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ABSTRACT

We develop a framework for modeling conditional loss distributions through the
introduction of risk factor dynamics. Asset value changes of a credit portfolio are
linked to a dynamic global macroeconometric model, allowing macro effects to be
isolated from idiosyncratic shocks. Default probabilities are driven primarily by
how firms are tied to business cycles, both domestic and foreign, and how business
cycles are linked across countries. The model is able to control for firm-specific
heterogeneity as well as generate multi-period forecasts of the entire loss distribution,
conditional on specific macroeconomic scenarios.

Keywords: Risk management, economic interlinkages, loss forecasting, default cor-

relation
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1 Introduction

Risk management in general and credit risk analysis in particular has been the focus
of extensive research in the past several years. Credit risk is the dominant source of
risk for banks and the subject of strict regulatory oversight and policy debate (BIS
(2001a,b)).1 Most recently, the proposal by the Bank for International Settlements
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(BIS) to reform the regulation of bank capital for credit risk (known as the New
Basel Accord, or BIS 2) has sparked an intense debate in the literature (inter alia,
Jones and Mingo (1998), Altman, Bharath and Saunders (2002)). One strand of
this debate centers on the effect of business cycles and especially of severe economic
downturns on bank risk and value-at-risk capital requirements (Carpenter, Whitesell
and Zakrajšek (2001), Carey (2002), Allen and Saunders (2002)). However, this
debate has been taking place largely without the benefit of an explicit model of
the linkages that exist between the loss distribution of a bank’s credit portfolio and
the evolution of the macroeonomic factors at national and global levels. Given the
increasing interdependencies in the global economy, risk managers of commercial or
central banks alike may well be interested in questions like “What would be the
impact on the credit loss distribution of a given bank (or banks) in a given region if
there were large unfavorable shocks to equity prices, GDP or interest rates in that
or other regions?”
Our aim is to develop a conditional modeling framework for credit risk analysis

which establishes an explicit linkage between a portfolio of credit assets and the
underlying international macroeconomic system. The model is able to distinguish
between default (and loss) due to systematic versus idiosyncratic (or firm specific)
shocks, providing an explicit channel for and model of default correlation. This
enables us to conduct policy analysis on the effect of changes in macroeconomic risk
factors on credit risk. Our approach is thus a step towards joint consideration of
market and credit risk.
In this paper we start with a simple problem: the development of a conditional

loss model using only publicly traded firms. In a simple Merton-type credit portfolio
model, credit risk is a function of correlated equity returns of the obligor compa-
nies. These equity returns are linked to macroeconomic variables (national as well
as global) using an approach structurally similar to the Arbitrage Pricing Theory
(APT). Default probabilities are driven primarily by how firms are tied to busi-
ness cycles, both domestic and foreign, and how business cycles are linked across
countries. Importantly, the foreign variables are tailored to match the international
trade pattern of the country under consideration. Domestic and foreign business
cycle effects are allowed to impact each firm differently. In this way we are able to
account for firm-specific heterogeneity in an explicitly interdependent global context.
Moreover, we are able to generate multi-period forecasts of the entire loss distribu-
tion, conditional on specific macroeconomic scenarios. A flexible understanding of
these loss distributions are critical for risk management applications and pricing of
complex credit assets such as collaterized debt obligations (CDOs).
Credit risk modeling can be broken down along several dimensions. One split

is between asset- or firm-based versus portfolio approaches. Broadly, there are two
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important variables describing asset/firm level credit risk: the probability of default
(PD) and the loss given default (LGD).2 The former has generated a rich literature,
an early example being Altman (1968).3 If the firm is privately held, the modeler has
much poorer information than if the firm is public. The private firm case invariably
requires a valuation model based on firm financial and non-financial characteristics
(e.g. Altman (1968)), while the latter can, in addition to such variables, incorporate
information from debt and equity markets (recent examples are Shumway (2001),
Kealhofer and Kurbat (2002), Vassalou and Xing (2002)). Several authors have
estimated default probabilities through an asset pricing approach by extracting those
probabilities from prices of defaultable bonds (Jarrow and Turnbull (1995), Madan
and Unal (1998), Duffie and Singleton (1999), Duffee (1999)).
The literature on modeling LGD (sometimes called loss severity) is not nearly

as rich as it is for PD. Most of the work has been strictly empirical (Altman
and Kishore (1996), Gupton, Gates and Carty (2000), Van de Castle, Keisman and
Yang (2000)), documenting LGD variation by such factors as industry, instrument
seniority and type. The asset pricing literature, recognizing that bond spreads
incorporate expected loss (i.e. EL = PD · LGD), has only recently developed
theoretical models which aim to separate recovery (1 − LGD) from probability of
default (Bakshi, Madan and Zhang (2001), Unal, Madan and Guntay (2003)).
While credit risk models based on asset prices, specifically on credit spreads

of defaultable bonds, have a distinct theoretical appeal, recent research strongly
suggests that much of the information in bond spreads is unrelated to default risk
(Elton, Gruber, Agrawal and Mann (2001), Huang and Huang (2002)).4 Collin-
Dufresne, Goldstein and Martin (2001) investigate the changes to the corporate
credit spread and conclude that factors such as changes in levels and slopes of
treasury interest rates, the business climate, changes in market volatility and the
Fama-French type factors, in fact explain only a small fraction of the variations in
the corporate credit spread.
Moving from individual assets or firms to a portfolio, most credit portfolio models

link the portfolio loss distribution to states of the world which provides the channel
for default correlations. However, with only one exception this linkage is to a single,
unobserved systematic risk factor. That is the case for adaptations of the options
based approach à la Merton (1974) found in credit portfolio models such as Gupton,
Finger and Bhatia’s (1997) CreditMetrics, KMV’s PortfolioManager, as well as in

2The New Basel Accord explicitly mentions two additional variables: exposure at default and
maturity. As these affect credit risk only moderately (and are often taken to be non-stochastic),
our discussion will focus on the two dominant variables of PD and LGD.

3For a survey of different models see Altman and Saunders (1997) and Chava and Jarrow (2001).
4The other principal factors are taxes and liquidity.
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the actuarial approach employed by CSFB’s CreditRisk+ (Credit Suisse First Boston
(1997)) where the key risk driver is the variable mean default rate in the economy.
Wilson’s (1997a,b) model (CreditPortfolioView) is an exception. He allows for the
macroeconomic variables to influence a firm’s probability of default using a pooled
logit specification. However, because the defaults are grouped, typically by industry,
and modeled at the (single country) national level, any firm-specific heterogeneity
is lost in the estimation.
Business cycle fluctuations can have a major impact on credit portfolio loss

distributions. Carey (2002), using re-sampling techniques, shows that mean losses
during a recession such as 1990/91 in the U.S. are about the same as losses in
the 0.5% tail during an expansion. Bangia et al. (2002), using a regime switching
approach, find that capital held by banks over a one-year horizon needs to be 25-30%
higher in a recession that in an expansion.
Most of the work on PD and LGD referred to above has been done without

explicit conditioning on business cycle variables. The exceptions include Carey
(1998), Frye (2000) and Altman, Brady, Resti and Sironi (2002). These studies,
perhaps not surprisingly, find that losses are indeed worse in recessions. Tapping
into information contained in equity returns (as opposed to credit spreads from
debt instruments), Vassalou and Xing (2002) show that default risk varies with the
business cycle. Allen and Saunders (2002) survey academic and practitioner models
of credit risk with a specific focus on the treatment of systematic or cyclical effects.
They find that although many models consider the correlation between default (PD)
and systematic (e.g. macroeconomic) factors, few extend this dependence to LGD.
The basic idea of our approach is to make the linkage between credit risk and

business cycle fluctuations more concrete, providing a tool for policy analysis, risk
management and the pricing of credit assets. The first step in developing such a
model is to build an economic engine reflective of the environment faced by an
internationally active global bank. This is done in Pesaran, Schuermann and Weiner
(2003) — hereafter PSW — using recent advances in the analysis of cointegrating
systems,5 where we develop a global vector autoregressive macroeconometric model
(GVAR). In contrast to existing models, the use of cointegration is not confined to
a single country or region. We first estimate specific vector error-correcting models
(VECM) for individual countries (or regions). This VECM structure allows us
to impose long-run (cointegrating) restrictions on the variables.6 The model uses
domestic macroeconomic variables such as GDP, the general price level, the level of

5In particular, see Pesaran and Shin (2002), and Garratt, Lee, Pesaran and Shin (2003).
6To be sure, particular interpretations of these relations in the form of alternative exactly iden-

tifying restrictions have no effect on the loss distribution outcomes of the various shock scenarios
we consider.
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short term interest rates, exchange rate, equity prices (when applicable) and money
supply. These are related to corresponding foreign variables constructed exclusively
to match the international trade pattern of the country under consideration. Because
of the integrated nature of the model, we can analyze how a shock to one specific
macroeconomic variable affects other macroeconomic variables, even (and especially)
across countries, as well as shocks to risk factors, e.g. oil prices, affecting all regions.
We examine the credit risk of a fictitious corporate loan portfolio and its exposure

to this wide range of risk factors in the global economy. Wemodel a firm’s probability
of default as a function of those risk factors but assume loss given default as an
exogenously given random variable. Once we pin down the link between equity
returns and macroeconomic variables, we derive the overall single- and multi-period
credit loss distribution of a sample portfolio through Monte Carlo simulation.
Sampling takes place along three lines: correlated random draws of macroeco-

nomic factors; draws of firm-specific risk components; and draws of stochastic loss
severities. Our baseline distributional assumption is Gaussian,7 but we also present
results of the fatter tailed Student t distribution with 10 and 5 degrees of freedom.
Our approach differs from others such as Wilson’s (1997a,b) who directly models the
default probability using only single-country macroeconomic factors as regressors.
We do so indirectly via the Merton model and use a much richer macroeconometric
specification which allows for country/region specific heterogeneities.
The plan for the remainder of the paper is as follows: Section 2 provides an

overview of the alternative approaches to credit portfolio modeling. Section 3 sets
out the basic framework of our model based on the Merton approach. Section 4
discusses the global macroeconometric model (the GVAR). Section 5 shows how to
incorporate the GVAR into the Merton model and develops mathematical expres-
sions for the conditional loss distribution of a given credit portfolio under various
shock scenarios, including one-period and multi-period forecasting of the whole loss
distribution. Section 6 presents summary estimation results for the GVAR based
on 11 countries/regions covering about 80% of world output. Section 7 considers
the loss distribution of a given credit portfolio and empirically investigates its re-
sponse to different types of shocks (to output, interest rate, money supply and equity
prices). Section 8 offers some concluding remarks.

7Loss severities are drawn from a beta distribution.
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2 Credit Portfolio Models

2.1 An Overview

Our primary goal is to build up the loss distribution of the credit portfolio of a
financial institution such as a bank, first unconditionally and then with explicit con-
ditioning on macroeconomic factors. The unconditional distribution is intended to
be “cycle-neutral” and provides a benchmark loss distribution which is applicable
in the very long run and integrates out the differential effects of business cycle vari-
ations (boom, bust, expansion, recession, etc.) on the loss distribution. The condi-
tional loss distribution allows for the effect of business cycle variations and captures
such effects at a global level by explicitly taking account of the heterogeneous in-
terconnections and interdependencies that exist between national and international
factors. In this setting, the probability of default for firm j in country/region i can
be (indirectly) affected by economic activity in some other region, `.
In any given time period, the probability of default for firm j in region i will

be correlated, through the influence of common macro effects (or systematic risk
factors) in region i, and globally, with the probability of default of other firms in
the bank’s portfolio. However, not all macro factors will affect all firms in the same
way. Most credit portfolio models share this linkage of systematic risk factors to
default and loss; they differ in specifically how they are linked.
Generally speaking, there are two broad approaches to credit risk or credit portfo-

lio modeling.8 The first couples a simple model of firm performance with a threshold
value below which the firm defaults. The default threshold is modeled as a func-
tion of the firm’s balance sheet and its financial structure. This “structural” model
underlies the so-called Merton options approach after Merton (1974), which we will
follow in this paper. Practitioner credit portfolio models such as Gupton, Finger and
Bhatia’s (1997) CreditMetrics as well as KMV’s PortfolioManager are adaptations
of this approach.
The second modeling approach focusses on the factors that influence firm de-

faults directly. Two examples are CreditPortfolioView (Wilson (1997a,b)) where
the firm-specific probability of default is estimated via a logit specification with
macro-variables entering the logit regression directly, and the actuarial approach of
CSFB’s CreditRisk+ (Credit Suisse First Boston (1997)) where the key risk driver is

8The different credit portfolio models are also distinct in the way they approach changes to the
firms’ value. Some models operate on a mark-to-market basis by looking at the change of market
value of credit assets based on credit migration and the term structure of credit spreads (Credit-
Metrics). Others focus on predicting default losses (so-called default mode models such as CSFB’s
CreditRisk+). Yet there are other approaches that allow for both (e.g. KMV’s PortfolioManager,
Wilson’s CreditPortfolioView).
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the mean default rate assumed to be a function of the macroeconomic variables. We
provide a brief overview of the Wilson model before developing the Merton options-
based model. For detailed comparisons, see Koyluoglu and Hickman (1998), Crouhy
et al. (2000), Gordy (2000), Saunders and Allen (2002) and Allen and Saunders
(2002).

2.2 A First Generation Credit Risk-Macroeconometric Model

CreditPortfolioView (CPV) by Wilson (1997a,b) directly models the relationship of
transition probabilities or credit grades and the underlying macroeconomic factors,
albeit one country at a time. Typically firms are grouped into industry segments and
default behavior is modeled at the industry, not at the firm level.9 Consequently any
firm-specific heterogeneity will be lost in the grouping and could bias the results.
Wilson assumes that the probability of default for industry group g in region i at
time t, PDgit, is determined by a systematic index variable mgit, common to all
firms in that industry group:

PDgit = fCPV (mgit).

He further specifies f(·) to be logistic, given by 1/ (1 + e−mgit), though other spec-
ifications are possible. The index variable mgit can be viewed as driven by a set of
macroeconomic variables xit as well as industry specific random shocks υgit

mgit = gCPV (xit,υgit),

such that υgjit v N(0, σ2gi). The macroeconomic factors, xit, are modeled by Wilson
as univariate AR(2) processes, although other specifications are possible. Generally
we may write

xit = h(Xi,t−1, εit;β),

so that the systematic factor mgit is made up of predetermined macroeconomic
variables Xi,t−1 = (xit−1,xit−2, ...,xit−p) and a contemporaneous innovation εit. For
given group and sector specific shocks, υgit, εit, the conditional probability of default
can now be written as

PDgit | Xi,t−1 = fCPV (Xi,t−1;υgit, εit).

In practice the effects of the idiosyncratic shocks, (υgit,εit), on the probability de-
fault also need to be integrated out before true conditional default probability can
be obtained.

9Since defaults are modeled directly with a logistic regression, this grouping is necessary because
individual firm defaults are so rare.
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Segment specific default probabilities, needed to obtain estimates of the factor
loadings β, are estimated from bank loan loss experience (which is proprietary)
or bond histories (which are public). If the portfolio is marked to market using a
transition matrix, the conditional probability of default can also be used to adjust
the transition matrix. Crouhy et al. (2000), however, criticize the adjustment
proposed by Wilson (1997a,b) as being ad hoc.

3 A Structural Merton Asset-Based Model of De-
fault

In this section we set out the basic framework of our proposed approach. We shall
begin with a simple structural model of changes to a firm’s credit quality. The basic
premise is that the underlying asset value evolves over time (e.g. through a simple
diffusion process), and that default is triggered by a drop in firm’s asset value below
the value of its callable liabilities. Following Merton (1974), the lender is effectively
writing a put option on the assets of the borrowing firm. If the value of the firm falls
below a certain threshold, the shareholders will put the firm to the debt-holders.
The Merton model is called a "structural" model of credit risk since the model

assumptions are imposed upon the balance sheet — the firm’s structure. The liability
structure in conjunction with the value fluctuations of the firm’s assets determine the
occurrence of default. In contrast to the actuarial approach, the model has strong
underpinnings in the modern theory of corporate finance and option pricing.10

Thus there are two aspects which require modeling: (i) the firm’s performance
or return process, and (ii) the default threshold. Following an approach which
is structurally similar to Ross’s (1976) Arbitrage Pricing Theory (APT), a firm’s
change in value (or return) is assumed to be a linear function of changes in the un-
derlying macroeconomic variables (the systematic component) and the firm-specific
idiosyncratic shocks. There may be other ways to fruitfully characterize the firm’s
performance process. However, our broad modeling goal is to develop a framework
which allows us to link macroeconomic variables explicitly to firms performance in
order to arrive at (macroeconomic) conditional loss distributions. The APT model
architecture allows us to achieve this in a parsimonious manner, while at the same
time taking proper account of return heterogeneities across firms.11

10For a discussion of the power of Merton default prediction models see Falkenstein and Boral
(2001) and Gemmill (2002) who find that the Merton model generally does well in predicting
default (Falkenstein and Boral) and credit spreads (Gemmill). Duffee (1999) points out that due
to the continuous time diffusion processes underlying the Black Scholes formula, short-term default
probabilities may be underestimated.
11For an overview of the theoretical and empirical literature on APT, see Campbell, Lo and
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We follow a typical adaptation of the Merton model by using asset returns and
their volatility instead of total value of assets and their volatility. But since asset
returns are difficult to observe directly, we use equity returns as a proxy.12

3.1 Conditional Asset Returns

Anticipating some of the results from our GVAR model presented in Section 4, we
denote the return of firm j in region i over the period t to t+1 by rji,t+1 and assume
that conditional on the information available at time t, Ωt, it can be decomposed as

rji,t+1 = µjit + ξji,t+1, (1)

where µjit is the (forecastable) conditional mean, and ξji,t+1 is the (non-forecastable)
innovation component of the return process. Following the standard Merton model
we shall assume that

ξji,t+1 | Ωt ∼ N(0,ω2ξ,ji). (2)

The normality assumption could be a good approximation for quarterly returns, but
it is relatively easy to adapt the analysis to allow for fat-tailed distributions such
as (standard) Student t with low degrees of freedom in the range of, say, [5, 10].13

Alternatively, as discussed in Section 5, re-sampling techniques can be used to allow
for more general distributional assumptions. The assumption that the conditional
variance of returns are time-invariant also seems reasonable for quarterly returns,
although it would need to be relaxed for returns measured over shorter periods, such
as weeks or days.14

The GVAR model provides the link between changes in macroeconomic variables
(in region i and globally) in µjit, and it does so uniquely for each firm to allow for
firm-specific heterogeneity. Specifically, domestic and foreign business cycle effects
are allowed to impact each firm differently. The main advantage of using the GVAR
as a driver for a credit portfolio model is that it provides the (conditional) correlation
structure among macroeconomic variables of the global economy. When generating

MacKinlay (1997). Chen, Roll and Ross (1986) test whether macroeconomic variables specifically
matter in asset pricing. Using monthly returns they find that industrial production, changes
in the risk premium (spread on BBB corporate and Treasury bonds), twists of the yield curve
and inflation are significant in explaining expected stock return. Oil prices were not found to be
significant.
12Arguably equity returns are even preferred since they allow for non-constant liabilities within

the Merton framework.
13In fact we do so in Section 7.
14Volatility in quarterly models is of third order importance. Our framework could easily be

adapted to deal with more complex volatility effects by normalizing returns with dynamic volatil-
ities using, for example, the RiskMetrics method or other GARCH specifications.
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loss distributions, this allows us to account for the state of business cycle and the
interdependencies that exist in the global economy in a relatively parsimonious and
internally consistent manner.

3.2 Default Thresholds, PDs and Credit Ratings

The second aspect of the credit risk model is the default threshold with respect to
which the default state can be defined. In the Merton model default occurs if the
value of the firm j in region i at time t falls below a given threshold value, cji. We
can characterize the separation between a default and a non-default state with an
indicator variable I (rji,t+1 < cji) such that

I (rji,t+1 < cji) = 1 if rji,t+1 < cji =⇒ Default, (3)

I (rji,t+1 < cji) = 0 if rji,t+1 ≥ cji =⇒ No Default.

Conceptually it is useful to anchor the default process by fixing the default threshold,
for instance at the end of the sample period, thereby allowing the loss distribution to
shift in response to macroeconomic factors. The problem is not properly identified
if we allow both to be time varying.
Define PDjit = Pr(rji,t+1 < cji | Ωt) as shorthand notation for the probability of

default of company j in region i at time t. The corresponding probability of default
can then be expressed from (1) and (3) as

PDjit = Φ

µ
cji − µjit
ωξ,ji

¶
, (4)

where Φ(·) is the standard normal distribution function. There are no direct obser-
vations on PDjit. Instead what we do have is a credit rating Rjit for a set of large
companies, namely those that were assigned a rating by one of the rating agencies
such as Moody’s or Standard & Poor.15 Importantly we have the rating histories
{Rjit}Tt=1 for all companies j = 1, 2, ..., nci, i = 0, 1, ..., N in the credit portfolio
that we shall be considering. We may use these histories, plus histories for all other
companies with a rating at the beginning of period t, to estimate the default prob-
ability for each rating for each time period, PDRt. For example, the estimated
probability of default for companies rated ’BBB’ in period t may be 22 basis points
(PDBBBt = 22bp), while in period t

0 it may rise to 37bp (PDBBBt0 = 37bp). We are
then able to assign that default probability in period t for rating R to all firms with
that rating in that period.16

15R may take on values such as ’Aaa’, ’Aa’, ’Baa’,..., ’Caa’ in Moody’s terminology, or ’AAA’,
’AA’, ’BBB’,..., ’CCC’ in S&P’s terminology.
16See Section 7 for a discussion on estimating PDRt .
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Given sufficient data for a particular region or country i (the U.S. comes to mind),
one could in principle have PDs varying over i. However, since a particular firm j’s
default is only observable once, multiple (serial) bankruptcies notwithstanding, it
makes less sense to allow PD to vary across j.17 Empirically, then, we will abstract
from possible variation in default rates across countries i, so that probabilities of
default vary only across credit ratings and over time.18

Thus for a particular credit rating Rjit for firm j in region i at time t, (say
‘BBB’), we assign the corresponding default probability estimate PD (Rjit) which
varies over time and across rating types but not over firms individually. Therefore,
two different firms with the same credit rating in period t will be assigned the same
default probability estimates. Specifically

Pr(rji,t+1 < cji | Ωt) = PD (Rjit)

and therefore
cji = µjit + ωξ,jiDT (Rjit) , (5)

where DT (Rjit) = Φ−1 (PD (Rjit)) is the ‘default threshold’ associated with the
estimated default probability PD (Rjit) , and Φ−1(·) denotes the inverse cumulative
standard normal distribution.
Suppose now that we have time series data over the sample period t = 1, 2, ..., T,

and we wish to obtain an estimate of the default threshold at T to be used in
computation of conditional loss distribution over the period T to T + 1. Averaging
the relations (5) over t = 1 to T we obtain

cji = µ̄ji + ωξ,jiDTRji,

where

µ̄ji =
1

T

TX
t=1

µjit, and DTRji =
1

T

TX
t=1

DT (Rjit) .

Note that taking the average of the thresholds rather than the threshold of the
averages will yield different results since the inverse CDF is a nonlinear transfor-
mation. A model-free estimate of µ̄ji is given by r̄ji, the average return over the
sample period; as noted above estimates of PD (Rjit) can be obtained using time
series observations of rating histories from credit rating agencies such as Moody’s
17To be sure, one is not strictly prevented from obtaining firm-specific PD estimates at a given

point in time. The bankrupcty models of Altman (1968) and Shumway (2001) are such examples,
as is the industry model by KMV.
18An important source of heterogeneity is likely the large variation in bankruptcy laws and

regulation across countries. However, by using rating agency default data, we use their homogeneous
definition of default and are thus not subject to these heterogeneities.
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or Standard & Poor; and a consistent estimate of ωξ,ji can be obtained using (42)
in Section 5, based on the estimates of the GVAR model and the APT regression
for firm j in region i. Alternatively, an unconditional (model-free) estimate of the
return variance, say ω2ji = V ar (rji,t+1), could be used. The results are unlikley to
be much affected by which of the two estimated error-variances is used. But the
model-free estimate has the advantage of being simple and arguably is a better re-
flection of the rating agencies’ own approach of not putting too much weight on the
business cycle factors in arriving at their credit ratings (see discussion below).
Adopting the model-free estimation approach, cji can be consistently estimated

at time T by
ĉji = r̄ji + ω̂jiDTRji, (6)

where

ω̂2ji =

PT
t=1 (rjit − r̄ji)2
T − 1 .

Equation (6), while not time-varying per se, could change in the sense of being
updated recursively as new data becomes available, either by using an expanding or
a rolling observation window.
Consider now the possibility of firm j in region i defaulting over period T to

T + 1, viewed at time T . We would say that conditional on information we have at
time T default occurs when rji,T+1 < ĉji, i.e. when

rji,T+1 < r̄ji + ω̂jiDTRji. (7)

While we assume that the default threshold remains constant in the future, we
do allow rji,T+1 to fluctuate in response to changes in underlying macroeconomic
factors. By treating the critical value as constant, we implicitly assume that the
leverage ratio remains constant.19 Thus we continue to make assumptions about the
capital structure of the firm, but ones that are less restrictive and more realistic.20

So we may think of (7) as providing a measure of (unconditional) distance from
default given the information at time T , namely

DfDji,R = rji,T+1 −
¡
r̄ji + ω̂ξ,jiDTRji

¢
(8)

19This approach is reasonable to the extent that firms indeed pursue a target leverage ratio.
However, one may argue that it could not be possible to maintain such a target ratio as a firm
approaches financial distress. Provided the firm has survived, we assume that the critical value is
the same in the next quarter, even if the firm has only narrowly escaped default in the previous
quarter.
20While the standard Merton model assumes liability growth to be zero, the adapted version

can incorporate other growth rates. Still, assuming constant liability growth may be more realistic
than allowing for no fluctuation of liability values at all.
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Figure 1: Distance from default conditional on the state of the economy

Figure 1 illustrates the general idea. The right of the two bell-shaped curves
represents the return distribution as calculated from the historical average over, say,
several decades and thus can be regarded as "unconditional" in that it represents
an average state of the economy. Conditional on a certain state of the economy,
however, the mean return may shift. The illustrative example in Figure 1 shows the
given state of the economy shifting the obligor company closer to default, where the
conditional distance from default is given by the solid curve; the tail area to the
left of the origin has increased. This area represents the conditional probability of
default given a "bad" state of the economy. For the model to be properly identified,
either the return, or implicitly the distance from default, distribution can move and
the threshold stay fixed, or vice versa, but not both.
In the Merton default prediction model, accounting data (book value of callable

liabilities), the market value of equity and the volatility in the market value of
equity are used to derive PD (Rjit).21 We do the inverse: using an existing measure
of expected default probability, we determine the critical value ĉji. This default
measure can be obtained from public sources of firm risk ratings provided by rating
agencies such as Moody’s or Standard & Poor.22 Both of these rating agencies give
21This approach is taken by KMV to generate what they call EDF s (expected default frequen-

cies) at the firm level. See also footnote 17.
22For an overview of credit ratings and the credit rating industry, see Cantor and Packer (1995)

and White (2001).
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solvency standards for the rated institutions and their publicly issued debt (bonds)
in the form of a credit grade, which may then be converted to a probability of default
(e.g. PD(AAt), the (annual) probability of default for an ‘AA’ rated firm), using
historical data on bond defaults. Hence credit ratings allow us to get a measure of
the expected default probability without the need for balance sheet analysis.
Mappings from credit ratings to default probabilities are typically obtained using

corporate bond rating histories over many years, often 20 years or more, and thus
represent some average across business cycles. The reason for such long samples is
simple: default events for investment grade firms are quite rare; for example, the
annual PD of an ’A’ rated firm is approximately one basis point for both Moody’s
and S&P rated firms.
In the literature, the use and specific interpretation of credit ratings is somewhat

ambiguous. One interpretation is that they are "cycle-neutral" (Saunders and Allen
(2002), Catarineu-Rabell, Jackson and Tsomocos (2002), Amato and Furfine (2003);
Carpenter, Whitesell and Zakrajšek (2001) point to some of the ambiguities), mean-
ing that ratings are assigned only on the basis of firm-specific information and not
systematic or macroeconomic information.23 The rating agency’s own description of
their rating methodology broadly supports this view.

(Moody’s (1999), p.6,7): ".. [O]ne of Moody’s goals is to achieve stable
expected [italics in original] default rates across rating categories and
time." ... "Moody’s believes that giving only a modest weight to cyclical
conditions best serves the interests of the bulk of investors."

(S&P (2001), p.41):"Standard & Poor’s credit ratings are meant to be
forward looking; ... Accordingly, the anticipated ups and downs of busi-
ness cycles — whether industry-specific or related to the general economy
— should be factored into the credit rating all along." ... "The ideal is to
rate ’through the cycle’".

However, there is ample evidence to suggest that credit ratings and associated
default probabilities vary systematically with the business cycle (e.g. Nickell, Per-
raudin and Varotto (2000), Bangia et al. (2002)). Moody’s itself has changed its
rating process in this regard (Moody’s (1999), p.6): "Moody’s has been striving for
some time to increase the responsiveness of its ratings to economic developments."
Our mapping from default experience to thresholds allows for this time variation.
23Amato and Furfine (2003) find little evidence of procyclicality in ratings.
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4 An Overview of the GVAR Framework24

This section presents a synopsis of the global vector autoregressive model (GVAR)
as a generator of global macroeconomic dynamics and scenarios. It gives an overview
of the framework underlying the GVAR without going into the details of estimation
techniques.25 In contrast to existing modeling approaches, in the GVAR the use of
cointegration is not confined to a single country or region. By estimating a cointe-
grating model for each country/region separately, we are also able to allow for endow-
ment and institutional heterogeneities that exist across the different countries in our
modeling strategy. Accordingly, specific vector error-correcting models (VECM) are
estimated for individual countries (or regions), by relating domestic macroeconomic
variables such as GDP, inflation, equity prices, money supply, exchange rates and
interest rates to corresponding foreign variables constructed exclusively to match
the international trade pattern of the country/region under consideration. By mak-
ing use of specific exogeneity assumptions regarding the ‘rest of the world’ with
respect to a given domestic or regional economy, the GVAR makes efficient use of
limited amounts of data, and presents a consistently-estimated global model for use
in portfolio applications and beyond.

4.1 Country/Region Specific Models

The GVAR assumes that there are N + 1 country/regions in the global economy,
indexed by i = 0, 1, . . . , N , where 0 is the reference country or region (taken to be
the U.S.).26 Macroeconomic variables of each region are modeled as a function of
both their own past and the global economy’s current and past state. It is assumed
that the regional variables are related to deterministic variables (such as a time
trend), foreign variables (which are region-specific weighted averages of the rest of
the world) and variables that are taken to be exogenous to this global economy, such
as the oil price. We specify the following vector autoregressive form for ki variables:27

xit = ai0 + ai1t+Φixi,t−1 +Λi0x
∗
it +Λi1x

∗
i,t−1 +Ψi0dt +Ψi1dt−1 + εit,

t = 1, 2, ..., T ; i = 0, 1, 2, ..., N, (9)
24This section draws heavily from PSW.
25These can be found in PSW.
26For simplicity we will refer to regions only. For more on country to region aggregation, see

PSW.
27Although easily extended to incorporate lags greater than one, the GVAR (1) specification

given above is seen as sufficient for the illustrative purposes of this paper. Typical values for ki
are 5 or 6.
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where xit is the ki × 1 country-specific factors/variables, ai1 is a ki × 1 vector of
linear trend coefficients, Φi is a ki × ki matrix of associated lagged coefficients, x∗it
is the k∗i × 1 vector of foreign variables specific to country i (to be defined below)
with Λi0 and Λi1 being ki × k∗i matrices of fixed coefficients, dt is an s × 1 vector
of common global variables assumed to be exogenous to the global economy with
Ψi0 and Ψi1 being ki × s matrices of fixed coefficients, and εit is a ki × 1 vector of
country-specific shocks assumed to be serially uncorrelated with a zero mean and a
non-singular covariance matrix, Σii = (σii,`s), where σii,`s = cov(εi`t, εist), or written
more compactly

εit v i.i.d.(0,Σii). (10)

Although the model is estimated on a regional basis, we allow for the shocks to be
correlated across regions. In particular, we assume that

E
¡
εitε

0
jt0
¢
= Σij for t = t0,

= 0 for t 6= t.

Interactions take place through three distinct, but interrelated channels:

1. Direct dependence of xit on x∗it and its lagged values.

2. Dependence of the region-specific variables on common global exogenous vari-
ables such as oil prices.

3. Non-zero contemporaneous dependence of shocks in region i on the shocks in
region j, measured via the cross country covariances, Σij .

It is worth noting that the foreign variables x∗it are tailored to be region-specific.
The GVAR assumes that each macroeconomic variable in the vector x∗it is a weighted
average of the corresponding macroeconomic variables of all other regions outside
region i. Taking output as an example:

y∗it =
NX
j=0

wijyjt, with
NX
j=0

wij = 1 and wii = 0,

where y∗it is the log of the output of the rest of the world from the perspective of
region i, yjt is the log of the output of region j, and wij is the weight attached to
region j’s output in construction of the rest of the world output as seen by region i.
Weights for the construction of the region-specific global variables could be based
on trade shares for variables such as output, prices, exchange rates or money supply
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or on capital flows for equity and interest rates. In what follows wij denotes the
trade share of region j in the total trade volume of region i.28

The individual models are estimated allowing for unit roots and cointegration
assuming that region-specific foreign variables are weakly exogenous, with the excep-
tion of the model for the U.S. economy which is treated as a closed economy model.
The U.S. model is linked to the outside world through exchange rates themselves
being determined in rest of the region-specific models. While models of the form
in equation (9) are relatively standard, PSW show that the careful construction of
the global variables as weighted averages of the other regional variables leads to
a simultaneous system of regional equations that may be solved to form a global
system. They also provide theoretical arguments as well as empirical evidence in
support of the weak exogeniety assumption that allows the region-specific models
to be estimated consistently.

4.2 The Global Model and Multi-step Ahead Forecasts

In view of the contemporaneous dependence of the domestic variables, xit, on the
foreign variables, x∗it, the region-specific VAR models (9) still need to be solved
simultaneously for all the domestic variables, xit, i = 0, 1, ...,N . The global solution
to the model yields a k×1 vector xt, which contains the macroeconomic variables of
all regions, such that xt is a function of time, the lagged values of all macroeconomic
variables xt−1 and the exogenous variables common to all regions (and their lags):

xt = b0 + b1t + zxt−1 +Υ0dt +Υ1dt−1+ut, (11)

xt = (x00t,x
0
1t, ...,x

0
Nt)

0 is the global k × 1 vector, where k = PN
i=0 ki is the total

number of the endogenous variables in the global model, b0 and b1 are k×1 vectors
of coefficients,29 z is a k× k matrix of coefficients, dt is an s× 1 vector of common
global variables assumed to be exogenous to the global economy (here to be the oil
price) with corresponding k×s matrices of coefficients, Υ0 andΥ1.30 Finally, ut is a
k×1 vectors of (reduced form) shocks that are linear functions of the region-specific
shocks (εit). In particular, we have ut = G−1εt, where εt = (ε00t,ε

0
1t, ..., ε

0
Nt)

0, and
28See PSW for more details on how weights are constructed. The weights for the exchange rate,

which is expressed in terms of the currency of the reference country, differ in their calculation and
do not necessarily sum to one.
29In the presence of unit root and cointegration it is desirable to ensure that the trend coefficients,

b1, are restricted so that the trend characteristics of xt are not affected by the number of unit roots
in z. This is achieved by setting b1 = (I−z)γ1, where γ1 is a vector of unrestricted coefficients.
For further details and discussions see Section 4 in PSW.
30The exact relationships between the parameters of the GVAR model in (11), and those of the

underlying region-specific models (9) are given in PSW.
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the k × k matrix G is defined in Section 3 of PSW. We also have

V ar (ut) = G
−1ΣεG

0−1, (12)

where Σε=V ar (εt).
In what follows we assume that the GVAR model is estimated over the period

t = 1, 2, ..., T, and the objective of the exercise is to generate forecasts, both un-
conditionally as well as conditional on a particular shock scenario, over the period
t = T +1, ..., T +n, with n being the forecast horizon. Accordingly, all forecasts and
loss distributions at different forecast horizons, n = 1, 2, ..., will be conditioned on
the state of the economy as characterized by the GVAR model and all the available
information at time T , namely ΩT = (xT ,dT ,xT−1,dT−1, ...).
For multi-step ahead forecasting and impulse response (or shock scenario) analy-

sis the above solution to the GVAR model needs to be augmented with a model for
the common global variables dt. To this end we adopt the following autoregressive
specification

dt = µd +Φddt−1 + εdt, for t = T + 1, T + 2, ..., T + n, (13)

where εdt v i.i.d. (0,Σd), which are assumed to be distributed independently of the
macroeconomic shocks, εt, t = T + 1, T + 2, ..., T + n. We shall assume that all
the eigen values of Φd lie on or inside the unit circle and ∆dt is stationary with a
constant mean.
For multi-step analysis it is convenient to stack up (11) and (13), and solve out

the contemporaneous effect of dt on xt to yield

yt = µ+ δ t+Φyt−1 +D υt, (14)

where

yt =

µ
xt
dt

¶
, µ =

µ
b0 +Υ0µd

µd

¶
, δ =

µ
b1
0

¶
, υt =

µ
εt
εdt

¶
, (15)

Φ =

µ
z Υ1 +Υ0Φd

0 Φd

¶
, and D =

µ
G−1 Υ0

0 Is

¶
. (16)

The (k + s)× 1 vector, υt, augments the region-specific shocks of interest, εt, with
the common global shocks, εdt. In view of the independence of these shocks we have

V ar (υt) = Συ =

µ
Σε 0

0 Σd

¶
.
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Solving the above difference equation forward from yT , we now obtain

yT+n = ΦnyT+
n−1X
τ=0

Φτ [µ+(T + n− τ )δ]

+

n−1X
τ=0

ΦτDυT+n−τ . (17)

This solution has three distinct components: The first component, ΦnyT , measures
the effect of initial values, yT , on the future state of the system. The second com-
ponent captures the deterministic trends embodied in the underlying VAR model.
Finally, the last term in (17) represents the stochastic (unpredictable) component
of yT+n.
As we shall see below, for the purpose of simulating the loss distribution of a

given portfolio, the conditional probability distribution of ∆yT+n is needed.31 Using
(17) and after some algebra we obtain

∆yT+n =
¡
Φn −Φn−1¢yT + g (T, n) + UT+n, (18)

where

g (T, n) = Φn−1 [µ+(T + 1) δ] +
n−1X
τ=1

Φτ−1δ, (19)

and

UT+n = DυT+n +
n−1X
τ=1

¡
Φτ −Φτ−1¢DυT+n−τ . (20)

Hence
E (∆yT+n | ΩT ) =

¡
Φn −Φn−1¢yT + g (T, n) , (21)

V ar (∆yT+n | ΩT ) = DΣυD
0 +

n−1X
τ=1

¡
Φτ −Φτ−1¢ (DΣυD

0)
¡
Φτ −Φτ−1¢0 . (22)

If it is further assumed that the region-specific shocks, εt, and the common global
shocks, εdt, are normally distributed, we then have32

∆yT+n | ΩT v N
©¡
Φn −Φn−1¢yT + g (T, n) , Ψn

ª
, (23)

where

Ψn = B+
n−1X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 , (24)

31That is because returns are modeled as being driven by changes in systematic factors in Section
5.
32It is also possible to work with non-Gaussian shocks. An important example are t-distributed

shocks that we shall consider in our empirical applications in Section 7.4.

19



and

B = DΣυD
0 =

µ
G−1ΣG0−1 +Υ0ΣdΥ

0
0 Υ0Σd

ΣdΥ
0
0 Σd

¶
. (25)

Finally, in the present application where the underlying GVAR model admits unit
roots and cointegration, the limit distribution of ∆yT+n | ΩT exists and is finite
if δ =(I−Φ)γ, otherwise g (T, n) increases without bound as n → ∞. Under
δ =(I−Φ)γ, using (19) we have

g (T, n) = Φn−1µ+(T + 1)
¡
Φn−1−Φn

¢
γ+

¡
I−Φn−1¢γ,

and it is easily seen that

lim
n→∞

[g (T, n)] = Φ∗µ+(I−Φ∗)γ,

where Φ∗ = limn→∞ (Φn) is finite under our assumptions. More specifically, if
δ =(I−Φ)γ we have

lim
n→∞

∆yT+n | ΩT v N {Φ∗µ+(I−Φ∗)γ, Ψ∗} ,

where33

Ψ∗ = B+
∞X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 .

Therefore, as argued in Section 4 of PSW, it is important that the GVAR model
is estimated subject to the restrictions, b1 = (I−z)γ1, which in conjunction with
the model for the common global variables, (13), ensure that δ =(I−Φ)γ.
In summary, the GVAR’s sequential regional estimation and global aggregation

methodology allows for the practitioner to solve for the conditional distribution of
the macroeconomic factors globally, whereas single-stage estimation of the global
system in equation (11) would be prohibitive due to the very large number of coef-
ficients and generally thin data sets. As a result, the model allows us to examine
the effects of a shock in one region on the macroeconomic factors that describe the
system globally, as our discussion of impulse response functions below shows.

4.3 Shock Scenario Analysis through GIRFs

For policy analysis, one would like to be able to examine how an isolated contem-
poraneous shock to one macroeconomic variable affects all other macroeconomic
variables in the global economy. For example, it might be of interest to determine
33Notice that all the elements of

¡
Φτ −Φτ−1¢ decay exponentially with τ even under unit roots

and hence Ψ∗ exists and is finite.
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the effects of a contemporaneous 10% drop in the Japanese equity prices on other
macroeconomic variables, and the effects that these have on the credit risk of a
given portfolio. Impulse response functions provide us with the tools to carry out
this type of analysis. In so doing, it is of course important that the correlations
that exists across the different shocks, both within and across regions, are properly
taken into accounted. However, in a model which consists only of regional VAR’s
(as in equation (9)) which are not integrated as in the GVAR, it is impossible to
uncover these effects because the interdependencies within regions are lost. On the
other hand, single-stage estimation of the global model (11) is extremely difficult,
and even if it were possible (and consistent), it would be impossible to construct a
regional shock (a shock to εit) within the context of such a global model. Only with
the GVAR can both of these challenges be adequately addressed.
In the traditional VAR literature this is accomplished by means of the orthog-

onalized impulse responses (OIR) à la Sims (1980), where impulse responses are
computed with respect to a set of orthogonalized shocks, say ξt, instead of the
original shocks, εt. The link between the two sets of shocks are given by

ξt = P
−1εt,

where P is a k×k lower triangular Cholesky factor of the variance covariance matrix,
V ar(εt) = Σε, namely

PP0 = Σε.

Therefore, by construction E(ξtξ
0
t) = Ik. However, the drawback of using OIR is

that the outcome is dependent on the order of the variables.34 Koop, Pesaran and
Potter (1996) and Pesaran and Shin (1998) have developed an approach which is
invariant to the order of the variables, known as the generalized impulse response
function (GIRF). The GIRF can be applied to region-specific shocks as well as to
the common global shocks. For example, if factor ` in country i is (purposefully)
shocked by one standard error (i.e.

√
σii,``) in the period from T to T +1, the GIRF

of yT+n is given by

ψi`(y, n) = E
¡
yT+n | ΩT , εi,T+1,` = √σii,``

¢−E (yT+n | ΩT ) .
The first term captures the expected effect of the shock, while the second term
represents the baseline scenario in the absence of the shock. In the case of the
GVAR model, using (17) we have

ψi`(y, n) = Φn−1DE
¡
υT+1 | ΩT , εi,T+1,` = √σii,``

¢
,

34This is due to the non-uniqueness of the Cholesky decomposition. While OIR are suitable for
low-dimensional models where variables can be arranged in causal order, they are not suitable for
large dimensional GVAR models.

21



which yields

ψi`(y, n) =
1√
σii,``

Φn−1DΣυsi`, n = 1, 2, ..., (26)

where si` is a (k + s) × 1 selection vector with its element corresponding to the
`th variable in country i being unity and zeros elsewhere. A similar expression can
also be derived for the effect of shocking one of the common global variables by an
appropriate choice of the selection vector, s, and by replacing

√
σii,`` with the one

standard error of the common global variable being shocked.35

The GIRF of the changes in the n-period ahead forecast, ∆yT+n, can also be
derived directly using (18) and is given by

ψi`(∆y, n) =
1√
σii,``

DΣυsi` for n = 1, (27)

=
1√
σii,``

¡
Φn−1 −Φn−2¢DΣυsi`, for n = 2, 3, ..

Clearly, on impact (for n = 1), ψi`(y, n) = ψi`(∆y, n), but the two impulse response
functions deviate at higher order horizons.
Finally, to analyze the impact of shock scenarios on the loss distribution, we

also need to consider the effect of region-specific and common global shocks on
the whole probability distribution function of ∆yT+n conditional on ΩT . For this
purpose we assume that the magnitude and the nature of the shock is not such
as to alter the probability distribution function of υT+1, and distinguish between
the cases where the change in εi,T+1,` is pre-announced or anticipated, as compared
to the case where the change is unanticipated. The former could be relevant in
the case of policy announcements such as specific tax changes or general changes
to the monetary policy. But for risk analysis unanticipated forms of shocks seem
more relevant. Assuming that the errors, υT+1, are distributed as multivariate
normal (even after the system is hit by the shock), the probability distribution in
the presence of an unanticipated unit shock to `th factor in country i is given by

∆yT+n | ΩT , εi,T+1,` = √σii,`` v N
©¡
Φn −Φn−1¢yT + g (T, n) +ψi`(∆y, n), Ψn

ª
,

(28)
where ψi`(∆y, n), and Ψn are defined by (26) and (24). Here we are assuming that
the shock, if unanticipated, does not change the conditional covariance matrix of
υT+1.36

35The GIRF are identical to the orthogonalized impulse response function only when Συ is
diagonal and/or when the focus of the analysis is on the impulse response function of shocking the
first element of υt. See Pesaran and Shin (1998).
36In principle it is possible to allow for simultaneous mean and variance change, for example,

by adopting mean-in-GARCH type models where conditional variance is assumed to be depend on
the conditional mean of the errors.

22



When the shock (or more accurately the policy intervention) is anticipated its
variance as well as its covariances with the other components of υT+1 will be zero
on impact and we have

∆yT+n | ΩT , εi,T+1,` = √σii,`` v N
©¡
Φn −Φn−1¢yT + g (T, n) +ψi`(∆y, n), Ψn,i`

ª
,

(29)
where

Ψn,i` = Bi`, for n = 1, (30)

Ψn,i` = Bi` +
n−1X
τ=1

¡
Φτ −Φτ−1¢B ¡Φτ −Φτ−1¢0 , for n = 2, 3, ...

Bi` = D
h
Συ −Συsi`

¡
s0
i`
Συsi`

¢−1
s0
i`
Συ

i
D0. (31)

5 Conditional Credit Risk Modeling

The conditional loss distribution of a given credit portfolio can now be derived by
linking up the return processes of individual firms, initially presented in equation
(1), explicitly to the macro and global variables in the GVAR model.

5.1 Return Regressions: A More General Formulation

Firm returns are usually modeled as a function of macro variables that are specific
to the firm’s domicile country plus global variables such as changes in oil prices.
But such a specification leaves out one of the key features of the GVAR model,
namely the foreign-specific variables which could be particularly important in the
case of large international corporations. Here we extend the firm return model
by incorporating all GVAR factors to take full advantage of the GVAR dynamics.
Accordingly, a firm’s change in value (or return) is assumed to be a function of
changes in the underlying macroeconomic factors (the systematic component), say
ki region-specific domestic and k∗i foreign macroeconomic variables, the exogenous
global variables dt (in our application oil prices) and the firm-specific idiosyncratic
shocks ηjit:

rji,t+1 = αji+

kiX
`=1

βji,`∆xi,t+1,`+

k∗iX
`=1

β∗ji,`∆x
∗
i,t+1,`+

sX
`=1

γji,`∆dt+1,`+ηji,t+1, t = 1, 2, ..., T,

(32)
where rji,t+1 is the equity return from t to t+ 1 for firm j (j = 1, ..., nci) in region
i. αji is a regression constant for company j in region i, ki and k∗i are the number
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of domestic and foreign macroeconomic factors (drivers), respectively, in region i,
βji,` and β∗ji,` are the factor loadings corresponding to, respectively, the change in
the `th domestic and foreign macroeconomic variable for company j in region i,
∆xi,t+1,` and ∆x∗i,t+1,` are, respectively, the log difference of the `

th domestic and
foreign macroeconomic factor in region i, dt+1,` is the `th global factor, and γji,` is
its associated coefficient. This can be written more compactly as

rji,t+1 = αji + β0ji∆xi,t+1 + β∗0ji∆x
∗
i,t+1 + γ 0ji∆dt+1 + ηji,t+1, (33)

where xi,t+1, x∗i,t+1, and dt+1 are the ki × 1, k∗i × 1, and s× 1 vectors of macroeco-
nomic and global factors. The exact link between the macro factors in these APT
regressions and the variables in the GVAR model is through the composite vector
zi,t+1 = (x0i,t+1,x

0∗
i,t+1)

0. As shown in PSW, this regional composite vector can be
obtained from the global variables:

zi,t+1 =

µ
xi,t+1
x∗i,t+1

¶
=Wixt+1,

where the weight matrixWi serves as the ‘link’ between the global variable vector
xt+1 and the domestic (xi,t+1) and foreign (x∗i,t+1) variables for region i. The non-
zero elements of Wi are given by trade weights of country i relative to all other
countries in the GVAR model. Hence we have

rji,t+1 = αji +B
0
jiWi∆xt+1 + γ 0ji∆dt+1 + ηji,t+1, (34)

where Bji =
¡
β0ji,β

∗0
ji

¢0
. The GVAR model provides forecasts of all the global vari-

ables, xt+1, that directly or indirectly affect the returns, rji,t+1. If the model captures
all systematic risk, the idiosyncratic risk components of any two companies in the
model would be uncorrelated, namely the idiosyncratic risks, ηji,t+1, ought to be
cross-sectionally uncorrelated. The values of the global exogenous variables, dt+1,
could either by fixed to represent particular scenarios of interest, such as high or
low oil prices, or could be forecast using a sub-model such as the VAR specification
given by (13). Under this specification, due to the contemporaneous dependence of
∆xt+1 on ∆dt+1, we re-write (34) as

rji,t+1 = αji + Γ0ji∆yt+1 + ηji,t+1, (35)

where the factor loadings Γ0ji =
¡
B0jiWi,γ

0
ji

¢
, and as before∆yt+1 =

¡
∆x0t+1, ∆d

0
t+1

¢0
.

5.2 Expected Loss Due to Default

Given the value change process for firm j, defined by (33), and the default threshold,
ĉji, obtainable from an initial credit rating (see Section 3.2), we now consider the
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conditions under which the firm goes bankrupt and is thus no longer able to repay
its debt obligations. Specifically, we need to define the expected loss to firm j at
time T given information available to the lender (e.g. a bank) at time T, which we
assume is given by ΩT . Following (3), default occurs when the firm’s value (return)
falls below some threshold ĉji (e.g. when the value of a firm’s assets falls below the
value of its callable liabilities). Expected loss at time T (but occurring at T + 1),
ET (Lji,T+1) = E (Lji,T+1 | ΩT ) , is given by

ET (Lji,T+1) = Pr (rji,T+1 < ĉji | ΩT ) ET (Xji,T+1) ET (Sji,T+1) (36)

+ [1− Pr (rij,T+1 < ĉji | ΩT )]× L̃,

where Xji,T+1 is the maximum loss exposure assuming no recoveries for company j
in region i (typically the face value of the loan) and is known at time T , Sji,T+1
is the percentage of exposure which cannot be recovered in the event of default
(sometimes called loss given default or severity),37 and L̃ is some future loss in the
event of non-default at T+1 (which we set to zero for simplicity). Typically Sji,T+1 is
not known at time of default and will be treated as a random variable over the range
[0, 1]. In the empirical application we make the typical assumption that Sji,T+1 are
draws from a beta distribution with given mean and variance calibrated to (pooled)
historical data on default severity.38

Substituting (34) into (36) and setting L̃ to zero we now obtain:39

ET (Lji,T+1) = πji,T+1|T ET (Xji,T+1) ET (Sji,T+1), (37)

where
πji,T+1|T = Pr

¡
αji + Γ0ji∆yT+1 + ηji,T+1 < ĉji | ΩT

¢
,

is the conditional default probability over the period T to T + 1, formed at time
T . Our modeling framework allows us to derive an explicit expression for πji,T+1|T .
Using (18) and after some simplifications we have

πji,T+1|T = Pr
¡
ξji,T+1 < ĉji − µji,T | ΩT

¢
, (38)

where
ξji,T+1 = ηji,T+1 + Γ0jiDυT+1, (39)

37One would expect loss severity to be higher in recessions than expansions (see Frye (2000)
and Altman et al. (2002)). Bankruptcies are pro-cyclical, flooding the market with distressed
assets which drive down their price (or increasing severity). However, for simplicity we follow the
standard assumption that exposure and severity are independently distributed.
38The beta distribution is usually chosen since it is bounded, typically on the unit interval, with

two shape parameters which can be expressed in terms of mean and standard deviation of losses.
39It is common practice in the industry to set eL to zero.
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and
µji,T+1|T = αji + Γ0ji [µ+(T + 1)δ]− Γ0ji (Ik+s −Φ)yT . (40)

These results decompose the return for firm j in region i into its explained (expected)
and unexplained (unexpected) components, with µji,T+1|T being the expected value
of return formed at time T , and ξji,T+1 the unexpected component. To clarify, the
explained or forecastable portion of firm return,µji,T+1|T , is comprised of firm-specific
fixed effects, αji (i.e. the ”alphas” in an APT context), the drift components of the
macro factors and the global exogenous variables, (T + 1)Γ0jiδ, and factor loadings,
−Γ0ji (Ik+s −Φ), which collect the effects of the region-specific factors and the global
exogenous variables on the firm’s expected return.
The unexpected component, defined by (39), is influenced by three different types

of shocks: a firm’s own shock, ηji,T+1, macroeconomic shocks, εT+1, and the global
exogenous shock, εd,T+1 (in our model the oil price shock).40 Note that although
the firm in question operates in country/region i, its probability of default could be
affected by macroeconomic shocks worldwide. Under the assumption that all these
shocks are jointly normally distributed and the parameter estimates are given, we
have the following expression for the probability of default over T to T + 1 formed
at T 41

πji,T+1|T = Φ

 ĉji − µji,T+1|Tq
V ar

¡
ξji,T+1 | ΩT

¢
 , (41)

where
V ar

¡
ξji,T+1 | ΩT

¢ ≡ ω2ξ,ji = ω2η,ji + Γ0jiBΓji. (42)

and B = DΣυD
0 is given by (25). The first term in ω2ξ,ji is the variance of firm’s

idiosyncractic shock, ηji,T+1. Also, since the region-specific shocks and the common
global shocks are uncorrelated, the second term in ω2ξ,ji can be further decomposed
into two components as

Γ0jiBΓji = θ0jiΣεθji+θ
0
ji,dΣdθji,d,

where
θ0ji = B

0
jiWiG

−1, θ0ji,d = γ 0ji +B
0
jiWiΥ0. (43)

Both of the restrictions (given parameter values and joint normality) can be
relaxed. Parameter uncertainty can be taken into account by integrating out the
true parameters using posterior or predictive likelihoods of the unknown parameters,
40Recall that υT+1 = (ε0T+1, ε

0
d,T+1)

0.
41Joint normality is sufficient but not necessary for ξji,t+1 to be approximately normally distrib-

uted. This is due to the fact that ξji,t+1 is a linear function of a large number of weakly correlated
shocks (63 in our particular application).
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as in Garratt et al. (2002). In the presence of non-normal shocks one could either
simulate the loss distributions assuming fat-tailed distributions such as Student t
with a sufficiently low degree of freedom as adopted in our empirical work below.
Alternatively, one can employ non-parametric stochastic simulation techniques by
re-sampling from estimated residuals of the GVAR model to estimate πji,T+1|T .
The expected loss due to default of a loan (credit) portfolio can now be computed

by aggregating the expected losses across the different loans. Denoting the loss of a
loan portfolio over the period T to T + 1 by LT+1 we have

ET (LT+1) =
NX
i=0

nciX
j=1

πji,T+1|T ET (Xji,T+1) ET (Sji,T+1), (44)

where nci is the number of obligors (which could be zero) in the bank’s loan portfolio
resident in country/region i.

5.3 Simulation of the Loss Distribution

The expected loss as well as the entire loss distribution can be computed once
the GVAR model parameters in (11), the return process parameters in (34) and the
thresholds in (6) have been estimated for a sample of observations t = 1, 2, ..., T . We
do this by stochastic simulation using draws from the joint distribution of the shocks,
²T+1 = (ε

0
T+1,ε

0
d,T+1,η

0
T+1)

0, where ηT+1 is the
³PN

i=0 nci
´
×1 vector of firm-specific

shocks. As noted earlier these draws could either be carried out parametrically from
normal or t-distributed random variables, or if sufficient data points are available,
can be implemented non-parametrically using re-sampling techniques. Under the
parametric specification the variance covariance matrix of ²t+1 is given by

V ar (²T+1) =

 Σε 0 0

0 Σd 0

0 0 Ση

 , (45)

where Ση is a diagonal matrix with elements ω2η,ji, j = 1, 2, ..., nci, i = 0, 1, ..., N.

Denote the rth draw of this vector by ²(r)T+1, and compute the firm-specific return,
r
(r)
iT,t+1, noting that

r
(r)
ij,T+1 = µji,T+1|T + ξ

(r)
ji,T+1, (46)

where µji,T+1|T is given by (40) and

ξ
(r)
ji,T+1 = η

(r)
ji,T+1 + θ0jiε

(r)
T+1 + θ0ji,dε

(r)
d,T+1. (47)
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Then simulate the loss in period T + 1 using (known) loan face values, say FVji,T ,
as exposures, and draws from a beta distribution for severities (as described above):

L
(r)
T+1 =

NX
i=0

nciX
j=1

I
³
r
(r)
ij,T+1 < ĉji

´
FVji,T S(r)ji,T+1. (48)

The simulated expected loss due to default is given by (using R replications)

L̄R,T+1 =
1

R

RX
r=1

L
(r)
T+1. (49)

When ²(r)T+1 are drawn from a multivariate normal distribution with a covariance
matrix given by (45), then

L̄R,T+1
p→ ET (LT+1) , as R→∞.

The simulated loss distribution is given by ordered values of L(r)T+1, for r = 1, 2, ..., R.
For a desired percentile, for example the 99%, and a given number of replications,
say R = 10, 000, credit value at risk is given as the 100th highest loss.

5.4 Default and Expected Loss Given Economic Shocks

In credit risk analysis we may also be interested in evaluating quantitatively the
relative importance of changes in different macroeconomic factors on the loss distri-
bution. In the argot of risk management this is sometimes called scenario analysis.
To this end the loss distribution conditional on a given shock can be compared to a
baseline distribution without such a shock. As with all counterfactual experiments it
is important that the effects of the shock on other macroeconomic factors are clearly
specified. One possibility would be to assume that the other factors are displaced
according to their historical covariances with the variable being shocked. This is
in line with the GIRF analysis discussed in Section 4.3. In this set-up, if factor `
in country i is shocked by one standard error (i.e.

√
σii,``) in the period from T to

T + 1, on impact the vector of the macroeconomic factors would be displaced by

ψi`(∆y, 1) =
1√
σii,``

DΣυsi` , (50)

given by (27) for n = 1. Such a shock has no effect on the global exogenous variables
nor on the firm-specific shocks. In the absence of any macroeconomic shocks, namely
when εT+1 = 0, firm-specific returns are given by

r0ij,T+1 = µji,T+1|T + ηji,T+1 + θ0ji,dεd,T+1, (51)

28



so that the only sources of innovation are firm-specific (ηji,T+1) and specific to the
global exogenous variable (εd,T+1). With a one standard error shock to the `th

variable in country i, xi,T+1,`, we have an additional component (see (45) and (46)):

r`ij,T+1 = µji,T+1|T + Γ0jiψi`(∆y, 1) + ηji,T+1 + θ0ji,dεd,T+1. (52)

The loss distributions associated with these two scenarios can now be simulated
using these returns in (48).
The above counterfactual, while of some interest, will underestimate the expected

loss under both shock scenarios since it abstracts from volatility of the macroeco-
nomic factors. To allow for volatility of macroeconomic factors in the analysis con-
sider the case where the various shocks are jointly normally distributed, and note
that

rij,T+1 = µji,T+1|T + Γ0jiDυT+1 + ηji,T+1,

where µji,T+1|T is defined by (40). Following a similar line of argument as in Section
4.3, if the shock is assumed to be anticipated we have

rij,T+1
¯̄
ΩT , εiT+1,` =

√
σii,`` v N

©
µji,T+1|T + Γ0jiψi`(∆y, 1), ω

2
ξ,ji,i`

ª
,

where εi,T+1,` = s0i`υT+1, ψi`(∆y, 1) is defined by (50) and
42

ω2ξ,ji,i` = ω2η,ji + Γ0jiBi`Γji, (53)

where Bi` is defined by (31). But if the shock is unanticipated (which we consider
to be more relevant for credit risk analysis) we have

rij,T+1
¯̄
ΩT , εiT+1,` =

√
σii,`` v N

©
µji,T+1|T + Γ0jiψi`(∆y, 1), ω

2
ξ,ji

ª
,

where ω2ξ,ji is given by (42).
Therefore, to allow for volatility of the shocks (macroeconomic as well as idiosyn-

cratic shocks), the simulation of the loss distribution needs to be carried out using
the draws

r
il,(r)
ij,T+1 = µji,T+1|T + Γ0jiψi`(∆y, 1) + ωξ,ji Z(r) (54)

where Z(r) ∼ IIN (0, 1).
In the case of our empirical application where the log of oil prices is the only

global variable in the model, the effect of a unit unanticipated shock to oil prices,
P ot , can be simulated by generating the returns as

r
o,(r)
ij,T+1 = µji,T+1|T + Γ0jiψo(∆y, 1) + ωξ,ji, Z(r),

42Note that s0`Σs` = σii,``.
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where

ψo(∆y, 1) =
1

σo
DΣυso = σo

µ
Υ0

1

¶
,

σ2o is the variance of oil price shock, εot, so is a (k + 1) × 1 vector of zeros except
for its last element which is set equal to unity, such that s0

o
υt = εot. It is also worth

noting that
Γ0jiψo(∆y, 1) = σo

¡
B0jiWiΥ0 + γ 0ji

¢
= σoθji,o

simplifying the oil shock-conditional first period return to

r
o,(r)
ij,T+1 = µji,T+1|T + σoθji,o + ωξ,ji Z(r). (55)

This expression clearly shows that, relative to the baseline, the mean is increased
by σoθji,o.43

The baseline loss distributions can also be simulated directly using the draws

r
(r)
ij,T+1 = µji,T+1|T + ωξ,ji Z (r), (56)

where the baseline return variance ω2ξ,ji is defined by (42). Default occurs if the r
th

simulated return falls below the threshold ĉji defined by (6):

Baseline r
(r)
ij,T+1 < ĉji =⇒ Default, (57)

Macro-shock-Conditional ril,(r)ij,T+1 < ĉji =⇒ Default,

Oil—shock-Conditional ro,(r)ij,T+1 < ĉji =⇒ Default.

Using these results in (48), the loss distribution can be simulated for any desired
level of accuracy by selecting R, the number of replications, to be sufficiently large.
Finally, it is might also be of interest to compare the base line default proba-

bility, πji,T+1|T , given by (41) with the default probability that results under the
(unanticipated) shock to xi,T+1,`, which we denote by πi`ji,T+1|T . We have

πji,T+1|T = Φ

µ
ĉji − µji,T+1|T

ωξ,ji

¶
,

and

πi`ji,T+1|T = Φ

µ
ĉji − µji,T+1|T − Γ0jiψi`(∆y, 1)

ωξ,ji

¶
. (58)

The above results readily extend to the case where the shocks follow multivariate
t distributions with the same degrees of freedom. In this more general case the linear
43For an anticipated oil price shock the variance term ω2ξ,ji in (55) needs to be replaced by

ω2ξ,ji,o = ω2η,ji + θ0jiΣεθji.
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combinations of t-distributed shocks would still be t-distributed and the simulated
returns in the case of a unit shock to xi,T+1,` will be given by

rl,(r)ij,T+1 = µji,T+1|T + Γ0jiψi`(∆y, 1) + ωξ,ji

Ãr
v − 2
v

!
T (r)v , (59)

where T (r)v are draws from the Student t with v degrees of freedom.44 Similarly, for
the simulation of the baseline loss distribution we need to use the draws

r
(r)
ij,T+1 = µji,T+1|T + ωξ,ji

Ãr
v − 2
v

!
T (r)v . (60)

5.5 Simulation of Multi-Step Ahead Loss Distributions

Simulation of loss distributions over more than one period ahead poses new difficul-
ties. We are now presented with the problem of simulating from the joint probability
distribution function of future returns (rji,T+1, rji,T+2, ..., rji,T+n) , conditional on ΩT ,
where n is the forecast horizon. Using (18) in (35) we have

rij,T+κ = µji,T+κ|T + ξji,T+κ, for κ = 1, 2, ..., n

where

µji,T+κ|T = αji + Γ0ji
£¡
Φκ −Φκ−1¢yT + g (T,κ)¤ ,

ξji,T+κ = Γ0jiUT+κ + ηji,T+κ,

and

UT+κ = DυT+κ +
κ−1X
τ=1

¡
Φτ −Φτ−1¢DυT+κ−τ

is the composite systematic (i.e. non-idiosyncratic) innovation over future periods
T + κ = 1, 2, ..., n. It is clear that at time T , the conditional mean returns, µji,T+κ|T
,κ = 1, 2, ..., n, are known insofar as they are forecast. It is also easily seen that
the unpredictable components of the returns over the different horizons have the
following recursive structure:

ξji,T+1 = Γ0jiH0DυT+1 + ηji,T+1,

ξji,T+2 = Γ0jiH1DυT+1 + Γ0jiH0DυT+2 + ηji,T+2,

...

ξji,T+n = Γ0jiHn−1DυT+1 + Γ0jiHn−2DυT+2 + ....+ Γ0jiH0DυT+n + ηji,T+n,

44Note that V ar(T (r)v ) = v/(v − 2).
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where
Hκ = Φκ −Φκ−1, κ = 1, 2, ..., n and H0 = Ik+s.

Recall that the matrix Φ collects all the GVAR coefficients other than constants
and trends and thus characterizes the effect of initial values yT on the future state
of the macroeconomic system (see (17)). Therefore, the conditional distribution of
the returns across the different forecast horizons are correlated, and in the sim-
ulation of the loss distribution one needs to draw from the joint distribution of
rji = (rji,T+1, rji,T+2, ..., rji,T+n)

0. For this purpose we note that ξji,T+κ, κ = 1, 2, .., n,
have zero means and a variance covariance matrix V ar(rji) whose (w, n) element is
given by

Γ0ji

Ã
mX

τ=1

Hw−τBH0
w−τ

!
Γji + ω2η,ji, if w = n,

Γ0ji

Min(m,n)X
τ=1

Hm−τBH0
n−τ

Γji, if w 6= n,

where B = DΣυD
0.

Alternatively, the returns can be simulated using the relations

r
(r)
ij,T+κ = µji,T+κ|T + ξ

(r)
ji,T+κ, for κ = 1, 2, ..., n, (61)

where

ξ
(r)
ji,T+κ =

κ−1X
τ=0

¡
Γ0jiHτBH0

τΓji
¢1/2

Z(r)τ + ωη,ji Z
(r)
ηκ , (62)

where Z(r)0 , Z
(r)
1 , ..., Z

(r)
n−1; Z

(r)
η1 , Z

(r)
η2 , ..., Z

(r)
ηn are draws from IID N(0, 1).

5.5.1 Baseline Multi-period Loss Distribution

The loss distribution due to default by firm j in region i over the period T to T +n
can now be written as

Lji(T + 1, T + n) = Lji,T+1 + λI (rji,T+1 ≥ ĉji) Lji,T+2

+...+ λn−1
"
n−1Y
τ=1

I (rji,T+τ ≥ ĉji)
#
Lji,T+n, (63)

where λ is a discount factor (0 ≤ λ < 1, could be set as λ = 1/ (1 + ρ) with ρ being
an average real rate of interest) and

Lji,T+κ = I (rji,T+κ < ĉji) Xji,T+κ Sji,T+κ, for κ = 1, 2, ..., n
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The multi-period loss expression (63) can be thought of as a survival function
which progressively computes loss in period T + τ + 1 only if the firm has survived
the previous period T + τ . Using this architecture the multi-period baseline loss
distribution can be simulated using the draws r(r)ji,T+τ , for τ = 1, 2, .., n and r =
1, 2, ..., R (see (61)), the empirical distribution of Lji(T+1, T+n) can be constructed
from L

(r)
ji (T + 1, T + n) where

L
(r)
ji (T + 1, T + n) = L

(r)
ji,T+1 +

nX
t=2

λt−1
"
t−1Y
τ=1

I
³
r
(r)
ji,T+τ ≥ ĉji

´#
L
(r)
ji,T+t,

and
L
(r)
ji,T+κ = I

³
r
(r)
ji,T+κ < ĉji

´
X (r)
ji,T+κ S(r)ji,T+κ, for κ = 1, 2, ..., n.

Aggregating across firms, we finally obtain the time T conditional, n step-ahead
simulated loss distribution of the credit portfolio:

L(r)(T + 1, T + n) =
NX
i=0

nciX
j=1

L
(r)
ji (T + 1, T + n), r = 1, 2, ..., R.

5.5.2 Multi-period Loss Distribution Given Economic Shocks

Consider now the effect of a one standard error shock to factor ` in country i on the
multi-period loss distribution. Using the results in Section 4.3 on impulse responses
we have

r
i`,(r)
ij,T+κ = µji,T+κ|T + Γ0jiψi`(∆y,κ) + ξ

i`,(r)
ji,T+κ, for κ = 1, 2, ..., n, (64)

where ψi`(∆y,κ) is defined by (27) and

ξ
i`,(r)
ji,T+κ =

¡
Γ0jiBΓji

¢1/2
Z
(r)
0 +

κ−1X
τ=1

¡
Γ0jiHτBH0

τΓji
¢1/2

Z(r)τ + ωη,ji Z
(r)
ηκ , (65)

where as before B = DΣυD
0. Since ∆y contains both the endogenous macroeco-

nomic variables ∆x as well as the exogenous global variable ∆d, oil prices in our
applications, we no longer need to derive a separate expression for oil price shocks.
Note also that the second term in (65) will be zero when κ = 1.

Clearly, the Student t random draws,
³q

v−2
v

´
T (r)v , can also be used instead of

the Normal draws, Z(r), in the simulation of the loss distributions, as in (59) and
(60).
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6 Estimation of GVAR

6.1 Region and Country Settings

We estimate a global quarterly model over the period 1979Q1-1999Q1 comprising a
total of 25 countries which are grouped into eleven regions (shown in bold in Table
1). The advantage of the GVAR is that it allows for a true multi-country setting;
however it can become computationally demanding very quickly. For that reason we
model the seven key economies of the U.S., Japan, China, Germany, U.K., France
and Italy as regions of their own while grouping the other 19 countries into four
regions.45

Table 1

Countries/Regions in the GVAR Model

U.S.A. Germany Japan
Western Europe South East Asia Latin America
·Spain ·Korea ·Argentina
·Belgium ·Thailand ·Brazil
·Netherlands ·Indonesia ·Chile
·Switzerland ·Malaysia ·Peru

·Philippines ·Mexico
·Singapore

Middle East China France
·Kuwait U.K. Italy
·Saudi Arabia
·Turkey

The output from these countries comprise around 80% of world GDP (in 1999). They
were chosen largely because the major banks in G-7 countries have much of their ex-
posure in this set of countries. Noticeably absent are Scandinavian countries, Africa
and Australia-New Zealand. Future extensions of the model will look to incorporate
countries from these regions. Time series data on regions such as Latin America or
South East Asia were constructed from each country in the region weighted by the
GDP share. For this we used purchasing power parity (PPP)-weighted GDP figures,
which is thought to be more reliable than using weights based on U.S. dollar GDPs.46

For credit risk modeling purposes we distinguish between the regions with developed
capital markets, namely U.S., Germany, Japan, Western European countries, South
East Asia and Latin America, and the rest, namely China and Middle East, which
45See PSW, Section 8, for details on cross-country aggregation into regions.
46PPP figures are from June 1996, Penn World Tables.
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over our sample period may not have had fully developed capital markets. Finally,
as noted earlier, the U.S. dollar will be used as the numeraire exchange rate and its
value in terms of the other currencies will be determined outside the U.S. model.

6.2 Macroeconomic Variables and Data Sources

The vector xit is defined as the ki × 1 country-specific factors/variables. A typical
set of endogenous variables47 for country i (i 6= 0), is:

yit = ln (GDPit/CPIit) ,

pit = ln(CPIit),

qit = ln(EQit/CPIit),

mit = ln (Mit/CPIit) ,

eit = ln(Eit),

ρit = 0.25 ∗ ln(1 +Rit/100),


(66)

where48

GDPit = Nominal Gross Domestic Product of country i during period t,
in domestic currency

CPIit = Consumer Price Index in country i at time t, equal to 1.0
in a base year (say 1996)

Mit = Nominal Money Supply in domestic currency
EQit = Nominal Equity Price Index
Eit = Exchange rate of country i at time t in terms of US dollars
Rit = Nominal rate of interest per annum, in per cent

The GVAR uses quarterly data covering 21 years from 1979Q1 to 1999Q1. Main
data sources are the International Financial Statistics (IFS), Datastream and Data
Resources Incorporated (DRI). Note that in the case of the base economy (i.e. the
U.S. in the current model), e0t = 0. Therefore k0 = 5. In addition to that, the full
set of macroeconomic factors is not available for all regions (especially due to the
dearth of data in emerging markets). Table 2 represents available data for the eleven
regions.
47Other variables are certainly possible. For credit risk applications, one might also want to

include more financial market information, e.g. credit spreads, and perhaps aggregate default or
bankruptcy rates. However, we wanted to restrict our macroeconomic variable set to be small and
easily measured across a wide set of countries. Arguably these six variables reasonably span the
relevant economic space in our ”world” of 26 countries.
48Note that the last transformation specified in (66) converts the annual rate of interest, Rit, to

quarterly interest rate, ρit, using a logarithmic scale.
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Table 2
Domestic Variables and Global Variables by Region

Domestic Variables Foreign Variables
Region yit pit qit mit eit rit ki y∗it p∗it q∗it m∗it e∗it r∗it k∗i
U.S.A X X X X - X 5 - - - - X - 1
U.K. X X X X X X 6 X X X X - X 5
Germany X X X X X X 6 X X X X - X 5
France X X X X X X 6 X X X X - X 5
Italy X X X X X X 6 X X X X - X 5
W. Europe X X X X X X 6 X X X X - X 5
Mid East X X - X X X 5 X X X X - X 5
China X X - X X X 5 X X X X - X 5
S.E. Asia X X X X X X 6 X X X X - X 5
Japan X X X X X X 6 X X X X - X 5
L. America X X X X X X 6 X X X X - X 5

63 51

In total, there are 63 region-specific domestic macroeconomic variables or factors
and therefore 63 equations to estimate, albeit not simultaneously. The problem
of endogeneity is mitigated in this version of the GVAR by allowing for only one
global variable for the U.S. — the exchange rate. Feedback mechanisms are thus
confined to the channel of the exchange rate. For all other regions, the exchange
rate e∗it is omitted as a global variable.

49 Details of the estimated model, unit root
tests, residual serial correlation test and tests of weak exogeneity of foreign-specific
variables (namely x∗it) can be found in PSW.We also checked that all the 64 elements
of g (T, n) defined by (19) do in fact converge to finite limits as n→∞. Recall from
our discussion at the end of Section 4.1 that the existence of the limit of g (T, n) as
n→∞ is a necessary condition for the existence of E (∆yT+n | ΩT ) which is one of
the key components of the multi-step ahead loss distributions.
49Bearing in mind that the exchange rate is defined in terms of U.S. dollars, the currency of the

base economy, a depreciation of the currencies in the rest of the world is per definition equal to an
appreciation of the U.S. dollar. Given this “mirror” relationship, it should suffice to incorporate
the exchange rate mechanism as mentioned above.
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7 Credit Loss Results

7.1 Estimating PDs and Default Thresholds

Using methods described in Lando and Skødeberg (2002) and Schuermann and Jafry
(2003), we obtain quarterly PD estimates from time homogeneous transition inten-
sities using ratings histories for firms rated by Moody’s from January 1, 1979 to
March 31, 1999, i.e. 1979Q1 to 1999Q1. The transition intensity approach uses
techniques from survival analysis which make efficient use of ratings histories to ob-
tain transition probabilities. This becomes especially important for the estimation
of the transition from rating R to default, denoted here as PDRt. No default event
may have occurred within a particular quarter; that does not, however, necessarily
mean that PDRt = 0. The transition intensity approach may still yield a positive
probability of default for highly rated obligors even though no default was observed
during the sampling period. It suffices that an obligor migrated from, say, Aaa to
Aa to A, and then defaulted, to contribute probability mass to PDAaat. Still, there
may be instances when there is no movement at all during a particular quarter. In
that case the estimated default probability would indeed be identically equal to zero.
For each quarter and each rating-specifc PD, PDRt, we compute the inverse

CDF to obtain a time series of rating specific thresholds.50 Since Moody’s only
rates a subset of large firms (in 1979 they rated 1190 firms of which about 98%
were U.S. domiciled; by early 1999 this had risen to 3710, about 80% U.S.), it is
reasonable to assign a non-zero (albeit very small) probability of default, even if the
empirical estimate is zero. After all, we may want to infer default behavior for a
much broader universe of firms than is covered by the rating agencies. Hence we
impose a lower bound on the quarterly PD and their implied thresholds at a PD
value of 1/100,000 per annum, corresponding to 1/250,000 or 0.025 basis points per
quarter.
Table 3 presents quarterly PD estimates obtained using the transition intensity

approach with Moody’s rating histories from 1979Q1 - 1999Q1. Specifically, the
table presents the PD implied by the average of quarterly inverse CDFs which we
use to compute the default threshold ĉji. The averages are weighted by the number
of obligors rated at the beginning of each quarter. Default probabilities exhibit the
expected sharp increase as we descend the credit spectrum.
50While (5) and (6) are written in terms of a standard normal distribution, other distributions

such as (standard) student-t can be substituted.
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Table 3

Quarterly PD Estimates from

Moody’s Rating Histories

(1979Q1 - 1999Q1)

PD of avg.
inverse CDF

Rating (in Basis Points)
Aaa 0.0250
Aa 0.0276
A 0.0309
Baa 0.0748
Ba 2.0486
B 52.505
Caa 131.599

Following the discussion in Section 3.2, average critical values DTRji (recall
that DTRji = 1

T

PT
t=1DT (Rjit) where DT (Rjit) = Φ−1 (PD (Rjit))) are used to

compute default thresholds ĉji in (6).

7.2 The Sample Portfolio

We analyze the effects of economic shocks on a fictitious large-corporate loan port-
folio which is summarized in Table 4. It contains a total of 119 companies, resident
over ten of the eleven regions. In order for a firm to enter our sample, several criteria
had to be met. We restricted ourselves to major, publicly traded firms which had a
credit rating from either Moody’s or S&P. Thus, for example, Chinese companies are
not included for lack of a credit rating. The firms should be represented within the
major equity index for that country. We favored firms for which equity return data
was available for the entire sample period, i.e. going back to 1979. Typically this
would exclude large firms such as telephone operators which in many instances have
only been privatized recently, even though they might now represent a significant
share in their country’s dominant equity index. The data source is Datastream, and
we took their Total Return Index variable which is a cum dividend return measure.
The column to the right in Table 4 indicates the inception of the equity series

available for APT-type regression analysis. We wanted to mimic (broadly) the
portfolio of a large, internationally active bank. Arbitrarily picking Germany as
the bank’s domicile country, the portfolio is relatively more exposed to German
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firms than would be the case if exposure were allocated purely on a GDP share
(in our "world" of 25 countries). For the remaining regions, exposure was more in
line with GDP share. Within a region, loan exposure is randomly assigned. The
expected severity for loans to U.S. companies is the lowest at 20%, based upon
studies by Citibank, Fitch Investor Service and Moody’s Investor Service.51 All
other severities are based on assumptions, reflecting the idea that severities are
higher in less developed countries. Table 4 gives the portfolio composition, regional
weights, individual exposures and expected (µβ) and unexpected (σβ) severities.52

51As cited in Saunders and Allen (2002).
52Mean severity is assumed to be slightly lower in Germany (as compared to France or U.K.,

for example), since Germany is assumed to be the bank’s domicile country and hence the bank
may have some local advantages in the recovery of distress assets. Unexpected severity refers to
standard deviation of severity distribution assumed here to be Beta distributed.
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Table 4

The Composition of the Sample Portfolio for Regions

Equity Series1 Credit Rating2 Portfolio Severity3

Region # Obligors Quarterly Range Per cent Mean S.D.

(µβ) (σβ)

U.S. 14 79Q1 - 99Q1 AAA to BBB- 20 20% 10%

U.K. 9 79Q1 - 99Q1 AA to BBB+ 6 35% 15%

Germany 18 79Q1 - 99Q1 AAA to BBB- 21 30% 15%

France 8 79Q1 - 99Q1 AA to BBB 8 35% 15%

Italy 6 79Q1 - 99Q1 A to BBB- 8 35% 15%

W. Europe 12 79Q1 - 99Q1 AAA to BBB+ 8 35% 15%

Middle East 4 90Q3 - 99Q1 B- 2 60% 20%

S.E. Asia 23 89Q3 - 99Q1 A to B 10 50% 20%

Japan 13 79Q1 - 99Q1 AAA to B+ 10 35% 15%

L. America 12 89Q3 - 99Q1 A to B- 5 65% 20%

Total 119 - - 100 - -

1. Equity prices of companies in emerging markets are not available over the full sample period used

for the estimation horizon of the GVAR. We have a complete series for all firms only for the U.S.,

U.K., Germany and Japan. For France, Italy and W. Europe, although some of the series go back

through 1979Q1, data was available for all firms from 1987Q4 (France), 1987Q4 (Italy), 1989Q3

(W. Europe). We used that sample range for the APT regressions for those regions. For L. America

we have a complete sample range for all firms from 1990Q2.

2. The sample contains a mix of Moody’s and S&P ratings, although S&P rating nomenclature is

used for convenience.

3. Severity is drawn from a beta distribution with mean µβ and standard deviation σβ .

7.3 APT Regressions

7.3.1 Factor Selection Process

With the GVAR framework serving as the global economic engine, we make use of the
APT model to capture systematic risk for use in the firm default model. Equation
(32) above lays out the general form of the APT regressions, but a closer look at
this specification reveals two important issues. First, given the diverse nature of the
operations of the firms in our portfolio, one is tempted to included all the domestic,
foreign and global factors (i.e. oil price changes) in the APT regressions. This
general approach may be particularly important in the case where a multinational
is resident in one country, but the bulk of its operations takes place in the global
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arena. However, because there is likely to be a high degree of correlation between
some of the domestic and foreign variables (e.g. real equity prices and interest rates),
it is by no means obvious how to proceed with the model selection process.
Secondly, because not all regressors, be they foreign or domestic, are likely to be

statistically significant, it may be efficient to restrict those insignificant coefficients
to zero for subsequent loss simulation purposes. To this end two possible approaches
can be followed. A standard procedure would be to apply regressor selection methods
to each of the firm-specific APT regressions separately. Since we have 119 firms in
our portfolio with as many as 1353 estimated coefficients each, the application of such
a procedure besides being very time-consuming can be subject to a considerable
degree of specification searches with undesirable consequences. Alternatively, we
could view the 119 APT regressions as forming a panel with heterogeneous slope
coefficients.54 Such panels have been studied recently by Pesaran and Smith (1995)
and Pesaran, Smith and Im (1996), where it is shown that instead of considering
firm-specific estimates one could base the analysis on the means of the estimated
coefficients, referred to as the mean group estimators (MGE). This approach assumes
that the variations of factor loadings, βji,` and β∗ji,` in (32) across firms in different
regions are approximately randomly distributed around the fixed means, β` and
β∗` . This is the standard random coefficient model used extensively in the panel
literature. The choice of the factors in the APT regressions can now be based on
the statistical significance of the (population) mean coefficients, β` and β∗` , by using
the MGE to select the slimmed-down regressor set. The appropriate test statistics
for this purpose are given by

t` =
β̂`qdV ar(β̂`) and t

∗
` =

β̂
∗
`qdV ar(β̂∗`) ,

where, for nci companies in region i, i = 0, ..., N ,

β̂` =

PN
i=0

Pnci
j=1 β̂ji,`PN

i=0 nci
,

dV ar(β̂`) =

PN
i=0

Pnci
j=1

³
β̂ji,` − β̂`

´2³PN
i=0 nci

´³PN
i=0 nci − 1

´ ,
and similarly for β̂

∗
` and dV ar(β̂∗`).55

53One constant, 6 domestic, 5 foreign macroeconomic variables plus oil prices.
54While we demonstrate the model with a portfolio of 119 firms, our approach could easily be

applied to a much larger portfolio.
55A similar exercise can of course be carried out at the country/region level. However, in the
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With these issues in mind, we are now able to take a systematic approach towards
estimating the APT regressions for each firm. For all firms, we start by estimating an
APT regression that includes all variables which correspond to the choice of variables
in the GVAR model itself for the firm’s domicile region. These regressor sets are
summarized in Table 2 where we can see that the U.S. firm equations are somewhat
different from those in the other regions in that the only foreign regressor included is
foreign real exchange rate (∆e∗), but the domestic exchange rate variable is excluded
as the U.S. dollar is the numeraire currency. For the non-U.S. regressions, we apply
the MGE procedure to remove insignificant variables. Because of the limited number
of U.S. firms, we rely on t-statistics and the signs of individual coefficients to choose
the best subset of regressors. Finally, recognizing the likely collinearity of ∆q and
∆q∗ (the domestic and foreign equity series), we run two versions of each model, one
with domestic equity and one with foreign. We choose the model with the higher
adjusted R-squared, R̄2.56 ,57

7.3.2 APT Regression Results

A summary result of the initial APT regressions are provided in Table 5 in Appendix
10 where the proportion of firms with significant APT regressions (using an F-test at
the 5% level) and significant t-ratios for individual factors are given across different
countries/regions. This table is not meant to convey statistical significance or lack
thereof but should rather be considered as broadly descriptive of the APT regression
results. For instance, the precision of the ratios (averages) depends on the number
of firms in each of the cells; reporting those would make the table visually awkward.
Around 90% of those regressions were significant (using the F-test) at the 5%

level.58 The F-test values in the first row of Table 5 suggest that changes in the
macroeconomic factors have a significant influence on equity returns. The t-statistics
for the coefficients of individual macroeconomic factors clearly single out two im-

present application we did not think the number of firms at the region level are sufficient for the
MG test to be meaningful.
56Since the two non-nested APT regressions have the same number of coefficients the same result

would follow if other model selection criteria are used.
57Of course, there are other approaches to choosing an APT specification for each firm. We

considered (and, in fact, carried out) alternative approaches, including one which began with only
domestic variables (plus oil) in the APT regressions, slimming down via MGE, and then potential
substitution of foreign for domestic variables if the significance or sign of the domestic variable was
called into question. In the end, we felt that taking an approach that was more consistent with
the framework of the GVAR model (i.e. beginning with all of the GVAR models and then paring
the model down) was more appropriate.
58In PSW by comparison, where only the domestic variables (plus oil price) entered the APT

regressions, around 80% of those regressions attained this significance level.
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portant ones: the domestic and foreign real equity returns.59 For regions where
no full equity series could be incorporated in the GVAR, i.e. the Middle East, we
cannot identify one dominant macroeconomic factor. In South East Asia, both do-
mestic and foreign output matter, as does the exchange rate. Oil price changes are
significant in about a quarter of the regressions.
Across the ten regions, variation in the macroeconomic factors explains between

25% and 50% of the total variations in firm returns, as measured by R̄2. If we have
captured overall systematic risk reasonably well, the diversification benefits in an
all-German portfolio (average R̄2 = 0.29) should thus be greater than for an all-
South East Asian portfolio (average R̄2 = 0.47)), which seems to be more driven by
systematic risk. Consequently, similarly sized macroeconomic shocks should affect
loans to South East Asian obligors to a higher extent than loans to German obligors.
We now employ the MGE test in order to determine the significance of the factors

using our panel of estimates, the results of which are presented in Table 6.

Table 6
Mean Group Estimates of Factor Loadings

in APT Regressions
Number of

Factors MGE S.E. of MGE t-ratios Coefficients

β̂` (β̂
∗
`)

qdV ar(β̂`) t` (t
∗
`)

PN
i=0 nci

constant 0.03 0.01 3.10 119
∆y 0.39 0.61 0.64 119
∆2p -1.22 0.39 -3.16 119
∆q 0.62 0.07 9.30 115
∆e 0.08 0.10 0.81 105
∆r -1.43 0.97 -1.47 119
∆m -0.01 0.26 -0.02 119
∆y∗ -2.01 1.15 -1.75 105
∆2p∗ -2.26 1.14 -1.98 105
∆q∗ 0.48 0.11 4.28 105
∆e∗ 0.10 0.15 0.62 14
∆r∗ 5.29 3.21 1.65 105
∆m∗ -0.42 0.58 -0.72 105
∆po 0.15 0.07 2.13 119

Based on the MG test results the statistically most significant factors are, per-
haps not surprisingly, changes in domestic and foreign real equity prices (∆q and
59Thus, it seems plausible to reduce the multi-factor APT-type approach to a single factor

CAPM-type approach for regions where an equity series is available.
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∆q∗). The MGE of equity prices have the expected signs and their magnitudes seem
plausible. For example, the estimated coefficients of changes in domestic and foreign
equity prices add up to 1.10, suggesting that the composition of the loan portfolio
closely matches that of a global market portfolio. Domestic inflation (and to a lesser
extent foreign inflation) and oil prices were also statistically significant. Both do-
mestic and foreign inflation have negative effects on returns, as to be expected. The
overall effect of the oil price changes is, however, positive. This seems a reason-
able outcome for energy and petrochemical companies and for some of the banks,
although one would not expect this result to be universal. In fact we do observe
considerable variations in the individual estimates of the coefficients of oil prices
changes across different firms in our portfolio. Amongt the remaining factors, inter-
est rates and foreign output are also marginally significant. The latter is difficult to
explain, particularly considering that domestic output is not statistically significant
and foreign output has a wrong sign. In view of this we decided to exclude both of
the output variables from our subsequent analysis. Of the two interest rate variables
we included the domestic rate which had the correct sign.
Our concerns regarding multicollinearity were confirmed by the regression re-

sults. Initially, we included both foreign and domestic equity variables but found
implausible (negative) estimates for some of the APT regressions, which we believe
partly reflects the high correlation of ∆q and ∆q∗ in some regions. Working with
APT regressions with perversely signed estimated coefficients is particularly prob-
lematic for the analysis of shock scenarios where the coefficient of equity prices plays
a critical role in the transmission of shocks to the loss distribution. We ran two sets
of APT regressions (including inflation, interest rate and the oil price variables); one
with ∆q and another with ∆q∗, and selected the regression with higher R̄2. The
summary of the final set of APT regressions and the associated MG estimates are
given in Table 7. In this specification inflation, equity price changes and oil price
changes remain the key driving factors in the APT regressions. It is also worth
noting that the mean group estimate of the equity price variable is not significantly
different from unity, which suggests the credit risk portfolio we have selected is close
to the (global) market portfolio which has a “beta” of unity.
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Table 7
Mean Group Estimates of Factor Loadings

The Preferred Model
Number of

Factors MGE S.E. of MGE t-ratios Coefficients

β̂` (β̂
∗
`)

qdV ar(β̂`) t` (t
∗
`)

PN
i=0 nci

constant 0.02 0.003 6.14 119
∆2p -1.20 0.37 -3.21 119
∆q/∆q∗ 1.08 0.05 22.36 119
∆e 0.07 0.15 0.46 14
∆r∗ -1.37 0.98 -1.40 105
∆po 0.32 0.07 4.27 119

7.4 Simulated Conditional Loss Distributions

With the estimated GVARmodel serving as the economic scenario generator and the
fitted APT regressions as the linkage between firms and the economy, we simulated
loss distributions for three different horizons: one, four and eight-quarters ahead.60

A one year horizon is typical for credit risk management and thus of particular
interest. For each horizon we examined the impact of several shock scenarios.61

• a —2.33σ shock to real U.S. equity, corresponding to a quarterly drop of 14.28%
• a +2.33σ shock to real German output, corresponding to a quarterly rise of
2.17%

• a —2.33σ shock to real S.E. Asian equity, corresponding to a quarterly drop of
24.77%

• a +2.33σ shock to Japanese real money supply, corresponding to a quarterly
rise of 2.87%

• a +2.33σ shock to the price of crude oil, corresponding to a quarterly rise of
16.01% 62

60The important issue of credit risk model evaluation is beyond the scope of this paper; we plan
to address it in subsequent work. See also Lopez and Saidenberg (2000).
612.33σ corresponds, in the Gaussian case, to the 99% Value-at-Risk (VaR), a typical benchmark

in risk management.
62The price at the end of 1999Q1 was $12.31 a barrel (Brent Crude). A +2.33σ shock would

raise the price to $14.45.
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In addition we experimented with symmetric positive shocks to U.S. and S.E.
Asian equity prices, and a symmetric negative shock to the price of crude oil. These
are of particular interest here since their impacts on losses will not be (negatively)
symmetric due to the nonlinearity of the credit risk model. We also include a stress
scenario for the U.S. equity market as reported in PSW, namely an adverse shock
of 8.02σ. Such a large shock corresponds to a quarterly drop of 49% which is the
largest quarterly drop in the S&P 500 index since 1928 (which occurred in the three
months to May, 1932). It also corresponds to the recent decline from their peak in
2000 to a recent low (in early October, 2002). Finally we include an intermediate
negative equity shock of −5σ.
We carried out 50,000 simulations for each shock scenario using Gaussian and

Student t distributed (compound) innovations with 5 and 10 degrees of freedom,
the former reflecting fat-tails commonly found in equity and foreign exchange rate
markets, the latter being an intermediate case of fat-tailed innovations.63 All losses
are discounted with a real interest rate of 2% per annum. For the forecasts and
shock scenarios, we computed expected loss results, both theoretical (using (44))
and simulated (49). The two sets of estimates turn out to be very close indeed so
we only report the simulated ones. The simulated expected loss results for all three
simulation horizons are summarized in Table 8a, where each column represents a
particular scenario. The scenarios are ordered roughly in descending order (left to
right) of loss impact.
Taking first the shocks of size 2.33σ, the most significant impact on expected

loss (EL) comes from the the adverse shock to U.S. real equity prices. For the
Gaussian case, at one quarter ahead, losses are nearly three times the baseline
values (Gaussian: 3.5bp vs. 1.2bp), but the relative magnitude declines as the
forecast horizon extends; about 70% higher at four quarters (6.8bp vs. 4.0bp) and
just 36% higher at eight quarters (11.0bp vs. 8.1bp). If compound innovations are
taken to be Student t distributed, the relative severity of the U.S. real equity price
scenario compared to the baseline is less: about twice for one quarter ahead (5.2bp
vs. 2.2bp for t[10], 8.3bp vs. 4.4bp for t[5]), 30-40% for four quarters ahead (13.6bp
vs. 9.7bp for t[10] and 21.6bp vs. 16.7bp for t[5]), and just 16-28% for eight quarters
ahead (19.9bp vs. 15.5bp for t[10] and 39.1bp vs. 33.7bp for t[5]). Not surprisingly,
the expected losses increase as we go from Gaussian shocks to the t distributed
shocks with much fatter tails, with losses being largest in the case of t distributed
shocks with 5 degrees of freedom. As we shall see this pattern gets repeated as we
consider other aspects of the loss distribution.
63To ensure convergence, we also performed simulations up to 200,000 runs; the results were

indistinguishable from our base runs based on 50,000 replications.
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From a risk perspective, it is not so much expected as unexpected loss (UL)
which matters. This is captured in the volatility or the standard deviation of losses
summarized in Table 8b, and there a similar story emerges. Taking again the -
2.33σ shock to U.S. real equity prices, the ratio of ULUSEQ to ULbaseline declines as
the distribution of compound innovations becomes more fat-tailed, irrespective of
whether one, four or eight quarters ahead is considered. Risk differences mitigate as
the horizon extends. That ratio is 1.79 (12.0bp to 6.7bp), 1.27 and 1.14 for Gaussian,
one, four and eight quarters respectively. For t[10] it is 1.60 (14.9bp to 9.3bp), 1.21
and 1.13 for one, four and eight quarters respectively, and for the most fat-tailed
t[5] it is a more modest 1.39 (19.1bp vs. 13.7bp), 1.14 and 1.08 for one, four and
eight quarters respectively.
But as to be expected, the absolute levels of expected and unexpected losses

are greater the fatter are the tail of the distribution assumed for the innovations.
This overall pattern is consistent across shock scenarios. For a given horizon, as
we move from Gaussian to t[10] and then t[5], losses increase as expected. As the
horizon extends, an initially severe shock generates very similar EL and UL levels
by the time two years have passed. These results clearly show the importance of
allowing for fat-tailed shocks for loss distributions particularly over relatively short
horizons. As horizons are extended the tail properties tend to be less important; a
result which requires further analysis.
Symmetric shocks do not result in symmetric outcomes, namely positive and

negative shocks of the same absolute size do not have the same absolute effects on
loss distributions. We have two scenarios with (negatively) symmetric shocks: U.S.
and S.E. Asian real equity prices. This asymmetry is apparent by looking at either
EL or UL, Gaussian or t-distributed. For example, for the S.E. Asian case, Gaussian
innovations, in the first quarter the EL of the adverse shock is about 90% bigger
than the baseline while the positive shock generates losses that are only about 20%
smaller (Table 8a). In the U.S. case, the asymmetry is less at the mean (EL), where
losses increase (decrease) by a factor of about 2.9 (2.3) for an adverse (positive)
shock, than in the volatility of losses (UL; see Table 8b), where an adverse shock
increases UL by about 79% while a positive shock of the same magnitude reduces
loss volatility only by about 50%.
The asymmetry is especially pronounced if one considers the tails of the loss

distributions. These are shown in Figures 2 (one quarter), 3 (four quarters) and 4
(eight quarters) which chart the 99% tail of the simulated loss distributions. For
instance, looking at the four quarter horizon (Figure 3), the S.E. Asian and U.S.
negative equity shock-induced loss distributions lie further above the baseline than
their positive counterparts lie below that baseline. The shapes of the tails are also
different both across scenarios and across forecast horizons. The tail is especially
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kinked after just the first quarter when the impact is the largest for the far tail
(Figure 2). Those tails smooth out considerably as the forecast horizons extends, as
can be seen in Figures 3 and 4.
The benign shock to U.S. real equity prices reduces losses. In fact, in the first

quarter, the 99% VaR is 21.5bp compared to a baseline loss of 41.5bp. This changes
as the horizon is extended. By four quarters out (Figure 3), losses under this benign
scenario at the 99% level are 51.3bp compared with 55.5bp for the baseline scenario.
After two years the difference is yet smaller (Figure 4): 66.8bp vs. 73.4bp.
A positive shock to German real output does not have a substantial impact on the

loss distribution, despite the relative concentration of credit exposures to Germany
in this portfolio (21% of total face value). In fact, a positive shock to S.E. Asian
real equity prices has a more beneficial effect than a positive shock to German real
output at any horizon (Figures 2-4). This is likely driven by the important role
equity prices play in our APT models relative to output which do not enter the
preferred model at all (see Table 7). Thus shocks to GDP will translate to losses
indirectly through the other factors as governed by the generalized impulse response
functions. A similar outcome is also observed with Japanese money supply shock.
Figure 5a and 5b illustrate the impact of symmetric shocks to the oil price on

credit loss. At a magnitude of 2.33σ, we use both a positive (price increase) and
a negative oil price shock (price decrease). Interestingly, both shocks are found
to have adverse impacts on credit loss - more so for the negative oil shock. This
is true for expected and unexpected loss (Tables 8a&b), as well as the whole loss
distribution. While one would not generally expect this result, it is in line with
our mean group estimates of the return regression equation, which are found to be
positive at 0.32 (see Table 7). For the majority of firms in our sample, an upward
shock to the oil price has benign effects. Yet, there are also firms which move close
to default in the presence of an upward shock to the oil price (as one would expect
for many industries). As we have already seen, symmetric shocks do not result
in symmetric changes to the loss distribution. The increase in credit loss from an
adverse shock is disproportionately larger than loss mitigation from a benign shock of
the same magnitude. While oil price shocks may have opposite effects on individual
firm default risk, the adverse effect tends to outweigh the benign one. Thus, it is
plausible within the portfolio context of our model that positive and negative shocks
to the same variable may both result in adverse effects on credit loss.
Figure 5a displays the loss distribution for a much longer portion of the tail than

the other charts: 90% and beyond instead of 99% and beyond. One can clearly see
just how steep, in this display manner, the loss curve becomes in the far tail. Past a
certain point, about the 99%-ile, losses increase dramatically. It is no accident that
credit risk managers focus on this region.
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Figures 6 and 7 display the effect of using fat-tailed innovations, as compared
with our Gaussian basecase. In an attempt to summarize the effect over time across
different shocks, in Figure 6 we look at just the marginal mean loss, EL, for each
of one to eight quarters. The top part of the chart, shaded in pink, captures the
t[5] loss region, and the bottom part, shaded in light yellow, captures the losses
resulting from Gaussian innovations. The expected loss from the basline t[10] case
is also included as a visual reference point; as expected, it falls between the Gaussian
and t[5].
As the innovations become more fat tailed, losses increase, exactly as expected.

Marginal losses due to shocks converge quickly to the marginal baseline shocks as
the horizon extends beyond three quarters. Baseline losses roughly double as one
moves from Gaussian to t[10] and double again from t[10] to t[5].
What happens as the shocks become more and more extreme? This question

is addressed in Figure 7 for different U.S. real equity shock scenarios: −5.00σ and
−8.02σ, the latter matching the largest quarterly drop in the S&P 500 index since
1928. In this chart we display again the 99% tail of the simulated loss distributions
for the typical risk management horizon of four quarters. We also display the base-
line loss distribution for comparison. To be sure, a shock as extreme as −8.02σ is,
of course, outside the bounds of the estimated model. It would be unreasonable to
believe that such a large shock would not result in changes of the underlying para-
meters. However, it is still instructive to examine the apparent trade-offs between
size of shock and fatness of tails of the innovations, two ways one might stress a
credit risk model.
The loss curves are most spread apart for the baseline case, least for the extreme

shock case (−8.02σ) where loss curves are quite close together. Interestingly the
tail losses due to a −5σ shock under Gaussian assumptions are only a little larger
than the tail losses under the no-shock baseline scenario assuming innovations are
t[5] distributed. Moreover the chart shows that when assuming a Gaussian process,
it seems perhaps unreasonable to consider a shock of such a magnitude (−5σ or
−8.02σ) as its likelihood would have been zero (or very nearly so!) if the Gaussian
assumption were in fact true.64

8 Concluding Remarks

In this paper we developed a coherent and consistent framework for modeling con-
ditional loss distributions through the introduction of risk factor dynamics. We ex-
plicitly link the asset value changes of a credit (loan) portfolio to a dynamic global
64Indeed this may be a good example of how the logic of a modeling strategy imposes restrictions

on the type of shocks that one could consider as a plausible counter-factual.
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macroeconometric model which allows us to isolate macro effects from idiosyncratic
shocks as they relate to default (and hence loss). Default probabilities are driven
primarily by how firms are tied to business cycles, both domestic and foreign, and
how business cycles are linked across countries. In our model, domestic and foreign
business cycle effects are allowed to have differential impacts on different firms. Not
only are we able to control for firm-specific heterogeneity, but we also are able to
generate multi-period forecasts of the entire loss distribution, conditional on specific
macroeconomic shock scenarios. Our conditional modeling framework is thus a step
towards joint consideration of market and credit risk.
The first step in developing such a model is to build an economic engine reflective

of the environment faced by an internationally active global bank. Our macroecono-
metric model, developed in Pesaran, Schuermann and Weiner (2003), builds on
recent advances in the analysis of cointegrating systems and allows for interaction
among different economies through three separate but interrelated channels:
1. Direct dependence of the relevant macro-factors on their region-specific foreign

counterparts and their lagged values;
2. Dependence of the region-specific variables on common global exogenous

variables such as oil prices and possibly other variables controlling for major global
political events;
3. Non-zero contemporaneous dependence of shocks in region i on the shocks in

region j, measured via the cross-region covariances.
Thus, for instance, we are able to account for inter-linkages (if any) between

interest rate changes in the U.S. and output in Germany.
For the credit portfolio component of our model we use a simple Merton-type

framework, modeling credit risk as a function of correlated equity returns of the
obligor companies. Equity returns are linked to correlated macroeconomic variables
using an approach structurally similar to the Arbitrage Pricing Theory (APT). In
this way we are able to account for firm-specific heterogeneity in an explicitly inter-
dependent global context; domestic and foreign business cycle effects are allowed to
impact each firm differently. We then use the estimated global model as the economic
engine for generating a multi-period conditional loss distribution of a credit portfolio
using stochastic simulation. Sampling takes place along three lines: correlated ran-
dom draws of macroeconomic factors; draws of firm-specific risk components; and
draws of stochastic loan loss severities. Finally we analyze the impact of a shock
to a set of specific macroeconomic variables on the loss distribution, allowing us
to analyze the effect of a particular macroeconomic shock in one region on credit
portfolios concentrated in other regions, as well as shocks to risk factors, e.g. oil
prices, affecting all regions.
Our credit risk modeling approach has three other features of particular relevance
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for risk managers: exploration of scale and symmetry of shocks on credit risk; effect
of non-normality; and ranking of shock impacts on credit risk. First, our framework
allows for the analysis of symmetry and scale for a variety of macroeconomic shocks.
Indeed we show that shocks not only have an asymmetric but also non-proportional
impact on credit risk due to the nonlinearity of the credit risk model. Because
the Merton model is an option-theoretic model, these traits echo characteristics of
the options markets: large movements in the underlying prices have disproportional
effects on the value of the option portfolio.
Second, we allow for simulated innovations to be drawn from non-normal distrib-

utions such as the Student t with varying degrees of freedom to reflect the fat-tailed
nature of some financial variables. We show that the absolute levels of expected and
unexpected losses are greater the fatter are the tail of the innovation distribution.
These effects are mitigated as we increase the horizon of analysis.
Third, the model allows us to rank the effects of different shocks on a global

portfolio. Not surprisingly, shocks to real equity prices seem to have the most
significant effect on implied credit losses, followed here by shocks to the price of
crude oil. Having arbitrarily picked Germany as the portfolio’s domicile country,
we naturally were interested in the impact of, say, a positive shock to German
real output. We find that such a shock does not have a substantial impact on the
loss distribution, despite the relative concentration of credit exposures to German
economy in this portfolio (21% of total face value). In fact, a positive shock to S.E.
Asian real equity prices has a more beneficial effect than a proportionate positive
shock to German real output. Thus from the perspective of a German risk manager,
the viewpoint we are trying to mimic, given this portfolio, positive shocks to German
output are less cause for excitement than positive shocks to S.E. Asian equity prices.
Information of this kind is quite valuable for portfolio and/or risk managers, who
typically perform scenario analyses on a quarterly (or perhaps even more frequent)
basis. It would then allow the manager to consider alternative strategies such as
reallocation or derivative solutions to managing the largest risks associated with a
portfolio.
In being able to analyze the impact of shocks to markets and macroeconomic

variables, the effectiveness of macro-hedging strategies of credit risk may be consid-
ered. Most of the underlying risk factors can now be hedged with financial contracts
and instruments, even the macroeconomic ones.65 In addition, our framework can
be employed in other applications ranging from the pricing of credit instruments
such as collateralized debt obligations (CDOs) and credit derivatives, to firm-wide
risk and capital management applications for financial institutions. These are clearly
65For example, one U.S. investment bank currently offers options on economic statistics, so-called

economic derivatives.
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fruitful areas for future research.
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10 APT Regression Results

Table 5

Results from Firm APT-type regressions: % of firms significant at 5% level66

W. Mid S. E. Latin

U.S.A. U.K. Germany France Italy Europe East Asia Japan America

F-test 93% 100% 94% 88% 83% 100% 75% 91% 91% 58%

const.67 21% 44% 6% 0% 17% 17% 0% 17% 15% 8%

∆y 14% 11% 0% 0% 0% 8% 25% 39% 8% 0%

∆2p 21% 11% 0% 13% 0% 0% 25% 17% 0% 42%

∆q 93% 44% 11% 25% 67% 92% — 70% 85% 67%

∆2e — 11% 0% 0% 0% 0% 0% 39% 38% 8%

∆r 0% 0% 0% 0% 17% 8% 50% 9% 0% 25%

∆m 14% 0% 0% 0% 0% 25% 25% 13% 0% 8%

∆y∗ — 0% 0% 0% 17% 25% 0% 52% 8% 8%

∆2p∗ — 11% 0% 13% 0% 8% 0% 4% 0% 17%

∆q∗ — 56% 100% 75% 0% 58% 25% 13% 15% 17%

∆2e∗ 7% — — — — — — — — —

∆r∗ — 22% 0% 13% 17% 17% 25% 4% 0% 8%

∆m∗ — 0% 0% 0% 0% 0% 0% 13% 0% 0%

∆po 21% 22% 33% 25% 33% 25% 0% 22% 0% 8%

avg. R2 0.30 0.34 0.38 0.49 0.56 0.64 0.52 0.61 0.40 0.48

avg. R̄2 0.25 0.25 0.29 0.34 0.43 0.51 0.33 0.47 0.31 0.27

66We use the maximum sample length available to all firms in one region.
67The remaining are t-tests.
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Table 8a

Mean (Expected Loss) of Simulated Losses for 1, 4 and 8 Quarters Ahead (in Basis Points of Exposure)1

-8.02σ
U.S.

Equity

-5.00σ
U.S.

Equity

-2.33σ
U.S.

Equity

-2.33σ
Oil

-2.33σ
SEA

Equity

+2.33σ
Japanese

Money

+2.33σ
U.S.

Interest 

Base-
line

+2.33σ
German
Output

-2.33σ
U.S.

Interest 

+2.33σ
Oil

+2.33σ
SEA

Equity

+2.33σ
U.S.

Equity

1Q Gaussian 133.2 21.8 3.5 3.5 2.3 1.5 1.5 1.2 1.2 1.1 1.3 1.0 0.5

t [10] 134.7 24.4 5.2 4.5 3.6 2.5 2.3 2.2 2.2 2.0 2.3 1.8 1.1

t [5] 135.8 27.3 8.3 6.8 6.0 4.6 4.5 4.4 4.4 4.3 4.5 3.9 2.7

4Q Gaussian 138.1 26.0 6.8 6.4 5.5 4.5 4.3 4.0 3.9 4.0 4.1 3.5 2.9

t [10] 143.4 34.0 13.6 11.9 11.8 10.2 9.7 9.7 9.4 9.6 9.9 8.6 7.8

t [5] 152.4 42.4 21.6 19.1 19.1 17.3 16.5 16.7 16.1 16.8 16.9 15.4 14.1

8Q Gaussian 143.2 30.7 11.0 10.0 9.7 8.5 8.2 8.1 7.7 7.8 8.2 7.1 6.6

t [10] 152.9 40.6 19.9 17.6 18.1 16.2 15.7 15.5 15.1 15.4 16.2 14.2 13.4

t [5] 171.6 60.8 39.1 35.6 36.9 34.3 33.7 33.7 32.9 33.7 34.7 31.6 30.4

                                                     
1 All losses are discounted by a real interest rate of 2% per annum.



Table 8b

Standard Deviation (Unexpected Loss) of Simulated Losses for 1, 4 and 8 Quarters Ahead (in Basis Points of Exposure) 2

-8.02σ
U.S.

Equity

-5.00σ
U.S.

Equity

-2.33σ
U.S.

Equity

-2.33σ
Oil

-2.33σ
SEA

Equity

+2.33σ
Japanese

Money

+2.33σ
U.S.

Interest 

Base-
line

+2.33σ
German
Output

-2.33σ
U.S.

Interest 

+2.33σ
Oil

+2.33σ
SEA

Equity

+2.33σ
U.S.

Equity

1Q Gaussian 63.1 30.1 12.0 11.8 9.4 7.6 7.5 6.7 6.9 6.7 7.0 6.3 4.2

t [10] 63.0 32.0 14.9 13.4 11.9 10.0 9.6 9.3 9.2 9.3 9.4 8.4 6.6

t [5] 64.0 34.4 19.1 16.8 15.9 13.9 13.7 13.7 13.6 13.7 13.9 13.1 10.6

4Q Gaussian 87.0 52.1 31.1 29.7 28.4 25.9 25.1 24.4 24.0 24.6 24.7 22.7 20.6

t [10] 95.4 62.2 42.4 38.8 39.0 360.0 34.5 35.0 33.9 35.2 35.6 32.8 30.2

t [5] 110.1 78.7 60.2 56.2 56.5 53.9 52.4 52.8 51.9 53.4 53.4 50.9 48.3

8Q Gaussian 114.6 78.4 55.7 52.8 53.2 50.2 49.0 48.9 47.6 48.3 49.2 45.8 43.8

t [10] 133.8 98.7 78.1 72.9 75.1 71.0 69.3 69.4 68.1 69.4 7.2 66.1 63.7

t [5] 166.6 1334.0 114.2 108.5 111.0 106.9 105.5 106.1 104.3 106.3 108.2 102.6 100.3

                                                     
2 All losses are discounted by a real interest rate of 2% per annum.
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Marginal Expected Loss per Quarter: Gaussian and t [5,10]
50K replications
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