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From theintrinsic evidence of hiscreation, the Great
Architect of the Universe now seems to appear as a
pure mathematician.

Sr James Jeans, “ The Mysterious Universe”
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Lucky is he who has been able to understand the
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Chapter 1

| ntroduction

Understanding the physical basis of star formation is one of the major challenges still facing as-
trophysics. On the scale of individual stars much progress has been made since the advent of tele-
scopes capabl e of working in the sub-millimetre band. Such studies have concentrated on single,
isolated, starswhere the physicsof the outflows, stellar winds, accretion discsetc. can bemore eas-
ily investigated. Most stars are however, born in clustersand associations, and it isin these dense
environments, envel oped by the still collapsing and fragmenting molecular cloud, that theinterac-
tion between cloud material and newly-forming stars becomes an important consideration. Super-
nova explosions, arising from the death of super-massive stars which have aready raced through
their lifewhilst lower mass stars are still forming, aso play amgjor role by heating and shocking
the interstellar material, creating expanding cavities of ionised gas. It is this complexity which
makes a detailed understanding of star formation such aformidable goal.

On larger scales, we know that the galactic star formation rate varies with certain global char-
acteristicsof thegalaxy concerned, for example, thetotal mass and the gasfraction. Detailed stud-
ies of star forming regions generally take little account of such considerations— for example we
might consider the proximity of a collapsing molecular cloud to a spiral arm to be an important
factor controlling the overall properties of the star clusters formed. Unfortunately it is not pos-
sible to moddl awhole galaxy with sufficient resolution (both spatial and temporal) such that the
creation of individual stars can be followed in a globa context. On the largest scales of whole
galaxies, modelling has concentrated on the dynamics and resulting overall structures, with star
formation being added in an often ad hoc manner.

Themodd described in thisdissertation occupies ahalf-way position, both in the scale ranges
of the physics considered and & so the computational techniques used to model the galaxies. Star
formation is considered at the level of giant molecular cloud complexes —the same clouds are fol-
lowed dynamically asthey orbit in the overall galactic potentia and collide both with each other
and supershells(resulting from supernovae explosions), but without having recourse to afull self-
gravitating model. The star formation process is based on the theory of ‘propagating star form-
ation’ (PSF), a stochastic approach which alows the detailed physics controlling the creation of
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2 CHAPTER 1. INTRODUCTION

new stars (e.g. the presence of magnetic fields, turbulenceetc.) to be subsumed into asingle para-
meter which determines the probability of star formation occurring. The model is described in
much greater detail in Chapter 3.

The observational evidence for the reality of triggered star formation is wide and varied — a
brief overview is provided in 82.1.1 below. The history of models based upon propagating star
formation is considered in 82.1.2, whilstin 82.2 | review some alternative gal actic models based
on other schemes and idesas.

The principle outputs from the new model consist of the star formation rate and the physical
structures produced. | will show in Chapter 4 how the star formation rate varies as function of the
input parameters. Importantly thiswill permit aprediction of the star formation rate of our Galaxy
to be made; aforecast which isshown to be extremely accurate (84.2). Furthermore, from similar
considerations, it will be shown that the model predicts a simple power-law relationship between
the star formation rate and the average gas density; such a dependency is commonly known as
a Schmidt—Law (see 84.3). The spatia distribution of star-forming regionswill be considered in
Chapter 5, where it will be shown that unlike many simulationsof galactic star formation, the new
model can reproduce the whole family of disc galaxies.

No computer model, however elegant, isworth anything if it is unable to be compared with
observationa data. | havetaken cataloguesof H 11 regionsfrom theliteraturefor asample of spira
galaxies (Chapter 6), since such regions trace the location of current star formation. To compare
with the results obtai ned from the model, we require away in which to classify the morphol ogy of
the galaxy. Many such schemes aready exist — | provide abrief summary as Appendix C. These
are al somewhat subjectivehowever, ultimately coming down to the decision of the observer, and
perusing a catalogue compiled from the results of many authors, it is clear that a consensus often
cannot reached. It would therefore be useful if amore quantitative method for classifying galaxies
existed. | have adopted a number of approaches in an attempt to come up with, idedly, asingle
index with which to specify a galaxy. More importantly still thiswould hopefully permit a direct
comparison of observational with simulated datain a way which treated each sort equally. The
results of thesetrials are reported in Chapter 7.

The model as described within this dissertation was designed with two main criteriain mind:
that the physicsshouldbe asrealistic aspossi bleand that theresulting computer codewoul d be suf-
ficiently fast and compact such that it would run on the workstations available at that time (1992—
93). Propagating star formation providesanatural framework which sati sfiesthese requirements—
however, even withinthe duration of the project, the speed of workstations has improved dramat-
icaly, and hencein Chapter 8, | provide someideasfor waysinwhich themode could be extended
and developed. There of course also remain many thingsthat could be done with the current ver-
sion, and these, together with a summary of the studies performed to date, are also discussed in
this chapter.

Finally, for reference purposes| includefurther information on the code, including an example
input parameter file, details of the internal system of units, some UNIX scriptsto assist in running
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the program (all as Appendix A) and a complete source code listing (Appendix B). These arein-
tended to provideany future user of themodel with sufficient informationto be ableto achieveres-
ults with the minimum of difficulties, and aso constitute a convenient reference source for those
devel oping the code further.

This dissertation is concerned with adynamical, evolving galaxy model. Clearly thisis diffi-
cult to show in abook such asthis, but in an attempt to illustrate the sort of results obtained, when
the pages are flicked through from the back to the front then the small imagesin the bottom corner
will form a short animated sequence. Each frame is separated by a simulated 2 Myr, and hence
the tota duration of the animation is 214 Myr. The galaxy was computed using the ‘ standard’
parameters (84.1), and only star clusters younger than 20 Myr have been shown for clarity.







Chapter 2 &
e

Review of galactic models

By combining aspects of both propagating star formation and N-body simulations, the new model
is able to describe both the small scale dynamics of molecular clouds and the larger scale galactic
structures that arise due to the star formation process. In this chapter | review other models of
galactic star formation that have used one or either of these approaches and a so consider some of
the observational evidence for propagating star formation.

2.1 Propagating star formation

The concept of propagating star formation isbased on theideathat the collapse of molecular clouds
and subsequent star formation can be triggered by the interaction of the cloud with a supernova
shock wave. The shock wave arises from the explosive death of a massive member of a previ-
ous generation of stars. Theidea, originally proposed by Opik (1953), has since been the basis of
many computer simulations. First we must consider the observational evidence for propagating
star formation.

2.1.1 Observational evidence

Observations of star formation triggered by expanding shocks from nearby OB associationswere
first remarked upon by Baade (1963) from his studies of star formation inirregular galaxies:

“... when star formation isgoing onin an area it spreads in some
way like adisease; that isthe definite impression one gets.”

More recently, effortsto determinethereality of propagating star formation have concentrated on
the Large Magellanic Cloud (LMC) and our own Galaxy, for it isonly in studies of these systems
that sufficient angular resolutionis availabl e to determine age progressi ons and propagating struc-
tures. Many examples of old dispersed clusters surrounded by much younger H 11 regions and
compact OB associations have been found. One particularly good case is DEM 34 (N11) in the
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6 CHAPTER 2. REVIEW OF GALACTIC MODELS

LMC, alargefilamentary shell surrounding a central OB association (LH 9). The periphery of the
shell contains three OB associations (LH 10, LH 13 and LH 14) together with associated H 11 re-
gions connected by ionised filaments. The kinematics of DEM 34 have been studied by Meaburn
et al. (1989) —they find that the object isbest described as several radially expanding shells, which
are ascribed to be the result of a combination of stellar winds and multiple supernova explosions
arising from the most massive stars. Particularly interesting in the context of propagating star
formation is the work of Heydari-Malayeri & Testor (1983) and Heydari-Malayeri et al. (1987,
1988) on this object who show that the central OB association LH 9 isin fact older than the oth-
ers around the periphery. This contradicts earlier work due to their re-classification of a number
of objects, previously identified as extremely massive stars as compact clusters of more moderate
mass OB stars, indicative of the problems associated with these sort of observations.

TheLMC isanon-rotating system, and we might expect differential gal acticrotationtohavean
important affect on any star formation mechanism. Thuswe need, in addition, to consider Galactic
examples of propagating star formation. On the smallest scal es the OB associ ation and mol ecul ar
cloud complex Cepheus OB3 showstheformation of one cluster triggered by anearby associ ation.
The scenario envisaged for thismolecular cloud (Elmegreen 1991) is of acluster which formed 8
Myr ago pushing on a neighbouring cloud through the interaction of stellar winds and supernova
explosions. After some 4 million yearsthisresulted in the formation of anew cluster moving with
aradial speed of ~5km s~ relativetothe cloud towardsus. The embedding gas of the new cluster
sharesitsradial vel ocity whereastherest of the cloudisat theoriginal velocity of theearlier cluster.
Other good examples of similar structures include W4/W3 (EImegreen & Wang 1988) and M17
(Hobson et al. 1993).

Looking at larger scales there are again a number of Galactic systems which provide strong
evidence for propagating star formation. In the nearby Orion Arm we find the old OB association
Tau-Gem which is surrounded by, and would appear to have provided the energy required to ac-
celerate, the Lindblad ring, a owly expanding shell of both atomic and molecular gas. On the
periphery of the Ring we find a second generation of star formation concentrated in the Ori OB1,
Per OB2 and Sco-Cen-Oph associations (Elmegreen 1985). Blaauw (1984) has considered these
regions in conjunction with al the OB associations which are judged to be members of the Or-
ion Arm within adistance of 1.5 kpc from the Sun. He finds that the triggered star formation has
propagated in many different directions within the arm, consistent with a stochastic picture, but
not what would be expected if the star formation arose from the passage of a spiral density wave.
In thislatter casethere should be a systematic progression of association ages acrossthearm which
is not found.

At greater distancesfrom the Sun (23 kpc) we find the Sagittarius-Carinaspira arm. Avedis-
ova (1988) has studied the star-forming regionsaong the arm between | = 280° — 025° and finds
that they naturally group into three segments. Two of the complexes (labelled A and B) contain
most of the extremely young clusters and the most luminous H 11 regions. Sandwiched between
them, the third segment (C) contains only older clusters (estimated to be older than 107 yr) and
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asmall number of faint H 11 regions excited by the B stars in the clusters, despite it covering an
approximately equal area on the sky to each of areas A and B. The hypothesisis that shellsand
shocks powered by stellar windsand supernovae explosionsfrom the O starswhichmust originally
have been present in segment C, resulted in the triggering of star formation in the neighbouring
areas A and B. Again note that in this case the age progression is not across the arm as would be
expected if the star formation wastriggered by a spiral density wave, but rather alongit, consi stent
with the hypothesis of stochastic propagating star formation.

Although limited by the spatia resolution available, further evidence can be gleaned from
external galaxies as well. Radio observations of the irregular galaxy NGC 1569 at 1.5 GHz and
8.4 GHz (Wilding et al. 1993) suggest that the two extremely luminous clusters seen optically in
the centre of the galaxy have ceased to form stars — however two adjacent regions do show up as
thermal continuum radio sources, including some areas which are optically thick at 1.5 GHz sug-
gesting that in these areas we see current star formation which is propagating outwards from the
bright clusters.

Many reviews of the observational evidencefor propagating star formation are available—see
for example EImegreen (1992) and references therein.

2.1.2 Computer models

Thefirst computer simulationshbased on thisidea (which they named Self-Propagating Star Forma-
tion, SPSF) wereperformed by Mueller & Arnett (1976). Galaxiesweremodelled on atwo-dimen-
sional polar grid, consisting of approximately 2500 cells which rotated differentialy. Each cell
was labelled to indicate whether star formation was currently occurring withinit, and if not, how
long it had been sincethe previousstar formation episode. At the next discrete timestep (25 Myr),
all cellswhich bordered a cell containing a newly formed star cluster would themselves undergo
star formation, provided that the time elapsed since the last creation event was greater than some
regeneration time (chosen to be between 3 and 10 timesteps). The cell containing the star cluster
doing the triggering was then re-labelled as not undergoing current star formation, and its el apsed
time counter reset. Star formation could also occur spontaneously, modelled by randomly chosing
cells at each timestep to be considered as undergoing star formation, normaly at the level of 1%
of thetotal number of cells. Thesimulation wasinitiated by sprinkling new stars at random across
the grid. Spiral density waves could also be incorporated in a primitive way by simply reducing
the regeneration time along the arms.

Theresults showed ragged, flocculent structureswith no realistic spiral structuresreproduced.
If astrong spiral density wavewasimposed (i.e. alarge difference in thearm and inter-arm regen-
eration times) then the images improved, athough it was still not possibleto reproduce a classic
two-armed grand-design spiral. But most importantly, no quantitativelink between the model and
its input parameters with observational data was established.

Thework of Mueller & Arnett was devel oped and much enhanced by Gerola& Seiden (1978).
They introduced the idea of Stochastic Self-Propagating Star Formation (SSPSF), that isthe pres-
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ence of anewly formed star no longer implied that star formation would definitely occur in neigh-
bouring clouds. Rather, star formation was a stochastic process with a well defined probability
that star formation would occur in a cdll, given that there existed a nearby, new star cluster, of
the form P = Py t /T where Py was an input parameter to the model, t was the time elapsed since
the previous star formation episode and T was now known as the ‘refractory time' rather than the
‘regeneration time'. In addition the number of cells used was much larger (7350) to reduce the
influence of edge effects. In al other respects this new mode was basically the same as its pre-
decessor. Thisso called ‘stellar-model’ produced spiral structureswhich looked far morerealistic
than those of Mueller & Arnett: however, the same criticismsapply —only flocculent spirascould
be modelled and there was no attempt to compare with observationsin a quantitative manner. In-
terestingly, asaconsequenceof itsstochastic natureit demonstrated the usual propertiesassociated
with a percolating system (see §2.1.3 and Schulman & Seiden 1983).

The next development was the incorporation of interstellar gas into an SSPSF model. Stars
result from the gravitational collapse of gas, and so clearly any useful model must represent this
processin some form. The new ‘gas-model’ (Seiden & Gerola 1982) was based on the same grid
as that used by the earlier models, but now each cell contained two gas components as well as
(possibly) new star clusters. The gas components for the purpose of the simulation were labelled
‘active’ and ‘inactive’, with the probability of star formation, given the presence of a nearby su-
pernova, being P = Pypl i, Where paiive iS the density of ‘active’ gas. Notethat thisis assum-
ing a Schmidt law (Schmidt 1959, 1963) type dependency for the star formation rate, i.e. the star
formation rateis assumed to have asimple power-law dependence on the loca gas density. If star
formation did occur in acell then all the gasbecame ‘inactive’ but was converted to ‘active’ again
as the simulation progressed with a characteristic timescale T. The total gas was distributed as
an exponentia disc with scale length chosen such that the star formation rate naturally tended to
zero at the circumference of the grid, to reduce edge-effects arising from thefinite, discrete nature
of the simulation. A subsequent paper (Seiden 1983) re-interpreted the SSPSF mechanism as a
two-step star formation process. The first is the creation of molecular clouds, and the second the
formation of stars from the subsequent collapse of the cloud. This latter step occurs rapidly and
(in the modd!) is guaranteed to occur. Thereforeit is the formation of clouds that constitutesthe
rate-determining step and hence the ‘active’ gas can be identified as H 1, i.e. the gas from which
the clouds form and the ‘inactive’ as H 11 since once the gas isin this form there is nothing that
can be done to enhance star formation in the cloud.

A more detailed review of the SSPSF gas-model can be found in Seiden & Schulman (1990).

Thisform of themodel was used to investigateawiderange of galactic structuresranging from
large spira sto dwarf galaxies. The applicability of thismodel to dwarf galaxies must however be
limited by edge effects— it wasin an attempt to avoid such problemsthat Seiden & Gerolaused a
larger grid than Mueller & Arnett. Nonetheless, gridswith asfew as seven cellswere used (Gerola
et al. 1980) — the star formation rate is such systems was found to be oscillatory. | used my own
codification of the model (Sleath 1992) to investigate the generation of starbursts, i.e. episodes
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Figure2.1. Typical output from my codification of the SSPSF gas-model. The symbol sizeindic-
atesthe age of the cluster (largest being youngest and therefore brightest) and the circle delineates
the edge of thegrid.

of extremely rapid, unsustainable star formation which observations (Wynn-Williams 1986) had
suggested often occur in systems of two or more interacting galaxies. Specifically, | introduced a
radial infall of gasfollowing asuggestion by Mihoset al. (1991) that such aflow isaconsequence
of the interaction of two galaxies. Star bursts could indeed be produced in this manner. Other
N-body simulations (Olson & Kwan 1986) suggested that the gravitationa interactions between
galaxiesled to starburststhrough an enhancement inthe collisional rate for molecular clouds. This
was approximated in the simulations by enhancing the spontaneous star formation rate, but it was
not found that starbursts could be induced in this manner.

The most recent studies using an SSPSF code are due to Jungwiert & Palous (1994) who in-
corporated an anisotropic spatia probability distributionin an attempt to represent the differential
shearing of the material swept up by supernova shocks. Rather than the triggering shock wave
expanding spherically from the supernova centre, the shock front expands as an ellipse with ec-
centricity defined asan input to themodel. The authors postulate that the Hubbl e sequence Sa- Sh-
Sc-Sd-Sm-Irr follows from the variation of the eccentricity of the probability ellipse, and suggest
that they can reproduce galaxy types which are modelled poorly by standard SSPSF. Once again
however, it is flocculent and not grand-design spirals which are produced.

2.1.3 Percolation theory —adigression

Percolation theory, which was first introduced into the mathematicd literature by Broadbent &
Hammersley (1957), provides a simple theoretical framework for the study of a wide range of
disordered, stochastic processes. Table 2.1 (reproduced here from Zallen 1983) lists some phys-
ical applications to which percolation theory has been successfully applied. Note that the range
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Table 2.1. Applicationsof percolation theory. Table reproduced from Zallen (1983).

Phenomenon or system Transition

Flow of liquid in a porous medium L ocal/extended wetting
Spread of diseasein apopulation Containment/epidemic
Communication or electrical networks Disconnected/connected
Conductor-insulator composite materias Insulator/metal

Composite superconductor-metal materials ~ Normal/superconducting
Discontinuous metal films Insulator/metal

Stochastic star formation in spiral galaxies Nonpropagation/propagation
Quarksin nuclear matter Confinement/nonconfinement
Thin helium films on surfaces Normal/superfluid
Metal-atom dispersionsin insulators Insulator/metal

Dilute magnets Paralferromagnetic

Polymer gelation, vul canisation Liquid/gel

The glasstransition liquid/glass

Mobility edge in amorphous semiconductors L ocalised/extended states

of scale-lengths involved spans some ~35 orders of magnitude, al the way from quark confine-
ment in the nucleus (characteristic size 10~1° m) to star formation in galaxies (characteristic size
10%° m). Also notethat the majority of applicationscome from solid-state physics and are rel ated
to phase transitions between states; it is the presence of a natural phase transition within percola-
tion theory that makes it useful for investigating such systems.

For adetailed mathematical treatment there areanumber of textbooksavailable (e.g. Grimmett
1989) —however, auseful fed for theideasinvolved can be gained from considering aforest fire, a
simple examplewhich lendsitself well to percolation studies. Therate at which such afire spreads
through theforest dependson many environmental conditions, for examplethewind strength, local
topography (fires travel faster uphill), age and type of trees (thick bark is more fire resistant) and
recent rainfall. However, we can group all these factorstogether into asingle constant P, the prob-
ability of the fire spreading from onetreeto any of itsnearest neighbours. A forest is modelled as
atwo-dimensional lattice (usualy either square or triangular) with each vertex atree. Trees can
bein one of four states; (i) unburnt, (ii) burning, (iii) ‘warm’ (i.e. unburnt but adjacent to burning
trees) and (iv) burnt, and hence not re-ignitable. The simulationis begun with onetree burning at
the centre of the grid.

Clearly if P = 1then the wholeforest will be consumed whereasif P = 0 then thefirewill not
spread at all. For a percolating system there is a critical probability P for which the number of
burning treesat any giventimeisapproximately constant. For P < P, the number of burning trees
tendsto zero astimet — oo, whereasfor P > P then the number rises linearly with time (MacKay
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1.0 Figure2.2

Example shape of the forest fire
spreading speed as a function of the
percolation probability P. The curve
is plotted for P. = 0.3 and critica
exponent 3 = 0.2. For P < P thefire
dies out completely.
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& Jan 1984). Equivaently the fire will reach the boundary of the grid in half of al redisations
if P = P (von Niessen & Blumen 1986). If we consider the asymptotic value of the spreading
speed of thefire, v, then at P = P, the system undergoes what is known as a ‘ percolation phase
transition’” when the asymptotic spreading speed suddenly takes on non-zero values (Fig. 2.2). In
common with other critica phenomena, for P > P the spreading velocity is characterised by a
critical exponent such that v O (P — P, )P, where B isafunction of the exact nature of the system
under consideration (i.e. the form of the grid and its dimensionality) (Ohtsuki & Keyes 1986).

The SSPSF stellar model is a much modified percolation process from the simple example
above. For example, the grid on which the percolation is occurring is rotating differentially, and
any given site can undergo star formation many times, with the only proviso being that a refract-
ory time must elapse between subsequent events. However, it nonethel ess demonstrates many of
the characteristic features of the simple percolation. Figure 2.3 shows the variation of the star
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formation rate with Py — it shows aclear phasetransition at acritical valuefor Py whichisafunc-
tion of the refractory time used. The added complexity of the SSPSF gas model tends to blur the
phasetransition somewhat —there still existsacritica value of Py, but therisein SFR ismuch less
rapid. My experiments with this model aso suggested that the finite size of the grid also softened
the phasetransition, an effect known from more ‘traditional’ percolation studies. A detailed study
of the percolation aspects of the SSPSF modelsisto be found in Schulman & Seiden (1983).

Although the new model (to be described in Chapter 3) is based on similar principlesto the
SSPSF models of Seiden, Gerolaand Schulman, it incorporates a considerably more detailed rep-
resentation of the propagating star formation mechanism, and perhaps more significantly, an at-
tempt has been made to simul ate the complicated dynamics of the ISM. Henceit is sufficiently far
removed from asimple percolation model that the techniques devel oped for analysing percolation
processes are unfortunately no longer useful.

2.2 Other galaxy models

The vast mgjority of galactic models have focussed on the dynamics of the stellar, and more re-
cently, gaseous components, within general littleemphasis placed on star formation anditsimplic-
ations for galactic structure. The simulations divide naturally into two categories. N-body codes
in which a collection of self-gravitating particles evolve under the Newtonian equations of mo-
tion, and hydrodynamic codes in which a continuousfluid is represented as discrete elements and
allowed to evolve according to the appropriate equations for a compressible fluid. | will discuss
N-body simulationsfirst.

2.21 N-body codes

Many astrophysical systemshave been investigatedwith N-body codesrangingin scalefrom small
clusters of stars through globular clusters and galaxies to cosmologica structures. Such models
consider the systems of interest to be a collection of self-gravitating points with the simulation
proceeding by calculating, at each discrete time-step, the force on each particle due to every other
thus allowing the particle’'s position and vel ocity to be updated. The most elementary method for
doing thisisthe so called Particle—Particle (PP) approach where the total force is considered as
the vector sum of all thetwo-body interactions. In its simplest form we have

Fi= ) Fi,
JﬂJZSJéi
F.
Ve — yold . LA,
m
XMW = x99 ¢ viAt,

(Hockney & Eastwood 1981). There are however problems with this technique. Thefirst isre-
laxation of the system due to close encounters. A real galaxy is essentially a collisionlesssystem
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at least asfar asthe stellar dynamics are concerned. However by representing a galaxy with, say,
10° particles rather than the 10 required for one per star we increase the mass of each particle
relative to the total by many orders of magnitude. Thisleads to a corresponding rise in the min-
imum impact parameter and frequency of strong deflections and the resulting scattering causes an
unphysical dynamical relaxation of the system. To reduce this a‘ softened’ potential of the form

GM
isgeneraly used, essentially replacing the point masses by finite sized particles (Sellwood 1987).
However amorefundamental restriction on theuse of thedirect N-body simulationsistheir scaling
withincreasing particle number N, the computational effort requiredincreasing O N(N —1). Many
refinements of the naive implementation are possible: the use of force polynomialsto alow higher
order integration using information from several previous epochsincreases the accuracy available
for given At, or alternatively, alarger At (and thusfaster simulation) for the same level of accuracy.
Regularisation (Stiefel & Scheifele 1971) permitsamore rigoroustreatment of close encountersby
transforming the non-linear equation of motion (X 0 x~2) to alinear form (u” 0 u) viatherelations
x = u? and dt = dx/x, athough thisis more important for small N collisional systems. Finally
choosing an individual time-step for each particle according to its circumstances (large At if the
potential is smooth, smadl if it's varying rapidly) can again lead to substantia improvements in
the speed of the code. For arecent summary of such techniques see Aarseth (1994). However
for N > 10* the time penalty associated with a direct integration method is too severe, and other
approaches must be adopted.

The Particle-Mesh (PM) approach differs from PP in the method used to calculate the inter-
particleforces: rather than adirect sum, the particlesare gridded into M cells (typicaly withM ~
N) and each cell assigned the corresponding total mass. Poisson’s equation is solved at the centre
of each cell using a Fast Fourier Transform (FFT):

o=— (2.1)

P — B — @) — @) — g

where p isthe mass density of the cell and g isthe resulting gravitational field. The forcefor each
particleis then interpolated from the grid. The main advantage of this method is that the time re-
quired now scalesas O(Mlog, M) (Press et al. 1992), but with the penalty of reducing the spatial
resolution to that of the mesh, or worse when allowance is made for numerical errors. Moreove,
the grid can impose an artificial geometry on the simulation and problems will be encountered if
material should escape from the grid as the simulation proceeds. Some attempts have been made
to combine multiplegridsin an effort to overcome the resolution problem (for examplein model-
ling two interacting galaxies, James & Weeks 1986) but this cannot be used in general when the
locations of regions of particularly high particle density are unknown a priori.

A hybrid approach, the Particle-Particle-Particle-Mesh (P°M) combines some of the advant-
ages of boththe PP and PM techniquesby directly summing the force from nearest neighboursand
using the PM method for larger distances. The resulting codes are faster than PP and have much




14 CHAPTER 2. REVIEW OF GALACTIC MODELS

. Figure2.4
Schematic illustrating the partition
R of a distribution of particles (filled
, i circles) in a tree-code simulation.
. ol® The angles 6, and 6, show the angle
: i subtended by two cells of different
; ) size with centre-of-masses indicated
,Jﬁ/\\el/// . by open circles. Figure based on
S Aarseth (1993).

greater spatial dynamicrangethen PM. Therestrictionsdueto thefixed grid still apply though, and
the PP calculations for nearest neighbours result in code which is considerably slower than PM.
The technique has been successfully applied to systems with particularly large contrastsin dens-
ity such as cosmological simulations of the early universe (Baugh & Efstathiou 1994; Efstathiou
et al. 1985).

The most efficient methods, however, for dealing with large N are based on so called tree-
codes. The systemis partitioned into cells starting from the ‘root’” which containsall the particles.
Using the Barnes—Hut (1986) formulation, subdivisionsby factors of two (inlength) are performed
until each cell containsonly one particle, thusbuildingan oct tree (8 descendants per nodein three
dimensions) with each node representing a physical volume of space and containing information
giving the total mass and position of centre-of-massfor the volume. (Fig. 2.4). Thetotal force on
any given particleiscalculated by descending thetree from the root considering the angle subten-
ded by the cells at the current level, 8 = s/r where sisthe size of the cell and r isthe distance to
its centre-of-mass from the particle in question. For some specified critical opening angle, 6, if
0 < 6. thentheforce onthe particleduetothat cell isexpressed as amultipol e expansion about the
cell’s centre-of-mass using a softened potential of the same form as equation 2.1 above. Clearly
this condition will not generally be satisfied for the largest cells, in which case the descendants
are considered until either @) a single particle is found or b) the angle subtended becomes suffi-
ciently small. The accuracy that can be obtained in this manner is a compromise between critica
angle 6. and the order of the multipole expansion used. The method again scales as O(NIogN)
and it is now the preferred method for large N. A more detail ed description of the traditional tree-
code method can be found in Hernquist (1987). More recently McMillan & Aarseth (1993) have
introduced a collisional tree-code method incorporating the refinements discussed above for the
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PP method, including a high-order integration scheme, variable time-steps and regularisation to
deal with close approaches, enhancing the accuracy obtainable at the expense of speed — only for
N > 10* does the new code out perform a direct approach.

2.2.2 SPH and hybrid schemes

An dternativeto the ‘traditional’ N-body approaches, Smoothed Particle Hydrodynamics (SPH),
was introduced by Lucy (1977) and Gingold & Monaghan (1977) as a technique for modelling
continuous fluids. The equations of motion are solved using a Lagrangian formulation in which
the fluid is represented by a collection of particles with the particle mass density proportiona at
any given point in spaceto the fluid density p. Clearly the number of particlesisfinite and hence
to estimate p (and quantitiesrel ated through the equations of motion) at later timesit is necessary
to interpol ate between them to represent the smooth, continuousfields. If each particle hasamass
m then

p(r) = _imwu ~rih)

where W(r, h) is an appropriate smoothing kernel and h is the smoothing length. Many kernels
havebeen usedin SPH codes; the easiest tointerpret physically isGaussian (Gingold & Monaghan
1977),
1 _(x2/h2

W(x,h) = Wi (/%)
whilst theform currently most favoured isbased on splinefunctions(Monaghan & L attanzio 1985).
For further information on theimplementation of SPH codes, including a derivation of the hydro-
dynamical equations expressed in terms of particle motions see Monaghan (1992).

Oneof SPH’sinherent advantagesisthat itisnaturally adaptivewithwhat is effectively avari-
able geometry grid to cope with regions with high density contrast. Codes have aso been written
inwhich thesmoothing length hisitself variableboth in space (thusvarying the spatial resol ution)
and time (permitting each particleto haveitsown timestep to reduce unnecessary computation for
a given accuracy), athough doubts have been raised over the reliability of codes incorporating
variable smoothing length (Hernquist 1993).

Recent studies employing SPH codes have ranged over the full range of astrophysical scales
including; theimpact of comet Shoemaker—L evy into Jupiter (Takataet al. 1994), merging neutron
stars(Davieset al. 1994), accretion disks(Chakrabarti & Molteni 1995), collisionsbetween clouds
inthe ISM (Habe & Ohta1992), chemical evolution of the Galactic bulge (Tsujimoto et al. 1993),
galaxy clusters (Metzler & Evrard 1994) and the formation of large-scale structure in the early
universe (Navarro & White 1993). Plus, of course, spiral structurein normal galaxies (Patsiset al.
1994).

Smoothed particle hydrodynamics has been combined successfully with gravity tree-codes by
Hernquist & Katz (1989), allowing a galactic model incorporating both evolution of astellar com-
ponent (tree-code to cal cul ate inter-particleforces) and an I1SM (using SPH). Thisformulation has
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been employed in model s of disk galaxy mergers (e.g. Hernquist & Weil 1993; Mihos & Hernquist
19944) and gaaxy formation (Katz & Gunn 1991; Katz 1992). Moreover, it is one of the only
models based on an N-body/SPH approach which has been used to explicitly model star forma-
tion on agalactic scale (Mihos & Hernquist 1994b). The details of the mechanism, however, are
not considered at all — the star formation rate is simply related to the local gas density through a
Schmidt Law (Schmidt 1959, 1963), and is not in any way a consequence of the simulation. As
will be shown below (84.3), the new model presented here predicts a Schmidt Law on the basis of
asimple model of the star formation process (Chapter 3).
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Chapter 3

The mode o

In this chapter | discussthe physical basis underlying the model together with itsimplementation
as a FORTRAN algorithm. The fundamental idea of the SSPSF approach is retained, and hence
the detailed physicsof the star formation process are largely subsumed into a singleparameter Mg
which playsasimilar roleto that of Py inthe simple SSPSF models (§82.1.2). The gas dynamics of
the ISM are, however, modelled in considerably greater detail than has previously been donewith
apropagating star formation model. First, | consider the reasonswhy supernova/supershell shocks
are considered suitabletriggers for massive star formation, followed by a description of the man-
ner in which the physics of the shock—cloud interactions plus the gas dynamics are implemented.
Finally, some of the finer details of the computer code are discussed.

3.1 Thephysicsof propagating star for mation

One of the principal advantages of the propagating star formation approach isits simplicity — the
detailed physicsare lumped together into asingle parameter. It must be remembered however that
we are not modelling all modes of star formation since we are stating that a shock is required to
initiate the process. This scenario tiesin well with the scheme envisaged for massive star forma-
tion from giant molecular clouds (GMCs) (Turner 1988), but is not appropriate for the creation of
low mass stars from small clouds. In thislatter case proto-stellar clumps are created as aresult of
dissipation through intra-cloud turbulence, and a shock isnot required.

If we now consider theinteraction of ashock wave with aninterstellar cloud wefind that onthe
largest scales(i.e. the completefront) ashock increasestheinterna kinetic energy of thecloud, sta-
bilising it against collapse, and possibly disruptingit. Thus star formation isinhibited. However,
on scales of order the front thickness the shock enhances the density increasing the dissipation—
collapserate proportional ton'/2, wheren isthenumber density of thecloud. Anincreased particle
density a so leadsto ahigher rate of ambipolar diffusion, i.e. the rate at which the redistribution of
magneti ¢ flux occursthroughthe movement of charged speciesrelativetothe neutralsinthelightly
ionised (by cosmic rays) cloud gas. Theionsexperience el ectromagnetic forces directly whilst the
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neutrals can only interact indirectly with the field through collisionswith the ions. Since the net
force on the ions must be zero, by equating the Lorentz force with that arising from inter-particle
collisionsit can be shown that the rate of ambipolar diffusion scales as ~B2n~3/2L~2 (Shu 1992),
where the ionisation fraction has been taken as 0 n~1/2, appropriate if al recombinations occur
in the gas phase and the ionisation rate is proportional to the gas density. Shocks parallel to the
cloud’s magnetic field conserve B and nL and hence the ambipolar diffusion rateis 0 n'/2, whilst
perpendicular shocks conserve B/n and nlL and therefore the diffusion rate for thefield is 0 n>/2,

The third consequence of aloca density enhancement is the remova of angular momentum
fromthecloud. Asthegasistranslatedto form regionsof increased density it doesso preferentialy
along fied lines and hence its rate of rotation does not vary. Its angular momentum is reduced
by the resulting tension in the B-lines acting as a torque. Hence, by three distinct mechanisms
energy isremoved from the cloud (in turbulent, magnetic and rotational forms) resultinginamore
gravitationally bound cloud which is thus more prone to collapse — the first crucia step towards
the formation of new stars.

Conseguently, the scenario for massive star formation isthe Jeans coll apse of agiant molecular
cloud triggered by aloss of supporting pressure due to an impinging shock. Initialy the collapse
isisothermal, but as the opacity risesit tends towards adiabatic. Under these conditionsthe tem-
perature of the gas post-shock isimportant since it determines the minimum mass of the stars that
can be formed through the relation

M T 249

where T isthe temperature of the cloud before the onset of the collapse and & is afunction of the
grain composition, taking valuesin the range 1-2 (Turner 1988).

In contrast |ow mass star formation can proceed without external stimulus. If amolecular cloud
(of sizeL) isstabilised by turbulence, thenit will have supersonicinternal motionsaccordingtothe
empirical turbulencelaw Av = 1.2(L/pc)®2 km s~ where Av is the internal velocity dispersion
of thecloud. Henceinternal shockswill exist and as aresult distinct sub-unitsof enhanced density
will be created which may be small enough such that their internal motions are entirely subsonic.
The shock condensation of further, smaller units is then halted, and instead the clumps simply
collapse gravitationally on atimescal e comparableto thefree-fall time, astheir remaininginterna
energy is dissipated. We can identify a minimum mass for this process a so — assuming that the
clumps are supported only by thermal pressure then knowing typical cloud temperatures allows
the internal velocity dispersion (Av) to be estimated which through the turbulence law, alowsthe
size of such clumps to be determined. Furthermore if the clumps are in virial equilibrium then
Av = 0.48(M/M,)%18 km s~1 permitting a minimum mass to be estimated. For subsonic clump
temperature of 10K the minimum clump sizeis ~0.1 pc and minimum mass is ~0.12 Mg with
large uncertainties (Turner 1988). Thislatter estimateis consistent with the observationa fact that
the IMF in the local vicinity shows a downward trend below < 0.1 M.
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3.2 Theimplementation

The simulation uses three components to model a galaxy. These are

(i) adiffuse gaseous component,
(ii) gasclouds,

(iii) star clusters and associations, the distinction being unimportant for thiswork.

The cloudsand stars are represented as test particlesmoving in an overall galactic potential which
has both axisymmetric and spira components. The number of cloud particlesisfixed (typically at
32 000) whilst the number of star particlesisalowed to vary —usually about 15000 star particles
arefollowedat any time. Whilst thecentral bulgeand hal o contributeto the potential, theseregions
are not populated with particlesin thismodel since star formation has essentialy ceased in these
areas. Asaresult any pictorial representation of the results from the model shows a central hole
(e.g. Fig. 5.4).

Although it would be easiest simply to label the gas clouds as being H, and the diffuse gas
as H 1, the model actually represents the ISM more realistically than this. As will be discussed
below (83.2.1), the clouds accrete from the diffuse gas component so that a reasonable picture
of them would be a molecular core surrounded by an atomic hydrogen halo. Thisseemsto bein
accord with observations— direct measurements of nearby cloudsthat are resol ved show molecul ar
cores surrounded by atomic envel opes (Wannier, Lichten & Morris 1983; EImegreen 1985) and
on alarger scale, ElImegreen & Elmegreen (1987) find that many CO complexes are associated
with H1 clouds. Observationally, the mass fraction of the molecular component decreases with
galactocentric distance (Burton 1988), which we model by having the number of cloudsat agiven
radius follow the H, distribution (Fig. 5.9).

This model represents an attempt to simulate a steady-state system in order that the effects
of the propagation mechanism, galactic dynamics and cloud growth can be studied without the
additional complications associated with the overall evolution of the galactic system. The Milky
Way has had an approximately constant star formation rate over the last few Gyr (Noh & Scalo
1990) and it is galaxies in this state that we wish to study here. Thisaim is reflected in a number
of simplifyingassumptionsconcerning, for example, the orbital dynamics, the tenuouscomponent
of the ISM and the disc temperature, al of which are discussed in more detail below.

3.2.1 Thegar formation mechanism

The basic concept behind the star formation mechanism employed is stochastic, self-propagating
star formation in which we take the propagating mechanism to be the triggering of cloud collapse
by a supershell shock. Such a shock wave arises from a combination of stellar winds and super-
novae expl osionsdue to the most massive stars in the association (Tenorio-Tagle & Bodenheimer
1988). Inthemodel, each cluster siteisthe source for one such super-bubbleand we assumethat it
isapotentia trigger for star formation up to the point at which its radius reaches 200 pc. If such a
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shock waveimpinges on anearby molecular cloud then thereisa chance, with well-defined prob-
ability, that star formation will be triggered within the cloud. Star formation is complete within
106 yr, and hence we are only following the formation of the most massive stars. Lower mass
star formation is not modelled explicitly but would be expected to continue over a much longer
period (~107 yr) (Bodenheimer 1992). Recent observations (Zinneker 1996) suggest that the ini-
tial massfunction (IMF) of starsborn in OB associations shows no truncation at |ow masses, and
hence all stars may be born as part of OB associations, a suggestion originally made by Miller &
Scalo (1978).

In general the probability of star formation occurring will be a complicated function of the
prevailing physical conditions, but without model ling the detail ed interior dynamics of theclouds,
we can expect the dominant term to be that due to the mass of the clouds. In general we expect
the probability to be expressible as a power seriesin the cloud mass:

k
M;
Py = a (_) 5
kZl Mst
where M; is the cloud mass, Mg is a scaling mass controlling the stimulated star formation and
the coefficients a, will in general depend on the pressure, temperature and velocity structure of

the cloud. For simplicity we take only the leading term of this series and assign the probability of
stimulated star formation to be

putting a; = 1. Star formation can aso occur spontaneously — if a cloud grows too large, then
star formation will occur without external stimulus. Again we assume that this process can aso
be expressed as a power seriesin M; of which we retain only the leading term:

Psp: M—sp,

where inthis case Mg, determines the rate of spontaneous star formation. In every simulation dis-
cussed inthisdissertationMg < Mg, typically by six orders of magnitude—therefore, propagating
star formation is always the dominant mechanism.

When star formation occurs, the molecular cloud is disrupted and its mass is reduced so that
M; — eM; with (1 — €)M; locked into newly formed stars or dispersed into the neutral ISM. Typ-
ically we take € = 10~3 — note that thisis not the same as the star formation efficiency, a typical
value for which would be ~1-5% (Lada et al. 1992), it is simply the factor by which the cloud is
disrupted. That is not to say that we would expect a cloud to be ailmost totally destroyed by star
formation — the creation of intermediate- to low-mass stars would continue. However, thisis the
simplest manner in which to model the effects which are thought to occur in a cloud which prevent
subsequent episodes of massive star formation.

Clouds are not however destroyed permanently by a star formation episode. As each cloud
orbitsthe galaxy it accretes matter from the interstellar H 1, such that its mass is afunction of the
time elapsed since the most recent episode of star formation. Since the model is not concerned
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with the evolution of the galaxy as a whole but rather with the development and rate of the star
formation process, we consider the tenuous H 1 component to be fixed both spatially and in total
mass. Processes such as stellar mass loss and the disruption of clouds are assumed to be capable
of maintaining the constant H 1 distribution, although they are not modelled in detail.

We consider the accretion rate by the clouds of material from the|SM to be proportional to the
cloud velocity, and hence

M; O Zvpn,,
where 2 isthe cloud cross-section. Since 2 [ Mi% for acloud of uniform density thisgives
M; O Miéva.,
and hence
Mi(t) = (Ypn vt )3+ initial mass. (3.1

The constant y is chosen by comparison with Galactic values — we require a mean cloud growth
timeof ~2 x 108 yr (Kwan & Valdes 1987) when typica valuesof py, (Burton 1988) and v (Stark
& Brand 1989) are used. Theinterstellar H 1 isdistributed in a manner appropriate for our Galaxy
(Burton 1988), and remains unchanged as the simul ation proceeds.

Ten million years after the formation of a star cluster, the O/B stars contained within it will
explode as supernovae (SNe). We are interested in the formation of massive stars—in our model
therefore, all star clustersact as progenitorsfor SNe. The expanding shell, which remains centred
on thestar cluster, isresponsiblefor triggering subsequent star formation if it encounters anearby
cloud with sufficient mass. The shock is followed for a further 107 years (with radius increasing
[0 t2/5, i.e. adiabatic expansion) after which time it is considered to be too wesk to trigger star
formation. This corresponds to a maximum propagation radius of 200 pc, and is consistent with
the size of supershellswithin our own Galaxy (Tenorio-Tagle & Bodenheimer 1988).

Note again that the star formation mechanism is purely self-propagating; there are no trigger-
ing effects from, for example, spira shocks. In the next section we discuss the dynamics of the
model — the clouds move in a gravitational potential which includes a component from a spiral
density wave (SDW), the effect of which is to enhance the H, cloud density in the vicinity of the
arm, and thus increase the chance that a supernovashock will cause starsto be formed.

3.22 Thegalactic potential and the SDW

Although the cloud particles are each assigned a mass, thisis only used in the implementation of
the propagating star formation mechanism. Both star and cloud particles orbit as test massesin an
axisymmetric galactic potential dueto Allen & Santillan (1991) upon whichis superposed aspira
perturbation. The axisymmetric potential is considered to arise from three mass components:

(i) acentral bulge,

-M
org) = ——to

(r?+2+bj)
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Table3.1
Constants defining the Galactic potential. Reproduced from Allen
& Santillan (1991).

M; 1.41x10% M,
b, 0.3873kpc

M, 8.56x 10 M,
a, b5.3178kpc

b, 0.2500kpc

Ms 1.071x 10" Mg
az 12.0kpc

(if) adisc component,
_M2

TPt (2

®(r,2)
(iii) and a spherical halo,

M3R1'02

®(R) =——+— +In
(R) a%.oz

100 kpc
R 1.02 R 1.02
(3 (3
az a3

R

M ~1.02
1.02a5 | [1+( &)+

where,
R=+vr2+2.

The constants ay, ag, by, by, M1, M and M3 (Table 3.1) are determined by considering the
Galactic rotation curve and the orbits of stars with a large z-velocity, such that they sample the
potential over alarge volume. As such, the potential they produceis only strictly appropriate for
an Sbc galaxy such asour own. Therotation curveisshown asFig. 3.1 together with observational
constraintsfrom Allen & Martos (1986). Note also that the potentia iswell behaved everywhere
(Fig. 3.2) and that the corresponding density ispositiveat all points, unlike certain other commonly
used galactic potential models, for example that due to Ollongren (1962).

Superimposed on this potential isa logarithmic spiral component:

Ar?

0 = _mcos[ne— nQpt +X(1)],

where n is the number of arms, Q,, is the pattern speed and x(r) is the spiral shape function,

ptanig

X(r)

The spiral is barlikefor r < rqg and spiral outside, whilst p determines the sharpness of thistrans-
ition. The pitch angleisdefined as the angle, at the point of intersection between the spira and a
circle, of the respective tangents. Figure 3.3 showsthe initial position of the crest of the potential
perturbation.
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300 ———— : Figure3.1

TheGaacticrotation curve. Thesolid
curve is derived from the potential
model of Allen & Santillan (1991)
and the pointswith error bars are ob-
servational constraints (Allen & Mar-
tos 1986).
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Figure 3.2. The gravitational potential. Shown are equipotential contours for two cases. (a) un-
perturbed, axisymmetricfield and (b) with aspiral density wave of amplitude0.08 pc* yr—2 super-
posed. Contours are plotted every 10'° m? s72 from —1.8 x 10! to — 7.0 x 10*® m? s72 and every
10° m? s~2 between —7.0 x 10'° and —5.0 x 10%° m? s~2. Axes are |abelled in units of 200 pc.

@ (b)

50
T
50
T

-50
T
-50
T




26 CHAPTER 3. THE MODEL

Figure3.3

The position of the crest of the SDW
T . a timet = 0. The spird is described
byn=2ipg=20°, p=50andrg=
- 1 . ] 5.0 L (see Appendix A for a descrip-
i tion of ‘model’ units).
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The constant a4 ischosen such that the strength of the SDW peaksat aradius of 7 kpc (Roberts
& Hausman 1984) whilst A istypically fixed such that the SDW contributes about 5% of the total
radial force — for a given SDW amplitude the maximum relative strength of the perturbation is
given by
max SDW contribution to radial force

A
total radial force = 0.56045 (pc4 yr—Z)

whilst the radial variation of the SDW contribution, normalised against the maximum value (r =
a4) isshown asFig. 3.4.

Until the 1950s the majority consensus was that the arms of spiral galaxies were in some way
a consequence of the galactic magnetic field. Lindblad however deduced that the spira structure
resultsfrom dynamical interactionsbetween stellar orbitsand the overall galactic potential. A for-
mulation based on density waves was introduced by Lin & Shu (1964; 1966) — in particular they
proposed that spiral arms were the visible effects of a quasi-stationary density wave. Itistheir hy-
pothesiswhich underliesthe treatment of spiral wavesin most current studiesof galactic structure
and dynamics, including the current model.

A full N-body simulationwould not require the spira component of the potential to be imple-
mented in this somewhat artificial manner, since an SDW arises as a natural instability of athin,
differentialy rotating disc in such experiments (Thomasson et al. 1990), a fact aso predicted by
perturbation analysis (Binney & Tremaine 1987) and even laboratory experiments (Nezlin et al.
1986). Furthermore, although our potential is constant, we would expect the strength of the wave
to vary asafunction of time, for example, asaconsequence of swing amplification. Neverthel ess,
current observations support the Lin-Shu hypothesis of a quasi-stationary wave, which is mod-
elled satisfactorily by using afixed potential asin our model. A detailed discussion of the physics
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Figure3.4
10 il The radial force perturbation due to
I a spiral density wave as a function
g 081 ] of gaactocentric radius. The curve
= is normalised against its maximum
806 ] value.
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of spiral density waves can befound in Binney & Tremaine (1987) and Shu (1992). For aslightly
less formal approach, Bowers & Deeming (1984) provide a good introduction.

A logarithmic spiral form for the potential was chosen for being, most importantly, agoodfit to
observationa data. The most comprehensive survey of galactic spiral formisstill that of Danver
(1942) who tested six theoretical spirals against observations and concluded that the best fit was
obtained with logarithmic spirals. Asa conseguenceit isthisform which is most commonly used
in studies of galactic structure and dynamics.

3.2.3 Thekinetictemperature of thecloud particles

If two clouds approach within a cross-sectional diameter of one another then acollisionissaid to
have occurred. We take the collision to be inelastic and write

Vi — NVa,

Vo — NV1, (32)

as an approximation to the details of the collision. The energy and momentum dissipated is con-
sidered to be taken up by internal motions of the cloud and since the internal energy of the cloud
isdissipated radiatively through collisional de-excitation of the gas atoms/mol ecul es, cloud-cloud
collisions reduce the total energy of the galactic system. We allow for the heating of the ISM by
shocks etc. resulting from collisions between the clouds and the expanding supernova remnants
(SNR) by giving any cloud which collides with a remnant an impulse along the line joining the
cloud and SNR centres of sizeinversely proportional to their separation. The size of the velocity
impulseisrestricted to beless than some va ue vima. We aso introduce a feedback mechanism to
mai ntai n an approximately constant cloud kinetictemperature sincethe | SM isobservedto beinan
approximately equilibrium state. Asthe galactic disc temperature rises, so the cloud cross-section
isalso increased to enhance the cloud-cloud collision frequency, and hence the cooling rate. This
approach is consistent with our aim to model a steady-state system.
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3.3 Computational considerations

Due to the natural symmetry of the simulation it is sensible to use cylindrical polar coordinates
throughout. To ensure that al coordinates(r, 0, z,r, 9, z) take values which can be represented ac-
curately insingleprecision, al lengths, timesand masses are scaled. Lengthsare expressedinunits
of L= 200 pc, timesin T = 107 yr and massesinM = M. In all cases discussed in the following
chapters, the actual timestep used in the model has been 10° yr = 0.1T, although it could in prin-
ciplebevaried sinceit is specified as an input to the model. All results quoted in this dissertation
have been converted to physical unitsfor the convenience of the reader.

The code has been written to be as fast and compact as possible alowing the simulations to
be run on workstations rather than on the supercomputers required by many galaxy models. The
CPU time needed on a Sun sPARC 10 is approximately 7 h for a simulated time of 10° yr. Typ-
icaly asimulation reaches steady-state (i.e. aroughly constant SFR, see Fig. 3.9) after about this
time, but results are not normally taken until the model has been running for at least ~18 h (an
equivalent time of 2.5 x 10° yr), to provide a sufficient interval over which to average the SFR.
To ensure that the code is as fast as possible care has been taken to ensure that the best choice of
compiler optimisation has been made, that the number of computationally expensive operations
(such as trigonometric functions and square roots) is minimised by the judicious use of dummy
variables, and where necessary, techniques have been adopted to maximise speed at the expense
of the memory required (83.3.1).

A complete source code listing is provided as Appendix B.

3.3.1 Calculation of near neighbours

To propagate the star formation it is necessary to determine
which clouds are within the supernova shock at any instant.
The direct approach of calculating the distance of each cloud
from the relevant supernova centre, is prohibitively expensive
however: at any timestep (10° yr) there are ~1000 supernova
sites, so asimulation of 2.5 x 10° yr would require ~10™ dis-
tance calculations. | adopt an aternative approach and grid the
cloud particles after each rotation. The cell size is chosen to be
the largest possible size of the supershell — the shocks are only
deemed to be strong enough to trigger star formation for 107 yr
inwhich timethey attain aradiusof 200 pc. In thismanner only
the 27 cells around the supershell centre need to be searched for
cloudswhich are within the supershell (see Fig. 3.5). There are dmost aways lessthen 50 clouds
per cdl, thusless than ~1300 distance calculations per supershell per timestep have to be made.
For ~1000 sitesand atotal runtimeof 2.5 x 10° yr, thisresultsin atotal of ~10° calculations, are-
duction of about one hundred over the direct method. Thisleadsto amuch improved performance

*******************************

Figure 3.5.
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Figure 3.6

Richardson extrapolation. The inter-
va H is subdivided into a number of
steps. As the number of steps in-
creases, the calculated value of the
1 integra converges to its true value
which can thus be calculated by ex-
trapolating thefunction describingthe
convergence to oo steps.

/

Extrapolation to zero step-size

X X+H

in terms of speed, at the expense of increased use of physical memory (approximately 80 MB).
Thisin practice limits the number of cloud particlesto 32767 in our simulations, i.e. the largest
number which can be represented asan i nt eger * 2 variable. Thisis not a restriction however
sincethisfigureiscloseto the number (~30000) of molecular cloudswhich are estimated to exist
in our gaaxy (Turner 1984).

3.3.2 Therotation integration scheme

Thethree-dimensional particleorbitsare derived fromthederivativeof thetota potential usingthe
Bulirsch-Stoa method (Stoa & Bulirsch 1980), a highly efficient agorithm for smooth integration
problems such as we have here. Our implementation is derived from that given by Press et al.
(1992). Thekey idea behind thisintegration schemeisthat of “Richardson’s deferred approach to
thelimit”. For agiven ‘large’ interval H, we can obtain better and better solutionsto the integral
by dividing H into more and more steps of size h. Moreover, by considering the behaviour of the
approximationsas h isreduced, it is possibleto extrapol ate the function to zero step-sizeto yield
the final answer (see Fig. 3.6).

Theactual integrationis performed using the Modified Midpoint method. To integrateafunc-
tion y(x) from x to x4 H using n steps (such that h = H/n) we have,

Yo = Y(X)
_ dy
Y1—YO+hd—XX
= —|—2hd—y form=1,2 n-1
Ym+1 = Ym-1 dx xqrmh — L4y

_1 dy
Y(X+H)~y,= > [Yn+Yn—1—|- hd_X‘x+H]
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Figure3.7

€ 4 An example orbit for a single, isol-
' ated particle. The particlewas started
from position (35,0,0) with atotal ve-
locity dispersion of 18 km s~ super-
imposed on the appropriate Keplerian
velocity for its radius. A spiral po-
‘ tential component of strength 5% of
the axisymmetric potential is present.
Axes arelabelled in units of 200 pc.
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This is a second order method but in comparison with the second-order Runge-K utta method,
only one derivative calculation is required per step rather than two. Importantly for itsuse in the
Bulirsch—Stoa method, the error can be expressed as a power series of even-powers of h (Gragg
1965), i.e.

0

Yn—Y(x+H) = 3 aih?
n i; i

hence the extrapolating polynomial can be expressed in terms of h? and not merely h, increasing
the accuracy without compromising speed.

Since the clouds are regularly undergoing collisionswhich effectively randomise the cloud's
velocity, itisnot necessary to integrateto high accuracy. Hencesingle-precision arithmeticis used
throughout, and the tolerancelevel for the convergence of theintegral can berelaxed. Considering
the final position of asingle, isolated particle after 2500 timesteps (Fig. 3.7), it was found that the
fractional error permitted on any individual timestep could be increased from 10~/ to 102 with
no shift initsfinal coordinatesto six significant figures. There was however a noticeable saving
in CPU time (15-55%, depending on the exact values used for the dispersion velocities, radius of
orbit etc.), and hence a tolerance value of 10~ was used throughout the simul ations.

In another attempt to minimise the computationa effort required, much care was taken to en-
sure the greatest level of optimisation possiblein the calculation of the derivatives. In particular,
the number of square roots, powers and trigonometrical functions has been kept to the absolute
minimum. Any values which are the same for each rotation calculation, but which are functions
of the input parameters (for example tanip) are calculated once only in an initialising subroutine.
Despitethis, therotation of the star and cloud particles still constitutesamajor fraction of the over-
al CPU timerequired.
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Figure 3.8. Two views of the cloud—supershell remnant collision geometry. The supershell isla-

belled as [ and the cloud as [J.
y ya
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i

x (t- 1)

3.3.3 Particledynamics

In a similar manner we wish to minimise the computational effort required to calculate cloud—
shock and cloud—cloud callisions. In the former case we already know which clouds are affected
sincethey have been determined for the star formation propagation. The geometry of the situation
isshownin Fig. 3.8. Simpletrigonometry showsthat the the changein cloud vel ocity components
are given by

AfF = vsingcoso
A8 = (v/ry)sgn(B;— B;)singsin®
Az = v cos@

wherev isthe magnitude of the vel ocity impulseto be given to the cloud (0 x~1 up to some max-
imumvauevma) and al other symbolsareillustratedin Fig. 3.8. Importantly, since both singand
sin® are always positive these quantities can be calculated using the identity sin®a + cosa = 1,
knowing that cos@= (2, — z;) /X, eliminating the need for computationally expensivetrigonomet-
ric operations. Thus cloud—shock collisionscan be cal culated (given that the grid has already been
constructed for the propagation of the star formation) using only a gebrai c operationstogether with
two sguare roots.

Todetermineif two cloudshave collided we need to know first whether their centres arewithin
acollisional cross-sectiona diameter of each other, and second whether they are approaching or
not. Thissecond conditionis necessary sincethe cross-sectiona diameter of the cloudsisvariable
(see below) and hence if the diameter increased between two timesteps it would be possible for
two clouds to have collided at the earlier time (and hence be moving apart), but still be within a
diameter of one another at the later. To test whether the clouds are sufficiently close together we
need a grid with cell size at least greater than the cloud diameter so that for each cloud only the
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surrounding 27 cells need to be checked. The gridisonly reca culated if the one set up for the star
formation propagation hastoo small acell size, i.e. more than the twenty-seven nearest cellswould
need to be checked. If two clouds are considered to have collided then their vel ocities are reduced
by somefactor n < 1 and interchanged (equation 3.2), to approximate an inelastic collision. The
inter-cloud separation sisgiven by

S =r24r5-2r1r,c0801—6,) + (21 — )%,
and hence,

S= s‘l[rlfl +rofp— I;1I'2003(91 — 92) — I'lll'zCOS(el — 92) + rlrzélsin(el — 92)

— rlrzézsin(el — 92) + 21(21 — Zz) — 22(21 — Zz)].

Clearly only theterm enclosed by brackets ([]) needsto be evaluated since we are only interested
in determining whether the clouds are approaching and hence only the sign of $. Again care has
been taken to ensurethat the minimum of operationsare performed by the use of dummy variables
for al quantitiesthat are needed several times (e.g. 8 — 65).

If thegal acti c disc shouldbecometoohat, i.e. thestar and cloud particleshavetoo much kinetic
energy, then the disc will expand radialy. Since we modelling a system in steady-state, thisis
undesirable — observationally we do not see large spiral galaxies being disrupted in this manner.
From a computational perspectivethiswould a so result in problems constructing the grid used to
calculate near neighbours—thegrid sizeisfiniteand fixed by array declarations. Hencetomaintain
an approximately constant particle temperature a feedback mechanism is employed which varies
the cross-sectional diameter for cloud—cloud collisions, and hence the frequency of collisionsand
therefore the energy dissipation rate due to the inelasticity of the collisions. After each timestep
the root mean sguare velocity dispersion, vims, Of clouds within the galactocentric radius range
2 < r < 10 kpc is caculated and compared with the ‘desired’ value, uyms calculated during the
initial dynamic equilibration of the model (83.3.5). The cloud diameter is scaled according to

new _ (old (VrmS) -
‘col ‘col u

rms

where the power index was chosen by trial-and-error to give the best response — sufficiently high
so that extreme values of v,ms could not be attained, but without inducing large oscillations.

3.34 Random number generation

The simulation requires a large number of random numbers: each time a decisionis to be made
on whether star formation has occurred in a given cloud, a uniform variate is compared with Py.
Hence for atypical simulation it is necessary to generate approximately 1057 random numbers.
Thisisdone using function GosCcAF from the NAG library (NAG 1993), a uniform multiplicative
congruentia generator with the (i 4 1)’th random number given by

biy1 = 1380  mod 2%°.
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Figure3.9
The initia oscillations of the star
2000.0 - ] formation rate. A constant value is

reached after approximately 10° yr.
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Theinitial value by is seeded from the system clock (via subroutine GosCcF) to ensure that indi-
vidual simulations are uncorrelated. The generator’s period of 257 is quite adequate and athough
it does show some signs of sequential correlations (Hobson 1994) thisis not at a significant level
in this context.

3.3.5 Theinitialisation of the moded

It would be difficult, or even impossibleto start off asimulation in afully relaxed, but randomly
chosen state. Instead the particlesare laid down with the appropriate spatia and vel ocity distribu-
tions and then the model is allowed to dynamically relax without star formation. Thisis achieved
by simply rotating the particlesin the axisymmetric potential until ther.m.s. velocity distribution
attains an approximately constant value. The SDW amplitude is set to zero during this process
since it would otherwise act as a source of kinetic energy for the particles, preventing a steady
state from being reached. Once equilibrium has been achieved, the final value of ums is used as
abase level about which the disc temperature is maintained through the imposition of afeedback
loop affecting the cloud collisional cross-section (83.2.3 and §3.3.3). Now the simulation can be-
gin properly —the SDW is switched on and star formation is allowed to propagate.

Theclouds' positionsare selected randomly such that they areinitially arranged following the
radial distributionof Galactic H, (Burton 1988), uniformly in azimuth and with aGaussian profile
perpendicular to thediscwith scale-length of 200 pc. Vel ocitiesare set tothe appropriateKeplerian
value for the cloud's radius together with a randomly chosen dispersion velocity selected from a
Gaussian distribution, the width of which is specified as an input to the model.

Cloudsare a so assigned masses (necessary for the propagati on mechanism) which are chosen
randomly from adistribution of the form n(m) 0 m~158 (Sanderset al. 1985). Finally 0.3% of the
clouds are associated with new star clusterswhich then act as seedsfor the star formation process.
Thisset-up isstill somewhat out of equilibrium, and the SFR oscillatesfor ashort period (see Fig.
3.9), before settling down to the desired, approximately constant level. It isthisfinal value which
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isused in the analysis described in subsequent chapters.

3.4 Running asimulation

The main simulation code is named GALAXY. Each simulation takes itsinput from afile named
i nput suffix where suffix is a machine identifier allowing the program to be run completely in-
dependently on several machines simultaneously, each with its own set of input parameters. All
input istaken from thefile such that GALAXY can berunisthe background — essential considering
thetota run timerequired. An exampleinput file with an explanation is provided in Appendix A.
In addition, there are a number of UNIX scripts to facilitate the chaining together of several runs
and automatic re-starting of GALAXY should the machines be re-booted. The produce a number
of small filesto facilitate the housekeeping.

Results are normally saved to disk every 200 time steps (= 2 x 108 yr) athough this can be
changed in the input parameter list (see Appendix A). Each set of output includes full details of
the simulation (e.g. cloud positions, velocities and ages) and derived quantities such as the SFR
and r.m.s. velocity dispersion. This enables the simulation to be restarted at intermediate timesiif
required. Moreover, it permits one run to be used as the starting point for a second simulation,
perhaps with different parameters. Each simulation discussed in this dissertation was, however,
started from scratch each time to ensure that the runs were completely independent. Due to the
stochastic nature of the simulation it was necessary to average over many realisationsfor each set
of input parameters before the model behaviour could be determined with any degree of certainty,
and clearly this procedure would have been invalidated if the runs werein any way correlated.
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Chapter 4

The star formation rate

In this chapter | will describe the way in which the star formation rate derived from the model
varies as afunction of the input parameters. It will be shown that by choosing appropriate values
for these inputsit is possible to predict the star formation rate of our Galaxy. We will also show
that the star formation rate is related through a simple power-law to the total gas density, aresult
which has much empirical datain support of it, and is usually known as the Schmidt Law.

In the context of thismodel, what has been up to now called the star formation rateis strictly
the cluster formation rate (CFR), i.e. the number of star clusters formed per unit time, given the
symbol Y. Theterm ‘star formation rate’ (SFR) isusually reserved for the mass of stars formed
per unit time. Thisquantity is not directly accessible from the model since the exact fraction of a
cloud that is converted into starsis not known. However, as will be seen below (84.3) we can get
a handle on the SFR by multiplying the CFR by a characteristic cloud mass and assuming that it
is possibleto define an efficiency for star formation that is constant for all galaxies. (The average
efficiency of star formation observed in Galactic molecular cloudsis ~1-5% (Ladaet al. 1992)).

4.1 Theeffect of theinput parameterson the CFR

With atotal of 14 input parameters affecting the physicsin some way (Appendix A), the possible
parameter space of the modd to be investigated is extremely large. To provide a fully compre-
hensive survey sampling al regions of this space would have required far more CPU time than
was available and hence an dternative strategy was adopted. A ‘standard’ set of input parameters
(Table 4.1) was chosen, based on values appropriate for our Galaxy, and then each parameter was
varied individually about this value. Where parameters could not be set on the basis of observa-
tional constraints (for example M), values consistent with the aims of the model were adopted —
for example we required propagating star formation to be the dominant mechanism, and therefore
Mg, had to be much larger than Mg, so that the probability of spontaneousstar formation (Ps) was
much smaller thanthat for stimul ated star formation (Py —see 83.2.1). Thegraphspresented below
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Quantity  Model value ‘Redl’ value
At 01T 100 yr
N 32010
ag 0.3LT?! 59kms?!
n 0.7
Vinax 051LT 1 10.0kms™1

Mg 1.0x 10° M,
Mg  L.0x10% Mg

€ 1.0x10°3

n 2
Qp 01471  137kmstkpc?
ro 50L 1.0 kpc

p 5.0

io 20.0°

A 5000 L4 T2 0.08 pc* yr—2

The orbital period of the innermost particle
orbits is ~107 yr, and hence this At gives
sufficient resolutionto follow the dynamics.
Similar to the number of clouds in our
galaxy (Turner 1984), and a so closeto max-
imum possiblevalue (83.3.1).

Typical one-dimensiona cloud velocity dis-
persion (Magnani etal. 1985; Bdfort &
Crovisier 1984, Liszt et al. 1984).

Many collisionswill be glancing so average
elasticity is moderately high.

Slightly larger than the Galactic cloud velo-
city dispersion.

Typical GMC mass (Sanders et al. 1985).
Much larger than Mg so that propagationis
the dominant star formation mechanism.
Cloud is amost fully disrupted by star
formation.

The dominant SDW mode — see 85.3.
Galactic value (Bowers & Deeming 1984).
Small sizefor central bar (85.1.

‘Middle’ value.

Spiral pitch angle for the SDW in a Sbc
galaxy. Resultsin a pattern pitch angle of
12° —see §7.2.1.

Approximately 5% of total radia force
(83.2.2— aweak spiral perturbation.

Table 4.1. Standard input parameters adopted which define the areas of the model’s parameter
space investigated. For an explanation of ‘model’ units see Appendix A.
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have al been calculated in this manner using the ‘ standard’ set, and hence represent the variation
of the CFR aong the principal axes of the parameter space.

In order to smooth out the stochastic nature of the simulation, each point on the CFR curves
presented below is the average value for an ensemble of afew runs (always at least three, rarely
more than six), al with identical input parameters and with the error estimated from the sample
standard deviation of the ensemble. The value for each individual run is an average over the last
(100-150) x 107 yr of the simul ation to avoid any contamination from theinitial oscillationsof the
CFR whilethemodel equilibrates(Fig. 3.9). Even after this period the variation in CFR about the
mean value for asingle run is still ~100 x 10~ yr~1: however, the scatter in the means for an
ensemble of runsis small (as can be seen from the error bars plotted in the graphs below), and
hence, even a small number of runs can give areliable estimate for the ‘true’ vaue of the CFR.
In cases where it was found that the scatter was large, more simulations were performed until the
average value converged.

The input parameters can be grouped into three main categories according to their affect on
the simulation:

(i) thosewhich directly control the star formation — Mg, Mg, and €;
(ii) thosewhich control the cloud dynamics—ap, N and Vmax;
(iii) those affecting the shape of the spiral potential —n, Qy, ro, p, ig and A.

The results of changing the imposed spiral density wave will be discussed separately in Chapter
5, whilst the effects of parametersin groups (i) and (ii) will be considered below.

411 Star forming parameters

Aswould be expected, the scaling mass for the propagating star formation, Mg is found to be the
most important parameter affecting the CFR, with s 0 Mg~ 03094000 (Fig 4.18). As Mg isin-
creased, theprobability of any cloud having star formation triggered withinit isreduced, and hence
the overal CFR fals. In addition this has the consequence that on average a cloud is able to ac-
crete for longer and hence the median cloud mass (Mneqg) and total cloud mass (M) risewith Mg
such that Mpeq 0 Mg%2%%%0:097 gnd Mo 0 Mg %391+0-007 (Fig. 4.2). Notethat althoughthe CFR de-
creases with increasing Mg, the SFR rises proportional to Mg®®, since, aswill be discussed below
(84.3.1), we can convert between the two by multiplying by the median cloud mass.

The dependence of the CFR on the other star formation parameters is much wesker, justify-
ing the somewnhat arbitrary choice of their * standard’ values, with @ 0 Mg,~%0%%0-01 gng g O
g0-019+0.005 A gain the form of these dependencies can be related to the mass of an average cloud
and the time taken for it to regrow after astar formation event: as Mg, isincreased the probability
of spontaneous star formation drops, whilst if € isincreased, the time taken for acloud to reach a
mass ~Myg is reduced, and hence the star formation rate increases. However, as can be seen from
Fig. 4.1(d), thecloud regeneration timeishardly affected by € and hence we see an extremely weak
relation between it and the cluster formation rate.
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Figure 4.1. Graphs of cluster formation rate ) versus (a) Mg, (b) Mg, and (c) €. Thefourth figure
(d) shows cloud growth for three different initial masses. Theinitial massis closely related to €
since when star formation occurs, the cloud mass is reduced by thisfactor.
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4.1.2 Cloud dynamics parameters

The cloud dynamicsare controlled through three distinct parameters affecting respectively theini-
tial cloud velocity dispersion, cloud—cloud and cloud—SNR collisions. Inter-cloud collisionsact to
decrease the cloud kinetic temperature, and hence the mean vel ocity dispersion, whereas cloud—
SNR interactions have the opposite effect. The relative importance of the two processes is con-
trolled by anegativefeedback |oop working on the overall cloud vel ocity dispersion vgis, to main-
tain an approximately constant temperature determined by theinitial value chosen for the vel ocity
dispersion. The three input parameters thusinteract in a non-trivial manner, and the dependence
of the CFR on the cloud dynamicsis best seen by considering Y as a function of the mean cloud
velocity dispersion vgis,. By systematically varying theinput parameters arange of dispersionve-
locities can beinvestigated — it is found that @ 0 vgZ1*%% (Fig. 4.3). This can be interpreted by
noting that as the velocity dispersion of the clouds rises, then the number of them that encounter
any given supershell during thetimethat it isableto trigger star formation (and thusthe star form-
ation rate) also increases.

4.2 TheGalacticcluster formation rate

We can use therelations aboveto determine the prediction of the model for the CFR of our Galaxy.
To do this we require suitable values for the main input parameters to the model, such that they
are consistent with observational constraintsfor the Galaxy. The majority of the ‘standard’ set of
parameters were based on such data, and hence these could be used. The spira potential is con-
sistent with that deduced for an Sbc gal axy, with a maximum strength of 5% of the axisymmetric
potential, and the cloud vel ocity dispersionwastaken as~7 km s~ (Stark & Brand 1989). Itisnot
possible to measure directly the values of those parameters relating to the propagating star form-
ation mechanism. However, by fixing Mg, and € at their standard values (which we are free to do
since Y has only a very weak dependence on these parameters), we can determine Mg from the
observed molecular cloud mass distribution. It has already been shown that as Mg is increased,
thetimeavailablefor acloud, on average, to accrete material from the |SM between star formation
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episodesrises, and hence the average cloud mass also increases. Sanders et al. (1985) observethe
median Galactic cloud mass to be 2.0 x 10° M, and hence, from Fig. 4.2, we can fix a suitable
PSF scaling mass for the Galaxy to be Mg = 1.2 x 106 M.

Now the predicted Galactic CFR, can be determined from Fig. 4.1 and is found to be Y =
4.0 x 10~° yr~1. Moreover, star formation is restricted to within a radius of 10 kpc, and hence
using this value the corresponding CFR per unit areais 1.3 x 10~ kpc=2 yr—1. Theradius of star
formation is constrained primarily by the distribution of H, —that used in themodel is asreported
by Burton (1988) for our Galaxy. The predicted value for the CFR compares excellently with that
observed — (2.5+ 1) x 10~7 kpc=2 yr~! (Elmegreen & Clemens 1985) — given the uncertainties
in the observationa inputs. Cloud masses in particular are prone to error since the H, mass is
estimated from the CO luminosity using a standard conversion factor (Sanders et al. 1984) which
is not well determined and moreover might be expected to vary from cloud to cloud depending
on the previous star formation history. Taken together with other contamination and calibration
errors, Gordon (1995) estimates that published molecular cloud masses may beinerror by upto a
factor of approximately 20, although thisislikely to be a pessimistic cal culation. Since the value
of Mg is calculated from the median cloud mass, thiswill be the major source of uncertainty inthe
derivation of the Galactic CFR —assuming afactor of 20 error in Mg l€adsto an uncertainty by
afactor of approximately six in the estimates for ). Of the parameters describing the SDW only
the pitch angleisreasonably well constrained, although as has been seen, the CFR is only weskly
dependent on these quantities.

One limitation of the model that has already been noted (83.2.1) isthat we only consider the
formation of massive stars through the propagating mechanism. This, however, does not affect
thevalidity of the argument presented above, sincethemodel CFR measurements are based on the
number of clusterssimilar intypeto those used by Elmegreen & Clemens (1985) intheir estimation
of the Galactic CFR. The same authors also report avaluefor the formation rate of OB clustersof
~2x 1077 kpc=2 yr~1. Whilst the significance of this number being lower than the overall CFR
is doubtful, it accords with the genera idea of most, but not all, clusters containing at least one
massive star. In the model, despite nominally all the model clusters being OB associations (since
each hasthe potential to trigger star formation through asupershell shock), the stochastic nature of
the simulation means that some clusters will not trigger star formation, and therefore effectively
consist of lower mass stars.

4.3 The Schmidt law

The idea that the overal gaactic star formation rate has a simple power-law dependence on the
gas density was first proposed by Schmidt (1959; 1963), and his name has since been attached to
any empirical star formation law of thisform. The original formulation of the Schmidt Law was
in terms of the H | gas volume density,

P PR (4.1)
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800 Figure4.4

Typical distribution of cloud masses.
For this particular simulation Mg =
1.0 x 10° M, athough the general
shape of the distribution is similar
over thefull range of Mg investigated.
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where p, isthe rate of change of the mass density of stars, py, is the neutral hydrogen density
and generaly n = 1-2. Molecular hydrogen was not included since at the timeitsimportance asa
component of thel SM was unrecognised. L ater, when the dominance of H, wasunderstood, it was
found that a better correlation could be obtained using either the H, (Rana & Wilkinson 1986) or
thetotal gasdensity (Kennicutt 1989). Schmidt Lawsof thisform have been used in many models
of galactic chemica evolution (e.g. Tosi & Diaz 1990; Firmani & Tutukov 1992), and are often
invoked in N-body codes to estimate the star formation rate. An important feature of the model
presented in this dissertationisthat it predictsa Schmidt Law.

Observational determinationsof the Schmidt Law index are usually based on surface densities,
rather than volume densities, i.e.

o, Oop,. (4.2)

simply because it is the surface densities which can actualy be measured, and a model for the z-
distributionof the galactic materia isrequired to extract thevolumedensity. Equations4.1and 4.2
are only compatibleif n = N = 1. Other difficulties exist with the experimental determination of
the Schmidt Law —for example, the SFR is estimated from tracers of recent, but past star formation
(e.g. O/B stars and H 11 regions), whereas the gas mass estimates necessarily reflect the gas that
exists now. Hence we derive relationships based on the amount of gas that is left over after star
formation, and not that which was availableat thetime of the star forming event. Radial gasflows
further confusethe resultsand, finally, any variation in the conversion factor between CO and H,
which, as mentioned above, is usualy taken to be a universal constant, will further increase the
dispersion of the measured Schmidt Law.
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431 TheSchmidt Law for the new model

The new model predictsastandard Schmidt Law. To convert our measured cluster formation rates
to atotal SFR, i.e. the mass of stars formed per unit time, we need to multiply g by a character-
istic mass, wherein thiscasethe median cloud mass Mg Seemsto be appropriate. A typical cloud
mass distribution (Fig. 4.4) covers alarge range of masses, and hence the mean cloud masswould
be dominated by the most massive clouds. If this value were to be used in the CFR— SFR con-
version then thiswould imply that the most massive clouds a so dominate the rate of formation of
new stars. But thisis not the case — the praobability of triggered star formation Py isthe same for
all clouds with masses greater than Mg. The median cloud mass provides amore ‘typical’ value
asit relates to the star formation process. Hence

P+V 0 (1—€)WMneg, (4.3)

where V is the volume of the galaxy and the (1 — €) term reflects the amount of cloud material
converted into stars. However, as has been seen (84.1.1), Y is only very weakly dependent on €
and hence we can absorb its value into the constant of proportionality. Thus, remembering that
W 0 Mg~ 0309+0.006 g\ (7 MO 955+0.97 \ye have

p V D Msto.646:|:0.009 (44)
OM t10.t65ﬂ:o.o47 (4.5)

where, as before My isthe total cloud mass. Writing the total cloud mass divided by the galactic
volume as Pgas, then,

- 1.6510.04, /0.65+0.04
P« U Pgas 8

0 pglléGSSj:O.O4Dl.3Oﬂ:O.087 (4.6)
if we assumeV [0 D? asis appropriate for a thin disc.

All the dependencies used in the above derivations have been deduced from simulations using
the ‘standard’ parameters for the model. In the spirit of normal Schmidt Law cal culations, no at-
tempt has been made to fold in variations of the SFR with, for example, the strength of the spiral
density wave, primarily since such quantities are not readily available from observationa meas-
urements. However, as will be seen from Fig. 5.1, the exact form of the relation between g and
A (in this case the slope of the linear region) varies with Mg — non-linearitiesin the mode tie the
parameters together making it impossible to extract a single, general relationship. If we assume
that the ‘standard’ parameters are in some sense typica though, then the result can be considered
to have a general application, averaging over galaxies.

We have tested this formulation of the Schmidt law against the observationa data of Young
et al. (1989). If the far infra-red (FIR) luminosity is assumed to be a good indicator of the star
formation rate (see 84.3.2), then by comparing their observed FIR |luminosity with gas mass meas-
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10 Figure4.5

Theobservationa dataof Younget al.
(1989) together with the best-fitting
line (slope=1.4). Error bars on each
point are based on the estimates given
inthe paper and are £30% in thetotal
mass and +£20% in FIR [uminosity.
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urements based on 21-cm and CO observationswe can deduce a Schmidt Law from the data. Re-
writing equation (4.5) we see that

Lar O p.V OMES. (4.7)

Allowingfor the appropriateerrorsintheflux measurements, (quoted as 20— 30 per cent) on which
the mass estimates are based, it is found that the observational dataiswell fit by a power law of
index 1.4+ 0.4, in good agreement with our prediction.

4.3.2 Observational determinationsof the SFR

Massive star formation leaves tracers which can be observed over a large range of the electro-
magnetic spectrum.

Massive star formation exhibits a number of characteristic features which can be readily ob-
served over alarge range of the el ectro-magnetic spectrum. Local measurements are available to
calibrate the observations of externa galaxies. The intense ultra-violet (UV) radiation produced
by the OB starsionisestheimmediate vicinity producing an H 11 region, most readily visibleinthe
light from the Ha transition. The number of ionising photons can be estimated from the Ha flux
which allowsthe number of young stars present in the galaxy to be cal culated, assuming that the
spectrafor OB starsis known. Thishowever, aso reguires knowledge of theinitial mass function
(IMF), i.e. the number of stars born with a given mass (given the symbol ¢(m) dm). Thisfunction
is poorly known and constitutes one of the main sources of error in the calculation of the SFR. In
symboals,

- ft(m)l(m)@(m)dm
Ly =M, 4.

Y J me(m)dm (48)
where Ly istheluminosity in the frequency band being considered, | (m) is theluminosity of astar
of mass m and t,(m) is the length of time for which the same star is emitting at that frequency
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(Thronson & Telesco 1986). Assuming a Miller—Scalo (1979) IMF (one of the most widely adop-
ted), Kennicutt (1983) finds that

: L
M, = 5.6 x 107° (LL;‘) Mg yr~t

for stellar masses > 10Mg,, and

M, = 3.2x 1078 (Lﬂ) Mg yrt
Lo
when considering al star formation. L, is the bolometric luminosity of the Sun (L, = 3.90 x
10%° W).

Before stars emerge from their surrounding proto-stellar cocoons, the dusty clouds emit copi-
ous amounts of far infra-red (FIR) radiation. This has an advantage over Ho measurements since
the extinction at such longer wavelengthsis much lower. However, itisnot entirely clear whether
the cool dust heated by the genera interstellar radiation field makes a significant contribution to
the total FIR luminosity. Observed dust temperatures for spiral galaxies are 30—40 K, similar to
those measured for Gal acti ¢ star-forming regions(Scoville & Good 1989) and considerably higher
than the 15-20 K expected for dust heated by the ambient inter-stellar radiation field (Cox et al.
1986). Thishas led some authors (e.g. Bothun, Lonsdale & Rice, 1989; Fitt & Alexander 1992)
to postulate a variety of two—component models, with up to 70% of the FIR luminosity coming
from the cool component (Lonsdale Persson & Helou 1987). However, othersfind that the IRAS
fluxes between 60 um and 1100 pum can befit by asingletemperature blackbody with T = 30-50K
(Eales et al. 1989) and furthermore, that by comparing IRASand Ha luminositiesit isfound that
the energy contained in the FIR radiation is consistent with that expected from the number of OB
stars required to provide the photonsto ionise the hydrogen (Devereux & Young 1990).

A young star cluster will only be bright in the FIR whilst still surrounded by itsinitial dusty
cloud. If thetimetaken to disrupt the surrounding material (1gR) is constant independent of mass,
then equation (4.8) can be simplified to

MFIRTFIRE

Ler =
FIR M

(Thronson & Telesco 1986) where E/ M istheluminosi ty to massratio of ayoung star cluster. Once
again the uncertainties in the IMF are the mgjor source of error, but Thronson & Telesco (1986)
estimate

: L
M, = 6.5x 10710 (LL'@R) Mg yr k.

The third method commonly used to estimate the SFR is to measure the non-thermal radio
emission from the supernovaremnantsformed by the explosion of the massive stars. If weassume
that all stars of mass > Mgy explode as supernova to leave radio-emitting remnants then from
the non-thermal (i.e. synchrotron) emission of agalaxy and using the known rel ati onship between
Lsync, v and the supernovarate for our Galaxy (Condon & Yin 1990) we can cal culate the death-,
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and hence, birth-rate of such massive stars. Once again assuming a certain form for the IMF it is
then possibleto calculate a more general SFR including lower mass stars which don’t contribute
to the non-thermal radio flux. Condon (1992), using a Miller—Scalo IMF finds

Y 22/ V N\ Lyne -1
M, = 1.9x 10 (GHZ) (WHz—l) Mg yr

for stellar masses > 5Mg,, where a ~ 0.8 isthe non-thermal spectral index.

It isfound that the FIR and radio continuum luminaosity are extremely well correlated (many
references in the last few years, see for example, Bicay et al. 1995; Xu et al. 1994a) which, of
course, wewould expect if they can both be used astracers of the star formation rate. The massive
OB stars which heat the dust are a so the progenitors of the supernovae which we detect by their
synchrotron emission. The lifetime of the massive stars is sufficiently short (< 107 yr) that the
two radiation types can be considered to be coming from the same population of objects. Note
that although many authors use the entire radio continuum emission, if this is decomposed into
therma and non-thermal componentsthen the correl ation between thelatter and the FIR luminos-
ity ismuch improved over using the total radio flux (Xu et al. 1994b).

4.3.3 Theobserved Schmidt Law

Many attempts have been made to determine the appropriate form for the Schmidt Law in recent
years. However, most of these have been based on some model which incorporates a Schmidt
Law with some variable index n, and then fitting the results of the model to observationa data.
For example, Caimmi (1995) uses achemical evolution code to deduce that the Schmidt exponent
is approximately equal to one, whilst Arimoto et al. (1992) employ a model of the photometric
evolution of galaxiesand find that their resultsare essentially independent of the value of n (=1,2)
used.

Clearly, these results will be heavily dependent on the model used to derive them — we need
to compare such model-based answers with values for n calculated simply from an observed cor-
relation of the SFR with the gas density whether it be of H1 (on,), H2 (On,) Or total gas (Ogas).
Below | summarise some recent results which have taken this approach.

¢ Dopita& Ryder (1994) collected optical surface photometry (bands| and V) dataand Ha images
of asample of 34 nearby galaxies, representing the full range of Hubbletypes. They postul ated
a‘compound’ Schmidt Law of the form

. n m
o, U Ototal mattercgas

(Dopita 1985; Dopita 1990) and found that 1.5 < (n+ m) < 2.5 fitted the data best. Further-
more, their observationsruled out correlations of theform 6, 0 0gas and 6, 0 Q0gas. Thelatter
formulation was proposed by Wyse & Silk (1989) on the basis of an analytic treatment of the
stability of the molecular gas in a gaactic disc rotating with angular vel ocity Q.
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o Li, Seaquist, Wrobel, Wang & Sage (1993) found that, for the Sa/pec galaxy NGC 7625, the Ha
and 20-cm radio continuum (both tracers of massive star formation, see §4.3.2) correlate well
with the >CO distribution, yielding a Schmidt Law of the form

&, 0 k002
* 2 .

NGC 7625isextremely gas-richfor an Saspira, but thereisno sign of an active galactic nucleus

contaminating the non-thermal radio emission, so the authors suggest that the peculiar nature of

the galaxy is not significant in this context.

¢ Using the spatia distributionof H 11 regionsin M 31 together with high resolution H 1 and CO
images, Tenjes& Haud (1991) find that the surface density of the young star forming regionsis
related by a simple power law to the total gas density such that

: 1.30+0.22
0, U Ogas ,

or equivalently

- 1.17+0.25
p* U pgas ?

where p(z) 0 sech?(z/2z,) has been assumed.

¢ Kennicutt (1989) used Ha, H 1 and CO datafor a sample of 15 mostly late-type spiral galaxies.
Although the correlation between the Ha emission and the surface densities of the individual
gas phases was found to be poor, that between the Ha emission and the total gas content was
excellent, giving
5, 0 gL3£03,
It was found that this Schmidt Law broke down at low gas densitieswhich Kennicutt attributed
to the onset of large scaleinstabilitiesin the gaseous disc.

¢ Buat et al. (1989) also used datafrom asampleof galaxies, thistime UV, CO and H | datafor 28
galaxies ranging from Sab—Im, using the UV emission to trace the regions of recent, massive
star formation. Once again, a good correlation was found between the SFR and the total gas
density,

: 1.65+0.32
O, U Ogas ,

but that between the individual gas phases was poor, with H, proving the worst tracer of star
formation.

¢ Rana & Wilkinson (1986) in contrast, found that the best correlation is between the H, density
and the SFR, with
5, 0 O.hZZ:I:O.Z

based on datafor our Gal axy.
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Thelack of correlation found by Kennicutt (1989) and Buat et al. (1989) between the SFR and
the molecular gas content of agalaxy is curious—from any model of star formation, we would ex-
pect themol ecular gas content to play the dominant rolein determining the overall SFR. However,
these two papers use a sample of galaxies and any variation in the actual CO/H; ratio within the
group would act to wash out the correlation. Kennicutt also suggests that this could reflect a de-
pendence on strictly the volume density and not the surface density.

Clearly, the prediction for the Schmidt law index (equation 4.6) agrees well with those determ-
ined from observations, although the exact conversion factor between p, and &, isnot clear. We
also have adependency on thediameter of the galaxy in our Schmidt Law. For agiven average gas
density then a larger total size will result in more regions undergoing star formation at any time,
and therefore it is reasonable to expect that the SFR should be higher.

4.4 A magneticoriginfor Mg?

Theinterstellar magnetic fieldisnot incorporated directly into themodel, althoughsinceit provides
aninternal cloud pressure, it might be expected to have an effect on the star formation process. We
can see from the virial theorem for a static cloud (Elmegreen 1992),

4TRS (P B? ) _ 3MKT  3GM?
3 2o U 5R ’

(where P is the boundary pressure, B is the magnetic field strength and p is the mean molecu-
lar weight for a cloud of mass M, radius R and temperature T) that unless the cloud can loseits
magnetic field through ambipolar diffusion then the field will prevent collapse — if the magnetic
flux is completely frozen into the material then B 0 R~2 and hence both the magnetic and gravit-
ational energies scale as R~1. For collapse to have a chance of occurring then the magnetic-field
strength must not betoo strong and the boundary pressure must be sufficiently large—Mouschovias
& Spitzer (1976) calculate

B3
PN <9x107°,
or equivaently
3
M > Mpmag = 1.1 % 1OSGT2p2’ (4.9)
and

. 2.54v8
G3M2[1 — (Mmag/M)?/3]3

P

where all quantitiesare measured in Sl unitsand vs = (kT /p1)Y/2 is the sound speed in the cloud.
| havetakeny= 5/3 asisappropriate for molecular H, at temperatures < 50 K.

Isit possible to identify Mg with Mmag? If this were the case then we would expect the ob-
served SFR (derived from, for example, the FIR luminosity) for agalaxy to vary with itsmagnetic
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The minimum energy condition for
magnetic fields. The energy stored in
agalactic B-field rises as B? whereas
the energy of the relativistic particles
fals as B-3/2, giving rise to a min-
imum in the total energy. It is as
sumed that a galaxy naturally adopts
this minimum energy, and thusthe B-
field can be estimated from the radio
surface brightness.

Figure4.7

Average magnetic field Beg as afunc-
tion of galactic T-type. The data are
taken from Fitt & Alexander (1993)
and showsthat themean field strength
isindependent of galactic typeand oc-
cupies a narrow range between 0.2—
0.5nT.
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Variation of FIR luminosity with
galactic magnetic field. No error bars
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unreasonable. The estimates of Beg
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84 galaxies.
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field. Unfortunately, magnetic fields are difficult to measure astronomically —for our own Galaxy,
Zeeman splitting suggests values of 0.2-1.0 nT (Heiles 1990) and pulsar rotation measures give
0.2-0.7 nT (Lyne 1990). Neither of these direct techniques can be used for external galaxies; in-
stead we have to fall back on the indirect approach of assuming that the total energy contained
in relativistic particles and the magnetic field is minimised, despite there being no physica jus-
tification for this (see 819.5 of Longair (1994) and Fig. 4.6). However, with this assumption it
can be shown that the estimated field Beq depends only on the radio surface brightness, making it
easy to measure, and the values cal culated are similar to those estimated for our Galaxy (Fig. 4.7).
Fitt & Alexander (1993) have used this approach to estimate the magnetic field strength for 146
spiral galaxies and by combining this data with FIR luminosity measurements from Young et al.
(1989) and Cox et al. (1988) we get Fig. 4.8. Two sources for the FIR luminosities have had to
be used since none of the three samples coincide directly, resulting in 84 galaxies for which both
FIR luminosity and Beq are known. Wherethe Young et al. and Cox et al. samples overlapped, the
discrepancy was usually < 0.05inlogLg.

Thesolidlineof Fig. 4.8 showswhat would be expected if the star formation scaling masswere
directly proportional to Mimeg. The slopeof thislinewas cal culated from equations (4.4), (4.7) and
(4.9) which give,

Ler OMg>®® 0 MRSe 0 B3, (4.10)

The offset isundetermined and hencelines of thisslopein thelog— og plane have al so been plotted
dlightly offset from the middle of thedata. Clearly theresultisinconclusive, athoughitispossible
that some extension of the data can be seen aong the slope of the line expected if Mg [ Mmag.
However, when the expected size of the error barsistaken into account, and more importantly, the
systematic errorsin the estimation of Beg, it isnot actually all that surprising that any correlation,
if it does exist, has been washed out.

Itisperhaps a soworth noting that if themagnetic field did play asignificant rolein thedeterm-




52 CHAPTER 4. THE STAR FORMATION RATE

ination of the gaactic star formation rate, then given the lack of variation in B-field (on average)
with galactic morphology (Fig. 4.7), we might expect the SFR to also be more or |essindependent
of theform of thegalaxy. Thisisindeed found to bethe case— Devereux & Young (1991) consider
IRAS fluxes for a sample of 983 galaxies, and find that star formation rates are comparable over
the full range of galactic classes from Sathrough to Scd.
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Chapter 5 e

Spiral density waves and
galactic structure |

Oneof themgj or advantages of thenew model as compared with previoussimulationsusing propa
gating star formation is the ease with which a spiral density wave (SDW) can beintroduced in a
natural way. Thisisfound to have amajor effect on the gal actic structuresthat can be produced (in
particular it is now possibleto obtain long-lived, non-transient, grand-design spirals), but afairly
small effect on the overall star formation rate. Thisis contrary to many galactic models where
star formation is considered to be triggered by shock waves arising directly from the SDW, but
importantly is consistent with the observation that the strength of the spira density wave in rea
galaxies does not correlate well with star formation rate (Elmegreen & Elmegreen 1986). This
will be discussed in greater detail below as we consider the interplay between the SDW and the
star formation rate.

The galactic structures produced by the model clearly depend on the input parameters, both
those controlling the star formation processes and also (perhaps more obviously) those affecting
the form of the spiral potential. Inthischapter | aso present abrief survey of therange of galactic
structures produced as afunction of theinput parameters. 1deally wewould likesomeway of com-
paring the images quantitatively, both with other simulation results and & so observational data.
Thisimportant problem will be considered in Chapter 7.

5.1 Theeffect of the SDW on the cluster formation rate

Thedependence of the CFR on theinput parameters controlling the nature of thespiral perturbation
to the gravitational field of the galaxy has been investigated in a manner similar to that described
in Section 4.1. All other parameters have been kept fixed at their ‘standard’ vaues (Table 4.1)
except when considering the CFR dependence on the amplitude of the SDW where two different
valuesfor Mg were used (Fig. 5.1). Once again each data point is the average of an ensembl e of
between three and six runsto take into an account the stochasticity of the simulation.

The effects of varying the radius of the inner bar (rg) and the sharpness of the transition from
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1200 Figure5.1

The effect of the amplitude of the
spiral density wave on the cluster
formation rate. The upper curve has
been calculated with Mg = 1.0 x
10° M, and the lower with Mg =
3.2x 10° M.
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bar to normal spiral (p) were found to be very small with [ 1y ®055+0-008 gng y [J p0-012+£0.003
For normal, i.e. unbarred spiras, which are the focus of this study, ro must be small, and therefore
changingrg or p can only affect theinnermost regions of the galactic disc. Thisweak dependence
is therefore not surprising since these regions are not considered explicitly in this model as both
atomic and molecular gas densities drop to zero in the central regions (Fig. 5.9), thus preventing
star formation.

The CFR does exhibit dependencies on the other SDW parameters however, which athough
weak, shed some interesting light on the feedback mechanisms acting within the model. These
will be discussed individually below.

511 Amplitudeof the SDW

Astheamplitudeof the SDW (A) israised, the orbit crowding resulting from the spiral perturbation
also increases. Furthermore, the particles move more slowly through the arm region as the depth
of the spiral potential grows and the two effects taken together result in any given super-bubble
shock being able to trigger many more star formation events — there are both more clouds which
can be shocked, and the SN remnant spends an increasing time in the enhanced region. Hence we
would expect the CFR to rise as A is increased: the dependence of the cluster formation rate on
the amplitude of the spiral perturbation is shownin Fig. 5.1. Clearly  is linearly dependent on
the strength of the SDW up to some limiting value which isafunction of Mg, and furthermorethe
plateau cluster formation rate attai ned after theturnover has occurredisal so afunction of Mg. Both
effects can be understood be considering the interplay of A, Mg and the average cloud regrowth
time. First let usconsider the plateau region. Here the cluster formation rate has saturated, and the
rate at which new stars can be formed is limited by the time required for the mass of a molecular
cloud to increase via accretion to a value such that there is a reasonabl e chance of star formation
beingtriggeredin thecloud. Writing the average cloud regrowth timeast thenfrom equation (3.1)
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1100 Figureb.2
Star formation rate Y as a function of
the spiral pattern speed Qp,.
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we see that
Mg = (YPHVT)® + eMg
and hence
JMg(l—¢
o VMs(1=8) (5.1)
YPH IV

Substituting some appropriate values we find that for Mg = 1.0 x 10° M, T ~3.0 x 108 yr. Now,
the CFR above the turnover Y, will be simply the reciprocal of T multiplied by the number of
clouds and therefore we would expect p g &~ 1000 x 10~7 yr=! for Mg = 1.0 x 10° M. Further-
more we predict that Yy O Mg /3, both of which, as can be seen from Fig. 5.1, areindeed found
to be the case.

Theshift of theturnover can be explained by thefact that T riseswith Mg and remembering that
increasing A reduces the average time between successive supernova shock waves impinging on
any givencloud. Hencetheturnover, which occurswhen thislatter time scal e becomes comparable
with T occurs at lower values of A for higher values of Mg, asisevidentin Fig. 5.1.

5.1.2 Spiral pattern speed

The variation of the SFR with Q, (Fig. 5.2) shows a similar saturation at low values of the pat-
tern speed. By varying the pattern speed we are investigating the same scaling regime of the star
formation rate that is probed by varying the amplitude of the SDW. Hence the variation seen can
also be understood by considering the respective timescal es which govern the star formation pro-
cess. At low pattern speeds, clouds and supernovaremnants spend longer in the compressed, high
density region of the spira potential compared to when the pattern speed is high. A cloud isthus
more likely to be triggered to form stars at low pattern speed, and hence in thislimit the SFR is
high. Note that if the triggering of cloud collapse was a result of shocks arising from the spiral
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Figure5.3. Star formation rate  as afunction of (a) the pitch angle of theimposed spiral density
waveig and (b) the pitch angle of the pattern traced by young stellar clustersi,.
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potential then we would expect to see the opposite behaviour, sincein this scenario, the increased
frequency at which any given cloud was shocked would result in arisein the star formation rate.

5.1.3 SDW pitch angle

We seefrom Fig. 5.3(a) that the variation of the pitch angle of theimposed spiral potential perturb-
ation hasonly asmall effect on thetotal star formationrate, andiswell represented by apower law
Y Oy 0188008 for j5 < 30°. In this case we are investigating a different scaling regime than in
the two previouscases. Instead of the star formation rate being controlled solely by time constants,
here the dominant effect isgeometrical. Asthe pitch angleisincreased, thefraction of the galactic
discwhichiscovered by the spiral density wave decreases, and since the potential minimum marks
areas of enhanced star formation then we would expect the CFR to decrease with increasing ip as
observed.

Fourier analysistechniques(Chapter 7) alow usto cal cul ate the pitch angle of the actual distri-
bution of OB associationstracing thespiral arm, i,., whichisamoreimportant factor in controlling
the CFR than ip sinceit is the distribution of young stars that directly affects the propagation. We
will see (87.2.1) that i, varies non-linearly with ig and moreover isadwayslessthan it (Fig. 7.6),
and hence it is interesting to consider the cluster formation rate as a function of i,. From Fig.
5.3(b) we seethat 0 i %28+0.92 \yhijch is a somewnhat flatter slope than would be expected from
asimpleargument based on the premisethat the CFR was directly proportional to the area covered
by thearms. Thetotal length of alogarithmic spiral out to someradiusRisL = Rcosec(i,) Oi;*
for the range of i, under consideration, and so assuming that the width of the arm is constant both
as afunction of radius and ig we might also expect Y O i; 1. However, as can be seen from Fig.
5.7, neither of these approximations are realistic and furthermore, we expect other factorsto con-
tribute. Any variationin therate of star formation due to geometrical effects will ater the natural
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timescales of the propagation process since the the average time between star formation events
for any given cloud will aso change. Unfortunately, we have to conclude that disentangling the
situation is not possible in this case with a simplistic analysis such as we were able to use when
considering the effect of the SDW amplitude (85.1.1).

5.1.4 Number of spiral arms

In addition to the n = 2 cases considered above as part of the ‘standard’ set, | have aso looked
at the possibility of n = 3 spirals. From dynamical studiesit can be easily shown that these are
less favoured modes, with alower range of radii for which they are stable (85.3). However, three
armed spirals have been detected observationally (Elmegreen et al. 1992) although awaysin the
presence of astronger two-armed component.

From the discussion above we can predict how the CFR will change if we imposean n = 3
spiral (without having an n = 2) — clouds will encounter a region of higher than average density
more frequently, since there are more of them. Moreover, the fraction of the disc covered by the
spiral density wave aso rises compared with the two-armed case, and hence we see that the total
effect is a combination of the factors identified above, and expect the star formation rate to rise.
Thisisindeed found to bethe case, with s ~ 1020 x 10~/ yr—1, asmall increase of approximately
10% over the equivalent n = 2 case.

Notethat thisisnot aparticularly redlistic scenario, since the two-armed modeisaways dom-
inant. Aswill be seen (87.2.1), Fourier analysis shows that a weak three-armed component isin
fact often present in the structures produced by the model (seein particular Fig. 7.4(d)), and hence
itisnot really necessary, or appropriate, to force its occurrence.

515 Comparison with observations

Thevariation of the star formation rate with the parameters controlling the form of the spiral dens-
ity wave can bereadily understood by simplearguments. However, therel ativeimportance of such
changesin determiningthetotal SFR issmall —theinput parameters to themodel have beenvaried
through all realistic values which could describe galaxies spanning the Hubble sequence and yet
the variation of the CFR isonly of order 410 per cent. Observationally, such asmall effect would
be considered to be constant within the measurement errors. Moreover, changing the value of Mg
produces a far larger effect on the total rate at which stars are created (84.1.1), and hence obser-
vationally, we would expect the SFR to be largely independent of the form or indeed existence of
aspira density wave. EImegreen & Elmegreen (1986) present data for a sample of 745 galaxies
which confirms this expectation — they find that spiral density waves are not responsible for dir-
ectly triggering star formation (except possibly in some peculiar cases) but instead order the star
formation and organiseit into spiral structures. A similar result is reported by Elmegreen (1993)
using more recent data, and also by Devereux & Young (1991) who, consideringthe star formation
rate of massive stars, find that the SFR per unit molecular gas mass is comparabl e between early-
(Sa=Sab), intermediate- (Sb—Shc) and late- (Sc—Scd) type spirals.
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5.2 Structureasafunction of theinput parameters

As we have seen, the parameters controlling the nature of the spiral perturbation have an inter-
esting, but small effect on the overall rate of star formation. As would be expected however, the
galactic structure is quite strongly dependent on the SDW, asindeed it is on the other input para-
meters aswell. | present below a selection of galactic images for various values of the four input
parameters which we would expect to have the largest effect on the galactic structure. The total
agerange of the clustersshownin each imageisthe same, and hencethe observed structurewill be
strongly dependent on the star formation rate, and therefore Mg (Fig. 5.4). When a star cluster is
created, it acquiresthe velocity of the progenitor cloud, and hence as Vg, rises, we would expect
the structuresto be comeincreasingly amorphous, with the spiral arms becoming lesswell defined.
In fact the effect isnot as strong as might be expected (Fig. 5.5), primarily because the star form-
ation rate rises with vgis, Which acts to reinforce the importance of the arms. More predictably,
the spiral arms become better defined with increasing A, and less tightly wound with increasing
ig (Figs 5.6, 5.7). The transient, strong, spirals seen in the early SSPSF models (82.1.2) are not
generaly present in the current simulation, even at low values of the SDW amplitude, since they
are washed out by the velocity dispersion of the clouds. At much lower values of vsp, then spiral
structures due solely to the differential rotation of the galaxy do begin to appear. Thevelocity dis-
persion required for this (< 0.02 km s~1) is however, much lower than anything observed, and the
conclusion must therefore be that spiral density waves have to be present in grand-design spirals.
Flocculent spiras are a so readily produced by the model, asis evident from a cursory inspection
of Figs5.4,5.5,5.6 and 5.7.

Theimages presented in Figs 5.4 t0 5.7 are colour coded such that theyoungest starsare shown
asblueand theeldest (130 Myr) asred. Thisreflects the changing colour of an observed cluster as
its most massive, blue OB stars die as supernovae, leaving only the cooler, red stars. The colours
are however only meant to be illustrative, and should not be interpreted as representing the true
cluster colour.

In a similar manner to the cluster formation rate studies, only only one parameter has been
changed at a time, with the others held fixed at their ‘standard’ values (Table 4.1). The galaxies
represented in the following pages are ‘typical’ in the sense that they are selected at random from
an ensembl e of threeto six runs. As a consequence of the stochastic nature of the simulationitis
difficult to draw genera conclusions from the images a one — a more quantitative description of
the structure isrequired, and thiswill be the subject of Chapter 7.
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Figure 5.4. Galactic structure as a function of propagation scaling mass, Mg: (a) 1.0 x 10* M,
(b) 3.2x 10* Mg, (¢) 1.0 x 10° M, (d) 3.2 x 10° Mg, (€) 1.0 x 108 M, (f) 3.2 x 105 M.
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Figure 5.5. Galactic structure as a function of cloud velocity dispersion, vgig: (8) 6.4 kms™2,
(b) 6.6 kms, (c) 7.1kms™t, (d) 7.6 kms%, (e) 8.3kms™t, (f) 9.0kms™L.
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Figure 5.6. Gaactic structure as a function of SDW amplitude, A: (&) 0.0 pctyr—2,
(b) 0.032 pc*yr=2, (c) 0.064 pc* yr=2, (d) 0.096 pc* yr=2, (e) 0.128 pc*yr—2, (f) 0.16 pc*yr=2.
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Figure 5.7. Gaactic structure as a function of SDW pitch angle, ig: (a) 10°, (b) 20°, (c) 30°,
(d) 40°, (e) 50°, (f) 60°.




68

CHAPTER 5. SPIRAL DENSITY WAVESAND GALACTIC STRUCTURE



5.3. RESONANCES AND THE RADIAL DISTRIBUTION OF STAR FORMATION 69

Figure5.8

Resonance curves arising from the
model potential. The positions of
the inner Lindblad resonance (ILR),
co-rotation resonance (CR) and outer
Lindblad resonance (OLR) are indic-
ated for spira pattern speed Qp =
10kms~tkpc1.
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5.3 Resonancesand theradial distribution of star formation

Spiral density waves, as a perturbation to the otherwise axisymmetric galactic potential, provide
aperiodic force to stellar orbitsin the galaxy. Hence there exists a resonant condition whenever
the perturbing force has a frequency which matches that of the orbit, and at resonance the orbits
will be unstable due to the large disturbance amplitude that results. As observed in aframe rotat-
ing with the appropriate Keplerian velocity (Q) of the particle, an n-armed density wave has an
angular frequency of n(Q — Qp), whereas, in the same frame of reference, the particlehas aradial
frequency equd to its epicyclic frequency k given by
2 2 r dQ
K= 4Q (1—|— EE) ,

provided the eccentricity of the orbit is small (as we have here). Resonance will occur when the
conditionn(Q — Q) = £K issatisfied, with the positive sign indicating that the star is overtaking
the crest of the potentia and the negative sign that the faster moving perturbation is sweeping past
the particle.

Furthermore, by substituting a spira perturbation into the first order, linearised equations of
motion, it is possibleto calculate a dispersion relation for spird density waves, and from thisit
can be shown that for quasi-stationary spiral modes, the condition

Q- <0<+
n n

must hold, i.e. an n-armed SDW can exist as a stable perturbation only in the region where this
inequality is satisfied. The special cases of n = 2 are known as the inner and outer Lindblad res-
onances (ILR and OLR respectively) and when n = 1 the spiral pattern co-rotates (CR) with the
galaxy. Curves showing the radia positions of the resonances for the potential used in the model
(83.2.2) are shown as Fig. 5.8 — clearly the stable region has the greatest extent for n = 2, and it
is for this reason that grand-design spirals have two prominent arms. We will see later (87.2.1),
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05 Figure5.9
Galactic gas distribution as used in
04 | the model. The data are reproduced
from Burton (1988). The clouds are
T osl initially spread across the disc such
> that the distribution matches that of
g ozl the 12CO, and they accrete throughout
& the simulation from the H1 which re-
ol mains unchanged.
0'Oo.o | 510 | 16.0 | 15.0
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that the star formation disrupts the simple pattern, resulting in observed spiral components (using
sites of recent star formation to trace the arms) with n > 2, although the underlying SDW is still
bisymmetric.

A useful introductionto stellar orbital dynamics and the mathematics underlying the Lin—-Shu
quasi-stationary spiral density wave hypothesis(Lin & Shu 1964; Lin & Shu 1966) can be found
in Bowers & Deeming (1984), whilst for a more comprehensive treatment the reader isreferred to
either Binney & Tremaine (1987) or Shu (1992).

At radii corresponding to the different resonances we might expect the perturbation to have a
noticeabl e effect on the orbital dynamics of stars and gas clouds, and hence to appear in images of
the galaxies. Thisindeed isthe only way in which SDW pattern speeds can be measured for ex-
ternal galaxies. However, no consensus exists as to which resonance limits the maximum radius
of the spira density wave, and hence pattern speeds are only poorly known. For example, El-
megreen, Elmegreen & Montenegro (1992) proposethat the OL R marks the greatest extent of the
spiral pattern on the basis of an identification of three-armed components in selection of galaxies.
In contrast Roberts, Roberts & Shu (1975) place co-rotation at theend of the spiral sinceitisat CR
that the shock resulting from the relative velocity of gas with respect to the wave will vanish. A
third theory due to Contopoulos& Grosbgl (1986) placestheinner 4/1 resonance at the edge of the
spiral pattern — they find that non-linear effects make it difficult to construct self-consistent stel-
lar models of strong spirals outside thisradius. Finally EImegreen & Elmegreen (1995) propose,
based on a sample of 173 gaaxies, that the spira pattern should be divided into inner and outer
regions, the boundary being marked by co-rotation, and observationaly by the point at which the
two inner, symmetric arms broaden or bifurcate. Thisresultsin the OLR being at approximately
the edge of the galaxy, and hence does not contradict their earlier work, although now the defining
conditionisdifferent.

Our particlesmove ballistically as test massesin an imposed potential, and hence the model is
unable to reproduce the sort of phenomena discussed above, since they arise from the collective
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forces between al the particles. In particular, the radius out to which spiral arms can betraced is
limited by the maximum radius at which star formation still has a reasonabl e probability of occur-
ring, i.e. the extent of the spiral armsis constrained by the distribution of the gaseous components
(H2 andH 1). Thisisnot avariable quantity in thecurrent model, but instead i sfixed by the Galactic
gas distributions (Fig. 5.9). Since the clouds are dynamic entities, the molecular gas distribution
can change with time as the simulation proceeds (athough it isfound that the changes are small),
whereasthe H | gasisfixed both spatially and temporally.
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Chapter 6

The observational sample

We have seen how the model predictions of the star formation rate and related quantities can be
compared with observational data from our own Galaxy. However, when considering the struc-
tures produced then clearly it is necessary to have a sample of externa galaxies with which to
compare the model results, a selection of which were shown in Chapter 5. | present below the
galaxy sample used in thiswork, before going on in the following chapter to consider quantitative
tools with which to characterise the nature of the galaxies' structure.

6.1 Tracersof star formation

Regions of recent star formation are traced most easily by the Ha emission from the ionised hy-
drogen which resultsfrom the interaction between the massive OB stars and the embedding cloud,
anditisonthebasis of the availability of acatalogue of H 11 regionsfor any given galaxy that the
sample was chosen. The datais summarised in Table 6.1, and the optical images and H 11 distri-
butions of each galaxy are presented as Fig. 6.3. It should be noted that such catal ogues are of
necessity somewhat subjective since from the original Ha imageit is often difficult to distinguish
between one large H 11 region and a complex comprised of many smaller ones. It isthen up to the
compiler of the catal ogue to make hig/her decision — see Hodge & Kennicutt (1983) for adiscus-
sion of the problems encountered in producing such alist.

It is noticeable that the vast majority of the galaxies for which data are available are of type
later than Shc (Fig. 6.1). Thisis an unfortunate conseguence of the fact that the H 11 regions are
much easier to pick out in these galaxies—indeed it could be considered a defining feature of late-
typespirals. Themodel ishowever, optimised to simulate Sh gal axies similar to our own - many of
the defining characteristicsof themodel have been constrained by Galactic val ues, for examplethe
gas distributions (both H1 and H5) and the relative importance of the bulge compared to the disc
(which determinesthe orbital dynamics). Any future studieswould benefit greatly from extending
the sample to remove this bias.
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Table 6.1. Observationsof H 11 regions

Galaxy No. Hii regions® Inclination® PAP Inclination® PAS T-type®

1C342 665 22° 32° 12° — 6
NGC 628 7279 8° 23° 24° 25° 5
NGC 925 132 54° 102° 56° 102° 7
NGC 1232 529 33° 86° 29° 108° 5
NGC 2403 604 55° 121° 56° 127° 6
NGC 2805 117 39° 116° 41° 125° 7
NGC 2835 125 42° 168° 49° 8° 5
NGC 3031 801 58° 150° 58° 157° 2
NGC 3184 144 13° 90° 21° 135° 6
NGC 3344 151 28° 164° 24° — 4
NGC 3486 153 42° 80° 42° 80° 5
NGC 3521 149 64° 166° 62° 163° 4
NGC 3556 192 — — 75° 80° 6
NGC 3938 160 10° 24° 24° — 5
NGC 4254 214 30° 6° 29° — 5
NGC 4303 289 29° 135° 27° — 4
NGC 4321 286 28° 146° 32° 30° 4
NGC 4535 221 44° 1° 45° 0° 5
NGC 4654 107 56° 120° 55° 128° 6
NGC 5055 138 58° 103° 55° 105° 4
NGC 5194 160¢ 20° 170° 52° 163° 4
NGC 5457 471 24° 38° 21° — 6
NGC 5962 112 43° 117° 45° 110° 5
NGC 6384 142 48° 41° 49° 30° 4
NGC 6814 7341 20°f 167°f 21° — 4
NGC 6946 540 34° 64° 32° — 6
NGC 7331 124 74° 167° 69° 171° 3

28Hodge & Kennicutt (1983) unless otherwise stated
bGarcia-Gomez & Athanassoula (1991) unless otherwise stated
Cde Vaucouleurset al. (1991)

dHodge (1976)

€Carranza, Crillon & Monnet (1969)

fKnapen et al. (1993)
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Figure6.1

8 - — 8 Distribution of morphologica types
in the observationa sample. Clas-
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etal. (1991).
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Figure 6.2. Discrepancies between PA and inclination values for the observational sample. The
inclination data (a) have been binned at 5° and the (b) PA data have been binned at 10°.
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6.2 Galaxy orientation

Real galaxies are, of course, randomly orientated with respect to an Earth-bound observer. To
allow for comparisonsbetween data-setsit isnecessary to de-project thegal axy such that it appears
asif it were face-on to us. This requires knowledge of both the position angle (PA) of the major
axis (normally measured from North through East) and itsinclination (i) to the line of sight. The
corrected positionsof theindividua H 11 regions are then given by

X'\  [sec(i)cos(PA) sec(i)sin(PA)\ (x

y) \ —snPA) cosPA) y/’
wherethestandard astronomical convention of having East to theleft hasbeen used. Notehowever,
that many of theH 11 catal ogues effectively flip thisround by assigning pointsto the East with pos-
itive x-coordinate.

Inal subsequent analysis, | have used the PA and inclination values of Garcia=Gomez & Ath-
anassoula (1991) since they provide the more compl ete set of consistent values, the obvious ex-
ception being NGC 3556. Garcia-Gomez & Athanassoul acal culated their values averaging over a
number of techniques, giving most weight to H 1 velocity field measurements. This should be the
most reliable technique avail able, assuming that the disc can be represented as being planar, since
it samplesinformation from the whole disc. Galaxy inclination anglesare not listed directly in de
Vaucouleurset al. (1991), but instead values of Rys are quoted, i.e. the ratio of the major to minor
axes of the surface brightness pg = 25.0 mag arcsec™2 isophote. Recently it has been shown that
spiral galaxies are optically thick out to this radius (Valentijn 1990; de Vaucouleurs et al. 1991)
and can therefore be treated as an opague circular disc, whichimpliesthat theinclination angleis
given by i = arccos( Rgsl). Thisis contrary to what had been believed previously (de Vaucouleurs
et al. 1976), and is not true for galaxies of T< 0. In this case an inclination dependent correction
factor hasto be applied since we observe agreater column density along the minor than the major
axis.

Thetwo setsof PA and inclinationdataagree reasonably well (Fig. 6.2) in most cases, although
there are the odd examples where there isalarge discrepancy (e.g. NGC 2835).

Thedeprojected H 11 distributionsof the observationa sample (usingthe dataof Garcia Gomez
& Athanassoul@) are shown as Fig. 6.3, together with the Digitized Sky Survey (DSS) image of
the galaxy. Whereas spiral structures are often clear in the optical continuum images, they are
generaly disappointingly difficult to pick out inthe H 11 maps.
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Figure 6.3. The observational sample. The left-hand frame show the deprojected H 11 region dis-
tributions, and the right-hand the DSS image of the galaxy in question. The H 11 images are of
arbitrary size and orientation as a consequence of the deprojection process. The DSS images are
labelled using J2000 coordinates.
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Chapter 7

Quantitative measur es of -
galactic structure

A comparison of the predicted and observed star formation rates gives a quantitative feel for the
worth of the model. However, the defining feature of spiral galaxiesis their morphology and not
the rate at which stars are being created; indeed observationally the SFR shows remarkably little
variation with the structure of the galaxy (Devereux & Young 1991). Sincethe human eyeis ex-
tremely adept at seeing patterns where there are none (Frisby 1979), and can be overwhelmed by
amass of data and thusignorefine structure, an automated, quantitative method for characterising
galactic morphology isrequired, and thiswill form the subject of this chapter.

7.1 Description of the techniques

Many schemes already exist for classifying galaxies by their optical morphology, depending on a
variety of awide range of parameters such as the bulge to disc luminosity ratio, the presence of
a bar, etc. — a brief summary of the most commonly used schemes for normal galaxies is given
in Appendix C. All such schemes are, however, somewhat subjective, since they usually rely on
visua inspections of optical images. Changing the exposure time of the observation, or tweaking
the contrast etc. with a suitable image-processing package can greatly affect the appearance of a
galaxy and henceits classification. It would therefore be preferable if some completely uniform,
repeatable procedure could be adopted. | have considered three such approaches; Fourier ana-
lysis, minimal-spanning-tree spectraand multifractal dimensions. The Fourier analysisistailored
in such away asto make it especialy suitablefor the study of spira galaxiesand it has been used
before for alarge selection of spiral galaxies(Considéere & Athanassoulal1982; Puerari & Daottori
1992; Garcia Gomez & Athanassoula 1993), whereas the other techniques have not previously
been utilised to investigate galactic structure. They have however, found astronomica applica
tion in the categorisation of large-scale structure (Barrow et al. 1985; Martinez et al. 1990; Bor-
gani et al. 1993).
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7.1.1 Fourier analysis

The most obvious feature of the galaxies under consideration in this dissertation is their spiral
structure. What we require is some way to enhance this structure without being distracted by the
underlying, axisymmetric component. Fourier techniquesare widely used in such filtering applic-
ations for both time series and spatial distributions. For any Fourier based approach, it is aways
sensible to choose the basis functions carefully, in order to minimise the information content of
the high order components. Whilst for many applications harmonic functions are best, we have
in this case asystem where we know the form of the dominant feature in which we are interested.
Danver (1942) compared photographic images of a sample of galaxies and fitted the arms to six
different analytic forms for spirals; Archimedean, Cotes, hyperbolic, gravitational, parabolic and
logarithmic. Hefound that logarithmic spiralsprovided the best fit to the observationa data, ares-
ult that was confirmed later by Kennicutt (1981). It istherefore sensibleto uselogarithmic spiras
as the basis functions for our Fourier expansion. Of course, doing this does not in any way bias
theresultstowards|ogarithmic spirals, as opposed to any other type. It simply means that we hope
to be able to represent the structure of the galaxy with as few as possible Fourier components by
using a‘natural’ basis set.
An n-armed logarithmic spira has the form

r = roe "%/d

where g isrelated to the pitch angle and number of arms of the spiral by tanio = —n/q. At afixed
radius, the function is sinusoidal in 6 with the wavelength inversely dependent on the number of
arms, giving us a first set of conjugate variables (6,n). Similarly at fixed azimuthal angle, the
function is sinusoidal in Inr with the wavel ength this time a function of the both the pitch angle
of each arm and also the number of arms comprising the pattern, resulting in the second set of
conjugate variables (u = Inr,q). Furthermore, we can represent a distribution of pointsas the sum
of &functionsdistributedin the (u, 8) plane, and hence can writethe Fourier transform of the 2-D
distribution as,

0TI N .
aam= [ | n% > 8(u~u)3(0- )¢+ Vaude,
)N 2

N
— l e—i(qui+n6i)
A

(Considére & Athanassoula 1982), where each point has been given equal weight. When using
simulation data, it would in principle be possibleto weight each point according to its age in or-
der to enhance the contribution due to, for example, the youngest clusters. Such informationis
however, not available for the observational sample, and hence uniform weightingwas used in al
Cases.

Whilst thisis undoubtedly a powerful technique, care must be taken in the interpretation of
the Fourier spectraproduced. The presence of astrong signal for any given n does not necessarily
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Figure7.1
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imply the existence of an n-armed spiral, although the converseis true. Thisis most noticeable
for n= 1 where any asymmetry in the distribution of points about a mirror-planeisreflected asa
strong n = 1 signal in the Fourier spectrum.

7.1.2 Minimal spanningtree spectra

Given apoint distributionit is possible to cal culate a unique network joining each point without
loops such that the total edge length is minimised — a construct known as the minimal spanning
tree (MST). An example of aminimal spanning tree, calculated for a set of randomly positioned
points using the algorithm of Whitney (1972), is shown as Fig. 7.1. The number distribution of
edge-lengths (I;) comprising the tree can then be used to characterise a given structure, with dif-
ferent spectrabeing compared using either the Kolmogorov—Smirnov (KS) test (Presset al. 1992)
or Kuiper test (Kuiper 1962), resulting in asingle number, viz. the probability of the two spectra
being identical, with which to intercompare both model and observational data.

Both the Kolmogorov—Smirnov and Kuiper tests are based on comparisons of the cumulat-
ive distribution functions (C; and C,) of two data sets with N; and N, points respectively. (Al-
ternatively, one of these could be replaced by a known distribution function to enable datato be
compared to atheoretical model). The KS statisticis then defined as

K= max [Cy(x)—Ca(X)|,

— 00 X< 00

whereas the Kuiper statisticis defined as

D=Ki+K_= max {Ci()—Co()}+ max {Ca(x)—Cplx)}

— 00 X< 00 — 00 X< 00
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1.0 . Figure7.2
/I llustration of the Kolmogorov—
_ o8 o g; | Smirnov and Kuiper tests. For the
3 / two cumul ative distribution functions
B C; and C,, the KS statistic K is
% 08T | given by the length of the longer
2 \ of the two lines marking points of
%0-4 " /rhax{cl_cz} 1 maximum difference between the
Z2 curves, whereas the Kuiper statistic
S g2 | ma(CC) | D isdefined asthe sum of the lengths
/ of the two marked lines.
00 L=

(seeFig. 7.2), i.e. whereas the K S test measures the maximum absol ute deviation between thedis-
tributions, the Kuiper test is the sum of the maximum differences above and below between C;
and C,. The significance of the (easily) measured value of these statisticsis then calculated as,

Probability(dataidentical) = Qx (K [\/N—o+ 0.12+ 0.11/\/|\TOD

for the KStest, where

and for the Kuiper test,
Probability (dataidentical) = Qp (D [/No+0.155+0.24/ /N )

where

8

Qo(A) =2 (4jA2—1)ed,
=1

TheK Stest isthemost widely used techni quefor comparing two unbinned data sets (with X2 being
the preferred method for binned data), but has the disadvantage of being more sensitiveto values
of x around the median (such that Q(X) = 0.5) than to the extremes of the data. Thisresultsin the
test being good at picking out shiftsin the median value of the distribution, but rather less useful
for finding spreads. In contrast, the Kuiper test isequally sensitiveover al valuesof x, withthein-
evitabledrawback that it isthen more proneto giving misleading answersdueto outliers. Thetests
do however complement each other in their respective sensitivity ranges. A number of additional
techniques based on the same theme are a so sometimes used, but have not been implemented for
thiswork — see Press et al. (1992) for further information.
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Whilst experimenting with this technique it quickly became clear that the cumulative distri-
bution functions were dominated by fluctuations in the large number of short edges which con-
tributed littleto the larger scal e structureswhich are of interest here. Moreover, as a consequence
of observational constraints, the sample of real galaxies has no short edges at al (see Chapter 6)
and henceit would not have been feasibleto compare real with simulated structuresif the shortest
edges had not been removed. Unfortunately thisintroduces an additional parameter into the tech-
nique, namely the short-edge cutoff expressed as a fraction of the mean edge-length, I

The spectrawere a sotruncated at |ong edge-lengthsto reduce the effect of the small number of
outlying points. It was however found that that theval ue of the cutoff made only aminor difference
to the statistical tests (as would be expected since they are based on the cumulative distribution
functions) —in genera aconstraint of |/ | < 4 wasimposed.

7.1.3 Multi-fractals

Many texts exist which expound on the theory of fractals and multifractalsin great mathematical
detail. My aim here, however, is to introduce the topic from a slightly more physical point of
view, which although lacking somewhat in mathematical rigour, does have the advantage of being
moreintuitive. | will follow apath similar to that taken by Schroeder (1991) — for amore rigorous
approach see, for example, Mandelbrot (1982), Feder (1988) or Falconer (1990).

First consider alarge cubic volume of edge length L whichis sub-divided into cells of size A.
Then the number of small cellsinto which the large volume can be split is given by

N(g)=¢~3 (7.1)

wheree = A /L. Now suppose that anumber of point-like particles are spread throughout the large
cube, and that A is chosen such that there is no more than one particle in each cell. Then, if the
point distributionis uniform, the number of cellsrequired to form acovering of the set of particles
will aso be given by equation (7.1), whereas for a non-uniform set, the number of cells required
to form a covering is more generally given by

N(g) = e P+ (7.2)

where Dy isknown asthefractal (Hausdorff) dimension of the distribution, and can vary between
zero and the embedding dimension of the space. Equation (7.2) ismore normally re-written in the
form,

INN(€g)

Dy = lim In(1/¢e)’ (73

Note that this picture accords with the definition of afractal given by Mandelbrot (1982), viz. that

the fractal dimension exceeds the topological dimension, which for a point set is of course zero.
A perfect, self-similar fractal, only requires a single dimension to characterise it, since on

whatever scale welook the distribution of pointswill appear the same. Physical systemshowever,
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rarely exhibit thismonofractal nature—instead they are multifractals where the scale length under
consideration is of importance. Hence the Hausdorff dimensions need to be generaised in some
way to make allowance for this.

The easiest way to start isto first consider a dightly different fractal dimension. Rényi, in an
attempt to generalise the entropy function for a point distribution introduced a formula based on
the moments of the probabilities pi(g) = ni(€)/N, i.e. the probability of finding n; pointsin theith
cell. The generalised entropy can be written

-1 N q
:—In -,
S=571 i;p.
which reducesin thelimit g — 1 to the more familiar form,
N
S =-) pilnp.
2,
In asimilar manner, the Rényi multifractal dimensions (Rényi 1970) are defined as
1 Ingl,p :
= _— = . 7.4
Da Ial—rgq—l e+ D17 mMDs (7.4

For a self-similar fractal, with equal p; = 1/N then equation (7.4) becomes

1 InN(1/N)d
e-0q—1 Ing

= I i 1/ey

which has the same form as equation (7.3) independent of g. Furthermore, we see that for g = 0,
equation (7.4) reduces once again to equation (7.3), and hence Dy = Dy. The most commonly
used notation introduces another variable 1(q), where,

o InglL pf
ta) = lim =5
and hence, from equation (7.4),
1(d) = (9—1)Dq. (7.5)

From a more physical point of view, the exponents g control the weight given to regions of
differing densitiesin the sum. High density regions, with large p; will contribute most when g is
large and positive, whilst the low density regions will dominate when g islarge and negative. In
the limits, | |

o 1N Pmax . N Pmin
Do =lMinie P~ 1Min1/e)
where pmax and pmin are the maximum and minimum val ues respectively of p; over the whole
distribution. Hence D_,, > D.,. Furthermore, in general,

Dg > Dy for g<(d, (7.6)
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and thus Dq is amonotonically decreasing function of q.

The Rényi dimensions have been shown to approximate to the simple Hausdorff dimension
inthelimit g — 0. It isaso possible to extend the normal definition of the Hausdorff dimension,
although unfortunately this takes us away from the path where physical intuitionis of any use.
Without the formal definition however, the techniques used to estimate the fractal dimensionsfor
areal distributionof pointswould seem to be plucked from nowhere. Formally, the Hausdorff mul-
tifractal dimensions are defined as follows (Martinez et al. 1990): for a set of points embedded in
aEuclidian space we can construct sets of coverings(Y?) of the distribution using (hyper)-spheres
of sizeg; < €. Also for any general measure of the set (we have been using p up to now), we can
define the counterpart for each member of a set of coverings,

Mi :/ dp.
1—set

Finally, we can define the partition sum
r(g,1)= I|m inf —' (7.7)
W2

and use thisto define the function t(q) by the requirement,
(g, 1) = constant.

Thisisthe same function t(q) as was used above, and the fractal dimensions can be hence be cal-
culated viaequation (7.5). To distinguishbetween the Rényi dimensionsand the Hausdorff dimen-
sions| shall use D(q) for the latter and D, for the former, following the usage of van de Weygaert
(1992).

We are now in aposition to consider some of the techniques used to estimate the function 1(q)
for real, finite point sets, for which the limit € — 0 cannot be taken. A number of such methods
exist (Borgani et al. (1993) suggest four), but we shall focus on just two, the Minimal Spanning
Tree method and the Correl ation—Sum method.

The Minima Spanning Tree method, originally proposed by Martinez et al. (1990) (see aso
van de Weygaert et al. 1992; Martinez et al. 1993) makes use of the MST to approximate the min-
imal covering of the point set by placing sphereswith thetree edges as their diameters. Randomly
chosen subsamples of the total point distribution are used to produce sets of edge-lengths {; }" ;
with m= Nr — 1 and Ng being the number of pointsin the subsample. We can then define a par-

tition function
ZI Omi-1

which approximates equation (7.7) with g ~ |; and ; ~ 1/m. By fitting this relationship for a
range of m, we obtain q(T) and hence, by inverting to givet(q), D(q) by equation (7.5).

From an agorithmic point of view, it is found that the results can be unstable due to the fi-
nite number of points been selected in the random subsamples. In an attempt to overcome this, it
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usual to calculate Z(t, m) for several realisationsof asubset of m points, and then to average over
the ensemble. Additional problems are caused by both the extreme edgesinthe MST edge-length
distribution where the Poi sson sampling noi se associated with the small numbers can result in the
value of Sbeing distorted, particularly at larger |q|. Thisproblem can be circumvented by discard-
ing the shortest and longest edges — van de Weygaert et al. (1992) recommend to use only edges
intherange0.01 < I/ | < 10. One further point to note, is that by choosing random subsamples,
this method mixes the scale lengths over which the calculation is performed, and hence in some
senses averages over the scale-dependent behaviour, which is what we are interested in for this
work.

Wheresas the Minima Spanning Tree method is an estimator for the Hausdorff generalised
dimensions, the Correlation—Sum method (Grassberger & Procaccia 1983) approximates to the
Rényi dimensions. We now consider spheres of radius r centred on each of the N pointsin our
set. Let the number of points contained within the sphere centred on theith point be nj, and define
pi = n;/N. Then the partition sum

pttor (7.8)

Mz

1
Z(qu): N
i=1

alowsus, by varying r for agiven value of g, to derive the function 1(q) from which, as before,
we can derive Dq. (NB no inversionof g(1) isrequired thistime). Again, discreteness effects can
disrupt the calculation particularly for g < 1 where any cellswith n; = O will cause equation (7.8)
to diverge. However, this technique does not suffer from problems associated with mixing scale
lengths; instead the range of scalesisfixed by the range over which r isvaried to calculate thefit.

7.2 Application of thetechniques

7.2.1 Fourier spectra of galaxies

The Fourier spectrafor a selection of the simulated galaxies are shown in Figs 7.3 and 7.4 (the
corresponding structuresbeing shownin Figs5.6 and 5.4). The spectrahave been cal culated using
the positions of the youngest stellar clusters only (t < 107 yr) since these will be equivaent to
the H 11 regions used to trace the spiral arms in the observationa sample. Moreover, the typical
number of points used to calculate the model spectrais then of the same order as the number of
points availablefor area galaxy.

Aswe haveseen (85.2), thespira structurebecomesincreasingly well defined astheamplitude
of the spiral density wave isincreased, afact which isreflected in the increasing amplitude of the
n = 2 Fourier component, A(q,2) — see Fig. 7.3. At the extreme high values of SDW amplitude,
the average value of A(q,2) levelsoff (Fig. 7.5) in amanner reminiscent of the trend in the cluster
formation rate (Fig. 5.1). However, inthiscaseit isnot the number of starswhich is changing, but
instead it showsthat the spira pattern deviatesincreasingly from asimple two-armed logarithmic
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Figure 7.3. Effect of varying SDW amplitude A on Fourier spectraof model galaxies.
(@ A= 0.0 pc*yr=2, (b) A= 0.032 pc*yr=2, (c) A= 0.064 pc*yr=2, (d) A= 0.096 pc* yr—2,

(e) A=0.128 pc*yr2, (f) A= 0.16 pc*yr—2.
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spiral as the strength of the perturbation increases. Note the presence of a strong n = 4 compon-
ent in those simulations with higher SDW amplitude (Fig. 7.3) indicating that the distribution of
the young stellar content is not following exactly the underlying perturbation in the gravitational
potential. A similar, but more obviouseffect is seen when considering the structures produced by
varying the pitch angle of theimposed SDW (i), asshowninFig. 5.7. For theextremely high val-
ues of ig, the spirals do not appear to be noticeably more tightly wound than for the intermediate
values of the SDW pitch angle.

Thiscan be quantified by reading from the Fourier spectrathe actual pitch angle of the various
components—asisshowninFig. 7.6, itisfound that the pitch angle of thearms astraced by regions
of recent star formation (i) isawayslessthanthepitch angleof the SDW (ip). Thearmsdelineated
in this way are materia arms, and hence are wound up by the differentia rotation of the galaxy,
with arms which areintrinsically lesstightly wound experiencing alarger effect. Moreover, i, has
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Figure7.7

Fourier transform of the same simu-
lation as was used in Fig. 7.3(d), but
now including older clusters in the
calculation. Note how then = 2 com-
ponent has been washed out to such
an extent that it now hasthe same sig-
nificance as the overal asymmetry of
theimage (n = 1).
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alimiting value of ~25°-30°, entirely consistent with the maximum spiral pitch angle observed
for real galaxies (Kennicutt 1981). For our own Galaxy, the measured pitch angleis~12° (Vallée
1995; Davies 1994; Taylor & Cordes 1993) and hence the underlying SDW should have a pitch
angle of 20°, which was the value used in Chapter 4 when predictions were made for the cluster
formation rate of the Milky Way. The maximum valuefor i, will be afunction of therotation speed
of the galaxy in question — if the rotation curve is approximately flat then a higher circular speed
will result in agreater angular velocity gradient, and more tightly wound arms.

Being material arms, it might be expected that the spiral arms seenin the model would wind up
more completely over time. Thisis not the case due to the underlying SDW which organises the
star formation such that itisconcentrated along the potential arms. Thusthevisiblepatternremains
approximately constant in time athough the individual star clusters that trace the visible arms at
any given time are continually changing. Asthe clusters age and move away from the minimum
of the spira potential the pattern becomes smeared out due to (i) the velocity dispersion of the
starsand (i) the continued winding up of thematerial arm. Thiscan be seen clearly inthe Fourier
spectrum of the same A = 0.096 pc* yr—2 simulation as shown in Fig. 7.3, but now including ol der
stars of age up to 108 yr (Fig. 7.7).

The Fourier analysis of the observational sample (Fig. 7.8) is alittle disappointing — despite
all the galaxieshaving reasonably clearly defined spiral armsin photographicimages, thearms are
moredifficult totraceintheH 11 regiondistributions(Fig. 6.3) asisclear from evenasimple, visua
inspection. Thisisreflected in the Fourier spectraaswell, with very few of the galaxies showing
any components significantly stronger than the noise level (which in most casesis comparableto
that for the modelled galaxies). The obviousexceptionsare NGC 3031 (M 81), NGC 5194 (M 51)
and, to alesser extent, NGC 6946. NGC 3031 in particular could be considered to bethearchetypal
grand-design spiral and it is encouraging that this galaxy can be modelled with some degree of ac-
curacy (compareits Fourier spectrumwiththat of Fig. 7.3(b)). Thisperhapsa soreflectsthe close-
nessin Hubble type of NGC 3031 to that of our own Galaxy, on which the ‘standard’ parameters
of the model were chosen.
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Figure7.8. Fourier spectraof the observationa sample. Only thefirst four componentsare shown
for clarity, although it is clear that for many of the galaxies thereis still significant power in the
n = 4 component, and we would therefore also expect the n > 4 components to be important.
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Figure7.9. Fourier transformsof non-standard simulations, producedin an attempt to match those
calculated for the observationa sample. The spectraare derived from simulations cal culated with
(@ Mg = 3.2x 10° M, A = 0.032 pc*yr~2 and (b) Mg = 3.2 x 10° M, A = 0.016 pc*yr—2.
Standard values were used for the other parameters.
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The other galaxies seem, from the Fourier analysis, to have considerably weaker spird density
waves than has been taken asthe standard for thiswork. Such structures can be reproduced by the
model by choosingahighvauefor Mg and alow onefor A. Figure 7.9 showstwao transformswith
slightly differing parameters, which are a closer match to those calcul ated for the real galaxies.

It would beinteresting in the futureto constrain all the model parameters (including those spe-
cifying the axisymmetric potential and hence the rotation curve) using observational data based
on one of the galaxies shown here as opposed to the Milky Way. To infer Mg however, requiresa
measurement of the median H, cloud mass which is not yet possible for galaxies external to our
own (although thelargest GM Cs can beresolved in the nearest galaxies). Alternatively, Mg could
be fixed from the observed CFR if only the structural properties are of interest.

All the galaxies for which Fourier spectra are presented above, are those with a two-armed
perturbation to the overall gravitational potential. The Fourier analysisrevea s however that weak
three-armed components are often to be found in the stellar distribution, as indeed they are in the
observationa data aso (cf. NGC 3556, NGC 4303). Puerari & Dottori (1992) find similar results
using the same Fourier technique for anumber of other galaxies, and EImegreen et al. (1992) use
an image enhancement process to find weak n = 3 modes in 17 out of a sample of 18 galaxies.
(Interestingly, they also show that in 15 cases the limits of the three-armed spirals occur at the
inner and outer 3:1 resonances — see 85.3). If athree-armed SDW is imposed instead, then as
expected, the Fourier spectrum shows a strong n = 3 peak, contrary to observations. The results
presented here suggest that it is not necessary to postul ate the existence of an n > 2 perturbation
to explain the presence of n = 3 componentsin the Fourier spectrum.

7.2.2 Experimentswith MST edge-length spectra

Unlikethe Fourier analysisdescribed above, the comparison of MST edge-length spectraisatech-
niquewhich hasnot previously been applied to galactic structure, althoughit hasfound application
in astronomy through studiesof the distribution of galaxies on cosmological scales (Barrow et al.
1985). Henceitisfirst essential to establishthevalidity of thetechniquefor thisapplication before
going on to apply it to the data sample as awhole.

A typical edge-length spectrum, together withtheH 11 regiondistribution(i.e. clusters < 107 yr
old) are shown as Fig. 7.10 for a simulation cal culated with the standard parameters. Frame ()
shows the spectrum after edges shorter than 0.2 |/ | and longer than 4 |/ | have been discarded.
Removing the shortest edges preventsthetight, propagating knots of clustershaving inappropriate
weight in the spectrum since such atight group has a small effect on the overall structure, whilst
removing the longest edges ensuresthat outliers have no effect on the results.

Now consider an ensemble of runs (i)—(v) al calculated using the standard parameters. Al-
though fluctuati ons arising due to the stochastic nature of the simulationwill make each structure
dlightly different, we would perhaps hope that al runs with the same parameter set had more or
less consistent MST edge-length spectra. Table 7.1 shows the probabilities of pairs of spectrabe-
ing the same cal culated with both the KS and K uiper test using clusters younger than 107 yr. In



7.2. APPLICATION OF THE TECHNIQUES 105

Figure 7.10. Example MST edge-length spectrum for a standard simulation. Frame (a) showsthe
H 11 distribution, (b) the untrimmed spectrum and (c) the trimmed spectrum.
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each case the MST spectra have been trimmed such that only edgeswith 0.2 < |/ | < 4.0 are con-
sidered. From thisset it would appear that the K uiper test is better at recognising simulationswith
the same initial parameters. However, if we now consider the results of the same procedure but
using clusters of age lessthan 2 x 107 yr (Table 7.2) the situationis not so clear. Now the Kuiper
test too informs usthat the chances of (iv) and (v) being the same islessthan 20% and runs (i) and
(i) which using only the youngest clusters seemed to be quite similar are now (at least according
to the Kuiper test) quite different.

It must be noted that these discrepanciesarein fact aresult of thetechniquebeingtoo sensitive.
A visud inspection of thedistributiontheyoungstellar population (Figs 7.11 and 7.12) reveal sthat
there are indeed obvious differences between the individual members of the ensemble. The tech-
nique would be more useful however if it was ablein some sensesto average out the fluctuations
arising from the stochasticity of the model and to reved the gross, overall form.

Similar conclusions are reached when considering the similarity of MST edge-length spectra
calculated from (randomly sel ected) simulationswith different values of Mg (Table 7.3). Thegen-
erd trends are what might be expected, i.e. as one descends a column to the leading diagonal and

Table 7.1. Results of comparing MST edge-length spectra for simulations with identical input
parameters, using only clusters of agelessthan 107 yr. Thetables show the probability of the spec-
tracalculated for theindividual runs (i)—(v) being identical, determined by the () Kolmaogorov—
Smirnov test and (b) Kuiper test.

@ (b)
) G (i)  (v) (V) ) G (i)  (v) (V)
(i) | 1.0 0969 0.688 0594 0.824 (i) | 1.0 0879 0577 0966 0.821
(i) | — 1.0 0928 0.353 0.879 (i) | — 10 0879 0.655 0.719
@) | — — 1.0 0242 0.358 @) | — — 10 0551 0.645
(iv) | — — — 10 0.246 (iv) | — — — 1.0 0.556
W |- — — — 1.0 W |- — — — 1.0
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Table 7.2. Results of comparing MST edge-length spectra for simulations with identical input
parameters using cluster of age lessthan 2 x 107 yr. The tables show the probability of the spec-
tracalculated for theindividua runs (i)—(v) being identical, determined by the () Kolmaogorov—
Smirnov test and (b) Kuiper test.

@ (b)
) Gy i)y (v) (V) ) Gy i)y (v) (V)
(i) | 1.0 0485 0.743 0.996 0.172 (i) [ 1.0 0179 0.881 0999 0.235
(i) | — 10 0798 0481 0.155 (i) | — 10 0594 0360 0.216
@) | — — 10 0910 0.323 @iy | — — 10 0947 0.498
(iv) | — — — 10 0137 (iv) | — — — 10 0181
v |- — — — 1.0 w |- — — — 1.0

Table 7.3. Comparison of MST edge-length spectrafor varying values of Mg. Also shownisthe
effect of changing the short edge cutoff — (a) includes edgesinrange 0.1 < |/ | < 4 whereas (b)
was calculated with 0.3 < | /I < 4. Both tables were derived using clusters of age lessthan 107 yr
only, and the probabilitieswere cal culated using the KS test.

@
logMg | 40 45 5.0 55 60 65 70 7.5
40 |10 0404 0812 0004 0001 00 00 0.002
4.5 — 10 0802 0.003 0006 00 00 0.024
5.0 — — 10 0007 0001 00 0.0 0.008
55 — — — 10 0423 00 0.057 0.386
6.0 — — — — 10 00 0050 0421
6.5 — — — — — 10 0.230 0.031
7.0 — — — — — — 10 0414
7.5 — — — — —_ - — 1.0
(b)
logMg | 40 45 5.0 55 6.0 6.5 7.0 7.5
40 |10 0267 0662 0025 0007 0.0 0.006 0.026
4.5 — 10 0749 0075 0061 0.0 0.068 0.263
5.0 — — 10 0067 0010 00 0017 0.108
55 — — — 1.0 0193 0.007 0321 0.560
6.0 — — — — 10 0011 0511 0.636
6.5 — — — — — 10 0165 0.114
7.0 — — — — — — 10 0.891
7.5 — — — — — — — 1.0
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Figure 7.11. Distribution of clusters younger than 107 yr for ensemble of standard simulations.
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Figure 7.12. Distribution of clusters younger than 108 yr for ensemble of standard simulations.
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Figure 7.13. MST edge length spectra used to calculate Table 7.4. Both the untrimmed and the
most alike trimmed (short edge cutoff at 0.3 1/) spectraare shown for (a) NGC 3031, (b) simula-
tionwith Mg = 10° M, and (c) simulation with Mg = 10 M.
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Table7.4

Comparison of MST edge-length spectra as a function of lower
cutoff. The two simulation runs have been individually compared
with the datafor NGC 3031. In each case the upper cutoff was kept
constant at avalue of 41/ | and only clusters younger than 107 yr
were included in the calculation.

Cutoff M«/Mg
I/l 10°  10°
0.0 0003 00
01 0023 00
0.2 0406 0.002
03 0781 0.024
04 0591 0.007
05 0.704 0.023
0.6 0.632 0.004

then follows the appropriate row across, the probability of the two spectrabeing the same risesto
a maximum on the diagonal and then falls. However, the scatter is large and given two simula-
tions, one of known Mg, it would not be possibleto deduce the other value of Mg from the table.
Moreover, the short edge cutoff can be seen to have a considerable and variable effect, making
some structures more similar, and some | ess.

This sensitivity to the value chosen for the short edge cutoff is probably the weakest feature
of thismethod. Comparing the edge-length spectrum of NGC 3031 with those of simulationswith
Mg = 10° M, and Mg = 108 M, (Fig. 7.13) we see (Table 7.4) that depending on the cutoff used,
that the spectra could be considered to be anywhere between almost identical and really quite dif-
ferent! The Fourier analysis of NGC 3031 demonstrates that is the galaxy for which the simula-
tions are best able to reproduce the observed structure, and hence similar MST edge-length tests
have not been performed using data from the other members of the observational sample.

7.2.3 Multi-fractal techniques

The initial investigations using fractal techniques were performed using the MST method only,
primarily onthe recommendations of Martinez et al. (1993) who indicated that the technique was
particularly well suited to problemsinvolving small data sets. Clearly, with the galaxy datawe do
not have sample of many thousands of points, and so thiswas an important consideration.

Before attempting to calculate the fractal dimension of some galaxy data, either real or sim-
ulated, it was essential to verify that the algorithm, as coded, worked as intended. In order to do
this, we tested the method on the Hénon attractor (Hénon 1976) for which the spectrum of mul-
tifractal dimensionsis well known (Arneodo et al. 1987; van de Weygaert et al. 1992; Martinez
et al. 1993). The attractor is defined by the recursion relation

Xns1 = 1—axC+Yn, a=14
Yn+1 = bXn7 b = 03

and Fig. 7.14 shows the first 20000 points, when initial values of xg = Yo = 0 are used. Unfor-
tunately, despite using an identical procedure to that described by van de Weygaert (1992), we
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Figure7.14
Thefirst 2 x 10* points of the Hénon
attractor, startingwith xg = yo = 0.
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were unable to reproduce the exact values for D(0) and D(1) using the MST method, athough
the qualitativeform of the D(q) curve was correct. \We were unableto track down the discrepancy
(subsequent studieswith adifferent coding of the algorithm produced similar results), but sincethe
form of thecurvewas approximately correct, it seemed that thetechnique could still be of some use
in comparing simulation and observationa data. Although we might not be calculating precisely
the generalised Hausdorff dimensions, we still potentially had a viable method of distinguishing
data sets.

As with the investigations of the Fourier and MST edge-length spectra techniques, we first
considered simul ationswhich had been cal culated with arange of values of Mg. Some results are
shown as Fig. 7.15, including both the g(1) and D(q) curves. In each case, only clusters younger
than 1.5 x 107 yr have been included in the calculation. Clearly thereis a significant difference
between the D(q) for each simulation, and therefore by, for example, comparing the fractal di-
mension at afixed q value we have a single number to associate with each run.

However, when the fractal dimension was calcul ated for some of the observational sample, it
became clear that there were severe problems with thistechnique (Fig. 7.16). In particular, many
of the fractal spectra show ‘U’ shaped profiles (for example IC 342, NGC 3031) which violates
the fundamental constraint on multifractals, given by equation (7.6), that the D(q) curve must be
amonotonically decreasing function of g. The other galaxies (for example NGC 1232) giverise
to D(q) curves which also show rising portionsfor g > 1, and in addition are extremely noisy for
g < 1withpointsshowinglarge excursionsfromasmooth curveand also large errors (derived from
thefit of InZ with m). | suspect that thisis dueto aweaknessin the approach adopted to invert the
q(T) curve, which involved using a high-order Chebyshev polynomia (~15-20, athough lower
if a good fit could still be made) as an interpolating function. However, the fact that the D(q)
curvewasrising for all the observational sampleintheregionq > 1isthe more pressing concern.
Many of themodel setsalso exhibited similarly rising D(q) curvesinthisregion, butno ‘U’ shaped
profiles were seen.

Clearly further tests were required to ensure the efficacy of the algorithm. One simple check
that could be made was to ensure that the fractal dimensions cal cul ated were independent of the
scaling of the galaxy —if not then perhaps this could explain the problems with the observational
sample which are al scaled differently. However, when the coordinates of the H i1 regions of
NGC 6814 were scaled up by a constant factor, the D(q) curve remained unchanged, as indeed
it should. Also, if the noisinessof the multifractal dimensionswas in someway aconseguence of
anumerical instability dueto the precise values of the datathemsel ves, then shifting each point by
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respectively.
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Figure7.17. Theeffect of pixellation ona‘standard’ model dataset. Shown aretheH 11 positions
and D(q) curves for (8) normal data and (b) data which has been pixellated using the technique
described in the text.
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asmall amount would be expected to have alarge effect on D(q). Again thiswas tried, with each
point being displaced in arandom direction by arandom amount which was less than the undis-
turbed minimum point spacing. Since the MST method cannot investigate scaling regimes of size
smaller than its shortest branch, this would ensure that the fractal dimensions calculated would
be largely unchanged if the routine was working correctly. Once again, the algorithm behaved as
expected.

There is an important difference between the model and observational data sets, and thisis
the dynamic range of the scale lengths in the H 11 point distribution. If we consider the ratio of
the minimum distance between any two pointsand the maximum, then for a“‘standard’ simulation
the value is ~10~* whereas for an observed galaxy it is ~10~3 (NGC 3031). At larger values of
g, where the fractal spectrafor the rea galaxies shows an upturn, we are investigating the more
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dense regions, and hence it would seem that it isthe lack of short inter-point spacings for the ob-
servationa data which is causing the problem. As mentioned in Chapter 6, this arises from the
difficulty of distinguishingindividua H 11 regionsin compact, complex clumps of Ha emission.
In an attempt to simulate this effect, caused by the limited resolution of the optical images, model
datawas placed onto a 70 x 70 grid, and all stellar particles within agiven cell were replaced by
asingle particle at the centre of mass of the cell (all clustersgiven equal weight). To take into ac-
count thelossof particles, theagerangeof clustersincludedinthefractal calculationwasincreased
alittle—inFig. 7.17, the unchanged dataset includes clusters younger than 8 Myr (resultingin 730
particles), whereas the pixellated set uses clusters younger than 10 Myr (to give 731 particles). To
the eye, the structureslook similar, although the dynamic range of the pixellated imageisreduced
to ~10~3. Moreover, the D(q) curve now shows the ‘U’ shape which we have seen is character-
istic of the multifractal dimensions of the observed galaxies, and we concludethat for thisreason,
the MST method isnot ableto produce sensibleresultsfor the data setsin which we are interested.

Further studies, performedin collaborationwithK. K. S. Wuand P. Alexander (Wu et al. 1995),
have alsoinvestigated the M ST method, but using amodified coding of thea gorithm. It was used
to examine both the Hénon attractor and also the multifractal known as the multiplicative random
B—model (described in Borgani et al. 1993) for which Dy can be calculated analytically. In both
cases it was found that changing the acceptance range of edge-lengths could have a major effect
on the curves cal culated, but it was possibleto reproduce exactly neither the theoretical valuesfor
the multiplicative random model, nor the dimensions calculated by other authors for the Hénon
attractor.

Wu also coded the Correl ation—Sum method and tested it on the same theoretical multifractals.
Wefound that it worked well for both casesin theregion g > 1 and that by choosing the minimum
sphere radius to be larger than the maximum distance between neighbouring points (so that al
cells contain at least one other point and hence the sum in equation (7.8) remains bounded), reas-
onable answers could be obtained for q < 1 also. With these findings, | decided that it would be
worth repeating some of the earlier studies done using the MST method, but this time with the
Correlation—Sum technique.

A direct comparison of the two estimators can be made from Fig. 7.18, which showsthe multi-
fractal dimensionsfor three simulations, cal culated with different Mg. The simulationsfor which
dataare shown hereare thesame aswereused for Fig. 7.15, and hencetheD(q) curvesarethesame
as previously shown. Clearly there are significant differences between the multifractal spectrare-
turned by the two techniques, athough they seem to converge at high g. We would a so expect
them to converge at q = 0 since at this point the definitions of the Rényi and Hausdorff general-
ised dimensionsare identical, but thisis not seen. Moreover, if both the estimators were working
correctly, then the difference between Dq and D(q) would be small (many authors treat them as
the same), and certainly less then the estimated error bars.

Figure 7.19 shows the same Dq curves as Fig. 7.18 together with the equivalent curves cal cu-
lated with a different scaling range for the radii of the covering circles. The curves which extend
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Figure 7.18. Comparison of multifractal dimensions calculated using the two different methods,
for three values of Mg; (a) 10* M, (b) 10° M, and (c) 108 M.
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Figure 7.19. Multifractal dimension for the same galaxies as used in Fig. 7.15, but now calcu-
lated with the Correlation-Sum method; () Mg = 10* Mg, (b) Mg = 10° Mg, and (c) Mg =
10° M. In each case Dq has been calculated for rpyi, = mean neighbour distance and r i, =
max. heighbour distance. Inal casesrmna = 15 except for thethe max. neighbour distance’ curve
of (a), for which rme = 25 because rmin = 15. As usual, only clusters younger than 107 yr have
been included in the calculation.
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to g < 1 were produced using alower va uefor the range of radii (rmin) equal to the maximum sep-
aration between any two neighbouring points, such that there was always at |east one other point
within al the circles, whereas the other curve was cal cul ated setting r i, equal to the mean neigh-
bour separation. In this case the sum of equation (7.8) is divergent for g < 1. Asisevident from
the Mg = 10° M, case, even when rmin isequal to the maximum neighbour separation, the values
of Dq are not reliable for q < 1, sincein this case we have arising function, violating equation
(7.6). In addition we can see that the choice of scaling range can have quite a significant effect on
any given value of Dg — although not shown here, changing the choice for the maximum scaling
radius (rmax) out to which equation (7.8) isfitted also has an important effect (the curves of Fig.
7.19 havedl been calculated with rngx = 15 L —see Appendix A for explanation of internal model
units).

Nonetheless, it does seem possible to adopt a standard procedure and thereby extract useful
results from the Correlation—Sum approach. Calculated using constant values of r, = 5L and
rmax = 15 L and including only clusters younger than 107 yr irrespective of the simulation para-
meters, Fig. 7.20 shows D1 4, Dg and D;5 as afunction of Mg and SDW amplitude. The trends
are clear, and the scatter seems to reflect the actual differences between the runs (cf. Figs 5.4 and
5.6). It was hoped that the graphs for D,5 would show less scatter than the equivalent Dg since,
from Fig. 7.19 it woul d appear that the effect of the precise value of r i, lessensat higher g values,
although this does not appear to be the case.

It is also interesting to compare the curves here with the Fourier spectra of the same simula-
tions presented earlier. Considering the variation of Dy with SDW amplitude, we see that at high
A the multifractal dimensions tend towards a constant value. This form of curve has been seen
before in relation to the SDW strength, when we investigated the amplitude of the n = 2 Four-
ier component (Fig. 7.5). Indeed when we plot D1 4 and D15 against the peak value of then = 2
Fourier component (Fig. 7.21) we see that the two quantities are well correlated, and hence con-
clude that the two anayses are predominantly picking out the same structural features. At higher
g values, the sum of eguation (7.8) isdominated by the most denseregions, i.e. the youngest, per-
colating clusters of which there are relatively few. Hence Fig. 7.21(b) showsalarger scatter due
to the small number of pointswhich areimportant in the calculation. In contrast q = 1 samplesall
density regimes with equal weighting, and therefore al the clusters (of age younger than 10 Myr)
are included, tightening the correlation. Therefore, athough the Fourier transform contains more
information (with the complete set of complex A(q, n) it is possibleto reproduce the structure pre-
cisely), the multifractal dimension has shown itself to be a more useful tool, in that it is able to
distinguish reliably between different structures and characterise each with a single number. The
scatter isstill larger than would beideal, and although for model gal axies thiscan be countered by
increasing the number of pointswithin the summation, we have preferred not to do this, such that
we have a standard technique which can be applied to observationa data as well.

Having said that, applying thetechniqueto the observational sampleof gal axiesdoes, however,
require a little more care since the relative scaling of each one is different, in contrast with the
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Figure 7.20. Multifractal dimensions (a) D1 4, (b) Dg and (¢) D15 as a function of model input
parameters Mg and A. All resultswere derived using constant values of rin = 5.0 L and rax =
15.0 L, and including only stellar particles younger than 107 yr.
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Figure7.21. Correlation of Fourier transform peak amplitudewith multifractal dimensionfor two
vauesof g: () g= 1.4and (b) g = 15. Also shown isthe unweighted | east-squaresfit to the data.
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Multifractal dimensionsof NGC 3031
calculated using the Correl ation—-Sum
method.
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Figure 7.23. Multifractal dimensions (a) D1 4, (b) Dg and (¢) D45 as a function of Hubble mor-
phological class
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model data for which all galaxies have approximately the same size Rygge = 55 L (to within 2%
for Mg = 10* — 10° M). However, by scaling rmin and rmax for each galaxy individually, ac-
cording to the radius (Ryys) within which all the H 11 regions are to be found, such that

rmodel 15
5 (R ) e (55 o

rObS _ rmﬁ‘?e‘ RO _ E RO
T2\ Riode s~ \85) "

we would expect the results to be directly comparabl e to those above.

TheFourier analysisdemonstrated that NGC 3031 wasthe member of the observationa sample
best reproduced by the model. Its multifractal spectrumisshownin Fig. 7.22, and we see that the
Dgq curve best matches that of Fig. 7.19(c), confirming our expectation based on the Fourier ana-
lysis— there again NGC 3031 shows a similar spectrum to a simulation with Mg = 10° M, (Figs
7.4 and 7.8). The Dq vaues have been calculated, as for Fig. 7.19, using two values of 1y equal
to the mean- and maximum-neighbour separation respectively, with rya fixed at a vaue of 253
(arbitrary units), which is equivaent to the 15 L used for the model data.

Unfortunately, it would seem that multifractal analysisfails at the fina hurdle. Figure 7.23
shows the multifractal dimension as a function of the Hubble T-type (de Vaucouleurs et al. 1991)
for three different values of g. Clearly, there is no correlation present in any of these data sets
which wewould require for the Correl ation—Sum multifractal to be awidely applicabletechnique
for both observational and model galaxies. In the light of the close empirical link between the
Fourier transforms and the multifractal dimensions, and given the Fourier results presentedin Fig.
7.8, itis not, however, surprising that thisis the case. Whilst the gal axies produced by the model
look correct, they fundamentally do not have the same structural form (at least when considering
the traditional tracers of star forming regions, viz. H 11 regions) as those that are observed in the
Universe. (Thisisobviouseven from avisual inspectionof theH 11 region distributions— compare
Figs 6.3, 7.11 and 7.12). Whether thisis areal effect, and therefore reflects a deficiency of the
model, or an observational, instrumental limitation remains to be seen.
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Chapter 8

Concluding remarks

The computer model discussed within this dissertation is based on an idea originally postul ated
severa decades ago, namely propagating star formation. It was not until the early 1980s however,
that computing power became sufficient to implement the hypothesis, and then only in alimited
manner. Thisnew work advances the simulation of propagating star formation a considerabledis-
tance by removing the limitations of afixed grid and, more importantly, by widening the scope of
the physical processes considered. Before discussing possible future studies with the model (or a
derivative thereof), | will summarise the work that has been described in greater detail elsewhere
in this dissertation.

8.1 Summary of work to date

The hypothesis of propagating star formation states that the collapse of molecular cloudsto form
new stars is triggered by a shock wave generated by the death of one or many members of the
previous generation of starsin anearby OB association. The expanding supershell resulting from
the supernovaeis ableto enhance the dissi pation of the magnetic field and turbulent and rotational
energiesfrom the cloud, and as aresult gravity comesto dominate, inevitably resultingin collapse
and subsequent star formation. Since the precise details of the physica processes occurring are
only poorly known, we treat the star formation as a stochastic process, i.e. we assign a probability
toacloud collapsing, giventhat it is shocked, whichisproportional to the cloud’smass, and scaled
by an input parameter to the model.

Clouds and stellar clusters/associations orbit the galaxy as test masses, moving under the in-
fluence of areadlistic gravitationa potential. This also has the mgjor advantage of alowing us to
impose, in a natural way, a spira density wave as a small perturbation to the otherwise axisym-
metric potential (83.2.2). Hydrodynamic N-body simulations have confirmed that spiral density
waves are a fundamental instability of thin, self-gravitating discs, and so it is reasonable for usto
impose one in such a manner. It has the effect of organising the star formation, but, unlike some
other model's, we do not have shocksfrom the density wave triggering star formation directly. The
particulate nature of the simulationa so providesfor theinclusion of cloud—cloudand cloud—shock
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interactions (83.2.3), the former resulting in a net dissipation of energy, and the latter acting as a
source of cloud kinetic energy. Thetemperature of the galactic disc is maintained through a feed-
back loop between these two processes, since we aim to model a steady-state system.

One of the major successes of the model isits prediction of the cluster formation rate for the
Milky Way (84.2). The number of input parametersto themodel isquitelarge, specifyingtheform
of the spiral density wave, the dynamics of the clouds and most importantly the scaling mass for
the star formation. However, all of these can be fixed by observations of our Galaxy, resulting
in a definite prediction for the rate of formation of star clusters which iswithin afactor of two of
the observed value. When account istaken of the observational uncertaintiesinherent in the input
parameters to the simulation, thisindeed represents a triumph for the model.

We are also ableto predict aform for the Schmidt Law (84.3). Thisempirical relation associ-
atesthe gal actic star formation rate to the average gas density through apower law. By considering
the various scalings of the star formation rate, median cloud mass etc. on the input parameters to
the model, we suggest that the power law index should have avaue of 1.65, whichisin excellent
agreement with observationa indications.

The most obvious feature of the galaxies considered in thiswork is their spiral structure. By
varying the input parameters to the model, we can generate a wide range of morphologies. It is
important to compare the structures produced by the model with observed galaxies — indeed, a
computer simulation whose results cannot be compared with the real world could be considered a
waste of time. Hence we have collected H 11 region data for a sample of gal axies (Chapter 6), and
have contrasted this with model data, not only in a qualitative way (i.e. by simple visua inspec-
tion of theimages), but a so using anumber of mathematical techniques (Chapter 7), with varying
degrees of success. Fourier analysis has been used by other authors to investigate galactic struc-
ture, and is the best method of extracting information such as the spiral pitch angle. It does not
however, provide a single number with which to characterise the galaxy, which was the ultimate
aim of thispart of the study. Another technique considered, namely the comparison of the distri-
bution of the edge-lengths of minimal spanning trees constructed using the H 11 regions as nodes,
suffersfromasimilar limitationin that it can only be used to compare two galaxies, and has no ab-
solutelevel. Moreover, it seemsexcessively sensitiveto small differencesin structure. In contrast
amultifractal analysis provides a simple spectrum of dimensions, and is sensitiveto similar sorts
of structure as the Fourier transform. By choosing a specific scaling regime (i.e. valuefor q) itis
possi bleto determine a single number with which to characteri se the gal actic morphol ogy. Unfor-
tunately, it, like all the methods discussed, works better with model data, and hence the ability to
compare model and observation isrestricted.

Nonethel ess, the undoubted successes of the model demand that further work be done, to both
extend our understanding of the current model, and to develop it further, with the aim of enhan-
cing its physical realism. As computing power continuesto grow, increasingly ambitious models
become possible, and | discuss below (88.3) some possible approaches which could be adopted.
But first, what remains to be done with the model as it has been described here?
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8.2 Futurestudieswith the current model

Theparameter space of the model hasa most exclusively been investigated along itsaxes. Thishas
enabl ed the scaling rel ationshi ps between the parameters and the star formation rate to be determ-
ined, something which would have been difficult to do had more than one parameter beenvariedin
any given simulation. Significant non-linear behaviour will however, result in cross-correlations
between the effects of the parameters, and this regime remains to be studied. As an example we
have seen how the spiral pattern traced by the star forming regions does not follow the underlying
the SDW (in particular having adifferent pitch angle) and thisislikely to be related to the rotation
curve of thegalaxy and the pattern speed of the density wave. By varying the pitch angleof theim-
posed spiral perturbation and itsrotation speed to build up atwo dimensiona mesh of simulations,
it may be possibleto disentanglethe effect.

An anaytic approximation would form an important aid to understanding the behaviour of the
model in response to varying conditions. A zero’th order approximation has already been made,
when in equation (5.1) we derived a characteristic timescale for cloud regrowth after a star form-
ation event has occurred. If we assume that the cluster formation rateisinversely proportional to
this timescale, then we have § O Mg~Y/3v, and we saw in Chapter 4 that in fact Y O Mg %3 and
g O v%7. A considerably more sophisticated treatment for the ol der SSPSF models (Seiden & Ge-
rola 1982) has been done by Neukirch & Feitzinger (1988), but was of considerable complexity,
and it has not as yet been possibleto formulate an analytic approximation for the current model.

Further techniquesfor classifying the structura propertiesof galaxiesalso need to beinvestig-
ated. A number of other estimatorsfor the multifractal dimensions are described in the literature,
and it may proveto be the case that one of theseis more robust for the small, noisy data setswith
which we have to work. Furthermore, considering the difficulties experienced with the observa-
tiona datasetsavailable (all of which are now quite old), and in particular their lack of spatial dy-
namic range it would be useful to re-map a number of large, nearby galaxies with high resolution
so that the tight knots of ionised hydrogen can be disentangled. A greater range of morphological
classes must also be studied since the current datais biased heavily in favour of late-type spirds,
increasing the difficulty of establishing a correlation between the traditional morphological clas-
sifications (Appendix C) and any new technique.

8.3 Developingthe model

Even over theduration of the current project, the computing power available has increased many-
fold. When the current model was originally devised, great care had to be taken to ensure that it
was sufficiently simplesuch that it would befeasibleto cal cul ate the large number of runsrequired
in a sensible amount of time. As a consequence, it was decided not to model the structure of the
diffuse H | component in any detail, nor to consider the mass interchange between the stars, stellar
remnants and the various phases of the ISM. It isimportant to note, that we would expect these
effects to play arelatively minor role in the propagating star formation process itself, whichisa
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function of the cloud mass and is not dependent on what happensto that material once star form-
ation has occurred, beyond the fact that the cloud is disrupted and is therefore unable to undergo
subsequent star formation events until it has had time to regrow. Hence, the fundamental results
presented above would be largely unchanged.

However, if the spira density wave aso perturbed the H 1 distribution, then thiswould make
the spira arms still more important in their regulation of the star formation rate. Clouds spend a
longer time in the potential minimaand are more closely packed there. Both effects already work
to concentrate the star formation along (or just behind) the spiral arms, and if the H | density were
also to be higher in these regions, then thiswoul d increase the mass growth rate of the clouds, and
hence further enhancethe rate of star formation. If it were a so possibleto treat the mass|ost from
the clouds, either locked up into stars or dispersed into the diffuse ISM, then thiswould result in
local fluctuationsinthe H I density.

Furthermore, it is possible that a value for Mg might emerge as a natural consequence of a
fully self-consistent model of the cloud population. It was noted earlier (82.1.3) that the model
described here does not exhibit a percolation threshold. We might hope that one would however,
return to amodel in which the interchange of materia between the various phases of the ISM was
simulated, with the onset of percolation defining the best value to be used for Mg.

TheH 1 couldbemodelledin oneof (at least) twoways. Thefirst borrowsanideafrom Smooth
Particle Hydrodynamic codes (82.2.2) and would require a particul ate representation, with each
particle having one unit of H 1 gas mass; hence the volume density of particles would specify the
gasdensity. A full hydrodynamictreatment isnot required here—instead the particleswould move
in the total galactic gravitational potential (in the same was as the cloud and star particles) and
would therefore respond naturally to the spiral density wave. The H | density at any point would
be given by interpolating from the particle density using a suitable kernel function and hence ac-
cretion of H 1 by the molecular clouds would be modelled by the cloud removing H 1 particles as
it orbited; not through inter-particle collisions, but by a smoothed reduction of the local number
density in the wake of the cloud. Similarly, when acloud wasdisrupted by star formation, or a star
cluster produced an expanding supershell through multiple supernovae explosions, then the local
number of H 1 particleswould rise, reflecting the increasing quantity of gasin the neutral phase.

The second treatment woul d distributethe neutral gasacrossadifferentially rotating grid, such
aswas used inthe earliest propagating star formation models. Thetotal gas massineach cell would
vary to reflect thelocal processes occurring as described above. Thisapproach would not however
alow the spiral density waveto beincluded in arealistic manner, and goes against the philosophy
adopted for the current model. As a consequence, thefirst approach is preferred.

The material transferred between supershellsand the diffuse ISM will be chemically enriched
as aresult of having been processed through stars. It is possibleto use a simple parameterisation
of thisprocess (Edmunds 1990), and thusthe chemical evol ution of the galaxy could be modelled.
Thisa so allowsthe possibility of making the probability of star formation afunction of the local
metallicity, potentially opening up a whol e range of interesting, new behaviour.
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Finally, the requirement of having to impose a spira perturbation onto the gravitational po-
tentia is often regarded as a weakness of the current formulation. As was mentioned previously
(83.2.2), a spiral density wave is a natural instability of a galactic-disc system, and would arise
without beingimposedif wewereto model thecollective, gravitational force betweenthe particles.
A first step would be to use arestricted N-body code to calculate a self-consistent overall poten-
tial dueto the stellar component (which contributes ~90% of the total mass) and then to movethe
gas within the derived field, either as is done in the current model, or using one of the enhanced
techniques for model ling the gas described above.

Thenew model describedinthisdissertationis, | believe, avaluableadditionto thefield of galactic
simulations. | have adopted a simple, but not simplistic approach, yet have been able to make a
number of concrete predictionsregarding the star formation rate which correspond extremely well
with observational values. The multifractal analysisis encouraging, if as yet not fully devel oped,
and with ever-increasing computer power, many exciting enhancements of themodel are now pos-
sible. Paul Alexander, my supervisor throughout this project, hasanumber of students continuing
thisline of research over the next few years—| hopethat they will find theinitial studies described
within these pages to be of some use.
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Appendix A

Running a ssimulation

A.1 Input parameter file

There are atotal of 17 input parameters to the model (Table A.1) of which three control the run-
ning of the simulation (sour ce, i t max and dunp) whilst the others determine the physics, and
are discussed in greater detail in Chapter 3. The initial parameters are read from a namelist file
(example below), with al quantities specified in ‘model units’ (Table A.2).

$i ndat a
sour ce=' none’
i t max=2500
tstep=0.1
ncl oud=32000
dunp=200
$end
$gasdyn
a0=0. 3
el as=0.7
vimax=0. 51
$end
$sspsf
nmst =1. 0e5
msp=1. 0ell
ef f=1. Oe-3
$end
$spdat a
nar nr2
onegap=0. 14
ro=5.0
p=5.0
ang=20.0
anp=8000. 0
$end
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Name Explanation Symbol in text
source Name of existing run to be used as start point —
itmax  Number of timestepsin unitsof t st ep x107 yr —
tstep  Sizeof timestep in unitsof 107 yr At
ncl oud Number of cloud particles N¢
dunp Time between output files written in unitsof t st ep —
a0 rms velocity dispersion Vdisp
el as fraction of cloud energy remaining after collisions n
vmax maximum velocity imparted to clouds by SNR interactions Vmax
nst Stimulated SF scaling mass Mg
nsp Spontaneous SF scaling mass Msp
ef f Fraction of cloud remaining after star formation
narm Number of armsin spira density wave n
omegap Spiral pattern speed Qp
ro size of bar ro
p rate of transition from bar to outer regions p
ang Spiral density wave pitch angle i
anp Spiral density wave amplitude A

Table A.L.

Quantity Model unit ‘standard’ unit

Length L 200 pc = 6.172 x 10¥ m
Time T 107 yr

Mass M Mg = 1.989 x 10% kg
Linear velocity LT-1 19.56kmst

Angular velocity T-1 97.78 kms ! kpct
Gravitational potential L2 T2 3.825x 108 m? 572
SDW amplitude L4T-2 1.60 x 107° pc* yr=2

Table A.2.
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A.2 Useful uNIX scripts

Thefollowing UNIX script chainstogether anumber of simulations, usinganew input filefor each.
Onceall thenumbered input files have been processed the simul ationshalt. On compl etion of each
run, thedatafilesproduced are compressed, with the name of thedirectory to be compressed being
read from afile written by GALAXY.

#!/bin/csh -f

# 11/01/94 jpsl8 and tj105 ver 2.1

# 30/09/94 jpsl8 ver 3.0 SOLARI S

#

# CHAI N

#

# Shel |l script to chain a series of GALAXY runs together. The

# resulting files are automatically conpressed at the end of each
# run. CHAIN can be run on ’'nraosa’, 'nraosb’, 'nraose’ and

# "nmraosf’ sinultaneously w thout cross-interference.

# The input files must be in a directory ./infiles.

#

# Chain can be called with an argunent (eg. "chain 5 &'). |In this
# case execution conmences with file ’input?5

#

# I NI TI ALI SE

set workdir = /hone/jpsl8/ nodel /ver7
cd $workdir

set hidpath = /hone/jpsl18/ nodel/cron

# SET INITIAL FI LE NUVBER
if ( $1 >= 1) then

set i = $1
el se

set i =1
endi f

# SET suffix TO'a', 'e OR'f' AS APPROPRI ATE

set suffix="/usr/ucb/hostnanme | awk ' {print substr($1,length, 1)}’
if (-e $hidpath/nunBsuffix) rm $hi dpat h/ nuntsuf fi x

echo $i > $hidpat h/ nunsuf fi x

# LOOP WHI LE | NPUT FI LES EXI ST
while ( -e ./infiles/input$suffix$i )

# COPY I NPUT FI LE TO WORKI NG DI RECTCRY
cp ./infiles/input$suffix$i input$suffix
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# RUN SI MULATI ON RE- DI RECTI NG STANDARD QUTPUT TO FI LE
if ( -e gal$suffix.log ) then
gal axy >>& gal $suffi x. | og

el se
gal axy >& gal $suffix. | og

endi f
# | NCREMENT FI LE COUNTER

@i = ($i + 1)
# QUTPUT NEXT FILE NUMBER TO FILE. THI' S | NFORVATION | S USED BY
# 'bootcheck’ TO RESTART 'chain’ FROM THE CORRECT PLACE SHOULD THE
# SYSTEM BE REBOOTED.

if ( -e $hidpath/nunbsuffix) rm $hidpath/ nunBsuffix

echo $i > $hidpat h/ nunsuf fi x
# COWPRESS FILES. USES HIDDEN FILE '.gale’ OR '.galf' WH CH CONTAI NS
# THE PATH OF THE QUTPUT FI LES FROM THE LATEST RUN. THIS FILE IS
# WRI TTEN BY ’gal axy’ .

cd ‘cat .gal $suffix’
fusr/local/bin/gzip *.dp?? *.inP?
cd $wor kdi r

rm . gal $suf fix

# FI NI SH LOOP
end

# WRITE '-1' TO THE FILE USED BY ' bootcheck’. TH'S | NDI CATES THAT THE
# CHAI N HAS TERM NATED AND PREVENTS ' boot check’ FROM RESTARTI NG CHAI N
# FROM THE BEGQ NNI NG

if ( -e $hidpath/nunssuffix) rm $hidpath/ nunBsuffix

echo '-1'" > $hidpat h/ nun$suf fi x

The script below checks to see whether the program GALAXY is still running, and if not whether
it finished normally. If thisis not found to be the case (e.g. if the machine has been rebooted), the
GALAXY isautomatically restarted.

#!/bin/csh -f

11/01/94 jpsl8 and tj105 ver 1.0

BOOTCHECK

Checks to see whether the machine on which this programis being

run has been rebooted, and if so restarts the appropriate chain

#
#
#
#
#
#
# starting with the sinulation that was interrupted. This script
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uses the files $hidpath/nun? to determ ne the point fromwhich
to restart chain.

Thi s program shoul d be copied to ’'cronexec’ after a chain has been
started on either nachine. Once chain has successfully conpl eted
the file 'cronstop’ should be copied to 'cronexec’, although this
is not crucial.

"cron’ is machine specific, i.e. a ’'crontab’ file needs to exist on
both nmachines. This file nust be the sane on both machi nes and
have the form

"0 0,4,8,12,16,20 * * * [home/j psl8/ nodel /cron/cronexec".
This woul d cause 'cronexec’ to be executed every four hours on
every day of the week.

HHEHHFEHFHFHHHFHRHHFR

# SET PATHNAMES FOR START NO. FILES, LOG FI LES AND CHAI N RESPECTI VELY

set hidpath = /hone/jpsl18/ nodel/cron
set | ogpath = /hone/jpsl1l8/ nodel /ver7
set chpath = /hone/jpsl8/ nodel/ver7

# SET suffix TO'e' OR'f’' AS APPROPRI ATE
set suffix = ‘/usr/ucb/hostnane | awk "{print substr($1,1ength, 1)}’

# CHECK TO SEE I F "chain’ IS STILL RUNNI NG
set test = ‘ps -ef | grep -c chain'

# | F NOT THEN RESTART
if ( $test == 1) then

# DETERM NE STARTI NG PO NT FOR ' chain’
if ( -e $hidpath/nunsuffix ) then
set start = ‘cat $hidpath/nunssuffix'
el se
set start =1
endi f

# UNLESS 'chain’ HAS FI Nl SHED NORMALLY (I N WHI CH CASE start=-1)
# RESTART chain WRI TI NG AN APPROPRI ATE MESSAGE TO THE LOG FI LE
if ( $start !'="'-1" ) then
echo >> $l ogpat h/ gal $suffi x. | og
echo >> $l ogpat h/ gal $suffi x. | og
echo RESTARTI NG ‘ host name‘ >> $l ogpat h/ gal $suffi x. | og
date >> $l ogpat h/ gal $suffi x. | og
echo >> $l ogpat h/ gal $suffi x. | og
ni ce +19 $chpath/chain $start &
endi f

endi f
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Simulation source code

For convenience, the code is split up into a number of individua files, grouping the subroutines
by their function. The listing below indicates in which file each subroutine can be found. The
main data arrays are al held in conmon blocksto reduce the memory requirement, and these are
specified ini ncl ude filesto ensure consistency between subroutines, which are listed after the
subroutines. For completeness | have aso provided the code for two routines (FPHANDLER and
DCOSRULE) which formed part of my persona library suite. If these libraries are not available,
then it will be necessary to alter the Makefi | e.

Routines not listed below include GoscAF (Numerical Algorithms Group Limited 1993) and
BSSTEP (Press et al. 1992) sincethese are widely avail able. Use has been made of a suite of local
libraries for the file-handling and system specific operations which are also not listed below —
routines performing similar tasks can be expected to exist on all systems.

Subroutines contained in nodel . f.

c 31/08/94 jpsl8 ver 7.5
c
C kkhkhkkhkhkkhkhkkhkkhhkkhkhkkhhkhhkhkhkhkdhhkdhhkdhhdhhkhhkkhhhdhhkdhhkdhhhkkhhhhhdhhkdhdkhhkhhhdhdhdhkxk,x*x*x
c
program gal axy
c
c Gal axy simul ation program
c
c SUBROUTI NES AND FUNCTI ONS USED:
c init ver 8.4 I NI TIALI SES DATA ARRAYS
c dat a_read ver 6.1 READS I N DATA FROM PREVI QUS RUNS
c sfr_read ver 1.0 READS IN SFR ETC FROM PREVI QUS RUN
c exi sts ver 1.0 CHECKS TO SEE | F FI LE EXI STS, AND
(o UN- ZI PS | F NEEDED
c rotate ver 7.1 ROTATES THE WHOLE GALAXY
c derivs ver 2.0 CALCULATES THE DERI VATI VES OF PQOS/ VEL
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COORDI NATES
dphi ver 2.3 CALCULATES THE PARTI AL DERI VATI VES OF
THE GALACTI C POTENTI AL
pot enti al ver 2.1 CALCULATES GALACTI C POTENTI AL
pot _init ver 1.0 SETS UP PARAMETERS DESCRI Bl NG POTENTI AL
pr opagat e ver 8.2 | MPLEMENTS SSPSF TO PROPAGATE STAR

FORMATI ON

| NCREMENTS CLOUD MASS BY ACCRETI ON
DI STRI BUTI ON OF H

CALCULATES NEI GHBOURI NG PO NTS
SETS UP GRI D REQUI RED BY near nei gh
| NTER- CLOUD COLLI SI ONS

CLOUD SNR | NTERACTI ONS

ADJUSTS CLOUD MEAN FREE PATH TO
MAI NTAI N DI SC TEMPERATURE

cl oud_mmass ver
hldensity ver
near nei gh ver
nei ghgrid ver
cloud _cloud ver
cl oud_snr ver
ener gy_bal ver

ENEPEPROEDN
PNWNROR

equilibrate ver 1.2 ALLOAS SYSTEM TO DYNAM CALLY RELAX

vcirc ver 1.0 CALCULATES Cl RCULAR SPEED FOR EACH CLOUD
out put ver 2.5 FILE HANDLI NG AND DATA OUTPUT

geom entropy ver 3.1 CALCULATES GEQOVETRI C ENTROPY OF

MOLECULAR CLQOUD DI STRI BUTI ON
f phandl er ver 1.1 FLOATI NG PO NT EXCEPTI ON HANDLER
dcosrul e ver 1.0 COSINE RULE

ROUTI NES USED FROM ' NUMERI CAL RECI PES
bsstep, nmid, pzextr, spline, splint

ROUTI NES USED FROM NAG LI BRARY
g05ccf, gO05caf, g05ddf

ROUTI NE USED FROM | CLI B
i 0_system

I NCLUDE FI LES REQUI RED
/ hone/ j ps18/ nodel / ver 7/ conmon. i nc
/ hone/ j ps18/ nodel / ver 7/ header. i nc
/ hone/ j ps18/ nodel / ver 7/ nei ghbl k. i nc
/ hone/ j ps18/ nodel / ver 7/ potential .inc

EE R I R R R I I R R I I I I S S R I I I S I R

OO0 O0O0O00O000O0000000O00000000O00000000000O00000000O0OO0OO0

MAI N DATA ARRAY DECLARATI ONS
i ncl ude ' common. i nc
c NAMELI ST DECLARATI ONS

i ncl ude ' header.inc’

nanel i st /indata/ source,itnax,tstep, dunp, ncl oud
nanel i st /gasdyn/ a0, el as, vhax

namel i st /sspsf/ nst, nsp, ef f

nanel i st /spdata/ narm onegap, r0, p, ang, anp



c

(¢]

OO0 00O0

+ 4+ + + + F + + 4+

+ 4+ + + F+ ++

+ 4+ + +

+ +

LOCAL DECLARATI ONS

i nt eger

par anet er
r eal

character

dunit,
iunit,

suni t,

ver num
verol d,

npt sav,

i count,

i um

I en, chr_I enb,
i flag,

i

(ver num=701)
ati ne,

oti ne,
stine,
source_tine,
el ap,

runti me(2),
sfr,

VI ns,

vact,

xrad,

ent r opy,

dum(3000) , dun2( 3000),
dunB(3000) , dund( 3000),

dunb(3000)
pat h* 48,
host * 6,
sourcesav*12

FUNCTI ON DECLARATI ONS

i nt eger
i nt eger
ext er nal
real
| ogi cal

data iunit,dunit,sunit /10,11, 12/

host nm

i eee_handl er, f phandl er

f phandl er
etine
exi sts

data iflag /0/
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DUVP FILE UNI' T

| MAGE FILE UNIT

SFR FILE UNIT

CURRENT VERSI ON NUMBER
SOURCE FI LE VERSI ON NUMBER
NO OF PO NTS I N SOURCE FI LE
CQUNTER

| MAGE FI LE NUMBER

LENGTH OF HOSTNAME
SUBROUTI NE RETURN CCDE
CQUNTER

TOTAL SI MULATI ON TI ME
OUTPUT/ PROPAGATI ON TI VE
EQUI LI BRATI ON TI ME

ELAPSED SOURCE TI ME

TOTAL ELAPSED RUN TI ME
USER AND SYSTEM RUN TI MES
STAR FORMATI ON RATE

NI TIAL RVS VEL. DI SPERSI ON
ACTUAL RVS VEL DI SPERSI ON
EFFECTI VE CLOUD RADI US

FOR COLLI SI ONS

GEOVETRI CAL ENTROPY

} DUMW ARRAYS FOR READI NG
} OLD SFR DATA

}

SOURCE PATH

HOST MACHI NE

SAVED NAME OF SOURCE FI LE

RETURNS NAME OF HOST MACHI NE

ELAPSED RUN TI ME
CHECKS TO SEE | F FI LE EXI STS

I NI TI ALI SE FLOATI NG PO NT EXCEPTI ON HANDLER ( DEBUGG NG)

iflag = ieee_handler ('set’,’ comon’, fphandl er)
if (iflag.ne.0) then

print*,’ Couldn' 't establish fp signa

handl er’




138 APPENDIX B. SIMULATION SOURCE CODE

c stop

c endi f

c I NI TI ALI SE RANDOM NUVBER GENERATOR
cal I gO5ccf

c READ | NPUT DATA

i flag = host nn( host)

I en = chr_l enb(host)

open (sunit,file="input’//host(len:len),status="old
+ forme’ fornmatted')

read (sunit,indata)

read (sunit, gasdyn)

read (sunit, sspsf)

read (sunit, spdata)

cl ose (sunit)

c CHECK FOR ERRONEOQUS | NPUT

i f (ncloud.gt.nclmax) then
print*,’ Insufficient array size (cloud)’
st op ' ERROR TERM NATI ON

endi f

c I NI TI ALI SE PARAMETERS FOR POTENTI AL
call pot_init
c SET UP I NI TIAL CONDI TIONS | F STARTI NG FROM SCRATCH
if (source(l:4).eq.’none’) then
call init
call equilibrate (vrms,stine,iflag)

call geom entropy (ncloud, entropy)
if (iflag.ne.0) stop ' ERROR TERM NATI ON

xrad = 0.07
sfr = 0.0
source_tine = 0.0
(o OR | NI TI ALI SE USI NG PREVI QUS RUN
el se

sourcesav = source

call sfr_read (source,sunit,duml, dun?, dunB, dun¥, dunb, i fl ag)
source = sourcesav

path = '/ hone/jpsl8/ nodel /data/’//sourcel//’/’/]/source
if (.not.exists(path))
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stop ' *ERROR* Source file does not exist’
open (iunit,file=path,status="old ,fornm unformatted’)
call data read (iunit,verold,iflag)
close (iunit)
if (iflag.ne.0) stop '**ERROR** in data_read
source = sourcesav

sfr = dunmk(itmax+1)
vims = 0.0
do 10 i=1,itnmax
vims = vrns + dunB(it max)
conti nue
vrms = vrns/float (itmax)
xrad = dumd(itnmax+l)
entropy = dunb(itmax+1)
source_tine = float(itmax)*tstep

RE- READ CURRENT PARAMETERS

npt sav = ncl oud
open (sunit,file="input’//host(len:len),status="old’
forme’ fornatted')
read (sunit,indata)
read (sunit, gasdyn)
read (sunit, sspsf)
read (sunit, spdata)
cl ose (sunit)
ncl oud = nptsav
endi f

SUBRQUTI NE pr opagat e COUNTS DONMNWARDS THROUGH ARRAY st age.
IF THE AGE OF THE STAR IS LESS THAN 2.0 THEN THE LOOP IS
EXECUTED. TO JUMP OQUT OF THE LOOP WHEN THE ZERO TH ELEMENT
| S REACHED, SET THE ZERO TH AGE LARCGE

stage(0) = 9999
I NI TI ALI SE QUTPUT

call output (dunit,iunit,sunit,0.0,0,vernumiflag)
if (iflag.ne.0) stop '**ERROR TERM NATI ON**’

icount =0

i Mmum= 1

wite (sunit,510) source_tinme,sfr,vrns, xrad, entropy

MAI' N LOCP

do 100 i=1,itnmax
otime = tstep*float(i) + source_tine
atime = stime + otine
call rotate (ncloud,atine,0,tstep,iflag)
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call rotate (nstar,atine,1,tstep,iflag)

call vcirc (ncloud,atine)

call propagate (ncloud, nstar,tstep, nst, nsp, eff,sfr,iflag)
call cloud_cloud (xrad,iflag)

call energy_bal (ncloud,vrns, vact, xrad)

call geom entropy (ncloud, entropy)

if (iflag.ne.0) then
print*,’ ERROR TERM NATI ON - output dunped to file’
print*,’ Term nated after °’ ti me steps’
goto 1000

endi f

wite (sunit,510) otine,sfr,vact, xrad, entropy
510 format (5(1lpel2.5, 3x))

icount = icount + 1
if (icount.eq.dunp) then
call output (dunit,iunit,sunit,otinme,imumvernumiflag)

i Mmum= imum+ 1
icount = 0
endi f

100 conti nue
(o VRI TE FI NAL DATA TO FI LES

1000 conti nue
if (icount.ne.0) call output (dunit,iunit,sunit,
+ tstep*float(itnmax),imumvernumifl ag)
cl ose (dunit)
close (iunit)
cl ose (sunit)

c DETERM NE TI ME USED FOR THI' S RUN

elap = etine(runtine)
wite (*,600) elap/3600.0,runtinme(l)/3600.0,runtine(2)

600 fornmat (/' Total elapsed tine ="' ,f5.2," hr’/
+ " User tine ="', f5.2, hr’'/
+ ' Systemtine =',f5.1,"s" /)
end

Subroutinescontainedincol | i si ons. f.

c 21/12/93 jpsl8 ver 1.3
c

c EE R I R R I R I R I R I I I I S S I R I R I R S I R

c
subroutine cloud cloud (xrad,iflag)
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If two clouds are within XRAD of one another then a collision
is deened to have occurred. The collisions are dealt with
in the manner described in ny notebook (30/08/93).

| NPUT VARI ABLES:
xrad - effective cloud radi us

QUTPUT VARI ABLE:
iflag - return status code

EE R I R R R I I R I I R I I R R I R I R R R S R I

i ncl ude ' common. i nc
i ncl ude ' nei ghbl k. inc
i ncl ude ' header.inc’

i nt eger nnei gh, NO. OF PARTI CLES W THI N xr ad

|
+ i flag, I SEE ABOVE
+ iy ] I LOOP COUNTERS
real Xrad, I MEAN FREE PATH
+ sepdot , I TI ME DERI VATI VE OF SEPARATI ON
OF PARTI CLES
+ angvel , I ANGULAR SPEED OF CLOUD
+ ri,r2, I RADI
+ rid, r2d, I TI ME DERI VATI VES OF RADI |
+ t 1d, t 2d, I TI ME DERI VATI VES OF AZI MUTH
+ ql, g2, 93, g4, g5 I TEMPORARY VALUES

SET UP NEAR- NEl GHBOUR GRI DS | F NECESSARY, ADJUSTI NG GRI D SI ZE

if (gsize.lt.xrad) then
gsize = xrad
call neighgrid (ncloud,iflag)
do while (iflag.ne.0)
if ((iflag.eq.1).or.(iflag.eq.2)) gsize = gsize*l.2
iflag =0
cal |l neighgrid (ncloud,iflag)
if (iflag.eq.3) then
print*,’ *ERROR* gsize too large (CLOUD CLOUD)’
return
endi f
enddo
endi f

CYCLE THROUGH ALL CLOUDS, TRANSFCRM NG TO LOCAL REST FRANE

do 10 i =1, ncl oud
rli = cloud(l,i)
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cal |
if (iflag.ne.0)
angvel = vrot(i)/r1l
cloud(5,i) =

cloud(5,i) -

APPENDIX B. SIMULATION SOURCE CODE

near nei gh(r1, cloud(2,i),cloud(3,i), 0.0, xrad, nnei gh,ifl ag)
return

' NEED vrot TO BE UP TO DATE
angvel

| F CLOUDS CLOSER THAN xrad THEN COLLI SI ON M GHT HAVE OCCURRED

- CHECK

do 20 j =1, nneigh
rid cloud(4,i)
t1d cloud(5,i)
r2 cl oud( 1, nei gh(
gl = cloud(2, nei gh(
g2 cos(ql)
g3 ri*r2
g4
g5

sin(ql)

—_——

cl oud(3, neigh(j)) -

TO SEE | F APPROACHI NG | N LOCAL REST FRAME

))
)) - cloud(2,i)

cloud(3,i)

r2d = cl oud(4, neigh(j))

cl oud(5, neigh(j)) =

cl oud(5, neigh(j)) - angve

t2d = cloud(5, neigh(j))
sepdot = ri*rld + r2*r2d - rild*r2*q2 -
- g3*t2d*qg5 + cloud(6,i)*qg4 -

ri*r2d*gq2 + g3*t1d*qg5
cl oud(6, neigh(j))*q4

| F CLOUDS ARE APPROACHI NG THEN SWAP VELOCI TY VECTORS

AND REDUCE MAGNI TUDE BY FACTOR el as

if (sepdot.lt.0.0) then

cloud(4,i)
cloud(5,i)
cloud(6,i)
cloud(4,i)
cl oud(5,i)
cloud(6,i)
cl oud(4, neigh(j))
cl oud(5, neigh(j))
cl oud( 6, nei gh(j))
endi f

o]
N
I nu

el as*
el as*
el as*

cl oud(4, neigh(j))
cl oud(5, neigh(j))
cl oud( 6, neigh(j))
el as*ql
el as*qg2
el as*qg3

RETURN TO | NERTI AL FRAME

cl oud(5, neigh(j)) =

20 conti nue
cloud(5,i) =

10 conti nue

return
end

cl oud(5, neigh(j)) + angve

cloud(5,i) + angve
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EE R I R R R I I R I I I I R I R I R R S R I I

subroutine cloud _snr (istar,icloud,x)

G ven that a cloud (specified by 1CLOUD) has encountered a
supernova remant centred on | STAR this subroutine
cal cul ates the velocity inpulse the cloud receives from

t he shock wave.

| NPUT VARI ABLES:
istar - star/SN nunber
icloud - cloud nunber

X - di stance between cl oud and SN

EE R I R I R R I I R S I I R I R R I I R S I

i ncl ude ' common. i nc
i ncl ude ' header.inc’

i nteger icloud,

+ i star
real X,
+ drdot,
+ dt ht dot ,
+ dzdot ,
+ al, a2
real *8 v
+ ri, r2,
+ xd,
+ ql, g2, g3, g4, g5, g6

SEE ABOVE
SEE ABOVE
SEE ABOVE

}
} CHANGE I N VEL COVPONENTS

}

TEMPORARY VALUE

SPEED G VEN TO CLOUD

RADI AL COORDI NATE OF SNR/ CLOUD
DI STANCE BETWEEN CLOUD AND SN
TEMPORARY VALUES

PREVENT ERRORS DUE TO x=0

if (x.1t.1.e-6) x = 1.e-6

DETERM NE MAGNI TUDE OF VELOCI TY | MPULSE

v = dbl e(mi n(vnax, 0.1/ x))

ri = dble(star(1,istar))
r2 = dble(cloud(1,icloud))
xd = dbl e(x)

USE ALGCRI THM DESCRI BED | N NOTEBOCK TO CALC. | NCREMENTS

IN VELOCI TY COORDS

gl = dble(cloud(3,icloud)-star(3,istar))/xd
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O 000

OO0 0000000000000 00O00O0O0

g2 = 1.0d0 - gi*ql

g3 = dsqrt(g2)

g4 = (r2*r2 + xd*xd*q2 - rl*rl1)/(2.d0*r2*xd*q3)

if (abs(qg4).gt.1.0d0) g4 = 1.0d0 I ROUNDI NG ERRORS
g5 = dsqrt(1.0d0 - qg4*q4)

g6 = v*q3

al = cloud(2,icloud) - star(2,istar)

a2 = sign(1.0,al)

drdot = sngl (g4*qg6)
dt ht dot = a2*sngl (gq5*qg6/r 2)
dzdot = sngl (v*ql)

cl oud(4,icl oud)
cl oud(5, i cl oud)
cl oud(6, i cl oud)

cloud(4,icloud) + drdot
cl oud(5,icloud) + dthtdot
cl oud(6,icloud) + dzdot

return
end

14/10/93 | psl8 ver 1.1
kkhkhkkhkhkkhkhkkhkkhhkkhhkkhhkhhkhkhkhdhhkdhhkdhhkhhkhhkhhhkdhhkdhdhkhdhhkhhhhdhhkdhdhkhhhkhdhdhdhhkhhxkx*x
subrouti ne energy_bal (ncloud, vrns, v, xrad)

Conput es nmean di spersion velocity for clouds within an
annulus fromRM N to RMAX, and uses this to adjust XRAD
such that the systemattains thermal equilibrium

| NPUT VARI ABLES:
ncl oud - nunber of cloud particles
xrad - initial value for effective cloud radius
VI B - desired value for the rns dispersion velocity

QUTPUT VARI ABLES:

v - achi eved rnms dispersion velocity
xr ad - adjusted value for effective cloud radius

CONTROL VARI ABLES:
rmin - } limting radii of annulus
r max -}

EE R I R R R I I R R I I I I S I I R I I R S I R

i ncl ude ' common. i nc



145

i nteger ncl oud, I SEE ABOVE
+ i count,
+ [ I LOOP COUNTER
real Xrad, I SEE ABOVE
+ VI Is, I SEE ABOVE
+ rmn, rnax, I LIMTING RADI I OF ANNULUS
+ \Y; I RV SPEED
data rmin,rmax / 10.0, 50.0 /
c
C _________________________________________________________________
c
v = 0.0
icount = 0
c CALCULATE RVMS VEL. DI SPERSI ON W THI N ANNULUS
do 10 i =1, ncl oud
if ((cloud(1,i).ge.rmn).and.(cloud(l,i).le.rnax)) then
v =vVv + cloud(4,i)**2 + cloud(6,i)**2 +
+ ((cloud(1,i)*cloud(5,i))-vrot(i))**2
icount = icount + 1
endi f
10 conti nue
v = sqgrt(v/float(icount))
c SCALE EFFECTI VE CLOUD RADI US TO MAI NTAI N ENERGY STABI LI TY

xrad = xrad*(v/vrms)**1.7

return
end

Subroutines contained in dat a_r ead. f .

28/01/94 jpsl8 ver 7.0

EE R I R R R I R I R I I I I R I R I R R R I

OO0 00

subroutine data_read (dunit,version,iflag)

Reads data from opened nain data file (on unit DUNIT)
according to the format specified by VERSION. This
subroutine can deal with data witten in either ' 7’
or '701' format (see notebook 28/01/94).

| NPUT VARI ABLE:
dunit - file unit fromwhich data is to be read

OO0 0O0000OO0OO0

OQUTPUT VARI ABLES:
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O 0000

APPENDIX B. SIMULATION SOURCE CODE

version - format version nunber
iflag - return status code

EE R I R R R I I R R I I I I R I R I S I I R S I R

10

20

+

30

40

i ncl ude ' common. i nc
i ncl ude ' header.inc

i nteger dunit,

FILE UNI' T

FORMAT SPECI FI ER
STATUS RETURN CODE
CQUNTERS

ver si on,
i flag,
i,]

DETERM NE FI LE FORVAT NUMBER

read (dunit, err=500) version
rewi nd (dunit)

LATEST FI LE FORVAT

if (version.eq.701) then

read (dunit,err=500) version,source, ncloud, nstar,itnax,
t st ep, a0, el as, vimax, nst, nmep, ef f, narm
onegap, r 0, p, ang, anp
do 10 i =1, ncl oud
read (dunit,err=500) (cloud(j,i),j=1,7),clage(i)
conti nue
do 20 i=1, nstar
read (dunit,err=500) (star(j,i),j=1,6),stage(i)
conti nue
iflag = 0
return

OTHER SUFFI CI ENTLY SI M LAR FORNVATS

else if (version.eq.7) then

read (dunit,err=500) version, source, ncloud, nstar,itnax,tstep
a0, nst, nsp, ef f, narm onegap, r 0, p, ang, anp
do 30 i=1, ncl oud
read (dunit,err=500) (cloud(j,i),j=1,7),clage(i)
conti nue
do 40 i=1, nstar
read (dunit,err=500) (star(j,i),j=1,6),stage(i)
conti nue

elas = 0.7 I '} USED CONSTANT VALUES FOR THESE PARAMETERS
vmax = 0.51 I}
iflag = 0

return
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DEFI NI TELY NON- COMPATI BLE FORMATS

el se
print*,’Incorrect version (DATA READ)’
iflag = 1
return

endi f

ERROR RETURN
500 print*,’ Error on reading data (DATA READ)’
iflag = 2

return

end

23/03/94 jpsi8 ver 1.0

EE R I R R R I I R R I I I I R I I R S R I I

subroutine sfr_read (file,sunit,t,sfr,vrns, xrad, ent,iflag)

Reads data from.sfr and .ent files where appropriate.
Al file handling is done within the subroutine. The
subroutine is able to cope with the old and new style files.

I NPUT VARI ABLES:

file - galaxy name
sunit - file unit to be used

OQUTPUT VARI ABLES:

t - times

sfr - star formation rates
vims - nmean cl oud speeds
xrad - cloud cross-sections
ent - entropies

iflag - return status code

EE R I R R R I I R S I I R I I R R I R R S I

i ncl ude ' header.inc’
i nt eger suni t, I SEE ABOVE
+ iflag, | SEE ABOVE
+ itype, ! FILE TYPE
+ ntine, I NUMBER OF DATA PO NTS IN FI LE
+ i dum I DUMMY | NTEGER
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500

10
510

520

+ 4+ + + + o+

+

+

APPENDIX B. SIMULATION SOURCE CODE

ver num I VERSI ON NUMBER

[ I LOOP COUNTER
real t(*), I TI ME ARRAY

sfr(*), | SFR ARRAY

vrnms(*), I vrimrs ARRAY

xrad(*), I xrad ARRAY

ent (*), | ENTROPY ARRAY

[ nn I LOG OF NUMBER OF CLOUDS
character file*12, I SEE ABOVE

pat h*52, I FULL PATH

cduntl I DUMW CHARACTER
| ogi cal exi sts I FUNCTI ON

path = '/ hone/jpsl8/ nodel /data/’//filel/" /" [/filell’ . sfr’

CHECK THAT FILE EXI STS

if (.not.exists(path)) then
"**ERROR** sfr file does not exist (SFR _READ)’

print*,

iflag =

return
endi f

1

OPEN FI LE AND DETERM NE FORMAT

open (sunit,file=path,form= formatted ,status="read )
read (sunit,’ (al)’,err=999) cdum

if (cdumeq.’ %) then

itype = 0
el se

itype = 1
endi f

rewi nd (sunit)

OLD STYLE FI LES

if (itype.eq.0) then
READ | N SFR DATA
read (sunit, 500, err=999) ntine,idum

format (8x,i4/8x,i1l)
do 10 i=1,ntine

read (sunit,510,err=999) t(i),sfr(i),vrnms(i),xrad(i)

conti nue
format (4(1lpel2.5, 3x))

read (sunit, 520, err=999) source, ncloud, nstar,itnmax,tstep

ao, el as, vmax

format (al12/3(i5/),3(1pell. 4/), 1pell. 4)
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if (elas.1t.1.0) then
read (sunit, 530, err=999) nst, msp, ef f, narm

+ onegap, r 0, p, ang, anp
530 format (3(1lpell.4/),i1/5(1pell.4/))
el se I REALLY OLD FILES, W THOUT el as AND vmax SET
nst = el as
neEp = vnmax
elas = 0.7
vmax = 0.51
read (sunit, 540, err=999) eff, narm onegap, r0, p, ang, anp
540 format (1pell. 4/i1/5(1pell.4/))
endi f

READ | N ENTROPY DATA AND CONVERT TO CORRECT FORM

path = '/ home/jpsl8/ nodel /data/'//filell’ /" [/filell’ .ent’
if (exists(path)) then
Inn = 1 og(float(ncloud))
open (sunit,file=path,form= formatted ,status="read )
read (sunit,’ (i5)’,err=999) idum
do 20 i=2,ntine
read (sunit,’ (1pel2.5)’,err=999) ent (i)
ent(i) =1nn + ent(i)/float(ncloud)
20 conti nue
ent (1) = ent(2)
cl ose (sunit)

el se
do 30 i=1,ntine
ent(i) = 0.0
30 conti nue
endi f

OR NEW STYLE FI LES
el se

read (sunit,’ (i5)’,err=999) vernum
read (sunit,550) source, ncl oud, nstar,itnax,tstep, a0, el as,
+ vmax, st , nsp, ef f, nar m onegap, r 0, p, ang, anp
550 format (al2/3(i5/),7(1lpell.4/),i1/5(1pell.4/))

do 40 i=1,itmax+1
read (sunit,560,err=999) t(i),sfr(i),vrnms(i),xrad(i),ent(i)
40 conti nue
560 format (5(1lpel2.5, 3x))
cl ose (sunit)

endi f
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O 000

OO0 0000000000

999

* k%

* k%

APPENDIX B. SIMULATION SOURCE CODE

return

ERROR ON READI NG

print*,’ **ERROR** on readi ng data (SFR _READ)’
iflag = 2

return

end

19/04/94 jpsl8 ver 1.0
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function exists (path)

Checks to see if file exists, returning .true. if it does.
If the file is conpressed then is is first unzipped.

| NPUT VARI ABLE
path - full path name of file to be checked

QUTPUT VARI ABLE
exists - set .true. if file exists, .false. otherw se

EE IR I I I R R I R R I R S R I S I R I I I R I I R R S I S R I

i nt eger iflag I' RETURN STATUS CODE
character path*(*) I SEE ABOVE
| ogi cal exi sts I SEE ABOVE

CHECK TO SEE I F FILE EXI STS
i nquire (file=path, exi st=exists)
IF NOT THEN SEE IF I T EXI STS I N ZI PPED FORM

if (.not.exists) then
inquire (file=path//'.gz', exist=exists)

UNCOMPRESS FI LE | F NECESSARY
if (exists) then

wite (*,*) 'Unconpressing data file ..
call io_system ('gunzip '//path//’'.gz',iflag)
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if (iflag.ne.0) then
wite (*,*) ' Probl emencountered
exists = .fal se.
endi f
endi f

endi f
return

end

Subroutines contained inent r opy. f .

23/03/94 jpsi8 ver 3.1
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subrouti ne geom entropy (ncloud, entropy)

Cal cul ates the geonetric entropy of the galactic nolecul ar
cloud by considering the integral of f(In f), where f is
t he phase space distribution function. The DF is not
avail able to us, so instead the coarse-grained DF is
determ ned using a planar 1lkpc grid of 1024 cells.

If the clouds have al ready been gridded on scales of 1.0 or
5.0 then the existing grid is used. Oherwise, a newgrid
is calculated. Subroutine NEIGHGRID is not called since
with a 5.0 grid the nunber of particles is likely to be
greater than NEl GHVAX - a problemif nearest nei ghbours are
being i nvestigated, but not if only the nunber of points in
a cell is required.

| NPUT VARI ABLE
ncloud - nunber of cloud particles

QUTPUT VARI ABLE
entropy - cal cul ated val ue of geonetric entropy

khkhkkkhkhkhkkhkhhkhkkhdhhhkhhhkkhkdhhhkhkhkhkkhkhhhkdhhhdhhrhkhhdhrhdhrhkdhdrxdkrxhkdkhrhkdhxhdhdxxkx*x

OO0 O0O00O000O000000O000O00O000O00OO0O0

i ncl ude ' common. i nc
i ncl ude ' nei ghbl k. inc

i nt eger ncl oud, I SEE ABOVE
+ ncel |, I SIZE OF ENTROPY GRID
+ nx, ny, I GRID | NDI CES
+ i shift, I OFFSET OF ENTROPY GRID
+ i,j,k, 1, m I LOOP COUNTERS

paraneter (ncell=32)
i nt eger egrid(ncell,ncell) I' ENTROPY GRI D
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real ent ropy, I SEE ABOVE
+ hal f I HALF SIZE OF GRID

intrinsic float, | og

c
C _________________________________________________________________
c
c ZERO SE ARRAY
do 5 i=1, ncel
do 6 j =1, ncel
egrid(j,i) =0
6 conti nue
5 conti nue
c USE PREVI QUSLY EXI STING GRID | F PCSSI BLE
if (gsize.eq.1.0) then
do 10 j =1, ncel
do 20 i =1, ncel
do 30 k=1,5
do 40 1=1,5
do 50 n¥l, ncellz
egrid(i,j)=egrid(i,j)+ngrid(5*(i-21)+,5*(j-1)+k, m
50 conti nue
40 conti nue
30 conti nue
20 conti nue
10 conti nue
else if (gsize.eq.5.0) then
ishift = (ncellx-ncell)/2
do 60 j =1, ncel
do 70 i =1, ncel
do 80 n¥l,ncellz
egrid(i,j) = egrid(i,j)+ngrid(ishift+i,ishift+,mn
80 conti nue
70 conti nue
60 conti nue
c OTHERW SE SET UP NEW GRI D
el se
hal f = float(ncell/2)
do 90 i =1, ncl oud
nx = int(cloud(l,i)*cos(cloud(2,i))/5.0 + half) + 1
ny = int(cloud(1,i)*sin(cloud(2,i))/5.0 + half) + 1
if (nx.ge.l.and.nx.le.ncell.and.ny.ge.1l. and.ny.le.ncell)
+ egrid(nx,ny) = egrid(nx,ny) + 1
90 conti nue

endi f
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c CALCULATE ENTROPY
entropy = 0.0

do 100 i =1, ncel
do 110 j =1, ncel
if (egrid(j,i).gt.0) then
ent ropy=entropy+float (egrid(j,i))*log(float(egrid(j,i)))
endi f
110 conti nue
100 conti nue

entropy = log(float(ncloud)) - entropy/float(ncloud)

return
end

Subroutinescontainedini ni t. f.

26/10/93 jps18 ver 8.4
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O 000

subroutine init

Initialises the main data arrays. The clouds are pl aced
across the disc according to the radial nol ecul ar hydrogen

di stribution, with uniformazinmuthal distribution and a
Gaussi an z-dependence. Each cloud is given a randomvelocity
taken froma Gaussian distribution plus the appropriate
circular speed. The nass of each cloud is taken froma power
law. To seed the star formation a snall fraction of clouds
are given associated star clusters, which will propagate

star formation on the first tinme step

CONTROL VARI ABLES:
zhgt - scale length for z-distribution of particles
drv - radi al spacing of escape speed table
ydi st - radial distribution of nolecul ar clouds

EE R I R R I R I R I R R I I I I S R I R I R R S R I

OO0 0O0O00O0O00O0000O000O00O00O000O0

i ncl ude ' common. i nc
i ncl ude ' header.inc’

i nteger ipt, I PO NT COUNTER
+ ndi st I PO NT DI ST. ARRAY Sl ZE
+ nvnex, I ESCAPE VEL. TABLE SI ZE
!

+ i sum DUMWY COUNTER
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+ i age, ' INITIAL AGE OF STARS
+ i,] I LOOP COUNTERS
par armet er (ndi st =80, nvmax=150)
real r, I RADI US
+ vesc(nvmax), I ESCAPE VELOCI TY
+ rdist(ndist), I RADII FOR DI STRI BUTI ON TABLE
+ ydi st (ndi st), I RADI AL DI STRI BUTI ON TABLE
+ v, I TOTAL VELOCI TY OF PARTI CLE
+ phi 0, phi 1, | POTENTI AL AT PO NT
+ dr 2, I HALF SPACI NG BETWEEN DI ST RI NGS
+ drv, I RADI AL SPACI NG FOR ESCAPE

c VELOCI TY TABLE

+ rlow, I INNER RADI US OF DI ST RI NG
+ anpsav, I SAVED VALUE FOR SPI RAL AMP
+ rnd, I RANDOMV NUMBER

+ sum I DUVMY COUNTER

+ pi 2

paraneter (pi2=6.2831853071796)

real *8  gO05caf, g05ddf, dum RANDOM NUMBER GENERATORS

I
+ dao, I WDTH OF VELOCI TY DI STRI BUTI ON
+ zhgt I Z- DI STRI BUTI ON SCALE LENGTH
+ vof f set I OFFSET I N MEAN FOR
c Z-VELCCI TY DI STRI BUTI ON

external gO05caf, g05ccf, g05ddf, potenti al
intrinsic sngl,dble,dsgrt, float, abs

data drv /0.5/
data zhgt /1.0d0/

data rdist /3.90625E-01, 1. 17188E+00, 1. 95312E+00, 2. 73438E+00,
3. 51562E+00, 4. 29688E+00, 5. 07812E+00, 5. 85938E+00,
6. 64062E+00, 7. 42188E+00, 8. 20312E+00, 8. 98438E+00,
9. 76562E+00, 1. 05469E+01, 1. 13281E+01, 1. 21094E+01
1. 28906E+01, 1. 36719E+01, 1. 44531E+01, 1. 52344E+01
1. 60156E+01, 1. 67969E+01, 1. 75781E+01, 1. 83594E+01
1. 91406E+01, 1. 99219E+01, 2. 07031E+01, 2. 14844E+01
2. 22656E+01, 2. 30469E+01, 2. 38281E+01, 2. 46094E+01
2.53906E+01, 2. 61719E+01, 2. 69531E+01, 2. 77344E+01
2. 85156E+01, 2. 92969E+01, 3. 00781E+01, 3. 08594E+01
3. 16406E+01, 3. 24219E+01, 3. 32031E+01, 3. 39844E+01
3. 47656E+01, 3. 55469E+01, 3. 63281E+01, 3. 71094E+01
3. 78906E+01, 3. 86719E+01, 3. 94531E+01, 4. 02344E+01
4. 10156E+01, 4. 17969E+01, 4. 25781E+01, 4. 33594E+01
4.41406E+01, 4. 49219E+01, 4. 57031E+01, 4. 64844E+01
4. 72656E+01, 4. 80469E+01, 4. 88281E+01, 4. 96094E+01
5. 03906E+01, 5. 11719E+01, 5. 19531E+01, 5. 27344E+01
5. 35156E+01, 5. 42969E+01, 5. 50781E+01, 5. 58594E+01
5. 66406E+01, 5. 74219E+01, 5. 82031E+01, 5. 89844E+01
5. 97656E+01, 6. 05469E+01, 6. 13281E+01, 6. 21094E+01/
0. 0O0000OE+00, 0. 00000E+00, 0. 0O0O000E+00, 0. 00000E+00,

R T A A T T T T i T S S S S

data ydi st /
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. 00000E+00, 0. 00000E+00, 0. 00000E+00, 0. 00000E+00,
. 73721E-04, 7. 71931E- 04, 1. 65283E- 03, 2. 70761E- 03,
. 81031E- 03, 4. 86009E- 03, 5. 74095E- 03, 6. 36298E- 03,
. 77460E- 03, 7. 08021E- 03, 7. 38691E- 03, 7. 65134E- 03,
. 75802E- 03, 7. 61172E- 03, 7. 55639E- 03, 8. 28175E- 03,
. 05588E- 02, 1. 43880E- 02, 1. 88267E-02, 2. 27314E- 02,
. 53732E- 02, 2. 69629E- 02, 2. 78643E- 02, 2. 84570E- 02,
. 90317E- 02, 2. 98905E- 02, 3. 12551E- 02, 3. 27200E- 02,
. 36040E- 02, 3. 32163E- 02, 3. 14940E- 02, 2. 87994E- 02,
. 55526E- 02, 2. 23510E- 02, 1. 99851E- 02, 1. 93153E-02,
. 05766E- 02, 2. 28049E- 02, 2. 48201E- 02, 2. 56864E- 02,
. 54568E- 02, 2. 43963E- 02, 2. 27656E- 02, 2. 06799E- 02,
. 82071E- 02, 1. 54465E- 02, 1. 27670E- 02, 1. 07215E- 02,
. 87653E- 03, 1. 01890E- 02, 1. 09500E- 02, 1. 13751E- 02,
. 11209E- 02, 1. 06762E- 02, 1. 06477E- 02, 1. 13459E- 02,
. 20874E-02, 1. 19541E- 02, 1. 02233E- 02, 7. 51224E- 03,
. 95050E- 03, 3. 62271E- 03, 3. 48488E- 03, 3. 77504E- 03,
. 70218E- 03, 3. 03421E- 03, 2. 13899E- 03, 1. 42936E- 03,
. 10643E- 03, 9. 79321E- 04, 8. 07080E- 04, 3. 36053E- 04/

R T S A S T T T T T T i e T S S
PWORARPPRPORNNNWNNRNOWRO

CALCULATE ESCAPE VELCCI TY TABLE

anpsav = anp
anp = 0.0
do 10 i =1, nvnax
r = drv*float (i)
call potential (r,0.0,0.0,0.0,phi1l)
vesc(i) = sqgrt(-2.0*phi1l)
10 conti nue
anp = anpsav

DI STRI BUTE PO NTS ACROSS GALAXY

isum= 0
dr2 = 0.5*(rdist(2)-rdist(1))
do 30 i =1, ndi st
rlow = rdist(i) - dr2
ipt = int(ydist(i)*ncloud + 0.5)
do 20 j=1,ipt
cloud(1,isumt)
cloud(2,isumt)
cloud(3,isumtj)
20 conti nue

riow + 2.0*dr2*sngl (gO5caf (dunj)
pi 2*sngl (g05caf (dunj)
sngl (g05ddf (0. 0dO, zhgt))

isum = isum+ ipt
30 conti nue
ncl oud = i sum

SET INI TI AL VELOCI TI ES FROM GAUSSI AN DI STRI BUTI ON
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da0 = dbl e(a0)
call vcirc (ncloud,0.0) I CALCULATE LOCAL Cl RCULAR SPEEDS

do 40 i =1, ncl oud
500 cloud(4,i) = sngl (g05ddf (0.0d0, da0))
cloud(5,i) = (vrot(i)+sngl (g05ddf(0.0d0,da0)))/cloud(1,i)
call potential (cloud(1,i),cloud(2,i),0.0,0.0,phiO0)
call potential (cloud(1,i),cloud(2,i),cloud(3,i),0.0,phil)

if (phil-phi0.1e.0.0) then I DUE TO ROUNDI NG ERRCRS
voffset = 0.0

el se
vof fset = dbl e(sqrt(phi 1-phi0))

endi f

if (cloud(3,i).ge.0.0) then
cloud(6,i) = sngl (g05ddf (-voffset, da0))
el se
cloud(6,i)
endi f
v = cloud(4,i)**2+cl oud(5,i)**2+cl oud(6,i)**2
if (v.gt.vesc(int(cloud(1,i)/drv))) goto 500

sngl (g05ddf (vof f set, da0))

c SET I NI TI AL MASSES AND AGES OF MOLECULAR CLOUDS

rnd = sngl (g05caf (dum)
do while (rnd.gt.0.772)
rnd = sngl (g05caf (dum)
enddo
cloud(7,i) = 6.39e4*(rnd)**(-0.633)
clage(i) = int(2.15*(cloud(7,i)**0.3333333) + 0.5)
40 conti nue

c ASSQOCI ATE 0. 3% OF CLOUDS W TH NEW STAR CLUSTERS
iage = 0
sum= 0.0
do while (sumlt.1.0)
iage = iage + 1
sum = sum + tstep
enddo

nstar = int(0.003*fl oat (ncl oud))
do 50 i =1, nstar
i pt = int(dble(ncloud)*g05caf(dum) + 1
do 60 j=1,6
star (j,i) = cloud(j,ipt)
60 conti nue
stage(i) = iage
50 conti nue

return
end
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subroutine equilibrate (vrms,stine,iflag)

Al ows the systemto relax to dynamic equilibrium
and then calculates the rns vel ocity dispersion

OQUTPUT VARI ABLES:

VI B - rms velocity dispersion

stime - start tinme for

rest of sinulation

iflag - return status code

EE R I R R R R R R I R I I I I I R R I R R I S R S R I

+

+ 4+ + + + +

+

i ncl ude ' common. i nc
i ncl ude ' header.inc’

i nteger iflag,
i count,
i

real VI TS,
sti ne,
vrnsol d,
v,
vsum
diff,

anpsav
| ogi cal cont

data icount /1/
data vsumv /0.0, 0.0/
data cont /.true./

SEE ABOVE

CQUNTER

LOOP | NDEX

SEE ABOVE

SEE ABOVE

PREVI QUS VALUE OF vrms

RMS SPEED FOR SI NGLE TI ME STEP
SUM OF RM5 SPEEDS FOR SI NGLE STEPS
ABSOLUTE FRACTI ONAL DI FFERENCE
BETWEEN SUBSEQUENT vr s

STORED VALUE OF SPI RAL AMPLI TUDE
LOOP CONTRCL

SET SPI RAL AMPLI TUDE TO ZERO TO PREVENT HEATI NG OF DI SC
(CAUSED BY BAR) WHI CH PREVENTS THE VELCCI TY DI SPERSI ON

FROM CONVERG NG

anpsav = anp
anp = 0.0

ROTATE A FEW TI MES | NI TI ALLY TO REDUCE Tl ME TAKEN

FOR vrns TO CONVERGE

stime = 0.0

do 10 i=1,int(4.0/tstep)

stine = stine + tstep
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APPENDIX B. SIMULATION SOURCE CODE

call rotate (ncloud,stine,0,tstep,iflag)
call rotate (nstar,stinme,1,tstep,iflag)
if (iflag.ne.0) return

10 conti nue

20

call vcirc (ncloud,stine)
vims = 0.0

CALCULATE R M'S. VELCCI TY DI SPERSI ON
do while (cont.and. (icount.le.int(10.0/tstep)))

do 20 i =1, ncl oud
v =Vv + cloud(4,i)**2 + cloud(6,i)**2 +

+ ((cloud(1,i)*cloud(5,i))-vrot(i))**2
conti nue
v = sqgrt(v/float(ncloud)) I RMS VALUE FOR THI S TI ME STEP
vsum = vsum + Vv
vrnmsold = vrns I AVERAGE FROM PREVI QUS TI ME
vrns = vsum fl oat (i count) I NEW AVERAGE
diff = abs((vrmsold-vrms)/vrnms) ! FRACTI ONAL DI FFERENCE
if (diff.le.1.0e-3) then I EXIT ON NEXT | TERATI ON
cont = .false
el se I KEEP GO NG UNTI L CONVERGES
stinme = stime + tstep
icount = icount + 1
call rotate (ncloud,stinme,O,tstep,iflag)
call rotate (nstar,stinme,1,tstep,iflag)
if (iflag.ne.0) return
call vcirc (ncloud,stine)
endi f
enddo
if (icount.gt.int(10.0/tstep)) then
print*,’ **ERROR** vel dispersion not converging (EQU LI BRATE)
iflag = 1
endi f

RESTORE SPI RAL AMPLI TUDE

anp = anpsav

return
end
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Subroutines contained in nei ghbour . f.

16/11/93 | psl8 ver 5.2

OO0 00

OO0 O0O0O00O000000000O00O00O00O000O0000OO0

EE R I R R R I R I R R I I I I S R R I I R R R S R I I

subrouti ne nearneigh (r,theta, z, annl, ann2, nnei gh, i fl ag)

Determ nes the array indices of al

clouds within

t he annul us defined by ANNL and ANN2 centred on

t he poi nt

(R, THETA, Z2) and returns the values in
array NElI GH (passed via conmon).
bet ween the clouds and the central

The di stance
point is also

cal culated and returned in array RNEIGH (al so in conmon).
Subrouti ne neighgrid MIUST be call ed before nearneigh if
a) the position of any of the particles has changed
b) the grid spacing has changed

I NPUT VARI ABLES:

r
theta
y4
annl
ann2

-}

- } coordinates of central

-}

- } inner and outer

-}

OQUTPUT VARI ABLES:

nnei gh -

iflag

- return status code

r adi

poi nt

of annul us of interest

nunber of nei ghbours within annul us

EE R I R R I R I R I R R I I I I S S R R I R R I R R S R I I

+ 4+ + + + + +

+ +

i ncl ude
i ncl ude

i nt eger

r eal

real *8

' common. i nc’
" nei ghbl k. i nc’

nx, ny, nz,

nxi nc(27), nyi nc(27),

nzi nc(27),
nnei gh,

i flag,

i pt,

i count,
i)
r,theta, z,
annl, ann2,
annlsq, ann2sq,
sep

ri, r2,

del ta,
dcosrul e

GRI D | NDI CES

} RELATIVE SHI FTS OF

}  NEXT DOOR GRI D CELL

SEE ABOVE

SEE ABOVE

POl NTER

LOOP THI' S NUVMBER OF TI MES
COUNTERS

SEE ABOVE

SEE ABOVE

SQUARES OF ABOVE

SEP. OF CLOUD AND CENTRAL POl NT
RADI | OF CENTRAL PO NT

AND NEARBY CLOUD
ANG COORD OF PO NT -
FUNCTI ON

THETA
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intrinsic sin,cos,int,dble
external dcosrule

data nxinc / 0,-1, 1, 1, 0, 0,-1,-1, O
+ 1,-1, 1, 1, 0o, O0,-1,-1, O,
+ o, 1, 1, o, 0,-1,-1, 0O, 1/
data nyinc / 0,-1, 0, 0, 1, 1, O, O,-1
+ o,-1, o, 0, 1, 1, 0, O,-1
+ -1, 0, 0, 1, 1, O, O,-1, O/
data nzinc / 0O0,-1, 0, O, O, O, 0, O, O,
+ o, 14, o, 0, 0, 0, O, O, O
+ i, o, 0, 0, O, O, 0, 0O, 0Of
c
C _________________________________________________________________
c
if (ann2.gt.gsize) then
print*,’**ERROR** Invalid grid spacing (NEARNEI GH)’
iflag = 1
return
endi f
c I NI TI ALI SE
nneigh = 0
annlsq = annl*annl
ann2sq = ann2*ann2
c DETERM NE GRI D CELL OF SPECI FI ED PO NT
nx = int(r*cos(theta)/gsize + halfx) + 1
ny = int(r*sin(theta)/gsize + halfx) + 1
nz =int(z/gsize + halfz) + 1
if (nx.gt.ncellx.or.nx.lt.1.or.ny.gt.ncellx.or.ny.lt.1) then
print*,’ **ERROR** x/y coordinate out of range (NEARNEI GH)’
iflag = 1
return
else if (nz.gt.ncellz.or.nz.It.1) then
print*,’ **ERROR** z coordi nate out of range (NEARNElI GH)'’
iflag = 2
return
endi f
c CHECK CELLS FOR CLOUDS WTHI N RADIUS rcirc
do 30 j=1,27
nx = nx + nxinc(j)
ny = ny + nyinc(j)
nz = nz + nzinc(j)

if (nx.eq.0.o0r.ny.eq.0.o0r.nz.eq.0.or.nx.eq.ncellx+1. or.
+ ny. eq. ncel | x+1. or. nz. eq. ncel | z+1) then
icount = 0
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el se
i count = ngrid(nx,ny,nz)
endi f
do 40 i=1,icount
ipt =igrid(i,nx,ny,nz)
ri dbl e(r)
dbl e(cl oud(1,ipt))
delta = dble(theta - cloud(2,ipt))
sep = sngl (dcosrule(rl,r2,delta)) +
+ (z-cloud(3,ipt))**2
if ((sep.gt.annlsq).and.(sep.le.ann2sqg)) then
nnei gh = nneigh + 1
nei gh(nnei gh) = ipt
rnei gh(nnei gh) = sqgrt(sep)
endi f
40 continue
30 conti nue

return
end

15/10/93 | psl8 ver 1.3

EE R I R R R I R I R I I I R I R R I R R S R I

subroutine neighgrid (npt,iflag)

Initialises grid used by subroutine nearneigh to cal cul ate
near est nei ghbours. This routine nust be called before
near nei gh if

a) the position of any of the particles has changed
b) the radius around each point in which one is
i nterested has changed

I NPUT VARI ABLES:
npt - nunber of particles in gal axy

QUTPUT VARI ABLES:
iflag - return status code

The main output fromthis program (the arrays igrid and ngrid)
i s passed via common 'nbl k’ to subroutine nearneigh, the
only other routine to use this data.

EE R I R R R R I I R R I I I I S R R I R R I R R R I I I

i ncl ude ' common. i nc
i ncl ude ' nei ghbl k. inc
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i nt eger npt, I SEE ABOVE
+ nx, ny, nz, I GRID | NDI CES
+ i flag, | SEE ABOVE
+ i,j,k I COUNTERS

intrinsic sin, cos

c I NI TI ALI SE ARRAY

do 20 i=1,ncellz
do 30 j =1, ncellx
do 40 k=1, ncel | x
ngrid(k,j,i) =0

40 conti nue
30 conti nue
20 conti nue

hal f x

hal fz

fl oat (ncel I x/ 2)
fl oat (ncell z/2)

c CALCULATE GRID

do 10 i =1, npt
nx int(cloud(1,i)*cos(cloud(2,i))/gsize + halfx) + 1
ny int(cloud(1,i)*sin(cloud(2,i))/gsize + halfx) + 1
nz int(cloud(3,i)/gsize + halfz) + 1

c | F PO NT QUTSIDE GRID

if (nx.gt.ncellx.or.ny.gt.ncellx.or.nx.lt.1l.or.ny.lt.1) then
iflag = 1
return
else if (nz.gt.ncellz.or.nz.It.1) then
iflag = 2
return
endi f

ngrid(nx, ny,nz) = ngrid(nx,ny,nz) + 1
if (ngrid(nx,ny,nz).gt.neighnmax) then | TOO MANY PO NTS
iflag = 3
return
endi f
i grid(ngrid(nx,ny,nz),nx,ny,nz) =
10 conti nue

return
end
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Subroutines contained in out put . f .

31/08/94 jpsi8 ver 2.5

EE R I R R R I R I R R I I I I S R R I I R R R S R I I

OO0 00

subroutine output (dunit,iunit,sunit,elapsed,i mumvernumiflag)

Subroutine to performthe majority of output, including
file nami ng and handling. The file for SFR velocity
di spersion and geonetric entropy output is only opened
and a head record witten - the main bulk of the data
is witten by MAIN

| NPUT VARI ABLES:

duni t - unit nunber for main dunp file

iunit - unit number for conpressed image files

suni t - unit nunber for SFR data

el apsed - elapsed tine for labelling of image files

imum - inmage file nunber for naming. If imMmumeq.0
then the file handling is initiated.

vernum - gal axy version nunber

QUTPUT VARI ABLE:
iflag - return status code

EE R I R R R I R I R I I I I I R I I I R S R I

OO0 O000O00O00O00O0O0000000O00O00O0OO0OO0

i ncl ude ' common. i nc’
i ncl ude ' header.inc’

i nt eger duni t, SEE ABOVE
+ iunit, SEE ABOVE
+ suni t, SEE ABOVE
+ i Mmum SEE ABOVE
+ i flag, SEE ABOVE
+ dat e(3), TODAY’ S DATE
+ num FI LE COUNTER
+ I en, chr_I enb, LENGTH OF HOSTNAME
+ ver num SEE ABOVE
+

|
|
|
|
|
|
|
|
]
i,] I LOOP COUNTERS
integer*2 i2r, I SCALED RADI US
|
|
|
|
|
|
|

+ i 2t ht, SCALED AZI MJTH
+ i 2z, SCALED z
+ i 2age AGE OF PO NT
real el apsed, I SEE ABOVE
+ rscal e, '}
+ t ht scal e, '} COORDI NATE SCALI NG FACTORS
+ zscal e '}

FULL FI LE NAME
FI LE NAME SUFFI X

character path*48,

!
+ suf fi x*5, !
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100

120

+

+

APPENDIX B. SIMULATION SOURCE CODE

host *6, I MACH NE ON VWHI CH PROGRAM
I S BEI NG RUN
f dat e* 24 I CURRENT DATE AND TI ME
| ogi cal ex I .true. IF FILE EXI STS
i nt eger hostnm I FUNCTI ON
save path

data rscale, thtscale, zscale /320.0, 5000.0, 500.0/

I NI TI ALI SATION | F FI RST CALL TO ' QUTPUT’

if (inmmum eq.0) then

call idate (date)
ex = .true.
num= 0

GET PATH NAME

do while (ex)
num = num + 1
wite (path,100) date(1l), date(2), date(3)-1900, num
date(1), date(2), date(3)-1900, num
format (' /home/jpsl8/ nodel/data/gal’,3(i2.2),"  ',i2.2,
"/gal’,3(i2.2)," ',i2.2)
inquire (file=path//’.sfr’, exist=ex)
if (numeq.99) ex = .false.
enddo

wite (*,120) fdate(), path(37:48) ! WRITE TO LOG FI LE
format (/a24, 3x, al2)

WRI TE PATH TO FI LE TO BE USED LATER BY SCRI PT chai n

i flag = host nn( host)

I en = chr _| enb(host)

open (sunit,file=".gal’//host(len:len),form formatted’ )
wite (sunit,*) path(1:35)

cl ose (sunit)

CREATE DI RECTORY

call io_system ('nkdir '//path(1:35),iflag)

OPEN . sfr FILE AND WRI TE HEADER

open (sunit,file=path//’.sfr’ , forme fornmatted’)
wite (sunit,’ (i5)’) vernum
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wite (sunit,500) source, ncloud, nstar,itnmax,tstep, a0, el as,
+ vmax, st , nsp, ef f, nar m onegap, r 0, p, ang, anp
500 format (al2/3(i5/),7(1lpell.4/),i1/5(1pell. 4/))
open (20,file=path//’ .rad ,forn¥ unformatted’)

return
START HERE I F NOT FI RST CALL TO out put

else if (imMmumagt.99) then
print*,’ Too many out put files’
iflag = 2
return

endi f

MOVE OLD DUMP FI LE

if (inmmumgt.1) then
wite (suffix, 105) i mum1l
105 format ('.dp',i2.2)
call rename (path, path//suffix)
endi f

QUTPUT TO DUWVP FI LE

open (dunit,file=path,form unformatted’)
wite (dunit) vernum source, ncl oud, nstar,itnmax,tstep, a0, el as,
+ vmax, st , nsp, ef f, narm onegap, r 0, p, ang, anp
do 10 i =1, ncl oud
wite (dunit) (cloud(j,i),j=1,7),clage(i)
10 conti nue
do 20 i=1,nstar
wite (dunit) (star(j,i),j=1,6),stage(i)
20 conti nue
cl ose (dunit)

QUTPUT TO | MAGE FI LE

wite (suffix,110) i mum

110 format ('.im,i2.2)
open (iunit,file=path//suffix,form= unformatted’)
wite (iunit) vernum source, ncloud, nstar,itnmax,tstep, a0, el as,
+ vmax, st , nsp, ef f, narm onegap, r 0, p, ang, anp
wite (iunit) elapsed,rscal e, thtscale, zscal e
do 30 i=1,nstar

i2r = int(rscale*star(1,i))
i2tht = int(thtscale*star(2,i))
i2z = int(zscale*star(3,i))

i 2age = stage(i)
wite (iunit) i2r,i2tht,iZ2z,i?2age
30 conti nue
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close (iunit)

return
end

Subroutines contained in pr opagat e. f .

c 21/12/93 jpsl8 ver 8.2
c
C kkhkhkkhkhkkhkhkkhkkhhkkhhkkhhkhhkhhkhdhhkdhhhhkhkhkhhkhhhkdhhkdhdhkhdhhkhhhhdhhkdhdhkhhhhdhdhdhkhkhhdxkx*x
c
subrouti ne propagate (ncloud, nstar,tstep, nst, mep, eff,sfr,iflag)
c
c Propagates star formation throughout gal axy.
c
c I NPUT VARI ABLES:
c ncl oud - nunber of cloud particles
c nstar - nunber of star particles
c tstep - simulation tinme step
c st - critical mass for stinulated star formation
c nsp - critical mass for spontaneous star fornation
c ef f - cloud disruption factor
c
c QUTPUT VARI ABLES:
c sfr - star formation rate
c iflag - return status code
c
C kkhkhkkhkhkkhkhkkhkkhhkkhhkkhhkhhkhkhkhdhhkdhhkdhhkhhkhhkhhhkdhhkdhdhkhdhhkhhhhdhhkdhdhkhhhkhdhdhdhhkhhxkx*x
c

i ncl ude ' common. i nc
i ncl ude ' nei ghbl k. inc’

i nt eger ncl oud, I SEE ABOVE
+ nstar, I SEE ABOVE
+ nnei gh, I' NO. NEI GHBOURS FOR ANY G VEN PO NT
+ kpre, I NO TIME STEPS BEFORE STAR EXPLODES
+ i age, I AGE OF I NDI VIDUAL STAR, UNITS tstep
+ i pt, I | NDEX COUNTER
+ nnew, I NUMBER OF NEW CLUSTERS CREATED

c ON THI S STEP

+ agenax, I MAX AGE OF STARS KEPT I N ARRAY
+ i flag, I STATUS RETURN CODE
+ i count, I COUNTER
+ i,k I LOOP COUNTERS
real t st ep, I SEE ABOVE
+ mst, nsp, I SEE ABOVE
+ eff, I SEE ABOVE
+ rsn(0: 50), I RADIUS OF SNR AS FUNCTI ON OF TI ME
+ pr ob, I PROBABI LI TY OF STAR FORNMATI ON
+ sfr, I SEE ABOVE
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+ age, I AGE OF STAR, UNITS 10**7 YRS
+ sum I SUM OF tstep
+ geom

real *8 g05caf, dum I RANDOM NUVMBER GENERATOR

| ogi cal first

intrinsic exp,dble,sngl,int
external neighgrid, nearnei gh, g05caf

save dumfirst, kpre, agenax, rsn

data first /.true./
data geom /2.3873241463784300453e-01/

| F FIRST CALL TO propagate THEN SET UP rsn TABLE

if (first) then
kpre =0
k =0
sum= 0.0
do while (sumlt.1.0)
kpre = kpre + 1
sum = sum + tstep

enddo

kpre = kpre - 1

rsn(0) = 0.0

do while (sumle.2.0)
k =k +1

rsn(k) = (float(k)*tstep)**0.4
sum = sum + tstep

enddo

first = .fal se.

agermax = int(13.0/tstep)
endi f

I NI TI ALI SE FOR THI' S TI ME ROUND

nnew = 0
gsize = 1.0

SET UP NEI GHBOUR GRI DS, ADJUSTI NG GRID SI ZE TO OPTI M SE

call neighgrid (ncloud,iflag)
i =1
do while ((iflag.ne.0).and.(i.lt.6))
if ((iflag.eq.1).or.(iflag.eq.2)) then
gsize = gsize*2.0
else if (iflag.eq.3) then
gsi ze = gsi ze*0.5
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endi f
iflag = 0
i =i +1
call neighgrid (ncloud,iflag)
enddo
if (i.eq.6) then
print*,’ *ERROR* unable to set up nei ghbour grids (PROPAGATE)’
iflag = 1
return
endi f

c UPDATE MASSES OF CLOUDS
cal | cloud_nass (ncloud,tstep)
c CLOUD - SUPERNOVA | NTERACTI ONS

i count = nstar
i age = stage(icount)
age = tstep*float(iage)

do while (age.lt.2.0)
if (age.ge.1.0) then
call nearneigh (star(1,icount),star(2,icount),
+ star(3,icount), rsn(iage-kpre-1),
+ rsn(i age-kpre), nnei gh,ifl ag)
if (iflag.ne.0) return

do 10 k=1, nnei gh
i pt = neigh(k)

c PERCOLATI ON

prob = geontcloud(7,ipt)/nst
if (gO5caf(dum).It.prob) then
cloud(7,ipt) = cloud(7,ipt)*eff
clage(ipt) =0
nnew = nnew + 1
nstar = nstar + 1
st age(nstar) 0
do 20 i=1,6
star(i,nstar) = cloud(i,ipt)
20 conti nue

wite (20) star(1,nstar)
endi f
c HEAT | NPUT TO | SM - CLOUD/ SNR COLLI SI ONS

call cloud_snr (icount,ipt,rneigh(k))



10 conti nue
endi f

NEXT SNR

icount = icount - 1

i age = stage(icount)

age = tstep*float(iage)
enddo

SPONTANEQUS STAR FORVATI ON

do 30 i=1, ncl oud
if (clage(i).ne.0) then

prob = tstep*cloud(7,i)/nsp

if (gO5caf(dum).It.prob) then
cloud(7,i) = cloud(7,i)*eff
clage(i) =0
nnew = nnew + 1
nstar = nstar + 1
stage(nstar) =0

do 40 k=1,6
star(k,nstar) = cloud(k,i)
40 conti nue

wite (20) star(1,nstar)

endi f
endi f
30 conti nue

GET RID OF OLD STARS FROM ARRAY

icount =1
do while ((stage(icount).eq.agenax).and.(icount.le.nstar))
icount = icount + 1
enddo
icount = icount - 1
do 70 i =i count+1, nstar
stage(i-icount) = stage(i)
do 80 k=1,6
star(k,i-icount) = star(k,i)
80 conti nue
70 conti nue
nstar = nstar - icount

| NCREMENT AGES

do 50 i=1, ncl oud
clage(i) = clage(i) + 1

169
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50 conti nue
do 60 i =1, nstar
stage(i) = stage(i) + 1
60 conti nue

sfr = float (nnew)/fl oat(ncl oud)

return
end

c 02/11/93 jpsl8 ver 2.1
c
C kkhkhkkhkhkkhkhkkhkkhhkkhkhkkhhkhhkhhkhdhhkdhhkdhhhhkhhkhkhhkdhhkdhdhkhkhhkhkhdhhdhhdhdhkhhhkhdhdhdkhkhhdxkx*x
c
subroutine cloud _nmass (ncloud,tstep)
c
c I ncrenents cl oud masses due to accretion fromH, as
c described in notebook (16/09/93).
c
c | NPUT VARI ABLES:
c ncl oud - nunber of cloud particles
c tstep - simulation tinme step
c
C kkhkhkkhkhkkhkhkkhkkhhkkhhkkhhkhhkhkhkhdhhkdhhkdhhhhkhhkkhhhkdhhkdhhkdhkhdhhkhhdhhdhhkdhdhkhhhkhdhdhhkhhhxkx*x
c
i ncl ude ' conmon. i nc
i nt eger ncl oud, I SEE ABOVE
+ [ I LOOP COUNTER
real t st ep, I SEE ABOVE
+ ganmma, I CCEFFI ClI ENT
+ dm I MASS | NCREMENT
+ v, I SPEED OF CLOUD
+ ql, I TEMPORARY VALUE
+ hldensity I H DENSITY AT d VEN RADI US
data gamma /7. 0e-5/
c
C _________________________________________________________________
c

do 10 i =1, ncl oud

v = sgrt(cloud(4,i)**2 + (cloud(1,i)*cloud(5,i)-vrot(i))**2
+ + cloud(6,i)**2)

gl = (tstep*gamma*hldensity(cloud(1,i))*v)**3
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dm = g1*0.1111111111*(fl oat (cl age(i))**2)
cloud(7,i) = cloud(7,i) + dm
10 conti nue

return
end

29/ 06/93 jpsi8 ver 1.0

EE R I R R R I R I R R I R I I R I R R I R R I R I

real function hldensity (r)

Interpolates fromH cloud given by Burton in 'Glactic
and Extragal actic Radi o Astronony’ to return H density
at any given radi us.
| NPUT VARI ABLE
r - radius
kkhkhkkhkhkkhkhkkhkkhhkkhhkkhkhkhhkkhhkhdhhkdhhkdhkhkhhkhhkhhhkdhhkdhhdhhhkkhhhhhdhkdhdkdhkhhhdhdhdkhkxk,xkx*x
i nt eger nbin, I NO OF H DATA PO NTS
+ [ I LOOP COUNTER
par armet er (nbi n=30)
real r, I SEE ABOVE
+ rhl(nbin), I RADI US VALUES FOR DI STRI BUTI ON
+ h1(nbin), ! H DI STRI BUTI ON
+ dh12(nbin), I 2nd DERI'V OF DI STRI BUTI ON
+ di, d2, I 1st DERIV AT BOUNDARY PO NTS
+ dum I TEMPORARY VALUE
+ conv I CONVERSION FROM cm 3 TO L-3

paraneter (conv=1.96e5)
| ogi cal first

save first,rhil, hl, dhl2
data first /.true./

data rh1/0.00, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75,

+ 4.25, 4.75, 5.25, 5.75, 6.25, 6.75 7.25,  7.75,
+ 8.25, 8.75, 9.25, 9.75, 10.25, 10.75, 11.25, 11.75,
+ 12.25, 12.75, 13.25, 13.75, 14.25, 14.75/

data hl1 /0.00, 0.001, 0.04, 0.085 0.13, 0.17, 0.20, O0.22,
+ 0.30, 0.34, 0.40, 0.38, 0.33, 0.33, 0.38, 0.40,
+ 0.38, 0.32, 0.32, 0.41, 0.40, 0.25, 0.24, 0.33,
+ 0.37, 0.35, 0.26, 0.16, 0.10, 0.07 /
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c SET UP SPLI NE | NTERPOLATI ON | F FI RST CALL TO FUNCTI ON

if (first) then
do 10 i=1,nbin
rhi(i) = rhl(i)*5.0
h1(i) = conv*hl(i)
10 conti nue
dl = (h1(2)-h1(1))/(rh1(2)-rh1(1))
d2 = (hil(nbin)-hl(nbin-1))/(rhl(nbin)-rhl(nbin-1))
call spline (rhi, hl, nbin, dl, d2, dh12)

first = .fal se.
endi f
c USE CUBI C SPLI NE | NTERPOLATI ON TO CALCULATE H DENSI TY
c AT 3 VEN RADI US

call splint (rhi, hl, dh12, nbin,r, dun)
if (dumlt.0.0) dum= 0.0
hldensity = dum

return
end

Subroutinescontainedinr ot at e. f .

26/10/93 jps18 ver 7.1
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O 000

subroutine rotate (npt,stine,type,tstep,iflag)

Uses subroutine bsstep to conpute the new position of
each of the particles. For information on the use of
bsstep refer to 'Nunerical Recipes’, Press et al.
2nd edition, chpt 16

I NPUT VARI ABLES:
npt - nunber of particles
stine - initial tine
type - type of particles to be rotated (0=cl oud, 1=star)
tstep - total time through which particle is to be integrated

QUTPUT VARI ABLES:
iflag - return status code

CONTROL VARI ABLE
eps - integration tol erance

EE R I R R R I I R R I I I I S I I R I I R S I R

OO0 O000O000O00000000O00O0000O0
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30

+ 4+ +

+ 4+ + + + +F +++ o+

i ncl ude ' common. i nc

i nt eger npt,
type,

i flag,
i,k
tstep,
eps,
tinme,
stine,
y(6),
dydt (6),
yscal (6),
dt,
dtdid,
dt next,
pi 2

r eal
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SEE ABOVE

SEE ABOVE

SEE ABOVE

CQUNTERS

SEE ABOVE

SEE ABOVE

TI ME FOR PARTI CLE AFTER EACH | NT STEP
SEE ABOVE

| NTEGRATI ON VECTCR

DI FFERENTI AL OF | NTEGRATI ON VECTOR
ERROR SCALI NG VECTOR

TI ME STEP FOR NEXT | NTEGRATI ON

TI ME STEP ACH EVED

MAX TI ME STEP NEXT | NTEGRATI ON

paraneter (pi2=6.2831853071796)

intrinsic fl oat
ext er nal

data eps /1.e-3/

do 10 i =1, npt

bsst ep, deri vs

SET NI TI AL CONDI TIONS FOR THI' S PO NT

if (type.eq.0) then

do 5 k=1,6
y(k) =
conti nue
el se
do 6 k=1,6
y(k) =
conti nue
endi f
time = stine
dt = tstep

cloud(k, i)

star(k,i)

CALCULATE NEW POSI TION W TH TOTAL TIME STEP OF tstep

do while (dt.gt.3.0e-5)

cal |
do 30 k=1,6
yscal (k) =
conti nue
cal |

derivs (tine,y,dydt)
abs(y(k)) +abs(dt*dydt (k)) +1. e- 30

bsstep (y, dydt, 6,ti ne, dt, eps, yscal , dtdi d, dt next,

derivs,iflag)




174 APPENDIX B. SIMULATION SOURCE CODE

dt = dt next
if (iflag.ne.0) then I GVE UP ON THI S | NTEGRATI ON
dt = -9.9el0
iflag = 0
endi f
if (time+dt-stinme.ge.tstep) dt = tstep - (tine-stine)
enddo

c REASSI GN DATA ARRAY

do while (y(2).ge.pi2)
y(2) =y(2) - pi2

enddo

do while (y(2).1t.0.0)
y(2) =y(2) + pi2

enddo

if (type.eqg.0) then
do 40 k=1,6
cloud(k,i) = y(k)
40 conti nue
el se
do 50 k=1,6
star(k,i) = y(k)
50 conti nue
endi f

10 conti nue

return
end

23/08/93 jpsi8 ver 2.0
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O 000

subroutine derivs (t,y,dydt)

Subroutine required by bsstep to calculate the derivative
of the coordi nate vector.

| NPUT VARI ABLES:
t - tine
y - coordi nate vector

QUTPUT VARI ABLE
dydt - derivative of y with respect to t

OO0O00O0000O000O0
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real t, | SEE ABOVE
+ y(*), | SEE ABOVE
+ dydt (*), | SEE ABOVE
+ dpdr, dpdt ht, dpdz | DERI VATI VES OF POTENTI AL
WRT. r, theta & z

ext ernal dphi I CALCULATES PARTI AL DERI VATI VES
dydt (1) = y(4)

dydt(2) = y(5)

dydt (3) = y(6)

call dphi (y(1),y(2),y(3),t,dpdr, dpdtht, dpdz)

dydt (4) = (y(1)*y(5)*y(5)) - dpdr

dydt (5) = -(2.*y(4)*y(5)+(dpdtht/y(1)))/y(1)
dydt (6) = -dpdz

return

end

17/11/93 jpsls8 ver 2.3
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subroutine dphi (r,theta,z,t,dpdr, dpdtht, dpdz)

Returns the values for the partial derivatives of the
overal |l potential at any given point in space and tine.
N. B. Subroutine POT_INIT nmust be called before this
subroutine is used.

| NPUT VARI ABLES:

r - radial position

theta - angul ar position

z - coordinate perpendi cular to plane
t - tinme required

OQUTPUT VARI ABLES:

dpdr - partial derivative wr.t. r
dpdtht - partial derivative w.r.t. theta
dpdz - partial derivative wr.t. z

EE R I R R R I R I R R I I I I S S R R I R R R S R I

i ncl ude ' header. i nc’
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i nclude 'potential.inc
real r,theta, z, I SEE ABOVE
+ t, I SEE ABOVE
+ dpdr, I SEE ABOVE
+ dpdt ht , I SEE ABOVE
+ dpdz, I SEE ABOVE
+ phi , | POTENTI AL
+ dr1,dr2,dr3,dr4, I COVPONENTS OF dpdr
+ dz1, dz2, dz3, I COVMPONENTS OF dpdz
+ phl, ph2, ph3, ph4, I COVPONENTS OF POTENTI AL
+ ql, g2, g3, g4, g5, g6, q7, '} TEMPORARY VALUES
+ a8, g9, q10,q11, q12,913, '}
+ fn, I NUMBER OF ARNS
+ pi
paranmeter (pi=3.1415926535897)
intrinsic sin,cos,|og
c
C _________________________________________________________________
c
c ENSURE r | S POSI TI VE
if (r.1t.0.0) then
r = abs(r)
theta = theta + pi
endi f
c CENTRAL BULGE COVMPONENT
ql = r*r
g2 = z*z
g4 = 1.0/ (sqrt(ql+gq2+blsq))**3
drl = gnl*r*q4
dz1l = gnl*z*q4
c DI SC COVPONENT
g4 = sqgrt(g2+b2sq)
g5 = a2+q4
6 = g5*q>5
g7 = 1.0/ (sqrt(ql+qg6))**3
dr2 = r*gnk*q7
dz2 = z*gnmR*qg5*q7/ q4
c HALO COVPONENT
g3 = ql1 + g2
g4 = q3**0.01
a5 = sqrt(qg3)
q6 = g4*q5
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g7 = g4/ g5
g8 = gnB*q7*a3_202/ (1. 0+g6*a3_102)
dr3 = r*q8
dz3 = z*q8

SPI RAL  COVPONENT

fn = float(narm

g4 = anp*r

g5 = (r/r0)**p

g6 = 1.0 + g5

g8 = fn*(theta-t*onegap+l og(q6)*rtang/ p)
g9 = cos(Qg8)

gl0 = g1 + adsq

gll = g10*ql0

gl2 = 1.0/ ql1

gl3 = sin(qg8)

dr4 = -2.*q4*q9*ql2+q4*ql3*f n*q5/ q6*rt ang*ql2+
+ 4. *anp*ql*r*q9/qll/ ql0
dpdt ht = anp*ql*ql3*fn*ql2

SUM ALL CONTRI BUTI ONS

dpdr = drl1 + dr2 + dr3 + dr4
dpdz = dz1l + dz2 + dz3
return

06/11/93 jpsi8 ver 2.1
kkhkhkkhkhkkhkhkkhkkhhkkhkhkkhhkhhkhkhkhkdhhkdhhkdhhdhhkhhkhhhdhhkdhdhhhkkhhkhhhdhhdhdkdhkhhkhdhhdhkhkkhkh,x*x*x

entry potential (r,theta,z,t,phi)

Returns val ue of potential at point (r,theta,z) and at tinme t.

I NPUT VARI ABLES:

r }

theta } - coordinates
z }

t - tine

QUTPUT VARI ABLES:
phi - potenti al

EE R I R R R I R I R I I I I I R R I R R R S R I
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O 000

OO0 000O0

APPENDIX B. SIMULATION SOURCE CODE

CENTRAL BULGE COVPONENT

r*r
z*z
= -gml/sqrt (ql+g2+blsq)

DI SC COVPONENT

ph2

= -gnR/sqgrt(ql+(a2+sqrt(qg2+b2sq)) **2)

HALO COVPONENT

sqrt (ql+g2)

(g3/al3)**1.02

1.0 + g4

-gnB*q4/ a3/ g5

1.02*a3

-gnB8* (1 og(qg5)-1.02/g5)/q7
1.0 + 500.0/ a3

gnB*(1 0g(q9)-1.02/q99)/q7
g6 + g8 + q9

SPI RAL  COVPONENT

(r/r0)**p
1.0 + g5
fl oat (narm *(theta-t*onegap+l og(g6)*rtang/ p)
cos(g8)
(gl + adsq)**2
-anp*ql*q9/ ql10

SUM COMPONENTS

phi

= phl + ph2 + ph3 + ph4

return

end

06/11/93 jpsi8 ver 1.0
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subroutine pot_init

Initialises conmon block for potential calculations by

defini ng constants.
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i ncl ude ' header.inc’

i nclude 'potential.inc

data a2, a3, a4,bl,b2 / 26.59, 60.0, 35.0, 1.937, 1.25/
data gmi, gn2, gnB / 7.93e2, 4.81e3, 6.02e3 /

adsq = ad*a4
blsq bl*bl
b2sq b2* b2

a3_202
a3_102

a3**(-2.02)
a3**(-1.02)

rtang = 1. 0/tand(ang)

return
end

24/ 09/93 jps18 ver 1.0
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subroutine vcirc (ncloud,t)

Cal cul ates circul ar speed for each cloud particle, and
stores results in array VROT passed via conmon ’'vrotblk’

I NPUT VARI ABLES:
ncl oud - nunber of cloud particles
t - sinmulation tine

EE R I R R I R I R I R R I I I I S R I R I R R S R I

i ncl ude ' common. i nc

i nteger ncloud, I SEE ABOVE
+ [ I LOOP COUNTER
real t, I TIME
+ dpdr, dpdt ht, dpdz | POTENTI AL DERI VATI VES
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do 10 i =1, ncl oud
call dphi (cloud(1,i),cloud(2,i),cloud(3,i),t,
+ dpdr, dpdt ht, dpdz)
vrot (i) = sqgrt(dpdr*cloud(1,i))
10 conti nue

return
end

Library routines

25/11/92 jpsl8 ver 1.0
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O 000

function dcosrule (rl,r2,theta)

Eval uates a**2 where
ar*2 = rl1**2 + r2**2 -2*r1*r2*cos(theta)
Routi ne uses doubl e precision

EE R I R R R I R I R R I I I R I I R

OO0 0000O0

real *8 r1,r2,theta, dcosrul e
intrinsic dcos

dcosrule = (rl*rl)+(r2*r2)-(2.d0*r1*r2*dcos(theta))

return
end

05/05/93 jpsi8 ver 1.1
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OO0 00

i nteger function fphandler (sig, code, sigcontext, addr)

Fl oati ng poi nt exception handler. The type and address of any
exception is printed to standard out put. The hex address can
be interpreted by running the programwi thin the debugger and
setting a breakpoint using stopi at Ox[hex address].

EE R I R R I R R I R I I I I I S S I R R I I I R S I S I R

O0O00000O0

i nteger sig, code, sigcontext(5)
i nt eger addr



181

character*9 excep(49:53)
data excep /' INEXACT ',’'DIV ZERO ' ,’' UNDERFLOW,
+ "INVALID ', OVERFLOW '/

wite (*,11) excep(loc(code)/4),|oc(addr)
11 format ('ieee exception ',a9,’ occurred at address ', z8)

return
end
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Includefiles.
c 30/08/93 | psl8 ver 7.0
c
c COMMON. | NC
c
c Decl arations for main data common bl ocks
i nt eger ncl max, I MAX NUMBER OF CLOUD PARTI CLES
+ nst max I MAX NUMBER OF STAR PARTI CLES
par anmet er (ncl max=32750, nst max=32750)
i nt eger cl age( ncl max), I AGES OF CLOUD PARTI CLES
+ st age(0: nst max) I AGES OF STAR PARTI CLES
real cl oud( 7, ncl max), I COORDI NATES AND MASSES OF CLOUDS
+ star (6, nst nax) I COORDI NATES OF STARS

conmon /cl bl k/ cl oud, cl age
conmon /stbl k/ star, stage

c Decl arations for circular rotation speed table
real vr ot ( ncl max)

conmmon /vrotbl k/ vrot

21/12/93 jpsl8 ver 6.2

HEADER. | NC

O 0000

Decl arations for comon bl ock containi ng header information

i nt eger ncl oud, NUVMBER OF CLOUDS

|
+ nst ar, I NUMBER OF STARS
+ i tmax, I NUMBER OF TI ME STEPS REQUI RED
+ dunp, I QUTPUT EVERY dunp Tl MESTEPS
+ narm I NUMBER OF SPI RAL ARMS
real tstep, I SI MULATI ON TI ME STEP
+ a0, I TURBULENT GAS VELCCI TY
+ el as, I ELASTICITY OF CLOUD CLOUD | NTERACTI ONS
+ vimax, I MAX SPEED GAI N FROM CLOUD- SNR | NTERACTI ONS
+ nst , I CRITI CAL MASS FOR STI MULATED SF
+ nsp, I CRITI CAL MASS FOR SPONTANEQUS SF
+ ef f, I CLOUD DI SRUPTI ON FACTOR
+ onegap, I SPI RAL PATTERN SPEED
+ P, I PONER OF SPI RAL SW TCH OVER
+ ang, I SPI RAL PI TCH ANGLE
+ anp, I SPI RAL AMPLI TUDE
+ ro I SPI RAL SW TCH OVER RADI US
|

character source*12 NAME OF SOURCE FI LE
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conmon / hdbl k/ tstep, a0, el as, vimax, nst, nsp, ef f, onegap, p, ang, anp,
+ r0, ncl oud, nstar, i t max, nar m dunp, sour ce

06/11/93 jpsi8 ver 2.0
POTENTI AL. | NC
Decl arations for paraneters describing potenti al

real a2, a3, a4,
b1, b2,
gnt, gn, gns,
adsq, blsq, b2sq,
a3_202,a3_102,
rtang

+ 4+ + + +

common / pot bl k/ a2, a3, a4, b1, b2, gnt, gnk, gnB8,
+ adsq, blsq, b2sqg, a3_202, a3_102, rtang

15/10/93 | psl8 ver 2.1
NEI GHBLK. | NC

Decl arati ons for nei ghbour comon bl ocks.
N.B. ncellx and ncellz MJST be even

i nt eger nei ghmax, I' MVAX NO PO NTS IN ONE GRID CELL
+ ncel I x, I NO OF CELLS IN X/Y DI RECTI ON
+ ncel | z I' NO OF CELLS IN Z DI RECTI ON
par anet er (nei ghnax=50, ncel | x=160, ncel | z=30)
i nt eger nei gh(5* nei ghmax) I ARRAY OF NEI GHBOUR | NDI CES
i nteger*2 igrid(nei ghmax, ncel I x, ncellx,ncellz), ! PO NT I NDI CES
+ ngrid(ncellx, ncellx,ncellz) ! NO PONTS |IN EACH CELL
real rnei gh(5*nei ghmax), ! ARRAY OF NEI GHBCUR DI STANCES
+ hal f x, I HALF SIZE OF GRID I N PLANE
+ hal f z, I HALF SI ZE OF GRID PERP. TO PLANE
+ gsi ze I' GRI D SPACI NG

common / nbl k1/ nei gh
comon /nbl k2/ igrid, ngrid
common / nbl k3/ rnei gh, hal fx, hal fz, gsi ze
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makef i | e for entire program.

# 13/09/94 jpsl8 ver 1.3

# Makefile for programgal axy. This version replaces the

# earlier makfile, and will hopefully be easier to update

# as the programevolves. Sinply update the macro lists with
# the new subroutines, conpiler options etc.

#

# 13/09/94 ver 2.0 SOLARI S

PROGRAM= gal axy

SQURCES= nodel .f init.f rotate.f data_read.f output.f \
propagate.f collisions.f neighbour.f entropy.f

| NCLUDE= common. i nc header.inc nei ghblk.inc potential.inc
FFLAGS=-u -C -0 -dalign -¢cg92 -libm|l

ULI BS= /hone/jpsl8/Ilibrary/libfp.a /hone/jpsl8/library/libnr.a
SLIBS= -1nag ‘iolink’

# From here onwards nothing shoul d need to be changed.
OBJECTS= $( SOQURCES: . f =. 0)

. SUFFI XES: . prj

. KEEP_STATE:

$( PROGRAM) : $( OBJECTS) $(|NCLUDE) $(ULI BS)
$(LINK f) $(OBIECTS) $(ULIBS) $(SLIBS) -0 $@

$(ULI BS) : FORCE
cd $(@) ; $(MAKE) $(@) "FFLAGS=$(FFLAGS)"

FORCE :
PRJS=$( SOURCES: . f =. prj )

check : $(PRJS)
ftnchek $(PRJS)

foprj
ftnchek -project -noextern -library $<
References

Numerical Algorithms Group Limited, 1993, NAG Fortran Library Manual, Mark 16
PressW. H., Teukolsky S. A., Vetterling W. T., Flannery B. P, 1992, Numerical Recipesin FORTRAN, Cambridge Uni-
versity Press, Cambridge, 2nd edn.



Appendix C

Classification of galaxies

There are many classification schemes in common usage. | will not attempt here to discuss the
relative merits of each scheme — Mihaas & Binney (1981) give areview in their book to which
| refer the reader for further information. Instead | will give only an outline of each scheme and
how to convert between them.

The most widely used scheme is that due to Hubble (1936), and is illustrated below in Fig.
C.1. Thedlipticals(early—type) are classed according to their sphericity, and this system has not
been subsequently modified by other authors. Spiral gaaxies (late-type) are divided according
to the relative size of the bulge and the resolution and pitch angle of the arms. This approach to
spiral galaxies, with their far greater range of morphologiesis somewhat limited and has attracted
anumber of attempts to improve upon it.

De Vaucouleurs (1959) in his Revised system introduced several new features: (i) additiona
stages (e.g. Sd, Im) to supplement the Hubble scheme, (i) a redesignation of normal galaxies as
‘SA', with ‘SB’ used for clearly barred galaxies, and ‘ SAB’ for those which are somewhat am-
biguous and (iii) additional labelsr and s for spira and lenticular gal axies which are either ring-
or s-shaped. The classification iscompleted by one or two lower case | etters defining the tightness

FigureC.1

@’ @_ The Hubble sequence of gaactic
/’/ — morphologies. The diagram differs
S0, Sa Sb Sc

slightly from Hubble's original since

yaE . . .
e it shows various stages of lenticular
TNNe W galaxies between the dlipticals and
3 SBa
\

@ o o spirals. Illustration reproduced from
\@\@_ Mihalas & Binney (1981).
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Table C.1. The Revised Hubble sequence. Table reproduced from de Vaucouleurset al. (1991).

Classes Families Varieties Stages T Type
Ellipticas Compact -6 cE
Elliptical (0-6) -5 EO
Intermediate -5 EO1
“cD” -4 ET
Lenticulars 2 0
Ordinary SAO0
Barred SBO
Mixed SABO
Inner ring ()0
S-shaped S(s)0
Mixed S(rs)0
Early -3 SO
Intermediate 2 S0°
Late -1 sot
Spirals Ordinary SA
Barred SB
Mixed SAB
Inner ring S(r)
S-shaped S(s)
Mixed S(rs)
O/a 0 SO/a
a 1 Sa
ab 2 Sab
b 3 Sb
bc 4 Sbc
c 5 &
cd 6 Scd
d 7
dm 8 Sdm
m 9 Sm
Irregulars  Ordinary 1A
Barred IB
Mixed IAB
S-shaped I(s)
Non-Magellanic 90 10
Magellanic 10 Im
Compact 11 cl
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- e e FigureC.2

' The DDO system of galaxy classifica-
tion. Illustrationreproduced from Mi-
halas & Binney (1981).

of the spira arms, similar to the origina Hubble system. Table C.1 illustrates the extended sys-
tem, and Table C.2 providesacorrespondence between the the Revised and Hubble schemes. The
T-types are simply a numeric scal e corresponding to the Revised classification.

The Yerkes system (Morgan 1970) classifies galaxies according to their degree of central con-
centration only, in an attempt to clarify an overlapping of Hubble classeswhen considering thein-
tegrated spectraof the nuclear region. The Yerkes classification runsk—awith k representing the
most centrally concentrated galaxies. Thisis followed by a capital letter representing the galaxy
type (Spiral, Barred spiral, Elliptical, Irregular, Rotationally symmetric but without obvious spiral
or dliptical form and finally those with an elliptical-like nucleus and a Diffuse envel ope) together
with a number indicating the sphericity in the range 1—7 (1 = spherica).

The DDO system, developed by van den Bergh (1976) at the David Dunlap Observatory, com-
bines features of both the Hubble and Yerkes schemes. This time a three-pronged *tuning fork’
arrangement is adopted (Fig. C.2) with anew ‘anaemic spiral’ (i.e. gas poor) type introduced in
parallel to the lenticulars and normal spirals. Bars are indicated by ‘B’, and within a sequence a

Table C.2
Conversion of Hubbletypesto Revised System. Table

Hubble Revised T

E—SO E_ 2 reproduced from de Vaucouleurs et al. (1976).
0 L -2
Irri 10 0
O/a O/a 0
Sa 1
Sab Sab 2
Sb 3
Sb—c Sbe 4
Sc Scd 6
Sc-rr Sdm 8

=
-
3
=
o
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galaxy is categorised (using the letters a—) by its degree of central concentration only (the arm
pitch angle is not relevant). By combining this classification with a luminosity class for spiras
(both normal and anaemic) we have the Revised DDO system. The luminosity classis assigned
according to the development of the spiral arms and is denoted by roman numerals 1-V, with |
representing the most well-devel oped spiral structure.

Thevarious schemes described in brief aboverefer principally to normal galaxies. Other clas-
sificationsfor peculiar, interactingand active galaxiesalso exist — | again refer theinterested reader
to Mihalas & Binney (1981) for areview.
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Abbreviations used in the text

A&A Astronomy and Astrophysics

A&AS Astronomy and Astrophysi cs Supplement
Al Astronomical Journa

ApJ Astrophysical Journa

ApJS Astrophysical Journal Supplement

CFR Cluster Formation Rate

CPU Central Processing Unit

CR Co-rotation Resonance

DDO David Dunlap Observatory (galaxy classification scheme)
DSS Digitized Sky Survey — see page (ii)
GMC Giant Molecular Cloud

FFT Fast Fourier Transform

FIR Far Infra-Red

IAP Institut d’ Astrophysiquede Paris

IC Index Catalogue

ILR Inner Lindblad Resonance

IMF Initial Mass Function

IR Infra-Red

IRAS Infra-Red Astronomical Satellite

ISM Interstellar Medium

JCMT James Clerk Maxwell Telescope

KS Kolmogorov—Smirnov (statistical test)
LMC Large Magellanic Cloud

MB Megabyte

MNRAS Monthly Notices of the Roya Astronomical Society
MST Minimal Spanning Tree

NGC New General Catalogue

OLR Outer Lindblad Resonance
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190 ABBREVIATIONSUSED IN THE TEXT

PA Position Angle

PASP Proceedings of the Astronomical Society of the Pacific

PM Particle-Mesh method (N-body simulation)

PP Particle—Particle method (N-body simulation)

P3M Particle—Parti cle—Particle-M esh method (N-body simulation)
PSF Propagating Star Formation

RC3 Third Reference Catal ogue of Bright Galaxies (de Vaucouleurset al. 1991)
SDw Spiral Density Wave

SF Star Formation

SFR Star Formation Rate

Sl Systéme Internationa d’ unités

SNe Supernovae

SNR Supernova Remnant

SPH Smoothed Particle Hydrodynamics

SPSF Self-Propagating Star Formation

SSPSF Stochastic Self-Propagating Star Formation

uv Ultra-Violet



Symbolsused in the text

spira density wave amplitude; Fourier transform of point distribution
magnetic field strength

galactic magnetic field estimated using minimum-energy condition
cumul ative distribution functions

cloud diameter

galactic diameter; Kuiper statistic

Hausdorff fractal dimension

generalised Hausdorff multifractal dimensions

generalised Rényi multifractal dimensions

gravitational constant = 6.672 x 10~ N m?kg—2

integration step size

atomic hydrogen

ionised hydrogen

radiation from ionised hydrogen corresponding to electron transition
between n=3 and n=2 levels

molecular hydrogen

pitch angle of imposed spird density wave

pitch angle of pattern traced by young stellar clusters
Kolmogorov—Smirnov statistic

edge-lengths of minimal spanning tree

mean value of |

far infracred luminosity

Solar bolometric luminosity = 3.90 x 10%6 W

molecular cloud mass

critical mass for collapse of a magnetised cloud

median cloud mass

scaling mass for spontaneous star formation

scaling mass for stimulated star formation
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SYMBOLSUSED IN THE TEXT

total cloud mass

Solar mass = 1.989 x 10% kg

number density; number of spiral arms; Schmidt Law index
number of points

probability

critical probability (percolation theory)

probability of spontaneous star formation

probability of stimulated star formation

Fourier transform conjugate variable, g = —ncot(ip); density scaling re-
gime for multifractals

radial coordinate

scaling range used with correlation—sum multifractal technique
In(r)

genera speed/velacity

cloud velocity dispersion

maximum speed impulse that can be given to acloud by a collisionwith a
supershell

root mean square velocity dispersion of clouds

speed of sound

volume of galaxy

kernel function used in smoothed particle hydrodynamics
axia coordinate

fraction of cloud remaining after star formation event
‘easticity’ of cloud—cloud collisions

azimuthal coordinate

epicyclic frequency

genera density

volume density of total gas (atomic plus molecular)
volume density of atomic hydrogen

star formation rate (volume density)

surface density of tota gas (atomic plus molecular)

surface density of atomic hydrogen

surface density of molecular hydrogen

star formation rate (surface density)

cloud cross-section

refractory time; cloud regrowth time; multifractal function
cluster formation rate (number per unit time)

Keplerian angular velocity

spird pattern speed
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Vulgo enin dicitur: Icundi acti labores.
Foritiscommonly said: completed labours are pleasant.

Cicero, De Finibusbook 2, ch. 105



