Figure 3.6
Richardson extrapolation. The inter-

val H is subdivided into a number of

steps. As the number of steps in-

creases, the calculated value of the

integral converges to its true value

which can thus be calculated by ex-

trapolating the function describing the

convergence to ∞ steps.

in terms of speed, at the expense of increased use of physical memory (approximately 80 MB).

This in practice limits the number of cloud particles to 32 767 in our simulations, i.e. the largest

number which can be represented as an integer*2 variable. This is not a restriction however

since this figure is close to the number (�30000) of molecular clouds which are estimated to exist

in our galaxy (Turner 1984).

3.3.2 The rotation integration scheme

The three-dimensional particle orbits are derived from the derivative of the total potential using the

Bulirsch-Stœr method (Stœr & Bulirsch 1980), a highly efficient algorithm for smooth integration

problems such as we have here. Our implementation is derived from that given by Press et al.

(1992). The key idea behind this integration scheme is that of “Richardson’s deferred approach to

the limit”. For a given ‘large’ interval H, we can obtain better and better solutions to the integral

by dividing H into more and more steps of size h. Moreover, by considering the behaviour of the

approximations as h is reduced, it is possible to extrapolate the function to zero step-size to yield

the final answer (see Fig. 3.6).

The actual integration is performed using the Modified Midpoint method. To integrate a func-

tion y(x) from x to x+H using n steps (such that h = H=n) we have,

y0 = y(x)
y1 = y0 +h

dy
dx

���
x

ym+1 = ym�1 +2h
dy
dx

���
x+mh

for m = 1;2; : : :;n�1

y(x+H)� yn � 1
2

�
yn +yn�1 +h

dy
dx

���
x+H

�
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Figure 3.7
An example orbit for a single, isol-

ated particle. The particle was started

from position (35,0,0) with a total ve-

locity dispersion of 18 km s�1 super-

imposed on the appropriate Keplerian

velocity for its radius. A spiral po-

tential component of strength 5% of

the axisymmetric potential is present.

Axes are labelled in units of 200 pc.

This is a second order method but in comparison with the second-order Runge-Kutta method,

only one derivative calculation is required per step rather than two. Importantly for its use in the

Bulirsch–Stœr method, the error can be expressed as a power series of even-powers of h (Gragg

1965), i.e.

yn�y(x+H) = ∞

∑
i=1

αih
2i

hence the extrapolating polynomial can be expressed in terms of h2 and not merely h, increasing

the accuracy without compromising speed.

Since the clouds are regularly undergoing collisions which effectively randomise the cloud’s

velocity, it is not necessary to integrate to high accuracy. Hence single-precision arithmetic is used

throughout, and the tolerance level for the convergence of the integral can be relaxed. Considering

the final position of a single, isolated particle after 2500 timesteps (Fig. 3.7), it was found that the

fractional error permitted on any individual timestep could be increased from 10�7 to 10�3 with

no shift in its final coordinates to six significant figures. There was however a noticeable saving

in CPU time (15–55%, depending on the exact values used for the dispersion velocities, radius of

orbit etc.), and hence a tolerance value of 10�3 was used throughout the simulations.

In another attempt to minimise the computational effort required, much care was taken to en-

sure the greatest level of optimisation possible in the calculation of the derivatives. In particular,

the number of square roots, powers and trigonometrical functions has been kept to the absolute

minimum. Any values which are the same for each rotation calculation, but which are functions

of the input parameters (for example tan i0) are calculated once only in an initialising subroutine.

Despite this, the rotation of the star and cloud particles still constitutes a major fraction of the over-

all CPU time required.
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Figure 3.8. Two views of the cloud–supershell remnant collision geometry. The supershell is la-

belled as ➀ and the cloud as ➁.
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3.3.3 Particle dynamics

In a similar manner we wish to minimise the computational effort required to calculate cloud–

shock and cloud–cloud collisions. In the former case we already know which clouds are affected

since they have been determined for the star formation propagation. The geometry of the situation

is shown in Fig. 3.8. Simple trigonometry shows that the the change in cloud velocity components

are given by

∆ṙ = νsinφcosθ

∆θ̇ = (ν=r2)sgn(θ2�θ1)sinφsinθ

∆ż = νcosφ

where ν is the magnitude of the velocity impulse to be given to the cloud (∝ x�1 up to some max-

imum value νmax) and all other symbols are illustrated in Fig. 3.8. Importantly, since both sinφ and

sinθ are always positive these quantities can be calculated using the identity sin2 α+ cos2 α = 1,

knowing that cosφ= (z2�z1)=x, eliminating the need for computationally expensive trigonomet-

ric operations. Thus cloud–shock collisions can be calculated (given that the grid has already been

constructed for the propagation of the star formation) using only algebraic operations together with

two square roots.

To determine if two clouds have collided we need to know first whether their centres are within

a collisional cross-sectional diameter of each other, and second whether they are approaching or

not. This second condition is necessary since the cross-sectional diameter of the clouds is variable

(see below) and hence if the diameter increased between two timesteps it would be possible for

two clouds to have collided at the earlier time (and hence be moving apart), but still be within a

diameter of one another at the later. To test whether the clouds are sufficiently close together we

need a grid with cell size at least greater than the cloud diameter so that for each cloud only the



32 CHAPTER 3. THE MODEL

surrounding 27 cells need to be checked. The grid is only recalculated if the one set up for the star

formation propagation has too small a cell size, i.e. more than the twenty-seven nearest cells would

need to be checked. If two clouds are considered to have collided then their velocities are reduced

by some factor η < 1 and interchanged (equation 3.2), to approximate an inelastic collision. The

inter-cloud separation s is given by

s2 = r2
1 + r2

2�2r1r2 cos(θ1�θ2)+(z1� z2)2;
and hence,

ṡ = s�1[r1ṙ1 + r2ṙ2� ṙ1r2 cos(θ1�θ2)� r1ṙ2 cos(θ1�θ2)+ r1r2θ̇1 sin(θ1�θ2)� r1r2θ̇2 sin(θ1�θ2)+ ż1(z1� z2)� ż2(z1� z2)]:
Clearly only the term enclosed by brackets ([]) needs to be evaluated since we are only interested

in determining whether the clouds are approaching and hence only the sign of ṡ. Again care has

been taken to ensure that the minimum of operations are performed by the use of dummy variables

for all quantities that are needed several times (e.g. θ1�θ2).

If the galactic disc shouldbecome too hot, i.e. the star and cloud particles have too much kinetic

energy, then the disc will expand radially. Since we modelling a system in steady-state, this is

undesirable – observationally we do not see large spiral galaxies being disrupted in this manner.

From a computational perspective this would also result in problems constructing the grid used to

calculate near neighbours – the grid size is finite and fixed by array declarations. Hence to maintain

an approximately constant particle temperature a feedback mechanism is employed which varies

the cross-sectional diameter for cloud–cloud collisions, and hence the frequency of collisions and

therefore the energy dissipation rate due to the inelasticity of the collisions. After each timestep

the root mean square velocity dispersion, νrms, of clouds within the galactocentric radius range

2 < r < 10 kpc is calculated and compared with the ‘desired’ value, urms calculated during the

initial dynamic equilibration of the model (§3.3.5). The cloud diameter is scaled according to

dnew
col = dold

col

�
νrms

urms

�1:7
where the power index was chosen by trial-and-error to give the best response – sufficiently high

so that extreme values of νrms could not be attained, but without inducing large oscillations.

3.3.4 Random number generation

The simulation requires a large number of random numbers: each time a decision is to be made

on whether star formation has occurred in a given cloud, a uniform variate is compared with Pst.

Hence for a typical simulation it is necessary to generate approximately 106�7 random numbers.

This is done using function G05CAF from the NAG library (NAG 1993), a uniform multiplicative

congruential generator with the (i+1)’th random number given by

bi+1 = 1313bi mod 259:
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The initial oscillations of the star

formation rate. A constant value is

reached after approximately 109 yr.

The initial value b0 is seeded from the system clock (via subroutine G05CCF) to ensure that indi-

vidual simulations are uncorrelated. The generator’s period of 257 is quite adequate and although

it does show some signs of sequential correlations (Hobson 1994) this is not at a significant level

in this context.

3.3.5 The initialisation of the model

It would be difficult, or even impossible to start off a simulation in a fully relaxed, but randomly

chosen state. Instead the particles are laid down with the appropriate spatial and velocity distribu-

tions and then the model is allowed to dynamically relax without star formation. This is achieved

by simply rotating the particles in the axisymmetric potential until the r.m.s. velocity distribution

attains an approximately constant value. The SDW amplitude is set to zero during this process

since it would otherwise act as a source of kinetic energy for the particles, preventing a steady

state from being reached. Once equilibrium has been achieved, the final value of urms is used as

a base level about which the disc temperature is maintained through the imposition of a feedback

loop affecting the cloud collisional cross-section (§3.2.3 and §3.3.3). Now the simulation can be-

gin properly – the SDW is switched on and star formation is allowed to propagate.

The clouds’ positions are selected randomly such that they are initially arranged following the

radial distribution of Galactic H2 (Burton 1988), uniformly in azimuth and with a Gaussian profile

perpendicular to the disc with scale-length of 200 pc. Velocities are set to the appropriate Keplerian

value for the cloud’s radius together with a randomly chosen dispersion velocity selected from a

Gaussian distribution, the width of which is specified as an input to the model.

Clouds are also assigned masses (necessary for the propagation mechanism) which are chosen

randomly from a distribution of the form n(m)∝ m�1:58 (Sanders et al. 1985). Finally 0.3% of the

clouds are associated with new star clusters which then act as seeds for the star formation process.

This set-up is still somewhat out of equilibrium, and the SFR oscillates for a short period (see Fig.

3.9), before settling down to the desired, approximately constant level. It is this final value which
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is used in the analysis described in subsequent chapters.

3.4 Running a simulation

The main simulation code is named GALAXY. Each simulation takes its input from a file named

inputsuffix where suffix is a machine identifier allowing the program to be run completely in-

dependently on several machines simultaneously, each with its own set of input parameters. All

input is taken from the file such that GALAXY can be run is the background – essential considering

the total run time required. An example input file with an explanation is provided in Appendix A.

In addition, there are a number of UNIX scripts to facilitate the chaining together of several runs

and automatic re-starting of GALAXY should the machines be re-booted. The produce a number

of small files to facilitate the housekeeping.

Results are normally saved to disk every 200 time steps (= 2�108 yr) although this can be

changed in the input parameter list (see Appendix A). Each set of output includes full details of

the simulation (e.g. cloud positions, velocities and ages) and derived quantities such as the SFR

and r.m.s. velocity dispersion. This enables the simulation to be restarted at intermediate times if

required. Moreover, it permits one run to be used as the starting point for a second simulation,

perhaps with different parameters. Each simulation discussed in this dissertation was, however,

started from scratch each time to ensure that the runs were completely independent. Due to the

stochastic nature of the simulation it was necessary to average over many realisations for each set

of input parameters before the model behaviour could be determined with any degree of certainty,

and clearly this procedure would have been invalidated if the runs were in any way correlated.
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Chapter 4

The star formation rate

In this chapter I will describe the way in which the star formation rate derived from the model

varies as a function of the input parameters. It will be shown that by choosing appropriate values

for these inputs it is possible to predict the star formation rate of our Galaxy. We will also show

that the star formation rate is related through a simple power-law to the total gas density, a result

which has much empirical data in support of it, and is usually known as the Schmidt Law.

In the context of this model, what has been up to now called the star formation rate is strictly

the cluster formation rate (CFR), i.e. the number of star clusters formed per unit time, given the

symbol ψ. The term ‘star formation rate’ (SFR) is usually reserved for the mass of stars formed

per unit time. This quantity is not directly accessible from the model since the exact fraction of a

cloud that is converted into stars is not known. However, as will be seen below (§4.3) we can get

a handle on the SFR by multiplying the CFR by a characteristic cloud mass and assuming that it

is possible to define an efficiency for star formation that is constant for all galaxies. (The average

efficiency of star formation observed in Galactic molecular clouds is�1–5% (Lada et al. 1992)).

4.1 The effect of the input parameters on the CFR

With a total of 14 input parameters affecting the physics in some way (Appendix A), the possible

parameter space of the model to be investigated is extremely large. To provide a fully compre-

hensive survey sampling all regions of this space would have required far more CPU time than

was available and hence an alternative strategy was adopted. A ‘standard’ set of input parameters

(Table 4.1) was chosen, based on values appropriate for our Galaxy, and then each parameter was

varied individually about this value. Where parameters could not be set on the basis of observa-

tional constraints (for example Msp), values consistent with the aims of the model were adopted –

for example we required propagating star formation to be the dominant mechanism, and therefore

Msp had to be much larger than Mst, so that the probability of spontaneous star formation (Psp) was

much smaller than that for stimulated star formation (Pst – see §3.2.1). The graphs presented below

37



38 CHAPTER 4. THE STAR FORMATION RATE

Quantity Model value ‘Real’ value Reason

∆t 0.1 T 106 yr The orbital period of the innermost particle

orbits is �107 yr, and hence this ∆t gives

sufficient resolution to follow the dynamics.

Nc 32010 Similar to the number of clouds in our

galaxy (Turner 1984), and also close to max-

imum possible value (§3.3.1).

a0 0.3 LT�1 5.9 km s�1 Typical one-dimensional cloud velocity dis-

persion (Magnani et al. 1985; Belfort &

Crovisier 1984; Liszt et al. 1984).

η 0.7 Many collisions will be glancing so average

elasticity is moderately high.

νmax 0.51 LT�1 10.0 km s�1 Slightly larger than the Galactic cloud velo-

city dispersion.

Mst 1:0�105 M� Typical GMC mass (Sanders et al. 1985).

Msp 1:0�1011 M� Much larger than Mst so that propagation is

the dominant star formation mechanism.

ε 1:0�10�3 Cloud is almost fully disrupted by star

formation.

n 2 The dominant SDW mode – see §5.3.

Ωp 0.14 T�1 13.7 km s�1 kpc�1 Galactic value (Bowers & Deeming 1984).

r0 5.0 L 1.0 kpc Small size for central bar (§5.1.

p 5.0 ‘Middle’ value.

i0 20:0� Spiral pitch angle for the SDW in a Sbc

galaxy. Results in a pattern pitch angle of

12� – see §7.2.1.

A 5000 L4 T�2 0.08 pc4 yr�2 Approximately 5% of total radial force

(§3.2.2– a weak spiral perturbation.

Table 4.1. Standard input parameters adopted which define the areas of the model’s parameter

space investigated. For an explanation of ‘model’ units see Appendix A.
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have all been calculated in this manner using the ‘standard’ set, and hence represent the variation

of the CFR along the principal axes of the parameter space.

In order to smooth out the stochastic nature of the simulation, each point on the CFR curves

presented below is the average value for an ensemble of a few runs (always at least three, rarely

more than six), all with identical input parameters and with the error estimated from the sample

standard deviation of the ensemble. The value for each individual run is an average over the last

(100–150)�107 yr of the simulation to avoid any contamination from the initial oscillations of the

CFR while the model equilibrates (Fig. 3.9). Even after this period the variation in CFR about the

mean value for a single run is still �100� 10�7 yr�1: however, the scatter in the means for an

ensemble of runs is small (as can be seen from the error bars plotted in the graphs below), and

hence, even a small number of runs can give a reliable estimate for the ‘true’ value of the CFR.

In cases where it was found that the scatter was large, more simulations were performed until the

average value converged.

The input parameters can be grouped into three main categories according to their affect on

the simulation:

(i) those which directly control the star formation – Mst, Msp and ε;

(ii) those which control the cloud dynamics – a0, η and νmax;

(iii) those affecting the shape of the spiral potential – n, Ωp, r0, p, i0 and A.

The results of changing the imposed spiral density wave will be discussed separately in Chapter

5, whilst the effects of parameters in groups (i) and (ii) will be considered below.

4.1.1 Star forming parameters

As would be expected, the scaling mass for the propagating star formation, Mst is found to be the

most important parameter affecting the CFR, with ψ ∝ Mst
�0:309�0:006 (Fig. 4.1a). As Mst is in-

creased, the probability of any cloud having star formation triggered within it is reduced, and hence

the overall CFR falls. In addition this has the consequence that on average a cloud is able to ac-

crete for longer and hence the median cloud mass (Mmed) and total cloud mass (Mtot) rise with Mst

such that Mmed ∝ Mst
0:955�0:007 and Mtot ∝ Mst

0:391�0:007 (Fig. 4.2). Note that although the CFR de-

creases with increasing Mst, the SFR rises proportional to Mst
0:6, since, as will be discussed below

(§4.3.1), we can convert between the two by multiplying by the median cloud mass.

The dependence of the CFR on the other star formation parameters is much weaker, justify-

ing the somewhat arbitrary choice of their ‘standard’ values, with ψ ∝ Msp
�0:005�0:001 and ψ ∝

ε0:019�0:005. Again the form of these dependencies can be related to the mass of an average cloud

and the time taken for it to regrow after a star formation event: as Msp is increased the probability

of spontaneous star formation drops, whilst if ε is increased, the time taken for a cloud to reach a

mass �Mst is reduced, and hence the star formation rate increases. However, as can be seen from

Fig. 4.1(d), the cloud regeneration time is hardly affected by ε and hence we see an extremely weak

relation between it and the cluster formation rate.
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Figure 4.1. Graphs of cluster formation rate ψ versus (a) Mst, (b) Msp and (c) ε. The fourth figure

(d) shows cloud growth for three different initial masses. The initial mass is closely related to ε
since when star formation occurs, the cloud mass is reduced by this factor.
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Figure 4.3
Variation of the cluster formation rate, ψ with the

one-dimensional cloud velocity dispersion.

4.1.2 Cloud dynamics parameters

The cloud dynamics are controlled through three distinct parameters affecting respectively the ini-

tial cloud velocity dispersion, cloud–cloud and cloud–SNR collisions. Inter-cloud collisions act to

decrease the cloud kinetic temperature, and hence the mean velocity dispersion, whereas cloud–

SNR interactions have the opposite effect. The relative importance of the two processes is con-

trolled by a negative feedback loop working on the overall cloud velocity dispersion νdisp to main-

tain an approximately constant temperature determined by the initial value chosen for the velocity

dispersion. The three input parameters thus interact in a non-trivial manner, and the dependence

of the CFR on the cloud dynamics is best seen by considering ψ as a function of the mean cloud

velocity dispersion νdisp. By systematically varying the input parameters a range of dispersion ve-

locities can be investigated – it is found that ψ ∝ ν0:71�0:02
disp (Fig. 4.3). This can be interpreted by

noting that as the velocity dispersion of the clouds rises, then the number of them that encounter

any given supershell during the time that it is able to trigger star formation (and thus the star form-

ation rate) also increases.

4.2 The Galactic cluster formation rate

We can use the relations above to determine the prediction of the model for the CFR of our Galaxy.

To do this we require suitable values for the main input parameters to the model, such that they

are consistent with observational constraints for the Galaxy. The majority of the ‘standard’ set of

parameters were based on such data, and hence these could be used. The spiral potential is con-

sistent with that deduced for an Sbc galaxy, with a maximum strength of 5% of the axisymmetric

potential, and the cloud velocity dispersion was taken as�7 km s�1 (Stark & Brand 1989). It is not

possible to measure directly the values of those parameters relating to the propagating star form-

ation mechanism. However, by fixing Msp and ε at their standard values (which we are free to do

since ψ has only a very weak dependence on these parameters), we can determine Mst from the

observed molecular cloud mass distribution. It has already been shown that as Mst is increased,

the time available for a cloud, on average, to accrete material from the ISM between star formation



42 CHAPTER 4. THE STAR FORMATION RATE

episodes rises, and hence the average cloud mass also increases. Sanders et al. (1985) observe the

median Galactic cloud mass to be 2:0� 105 M�, and hence, from Fig. 4.2, we can fix a suitable

PSF scaling mass for the Galaxy to be Mst = 1:2�106 M�.

Now the predicted Galactic CFR, can be determined from Fig. 4.1 and is found to be ψ =
4:0� 10�5 yr�1. Moreover, star formation is restricted to within a radius of 10 kpc, and hence

using this value the corresponding CFR per unit area is 1:3�10�7 kpc�2 yr�1. The radius of star

formation is constrained primarily by the distribution of H2 – that used in the model is as reported

by Burton (1988) for our Galaxy. The predicted value for the CFR compares excellently with that

observed – (2:5� 1)� 10�7 kpc�2 yr�1 (Elmegreen & Clemens 1985) – given the uncertainties

in the observational inputs. Cloud masses in particular are prone to error since the H2 mass is

estimated from the CO luminosity using a standard conversion factor (Sanders et al. 1984) which

is not well determined and moreover might be expected to vary from cloud to cloud depending

on the previous star formation history. Taken together with other contamination and calibration

errors, Gordon (1995) estimates that published molecular cloud masses may be in error by up to a

factor of approximately 20, although this is likely to be a pessimistic calculation. Since the value

of Mst is calculated from the median cloud mass, this will be the major source of uncertainty in the

derivation of the Galactic CFR – assuming a factor of 20 error in Mmed leads to an uncertainty by

a factor of approximately six in the estimates for ψ. Of the parameters describing the SDW only

the pitch angle is reasonably well constrained, although as has been seen, the CFR is only weakly

dependent on these quantities.

One limitation of the model that has already been noted (§3.2.1) is that we only consider the

formation of massive stars through the propagating mechanism. This, however, does not affect

the validity of the argument presented above, since the model CFR measurements are based on the

number of clusters similar in type to those used by Elmegreen & Clemens (1985) in their estimation

of the Galactic CFR. The same authors also report a value for the formation rate of OB clusters of�2� 10�7 kpc�2 yr�1. Whilst the significance of this number being lower than the overall CFR

is doubtful, it accords with the general idea of most, but not all, clusters containing at least one

massive star. In the model, despite nominally all the model clusters being OB associations (since

each has the potential to trigger star formation through a supershell shock), the stochastic nature of

the simulation means that some clusters will not trigger star formation, and therefore effectively

consist of lower mass stars.

4.3 The Schmidt law

The idea that the overall galactic star formation rate has a simple power-law dependence on the

gas density was first proposed by Schmidt (1959; 1963), and his name has since been attached to

any empirical star formation law of this form. The original formulation of the Schmidt Law was

in terms of the H I gas volume density,

ρ̇� ∝ ρn
H I; (4.1)
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Typical distribution of cloud masses.

For this particular simulation Mst =
1:0� 106 M�, although the general

shape of the distribution is similar

over the full range of Mst investigated.

where ρ̇� is the rate of change of the mass density of stars, ρH I is the neutral hydrogen density

and generally n = 1–2. Molecular hydrogen was not included since at the time its importance as a

component of the ISM was unrecognised. Later, when the dominance of H2 was understood, it was

found that a better correlation could be obtained using either the H2 (Rana & Wilkinson 1986) or

the total gas density (Kennicutt 1989). Schmidt Laws of this form have been used in many models

of galactic chemical evolution (e.g. Tosi & Dı́az 1990; Firmani & Tutukov 1992), and are often

invoked in N-body codes to estimate the star formation rate. An important feature of the model

presented in this dissertation is that it predicts a Schmidt Law.

Observational determinations of the Schmidt Law index are usually based on surface densities,

rather than volume densities, i.e.

σ̇� ∝ σN
tot: (4.2)

simply because it is the surface densities which can actually be measured, and a model for the z-

distributionof the galactic material is required to extract the volume density. Equations 4.1 and 4.2

are only compatible if n = N = 1. Other difficulties exist with the experimental determination of

the Schmidt Law – for example, the SFR is estimated from tracers of recent, but past star formation

(e.g. O/B stars and H II regions), whereas the gas mass estimates necessarily reflect the gas that

exists now. Hence we derive relationships based on the amount of gas that is left over after star

formation, and not that which was available at the time of the star forming event. Radial gas flows

further confuse the results and, finally, any variation in the conversion factor between CO and H2,

which, as mentioned above, is usually taken to be a universal constant, will further increase the

dispersion of the measured Schmidt Law.
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4.3.1 The Schmidt Law for the new model

The new model predicts a standard Schmidt Law. To convert our measured cluster formation rates

to a total SFR, i.e. the mass of stars formed per unit time, we need to multiply ψ by a character-

istic mass, where in this case the median cloud mass Mmed seems to be appropriate. A typical cloud

mass distribution (Fig. 4.4) covers a large range of masses, and hence the mean cloud mass would

be dominated by the most massive clouds. If this value were to be used in the CFR!SFR con-

version then this would imply that the most massive clouds also dominate the rate of formation of

new stars. But this is not the case – the probability of triggered star formation Pst is the same for

all clouds with masses greater than Mst. The median cloud mass provides a more ‘typical’ value

as it relates to the star formation process. Hence

ρ̇�V ∝ (1�ε)ψMmed; (4.3)

where V is the volume of the galaxy and the (1� ε) term reflects the amount of cloud material

converted into stars. However, as has been seen (§4.1.1), ψ is only very weakly dependent on ε
and hence we can absorb its value into the constant of proportionality. Thus, remembering that

ψ ∝ Mst
�0:309�0:006 and Mmed ∝ Mst

0:955�0:007, we have

ρ̇�V ∝ Mst
0:646�0:009 (4.4)

∝ M1:65�0:04
tot ; (4.5)

where, as before Mtot is the total cloud mass. Writing the total cloud mass divided by the galactic

volume as ρgas, then,

ρ̇� ∝ ρ1:65�0:04
gas V 0:65�0:04

∝ ρ1:65�0:04
gas D1:30�0:08; (4.6)

if we assume V ∝ D2 as is appropriate for a thin disc.

All the dependencies used in the above derivations have been deduced from simulations using

the ‘standard’ parameters for the model. In the spirit of normal Schmidt Law calculations, no at-

tempt has been made to fold in variations of the SFR with, for example, the strength of the spiral

density wave, primarily since such quantities are not readily available from observational meas-

urements. However, as will be seen from Fig. 5.1, the exact form of the relation between ψ and

A (in this case the slope of the linear region) varies with Mst – non-linearities in the model tie the

parameters together making it impossible to extract a single, general relationship. If we assume

that the ‘standard’ parameters are in some sense typical though, then the result can be considered

to have a general application, averaging over galaxies.

We have tested this formulation of the Schmidt law against the observational data of Young

et al. (1989). If the far infra-red (FIR) luminosity is assumed to be a good indicator of the star

formation rate (see §4.3.2), then by comparing their observed FIR luminosity with gas mass meas-
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Figure 4.5
The observational data of Young et al.

(1989) together with the best-fitting

line (slope=1.4). Error bars on each

point are based on the estimates given

in the paper and are�30% in the total

mass and �20% in FIR luminosity.

urements based on 21-cm and CO observations we can deduce a Schmidt Law from the data. Re-

writing equation (4.5) we see that

LFIR ∝ ρ̇�V ∝ M1:65
tot : (4.7)

Allowing for the appropriate errors in the flux measurements, (quoted as 20 – 30 per cent) on which

the mass estimates are based, it is found that the observational data is well fit by a power law of

index 1:4�0:4, in good agreement with our prediction.

4.3.2 Observational determinations of the SFR

Massive star formation leaves tracers which can be observed over a large range of the electro-

magnetic spectrum.

Massive star formation exhibits a number of characteristic features which can be readily ob-

served over a large range of the electro-magnetic spectrum. Local measurements are available to

calibrate the observations of external galaxies. The intense ultra-violet (UV) radiation produced

by the OB stars ionises the immediate vicinity producing an H II region, most readily visible in the

light from the Hα transition. The number of ionising photons can be estimated from the Hα flux

which allows the number of young stars present in the galaxy to be calculated, assuming that the

spectra for OB stars is known. This however, also requires knowledge of the initial mass function

(IMF), i.e. the number of stars born with a given mass (given the symbol φ(m)dm). This function

is poorly known and constitutes one of the main sources of error in the calculation of the SFR. In

symbols,

Lv = Ṁ� R tv(m)l(m)φ(m)dmR
mφ(m)dm

(4.8)

where Lv is the luminosity in the frequency band being considered, l(m) is the luminosity of a star

of mass m and tv(m) is the length of time for which the same star is emitting at that frequency
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(Thronson & Telesco 1986). Assuming a Miller–Scalo (1979) IMF (one of the most widely adop-

ted), Kennicutt (1983) finds that

Ṁ� = 5:6�10�9
�

LHα

L� �M� yr�1

for stellar masses & 10 M�, and

Ṁ� = 3:2�10�8
�

LHα

L� �M� yr�1

when considering all star formation. L� is the bolometric luminosity of the Sun (L� = 3:90�
1026 W).

Before stars emerge from their surrounding proto-stellar cocoons, the dusty clouds emit copi-

ous amounts of far infra-red (FIR) radiation. This has an advantage over Hα measurements since

the extinction at such longer wavelengths is much lower. However, it is not entirely clear whether

the cool dust heated by the general interstellar radiation field makes a significant contribution to

the total FIR luminosity. Observed dust temperatures for spiral galaxies are 30–40 K, similar to

those measured for Galactic star-forming regions (Scoville & Good 1989) and considerably higher

than the 15–20 K expected for dust heated by the ambient inter-stellar radiation field (Cox et al.

1986). This has led some authors (e.g. Bothun, Lonsdale & Rice, 1989; Fitt & Alexander 1992)

to postulate a variety of two–component models, with up to 70% of the FIR luminosity coming

from the cool component (Lonsdale Persson & Helou 1987). However, others find that the IRAS

fluxes between 60 µm and 1100 µm can be fit by a single temperature blackbody with T = 30–50 K

(Eales et al. 1989) and furthermore, that by comparing IRAS and Hα luminosities it is found that

the energy contained in the FIR radiation is consistent with that expected from the number of OB

stars required to provide the photons to ionise the hydrogen (Devereux & Young 1990).

A young star cluster will only be bright in the FIR whilst still surrounded by its initial dusty

cloud. If the time taken to disrupt the surrounding material (τFIR) is constant independent of mass,

then equation (4.8) can be simplified to

LFIR = ṀFIRτFIRL̄

M̄

(Thronson & Telesco 1986) where L̄=M̄ is the luminosity to mass ratio of a young star cluster. Once

again the uncertainties in the IMF are the major source of error, but Thronson & Telesco (1986)

estimate

Ṁ� = 6:5�10�10
�

LFIR

L� �M� yr�1:
The third method commonly used to estimate the SFR is to measure the non-thermal radio

emission from the supernova remnants formed by the explosion of the massive stars. If we assume

that all stars of mass > MSN explode as supernova to leave radio-emitting remnants then from

the non-thermal (i.e. synchrotron) emission of a galaxy and using the known relationship between

Lsync, v and the supernova rate for our Galaxy (Condon & Yin 1990) we can calculate the death-,
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and hence, birth-rate of such massive stars. Once again assuming a certain form for the IMF it is

then possible to calculate a more general SFR including lower mass stars which don’t contribute

to the non-thermal radio flux. Condon (1992), using a Miller–Scalo IMF finds

Ṁ� = 1:9�10�22
� v

GHz

�α
�

Lsync

W Hz�1

�
M� yr�1

for stellar masses & 5 M�, where α�0:8 is the non-thermal spectral index.

It is found that the FIR and radio continuum luminosity are extremely well correlated (many

references in the last few years, see for example, Bicay et al. 1995; Xu et al. 1994a) which, of

course, we would expect if they can both be used as tracers of the star formation rate. The massive

OB stars which heat the dust are also the progenitors of the supernovae which we detect by their

synchrotron emission. The lifetime of the massive stars is sufficiently short (. 107 yr) that the

two radiation types can be considered to be coming from the same population of objects. Note

that although many authors use the entire radio continuum emission, if this is decomposed into

thermal and non-thermal components then the correlation between the latter and the FIR luminos-

ity is much improved over using the total radio flux (Xu et al. 1994b).

4.3.3 The observed Schmidt Law

Many attempts have been made to determine the appropriate form for the Schmidt Law in recent

years. However, most of these have been based on some model which incorporates a Schmidt

Law with some variable index n, and then fitting the results of the model to observational data.

For example, Caimmi (1995) uses a chemical evolution code to deduce that the Schmidt exponent

is approximately equal to one, whilst Arimoto et al. (1992) employ a model of the photometric

evolution of galaxies and find that their results are essentially independent of the value of n (=1,2)

used.

Clearly, these results will be heavily dependent on the model used to derive them – we need

to compare such model-based answers with values for n calculated simply from an observed cor-

relation of the SFR with the gas density whether it be of H I (σH I), H2 (σH2 ) or total gas (σgas).

Below I summarise some recent results which have taken this approach.� Dopita & Ryder (1994) collected optical surface photometry (bands I and V) data and Hα images

of a sample of 34 nearby galaxies, representing the full range of Hubble types. They postulated

a ‘compound’ Schmidt Law of the form

σ̇� ∝ σn
total matterσ

m
gas

(Dopita 1985; Dopita 1990) and found that 1:5< (n+m)< 2:5 fitted the data best. Further-

more, their observations ruled out correlations of the form σ̇� ∝ σgas and σ̇� ∝ Ωσgas. The latter

formulation was proposed by Wyse & Silk (1989) on the basis of an analytic treatment of the

stability of the molecular gas in a galactic disc rotating with angular velocity Ω.



48 CHAPTER 4. THE STAR FORMATION RATE� Li, Seaquist, Wrobel, Wang & Sage (1993) found that, for the Sa/pec galaxy NGC 7625, the Hα
and 20-cm radio continuum (both tracers of massive star formation, see §4.3.2) correlate well

with the 12CO distribution, yielding a Schmidt Law of the form

σ̇� ∝ σ1:0�0:2
H2

:
NGC 7625 is extremely gas-rich for an Sa spiral, but there is no sign of an active galactic nucleus

contaminating the non-thermal radio emission, so the authors suggest that the peculiar nature of

the galaxy is not significant in this context.� Using the spatial distribution of H II regions in M 31 together with high resolution H I and CO

images, Tenjes & Haud (1991) find that the surface density of the young star forming regions is

related by a simple power law to the total gas density such that

σ̇� ∝ σ1:30�0:22
gas ;

or equivalently

ρ̇� ∝ ρ1:17�0:25
gas ;

where ρ(z) ∝ sech2(z=z0) has been assumed.� Kennicutt (1989) used Hα, H I and CO data for a sample of 15 mostly late-type spiral galaxies.

Although the correlation between the Hα emission and the surface densities of the individual

gas phases was found to be poor, that between the Hα emission and the total gas content was

excellent, giving

σ̇� ∝ σ1:3�0:3
gas :

It was found that this Schmidt Law broke down at low gas densities which Kennicutt attributed

to the onset of large scale instabilities in the gaseous disc.� Buat et al. (1989) also used data from a sample of galaxies, this time UV, CO and H I data for 28

galaxies ranging from Sab!Im, using the UV emission to trace the regions of recent, massive

star formation. Once again, a good correlation was found between the SFR and the total gas

density,

σ̇� ∝ σ1:65�0:32
gas ;

but that between the individual gas phases was poor, with H2 proving the worst tracer of star

formation.� Rana & Wilkinson (1986) in contrast, found that the best correlation is between the H2 density

and the SFR, with

σ̇� ∝ σ1:2�0:2
H2

based on data for our Galaxy.
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The lack of correlation found by Kennicutt (1989) and Buat et al. (1989) between the SFR and

the molecular gas content of a galaxy is curious – from any model of star formation, we would ex-

pect the molecular gas content to play the dominant role in determining the overall SFR. However,

these two papers use a sample of galaxies and any variation in the actual CO/H2 ratio within the

group would act to wash out the correlation. Kennicutt also suggests that this could reflect a de-

pendence on strictly the volume density and not the surface density.

Clearly, the prediction for the Schmidt law index (equation 4.6) agrees well with those determ-

ined from observations, although the exact conversion factor between ρ̇� and σ̇� is not clear. We

also have a dependency on the diameter of the galaxy in our Schmidt Law. For a given average gas

density then a larger total size will result in more regions undergoing star formation at any time,

and therefore it is reasonable to expect that the SFR should be higher.

4.4 A magnetic origin for Mst?

The interstellar magnetic field is not incorporated directly into the model, although since it provides

an internal cloud pressure, it might be expected to have an effect on the star formation process. We

can see from the virial theorem for a static cloud (Elmegreen 1992),

4πR3

3

�
P+ B2

2µ0

� = 3MkT
µ

� 3GM2

5R
;

(where P is the boundary pressure, B is the magnetic field strength and µ is the mean molecu-

lar weight for a cloud of mass M, radius R and temperature T ) that unless the cloud can lose its

magnetic field through ambipolar diffusion then the field will prevent collapse – if the magnetic

flux is completely frozen into the material then B ∝ R�2 and hence both the magnetic and gravit-

ational energies scale as R�1. For collapse to have a chance of occurring then the magnetic-field

strength must not be too strong and the boundary pressure must be sufficiently large – Mouschovias

& Spitzer (1976) calculate
B3

G3=2ρ2M
< 9�10�9;

or equivalently

M > Mmag = 1:1�108 B3

G3=2ρ2
; (4.9)

and

P > 2:54ν8
s

G3M2[1� (Mmag=M)2=3]3 :
where all quantities are measured in SI units and νs = (γkT=µ)1=2 is the sound speed in the cloud.

I have taken γ = 5=3 as is appropriate for molecular H2 at temperatures . 50 K.

Is it possible to identify Mst with Mmag? If this were the case then we would expect the ob-

served SFR (derived from, for example, the FIR luminosity) for a galaxy to vary with its magnetic
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and shows that the mean field strength

is independent of galactic type and oc-

cupies a narrow range between 0.2–

0.5 nT.
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Figure 4.8
Variation of FIR luminosity with

galactic magnetic field. No error bars

are shown, but errors of 20–30%

in FIR luminosity would be not

unreasonable. The estimates of Beq

are more uncertain – see Longair

(1994) for a discussion of the min-

imum energy method for estimating

magnetic fields. Data are shown for

84 galaxies.

field. Unfortunately, magnetic fields are difficult to measure astronomically – for our own Galaxy,

Zeeman splitting suggests values of 0.2–1.0 nT (Heiles 1990) and pulsar rotation measures give

0.2–0.7 nT (Lyne 1990). Neither of these direct techniques can be used for external galaxies; in-

stead we have to fall back on the indirect approach of assuming that the total energy contained

in relativistic particles and the magnetic field is minimised, despite there being no physical jus-

tification for this (see §19.5 of Longair (1994) and Fig. 4.6). However, with this assumption it

can be shown that the estimated field Beq depends only on the radio surface brightness, making it

easy to measure, and the values calculated are similar to those estimated for our Galaxy (Fig. 4.7).

Fitt & Alexander (1993) have used this approach to estimate the magnetic field strength for 146

spiral galaxies and by combining this data with FIR luminosity measurements from Young et al.

(1989) and Cox et al. (1988) we get Fig. 4.8. Two sources for the FIR luminosities have had to

be used since none of the three samples coincide directly, resulting in 84 galaxies for which both

FIR luminosity and Beq are known. Where the Young et al. and Cox et al. samples overlapped, the

discrepancy was usually < 0:05 in logL�.

The solid line of Fig. 4.8 shows what would be expected if the star formation scaling mass were

directly proportional to Mmag. The slope of this line was calculated from equations (4.4), (4.7) and

(4.9) which give,

LFIR ∝ Mst
0:646 ∝ M0:646

mag ∝ B1:938
eq ; (4.10)

The offset is undetermined and hence lines of this slope in the log–log plane have also been plotted

slightly offset from the middle of the data. Clearly the result is inconclusive, although it is possible

that some extension of the data can be seen along the slope of the line expected if Mst ∝ Mmag.

However, when the expected size of the error bars is taken into account, and more importantly, the

systematic errors in the estimation of Beq, it is not actually all that surprising that any correlation,

if it does exist, has been washed out.

It is perhaps also worth noting that if the magnetic field did play a significant role in the determ-
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ination of the galactic star formation rate, then given the lack of variation in B-field (on average)

with galactic morphology (Fig. 4.7), we might expect the SFR to also be more or less independent

of the form of the galaxy. This is indeed found to be the case – Devereux & Young (1991) consider

IRAS fluxes for a sample of 983 galaxies, and find that star formation rates are comparable over

the full range of galactic classes from Sa through to Scd.
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Chapter 5

Spiral density waves and
galactic structure

One of the major advantages of the new model as compared with previous simulations using propa-

gating star formation is the ease with which a spiral density wave (SDW) can be introduced in a

natural way. This is found to have a major effect on the galactic structures that can be produced (in

particular it is now possible to obtain long-lived, non-transient, grand-design spirals), but a fairly

small effect on the overall star formation rate. This is contrary to many galactic models where

star formation is considered to be triggered by shock waves arising directly from the SDW, but

importantly is consistent with the observation that the strength of the spiral density wave in real

galaxies does not correlate well with star formation rate (Elmegreen & Elmegreen 1986). This

will be discussed in greater detail below as we consider the interplay between the SDW and the

star formation rate.

The galactic structures produced by the model clearly depend on the input parameters, both

those controlling the star formation processes and also (perhaps more obviously) those affecting

the form of the spiral potential. In this chapter I also present a brief survey of the range of galactic

structures produced as a function of the input parameters. Ideally we would like some way of com-

paring the images quantitatively, both with other simulation results and also observational data.

This important problem will be considered in Chapter 7.

5.1 The effect of the SDW on the cluster formation rate

The dependence of the CFR on the input parameters controlling the nature of the spiral perturbation

to the gravitational field of the galaxy has been investigated in a manner similar to that described

in Section 4.1. All other parameters have been kept fixed at their ‘standard’ values (Table 4.1)

except when considering the CFR dependence on the amplitude of the SDW where two different

values for Mst were used (Fig. 5.1). Once again each data point is the average of an ensemble of

between three and six runs to take into an account the stochasticity of the simulation.

The effects of varying the radius of the inner bar (r0) and the sharpness of the transition from

55
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Figure 5.1
The effect of the amplitude of the

spiral density wave on the cluster

formation rate. The upper curve has

been calculated with Mst = 1:0 �
105 M� and the lower with Mst =
3:2�105 M�.

bar to normal spiral (p) were found to be very small with ψ ∝ r�0:055�0:008
0 and ψ ∝ p0:012�0:003.

For normal, i.e. unbarred spirals, which are the focus of this study, r0 must be small, and therefore

changing r0 or p can only affect the innermost regions of the galactic disc. This weak dependence

is therefore not surprising since these regions are not considered explicitly in this model as both

atomic and molecular gas densities drop to zero in the central regions (Fig. 5.9), thus preventing

star formation.

The CFR does exhibit dependencies on the other SDW parameters however, which although

weak, shed some interesting light on the feedback mechanisms acting within the model. These

will be discussed individually below.

5.1.1 Amplitude of the SDW

As the amplitude of the SDW (A) is raised, the orbit crowding resulting from the spiral perturbation

also increases. Furthermore, the particles move more slowly through the arm region as the depth

of the spiral potential grows and the two effects taken together result in any given super-bubble

shock being able to trigger many more star formation events – there are both more clouds which

can be shocked, and the SN remnant spends an increasing time in the enhanced region. Hence we

would expect the CFR to rise as A is increased: the dependence of the cluster formation rate on

the amplitude of the spiral perturbation is shown in Fig. 5.1. Clearly ψ is linearly dependent on

the strength of the SDW up to some limiting value which is a function of Mst, and furthermore the

plateau cluster formation rate attained after the turnover has occurred is also a function of Mst. Both

effects can be understood be considering the interplay of A, Mst and the average cloud regrowth

time. First let us consider the plateau region. Here the cluster formation rate has saturated, and the

rate at which new stars can be formed is limited by the time required for the mass of a molecular

cloud to increase via accretion to a value such that there is a reasonable chance of star formation

being triggered in the cloud. Writing the average cloud regrowth time as τ then from equation (3.1)
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Figure 5.2
Star formation rate ψ as a function of

the spiral pattern speed Ωp.

we see that

Mst = (γρH Iντ)3+εMst

and hence

τ = 3
p

Mst(1�ε)
γρH Iν

: (5.1)

Substituting some appropriate values we find that for Mst = 1:0�105 M�, τ�3:0�108 yr. Now,

the CFR above the turnover ψplat will be simply the reciprocal of τ multiplied by the number of

clouds and therefore we would expect ψplat � 1000�10�7 yr�1 for Mst = 1:0�105 M�. Further-

more we predict that ψplat ∝ Mst
�1=3, both of which, as can be seen from Fig. 5.1, are indeed found

to be the case.

The shift of the turnover can be explained by the fact that τ rises with Mst and remembering that

increasing A reduces the average time between successive supernova shock waves impinging on

any given cloud. Hence the turnover, which occurs when this latter time scale becomes comparable

with τ occurs at lower values of A for higher values of Mst, as is evident in Fig. 5.1.

5.1.2 Spiral pattern speed

The variation of the SFR with Ωp (Fig. 5.2) shows a similar saturation at low values of the pat-

tern speed. By varying the pattern speed we are investigating the same scaling regime of the star

formation rate that is probed by varying the amplitude of the SDW. Hence the variation seen can

also be understood by considering the respective timescales which govern the star formation pro-

cess. At low pattern speeds, clouds and supernova remnants spend longer in the compressed, high

density region of the spiral potential compared to when the pattern speed is high. A cloud is thus

more likely to be triggered to form stars at low pattern speed, and hence in this limit the SFR is

high. Note that if the triggering of cloud collapse was a result of shocks arising from the spiral
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Figure 5.3. Star formation rate ψ as a function of (a) the pitch angle of the imposed spiral density

wave i0 and (b) the pitch angle of the pattern traced by young stellar clusters i�.
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potential then we would expect to see the opposite behaviour, since in this scenario, the increased

frequency at which any given cloud was shocked would result in a rise in the star formation rate.

5.1.3 SDW pitch angle

We see from Fig. 5.3(a) that the variation of the pitch angle of the imposed spiral potential perturb-

ation has only a small effect on the total star formation rate, and is well represented by a power law

ψ ∝ i�0:188�0:008
0 for i0 < 30�. In this case we are investigating a different scaling regime than in

the two previous cases. Instead of the star formation rate being controlled solely by time constants,

here the dominant effect is geometrical. As the pitch angle is increased, the fraction of the galactic

disc which is covered by the spiral density wave decreases, and since the potential minimum marks

areas of enhanced star formation then we would expect the CFR to decrease with increasing i0 as

observed.

Fourier analysis techniques (Chapter 7) allow us to calculate the pitch angle of the actual distri-

bution of OB associations tracing the spiral arm, i�, which is a more important factor in controlling

the CFR than i0 since it is the distribution of young stars that directly affects the propagation. We

will see (§7.2.1) that i� varies non-linearly with i0 and moreover is always less than it (Fig. 7.6),

and hence it is interesting to consider the cluster formation rate as a function of i�. From Fig.

5.3(b) we see that ψ ∝ i�0:28�0:02� , which is a somewhat flatter slope than would be expected from

a simple argument based on the premise that the CFR was directly proportional to the area covered

by the arms. The total length of a logarithmic spiral out to some radius R is L = Rcosec(i�) ∝ i�1�
for the range of i� under consideration, and so assuming that the width of the arm is constant both

as a function of radius and i0 we might also expect ψ ∝ i�1� . However, as can be seen from Fig.

5.7, neither of these approximations are realistic and furthermore, we expect other factors to con-

tribute. Any variation in the rate of star formation due to geometrical effects will alter the natural
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timescales of the propagation process since the the average time between star formation events

for any given cloud will also change. Unfortunately, we have to conclude that disentangling the

situation is not possible in this case with a simplistic analysis such as we were able to use when

considering the effect of the SDW amplitude (§5.1.1).

5.1.4 Number of spiral arms

In addition to the n = 2 cases considered above as part of the ‘standard’ set, I have also looked

at the possibility of n = 3 spirals. From dynamical studies it can be easily shown that these are

less favoured modes, with a lower range of radii for which they are stable (§5.3). However, three

armed spirals have been detected observationally (Elmegreen et al. 1992) although always in the

presence of a stronger two-armed component.

From the discussion above we can predict how the CFR will change if we impose an n = 3

spiral (without having an n = 2) – clouds will encounter a region of higher than average density

more frequently, since there are more of them. Moreover, the fraction of the disc covered by the

spiral density wave also rises compared with the two-armed case, and hence we see that the total

effect is a combination of the factors identified above, and expect the star formation rate to rise.

This is indeed found to be the case, with ψ� 1020�10�7 yr�1, a small increase of approximately

10% over the equivalent n = 2 case.

Note that this is not a particularly realistic scenario, since the two-armed mode is always dom-

inant. As will be seen (§7.2.1), Fourier analysis shows that a weak three-armed component is in

fact often present in the structures produced by the model (see in particular Fig. 7.4(d)), and hence

it is not really necessary, or appropriate, to force its occurrence.

5.1.5 Comparison with observations

The variation of the star formation rate with the parameters controlling the form of the spiral dens-

ity wave can be readily understood by simple arguments. However, the relative importance of such

changes in determining the total SFR is small – the input parameters to the model have been varied

through all realistic values which could describe galaxies spanning the Hubble sequence and yet

the variation of the CFR is only of order�10 per cent. Observationally, such a small effect would

be considered to be constant within the measurement errors. Moreover, changing the value of Mst

produces a far larger effect on the total rate at which stars are created (§4.1.1), and hence obser-

vationally, we would expect the SFR to be largely independent of the form or indeed existence of

a spiral density wave. Elmegreen & Elmegreen (1986) present data for a sample of 745 galaxies

which confirms this expectation – they find that spiral density waves are not responsible for dir-

ectly triggering star formation (except possibly in some peculiar cases) but instead order the star

formation and organise it into spiral structures. A similar result is reported by Elmegreen (1993)

using more recent data, and also by Devereux & Young (1991) who, considering the star formation

rate of massive stars, find that the SFR per unit molecular gas mass is comparable between early-

(Sa–Sab), intermediate- (Sb–Sbc) and late- (Sc–Scd) type spirals.
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5.2 Structure as a function of the input parameters

As we have seen, the parameters controlling the nature of the spiral perturbation have an inter-

esting, but small effect on the overall rate of star formation. As would be expected however, the

galactic structure is quite strongly dependent on the SDW, as indeed it is on the other input para-

meters as well. I present below a selection of galactic images for various values of the four input

parameters which we would expect to have the largest effect on the galactic structure. The total

age range of the clusters shown in each image is the same, and hence the observed structure will be

strongly dependent on the star formation rate, and therefore Mst (Fig. 5.4). When a star cluster is

created, it acquires the velocity of the progenitor cloud, and hence as νdisp rises, we would expect

the structures to be come increasingly amorphous, with the spiral arms becoming less well defined.

In fact the effect is not as strong as might be expected (Fig. 5.5), primarily because the star form-

ation rate rises with νdisp which acts to reinforce the importance of the arms. More predictably,

the spiral arms become better defined with increasing A, and less tightly wound with increasing

i0 (Figs 5.6, 5.7). The transient, strong, spirals seen in the early SSPSF models (§2.1.2) are not

generally present in the current simulation, even at low values of the SDW amplitude, since they

are washed out by the velocity dispersion of the clouds. At much lower values of νdisp, then spiral

structures due solely to the differential rotation of the galaxy do begin to appear. The velocity dis-

persion required for this (< 0:02 km s�1) is however, much lower than anything observed, and the

conclusion must therefore be that spiral density waves have to be present in grand-design spirals.

Flocculent spirals are also readily produced by the model, as is evident from a cursory inspection

of Figs 5.4, 5.5, 5.6 and 5.7.

The images presented in Figs 5.4 to 5.7 are colour coded such that the youngest stars are shown

as blue and the eldest (130 Myr) as red. This reflects the changing colour of an observed cluster as

its most massive, blue OB stars die as supernovae, leaving only the cooler, red stars. The colours

are however only meant to be illustrative, and should not be interpreted as representing the true

cluster colour.

In a similar manner to the cluster formation rate studies, only only one parameter has been

changed at a time, with the others held fixed at their ‘standard’ values (Table 4.1). The galaxies

represented in the following pages are ‘typical’ in the sense that they are selected at random from

an ensemble of three to six runs. As a consequence of the stochastic nature of the simulation it is

difficult to draw general conclusions from the images alone – a more quantitative description of

the structure is required, and this will be the subject of Chapter 7.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4. Galactic structure as a function of propagation scaling mass, Mst: (a) 1:0� 104 M�,

(b) 3:2�104 M�, (c) 1:0�105 M�, (d) 3:2�105 M�, (e) 1:0�106 M�, (f) 3:2�106 M�.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5. Galactic structure as a function of cloud velocity dispersion, νdisp: (a) 6.4 km s�1,

(b) 6.6 km s�1, (c) 7.1 km s�1, (d) 7.6 km s�1, (e) 8.3 km s�1, (f) 9.0 km s�1.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6. Galactic structure as a function of SDW amplitude, A: (a) 0.0 pc4 yr�2,

(b) 0.032 pc4 yr�2, (c) 0.064 pc4 yr�2, (d) 0.096 pc4 yr�2, (e) 0.128 pc4 yr�2, (f) 0.16 pc4 yr�2.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7. Galactic structure as a function of SDW pitch angle, i0: (a) 10�, (b) 20�, (c) 30�,
(d) 40�, (e) 50�, (f) 60�.
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Resonance curves arising from the

model potential. The positions of

the inner Lindblad resonance (ILR),

co-rotation resonance (CR) and outer

Lindblad resonance (OLR) are indic-

ated for spiral pattern speed Ωp =
10 km s�1 kpc�1.

5.3 Resonances and the radial distribution of star formation

Spiral density waves, as a perturbation to the otherwise axisymmetric galactic potential, provide

a periodic force to stellar orbits in the galaxy. Hence there exists a resonant condition whenever

the perturbing force has a frequency which matches that of the orbit, and at resonance the orbits

will be unstable due to the large disturbance amplitude that results. As observed in a frame rotat-

ing with the appropriate Keplerian velocity (Ω) of the particle, an n-armed density wave has an

angular frequency of n(Ω�Ωp), whereas, in the same frame of reference, the particle has a radial

frequency equal to its epicyclic frequency κ given by

κ2 = 4Ω2
�

1+ r
2Ω

dΩ
dr

� ;
provided the eccentricity of the orbit is small (as we have here). Resonance will occur when the

condition n(Ω�Ωp) =�κ is satisfied, with the positive sign indicating that the star is overtaking

the crest of the potential and the negative sign that the faster moving perturbation is sweeping past

the particle.

Furthermore, by substituting a spiral perturbation into the first order, linearised equations of

motion, it is possible to calculate a dispersion relation for spiral density waves, and from this it

can be shown that for quasi-stationary spiral modes, the condition

Ω� κ
n
�Ωp �Ω+ κ

n

must hold, i.e. an n-armed SDW can exist as a stable perturbation only in the region where this

inequality is satisfied. The special cases of n = 2 are known as the inner and outer Lindblad res-

onances (ILR and OLR respectively) and when n = 1 the spiral pattern co-rotates (CR) with the

galaxy. Curves showing the radial positions of the resonances for the potential used in the model

(§3.2.2) are shown as Fig. 5.8 – clearly the stable region has the greatest extent for n = 2, and it

is for this reason that grand-design spirals have two prominent arms. We will see later (§7.2.1),
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Galactic gas distribution as used in

the model. The data are reproduced

from Burton (1988). The clouds are

initially spread across the disc such

that the distribution matches that of

the 12CO, and they accrete throughout

the simulation from the H I which re-

mains unchanged.

that the star formation disrupts the simple pattern, resulting in observed spiral components (using

sites of recent star formation to trace the arms) with n > 2, although the underlying SDW is still

bisymmetric.

A useful introduction to stellar orbital dynamics and the mathematics underlying the Lin–Shu

quasi-stationary spiral density wave hypothesis (Lin & Shu 1964; Lin & Shu 1966) can be found

in Bowers & Deeming (1984), whilst for a more comprehensive treatment the reader is referred to

either Binney & Tremaine (1987) or Shu (1992).

At radii corresponding to the different resonances we might expect the perturbation to have a

noticeable effect on the orbital dynamics of stars and gas clouds, and hence to appear in images of

the galaxies. This indeed is the only way in which SDW pattern speeds can be measured for ex-

ternal galaxies. However, no consensus exists as to which resonance limits the maximum radius

of the spiral density wave, and hence pattern speeds are only poorly known. For example, El-

megreen, Elmegreen & Montenegro (1992) propose that the OLR marks the greatest extent of the

spiral pattern on the basis of an identification of three-armed components in selection of galaxies.

In contrast Roberts, Roberts & Shu (1975) place co-rotation at the end of the spiral since it is at CR

that the shock resulting from the relative velocity of gas with respect to the wave will vanish. A

third theory due to Contopoulos & Grosbøl (1986) places the inner 4/1 resonance at the edge of the

spiral pattern – they find that non-linear effects make it difficult to construct self-consistent stel-

lar models of strong spirals outside this radius. Finally Elmegreen & Elmegreen (1995) propose,

based on a sample of 173 galaxies, that the spiral pattern should be divided into inner and outer

regions, the boundary being marked by co-rotation, and observationally by the point at which the

two inner, symmetric arms broaden or bifurcate. This results in the OLR being at approximately

the edge of the galaxy, and hence does not contradict their earlier work, although now the defining

condition is different.

Our particles move ballistically as test masses in an imposed potential, and hence the model is

unable to reproduce the sort of phenomena discussed above, since they arise from the collective
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forces between all the particles. In particular, the radius out to which spiral arms can be traced is

limited by the maximum radius at which star formation still has a reasonable probability of occur-

ring, i.e. the extent of the spiral arms is constrained by the distribution of the gaseous components

(H2 and H I). This is not a variable quantity in the current model, but instead is fixed by the Galactic

gas distributions (Fig. 5.9). Since the clouds are dynamic entities, the molecular gas distribution

can change with time as the simulation proceeds (although it is found that the changes are small),

whereas the H I gas is fixed both spatially and temporally.
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Chapter 6

The observational sample

We have seen how the model predictions of the star formation rate and related quantities can be

compared with observational data from our own Galaxy. However, when considering the struc-

tures produced then clearly it is necessary to have a sample of external galaxies with which to

compare the model results, a selection of which were shown in Chapter 5. I present below the

galaxy sample used in this work, before going on in the following chapter to consider quantitative

tools with which to characterise the nature of the galaxies’ structure.

6.1 Tracers of star formation

Regions of recent star formation are traced most easily by the Hα emission from the ionised hy-

drogen which results from the interaction between the massive OB stars and the embedding cloud,

and it is on the basis of the availability of a catalogue of H II regions for any given galaxy that the

sample was chosen. The data is summarised in Table 6.1, and the optical images and H II distri-

butions of each galaxy are presented as Fig. 6.3. It should be noted that such catalogues are of

necessity somewhat subjective since from the original Hα image it is often difficult to distinguish

between one large H II region and a complex comprised of many smaller ones. It is then up to the

compiler of the catalogue to make his/her decision – see Hodge & Kennicutt (1983) for a discus-

sion of the problems encountered in producing such a list.

It is noticeable that the vast majority of the galaxies for which data are available are of type

later than Sbc (Fig. 6.1). This is an unfortunate consequence of the fact that the H II regions are

much easier to pick out in these galaxies – indeed it could be considered a defining feature of late-

type spirals. The model is however, optimised to simulate Sb galaxies similar to our own - many of

the defining characteristics of the model have been constrained by Galactic values, for example the

gas distributions (both H I and H2) and the relative importance of the bulge compared to the disc

(which determines the orbital dynamics). Any future studies would benefit greatly from extending

the sample to remove this bias.

73
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Table 6.1. Observations of H II regions

Galaxy No. H II regionsa Inclinationb P.A.b Inclinationc P.A.c T-typec

IC 342 665 22� 32� 12� — 6

NGC 628 727d 8� 23� 24� 25� 5

NGC 925 132 54� 102� 56� 102� 7

NGC 1232 529 33� 86� 29� 108� 5

NGC 2403 604 55� 121� 56� 127� 6

NGC 2805 117 39� 116� 41� 125� 7

NGC 2835 125 42� 168� 49� 8� 5

NGC 3031 801 58� 150� 58� 157� 2

NGC 3184 144 13� 90� 21� 135� 6

NGC 3344 151 28� 164� 24� — 4

NGC 3486 153 42� 80� 42� 80� 5

NGC 3521 149 64� 166� 62� 163� 4

NGC 3556 192 — — 75� 80� 6

NGC 3938 160 10� 24� 24� — 5

NGC 4254 214 30� 6� 29� — 5

NGC 4303 289 29� 135� 27� — 4

NGC 4321 286 28� 146� 32� 30� 4

NGC 4535 221 44� 1� 45� 0� 5

NGC 4654 107 56� 120� 55� 128� 6

NGC 5055 138 58� 103� 55� 105� 4

NGC 5194 160e 20� 170� 52� 163� 4

NGC 5457 471 24� 38� 21� — 6

NGC 5962 112 43� 117� 45� 110� 5

NGC 6384 142 48� 41� 49� 30� 4

NGC 6814 734f 20�f 167�f 21� — 4

NGC 6946 540 34� 64� 32� — 6

NGC 7331 124 74� 167� 69� 171� 3

a Hodge & Kennicutt (1983) unless otherwise stated
bGarcı́a-Gómez & Athanassoula (1991) unless otherwise stated
c de Vaucouleurs et al. (1991)
dHodge (1976)
e Carranza, Crillon & Monnet (1969)
f Knapen et al. (1993)
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Figure 6.1
Distribution of morphological types

in the observational sample. Clas-

sifications are from de Vaucouleurs

et al. (1991).

Figure 6.2. Discrepancies between PA and inclination values for the observational sample. The

inclination data (a) have been binned at 5� and the (b) PA data have been binned at 10�.
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6.2 Galaxy orientation

Real galaxies are, of course, randomly orientated with respect to an Earth-bound observer. To

allow for comparisons between data-sets it is necessary to de-project the galaxy such that it appears

as if it were face-on to us. This requires knowledge of both the position angle (PA) of the major

axis (normally measured from North through East) and its inclination (i) to the line of sight. The

corrected positions of the individual H II regions are then given by 
x0
y0!=  sec(i)cos(PA) sec(i)sin(PA)�sin(PA) cos(PA) ! 

x

y

! ;
where the standard astronomical convention of having East to the left has been used. Note however,

that many of the H II catalogues effectively flip this round by assigning points to the East with pos-

itive x-coordinate.

In all subsequent analysis, I have used the PA and inclination values of Garcı́a-Gómez & Ath-

anassoula (1991) since they provide the more complete set of consistent values, the obvious ex-

ception being NGC 3556. Garcı́a-Gómez & Athanassoula calculated their values averaging over a

number of techniques, giving most weight to H I velocity field measurements. This should be the

most reliable technique available, assuming that the disc can be represented as being planar, since

it samples information from the whole disc. Galaxy inclination angles are not listed directly in de

Vaucouleurs et al. (1991), but instead values of R25 are quoted, i.e. the ratio of the major to minor

axes of the surface brightness µB = 25:0 mag arcsec�2 isophote. Recently it has been shown that

spiral galaxies are optically thick out to this radius (Valentijn 1990; de Vaucouleurs et al. 1991)

and can therefore be treated as an opaque circular disc, which implies that the inclination angle is

given by i = arccos(R�1
25 ). This is contrary to what had been believed previously (de Vaucouleurs

et al. 1976), and is not true for galaxies of T� 0. In this case an inclination dependent correction

factor has to be applied since we observe a greater column density along the minor than the major

axis.

The two sets of PA and inclinationdata agree reasonably well (Fig. 6.2) in most cases, although

there are the odd examples where there is a large discrepancy (e.g. NGC 2835).

The deprojected H II distributionsof the observational sample (using the data of Garcı́a-Gómez

& Athanassoula) are shown as Fig. 6.3, together with the Digitized Sky Survey (DSS) image of

the galaxy. Whereas spiral structures are often clear in the optical continuum images, they are

generally disappointingly difficult to pick out in the H II maps.
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Figure 6.3. The observational sample. The left-hand frame show the deprojected H II region dis-

tributions, and the right-hand the DSS image of the galaxy in question. The H II images are of

arbitrary size and orientation as a consequence of the deprojection process. The DSS images are

labelled using J2000 coordinates.
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Figure 6.3. (cont.)
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Figure 6.3. (cont.)
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Figure 6.3. (cont.)
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Figure 6.3. (cont.)
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Figure 6.3. (cont.)
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Figure 6.3. (cont.)



THE OBSERVATIONAL SAMPLE 85

Figure 6.3. (cont.)



86 CHAPTER 6. THE OBSERVATIONAL SAMPLE

Figure 6.3. (cont.)



Chapter 7

Quantitative measures of
galactic structure

A comparison of the predicted and observed star formation rates gives a quantitative feel for the

worth of the model. However, the defining feature of spiral galaxies is their morphology and not

the rate at which stars are being created; indeed observationally the SFR shows remarkably little

variation with the structure of the galaxy (Devereux & Young 1991). Since the human eye is ex-

tremely adept at seeing patterns where there are none (Frisby 1979), and can be overwhelmed by

a mass of data and thus ignore fine structure, an automated, quantitative method for characterising

galactic morphology is required, and this will form the subject of this chapter.

7.1 Description of the techniques

Many schemes already exist for classifying galaxies by their optical morphology, depending on a

variety of a wide range of parameters such as the bulge to disc luminosity ratio, the presence of

a bar, etc. – a brief summary of the most commonly used schemes for normal galaxies is given

in Appendix C. All such schemes are, however, somewhat subjective, since they usually rely on

visual inspections of optical images. Changing the exposure time of the observation, or tweaking

the contrast etc. with a suitable image-processing package can greatly affect the appearance of a

galaxy and hence its classification. It would therefore be preferable if some completely uniform,

repeatable procedure could be adopted. I have considered three such approaches; Fourier ana-

lysis, minimal-spanning-tree spectra and multifractal dimensions. The Fourier analysis is tailored

in such a way as to make it especially suitable for the study of spiral galaxies and it has been used

before for a large selection of spiral galaxies (Considère & Athanassoula 1982; Puerari & Dottori

1992; Garcı́a Gómez & Athanassoula 1993), whereas the other techniques have not previously

been utilised to investigate galactic structure. They have however, found astronomical applica-

tion in the categorisation of large-scale structure (Barrow et al. 1985; Martı́nez et al. 1990; Bor-

gani et al. 1993).

87
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7.1.1 Fourier analysis

The most obvious feature of the galaxies under consideration in this dissertation is their spiral

structure. What we require is some way to enhance this structure without being distracted by the

underlying, axisymmetric component. Fourier techniques are widely used in such filtering applic-

ations for both time series and spatial distributions. For any Fourier based approach, it is always

sensible to choose the basis functions carefully, in order to minimise the information content of

the high order components. Whilst for many applications harmonic functions are best, we have

in this case a system where we know the form of the dominant feature in which we are interested.

Danver (1942) compared photographic images of a sample of galaxies and fitted the arms to six

different analytic forms for spirals; Archimedean, Cotes, hyperbolic, gravitational, parabolic and

logarithmic. He found that logarithmic spirals provided the best fit to the observational data, a res-

ult that was confirmed later by Kennicutt (1981). It is therefore sensible to use logarithmic spirals

as the basis functions for our Fourier expansion. Of course, doing this does not in any way bias

the results towards logarithmic spirals, as opposed to any other type. It simply means that we hope

to be able to represent the structure of the galaxy with as few as possible Fourier components by

using a ‘natural’ basis set.

An n-armed logarithmic spiral has the form

r = r0e�nθ=q

where q is related to the pitch angle and number of arms of the spiral by tan i0 =�n=q. At a fixed

radius, the function is sinusoidal in θ with the wavelength inversely dependent on the number of

arms, giving us a first set of conjugate variables (θ;n). Similarly at fixed azimuthal angle, the

function is sinusoidal in lnr with the wavelength this time a function of the both the pitch angle

of each arm and also the number of arms comprising the pattern, resulting in the second set of

conjugate variables (u= lnr;q). Furthermore, we can represent a distribution of points as the sum

of δ-functions distributed in the (u;θ) plane, and hence can write the Fourier transform of the 2-D

distribution as,

A(q;n) = Z ∞�∞

Z π�π

1
N

N

∑
i=1

δ(u�ui)δ(θ�θi)e�i(qu+nθ)dudθ;= 1
N

N

∑
i=1

e�i(qui+nθi);
(Considère & Athanassoula 1982), where each point has been given equal weight. When using

simulation data, it would in principle be possible to weight each point according to its age in or-

der to enhance the contribution due to, for example, the youngest clusters. Such information is

however, not available for the observational sample, and hence uniform weighting was used in all

cases.

Whilst this is undoubtedly a powerful technique, care must be taken in the interpretation of

the Fourier spectra produced. The presence of a strong signal for any given n does not necessarily
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Figure 7.1
Example of a minimal spanning tree

(MST) for a set of randomly distrib-

uted points.

imply the existence of an n-armed spiral, although the converse is true. This is most noticeable

for n = 1 where any asymmetry in the distribution of points about a mirror-plane is reflected as a

strong n = 1 signal in the Fourier spectrum.

7.1.2 Minimal spanning tree spectra

Given a point distribution it is possible to calculate a unique network joining each point without

loops such that the total edge length is minimised – a construct known as the minimal spanning

tree (MST). An example of a minimal spanning tree, calculated for a set of randomly positioned

points using the algorithm of Whitney (1972), is shown as Fig. 7.1. The number distribution of

edge-lengths (li) comprising the tree can then be used to characterise a given structure, with dif-

ferent spectra being compared using either the Kolmogorov–Smirnov (KS) test (Press et al. 1992)

or Kuiper test (Kuiper 1962), resulting in a single number, viz. the probability of the two spectra

being identical, with which to intercompare both model and observational data.

Both the Kolmogorov–Smirnov and Kuiper tests are based on comparisons of the cumulat-

ive distribution functions (C1 and C2) of two data sets with N1 and N2 points respectively. (Al-

ternatively, one of these could be replaced by a known distribution function to enable data to be

compared to a theoretical model). The KS statistic is then defined as

K = max�∞<x<∞
jC1(x)�C2(x)j ;

whereas the Kuiper statistic is defined as

D = K++K� = max�∞<x<∞
fC1(x)�C2(x)g+ max�∞<x<∞

fC2(x)�C2(x)g
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Figure 7.2
Illustration of the Kolmogorov–

Smirnov and Kuiper tests. For the

two cumulative distribution functions

C1 and C2, the KS statistic K is

given by the length of the longer

of the two lines marking points of

maximum difference between the

curves, whereas the Kuiper statistic

D is defined as the sum of the lengths

of the two marked lines.

(see Fig. 7.2), i.e. whereas the KS test measures the maximum absolute deviation between the dis-

tributions, the Kuiper test is the sum of the maximum differences above and below between C1

and C2. The significance of the (easily) measured value of these statistics is then calculated as,

Probability(data identical) = QK

�
K
hp

N0 +0:12+0:11=pN0

i�
for the KS test, where

QK(λ) = 2
∞

∑
j=1

(�1) j�1e�2 j2λ2
and N0 = N1N2

N1 +N2
;

and for the Kuiper test,

Probability(data identical)= QD

�
D
hp

N0 +0:155+0:24=pN0

i�
where

QD(λ) = 2
∞

∑
j=1

(4 j2λ2�1)e�2 j2λ2 :
The KS test is the most widely used technique for comparing two unbinned data sets (with χ2 being

the preferred method for binned data), but has the disadvantage of being more sensitive to values

of x around the median (such that C(x) = 0:5) than to the extremes of the data. This results in the

test being good at picking out shifts in the median value of the distribution, but rather less useful

for finding spreads. In contrast, the Kuiper test is equally sensitive over all values of x, with the in-

evitable drawback that it is then more prone to giving misleading answers due to outliers. The tests

do however complement each other in their respective sensitivity ranges. A number of additional

techniques based on the same theme are also sometimes used, but have not been implemented for

this work – see Press et al. (1992) for further information.
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Whilst experimenting with this technique it quickly became clear that the cumulative distri-

bution functions were dominated by fluctuations in the large number of short edges which con-

tributed little to the larger scale structures which are of interest here. Moreover, as a consequence

of observational constraints, the sample of real galaxies has no short edges at all (see Chapter 6)

and hence it would not have been feasible to compare real with simulated structures if the shortest

edges had not been removed. Unfortunately this introduces an additional parameter into the tech-

nique, namely the short-edge cutoff expressed as a fraction of the mean edge-length, l̄.

The spectra were also truncated at long edge-lengths to reduce the effect of the small number of

outlying points. It was however found that that the value of the cutoff made only a minor difference

to the statistical tests (as would be expected since they are based on the cumulative distribution

functions) – in general a constraint of l=l̄ < 4 was imposed.

7.1.3 Multi-fractals

Many texts exist which expound on the theory of fractals and multifractals in great mathematical

detail. My aim here, however, is to introduce the topic from a slightly more physical point of

view, which although lacking somewhat in mathematical rigour, does have the advantage of being

more intuitive. I will follow a path similar to that taken by Schroeder (1991) – for a more rigorous

approach see, for example, Mandelbrot (1982), Feder (1988) or Falconer (1990).

First consider a large cubic volume of edge length L which is sub-divided into cells of size λ.

Then the number of small cells into which the large volume can be split is given by

N(ε) = ε�3 (7.1)

where ε = λ=L. Now suppose that a number of point-like particles are spread throughout the large

cube, and that λ is chosen such that there is no more than one particle in each cell. Then, if the

point distribution is uniform, the number of cells required to form a covering of the set of particles

will also be given by equation (7.1), whereas for a non-uniform set, the number of cells required

to form a covering is more generally given by

N(ε) = ε�DH (7.2)

where DH is known as the fractal (Hausdorff) dimension of the distribution, and can vary between

zero and the embedding dimension of the space. Equation (7.2) is more normally re-written in the

form,

DH = lim
ε!0

lnN(ε)
ln(1=ε) : (7.3)

Note that this picture accords with the definition of a fractal given by Mandelbrot (1982), viz. that

the fractal dimension exceeds the topological dimension, which for a point set is of course zero.

A perfect, self-similar fractal, only requires a single dimension to characterise it, since on

whatever scale we look the distribution of points will appear the same. Physical systems however,
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rarely exhibit this monofractal nature – instead they are multifractals where the scale length under

consideration is of importance. Hence the Hausdorff dimensions need to be generalised in some

way to make allowance for this.

The easiest way to start is to first consider a slightly different fractal dimension. Rényi, in an

attempt to generalise the entropy function for a point distribution introduced a formula based on

the moments of the probabilities pi(ε) = ni(ε)=N, i.e. the probability of finding ni points in the ith

cell. The generalised entropy can be written

Sq = �1
q�1

ln
N

∑
i=1

pq
i ;

which reduces in the limit q! 1 to the more familiar form,

S1 = � N

∑
i=1

pi ln pi:
In a similar manner, the Rényi multifractal dimensions (Rényi 1970) are defined as

Dq = lim
ε!0

1
q�1

ln∑N
i=1 pq

i

lnε
; D1 = lim

q!1
Dq: (7.4)

For a self-similar fractal, with equal pi = 1=N then equation (7.4) becomes

Dq = lim
ε!0

1
q�1

lnN(1=N)q

lnε= lim
ε!0

lnN
ln(1=ε)

which has the same form as equation (7.3) independent of q. Furthermore, we see that for q = 0,

equation (7.4) reduces once again to equation (7.3), and hence D0 � DH . The most commonly

used notation introduces another variable τ(q), where,

τ(q) = lim
ε!0

ln∑N
i=1 pq

i

lnε
;

and hence, from equation (7.4),

τ(q) = (q�1)Dq: (7.5)

From a more physical point of view, the exponents q control the weight given to regions of

differing densities in the sum. High density regions, with large pi will contribute most when q is

large and positive, whilst the low density regions will dominate when q is large and negative. In

the limits,

D∞ = lim
ε!0

ln pmax

ln(1=ε) D�∞ = lim
ε!0

ln pmin

ln(1=ε)
where pmax and pmin are the maximum and minimum values respectively of pi over the whole

distribution. Hence D�∞ � D∞. Furthermore, in general,

Dq � Dq0 for q < q0; (7.6)
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and thus Dq is a monotonically decreasing function of q.

The Rényi dimensions have been shown to approximate to the simple Hausdorff dimension

in the limit q! 0. It is also possible to extend the normal definition of the Hausdorff dimension,

although unfortunately this takes us away from the path where physical intuition is of any use.

Without the formal definition however, the techniques used to estimate the fractal dimensions for

a real distributionof points would seem to be plucked from nowhere. Formally, the Hausdorff mul-

tifractal dimensions are defined as follows (Martı́nez et al. 1990): for a set of points embedded in

a Euclidian space we can construct sets of coverings (ϒε) of the distribution using (hyper)-spheres

of size εi � ε. Also for any general measure of the set (we have been using p up to now), we can

define the counterpart for each member of a set of coverings,

µi = Z
i�set

dµ:
Finally, we can define the partition sum

Γ(q;τ) = lim
ε!0

inf
ϒε ∑

i

µq
i

ετ
i

(7.7)

and use this to define the function τ(q) by the requirement,

Γ(q;τ) = constant:
This is the same function τ(q) as was used above, and the fractal dimensions can be hence be cal-

culated via equation (7.5). To distinguishbetween the Rényi dimensions and the Hausdorff dimen-

sions I shall use D(q) for the latter and Dq for the former, following the usage of van de Weygaert

(1992).

We are now in a position to consider some of the techniques used to estimate the function τ(q)
for real, finite point sets, for which the limit ε! 0 cannot be taken. A number of such methods

exist (Borgani et al. (1993) suggest four), but we shall focus on just two, the Minimal Spanning

Tree method and the Correlation–Sum method.

The Minimal Spanning Tree method, originally proposed by Martı́nez et al. (1990) (see also

van de Weygaert et al. 1992; Martı́nez et al. 1993) makes use of the MST to approximate the min-

imal covering of the point set by placing spheres with the tree edges as their diameters. Randomly

chosen subsamples of the total point distribution are used to produce sets of edge-lengths fligm
i=1

with m = NR� 1 and NR being the number of points in the subsample. We can then define a par-

tition function

Z(τ;m) = 1
m

m

∑
i=1

li(m)�τ ∝ mq�1

which approximates equation (7.7) with εi � li and µi � 1=m. By fitting this relationship for a

range of m, we obtain q(τ) and hence, by inverting to give τ(q), D(q) by equation (7.5).

From an algorithmic point of view, it is found that the results can be unstable due to the fi-

nite number of points been selected in the random subsamples. In an attempt to overcome this, it
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usual to calculate Z(τ;m) for several realisations of a subset of m points, and then to average over

the ensemble. Additional problems are caused by both the extreme edges in the MST edge-length

distribution where the Poisson sampling noise associated with the small numbers can result in the

value of S being distorted, particularly at larger jqj. This problem can be circumvented by discard-

ing the shortest and longest edges – van de Weygaert et al. (1992) recommend to use only edges

in the range 0:01 < l=l̄ < 10. One further point to note, is that by choosing random subsamples,

this method mixes the scale lengths over which the calculation is performed, and hence in some

senses averages over the scale-dependent behaviour, which is what we are interested in for this

work.

Whereas the Minimal Spanning Tree method is an estimator for the Hausdorff generalised

dimensions, the Correlation–Sum method (Grassberger & Procaccia 1983) approximates to the

Rényi dimensions. We now consider spheres of radius r centred on each of the N points in our

set. Let the number of points contained within the sphere centred on the ith point be ni, and define

pi = ni=N. Then the partition sum

Z(q;r) = 1
N

N

∑
i=1

pq�1
i ∝ rτ (7.8)

allows us, by varying r for a given value of q, to derive the function τ(q) from which, as before,

we can derive Dq. (NB no inversion of q(τ) is required this time). Again, discreteness effects can

disrupt the calculation particularly for q < 1 where any cells with ni = 0 will cause equation (7.8)

to diverge. However, this technique does not suffer from problems associated with mixing scale

lengths; instead the range of scales is fixed by the range over which r is varied to calculate the fit.

7.2 Application of the techniques

7.2.1 Fourier spectra of galaxies

The Fourier spectra for a selection of the simulated galaxies are shown in Figs 7.3 and 7.4 (the

corresponding structures being shown in Figs 5.6 and 5.4). The spectra have been calculated using

the positions of the youngest stellar clusters only (t < 107 yr) since these will be equivalent to

the H II regions used to trace the spiral arms in the observational sample. Moreover, the typical

number of points used to calculate the model spectra is then of the same order as the number of

points available for a real galaxy.

As we have seen (§5.2), the spiral structure becomes increasingly well defined as the amplitude

of the spiral density wave is increased, a fact which is reflected in the increasing amplitude of the

n = 2 Fourier component, A(q;2) – see Fig. 7.3. At the extreme high values of SDW amplitude,

the average value of A(q;2) levels off (Fig. 7.5) in a manner reminiscent of the trend in the cluster

formation rate (Fig. 5.1). However, in this case it is not the number of stars which is changing, but

instead it shows that the spiral pattern deviates increasingly from a simple two-armed logarithmic



7.2. APPLICATION OF THE TECHNIQUES 95

(a) (b)

(c) (d)

(e) (f)

Figure 7.3. Effect of varying SDW amplitude A on Fourier spectra of model galaxies.

(a) A = 0:0 pc4 yr�2, (b) A = 0:032 pc4 yr�2, (c) A = 0:064 pc4 yr�2, (d) A = 0:096 pc4 yr�2,

(e) A = 0:128 pc4 yr�2, (f) A = 0:16 pc4 yr�2.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4. Effect of varying Mst on Fourier spectra of model galaxies.

(a) Mst = 1:0�104 M�, (b) Mst = 3:2�104 M�, (c) Mst = 1:0�105 M�, (d) Mst = 3:2�105 M�,

(e) Mst = 1:0�106 M�, (f) Mst = 3:2�106 M�.
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Figure 7.6
Observed pitch angle of the spiral

arms (i�) as a function of the pitch

angle of the applied SDW (i0). The

dashed line indicates i� = i0.

spiral as the strength of the perturbation increases. Note the presence of a strong n = 4 compon-

ent in those simulations with higher SDW amplitude (Fig. 7.3) indicating that the distribution of

the young stellar content is not following exactly the underlying perturbation in the gravitational

potential. A similar, but more obvious effect is seen when considering the structures produced by

varying the pitch angle of the imposed SDW (i0), as shown in Fig. 5.7. For the extremely high val-

ues of i0, the spirals do not appear to be noticeably more tightly wound than for the intermediate

values of the SDW pitch angle.

This can be quantified by reading from the Fourier spectra the actual pitch angle of the various

components – as is shown in Fig. 7.6, it is found that the pitch angle of the arms as traced by regions

of recent star formation (i�) is always less than the pitch angle of the SDW (i0). The arms delineated

in this way are material arms, and hence are wound up by the differential rotation of the galaxy,

with arms which are intrinsically less tightly wound experiencing a larger effect. Moreover, i� has
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Figure 7.7
Fourier transform of the same simu-

lation as was used in Fig. 7.3(d), but

now including older clusters in the

calculation. Note how the n = 2 com-

ponent has been washed out to such

an extent that it now has the same sig-

nificance as the overall asymmetry of

the image (n = 1).

a limiting value of �25�–30�, entirely consistent with the maximum spiral pitch angle observed

for real galaxies (Kennicutt 1981). For our own Galaxy, the measured pitch angle is�12� (Vallée

1995; Davies 1994; Taylor & Cordes 1993) and hence the underlying SDW should have a pitch

angle of 20�, which was the value used in Chapter 4 when predictions were made for the cluster

formation rate of the Milky Way. The maximum value for i� will be a function of the rotation speed

of the galaxy in question – if the rotation curve is approximately flat then a higher circular speed

will result in a greater angular velocity gradient, and more tightly wound arms.

Being material arms, it might be expected that the spiral arms seen in the model would wind up

more completely over time. This is not the case due to the underlying SDW which organises the

star formation such that it is concentrated along the potential arms. Thus the visible pattern remains

approximately constant in time although the individual star clusters that trace the visible arms at

any given time are continually changing. As the clusters age and move away from the minimum

of the spiral potential the pattern becomes smeared out due to (i) the velocity dispersion of the

stars and (ii) the continued winding up of the material arm. This can be seen clearly in the Fourier

spectrum of the same A = 0:096 pc4 yr�2 simulation as shown in Fig. 7.3, but now including older

stars of age up to 108 yr (Fig. 7.7).

The Fourier analysis of the observational sample (Fig. 7.8) is a little disappointing – despite

all the galaxies having reasonably clearly defined spiral arms in photographic images, the arms are

more difficult to trace in the H II region distributions(Fig. 6.3) as is clear from even a simple, visual

inspection. This is reflected in the Fourier spectra as well, with very few of the galaxies showing

any components significantly stronger than the noise level (which in most cases is comparable to

that for the modelled galaxies). The obvious exceptions are NGC 3031 (M 81), NGC 5194 (M 51)

and, to a lesser extent, NGC 6946. NGC 3031 in particular could be considered to be the archetypal

grand-design spiral and it is encouraging that this galaxy can be modelled with some degree of ac-

curacy (compare its Fourier spectrum with that of Fig. 7.3(b)). This perhaps also reflects the close-

ness in Hubble type of NGC 3031 to that of our own Galaxy, on which the ‘standard’ parameters

of the model were chosen.
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Figure 7.8. Fourier spectra of the observational sample. Only the first four components are shown

for clarity, although it is clear that for many of the galaxies there is still significant power in the

n = 4 component, and we would therefore also expect the n > 4 components to be important.
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Figure 7.8. (cont.)
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Figure 7.8. (cont.)
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Figure 7.8. (cont.)
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Figure 7.8. (cont.)

Figure 7.9. Fourier transforms of non-standard simulations, produced in an attempt to match those

calculated for the observational sample. The spectra are derived from simulations calculated with

(a) Mst = 3:2� 106 M�, A = 0:032 pc4 yr�2 and (b) Mst = 3:2� 106 M�, A = 0:016 pc4 yr�2.

Standard values were used for the other parameters.

(a) (b)
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The other galaxies seem, from the Fourier analysis, to have considerably weaker spiral density

waves than has been taken as the standard for this work. Such structures can be reproduced by the

model by choosing a high value for Mst and a low one for A. Figure 7.9 shows two transforms with

slightly differing parameters, which are a closer match to those calculated for the real galaxies.

It would be interesting in the future to constrain all the model parameters (including those spe-

cifying the axisymmetric potential and hence the rotation curve) using observational data based

on one of the galaxies shown here as opposed to the Milky Way. To infer Mst however, requires a

measurement of the median H2 cloud mass which is not yet possible for galaxies external to our

own (although the largest GMCs can be resolved in the nearest galaxies). Alternatively, Mst could

be fixed from the observed CFR if only the structural properties are of interest.

All the galaxies for which Fourier spectra are presented above, are those with a two-armed

perturbation to the overall gravitational potential. The Fourier analysis reveals however that weak

three-armed components are often to be found in the stellar distribution, as indeed they are in the

observational data also (cf. NGC 3556, NGC 4303). Puerari & Dottori (1992) find similar results

using the same Fourier technique for a number of other galaxies, and Elmegreen et al. (1992) use

an image enhancement process to find weak n = 3 modes in 17 out of a sample of 18 galaxies.

(Interestingly, they also show that in 15 cases the limits of the three-armed spirals occur at the

inner and outer 3:1 resonances – see §5.3). If a three-armed SDW is imposed instead, then as

expected, the Fourier spectrum shows a strong n = 3 peak, contrary to observations. The results

presented here suggest that it is not necessary to postulate the existence of an n > 2 perturbation

to explain the presence of n = 3 components in the Fourier spectrum.

7.2.2 Experiments with MST edge-length spectra

Unlike the Fourier analysis described above, the comparison of MST edge-length spectra is a tech-

nique which has not previously been applied to galactic structure, although it has found application

in astronomy through studies of the distribution of galaxies on cosmological scales (Barrow et al.

1985). Hence it is first essential to establish the validity of the technique for this application before

going on to apply it to the data sample as a whole.

A typical edge-length spectrum, together with the H II region distribution(i.e. clusters< 107 yr

old) are shown as Fig. 7.10 for a simulation calculated with the standard parameters. Frame (c)

shows the spectrum after edges shorter than 0.2 l=l̄ and longer than 4 l=l̄ have been discarded.

Removing the shortest edges prevents the tight, propagating knots of clusters having inappropriate

weight in the spectrum since such a tight group has a small effect on the overall structure, whilst

removing the longest edges ensures that outliers have no effect on the results.

Now consider an ensemble of runs (i)!(v) all calculated using the standard parameters. Al-

though fluctuations arising due to the stochastic nature of the simulation will make each structure

slightly different, we would perhaps hope that all runs with the same parameter set had more or

less consistent MST edge-length spectra. Table 7.1 shows the probabilities of pairs of spectra be-

ing the same calculated with both the KS and Kuiper test using clusters younger than 107 yr. In
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Figure 7.10. Example MST edge-length spectrum for a standard simulation. Frame (a) shows the

H II distribution, (b) the untrimmed spectrum and (c) the trimmed spectrum.

(a) (b) (c)

each case the MST spectra have been trimmed such that only edges with 0:2< l=l̄ < 4:0 are con-

sidered. From this set it would appear that the Kuiper test is better at recognising simulations with

the same initial parameters. However, if we now consider the results of the same procedure but

using clusters of age less than 2�107 yr (Table 7.2) the situation is not so clear. Now the Kuiper

test too informs us that the chances of (iv) and (v) being the same is less than 20% and runs (i) and

(ii) which using only the youngest clusters seemed to be quite similar are now (at least according

to the Kuiper test) quite different.

It must be noted that these discrepancies are in fact a result of the technique being too sensitive.

A visual inspection of the distribution the young stellar population (Figs 7.11 and 7.12) reveals that

there are indeed obvious differences between the individual members of the ensemble. The tech-

nique would be more useful however if it was able in some senses to average out the fluctuations

arising from the stochasticity of the model and to reveal the gross, overall form.

Similar conclusions are reached when considering the similarity of MST edge-length spectra

calculated from (randomly selected) simulations with different values of Mst (Table 7.3). The gen-

eral trends are what might be expected, i.e. as one descends a column to the leading diagonal and

Table 7.1. Results of comparing MST edge-length spectra for simulations with identical input

parameters, using only clusters of age less than 107 yr. The tables show the probability of the spec-

tra calculated for the individual runs (i)!(v) being identical, determined by the (a) Kolmogorov–

Smirnov test and (b) Kuiper test.

(a) (b)

(i) (ii) (iii) (iv) (v)

(i) 1.0 0.969 0.688 0.594 0.824

(ii) — 1.0 0.928 0.353 0.879

(iii) — — 1.0 0.242 0.358

(iv) — — — 1.0 0.246

(v) — — — — 1.0

(i) (ii) (iii) (iv) (v)

(i) 1.0 0.879 0.577 0.966 0.821

(ii) — 1.0 0.879 0.655 0.719

(iii) — — 1.0 0.551 0.645

(iv) — — — 1.0 0.556

(v) — — — — 1.0
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Table 7.2. Results of comparing MST edge-length spectra for simulations with identical input

parameters using cluster of age less than 2� 107 yr. The tables show the probability of the spec-

tra calculated for the individual runs (i)!(v) being identical, determined by the (a) Kolmogorov–

Smirnov test and (b) Kuiper test.

(a) (b)

(i) (ii) (iii) (iv) (v)

(i) 1.0 0.485 0.743 0.996 0.172

(ii) — 1.0 0.798 0.481 0.155

(iii) — — 1.0 0.910 0.323

(iv) — — — 1.0 0.137

(v) — — — — 1.0

(i) (ii) (iii) (iv) (v)

(i) 1.0 0.179 0.881 0.999 0.235

(ii) — 1.0 0.594 0.360 0.216

(iii) — — 1.0 0.947 0.498

(iv) — — — 1.0 0.181

(v) — — — — 1.0

Table 7.3. Comparison of MST edge-length spectra for varying values of Mst. Also shown is the

effect of changing the short edge cutoff – (a) includes edges in range 0:1 < l=l̄ < 4 whereas (b)

was calculated with 0:3 < l=l̄ < 4. Both tables were derived using clusters of age less than 107 yr

only, and the probabilities were calculated using the KS test.

(a)

logMst 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

4.0 1.0 0.404 0.812 0.004 0.001 0.0 0.0 0.002

4.5 — 1.0 0.802 0.003 0.006 0.0 0.0 0.024

5.0 — — 1.0 0.007 0.001 0.0 0.0 0.008

5.5 — — — 1.0 0.423 0.0 0.057 0.386

6.0 — — — — 1.0 0.0 0.050 0.421

6.5 — — — — — 1.0 0.230 0.031

7.0 — — — — — — 1.0 0.414

7.5 — — — — — — — 1.0

(b)

logMst 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

4.0 1.0 0.267 0.662 0.025 0.007 0.0 0.006 0.026

4.5 — 1.0 0.749 0.075 0.061 0.0 0.068 0.263

5.0 — — 1.0 0.067 0.010 0.0 0.017 0.108

5.5 — — — 1.0 0.193 0.007 0.321 0.560

6.0 — — — — 1.0 0.011 0.511 0.636

6.5 — — — — — 1.0 0.165 0.114

7.0 — — — — — — 1.0 0.891

7.5 — — — — — — — 1.0
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(i) (ii)

(iii) (iv)

(v)

Figure 7.11. Distribution of clusters younger than 107 yr for ensemble of standard simulations.
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(i) (ii)

(iii) (iv)

(v)

Figure 7.12. Distribution of clusters younger than 108 yr for ensemble of standard simulations.
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(a)

(b)

(c)

Figure 7.13. MST edge length spectra used to calculate Table 7.4. Both the untrimmed and the

most alike trimmed (short edge cutoff at 0:3 l=l̄) spectra are shown for (a) NGC 3031, (b) simula-

tion with Mst = 105 M� and (c) simulation with Mst = 106 M�.
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Cutoff Mst/M�
l=l̄ 105 106

0.0 0.003 0.0

0.1 0.023 0.0

0.2 0.406 0.002

0.3 0.781 0.024

0.4 0.591 0.007

0.5 0.704 0.023

0.6 0.632 0.004

Table 7.4
Comparison of MST edge-length spectra as a function of lower

cutoff. The two simulation runs have been individually compared

with the data for NGC 3031. In each case the upper cutoff was kept

constant at a value of 4 l=l̄ and only clusters younger than 107 yr

were included in the calculation.

then follows the appropriate row across, the probability of the two spectra being the same rises to

a maximum on the diagonal and then falls. However, the scatter is large and given two simula-

tions, one of known Mst, it would not be possible to deduce the other value of Mst from the table.

Moreover, the short edge cutoff can be seen to have a considerable and variable effect, making

some structures more similar, and some less.

This sensitivity to the value chosen for the short edge cutoff is probably the weakest feature

of this method. Comparing the edge-length spectrum of NGC 3031 with those of simulations with

Mst = 105 M� and Mst = 106 M� (Fig. 7.13) we see (Table 7.4) that depending on the cutoff used,

that the spectra could be considered to be anywhere between almost identical and really quite dif-

ferent! The Fourier analysis of NGC 3031 demonstrates that is the galaxy for which the simula-

tions are best able to reproduce the observed structure, and hence similar MST edge-length tests

have not been performed using data from the other members of the observational sample.

7.2.3 Multi-fractal techniques

The initial investigations using fractal techniques were performed using the MST method only,

primarily on the recommendations of Martı́nez et al. (1993) who indicated that the technique was

particularly well suited to problems involving small data sets. Clearly, with the galaxy data we do

not have sample of many thousands of points, and so this was an important consideration.

Before attempting to calculate the fractal dimension of some galaxy data, either real or sim-

ulated, it was essential to verify that the algorithm, as coded, worked as intended. In order to do

this, we tested the method on the Hénon attractor (Hénon 1976) for which the spectrum of mul-

tifractal dimensions is well known (Arneodo et al. 1987; van de Weygaert et al. 1992; Martı́nez

et al. 1993). The attractor is defined by the recursion relation

xn+1 = 1�ax2
n +yn; a = 1:4

yn+1 = bxn; b = 0:3
and Fig. 7.14 shows the first 20 000 points, when initial values of x0 = y0 = 0 are used. Unfor-

tunately, despite using an identical procedure to that described by van de Weygaert (1992), we
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Figure 7.14
The first 2� 104 points of the Hénon

attractor, starting with x0 = y0 = 0.

were unable to reproduce the exact values for D(0) and D(1) using the MST method, although

the qualitative form of the D(q) curve was correct. We were unable to track down the discrepancy

(subsequent studies with a different coding of the algorithm produced similar results), but since the

form of the curve was approximately correct, it seemed that the technique could still be of some use

in comparing simulation and observational data. Although we might not be calculating precisely

the generalised Hausdorff dimensions, we still potentially had a viable method of distinguishing

data sets.

As with the investigations of the Fourier and MST edge-length spectra techniques, we first

considered simulations which had been calculated with a range of values of Mst. Some results are

shown as Fig. 7.15, including both the q(τ) and D(q) curves. In each case, only clusters younger

than 1:5� 107 yr have been included in the calculation. Clearly there is a significant difference

between the D(q) for each simulation, and therefore by, for example, comparing the fractal di-

mension at a fixed q value we have a single number to associate with each run.

However, when the fractal dimension was calculated for some of the observational sample, it

became clear that there were severe problems with this technique (Fig. 7.16). In particular, many

of the fractal spectra show ‘U’ shaped profiles (for example IC 342, NGC 3031) which violates

the fundamental constraint on multifractals, given by equation (7.6), that the D(q) curve must be

a monotonically decreasing function of q. The other galaxies (for example NGC 1232) give rise

to D(q) curves which also show rising portions for q& 1, and in addition are extremely noisy for

q. 1 with points showing large excursions from a smooth curve and also large errors (derived from

the fit of lnZ with m). I suspect that this is due to a weakness in the approach adopted to invert the

q(τ) curve, which involved using a high-order Chebyshev polynomial (�15–20, although lower

if a good fit could still be made) as an interpolating function. However, the fact that the D(q)
curve was rising for all the observational sample in the region q& 1 is the more pressing concern.

Many of the model sets also exhibited similarly rising D(q) curves in this region, but no ‘U’ shaped

profiles were seen.

Clearly further tests were required to ensure the efficacy of the algorithm. One simple check

that could be made was to ensure that the fractal dimensions calculated were independent of the

scaling of the galaxy – if not then perhaps this could explain the problems with the observational

sample which are all scaled differently. However, when the coordinates of the H II regions of

NGC 6814 were scaled up by a constant factor, the D(q) curve remained unchanged, as indeed

it should. Also, if the noisiness of the multifractal dimensions was in some way a consequence of

a numerical instability due to the precise values of the data themselves, then shifting each point by
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Figure 7.15. Multifractal dimensions and q(τ) plots for (a) Mst = 104 M�, (b) Mst = 105 M�
and (c) Mst = 106 M�. Also shown are the Chebyshev polynomials used to interpolate q(τ) in

order to invert the function. The order of the polynomial fits are 18, 20 and 19 for (a), (b) and (c)

respectively.
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NGC 6946

Figure 7.16. Multifractal dimensions for selection of observed galaxies, calculated using the MST

method.
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Figure 7.17. The effect of pixellation on a ‘standard’ model data set. Shown are the H II positions

and D(q) curves for (a) normal data and (b) data which has been pixellated using the technique

described in the text.
(a) (b)
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a small amount would be expected to have a large effect on D(q). Again this was tried, with each

point being displaced in a random direction by a random amount which was less than the undis-

turbed minimum point spacing. Since the MST method cannot investigate scaling regimes of size

smaller than its shortest branch, this would ensure that the fractal dimensions calculated would

be largely unchanged if the routine was working correctly. Once again, the algorithm behaved as

expected.

There is an important difference between the model and observational data sets, and this is

the dynamic range of the scale lengths in the H II point distribution. If we consider the ratio of

the minimum distance between any two points and the maximum, then for a ‘standard’ simulation

the value is �10�4 whereas for an observed galaxy it is �10�3 (NGC 3031). At larger values of

q, where the fractal spectra for the real galaxies shows an upturn, we are investigating the more
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dense regions, and hence it would seem that it is the lack of short inter-point spacings for the ob-

servational data which is causing the problem. As mentioned in Chapter 6, this arises from the

difficulty of distinguishing individual H II regions in compact, complex clumps of Hα emission.

In an attempt to simulate this effect, caused by the limited resolution of the optical images, model

data was placed onto a 70� 70 grid, and all stellar particles within a given cell were replaced by

a single particle at the centre of mass of the cell (all clusters given equal weight). To take into ac-

count the loss of particles, the age range of clusters included in the fractal calculation was increased

a little – in Fig. 7.17, the unchanged data set includes clusters younger than 8 Myr (resulting in 730

particles), whereas the pixellated set uses clusters younger than 10 Myr (to give 731 particles). To

the eye, the structures look similar, although the dynamic range of the pixellated image is reduced

to �10�3. Moreover, the D(q) curve now shows the ‘U’ shape which we have seen is character-

istic of the multifractal dimensions of the observed galaxies, and we conclude that for this reason,

the MST method is not able to produce sensible results for the data sets in which we are interested.

Further studies, performed in collaborationwith K. K. S. Wu and P. Alexander (Wu et al. 1995),

have also investigated the MST method, but using a modified coding of the algorithm. It was used

to examine both the Hénon attractor and also the multifractal known as the multiplicative random

β–model (described in Borgani et al. 1993) for which Dq can be calculated analytically. In both

cases it was found that changing the acceptance range of edge-lengths could have a major effect

on the curves calculated, but it was possible to reproduce exactly neither the theoretical values for

the multiplicative random model, nor the dimensions calculated by other authors for the Hénon

attractor.

Wu also coded the Correlation–Sum method and tested it on the same theoretical multifractals.

We found that it worked well for both cases in the region q� 1 and that by choosing the minimum

sphere radius to be larger than the maximum distance between neighbouring points (so that all

cells contain at least one other point and hence the sum in equation (7.8) remains bounded), reas-

onable answers could be obtained for q < 1 also. With these findings, I decided that it would be

worth repeating some of the earlier studies done using the MST method, but this time with the

Correlation–Sum technique.

A direct comparison of the two estimators can be made from Fig. 7.18, which shows the multi-

fractal dimensions for three simulations, calculated with different Mst. The simulations for which

data are shown here are the same as were used for Fig. 7.15, and hence the D(q) curves are the same

as previously shown. Clearly there are significant differences between the multifractal spectra re-

turned by the two techniques, although they seem to converge at high q. We would also expect

them to converge at q = 0 since at this point the definitions of the Rényi and Hausdorff general-

ised dimensions are identical, but this is not seen. Moreover, if both the estimators were working

correctly, then the difference between Dq and D(q) would be small (many authors treat them as

the same), and certainly less then the estimated error bars.

Figure 7.19 shows the same Dq curves as Fig. 7.18 together with the equivalent curves calcu-

lated with a different scaling range for the radii of the covering circles. The curves which extend
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Figure 7.18. Comparison of multifractal dimensions calculated using the two different methods,

for three values of Mst; (a) 104 M�, (b) 105 M� and (c) 106 M�.
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Figure 7.19. Multifractal dimension for the same galaxies as used in Fig. 7.15, but now calcu-

lated with the Correlation–Sum method; (a) Mst = 104 M�, (b) Mst = 105 M� and (c) Mst =
106 M�. In each case Dq has been calculated for rmin = mean neighbour distance and rmin =
max. neighbour distance. In all cases rmax = 15 except for the the ‘max. neighbour distance’ curve

of (a), for which rmax = 25 because rmin = 15. As usual, only clusters younger than 107 yr have

been included in the calculation.
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to q< 1 were produced using a lower value for the range of radii (rmin) equal to the maximum sep-

aration between any two neighbouring points, such that there was always at least one other point

within all the circles, whereas the other curve was calculated setting rmin equal to the mean neigh-

bour separation. In this case the sum of equation (7.8) is divergent for q < 1. As is evident from

the Mst = 106 M� case, even when rmin is equal to the maximum neighbour separation, the values

of Dq are not reliable for q < 1, since in this case we have a rising function, violating equation

(7.6). In addition we can see that the choice of scaling range can have quite a significant effect on

any given value of Dq – although not shown here, changing the choice for the maximum scaling

radius (rmax) out to which equation (7.8) is fitted also has an important effect (the curves of Fig.

7.19 have all been calculated with rmax = 15 L – see Appendix A for explanation of internal model

units).

Nonetheless, it does seem possible to adopt a standard procedure and thereby extract useful

results from the Correlation–Sum approach. Calculated using constant values of rmin = 5 L and

rmax = 15 L and including only clusters younger than 107 yr irrespective of the simulation para-

meters, Fig. 7.20 shows D1:4, D6 and D15 as a function of Mst and SDW amplitude. The trends

are clear, and the scatter seems to reflect the actual differences between the runs (cf. Figs 5.4 and

5.6). It was hoped that the graphs for D15 would show less scatter than the equivalent D6 since,

from Fig. 7.19 it would appear that the effect of the precise value of rmin lessens at higher q values,

although this does not appear to be the case.

It is also interesting to compare the curves here with the Fourier spectra of the same simula-

tions presented earlier. Considering the variation of Dq with SDW amplitude, we see that at high

A the multifractal dimensions tend towards a constant value. This form of curve has been seen

before in relation to the SDW strength, when we investigated the amplitude of the n = 2 Four-

ier component (Fig. 7.5). Indeed when we plot D1:4 and D15 against the peak value of the n = 2

Fourier component (Fig. 7.21) we see that the two quantities are well correlated, and hence con-

clude that the two analyses are predominantly picking out the same structural features. At higher

q values, the sum of equation (7.8) is dominated by the most dense regions, i.e. the youngest, per-

colating clusters of which there are relatively few. Hence Fig. 7.21(b) shows a larger scatter due

to the small number of points which are important in the calculation. In contrast q = 1 samples all

density regimes with equal weighting, and therefore all the clusters (of age younger than 10 Myr)

are included, tightening the correlation. Therefore, although the Fourier transform contains more

information (with the complete set of complex A(q;n) it is possible to reproduce the structure pre-

cisely), the multifractal dimension has shown itself to be a more useful tool, in that it is able to

distinguish reliably between different structures and characterise each with a single number. The

scatter is still larger than would be ideal, and although for model galaxies this can be countered by

increasing the number of points within the summation, we have preferred not to do this, such that

we have a standard technique which can be applied to observational data as well.

Having said that, applying the technique to the observational sample of galaxies does, however,

require a little more care since the relative scaling of each one is different, in contrast with the
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Figure 7.20. Multifractal dimensions (a) D1:4, (b) D6 and (c) D15 as a function of model input

parameters Mst and A. All results were derived using constant values of rmin = 5:0 L and rmax =
15:0 L, and including only stellar particles younger than 107 yr.
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Figure 7.21. Correlation of Fourier transform peak amplitude with multifractal dimension for two

values of q: (a) q = 1:4 and (b) q = 15. Also shown is the unweighted least-squares fit to the data.
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Figure 7.22
Multifractal dimensions of NGC 3031

calculated using the Correlation–Sum

method.
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Figure 7.23. Multifractal dimensions (a) D1:4, (b) D6 and (c) D15 as a function of Hubble mor-

phological class
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model data for which all galaxies have approximately the same size Rmodel = 55 L (to within 2%

for Mst = 104 ! 106 M�). However, by scaling rmin and rmax for each galaxy individually, ac-

cording to the radius (Robs) within which all the H II regions are to be found, such that

robs
min = � rmodel

min

Rmodel

�
Robs = �15

55

�
Robs

robs
max = � rmodel

min

Rmodel

�
Robs = � 5

55

�
Robs

we would expect the results to be directly comparable to those above.

The Fourier analysis demonstrated that NGC 3031 was the member of the observational sample

best reproduced by the model. Its multifractal spectrum is shown in Fig. 7.22, and we see that the

Dq curve best matches that of Fig. 7.19(c), confirming our expectation based on the Fourier ana-

lysis – there again NGC 3031 shows a similar spectrum to a simulation with Mst = 106 M� (Figs

7.4 and 7.8). The Dq values have been calculated, as for Fig. 7.19, using two values of rmin equal

to the mean- and maximum-neighbour separation respectively, with rmax fixed at a value of 253

(arbitrary units), which is equivalent to the 15 L used for the model data.

Unfortunately, it would seem that multifractal analysis fails at the final hurdle. Figure 7.23

shows the multifractal dimension as a function of the Hubble T-type (de Vaucouleurs et al. 1991)

for three different values of q. Clearly, there is no correlation present in any of these data sets

which we would require for the Correlation–Sum multifractal to be a widely applicable technique

for both observational and model galaxies. In the light of the close empirical link between the

Fourier transforms and the multifractal dimensions, and given the Fourier results presented in Fig.

7.8, it is not, however, surprising that this is the case. Whilst the galaxies produced by the model

look correct, they fundamentally do not have the same structural form (at least when considering

the traditional tracers of star forming regions, viz. H II regions) as those that are observed in the

Universe. (This is obvious even from a visual inspection of the H II region distributions – compare

Figs 6.3, 7.11 and 7.12). Whether this is a real effect, and therefore reflects a deficiency of the

model, or an observational, instrumental limitation remains to be seen.
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Chapter 8

Concluding remarks

The computer model discussed within this dissertation is based on an idea originally postulated

several decades ago, namely propagating star formation. It was not until the early 1980s however,

that computing power became sufficient to implement the hypothesis, and then only in a limited

manner. This new work advances the simulation of propagating star formation a considerable dis-

tance by removing the limitations of a fixed grid and, more importantly, by widening the scope of

the physical processes considered. Before discussing possible future studies with the model (or a

derivative thereof), I will summarise the work that has been described in greater detail elsewhere

in this dissertation.

8.1 Summary of work to date

The hypothesis of propagating star formation states that the collapse of molecular clouds to form

new stars is triggered by a shock wave generated by the death of one or many members of the

previous generation of stars in a nearby OB association. The expanding supershell resulting from

the supernovae is able to enhance the dissipation of the magnetic field and turbulent and rotational

energies from the cloud, and as a result gravity comes to dominate, inevitably resulting in collapse

and subsequent star formation. Since the precise details of the physical processes occurring are

only poorly known, we treat the star formation as a stochastic process, i.e. we assign a probability

to a cloud collapsing, given that it is shocked, which is proportional to the cloud’s mass, and scaled

by an input parameter to the model.

Clouds and stellar clusters/associations orbit the galaxy as test masses, moving under the in-

fluence of a realistic gravitational potential. This also has the major advantage of allowing us to

impose, in a natural way, a spiral density wave as a small perturbation to the otherwise axisym-

metric potential (§3.2.2). Hydrodynamic N-body simulations have confirmed that spiral density

waves are a fundamental instability of thin, self-gravitating discs, and so it is reasonable for us to

impose one in such a manner. It has the effect of organising the star formation, but, unlike some

other models, we do not have shocks from the density wave triggering star formation directly. The

particulate nature of the simulation also provides for the inclusion of cloud–cloudand cloud–shock

123



124 CHAPTER 8. CONCLUDING REMARKS

interactions (§3.2.3), the former resulting in a net dissipation of energy, and the latter acting as a

source of cloud kinetic energy. The temperature of the galactic disc is maintained through a feed-

back loop between these two processes, since we aim to model a steady-state system.

One of the major successes of the model is its prediction of the cluster formation rate for the

Milky Way (§4.2). The number of input parameters to the model is quite large, specifying the form

of the spiral density wave, the dynamics of the clouds and most importantly the scaling mass for

the star formation. However, all of these can be fixed by observations of our Galaxy, resulting

in a definite prediction for the rate of formation of star clusters which is within a factor of two of

the observed value. When account is taken of the observational uncertainties inherent in the input

parameters to the simulation, this indeed represents a triumph for the model.

We are also able to predict a form for the Schmidt Law (§4.3). This empirical relation associ-

ates the galactic star formation rate to the average gas density through a power law. By considering

the various scalings of the star formation rate, median cloud mass etc. on the input parameters to

the model, we suggest that the power law index should have a value of 1.65, which is in excellent

agreement with observational indications.

The most obvious feature of the galaxies considered in this work is their spiral structure. By

varying the input parameters to the model, we can generate a wide range of morphologies. It is

important to compare the structures produced by the model with observed galaxies – indeed, a

computer simulation whose results cannot be compared with the real world could be considered a

waste of time. Hence we have collected H II region data for a sample of galaxies (Chapter 6), and

have contrasted this with model data, not only in a qualitative way (i.e. by simple visual inspec-

tion of the images), but also using a number of mathematical techniques (Chapter 7), with varying

degrees of success. Fourier analysis has been used by other authors to investigate galactic struc-

ture, and is the best method of extracting information such as the spiral pitch angle. It does not

however, provide a single number with which to characterise the galaxy, which was the ultimate

aim of this part of the study. Another technique considered, namely the comparison of the distri-

bution of the edge-lengths of minimal spanning trees constructed using the H II regions as nodes,

suffers from a similar limitation in that it can only be used to compare two galaxies, and has no ab-

solute level. Moreover, it seems excessively sensitive to small differences in structure. In contrast

a multifractal analysis provides a simple spectrum of dimensions, and is sensitive to similar sorts

of structure as the Fourier transform. By choosing a specific scaling regime (i.e. value for q) it is

possible to determine a single number with which to characterise the galactic morphology. Unfor-

tunately, it, like all the methods discussed, works better with model data, and hence the ability to

compare model and observation is restricted.

Nonetheless, the undoubted successes of the model demand that further work be done, to both

extend our understanding of the current model, and to develop it further, with the aim of enhan-

cing its physical realism. As computing power continues to grow, increasingly ambitious models

become possible, and I discuss below (§8.3) some possible approaches which could be adopted.

But first, what remains to be done with the model as it has been described here?
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8.2 Future studies with the current model

The parameter space of the model has almost exclusively been investigated along its axes. This has

enabled the scaling relationships between the parameters and the star formation rate to be determ-

ined, something which would have been difficult to do had more than one parameter been varied in

any given simulation. Significant non-linear behaviour will however, result in cross-correlations

between the effects of the parameters, and this regime remains to be studied. As an example we

have seen how the spiral pattern traced by the star forming regions does not follow the underlying

the SDW (in particular having a different pitch angle) and this is likely to be related to the rotation

curve of the galaxy and the pattern speed of the density wave. By varying the pitch angle of the im-

posed spiral perturbation and its rotation speed to build up a two dimensional mesh of simulations,

it may be possible to disentangle the effect.

An analytic approximation would form an important aid to understanding the behaviour of the

model in response to varying conditions. A zero’th order approximation has already been made,

when in equation (5.1) we derived a characteristic timescale for cloud regrowth after a star form-

ation event has occurred. If we assume that the cluster formation rate is inversely proportional to

this timescale, then we have ψ ∝ Mst
�1=3ν, and we saw in Chapter 4 that in fact ψ ∝ Mst

�0:3 and

ψ ∝ ν0:7. A considerably more sophisticated treatment for the older SSPSF models (Seiden & Ge-

rola 1982) has been done by Neukirch & Feitzinger (1988), but was of considerable complexity,

and it has not as yet been possible to formulate an analytic approximation for the current model.

Further techniques for classifying the structural properties of galaxies also need to be investig-

ated. A number of other estimators for the multifractal dimensions are described in the literature,

and it may prove to be the case that one of these is more robust for the small, noisy data sets with

which we have to work. Furthermore, considering the difficulties experienced with the observa-

tional data sets available (all of which are now quite old), and in particular their lack of spatial dy-

namic range it would be useful to re-map a number of large, nearby galaxies with high resolution

so that the tight knots of ionised hydrogen can be disentangled. A greater range of morphological

classes must also be studied since the current data is biased heavily in favour of late-type spirals,

increasing the difficulty of establishing a correlation between the traditional morphological clas-

sifications (Appendix C) and any new technique.

8.3 Developing the model

Even over the duration of the current project, the computing power available has increased many-

fold. When the current model was originally devised, great care had to be taken to ensure that it

was sufficiently simple such that it would be feasible to calculate the large number of runs required

in a sensible amount of time. As a consequence, it was decided not to model the structure of the

diffuse H I component in any detail, nor to consider the mass interchange between the stars, stellar

remnants and the various phases of the ISM. It is important to note, that we would expect these

effects to play a relatively minor role in the propagating star formation process itself, which is a
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function of the cloud mass and is not dependent on what happens to that material once star form-

ation has occurred, beyond the fact that the cloud is disrupted and is therefore unable to undergo

subsequent star formation events until it has had time to regrow. Hence, the fundamental results

presented above would be largely unchanged.

However, if the spiral density wave also perturbed the H I distribution, then this would make

the spiral arms still more important in their regulation of the star formation rate. Clouds spend a

longer time in the potential minima and are more closely packed there. Both effects already work

to concentrate the star formation along (or just behind) the spiral arms, and if the H I density were

also to be higher in these regions, then this would increase the mass growth rate of the clouds, and

hence further enhance the rate of star formation. If it were also possible to treat the mass lost from

the clouds, either locked up into stars or dispersed into the diffuse ISM, then this would result in

local fluctuations in the H I density.

Furthermore, it is possible that a value for Mst might emerge as a natural consequence of a

fully self-consistent model of the cloud population. It was noted earlier (§2.1.3) that the model

described here does not exhibit a percolation threshold. We might hope that one would however,

return to a model in which the interchange of material between the various phases of the ISM was

simulated, with the onset of percolation defining the best value to be used for Mst.

The H I could be modelled in one of (at least) two ways. The first borrows an idea from Smooth

Particle Hydrodynamic codes (§2.2.2) and would require a particulate representation, with each

particle having one unit of H I gas mass; hence the volume density of particles would specify the

gas density. A full hydrodynamic treatment is not required here – instead the particles would move

in the total galactic gravitational potential (in the same was as the cloud and star particles) and

would therefore respond naturally to the spiral density wave. The H I density at any point would

be given by interpolating from the particle density using a suitable kernel function and hence ac-

cretion of H I by the molecular clouds would be modelled by the cloud removing H I particles as

it orbited; not through inter-particle collisions, but by a smoothed reduction of the local number

density in the wake of the cloud. Similarly, when a cloud was disrupted by star formation, or a star

cluster produced an expanding supershell through multiple supernovae explosions, then the local

number of H I particles would rise, reflecting the increasing quantity of gas in the neutral phase.

The second treatment would distribute the neutral gas across a differentially rotating grid, such

as was used in the earliest propagating star formation models. The total gas mass in each cell would

vary to reflect the local processes occurring as described above. This approach would not however

allow the spiral density wave to be included in a realistic manner, and goes against the philosophy

adopted for the current model. As a consequence, the first approach is preferred.

The material transferred between supershells and the diffuse ISM will be chemically enriched

as a result of having been processed through stars. It is possible to use a simple parameterisation

of this process (Edmunds 1990), and thus the chemical evolution of the galaxy could be modelled.

This also allows the possibility of making the probability of star formation a function of the local

metallicity, potentially opening up a whole range of interesting, new behaviour.
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Finally, the requirement of having to impose a spiral perturbation onto the gravitational po-

tential is often regarded as a weakness of the current formulation. As was mentioned previously

(§3.2.2), a spiral density wave is a natural instability of a galactic-disc system, and would arise

without being imposed if we were to model the collective, gravitational force between the particles.

A first step would be to use a restricted N-body code to calculate a self-consistent overall poten-

tial due to the stellar component (which contributes�90% of the total mass) and then to move the

gas within the derived field, either as is done in the current model, or using one of the enhanced

techniques for modelling the gas described above.

The new model described in this dissertation is, I believe, a valuable addition to the field of galactic

simulations. I have adopted a simple, but not simplistic approach, yet have been able to make a

number of concrete predictions regarding the star formation rate which correspond extremely well

with observational values. The multifractal analysis is encouraging, if as yet not fully developed,

and with ever-increasing computer power, many exciting enhancements of the model are now pos-

sible. Paul Alexander, my supervisor throughout this project, has a number of students continuing

this line of research over the next few years – I hope that they will find the initial studies described

within these pages to be of some use.
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Appendix A

Running a simulation

A.1 Input parameter file

There are a total of 17 input parameters to the model (Table A.1) of which three control the run-

ning of the simulation (source, itmax and dump) whilst the others determine the physics, and

are discussed in greater detail in Chapter 3. The initial parameters are read from a namelist file

(example below), with all quantities specified in ‘model units’ (Table A.2).

$indata
source=’none’
itmax=2500
tstep=0.1
ncloud=32000
dump=200

$end
$gasdyn

a0=0.3
elas=0.7
vmax=0.51

$end
$sspsf

mst=1.0e5
msp=1.0e11
eff=1.0e-3

$end
$spdata

narm=2
omegap=0.14
r0=5.0
p=5.0
ang=20.0
amp=8000.0

$end
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Name Explanation Symbol in text

source Name of existing run to be used as start point —

itmax Number of timesteps in units of tstep �107 yr —

tstep Size of timestep in units of 107 yr ∆t

ncloud Number of cloud particles Nc

dump Time between output files written in units of tstep —

a0 rms velocity dispersion νdisp

elas fraction of cloud energy remaining after collisions η
vmax maximum velocity imparted to clouds by SNR interactions νmax

mst Stimulated SF scaling mass Mst

msp Spontaneous SF scaling mass Msp

eff Fraction of cloud remaining after star formation ε
narm Number of arms in spiral density wave n

omegap Spiral pattern speed Ωp

r0 size of bar r0

p rate of transition from bar to outer regions p

ang Spiral density wave pitch angle i0
amp Spiral density wave amplitude A

Table A.1.

Quantity Model unit ‘standard’ unit

Length L 200 pc = 6:172�1018 m

Time T 107 yr

Mass M M� = 1:989�1030 kg

Linear velocity LT�1 19.56 km s�1

Angular velocity T�1 97.78 km s�1 kpc�1

Gravitational potential L2 T�2 3:825�108 m2 s�2

SDW amplitude L4 T�2 1:60�10�5 pc4 yr�2

Table A.2.
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A.2 Useful UNIX scripts

The following UNIX script chains together a number of simulations, using a new input file for each.

Once all the numbered input files have been processed the simulations halt. On completion of each

run, the data files produced are compressed, with the name of the directory to be compressed being

read from a file written by GALAXY.

#!/bin/csh -f

# 11/01/94 jps18 and tj105 ver 2.1
# 30/09/94 jps18 ver 3.0 SOLARIS
#
# CHAIN
#
# Shell script to chain a series of GALAXY runs together. The
# resulting files are automatically compressed at the end of each
# run. CHAIN can be run on ’mraosa’, ’mraosb’, ’mraose’ and
# ’mraosf’ simultaneously without cross-interference.
# The input files must be in a directory ./infiles.
#
# Chain can be called with an argument (eg. "chain 5 &"). In this
# case execution commences with file ’input?5’.
#

# INITIALISE
set workdir = /home/jps18/model/ver7
cd $workdir
set hidpath = /home/jps18/model/cron

# SET INITIAL FILE NUMBER
if ( $1 >= 1 ) then
set i = $1

else
set i = 1

endif

# SET suffix TO ’a’, ’e’ OR ’f’ AS APPROPRIATE
set suffix=‘/usr/ucb/hostname | awk ’{print substr($1,length,1)}’‘
if (-e $hidpath/num$suffix) rm $hidpath/num$suffix
echo $i > $hidpath/num$suffix

# LOOP WHILE INPUT FILES EXIST
while ( -e ./infiles/input$suffix$i )

# COPY INPUT FILE TO WORKING DIRECTORY
cp ./infiles/input$suffix$i input$suffix
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# RUN SIMULATION RE-DIRECTING STANDARD OUTPUT TO FILE
if ( -e gal$suffix.log ) then
galaxy >>& gal$suffix.log

else
galaxy >& gal$suffix.log

endif

# INCREMENT FILE COUNTER
@ i = ($i + 1)

# OUTPUT NEXT FILE NUMBER TO FILE. THIS INFORMATION IS USED BY
# ’bootcheck’ TO RESTART ’chain’ FROM THE CORRECT PLACE SHOULD THE
# SYSTEM BE REBOOTED.

if ( -e $hidpath/num$suffix) rm $hidpath/num$suffix
echo $i > $hidpath/num$suffix

# COMPRESS FILES. USES HIDDEN FILE ’.gale’ OR ’.galf’ WHICH CONTAINS
# THE PATH OF THE OUTPUT FILES FROM THE LATEST RUN. THIS FILE IS
# WRITTEN BY ’galaxy’.

cd ‘cat .gal$suffix‘
/usr/local/bin/gzip *.dp?? *.im??
cd $workdir
rm .gal$suffix

# FINISH LOOP
end

# WRITE ’-1’ TO THE FILE USED BY ’bootcheck’. THIS INDICATES THAT THE
# CHAIN HAS TERMINATED AND PREVENTS ’bootcheck’ FROM RESTARTING CHAIN
# FROM THE BEGINNING.
if ( -e $hidpath/num$suffix) rm $hidpath/num$suffix
echo ’-1’ > $hidpath/num$suffix

The script below checks to see whether the program GALAXY is still running, and if not whether

it finished normally. If this is not found to be the case (e.g. if the machine has been rebooted), the

GALAXY is automatically restarted.

#!/bin/csh -f

# 11/01/94 jps18 and tj105 ver 1.0
#
# BOOTCHECK
#
# Checks to see whether the machine on which this program is being
# run has been rebooted, and if so restarts the appropriate chain
# starting with the simulation that was interrupted. This script
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# uses the files $hidpath/num? to determine the point from which
# to restart chain.
# This program should be copied to ’cronexec’ after a chain has been
# started on either machine. Once chain has successfully completed
# the file ’cronstop’ should be copied to ’cronexec’, although this
# is not crucial.
# ’cron’ is machine specific, i.e. a ’crontab’ file needs to exist on
# both machines. This file must be the same on both machines and
# have the form
# "0 0,4,8,12,16,20 * * * /home/jps18/model/cron/cronexec".
# This would cause ’cronexec’ to be executed every four hours on
# every day of the week.
#

# SET PATHNAMES FOR START NO. FILES, LOG FILES AND CHAIN RESPECTIVELY
set hidpath = /home/jps18/model/cron
set logpath = /home/jps18/model/ver7
set chpath = /home/jps18/model/ver7

# SET suffix TO ’e’ OR ’f’ AS APPROPRIATE
set suffix = ‘/usr/ucb/hostname | awk ’{print substr($1,length,1)}’‘

# CHECK TO SEE IF ’chain’ IS STILL RUNNING
set test = ‘ps -ef | grep -c chain‘

# IF NOT THEN RESTART
if ( $test == 1 ) then

# DETERMINE STARTING POINT FOR ’chain’
if ( -e $hidpath/num$suffix ) then
set start = ‘cat $hidpath/num$suffix‘

else
set start = 1

endif

# UNLESS ’chain’ HAS FINISHED NORMALLY (IN WHICH CASE start=-1)
# RESTART chain WRITING AN APPROPRIATE MESSAGE TO THE LOG FILE

if ( $start != ’-1’ ) then
echo >> $logpath/gal$suffix.log
echo >> $logpath/gal$suffix.log
echo RESTARTING ‘hostname‘ >> $logpath/gal$suffix.log
date >> $logpath/gal$suffix.log
echo >> $logpath/gal$suffix.log
nice +19 $chpath/chain $start &

endif

endif
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Simulation source code

For convenience, the code is split up into a number of individual files, grouping the subroutines

by their function. The listing below indicates in which file each subroutine can be found. The

main data arrays are all held in common blocks to reduce the memory requirement, and these are

specified in include files to ensure consistency between subroutines, which are listed after the

subroutines. For completeness I have also provided the code for two routines (FPHANDLER and

DCOSRULE) which formed part of my personal library suite. If these libraries are not available,

then it will be necessary to alter the Makefile.

Routines not listed below include G05CAF (Numerical Algorithms Group Limited 1993) and

BSSTEP (Press et al. 1992) since these are widely available. Use has been made of a suite of local

libraries for the file-handling and system specific operations which are also not listed below –

routines performing similar tasks can be expected to exist on all systems.

Subroutines contained in model.f.

c 31/08/94 jps18 ver 7.5
c
c *****************************************************************
c

program galaxy
c
c Galaxy simulation program.
c
c SUBROUTINES AND FUNCTIONS USED:
c init ver 8.4 INITIALISES DATA ARRAYS
c data_read ver 6.1 READS IN DATA FROM PREVIOUS RUNS
c sfr_read ver 1.0 READS IN SFR ETC FROM PREVIOUS RUN
c exists ver 1.0 CHECKS TO SEE IF FILE EXISTS, AND
c UN-ZIPS IF NEEDED
c rotate ver 7.1 ROTATES THE WHOLE GALAXY
c derivs ver 2.0 CALCULATES THE DERIVATIVES OF POS/VEL

135
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c COORDINATES
c dphi ver 2.3 CALCULATES THE PARTIAL DERIVATIVES OF
c THE GALACTIC POTENTIAL
c potential ver 2.1 CALCULATES GALACTIC POTENTIAL
c pot_init ver 1.0 SETS UP PARAMETERS DESCRIBING POTENTIAL
c propagate ver 8.2 IMPLEMENTS SSPSF TO PROPAGATE STAR
c FORMATION
c cloud_mass ver 2.1 INCREMENTS CLOUD MASS BY ACCRETION
c h1density ver 1.0 DISTRIBUTION OF HI
c nearneigh ver 5.1 CALCULATES NEIGHBOURING POINTS
c neighgrid ver 1.2 SETS UP GRID REQUIRED BY nearneigh
c cloud_cloud ver 1.3 INTER-CLOUD COLLISIONS
c cloud_snr ver 2.2 CLOUD/SNR INTERACTIONS
c energy_bal ver 1.1 ADJUSTS CLOUD MEAN FREE PATH TO
c MAINTAIN DISC TEMPERATURE
c equilibrate ver 1.2 ALLOWS SYSTEM TO DYNAMICALLY RELAX
c vcirc ver 1.0 CALCULATES CIRCULAR SPEED FOR EACH CLOUD
c output ver 2.5 FILE HANDLING AND DATA OUTPUT
c geom_entropy ver 3.1 CALCULATES GEOMETRIC ENTROPY OF
c MOLECULAR CLOUD DISTRIBUTION
c fphandler ver 1.1 FLOATING POINT EXCEPTION HANDLER
c dcosrule ver 1.0 COSINE RULE
c
c ROUTINES USED FROM ’NUMERICAL RECIPES’
c bsstep, mmid, pzextr, spline, splint
c
c ROUTINES USED FROM NAG LIBRARY
c g05ccf, g05caf, g05ddf
c
c ROUTINE USED FROM IOLIB
c io_system
c
c INCLUDE FILES REQUIRED
c /home/jps18/model/ver7/common.inc
c /home/jps18/model/ver7/header.inc
c /home/jps18/model/ver7/neighblk.inc
c /home/jps18/model/ver7/potential.inc
c
c *****************************************************************
c
c MAIN DATA ARRAY DECLARATIONS

include ’common.inc’

c NAMELIST DECLARATIONS

include ’header.inc’
namelist /indata/ source,itmax,tstep,dump,ncloud
namelist /gasdyn/ a0,elas,vmax
namelist /sspsf/ mst,msp,eff
namelist /spdata/ narm,omegap,r0,p,ang,amp



137

c LOCAL DECLARATIONS

integer dunit, ! DUMP FILE UNIT
+ iunit, ! IMAGE FILE UNIT
+ sunit, ! SFR FILE UNIT
+ vernum, ! CURRENT VERSION NUMBER
+ verold, ! SOURCE FILE VERSION NUMBER
+ nptsav, ! NO. OF POINTS IN SOURCE FILE
+ icount, ! COUNTER
+ imnum, ! IMAGE FILE NUMBER
+ len,chr_lenb, ! LENGTH OF HOSTNAME
+ iflag, ! SUBROUTINE RETURN CODE
+ i ! COUNTER
parameter (vernum=701)
real atime, ! TOTAL SIMULATION TIME

+ otime, ! OUTPUT/PROPAGATION TIME
+ stime, ! EQUILIBRATION TIME
+ source_time, ! ELAPSED SOURCE TIME
+ elap, ! TOTAL ELAPSED RUN TIME
+ runtime(2), ! USER AND SYSTEM RUN TIMES
+ sfr, ! STAR FORMATION RATE
+ vrms, ! INITIAL RMS VEL. DISPERSION
+ vact, ! ACTUAL RMS VEL DISPERSION
+ xrad, ! EFFECTIVE CLOUD RADIUS

c FOR COLLISIONS
+ entropy, ! GEOMETRICAL ENTROPY
+ dum1(3000),dum2(3000), ! } DUMMY ARRAYS FOR READING
+ dum3(3000),dum4(3000), ! } OLD SFR DATA
+ dum5(3000) ! }
character path*48, ! SOURCE PATH

+ host*6, ! HOST MACHINE
+ sourcesav*12 ! SAVED NAME OF SOURCE FILE

c FUNCTION DECLARATIONS

integer hostnm ! RETURNS NAME OF HOST MACHINE
c integer ieee_handler,fphandler
c external fphandler

real etime ! ELAPSED RUN TIME
logical exists ! CHECKS TO SEE IF FILE EXISTS

data iunit,dunit,sunit /10,11,12/
data iflag /0/

c
c -----------------------------------------------------------------
c
c INITIALISE FLOATING POINT EXCEPTION HANDLER (DEBUGGING)
c
c iflag = ieee_handler (’set’,’common’,fphandler)
c if (iflag.ne.0) then
c print*,’Couldn’’t establish fp signal handler’
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c stop
c endif

c INITIALISE RANDOM NUMBER GENERATOR

call g05ccf

c READ INPUT DATA

iflag = hostnm(host)
len = chr_lenb(host)
open (sunit,file=’input’//host(len:len),status=’old’,
+ form=’formatted’)
read (sunit,indata)
read (sunit,gasdyn)
read (sunit,sspsf)
read (sunit,spdata)
close (sunit)

c CHECK FOR ERRONEOUS INPUT

if (ncloud.gt.nclmax) then
print*,’Insufficient array size (cloud)’
stop ’ERROR TERMINATION’

endif

c INITIALISE PARAMETERS FOR POTENTIAL

call pot_init

c SET UP INITIAL CONDITIONS IF STARTING FROM SCRATCH

if (source(1:4).eq.’none’) then
call init
call equilibrate (vrms,stime,iflag)
call geom_entropy (ncloud,entropy)
if (iflag.ne.0) stop ’ERROR TERMINATION’
xrad = 0.07
sfr = 0.0
source_time = 0.0

c OR INITIALISE USING PREVIOUS RUN

else
sourcesav = source

call sfr_read (source,sunit,dum1,dum2,dum3,dum4,dum5,iflag)
source = sourcesav

path = ’/home/jps18/model/data/’//source//’/’//source
if (.not.exists(path))
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+ stop ’*ERROR* Source file does not exist’
open (iunit,file=path,status=’old’,form=’unformatted’)
call data_read (iunit,verold,iflag)
close (iunit)
if (iflag.ne.0) stop ’**ERROR** in data_read’
source = sourcesav

sfr = dum2(itmax+1)
vrms = 0.0
do 10 i=1,itmax
vrms = vrms + dum3(itmax)

10 continue
vrms = vrms/float(itmax)
xrad = dum4(itmax+1)
entropy = dum5(itmax+1)
source_time = float(itmax)*tstep

c RE-READ CURRENT PARAMETERS

nptsav = ncloud
open (sunit,file=’input’//host(len:len),status=’old’,

+ form=’formatted’)
read (sunit,indata)
read (sunit,gasdyn)
read (sunit,sspsf)
read (sunit,spdata)
close (sunit)
ncloud = nptsav

endif

c SUBROUTINE propagate COUNTS DOWNWARDS THROUGH ARRAY stage.
c IF THE AGE OF THE STAR IS LESS THAN 2.0 THEN THE LOOP IS
c EXECUTED. TO JUMP OUT OF THE LOOP WHEN THE ZERO’TH ELEMENT
c IS REACHED, SET THE ZERO’TH AGE LARGE.

stage(0) = 9999

c INITIALISE OUTPUT

call output (dunit,iunit,sunit,0.0,0,vernum,iflag)
if (iflag.ne.0) stop ’**ERROR TERMINATION**’
icount = 0
imnum = 1
write (sunit,510) source_time,sfr,vrms,xrad,entropy

c MAIN LOOP

do 100 i=1,itmax
otime = tstep*float(i) + source_time
atime = stime + otime
call rotate (ncloud,atime,0,tstep,iflag)
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call rotate (nstar,atime,1,tstep,iflag)
call vcirc (ncloud,atime)
call propagate (ncloud,nstar,tstep,mst,msp,eff,sfr,iflag)
call cloud_cloud (xrad,iflag)
call energy_bal (ncloud,vrms,vact,xrad)
call geom_entropy (ncloud,entropy)

if (iflag.ne.0) then
print*,’ERROR TERMINATION - output dumped to file’
print*,’Terminated after ’,i,’ time steps’
goto 1000

endif

write (sunit,510) otime,sfr,vact,xrad,entropy
510 format (5(1pe12.5,3x))

icount = icount + 1
if (icount.eq.dump) then
call output (dunit,iunit,sunit,otime,imnum,vernum,iflag)
imnum = imnum + 1
icount = 0

endif
100 continue

c WRITE FINAL DATA TO FILES

1000 continue
if (icount.ne.0) call output (dunit,iunit,sunit,
+ tstep*float(itmax),imnum,vernum,iflag)
close (dunit)
close (iunit)
close (sunit)

c DETERMINE TIME USED FOR THIS RUN

elap = etime(runtime)
write (*,600) elap/3600.0,runtime(1)/3600.0,runtime(2)

600 format (/’ Total elapsed time = ’,f5.2,’hr’/
+ ’ User time = ’,f5.2,’hr’/
+ ’ System time = ’,f5.1,’s’/)

end

Subroutines contained in collisions.f.

c 21/12/93 jps18 ver 1.3
c
c *****************************************************************
c

subroutine cloud_cloud (xrad,iflag)
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c
c If two clouds are within XRAD of one another then a collision
c is deemed to have occurred. The collisions are dealt with
c in the manner described in my notebook (30/08/93).
c
c INPUT VARIABLES:
c xrad - effective cloud radius
c
c OUTPUT VARIABLE:
c iflag - return status code
c
c *****************************************************************
c

include ’common.inc’
include ’neighblk.inc’
include ’header.inc’

integer nneigh, ! NO. OF PARTICLES WITHIN xrad
+ iflag, ! SEE ABOVE
+ i,j ! LOOP COUNTERS
real xrad, ! MEAN FREE PATH

+ sepdot, ! TIME DERIVATIVE OF SEPARATION
c OF PARTICLES

+ angvel, ! ANGULAR SPEED OF CLOUD
+ r1,r2, ! RADII
+ r1d,r2d, ! TIME DERIVATIVES OF RADII
+ t1d,t2d, ! TIME DERIVATIVES OF AZIMUTH
+ q1,q2,q3,q4,q5 ! TEMPORARY VALUES

c
c -----------------------------------------------------------------
c
c SET UP NEAR-NEIGHBOUR GRIDS IF NECESSARY, ADJUSTING GRID SIZE

if (gsize.lt.xrad) then
gsize = xrad
call neighgrid (ncloud,iflag)
do while (iflag.ne.0)
if ((iflag.eq.1).or.(iflag.eq.2)) gsize = gsize*1.2
iflag = 0
call neighgrid (ncloud,iflag)
if (iflag.eq.3) then
print*,’*ERROR* gsize too large (CLOUD_CLOUD)’
return

endif
enddo

endif

c CYCLE THROUGH ALL CLOUDS, TRANSFORMING TO LOCAL REST FRAME

do 10 i=1,ncloud
r1 = cloud(1,i)
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call nearneigh(r1,cloud(2,i),cloud(3,i),0.0,xrad,nneigh,iflag)
if (iflag.ne.0) return
angvel = vrot(i)/r1 ! NEED vrot TO BE UP TO DATE
cloud(5,i) = cloud(5,i) - angvel

c IF CLOUDS CLOSER THAN xrad THEN COLLISION MIGHT HAVE OCCURRED
c - CHECK TO SEE IF APPROACHING IN LOCAL REST FRAME

do 20 j=1,nneigh
r1d = cloud(4,i)
t1d = cloud(5,i)
r2 = cloud(1,neigh(j))
q1 = cloud(2,neigh(j)) - cloud(2,i)
q2 = cos(q1)
q3 = r1*r2
q4 = cloud(3,neigh(j)) - cloud(3,i)
q5 = sin(q1)
r2d = cloud(4,neigh(j))
cloud(5,neigh(j)) = cloud(5,neigh(j)) - angvel
t2d = cloud(5,neigh(j))
sepdot = r1*r1d + r2*r2d - r1d*r2*q2 - r1*r2d*q2 + q3*t1d*q5

+ - q3*t2d*q5 + cloud(6,i)*q4 - cloud(6,neigh(j))*q4

c IF CLOUDS ARE APPROACHING THEN SWAP VELOCITY VECTORS,
c AND REDUCE MAGNITUDE BY FACTOR elas

if (sepdot.lt.0.0) then
q1 = cloud(4,i)
q2 = cloud(5,i)
q3 = cloud(6,i)
cloud(4,i) = elas*cloud(4,neigh(j))
cloud(5,i) = elas*cloud(5,neigh(j))
cloud(6,i) = elas*cloud(6,neigh(j))
cloud(4,neigh(j)) = elas*q1
cloud(5,neigh(j)) = elas*q2
cloud(6,neigh(j)) = elas*q3

endif

c RETURN TO INERTIAL FRAME

cloud(5,neigh(j)) = cloud(5,neigh(j)) + angvel
20 continue

cloud(5,i) = cloud(5,i) + angvel
10 continue

return
end
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c 21/12/93 jps18 ver 2.2
c
c *****************************************************************
c

subroutine cloud_snr (istar,icloud,x)
c
c Given that a cloud (specified by ICLOUD) has encountered a
c supernova remnant centred on ISTAR, this subroutine
c calculates the velocity impulse the cloud receives from
c the shock wave.
c
c INPUT VARIABLES:
c istar - star/SN number
c icloud - cloud number
c x - distance between cloud and SN
c
c *****************************************************************
c

include ’common.inc’
include ’header.inc’

integer icloud, ! SEE ABOVE
+ istar ! SEE ABOVE
real x, ! SEE ABOVE

+ drdot, ! }
+ dthtdot, ! } CHANGE IN VEL COMPONENTS
+ dzdot, ! }
+ a1,a2 ! TEMPORARY VALUE
real*8 v, ! SPEED GIVEN TO CLOUD

+ r1,r2, ! RADIAL COORDINATE OF SNR/CLOUD
+ xd, ! DISTANCE BETWEEN CLOUD AND SN
+ q1,q2,q3,q4,q5,q6 ! TEMPORARY VALUES

c
c -----------------------------------------------------------------
c
c PREVENT ERRORS DUE TO x=0

if (x.lt.1.e-6) x = 1.e-6

c DETERMINE MAGNITUDE OF VELOCITY IMPULSE

v = dble(min(vmax,0.1/x))

r1 = dble(star(1,istar))
r2 = dble(cloud(1,icloud))
xd = dble(x)

c USE ALGORITHM DESCRIBED IN NOTEBOOK TO CALC. INCREMENTS
c IN VELOCITY COORDS

q1 = dble(cloud(3,icloud)-star(3,istar))/xd
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q2 = 1.0d0 - q1*q1
q3 = dsqrt(q2)
q4 = (r2*r2 + xd*xd*q2 - r1*r1)/(2.d0*r2*xd*q3)
if (abs(q4).gt.1.0d0) q4 = 1.0d0 ! ROUNDING ERRORS
q5 = dsqrt(1.0d0 - q4*q4)
q6 = v*q3
a1 = cloud(2,icloud) - star(2,istar)
a2 = sign(1.0,a1)

drdot = sngl(q4*q6)
dthtdot = a2*sngl(q5*q6/r2)
dzdot = sngl(v*q1)

cloud(4,icloud) = cloud(4,icloud) + drdot
cloud(5,icloud) = cloud(5,icloud) + dthtdot
cloud(6,icloud) = cloud(6,icloud) + dzdot

return
end

c 14/10/93 jps18 ver 1.1
c
c *****************************************************************
c

subroutine energy_bal (ncloud,vrms,v,xrad)
c
c Computes mean dispersion velocity for clouds within an
c annulus from RMIN to RMAX, and uses this to adjust XRAD
c such that the system attains thermal equilibrium.
c
c INPUT VARIABLES:
c ncloud - number of cloud particles
c xrad - initial value for effective cloud radius
c vrms - desired value for the rms dispersion velocity
c
c OUTPUT VARIABLES:
c v - achieved rms dispersion velocity
c xrad - adjusted value for effective cloud radius
c
c CONTROL VARIABLES:
c rmin - } limiting radii of annulus
c rmax - }
c
c *****************************************************************
c

include ’common.inc’
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integer ncloud, ! SEE ABOVE
+ icount,
+ i ! LOOP COUNTER
real xrad, ! SEE ABOVE

+ vrms, ! SEE ABOVE
+ rmin,rmax, ! LIMITING RADII OF ANNULUS
+ v ! RMS SPEED

data rmin,rmax / 10.0, 50.0 /
c
c -----------------------------------------------------------------
c

v = 0.0
icount = 0

c CALCULATE RMS VEL. DISPERSION WITHIN ANNULUS

do 10 i=1,ncloud
if ((cloud(1,i).ge.rmin).and.(cloud(1,i).le.rmax)) then
v = v + cloud(4,i)**2 + cloud(6,i)**2 +

+ ((cloud(1,i)*cloud(5,i))-vrot(i))**2
icount = icount + 1

endif
10 continue

v = sqrt(v/float(icount))

c SCALE EFFECTIVE CLOUD RADIUS TO MAINTAIN ENERGY STABILITY

xrad = xrad*(v/vrms)**1.7

return
end

Subroutines contained in data read.f.

c 28/01/94 jps18 ver 7.0
c
c *****************************************************************
c

subroutine data_read (dunit,version,iflag)
c
c Reads data from opened main data file (on unit DUNIT)
c according to the format specified by VERSION. This
c subroutine can deal with data written in either ’7’
c or ’701’ format (see notebook 28/01/94).
c
c INPUT VARIABLE:
c dunit - file unit from which data is to be read
c
c OUTPUT VARIABLES:
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c version - format version number
c iflag - return status code
c
c *****************************************************************
c

include ’common.inc’
include ’header.inc’

integer dunit, ! FILE UNIT
+ version, ! FORMAT SPECIFIER
+ iflag, ! STATUS RETURN CODE
+ i,j ! COUNTERS

c
c -----------------------------------------------------------------
c
c DETERMINE FILE FORMAT NUMBER

read (dunit,err=500) version
rewind (dunit)

c LATEST FILE FORMAT

if (version.eq.701) then
read (dunit,err=500) version,source,ncloud,nstar,itmax,

+ tstep,a0,elas,vmax,mst,msp,eff,narm,
+ omegap,r0,p,ang,amp

do 10 i=1,ncloud
read (dunit,err=500) (cloud(j,i),j=1,7),clage(i)

10 continue
do 20 i=1,nstar
read (dunit,err=500) (star(j,i),j=1,6),stage(i)

20 continue
iflag = 0
return

c OTHER SUFFICIENTLY SIMILAR FORMATS

else if (version.eq.7) then
read (dunit,err=500) version,source,ncloud,nstar,itmax,tstep,

+ a0,mst,msp,eff,narm,omegap,r0,p,ang,amp
do 30 i=1,ncloud
read (dunit,err=500) (cloud(j,i),j=1,7),clage(i)

30 continue
do 40 i=1,nstar
read (dunit,err=500) (star(j,i),j=1,6),stage(i)

40 continue
elas = 0.7 ! } USED CONSTANT VALUES FOR THESE PARAMETERS
vmax = 0.51 ! }
iflag = 0
return
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c DEFINITELY NON-COMPATIBLE FORMATS

else
print*,’Incorrect version (DATA_READ)’
iflag = 1
return

endif

c ERROR RETURN

500 print*,’Error on reading data (DATA_READ)’
iflag = 2
return

end

c 23/03/94 jps18 ver 1.0
c
c *****************************************************************
c

subroutine sfr_read (file,sunit,t,sfr,vrms,xrad,ent,iflag)
c
c Reads data from .sfr and .ent files where appropriate.
c All file handling is done within the subroutine. The
c subroutine is able to cope with the old and new style files.
c
c INPUT VARIABLES:
c file - galaxy name
c sunit - file unit to be used
c
c OUTPUT VARIABLES:
c t - times
c sfr - star formation rates
c vrms - mean cloud speeds
c xrad - cloud cross-sections
c ent - entropies
c iflag - return status code
c
c *****************************************************************
c

include ’header.inc’

integer sunit, ! SEE ABOVE
+ iflag, ! SEE ABOVE
+ itype, ! FILE TYPE
+ ntime, ! NUMBER OF DATA POINTS IN FILE
+ idum, ! DUMMY INTEGER
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+ vernum, ! VERSION NUMBER
+ i ! LOOP COUNTER
real t(*), ! TIME ARRAY
+ sfr(*), ! SFR ARRAY
+ vrms(*), ! vrms ARRAY
+ xrad(*), ! xrad ARRAY
+ ent(*), ! ENTROPY ARRAY
+ lnn ! LOG OF NUMBER OF CLOUDS
character file*12, ! SEE ABOVE
+ path*52, ! FULL PATH
+ cdum*1 ! DUMMY CHARACTER
logical exists ! FUNCTION

c
c -----------------------------------------------------------------
c

path = ’/home/jps18/model/data/’//file//’/’//file//’.sfr’

c CHECK THAT FILE EXISTS

if (.not.exists(path)) then
print*,’**ERROR** sfr file does not exist (SFR_READ)’
iflag = 1
return

endif

c OPEN FILE AND DETERMINE FORMAT

open (sunit,file=path,form=’formatted’,status=’read’)
read (sunit,’(a1)’,err=999) cdum
if (cdum.eq.’%’) then
itype = 0

else
itype = 1

endif
rewind (sunit)

c OLD STYLE FILES

if (itype.eq.0) then

c READ IN SFR DATA

read (sunit,500,err=999) ntime,idum
500 format (8x,i4/8x,i1)

do 10 i=1,ntime
read (sunit,510,err=999) t(i),sfr(i),vrms(i),xrad(i)

10 continue
510 format (4(1pe12.5,3x))

read (sunit,520,err=999) source,ncloud,nstar,itmax,tstep,
+ a0,elas,vmax

520 format (a12/3(i5/),3(1pe11.4/),1pe11.4)
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if (elas.lt.1.0) then
read (sunit,530,err=999) mst,msp,eff,narm,

+ omegap,r0,p,ang,amp
530 format (3(1pe11.4/),i1/5(1pe11.4/))

else ! REALLY OLD FILES, WITHOUT elas AND vmax SET
mst = elas
msp = vmax
elas = 0.7
vmax = 0.51
read (sunit,540,err=999) eff,narm,omegap,r0,p,ang,amp

540 format (1pe11.4/i1/5(1pe11.4/))
endif

c READ IN ENTROPY DATA AND CONVERT TO CORRECT FORM

path = ’/home/jps18/model/data/’//file//’/’//file//’.ent’
if (exists(path)) then
lnn = log(float(ncloud))
open (sunit,file=path,form=’formatted’,status=’read’)
read (sunit,’(i5)’,err=999) idum
do 20 i=2,ntime
read (sunit,’(1pe12.5)’,err=999) ent(i)
ent(i) = lnn + ent(i)/float(ncloud)

20 continue
ent(1) = ent(2)
close (sunit)

else
do 30 i=1,ntime
ent(i) = 0.0

30 continue
endif

c OR NEW STYLE FILES

else

read (sunit,’(i5)’,err=999) vernum
read (sunit,550) source,ncloud,nstar,itmax,tstep,a0,elas,

+ vmax,mst,msp,eff,narm,omegap,r0,p,ang,amp
550 format (a12/3(i5/),7(1pe11.4/),i1/5(1pe11.4/))

do 40 i=1,itmax+1
read (sunit,560,err=999) t(i),sfr(i),vrms(i),xrad(i),ent(i)

40 continue
560 format (5(1pe12.5,3x))

close (sunit)

endif
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return

c ERROR ON READING

999 print*,’**ERROR** on reading data (SFR_READ)’
iflag = 2
return

end

c 19/04/94 jps18 ver 1.0
c
c *****************************************************************
c

function exists (path)
c
c Checks to see if file exists, returning .true. if it does.
c If the file is compressed then is is first unzipped.
c
c INPUT VARIABLE:
c path - full path name of file to be checked
c
c OUTPUT VARIABLE:
c exists - set .true. if file exists, .false. otherwise
c
c *****************************************************************
c

integer iflag ! RETURN STATUS CODE
character path*(*) ! SEE ABOVE
logical exists ! SEE ABOVE

c
c -----------------------------------------------------------------
c
c CHECK TO SEE IF FILE EXISTS

inquire (file=path,exist=exists)

c IF NOT THEN SEE IF IT EXISTS IN ZIPPED FORM

if (.not.exists) then
inquire (file=path//’.gz’,exist=exists)

c UNCOMPRESS FILE IF NECESSARY

if (exists) then
write (*,*) ’Uncompressing data file ...’
call io_system (’gunzip ’//path//’.gz’,iflag)
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if (iflag.ne.0) then
write (*,*) ’Problem encountered’
exists = .false.

endif
endif

endif

return
end

Subroutines contained in entropy.f.

c 23/03/94 jps18 ver 3.1
c
c *****************************************************************
c

subroutine geom_entropy (ncloud,entropy)
c
c Calculates the geometric entropy of the galactic molecular
c cloud by considering the integral of f(ln f), where f is
c the phase space distribution function. The DF is not
c available to us, so instead the coarse-grained DF is
c determined using a planar 1kpc grid of 1024 cells.
c If the clouds have already been gridded on scales of 1.0 or
c 5.0 then the existing grid is used. Otherwise, a new grid
c is calculated. Subroutine NEIGHGRID is not called since
c with a 5.0 grid the number of particles is likely to be
c greater than NEIGHMAX - a problem if nearest neighbours are
c being investigated, but not if only the number of points in
c a cell is required.
c
c INPUT VARIABLE:
c ncloud - number of cloud particles
c
c OUTPUT VARIABLE:
c entropy - calculated value of geometric entropy
c
c *****************************************************************
c

include ’common.inc’
include ’neighblk.inc’

integer ncloud, ! SEE ABOVE
+ ncell, ! SIZE OF ENTROPY GRID
+ nx,ny, ! GRID INDICES
+ ishift, ! OFFSET OF ENTROPY GRID
+ i,j,k,l,m ! LOOP COUNTERS
parameter (ncell=32)
integer egrid(ncell,ncell) ! ENTROPY GRID
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real entropy, ! SEE ABOVE
+ half ! HALF SIZE OF GRID

intrinsic float,log
c
c -----------------------------------------------------------------
c
c ZEROISE ARRAY

do 5 i=1,ncell
do 6 j=1,ncell
egrid(j,i) = 0

6 continue
5 continue

c USE PREVIOUSLY EXISTING GRID IF POSSIBLE

if (gsize.eq.1.0) then
do 10 j=1,ncell
do 20 i=1,ncell
do 30 k=1,5
do 40 l=1,5
do 50 m=1,ncellz
egrid(i,j)=egrid(i,j)+ngrid(5*(i-1)+l,5*(j-1)+k,m)

50 continue
40 continue
30 continue
20 continue
10 continue

else if (gsize.eq.5.0) then
ishift = (ncellx-ncell)/2
do 60 j=1,ncell
do 70 i=1,ncell
do 80 m=1,ncellz
egrid(i,j) = egrid(i,j)+ngrid(ishift+i,ishift+j,m)

80 continue
70 continue
60 continue

c OTHERWISE SET UP NEW GRID

else
half = float(ncell/2)
do 90 i=1,ncloud
nx = int(cloud(1,i)*cos(cloud(2,i))/5.0 + half) + 1
ny = int(cloud(1,i)*sin(cloud(2,i))/5.0 + half) + 1
if (nx.ge.1.and.nx.le.ncell.and.ny.ge.1.and.ny.le.ncell)

+ egrid(nx,ny) = egrid(nx,ny) + 1
90 continue

endif
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c CALCULATE ENTROPY

entropy = 0.0

do 100 i=1,ncell
do 110 j=1,ncell
if (egrid(j,i).gt.0) then

entropy=entropy+float(egrid(j,i))*log(float(egrid(j,i)))
endif

110 continue
100 continue

entropy = log(float(ncloud)) - entropy/float(ncloud)

return
end

Subroutines contained in init.f.

c 26/10/93 jps18 ver 8.4
c
c *****************************************************************
c

subroutine init
c
c Initialises the main data arrays. The clouds are placed
c across the disc according to the radial molecular hydrogen
c distribution, with uniform azimuthal distribution and a
c Gaussian z-dependence. Each cloud is given a random velocity
c taken from a Gaussian distribution plus the appropriate
c circular speed. The mass of each cloud is taken from a power
c law. To seed the star formation a small fraction of clouds
c are given associated star clusters, which will propagate
c star formation on the first time step.
c
c CONTROL VARIABLES:
c zhgt - scale length for z-distribution of particles
c drv - radial spacing of escape speed table
c ydist - radial distribution of molecular clouds
c
c *****************************************************************
c

include ’common.inc’
include ’header.inc’

integer ipt, ! POINT COUNTER
+ ndist, ! POINT DIST. ARRAY SIZE
+ nvmax, ! ESCAPE VEL. TABLE SIZE
+ isum, ! DUMMY COUNTER
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+ iage, ! INITIAL AGE OF STARS
+ i,j ! LOOP COUNTERS
parameter (ndist=80,nvmax=150)
real r, ! RADIUS
+ vesc(nvmax), ! ESCAPE VELOCITY
+ rdist(ndist), ! RADII FOR DISTRIBUTION TABLE
+ ydist(ndist), ! RADIAL DISTRIBUTION TABLE
+ v, ! TOTAL VELOCITY OF PARTICLE
+ phi0,phi1, ! POTENTIAL AT POINT
+ dr2, ! HALF SPACING BETWEEN DIST RINGS
+ drv, ! RADIAL SPACING FOR ESCAPE

c VELOCITY TABLE
+ rlow, ! INNER RADIUS OF DIST RING
+ ampsav, ! SAVED VALUE FOR SPIRAL AMP.
+ rnd, ! RANDOM NUMBER
+ sum, ! DUMMY COUNTER
+ pi2
parameter (pi2=6.2831853071796)
real*8 g05caf,g05ddf,dum, ! RANDOM NUMBER GENERATORS
+ da0, ! WIDTH OF VELOCITY DISTRIBUTION
+ zhgt, ! Z-DISTRIBUTION SCALE LENGTH
+ voffset ! OFFSET IN MEAN FOR

c Z-VELOCITY DISTRIBUTION

external g05caf,g05ccf,g05ddf,potential
intrinsic sngl,dble,dsqrt,float,abs

data drv /0.5/
data zhgt /1.0d0/

data rdist /3.90625E-01,1.17188E+00,1.95312E+00,2.73438E+00,
+ 3.51562E+00,4.29688E+00,5.07812E+00,5.85938E+00,
+ 6.64062E+00,7.42188E+00,8.20312E+00,8.98438E+00,
+ 9.76562E+00,1.05469E+01,1.13281E+01,1.21094E+01,
+ 1.28906E+01,1.36719E+01,1.44531E+01,1.52344E+01,
+ 1.60156E+01,1.67969E+01,1.75781E+01,1.83594E+01,
+ 1.91406E+01,1.99219E+01,2.07031E+01,2.14844E+01,
+ 2.22656E+01,2.30469E+01,2.38281E+01,2.46094E+01,
+ 2.53906E+01,2.61719E+01,2.69531E+01,2.77344E+01,
+ 2.85156E+01,2.92969E+01,3.00781E+01,3.08594E+01,
+ 3.16406E+01,3.24219E+01,3.32031E+01,3.39844E+01,
+ 3.47656E+01,3.55469E+01,3.63281E+01,3.71094E+01,
+ 3.78906E+01,3.86719E+01,3.94531E+01,4.02344E+01,
+ 4.10156E+01,4.17969E+01,4.25781E+01,4.33594E+01,
+ 4.41406E+01,4.49219E+01,4.57031E+01,4.64844E+01,
+ 4.72656E+01,4.80469E+01,4.88281E+01,4.96094E+01,
+ 5.03906E+01,5.11719E+01,5.19531E+01,5.27344E+01,
+ 5.35156E+01,5.42969E+01,5.50781E+01,5.58594E+01,
+ 5.66406E+01,5.74219E+01,5.82031E+01,5.89844E+01,
+ 5.97656E+01,6.05469E+01,6.13281E+01,6.21094E+01/
data ydist /0.00000E+00,0.00000E+00,0.00000E+00,0.00000E+00,
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+ 0.00000E+00,0.00000E+00,0.00000E+00,0.00000E+00,
+ 1.73721E-04,7.71931E-04,1.65283E-03,2.70761E-03,
+ 3.81031E-03,4.86009E-03,5.74095E-03,6.36298E-03,
+ 6.77460E-03,7.08021E-03,7.38691E-03,7.65134E-03,
+ 7.75802E-03,7.61172E-03,7.55639E-03,8.28175E-03,
+ 1.05588E-02,1.43880E-02,1.88267E-02,2.27314E-02,
+ 2.53732E-02,2.69629E-02,2.78643E-02,2.84570E-02,
+ 2.90317E-02,2.98905E-02,3.12551E-02,3.27200E-02,
+ 3.36040E-02,3.32163E-02,3.14940E-02,2.87994E-02,
+ 2.55526E-02,2.23510E-02,1.99851E-02,1.93153E-02,
+ 2.05766E-02,2.28049E-02,2.48201E-02,2.56864E-02,
+ 2.54568E-02,2.43963E-02,2.27656E-02,2.06799E-02,
+ 1.82071E-02,1.54465E-02,1.27670E-02,1.07215E-02,
+ 9.87653E-03,1.01890E-02,1.09500E-02,1.13751E-02,
+ 1.11209E-02,1.06762E-02,1.06477E-02,1.13459E-02,
+ 1.20874E-02,1.19541E-02,1.02233E-02,7.51224E-03,
+ 4.95050E-03,3.62271E-03,3.48488E-03,3.77504E-03,
+ 3.70218E-03,3.03421E-03,2.13899E-03,1.42936E-03,
+ 1.10643E-03,9.79321E-04,8.07080E-04,3.36053E-04/

c
c -----------------------------------------------------------------
c
c CALCULATE ESCAPE VELOCITY TABLE

ampsav = amp
amp = 0.0
do 10 i=1,nvmax
r = drv*float(i)
call potential (r,0.0,0.0,0.0,phi1)
vesc(i) = sqrt(-2.0*phi1)

10 continue
amp = ampsav

c DISTRIBUTE POINTS ACROSS GALAXY

isum = 0
dr2 = 0.5*(rdist(2)-rdist(1))
do 30 i=1,ndist
rlow = rdist(i) - dr2
ipt = int(ydist(i)*ncloud + 0.5)
do 20 j=1,ipt
cloud(1,isum+j) = rlow + 2.0*dr2*sngl(g05caf(dum))
cloud(2,isum+j) = pi2*sngl(g05caf(dum))
cloud(3,isum+j) = sngl(g05ddf(0.0d0,zhgt))

20 continue
isum = isum + ipt

30 continue
ncloud = isum

c SET INITIAL VELOCITIES FROM GAUSSIAN DISTRIBUTION
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da0 = dble(a0)
call vcirc (ncloud,0.0) ! CALCULATE LOCAL CIRCULAR SPEEDS

do 40 i=1,ncloud
500 cloud(4,i) = sngl(g05ddf(0.0d0,da0))

cloud(5,i) = (vrot(i)+sngl(g05ddf(0.0d0,da0)))/cloud(1,i)
call potential (cloud(1,i),cloud(2,i),0.0,0.0,phi0)
call potential (cloud(1,i),cloud(2,i),cloud(3,i),0.0,phi1)
if (phi1-phi0.le.0.0) then ! DUE TO ROUNDING ERRORS
voffset = 0.0

else
voffset = dble(sqrt(phi1-phi0))

endif
if (cloud(3,i).ge.0.0) then
cloud(6,i) = sngl(g05ddf(-voffset,da0))

else
cloud(6,i) = sngl(g05ddf(voffset,da0))

endif
v = cloud(4,i)**2+cloud(5,i)**2+cloud(6,i)**2
if (v.gt.vesc(int(cloud(1,i)/drv))) goto 500

c SET INITIAL MASSES AND AGES OF MOLECULAR CLOUDS

rnd = sngl(g05caf(dum))
do while (rnd.gt.0.772)
rnd = sngl(g05caf(dum))

enddo
cloud(7,i) = 6.39e4*(rnd)**(-0.633)
clage(i) = int(2.15*(cloud(7,i)**0.3333333) + 0.5)

40 continue

c ASSOCIATE 0.3% OF CLOUDS WITH NEW STAR CLUSTERS

iage = 0
sum = 0.0
do while (sum.lt.1.0)
iage = iage + 1
sum = sum + tstep

enddo
nstar = int(0.003*float(ncloud))
do 50 i=1,nstar
ipt = int(dble(ncloud)*g05caf(dum)) + 1
do 60 j=1,6
star (j,i) = cloud(j,ipt)

60 continue
stage(i) = iage

50 continue

return
end
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c 18/10/93 jps18 ver 1.2
c
c *****************************************************************
c

subroutine equilibrate (vrms,stime,iflag)
c
c Allows the system to relax to dynamic equilibrium,
c and then calculates the rms velocity dispersion.
c
c OUTPUT VARIABLES:
c vrms - rms velocity dispersion
c stime - start time for rest of simulation
c iflag - return status code
c
c *****************************************************************
c

include ’common.inc’
include ’header.inc’

integer iflag, ! SEE ABOVE
+ icount, ! COUNTER
+ i ! LOOP INDEX
real vrms, ! SEE ABOVE

+ stime, ! SEE ABOVE
+ vrmsold, ! PREVIOUS VALUE OF vrms
+ v, ! RMS SPEED FOR SINGLE TIME STEP
+ vsum, ! SUM OF RMS SPEEDS FOR SINGLE STEPS
+ diff, ! ABSOLUTE FRACTIONAL DIFFERENCE

c BETWEEN SUBSEQUENT vrms
+ ampsav ! STORED VALUE OF SPIRAL AMPLITUDE
logical cont ! LOOP CONTROL

data icount /1/
data vsum,v /0.0,0.0/
data cont /.true./

c
c -----------------------------------------------------------------
c
c SET SPIRAL AMPLITUDE TO ZERO TO PREVENT HEATING OF DISC
c (CAUSED BY BAR) WHICH PREVENTS THE VELOCITY DISPERSION
c FROM CONVERGING

ampsav = amp
amp = 0.0

c ROTATE A FEW TIMES INITIALLY TO REDUCE TIME TAKEN
c FOR vrms TO CONVERGE

stime = 0.0
do 10 i=1,int(4.0/tstep)
stime = stime + tstep
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call rotate (ncloud,stime,0,tstep,iflag)
call rotate (nstar,stime,1,tstep,iflag)
if (iflag.ne.0) return

10 continue
call vcirc (ncloud,stime)
vrms = 0.0

c CALCULATE R.M.S. VELOCITY DISPERSION

do while (cont.and.(icount.le.int(10.0/tstep)))
do 20 i=1,ncloud
v = v + cloud(4,i)**2 + cloud(6,i)**2 +

+ ((cloud(1,i)*cloud(5,i))-vrot(i))**2
20 continue

v = sqrt(v/float(ncloud)) ! RMS VALUE FOR THIS TIME STEP
vsum = vsum + v
vrmsold = vrms ! AVERAGE FROM PREVIOUS TIME
vrms = vsum/float(icount) ! NEW AVERAGE
diff = abs((vrmsold-vrms)/vrms) ! FRACTIONAL DIFFERENCE

if (diff.le.1.0e-3) then ! EXIT ON NEXT ITERATION
cont = .false.

else ! KEEP GOING UNTIL CONVERGES
stime = stime + tstep
icount = icount + 1
call rotate (ncloud,stime,0,tstep,iflag)
call rotate (nstar,stime,1,tstep,iflag)
if (iflag.ne.0) return
call vcirc (ncloud,stime)

endif

enddo

if (icount.gt.int(10.0/tstep)) then
print*,’**ERROR** vel dispersion not converging (EQUILIBRATE)’
iflag = 1

endif

c RESTORE SPIRAL AMPLITUDE

amp = ampsav

return
end
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Subroutines contained in neighbour.f.

c 16/11/93 jps18 ver 5.2
c
c *****************************************************************
c

subroutine nearneigh (r,theta,z,ann1,ann2,nneigh,iflag)
c
c Determines the array indices of all clouds within
c the annulus defined by ANN1 and ANN2 centred on
c the point (R,THETA,Z) and returns the values in
c array NEIGH (passed via common). The distance
c between the clouds and the central point is also
c calculated and returned in array RNEIGH (also in common).
c Subroutine neighgrid MUST be called before nearneigh if
c a) the position of any of the particles has changed
c b) the grid spacing has changed
c
c INPUT VARIABLES:
c r - }
c theta - } coordinates of central point
c z - }
c ann1 - } inner and outer radii of annulus of interest
c ann2 - }
c
c OUTPUT VARIABLES:
c nneigh - number of neighbours within annulus
c iflag - return status code
c
c *****************************************************************
c

include ’common.inc’
include ’neighblk.inc’

integer nx,ny,nz, ! GRID INDICES
+ nxinc(27),nyinc(27), ! } RELATIVE SHIFTS OF
+ nzinc(27), ! } NEXT DOOR GRID CELL
+ nneigh, ! SEE ABOVE
+ iflag, ! SEE ABOVE
+ ipt, ! POINTER
+ icount, ! LOOP THIS NUMBER OF TIMES
+ i,j ! COUNTERS
real r,theta,z, ! SEE ABOVE

+ ann1,ann2, ! SEE ABOVE
+ ann1sq,ann2sq, ! SQUARES OF ABOVE
+ sep ! SEP. OF CLOUD AND CENTRAL POINT
real*8 r1,r2, ! RADII OF CENTRAL POINT

c AND NEARBY CLOUD
+ delta, ! ANG COORD OF POINT - THETA
+ dcosrule ! FUNCTION
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intrinsic sin,cos,int,dble
external dcosrule

data nxinc / 0,-1, 1, 1, 0, 0,-1,-1, 0,
+ 1,-1, 1, 1, 0, 0,-1,-1, 0,
+ 0, 1, 1, 0, 0,-1,-1, 0, 1/
data nyinc / 0,-1, 0, 0, 1, 1, 0, 0,-1,
+ 0,-1, 0, 0, 1, 1, 0, 0,-1,
+ -1, 0, 0, 1, 1, 0, 0,-1, 0/
data nzinc / 0,-1, 0, 0, 0, 0, 0, 0, 0,
+ 0, 1, 0, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0, 0/

c
c -----------------------------------------------------------------
c

if (ann2.gt.gsize) then
print*,’**ERROR** Invalid grid spacing (NEARNEIGH)’
iflag = 1
return

endif

c INITIALISE

nneigh = 0
ann1sq = ann1*ann1
ann2sq = ann2*ann2

c DETERMINE GRID CELL OF SPECIFIED POINT

nx = int(r*cos(theta)/gsize + halfx) + 1
ny = int(r*sin(theta)/gsize + halfx) + 1
nz = int(z/gsize + halfz) + 1
if (nx.gt.ncellx.or.nx.lt.1.or.ny.gt.ncellx.or.ny.lt.1) then
print*,’**ERROR** x/y coordinate out of range (NEARNEIGH)’
iflag = 1
return

else if (nz.gt.ncellz.or.nz.lt.1) then
print*,’**ERROR** z coordinate out of range (NEARNEIGH)’
iflag = 2
return

endif

c CHECK CELLS FOR CLOUDS WITHIN RADIUS rcirc

do 30 j=1,27
nx = nx + nxinc(j)
ny = ny + nyinc(j)
nz = nz + nzinc(j)
if (nx.eq.0.or.ny.eq.0.or.nz.eq.0.or.nx.eq.ncellx+1.or.

+ ny.eq.ncellx+1.or.nz.eq.ncellz+1) then
icount = 0
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else
icount = ngrid(nx,ny,nz)

endif
do 40 i=1,icount
ipt = igrid(i,nx,ny,nz)
r1 = dble(r)
r2 = dble(cloud(1,ipt))
delta = dble(theta - cloud(2,ipt))
sep = sngl(dcosrule(r1,r2,delta)) +

+ (z-cloud(3,ipt))**2
if ((sep.gt.ann1sq).and.(sep.le.ann2sq)) then
nneigh = nneigh + 1
neigh(nneigh) = ipt
rneigh(nneigh) = sqrt(sep)

endif
40 continue
30 continue

return
end

c 15/10/93 jps18 ver 1.3
c
c *****************************************************************
c

subroutine neighgrid (npt,iflag)
c
c Initialises grid used by subroutine nearneigh to calculate
c nearest neighbours. This routine must be called before
c nearneigh if
c a) the position of any of the particles has changed
c b) the radius around each point in which one is
c interested has changed
c
c INPUT VARIABLES:
c npt - number of particles in galaxy
c
c OUTPUT VARIABLES:
c iflag - return status code
c
c The main output from this program (the arrays igrid and ngrid)
c is passed via common ’nblk’ to subroutine nearneigh, the
c only other routine to use this data.
c
c *****************************************************************
c

include ’common.inc’
include ’neighblk.inc’
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integer npt, ! SEE ABOVE
+ nx,ny,nz, ! GRID INDICES
+ iflag, ! SEE ABOVE
+ i,j,k ! COUNTERS

intrinsic sin,cos
c
c -----------------------------------------------------------------
c
c INITIALISE ARRAY

do 20 i=1,ncellz
do 30 j=1,ncellx
do 40 k=1,ncellx
ngrid(k,j,i) = 0

40 continue
30 continue
20 continue

halfx = float(ncellx/2)
halfz = float(ncellz/2)

c CALCULATE GRID

do 10 i=1,npt
nx = int(cloud(1,i)*cos(cloud(2,i))/gsize + halfx) + 1
ny = int(cloud(1,i)*sin(cloud(2,i))/gsize + halfx) + 1
nz = int(cloud(3,i)/gsize + halfz) + 1

c IF POINT OUTSIDE GRID

if (nx.gt.ncellx.or.ny.gt.ncellx.or.nx.lt.1.or.ny.lt.1) then
iflag = 1
return

else if (nz.gt.ncellz.or.nz.lt.1) then
iflag = 2
return

endif

ngrid(nx,ny,nz) = ngrid(nx,ny,nz) + 1
if (ngrid(nx,ny,nz).gt.neighmax) then ! TOO MANY POINTS
iflag = 3
return

endif
igrid(ngrid(nx,ny,nz),nx,ny,nz) = i

10 continue

return
end
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Subroutines contained in output.f.

c 31/08/94 jps18 ver 2.5
c
c *****************************************************************
c

subroutine output (dunit,iunit,sunit,elapsed,imnum,vernum,iflag)
c
c Subroutine to perform the majority of output, including
c file naming and handling. The file for SFR, velocity
c dispersion and geometric entropy output is only opened
c and a head record written - the main bulk of the data
c is written by MAIN.
c
c INPUT VARIABLES:
c dunit - unit number for main dump file
c iunit - unit number for compressed image files
c sunit - unit number for SFR data
c elapsed - elapsed time for labelling of image files
c imnum - image file number for naming. If imnum.eq.0
c then the file handling is initiated.
c vernum - galaxy version number
c
c OUTPUT VARIABLE:
c iflag - return status code
c
c *****************************************************************
c

include ’common.inc’
include ’header.inc’

integer dunit, ! SEE ABOVE
+ iunit, ! SEE ABOVE
+ sunit, ! SEE ABOVE
+ imnum, ! SEE ABOVE
+ iflag, ! SEE ABOVE
+ date(3), ! TODAY’S DATE
+ num, ! FILE COUNTER
+ len,chr_lenb, ! LENGTH OF HOSTNAME
+ vernum, ! SEE ABOVE
+ i,j ! LOOP COUNTERS
integer*2 i2r, ! SCALED RADIUS

+ i2tht, ! SCALED AZIMUTH
+ i2z, ! SCALED Z
+ i2age ! AGE OF POINT
real elapsed, ! SEE ABOVE

+ rscale, !}
+ thtscale, !} COORDINATE SCALING FACTORS
+ zscale !}
character path*48, ! FULL FILE NAME

+ suffix*5, ! FILE NAME SUFFIX
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+ host*6, ! MACHINE ON WHICH PROGRAM
c IS BEING RUN

+ fdate*24 ! CURRENT DATE AND TIME
logical ex ! .true. IF FILE EXISTS

integer hostnm ! FUNCTION

save path

data rscale, thtscale, zscale /320.0, 5000.0, 500.0/
c
c -----------------------------------------------------------------
c
c INITIALISATION IF FIRST CALL TO ’OUTPUT’

if (imnum.eq.0) then
call idate (date)
ex = .true.
num = 0

c GET PATH NAME

do while (ex)
num = num + 1
write (path,100) date(1),date(2),date(3)-1900,num,

+ date(1),date(2),date(3)-1900,num
100 format (’/home/jps18/model/data/gal’,3(i2.2),’_’,i2.2,

+ ’/gal’,3(i2.2),’_’,i2.2)
inquire (file=path//’.sfr’,exist=ex)
if (num.eq.99) ex = .false.

enddo

write (*,120) fdate(),path(37:48) ! WRITE TO LOG FILE
120 format (/a24,3x,a12)

c WRITE PATH TO FILE TO BE USED LATER BY SCRIPT chain

iflag = hostnm(host)
len = chr_lenb(host)
open (sunit,file=’.gal’//host(len:len),form=’formatted’)
write (sunit,*) path(1:35)
close (sunit)

c CREATE DIRECTORY

call io_system (’mkdir ’//path(1:35),iflag)

c OPEN .sfr FILE AND WRITE HEADER

open (sunit,file=path//’.sfr’,form=’formatted’)
write (sunit,’(i5)’) vernum
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write (sunit,500) source,ncloud,nstar,itmax,tstep,a0,elas,
+ vmax,mst,msp,eff,narm,omegap,r0,p,ang,amp

500 format (a12/3(i5/),7(1pe11.4/),i1/5(1pe11.4/))
open (20,file=path//’.rad’,form=’unformatted’)

return

c START HERE IF NOT FIRST CALL TO output

else if (imnum.gt.99) then
print*,’Too many output files’
iflag = 2
return

endif

c MOVE OLD DUMP FILE

if (imnum.gt.1) then
write (suffix,105) imnum-1

105 format (’.dp’,i2.2)
call rename (path,path//suffix)

endif

c OUTPUT TO DUMP FILE

open (dunit,file=path,form=’unformatted’)
write (dunit) vernum,source,ncloud,nstar,itmax,tstep,a0,elas,

+ vmax,mst,msp,eff,narm,omegap,r0,p,ang,amp
do 10 i=1,ncloud
write (dunit) (cloud(j,i),j=1,7),clage(i)

10 continue
do 20 i=1,nstar
write (dunit) (star(j,i),j=1,6),stage(i)

20 continue
close (dunit)

c OUTPUT TO IMAGE FILE

write (suffix,110) imnum
110 format (’.im’,i2.2)

open (iunit,file=path//suffix,form=’unformatted’)
write (iunit) vernum,source,ncloud,nstar,itmax,tstep,a0,elas,

+ vmax,mst,msp,eff,narm,omegap,r0,p,ang,amp
write (iunit) elapsed,rscale,thtscale,zscale
do 30 i=1,nstar
i2r = int(rscale*star(1,i))
i2tht = int(thtscale*star(2,i))
i2z = int(zscale*star(3,i))
i2age = stage(i)
write (iunit) i2r,i2tht,i2z,i2age

30 continue
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close (iunit)

return
end

Subroutines contained in propagate.f.

c 21/12/93 jps18 ver 8.2
c
c *****************************************************************
c

subroutine propagate (ncloud,nstar,tstep,mst,msp,eff,sfr,iflag)
c
c Propagates star formation throughout galaxy.
c
c INPUT VARIABLES:
c ncloud - number of cloud particles
c nstar - number of star particles
c tstep - simulation time step
c mst - critical mass for stimulated star formation
c msp - critical mass for spontaneous star formation
c eff - cloud disruption factor
c
c OUTPUT VARIABLES:
c sfr - star formation rate
c iflag - return status code
c
c *****************************************************************
c

include ’common.inc’
include ’neighblk.inc’

integer ncloud, ! SEE ABOVE
+ nstar, ! SEE ABOVE
+ nneigh, ! NO. NEIGHBOURS FOR ANY GIVEN POINT
+ kpre, ! NO. TIME STEPS BEFORE STAR EXPLODES
+ iage, ! AGE OF INDIVIDUAL STAR, UNITS tstep
+ ipt, ! INDEX COUNTER
+ nnew, ! NUMBER OF NEW CLUSTERS CREATED

c ON THIS STEP
+ agemax, ! MAX AGE OF STARS KEPT IN ARRAY
+ iflag, ! STATUS RETURN CODE
+ icount, ! COUNTER
+ i,k ! LOOP COUNTERS
real tstep, ! SEE ABOVE
+ mst,msp, ! SEE ABOVE
+ eff, ! SEE ABOVE
+ rsn(0:50), ! RADIUS OF SNR AS FUNCTION OF TIME
+ prob, ! PROBABILITY OF STAR FORMATION
+ sfr, ! SEE ABOVE
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+ age, ! AGE OF STAR, UNITS 10**7 YRS
+ sum, ! SUM OF tstep
+ geom
real*8 g05caf,dum ! RANDOM NUMBER GENERATOR
logical first

intrinsic exp,dble,sngl,int
external neighgrid,nearneigh,g05caf

save dum,first,kpre,agemax,rsn

data first /.true./
data geom /2.3873241463784300453e-01/

c
c -----------------------------------------------------------------
c
c IF FIRST CALL TO propagate THEN SET UP rsn TABLE

if (first) then
kpre = 0
k = 0
sum = 0.0
do while (sum.lt.1.0)
kpre = kpre + 1
sum = sum + tstep

enddo
kpre = kpre - 1
rsn(0) = 0.0
do while (sum.le.2.0)
k = k + 1
rsn(k) = (float(k)*tstep)**0.4
sum = sum + tstep

enddo
first = .false.
agemax = int(13.0/tstep)

endif

c INITIALISE FOR THIS TIME ROUND

nnew = 0
gsize = 1.0

c SET UP NEIGHBOUR GRIDS, ADJUSTING GRID SIZE TO OPTIMISE

call neighgrid (ncloud,iflag)
i = 1
do while ((iflag.ne.0).and.(i.lt.6))
if ((iflag.eq.1).or.(iflag.eq.2)) then
gsize = gsize*2.0

else if (iflag.eq.3) then
gsize = gsize*0.5
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endif
iflag = 0
i = i + 1
call neighgrid (ncloud,iflag)

enddo
if (i.eq.6) then
print*,’*ERROR* unable to set up neighbour grids (PROPAGATE)’
iflag = 1
return

endif

c UPDATE MASSES OF CLOUDS

call cloud_mass (ncloud,tstep)

c CLOUD - SUPERNOVA INTERACTIONS

icount = nstar
iage = stage(icount)
age = tstep*float(iage)

do while (age.lt.2.0)
if (age.ge.1.0) then
call nearneigh (star(1,icount),star(2,icount),

+ star(3,icount),rsn(iage-kpre-1),
+ rsn(iage-kpre),nneigh,iflag)

if (iflag.ne.0) return

do 10 k=1,nneigh
ipt = neigh(k)

c PERCOLATION

prob = geom*cloud(7,ipt)/mst
if (g05caf(dum).lt.prob) then
cloud(7,ipt) = cloud(7,ipt)*eff
clage(ipt) = 0
nnew = nnew + 1
nstar = nstar + 1
stage(nstar) = 0
do 20 i=1,6
star(i,nstar) = cloud(i,ipt)

20 continue

write (20) star(1,nstar)

endif

c HEAT INPUT TO ISM - CLOUD/SNR COLLISIONS

call cloud_snr (icount,ipt,rneigh(k))
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10 continue
endif

c NEXT SNR

icount = icount - 1
iage = stage(icount)
age = tstep*float(iage)

enddo

c SPONTANEOUS STAR FORMATION

do 30 i=1,ncloud
if (clage(i).ne.0) then
prob = tstep*cloud(7,i)/msp
if (g05caf(dum).lt.prob) then
cloud(7,i) = cloud(7,i)*eff
clage(i) = 0
nnew = nnew + 1
nstar = nstar + 1
stage(nstar) = 0
do 40 k=1,6
star(k,nstar) = cloud(k,i)

40 continue

write (20) star(1,nstar)

endif
endif

30 continue

c GET RID OF OLD STARS FROM ARRAY

icount = 1
do while ((stage(icount).eq.agemax).and.(icount.le.nstar))
icount = icount + 1

enddo
icount = icount - 1
do 70 i=icount+1,nstar
stage(i-icount) = stage(i)
do 80 k=1,6
star(k,i-icount) = star(k,i)

80 continue
70 continue

nstar = nstar - icount

c INCREMENT AGES

do 50 i=1,ncloud
clage(i) = clage(i) + 1
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50 continue
do 60 i=1,nstar
stage(i) = stage(i) + 1

60 continue

sfr = float(nnew)/float(ncloud)

return
end

c 02/11/93 jps18 ver 2.1
c
c *****************************************************************
c

subroutine cloud_mass (ncloud,tstep)
c
c Increments cloud masses due to accretion from HI, as
c described in notebook (16/09/93).
c
c INPUT VARIABLES:
c ncloud - number of cloud particles
c tstep - simulation time step
c
c *****************************************************************
c

include ’common.inc’

integer ncloud, ! SEE ABOVE
+ i ! LOOP COUNTER
real tstep, ! SEE ABOVE
+ gamma, ! COEFFICIENT
+ dm, ! MASS INCREMENT
+ v, ! SPEED OF CLOUD
+ q1, ! TEMPORARY VALUE
+ h1density ! HI DENSITY AT GIVEN RADIUS

data gamma /7.0e-5/
c
c -----------------------------------------------------------------
c

do 10 i=1,ncloud
v = sqrt(cloud(4,i)**2 + (cloud(1,i)*cloud(5,i)-vrot(i))**2

+ + cloud(6,i)**2)
q1 = (tstep*gamma*h1density(cloud(1,i))*v)**3
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dm = q1*0.1111111111*(float(clage(i))**2)
cloud(7,i) = cloud(7,i) + dm

10 continue

return
end

c 29/06/93 jps18 ver 1.0
c
c *****************************************************************
c

real function h1density (r)
c
c Interpolates from HI cloud given by Burton in ’Galactic
c and Extragalactic Radio Astronomy’ to return HI density
c at any given radius.
c
c INPUT VARIABLE:
c r - radius
c
c *****************************************************************
c

integer nbin, ! NO. OF HI DATA POINTS
+ i ! LOOP COUNTER
parameter (nbin=30)
real r, ! SEE ABOVE

+ rh1(nbin), ! RADIUS VALUES FOR DISTRIBUTION
+ h1(nbin), ! HI DISTRIBUTION
+ dh12(nbin), ! 2nd DERIV OF DISTRIBUTION
+ d1,d2, ! 1st DERIV AT BOUNDARY POINTS
+ dum, ! TEMPORARY VALUE
+ conv ! CONVERSION FROM cm-3 TO L-3
parameter (conv=1.96e5)
logical first

save first,rh1,h1,dh12
data first /.true./

data rh1/0.00, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75,
+ 4.25, 4.75, 5.25, 5.75, 6.25, 6.75, 7.25, 7.75,
+ 8.25, 8.75, 9.25, 9.75, 10.25, 10.75, 11.25, 11.75,
+ 12.25, 12.75, 13.25, 13.75, 14.25, 14.75 /
data h1 /0.00, 0.001, 0.04, 0.085, 0.13, 0.17, 0.20, 0.22,

+ 0.30, 0.34, 0.40, 0.38, 0.33, 0.33, 0.38, 0.40,
+ 0.38, 0.32, 0.32, 0.41, 0.40, 0.25, 0.24, 0.33,
+ 0.37, 0.35, 0.26, 0.16, 0.10, 0.07 /

c
c -----------------------------------------------------------------
c
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c SET UP SPLINE INTERPOLATION IF FIRST CALL TO FUNCTION

if (first) then
do 10 i=1,nbin
rh1(i) = rh1(i)*5.0
h1(i) = conv*h1(i)

10 continue
d1 = (h1(2)-h1(1))/(rh1(2)-rh1(1))
d2 = (h1(nbin)-h1(nbin-1))/(rh1(nbin)-rh1(nbin-1))
call spline (rh1,h1,nbin,d1,d2,dh12)
first = .false.

endif

c USE CUBIC SPLINE INTERPOLATION TO CALCULATE HI DENSITY
c AT GIVEN RADIUS

call splint (rh1,h1,dh12,nbin,r,dum)
if (dum.lt.0.0) dum = 0.0
h1density = dum

return
end

Subroutines contained in rotate.f.

c 26/10/93 jps18 ver 7.1
c
c *****************************************************************
c

subroutine rotate (npt,stime,type,tstep,iflag)
c
c Uses subroutine bsstep to compute the new position of
c each of the particles. For information on the use of
c bsstep refer to ’Numerical Recipes’, Press et al.,
c 2nd edition, chpt 16
c
c INPUT VARIABLES:
c npt - number of particles
c stime - initial time
c type - type of particles to be rotated (0=cloud, 1=star)
c tstep - total time through which particle is to be integrated
c
c OUTPUT VARIABLES:
c iflag - return status code
c
c CONTROL VARIABLE:
c eps - integration tolerance
c
c *****************************************************************
c
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include ’common.inc’

integer npt, ! SEE ABOVE
+ type, ! SEE ABOVE
+ iflag, ! SEE ABOVE
+ i,k ! COUNTERS
real tstep, ! SEE ABOVE

+ eps, ! SEE ABOVE
+ time, ! TIME FOR PARTICLE AFTER EACH INT STEP
+ stime, ! SEE ABOVE
+ y(6), ! INTEGRATION VECTOR
+ dydt(6), ! DIFFERENTIAL OF INTEGRATION VECTOR
+ yscal(6), ! ERROR SCALING VECTOR
+ dt, ! TIME STEP FOR NEXT INTEGRATION
+ dtdid, ! TIME STEP ACHIEVED
+ dtnext, ! MAX TIME STEP NEXT INTEGRATION
+ pi2
parameter (pi2=6.2831853071796)

intrinsic float
external bsstep,derivs

data eps /1.e-3/
c
c -----------------------------------------------------------------
c

do 10 i=1,npt

c SET INITIAL CONDITIONS FOR THIS POINT

if (type.eq.0) then
do 5 k=1,6
y(k) = cloud(k,i)

5 continue
else
do 6 k=1,6
y(k) = star(k,i)

6 continue
endif
time = stime
dt = tstep

c CALCULATE NEW POSITION WITH TOTAL TIME STEP OF tstep

do while (dt.gt.3.0e-5)
call derivs (time,y,dydt)
do 30 k=1,6
yscal(k) = abs(y(k))+abs(dt*dydt(k))+1.e-30

30 continue
call bsstep (y,dydt,6,time,dt,eps,yscal,dtdid,dtnext,

+ derivs,iflag)
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dt = dtnext
if (iflag.ne.0) then ! GIVE UP ON THIS INTEGRATION
dt = -9.9e10
iflag = 0

endif
if (time+dt-stime.ge.tstep) dt = tstep - (time-stime)

enddo

c REASSIGN DATA ARRAY

do while (y(2).ge.pi2)
y(2) = y(2) - pi2

enddo
do while (y(2).lt.0.0)
y(2) = y(2) + pi2

enddo

if (type.eq.0) then
do 40 k=1,6
cloud(k,i) = y(k)

40 continue
else
do 50 k=1,6
star(k,i) = y(k)

50 continue
endif

10 continue

return
end

c 23/08/93 jps18 ver 2.0
c
c *****************************************************************
c

subroutine derivs (t,y,dydt)
c
c Subroutine required by bsstep to calculate the derivative
c of the coordinate vector.
c
c INPUT VARIABLES:
c t - time
c y - coordinate vector
c
c OUTPUT VARIABLE:
c dydt - derivative of y with respect to t
c
c *****************************************************************
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c
real t, ! SEE ABOVE

+ y(*), ! SEE ABOVE
+ dydt(*), ! SEE ABOVE
+ dpdr,dpdtht,dpdz ! DERIVATIVES OF POTENTIAL

c W.R.T. r, theta & z
external dphi ! CALCULATES PARTIAL DERIVATIVES

c
c -----------------------------------------------------------------
c

dydt(1) = y(4)
dydt(2) = y(5)
dydt(3) = y(6)

call dphi (y(1),y(2),y(3),t,dpdr,dpdtht,dpdz)
dydt(4) = (y(1)*y(5)*y(5)) - dpdr
dydt(5) = -(2.*y(4)*y(5)+(dpdtht/y(1)))/y(1)
dydt(6) = -dpdz

return
end

c 17/11/93 jps18 ver 2.3
c
c *****************************************************************
c

subroutine dphi (r,theta,z,t,dpdr,dpdtht,dpdz)
c
c Returns the values for the partial derivatives of the
c overall potential at any given point in space and time.
c N.B. Subroutine POT_INIT must be called before this
c subroutine is used.
c
c INPUT VARIABLES:
c r - radial position
c theta - angular position
c z - coordinate perpendicular to plane
c t - time required
c
c OUTPUT VARIABLES:
c dpdr - partial derivative w.r.t. r
c dpdtht - partial derivative w.r.t. theta
c dpdz - partial derivative w.r.t. z
c
c *****************************************************************
c

include ’header.inc’
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include ’potential.inc’

real r,theta,z, ! SEE ABOVE
+ t, ! SEE ABOVE
+ dpdr, ! SEE ABOVE
+ dpdtht, ! SEE ABOVE
+ dpdz, ! SEE ABOVE
+ phi, ! POTENTIAL
+ dr1,dr2,dr3,dr4, ! COMPONENTS OF dpdr
+ dz1,dz2,dz3, ! COMPONENTS OF dpdz
+ ph1,ph2,ph3,ph4, ! COMPONENTS OF POTENTIAL
+ q1,q2,q3,q4,q5,q6,q7, !} TEMPORARY VALUES
+ q8,q9,q10,q11,q12,q13, !}
+ fn, ! NUMBER OF ARMS
+ pi
parameter (pi=3.1415926535897)

intrinsic sin,cos,log
c
c -----------------------------------------------------------------
c
c ENSURE r IS POSITIVE

if (r.lt.0.0) then
r = abs(r)
theta = theta + pi

endif

c CENTRAL BULGE COMPONENT

q1 = r*r
q2 = z*z
q4 = 1.0/(sqrt(q1+q2+b1sq))**3
dr1 = gm1*r*q4
dz1 = gm1*z*q4

c DISC COMPONENT

q4 = sqrt(q2+b2sq)
q5 = a2+q4
q6 = q5*q5
q7 = 1.0/(sqrt(q1+q6))**3
dr2 = r*gm2*q7
dz2 = z*gm2*q5*q7/q4

c HALO COMPONENT

q3 = q1 + q2
q4 = q3**0.01
q5 = sqrt(q3)
q6 = q4*q5
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q7 = q4/q5
q8 = gm3*q7*a3_202/(1.0+q6*a3_102)
dr3 = r*q8
dz3 = z*q8

c SPIRAL COMPONENT

fn = float(narm)
q4 = amp*r
q5 = (r/r0)**p
q6 = 1.0 + q5
q8 = fn*(theta-t*omegap+log(q6)*rtang/p)
q9 = cos(q8)
q10 = q1 + a4sq
q11 = q10*q10
q12 = 1.0/q11
q13 = sin(q8)

dr4 = -2.*q4*q9*q12+q4*q13*fn*q5/q6*rtang*q12+
+ 4.*amp*q1*r*q9/q11/q10
dpdtht = amp*q1*q13*fn*q12

c SUM ALL CONTRIBUTIONS

dpdr = dr1 + dr2 + dr3 + dr4
dpdz = dz1 + dz2 + dz3

return

c
c 06/11/93 jps18 ver 2.1
c
c *****************************************************************
c

entry potential (r,theta,z,t,phi)
c
c Returns value of potential at point (r,theta,z) and at time t.
c
c INPUT VARIABLES:
c r }
c theta } - coordinates
c z }
c t - time
c
c OUTPUT VARIABLES:
c phi - potential
c
c *****************************************************************
c
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c CENTRAL BULGE COMPONENT

q1 = r*r
q2 = z*z
ph1 = -gm1/sqrt(q1+q2+b1sq)

c DISC COMPONENT

ph2 = -gm2/sqrt(q1+(a2+sqrt(q2+b2sq))**2)

c HALO COMPONENT

q3 = sqrt(q1+q2)
q4 = (q3/a3)**1.02
q5 = 1.0 + q4
q6 = -gm3*q4/a3/q5
q7 = 1.02*a3
q8 = -gm3*(log(q5)-1.02/q5)/q7
q9 = 1.0 + 500.0/a3
q10 = gm3*(log(q9)-1.02/q9)/q7
ph3 = q6 + q8 + q9

c SPIRAL COMPONENT

q5 = (r/r0)**p
q6 = 1.0 + q5
q8 = float(narm)*(theta-t*omegap+log(q6)*rtang/p)
q9 = cos(q8)
q10 = (q1 + a4sq)**2
ph4 = -amp*q1*q9/q10

c SUM COMPONENTS

phi = ph1 + ph2 + ph3 + ph4

return
end

c 06/11/93 jps18 ver 1.0
c
c *****************************************************************
c

subroutine pot_init
c
c Initialises common block for potential calculations by
c defining constants.
c
c *****************************************************************
c
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include ’header.inc’
include ’potential.inc’

data a2,a3,a4,b1,b2 / 26.59, 60.0, 35.0, 1.937, 1.25 /
data gm1,gm2,gm3 / 7.93e2, 4.81e3, 6.02e3 /

c
c -----------------------------------------------------------------
c

a4sq = a4*a4
b1sq = b1*b1
b2sq = b2*b2

a3_202 = a3**(-2.02)
a3_102 = a3**(-1.02)

rtang = 1.0/tand(ang)

return
end

c 24/09/93 jps18 ver 1.0
c
c *****************************************************************
c

subroutine vcirc (ncloud,t)
c
c Calculates circular speed for each cloud particle, and
c stores results in array VROT passed via common ’vrotblk’.
c
c INPUT VARIABLES:
c ncloud - number of cloud particles
c t - simulation time
c
c *****************************************************************
c

include ’common.inc’

integer ncloud, ! SEE ABOVE
+ i ! LOOP COUNTER
real t, ! TIME

+ dpdr,dpdtht,dpdz ! POTENTIAL DERIVATIVES
c
c -----------------------------------------------------------------
c
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do 10 i=1,ncloud
call dphi (cloud(1,i),cloud(2,i),cloud(3,i),t,

+ dpdr,dpdtht,dpdz)
vrot(i) = sqrt(dpdr*cloud(1,i))

10 continue

return
end

Library routines

c 25/11/92 jps18 ver 1.0
c
c *****************************************************************
c

function dcosrule (r1,r2,theta)
c
c Evaluates a**2 where
c a**2 = r1**2 + r2**2 -2*r1*r2*cos(theta)
c Routine uses double precision.
c
c *****************************************************************
c

real*8 r1,r2,theta,dcosrule
intrinsic dcos

dcosrule = (r1*r1)+(r2*r2)-(2.d0*r1*r2*dcos(theta))
return
end

c 05/05/93 jps18 ver 1.1
c
c *****************************************************************
c

integer function fphandler (sig,code,sigcontext,addr)
c
c Floating point exception handler. The type and address of any
c exception is printed to standard output. The hex address can
c be interpreted by running the program within the debugger and
c setting a breakpoint using stopi at 0x[hex address].
c
c *****************************************************************
c

integer sig,code,sigcontext(5)
integer addr
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character*9 excep(49:53)
data excep /’INEXACT ’,’DIV ZERO ’,’UNDERFLOW’,

+ ’INVALID ’,’OVERFLOW ’/
c
c -----------------------------------------------------------------
c

write (*,11) excep(loc(code)/4),loc(addr)
11 format (’ieee exception ’,a9,’ occurred at address ’,z8)

return
end
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Include files.

c 30/08/93 jps18 ver 7.0
c
c COMMON.INC
c
c Declarations for main data common blocks

integer nclmax, ! MAX NUMBER OF CLOUD PARTICLES
+ nstmax ! MAX NUMBER OF STAR PARTICLES
parameter (nclmax=32750,nstmax=32750)
integer clage(nclmax), ! AGES OF CLOUD PARTICLES
+ stage(0:nstmax) ! AGES OF STAR PARTICLES
real cloud(7,nclmax), ! COORDINATES AND MASSES OF CLOUDS
+ star(6,nstmax) ! COORDINATES OF STARS

common /clblk/ cloud,clage
common /stblk/ star,stage

c Declarations for circular rotation speed table

real vrot(nclmax)

common /vrotblk/ vrot

c 21/12/93 jps18 ver 6.2
c
c HEADER.INC
c
c Declarations for common block containing header information

integer ncloud, ! NUMBER OF CLOUDS
+ nstar, ! NUMBER OF STARS
+ itmax, ! NUMBER OF TIME STEPS REQUIRED
+ dump, ! OUTPUT EVERY dump TIMESTEPS
+ narm ! NUMBER OF SPIRAL ARMS
real tstep, ! SIMULATION TIME STEP
+ a0, ! TURBULENT GAS VELOCITY
+ elas, ! ELASTICITY OF CLOUD-CLOUD INTERACTIONS
+ vmax, ! MAX SPEED GAIN FROM CLOUD-SNR INTERACTIONS
+ mst, ! CRITICAL MASS FOR STIMULATED SF
+ msp, ! CRITICAL MASS FOR SPONTANEOUS SF
+ eff, ! CLOUD DISRUPTION FACTOR
+ omegap, ! SPIRAL PATTERN SPEED
+ p, ! POWER OF SPIRAL SWITCH-OVER
+ ang, ! SPIRAL PITCH ANGLE
+ amp, ! SPIRAL AMPLITUDE
+ r0 ! SPIRAL SWITCH-OVER RADIUS
character source*12 ! NAME OF SOURCE FILE
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common /hdblk/ tstep,a0,elas,vmax,mst,msp,eff,omegap,p,ang,amp,
+ r0,ncloud,nstar,itmax,narm,dump,source

c 06/11/93 jps18 ver 2.0
c
c POTENTIAL.INC
c
c Declarations for parameters describing potential

real a2,a3,a4,
+ b1,b2,
+ gm1,gm2,gm3,
+ a4sq,b1sq,b2sq,
+ a3_202,a3_102,
+ rtang

common /potblk/ a2,a3,a4,b1,b2,gm1,gm2,gm3,
+ a4sq,b1sq,b2sq,a3_202,a3_102,rtang

c 15/10/93 jps18 ver 2.1
c
c NEIGHBLK.INC
c
c Declarations for neighbour common blocks.
c N.B. ncellx and ncellz MUST be even

integer neighmax, ! MAX NO. POINTS IN ONE GRID CELL
+ ncellx, ! NO. OF CELLS IN X/Y DIRECTION
+ ncellz ! NO. OF CELLS IN Z DIRECTION
parameter (neighmax=50,ncellx=160,ncellz=30)

integer neigh(5*neighmax) ! ARRAY OF NEIGHBOUR INDICES
integer*2 igrid(neighmax,ncellx,ncellx,ncellz), ! POINT INDICES

+ ngrid(ncellx,ncellx,ncellz) ! NO. POINTS IN EACH CELL

real rneigh(5*neighmax), ! ARRAY OF NEIGHBOUR DISTANCES
+ halfx, ! HALF SIZE OF GRID IN PLANE
+ halfz, ! HALF SIZE OF GRID PERP. TO PLANE
+ gsize ! GRID SPACING

common /nblk1/ neigh
common /nblk2/ igrid,ngrid
common /nblk3/ rneigh,halfx,halfz,gsize
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makefile for entire program.

# 13/09/94 jps18 ver 1.3

# Makefile for program galaxy. This version replaces the
# earlier makfile, and will hopefully be easier to update
# as the program evolves. Simply update the macro lists with
# the new subroutines, compiler options etc.
#
# 13/09/94 ver 2.0 SOLARIS

PROGRAM= galaxy
SOURCES= model.f init.f rotate.f data_read.f output.f \
propagate.f collisions.f neighbour.f entropy.f
INCLUDE= common.inc header.inc neighblk.inc potential.inc
FFLAGS=-u -C -O4 -dalign -cg92 -libmil
ULIBS= /home/jps18/library/libfp.a /home/jps18/library/libnr.a
SLIBS= -lnag ‘iolink‘

# From here onwards nothing should need to be changed.

OBJECTS= $(SOURCES:.f=.o)
.SUFFIXES:.prj
.KEEP_STATE:

$(PROGRAM) : $(OBJECTS) $(INCLUDE) $(ULIBS)
$(LINK.f) $(OBJECTS) $(ULIBS) $(SLIBS) -o $@

$(ULIBS) : FORCE
cd $(@D) ; $(MAKE) $(@F) "FFLAGS=$(FFLAGS)"

FORCE :

PRJS=$(SOURCES:.f=.prj)
check : $(PRJS)
ftnchek $(PRJS)
.f.prj :
ftnchek -project -noextern -library $<

References
Numerical Algorithms Group Limited, 1993, NAG Fortran Library Manual, Mark 16

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numerical Recipes in FORTRAN, Cambridge Uni-
versity Press, Cambridge, 2nd edn.



Appendix C

Classification of galaxies

There are many classification schemes in common usage. I will not attempt here to discuss the

relative merits of each scheme – Mihalas & Binney (1981) give a review in their book to which

I refer the reader for further information. Instead I will give only an outline of each scheme and

how to convert between them.

The most widely used scheme is that due to Hubble (1936), and is illustrated below in Fig.

C.1. The ellipticals (early–type) are classed according to their sphericity, and this system has not

been subsequently modified by other authors. Spiral galaxies (late–type) are divided according

to the relative size of the bulge and the resolution and pitch angle of the arms. This approach to

spiral galaxies, with their far greater range of morphologies is somewhat limited and has attracted

a number of attempts to improve upon it.

De Vaucouleurs (1959) in his Revised system introduced several new features: (i) additional

stages (e.g. Sd, Im) to supplement the Hubble scheme, (ii) a redesignation of normal galaxies as

‘SA’, with ‘SB’ used for clearly barred galaxies, and ‘SAB’ for those which are somewhat am-

biguous and (iii) additional labels r and s for spiral and lenticular galaxies which are either ring-

or s-shaped. The classification is completed by one or two lower case letters defining the tightness

Figure C.1
The Hubble sequence of galactic

morphologies. The diagram differs

slightly from Hubble’s original since

it shows various stages of lenticular

galaxies between the ellipticals and

spirals. Illustration reproduced from

Mihalas & Binney (1981).
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Table C.1. The Revised Hubble sequence. Table reproduced from de Vaucouleurs et al. (1991).

Classes Families Varieties Stages T Type

Ellipticals Compact -6 cE

Elliptical (0–6) -5 E0

Intermediate -5 E0–1

“cD” -4 E+
Lenticulars -2 S0

Ordinary SA0

Barred SB0

Mixed SAB0

Inner ring S(r)0

S–shaped S(s)0

Mixed S(rs)0

Early -3 S0�
Intermediate -2 S0�
Late -1 S0+

Spirals Ordinary SA

Barred SB

Mixed SAB

Inner ring S(r)

S–shaped S(s)

Mixed S(rs)

0/a 0 S0/a

a 1 Sa

ab 2 Sab

b 3 Sb

bc 4 Sbc

c 5 Sc

cd 6 Scd

d 7 Sd

dm 8 Sdm

m 9 Sm

Irregulars Ordinary IA

Barred IB

Mixed IAB

S–shaped I(s)

Non-Magellanic 90 I0

Magellanic 10 Im

Compact 11 cI
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Figure C.2
The DDO system of galaxy classifica-

tion. Illustration reproduced from Mi-

halas & Binney (1981).

of the spiral arms, similar to the original Hubble system. Table C.1 illustrates the extended sys-

tem, and Table C.2 provides a correspondence between the the Revised and Hubble schemes. The

T-types are simply a numeric scale corresponding to the Revised classification.

The Yerkes system (Morgan 1970) classifies galaxies according to their degree of central con-

centration only, in an attempt to clarify an overlapping of Hubble classes when considering the in-

tegrated spectra of the nuclear region. The Yerkes classification runs k!a with k representing the

most centrally concentrated galaxies. This is followed by a capital letter representing the galaxy

type (Spiral, Barred spiral, Elliptical, Irregular, Rotationally symmetric but without obvious spiral

or elliptical form and finally those with an elliptical-like nucleus and a Diffuse envelope) together

with a number indicating the sphericity in the range 1–7 (1 = spherical).

The DDO system, developed by van den Bergh (1976) at the David Dunlap Observatory, com-

bines features of both the Hubble and Yerkes schemes. This time a three-pronged ‘tuning fork’

arrangement is adopted (Fig. C.2) with a new ‘anaemic spiral’ (i.e. gas poor) type introduced in

parallel to the lenticulars and normal spirals. Bars are indicated by ‘B’, and within a sequence a

Hubble Revised T

E E -5

E–S0 L� -3

S0 L -2

Irr II I0 0

S0/a S0/a 0

Sa Sa 1

Sa–b Sab 2

Sb Sb 3

Sb–c Sbc 4

Sc Scd 6

Sc–Irr Sdm 8

Irr I Im 10

Table C.2
Conversion of Hubble types to Revised System. Table

reproduced from de Vaucouleurs et al. (1976).
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galaxy is categorised (using the letters a–c) by its degree of central concentration only (the arm

pitch angle is not relevant). By combining this classification with a luminosity class for spirals

(both normal and anaemic) we have the Revised DDO system. The luminosity class is assigned

according to the development of the spiral arms and is denoted by roman numerals I–V, with I

representing the most well-developed spiral structure.

The various schemes described in brief above refer principally to normal galaxies. Other clas-

sifications for peculiar, interacting and active galaxies also exist – I again refer the interested reader

to Mihalas & Binney (1981) for a review.
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Abbreviations used in the text

A&A Astronomy and Astrophysics

A&AS Astronomy and Astrophysics Supplement

AJ Astronomical Journal

ApJ Astrophysical Journal

ApJS Astrophysical Journal Supplement

CFR Cluster Formation Rate

CPU Central Processing Unit

CR Co-rotation Resonance

DDO David Dunlap Observatory (galaxy classification scheme)

DSS Digitized Sky Survey – see page (ii)

GMC Giant Molecular Cloud

FFT Fast Fourier Transform

FIR Far Infra-Red

IAP Institut d’Astrophysique de Paris

IC Index Catalogue

ILR Inner Lindblad Resonance

IMF Initial Mass Function

IR Infra-Red

IRAS Infra-Red Astronomical Satellite

ISM Interstellar Medium

JCMT James Clerk Maxwell Telescope

KS Kolmogorov–Smirnov (statistical test)

LMC Large Magellanic Cloud

MB Megabyte

MNRAS Monthly Notices of the Royal Astronomical Society

MST Minimal Spanning Tree

NGC New General Catalogue

OLR Outer Lindblad Resonance
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PA Position Angle

PASP Proceedings of the Astronomical Society of the Pacific

PM Particle–Mesh method (N-body simulation)

PP Particle–Particle method (N-body simulation)

P3M Particle–Particle–Particle–Mesh method (N-body simulation)

PSF Propagating Star Formation

RC3 Third Reference Catalogue of Bright Galaxies (de Vaucouleurs et al. 1991)

SDW Spiral Density Wave

SF Star Formation

SFR Star Formation Rate

SI Système International d’unités

SNe Supernovae

SNR Supernova Remnant

SPH Smoothed Particle Hydrodynamics

SPSF Self-Propagating Star Formation

SSPSF Stochastic Self-Propagating Star Formation

UV Ultra-Violet



Symbols used in the text

A spiral density wave amplitude; Fourier transform of point distribution

B magnetic field strength

Beq galactic magnetic field estimated using minimum-energy condition

C cumulative distribution functions

dcol cloud diameter

D galactic diameter; Kuiper statistic

DH Hausdorff fractal dimension

D(q) generalised Hausdorff multifractal dimensions

Dq generalised Rényi multifractal dimensions

G gravitational constant = 6:672�10�11 N m2 kg�2

h integration step size

H I atomic hydrogen

H II ionised hydrogen

Hα radiation from ionised hydrogen corresponding to electron transition

between n=3 and n=2 levels

H2 molecular hydrogen

i0 pitch angle of imposed spiral density wave

i� pitch angle of pattern traced by young stellar clusters

K Kolmogorov–Smirnov statistic

l edge-lengths of minimal spanning tree

l̄ mean value of l

LFIR far infra-red luminosity

L� Solar bolometric luminosity = 3:90�1026 W

M molecular cloud mass

Mmag critical mass for collapse of a magnetised cloud

Mmed median cloud mass

Msp scaling mass for spontaneous star formation

Mst scaling mass for stimulated star formation

191



192 SYMBOLS USED IN THE TEXT

Mtot total cloud mass

M� Solar mass = 1:989�1030 kg

n number density; number of spiral arms; Schmidt Law index

N number of points

P probability

Pc critical probability (percolation theory)

Psp probability of spontaneous star formation

Pst probability of stimulated star formation

q Fourier transform conjugate variable, q = �ncot(i0); density scaling re-

gime for multifractals

r radial coordinate

rmin, rmax scaling range used with correlation–sum multifractal technique

u ln(r)
ν, v general speed/velocity

νdisp cloud velocity dispersion

νmax maximum speed impulse that can be given to a cloud by a collision with a

supershell

νrms root mean square velocity dispersion of clouds

νs speed of sound

V volume of galaxy

W kernel function used in smoothed particle hydrodynamics

z axial coordinate

ε fraction of cloud remaining after star formation event

η ‘elasticity’ of cloud–cloud collisions

θ azimuthal coordinate

κ epicyclic frequency

ρ general density

ρgas volume density of total gas (atomic plus molecular)

ρH I volume density of atomic hydrogen

ρ̇� star formation rate (volume density)

σgas surface density of total gas (atomic plus molecular)

σH I surface density of atomic hydrogen

σH2 surface density of molecular hydrogen

σ̇� star formation rate (surface density)

Σi cloud cross-section

τ refractory time; cloud regrowth time; multifractal function

ψ cluster formation rate (number per unit time)

Ω Keplerian angular velocity

Ωp spiral pattern speed
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Vulgo enin dicitur: Icundi acti labores.

For it is commonly said: completed labours are pleasant.

Cicero, De Finibus book 2, ch. 105


