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Hitchin Functionals, h-Principles and Spectral Invariants
Laurence Hamilton Mayther
Abstract

This thesis investigates Hitchin functionals and h-principles for stable forms on oriented manifolds, with a
special focus on Gy and G, 3- and 4-forms. Additionally, it introduces two new spectral invariants of torsion-free
Go-structures.

Part I begins by investigating an open problem posed by Bryant, viz. whether the Hitchin functional Hg
on closed Gy 3-forms is unbounded above. Chapter B uses a scaling argument to obtain sufficient conditions
for the functional H3 to be unbounded above and applies this result to prove the unboundedness above of Hg
on two explicit examples of closed 7-manifolds with closed Go 3-forms. Chapter E then proceeds to interpret
this unboundedness geometrically, demonstrating an unexpected link between the functional H3 and fibrations,
proving that the ‘large volume limit’ of H3 in each case corresponds to the adiabatic limit of a suitable fibration.
The proof utilises a new, general collapsing result for singular fibrations between orbifolds, without assumptions
on curvature, which is proved in Chapter H Chapter a broadens the focus of Part I to include the Hitchin
functionals Hy, 773 and H4 on closed Go 4-forms, Gs 3-forms and Gy 4-forms respectively. In its main result,
Chapter a proves that Hy, 773, H, are always unbounded above and below (whenever defined), and also that Hs
is always unbounded below (whenever defined). As scholia, the critical points of the functionals H, Hs and H,
are shown to be saddle points, and initial conditions of the Laplacian coflow which cannot lead to convergent
solutions are shown to be dense. Part I ends with a short discussion of open questions, in Chapter E

Part II investigates relative h-principles for closed, stable forms. After establishing some prerequisite alge-
braic results, Chapter [ begins by proving that if a class of closed, stable forms satisfies the relative h-principle,
then its corresponding Hitchin functional is automatically unbounded above. By utilising the technique of
convex integration, Chapter H then obtains sufficient conditions for a class of closed, stable forms to satisfy
the relative h-principle, a result which subsumes all previously established h-principles for closed stable forms.
Until now, 12 of the 16 possible classes of closed stable forms have remained open questions with regard to the
relative h-principle. In the main result of Part II, Chapters H and E prove the relative h-principle in 5 of these
open cases. The remaining 7 cases are addressed in the final chapter of Part II, where it is conjectured that
the relative h-principle holds in each case. Chapter E applies the h-principles established in this thesis to prove
various results on the topological properties of closed G, SL(3;C) and SL(3;R)? forms. Firstly, it characterises
which oriented 7-manifolds admit closed Gy forms, in the process introducing a new technique for proving the
vanishing of natural cohomology classes on non-closed manifolds. Next, it introduces Ga-cobordisms of closed
SL(3;C) and SL(3;R)? 3-forms and proves that homotopic forms are Goa-cobordant. Additionally, Chapter E
classifies SL(3;C) 3-forms up to homotopy and provides a partial classification result on homotopy classes of
SL(3;R)? 3-forms. Part IT ends with a short discussion of open questions, in Chapter @

Part III introduces and examines two new spectral invariants of torsion-free Ga-structures. Although the
notion of an invariant is a central theme in geometry and topology, currently, there is only one known invariant
of torsion-free Go-structures: the v-invariant of Crowley—Goette—Nordstrom. Part 111 defines two new invariants
of torsion-free Ga-structures, termed ps- and pg-invariants, by regularising the classical notion of Morse index
for the Hitchin functionals Hs and H,4 at their critical points. In general, there is no known way to compute 7 for
Go-manifolds constructed via Joyce’s ‘generalised Kummer construction’. Chapter @ obtains closed formulae
for pus and p4 on the orbifolds used in Joyce’s construction, leading to a conjectural discussion in Chapter @ of

how to compute p3 and p4 on Joyce’s manifolds.
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Notation

o Unless stated otherwise, (eq,...,e,) shall denote the standard basis of R", so that e; is given

by the transpose of
ei=(0,..,0, 1 ,0,..,0),

—_
ith position

and (91, e 97) shall denote the corresponding dual basis of (R™)". Multi-index notation:
0k =i NGI A AOF  and €ij..k = € NEj A ... Aeg

is used throughout this thesis. The canonical orientation on R™ is then fixed by declaring
6" > 0.

« Use the symbol @ to denote the n'" exterior tensor power. Thus given a real vector space A,
&? A* is the space of symmetric bilinear forms on A. Write @2 A* for the space of positive-
definite symmetric bilinear forms (i.e. inner-products) on A and write ®§0 A* for the space
of non-negative definite symmetic bilinear forms on A. Define a partial order on &7 A* by
declaring g > ¢’ if and only if g — ¢’ € @2, A*. Given g € @*A* and a € A, write g(a) as an
abbreviation for g(a,a). Finally, given g € @ A*, define the kernel of g to be the kernel of the
linear map ()*:a e A~ g(a,-) e A*.

 Following [62], given a topological space X and a subset A ¢ X, write Op(A) for an arbitrarily
small but unspecified open neighbourhood of A in M, which may be shrunk whenever necessary,

and given z € X, write Op(z) as a short-hand for Op({x}).

« Given a manifold M and a bundle 7 : E — M, unless alternative notation is defined, use I'( F, —)

to denote the sheaf of smooth sections of E.

z be analogy with + to ‘mean greater than or less than, respectively’

o Define symbols 2 and
and ‘greater than or equal to, or less than or equal to, respectively’, where, by convention, the
upper-most symbol should be read first. Thus the equation a +b 2 ¢ should be interpreted as
the pair of equations:

a+b>c and a-b<c

while the equation a ¥ b i ¢ denotes:
a-b>c and a-b<ec
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Chapter 1

Introduction

In 1955, Berger [16] published the first list of possible pseudo-Riemannian holonomy groups of simply
connected, non-locally symmetric manifolds whose holonomy group acts irreducibly. Since then,
Berger’s list has been perfected through the work of many authors, including [3, 4, 20, 26, 21, 54, 55]
and others, and is now known to contain 6 exceptional holonomy groups, viz. Go, Go G, Spin(7),
Spin(3,4) and Spin(7;C), which can occur only in dimensions 7, 7, 14, 8, 8 and 16 respectively (see
(63, §2.2] for the full classification). The initial motivation for this thesis stems from one of these
exceptional groups, viz. Gao.

The existence of (incomplete) manifolds with holonomy Go was first established by Bryant [21],
with complete examples later independently constructed by Bryant—Salamon [23] and Gibbons—Page—
Pope [66]. The first compact manifolds with holonomy Gg were constructed by Joyce (76, 77, 78] with
further examples constructed by Kovalev [87], Kovalev—Lee [88], Corti-Haskins—Nordstrém—Pacini
[29], Joyce—Kariagiannis [80], Nordstrom [110] and others.

One further candidate for constructing compact manifolds with holonomy Go was proposed by
Bryant (jointly with Altschuler) in [22]. Their proposal is most appropriately phrased in terms of
Hitchin functionals, introduced in [71, 72]. Given an oriented 7-manifold M, a Go-structure on M
may be characterised by a 3-form ¢ of a certain algebraic type, called a G 3-form (see §@ for a
precise defintion). Since Go c SO(7), ¢ induces a metric g4 and orientation on M, and hence a volume
form volg and Hodge star 4. When d¢ = 0 and M is closed, the Hitchin functional Hs on (M, ¢) is
defined by:

Hs: (0] = {¢' € [¢] € HIR (M) | ¢ is of Ga-type} ——— (0, 00)

@' > vaol(z,f

Since Gg 3-forms are stable in the sense of Hitchin [72], [¢]+ c [¢] is open in the C%-topology. The
critical points ¢’ of H3 are then characterised by the condition d¥4¢" = 0, which is equivalent to

Hol(gy) € G2 by a well-known result of Fernandez-Gray [49]; such ¢ are termed torsion-free. In
view of this, Altschuler-Bryant proposed a construction whereby closed manifolds with holonomy Go
would be constructed as the limit of the gradient flow of the Hs3. As remarked in [22, Remark 17],
for this construction to be feasible, it would be desirable for the functional Hg to be bounded above.

This motivated the initial question for this thesis:



Question 1.0.1. Is the functional Hs unbounded above?

Part I of this thesis examines Question in depth. Chapter B introduces a new scaling argu-
ment (Proposition ) for proving the unboundedness above of the functional H3 and applies the
argument to prove the unboundedness above of the Hitchin functional 3 on two examples of closed 7-
manifolds with closed Go-structures. The first is a 4-dimensional family (N, ¢(a, 8, X)) (a,8,))e(®\{0})2x(C\{0})
of closed 7-manifolds equipped with closed Go 3-forms inspired by Fernandez’ short paper [46], where
N is the product of S' with the Nakamura manifold constructed by de Bartolomeis-Tomassini [14]).
The second is the manifold (1\7[, (5) constructed by Fernandez-Fino-Kovalev-Munioz in [4§].

Theorem 1.0.2 (Theorems BQQ‘ and B41j)

1. The map:
(R\{0})? x (C\{0}) ——— H{g(N)
(aaﬁv)‘) _— [(p(aaﬁv)‘)]

is injective, and for all (o, B,\) € (R\{0})? x (C\{0}), there exists a family ¢(c, B, ;) €
[o(cr, B,A\) ]+, pe[l,00) such that:

Jim Ha($(a, B, 4; 1)) = 003

2. There exists a family qzuﬁ“ € [qzuﬁ], pe[l,00) such that:

T #5(5) = .
In proving (2), careful treatment of the resolution of singularities in the construction of the manifold
M is required, in order to ensure that the rescaled forms are cohomologically constant.

The explicit families (¢(a, 5, A\; 1)) 1e[0,00) and ((Z)H)ue[owo) constructed in Theorem are each
of further geometric interest. Recall from [4§] that the manifold M can be regarded as the total space
of a singular fibration 7 over S* x ']1‘2\{*1} with generic fibre T*. Chapter E shows that NV can also be
regarded as the total space of a (twisted) TC-fibration p over S'. The families (¢(c, 3, \; it)) 1€[0,00)
and (gzvbu)ug[om) are closely related to the fibrations p and m; this relation is made precise by the

following theorem:

Theorem 1.0.3 (Theorem and )

o Let(a,8,X) € (R\{0})*x(C\{0}) and let (N, ¢(r, B, X; 1)) je[1,00) e as in Theorem . Then
the large volume limit of (N, (e, B, ;1)) corresponds to an adiabatic limit of p. Specifically,

writing £ = log %g for the constant arising in the construction of the Nakamura manifold X :

(N,u‘usb(oaﬁ,/\;ﬂ))%(R/zzaoﬂ(ﬂ)?’gEucl) as  jL - oo,

where the convergence is in the Gromov—-Hausdorff sense.



o Let (1\7[, QUS“)ME[LOO) be as in Theorem . Then the large volume limit of (1\71, gzvS“) corresponds

to an adiabatic limit of the fibration w. Specifically, let B denote the orbifold {il}\TQ x St
Then:

(M, u5¢") > (B,d) as p— oo
in the Gromov-Hausdorff sense, where d is some suitable metric (i.e. distance function) on B.

I remark that, since neither N nor M admit torsion-free Go-structures, Theorem demonstrates
the potential geometric relevance of the functional Hj3 even to manifolds which do not admit torsion-
free Go-structures.

The limiting metric d on the base space B cited in Theorem is locally Euclidean outside a
neighbourhood of the singular locus of B, but globally is not induced by a Riemannian metric; rather
it is induced by a certain ‘stratified’ geometric structure, which I term a stratified quasi-Finslerian
structure. This new class of structures on orbifolds is defined formally in § The proof of Theorem
combines suitable geometric estimates on the Riemannian metrics induced by p 2¢(a, 8, \; i)
with ,u’%“ with a technical collapsing result for singular fibrations between orbifolds, stated in
Theorem . This theorem is distinct from similar theorems in the literature since it does not
require bounds on curvature or injectivity radius of (E,g") and thus allows for Gromov-Hausdorff
limits which have strictly lower dimension than the family whose limit is under consideration. The
proof of Theorem occupies Chapter H, and requires the introduction and investigation of a new
class of stratified fibrations between orbifolds, termed weak submersions.

Part I ends by considering two possible generalisations of Question . Firstly, attention is
broadened from the functional H3 on Go 3-forms, to include the analogous Hitchin functionals Hy4,
Hs and Hy on Go 4-forms, Go 3-forms and Gy 4-forms respectively (see § for a precise definition).
Secondly, it is asked whether the functionals Hs, M4, Hz and Hy are bounded bounded below, in a

logarithmic sense (i.e. bounded away from 0). As its main result, Chapter a proves:

Theorem 1.0.4. The functionals Hy, ﬁg and ’ﬁ4 are always unbounded above and below, and Hs
is always unbounded below. Specifically, let M be a closed 7-manifold (or, more generally, 7-orbifold)
and let ¢, ¥, ¢ and ¢ be closed Gy 3-forms, G 4-forms, G 3-forms and Ga 4-forms on M respectively

and let [&]N and [mN be as defined in . Then:

* infyrepy), Ha (W) =0 and supys e ), Ha(y') = oo;

infa)«, c [QE]N Hs (5’) =0 and SUPZ ¢ M]N H (5/) = o0

infﬂ}" . [mN 7’_[“4 ({b’l) =0 and Sup{z;, c [J}]N ﬁ4 ({[;’) = 00;

inf(br € [¢]+ Hg ((z)’) =0.

Recall that it was shown by Hitchin [[71] that the critical points of Hg are local maxima. Previously,

however, the nature of the critical points of H4, Hs and H4 has not been established. As a scholium

of Theorem , Chapter a obtains:



Theorem 1.0.5 (Theorems and ) The critical points of Ha, Hs and Hy are always
saddles. Specifically, let M be a closed, oriented 7-manifold (or, more generally, 7-orbifold) and let 1
be a torsion-free Go 4-form on M. Then there exist infinite-dimensional subspaces Sy () ¢ T[]+
along which D2H4|¢ is positive definite and negative definite respectively. The analogous statement
holds for the functionals Hs and H.a.

As a second scholium, let M be an oriented 7-manifold and recall that, given a closed Gg 4-form
1 on M, the Laplacian coflow of v is defined to be the solution of the evolution PDE:

O (t)

o5 = Qev(t) =ddje(t)  and - (0) =y (1.0.6)

(Note that I adopt the sign convention for Laplacian coflow used in [59], rather than that used in
the the original paper [83].) Whilst the existence and uniqueness of the Laplacian coflow have yet
to be proven, Laplacian coflow can be regarded as the gradient flow of the Hitchin functional H4
[69]. Consequently, Theorems and intuitively suggest that most solutions of the Laplacian
coflow on a given manifold M (when they exist) will not converge to a torsion-free Go 4-form as

t — co. Chapter B confirms this expectation, by proving the following result:

Theorem 1.0.7. Let M be an oriented 7-manifold (not necessarily closed) and let 1 € QE(M) be a
closed Go 4-form. Consider the space:

no solution to the Laplacian coflow started at}

Oy, = {w' [Vl

W' converges to a torsion-free Go 4-form

Then Oy, c [¢]+ is dense in the C° topology.

Part II broadens the scope of investigation from Gy and Gy forms to more general classes of
geometric structures. Recall that, in the terminology of Hitchin [72], a p-form g € AP (R™)” is stable
if its GL, (n;R)-orbit in AP (R™)" is open; examples include the Gy and Gy forms considered in Part
I. Given an oriented n-manifold M, say that o € QP(M) is a og-form if, for each p € M, (T,M, o|,)
is oriented-isomorphic to (R",00). If M is closed and do = 0, then provided Stabgr,, (n;r)(00) S
SL(n;R), there is a natural Hitchin functional H on the set Cl5 ([0]) of o¢-forms in the de Rham
class [o], defined by analogy with H3. The initial motivation for Part II was to generalise the
questions posed in Part I to these more general Hitchin functionals, and study their unboundedness

above via the notion of relative h-principles, which I now briefly define.

Given a9 € A? (R™)”, an oriented n-manifold M and a fixed cohomology class o € HY, (M), write
CIb, (M) for the set of closed og-forms on M and recall the set Cib (a). More generally, given a
possibly empty submanifold A ¢ M, let o, be a closed og-form on Op(A) such that [o,] = a|op(a) €

4



HY: (Op(A)) and write:

Q{,’O(M;U,ﬂ) = {O‘ € Q{,’O(M) | 0'|(9p(A) = O'r}
Cl (M;o,) ={o e (M;o,) | do =0}
Cl (a;o0) = {0 eCll (M;0,) | [0] = a e Hi, (M)}.

Say that og-forms satisfy the relative h-principle if for every M, A, « and o,, the inclusions:
Clg0 (a;0p) = Cl{';D M;0,) = QgO(M; or)

are homotopy equivalences. (In fact, this thesis uses a slightly stronger notion of h-principle; see
§@) Such an h-principle is of significant independent geometric interest: indeed, taking A = @&, the
inclusions:

Ci, () = I, (M) = Q2 (M)

are also homotopy equivalences and thus, if M admits any og-form (a question which can be answered
using purely topological methods), then every degree p de Rham class on M can be represented by a
op-form. In addition to this, the relative h-principle is relevant to the study of Hitchin functionals,

as the following result demonstrates:

Theorem 1.0.8 (Theorem ) Let oo be a stable form such that Stabgr, (nr)(00) € SL(n;R)
and suppose that og-forms satisfy the relative h-principle. For any closed, oriented n-manifold M

admitting oo-forms and any o € Hip (M), the Hitchin functional:
H : Clg, (o) = (0,00)

is unbounded above. More generally, if M is a closed, oriented n-orbifold and Clb, («) # @, then the

same conclusion applies.

If A=@ and M is open (i.e. not closed), the inclusions Cl5, (a) < CI5, (M) = Qb (M) are known
to be homotopy equivalences for any oy, by the techniques introduced [60] (see also [42, B2]). However
if M is closed, or A # &, the question of which o satisfy the relative h-principle remains an open
problem. More specifically, there are essentially 16 classes of closed stable forms (see § and
Remark ) Of these 16 classes, only 3 are known to satisfy the relative h-principle, viz. stable
2-forms on odd-dimensional manifolds (McDuff [104]), G 4-forms (Crowley—Nordstrom [32]) and
SL(3;C) 3-forms (Donaldson [37]). Conversely, symplectic forms are widely known not to satisfy the
relative h-principle (see, e.g. [42]). The answer in all remaining 12 classes has remained open. The

main result of Part II, proven in Chapters H and B, resolves b of these open cases:

Theorem 1.0.9 ((Theorems t7.6.4], r7.6.d, i7.7.5|, t7.7.44]7 B2]J)) The relative h-principle holds for each

of the following classes of closed, stable forms:

o Co-symplectic forms (i.e. stable (2k — 2)-forms in dimension 2k, k > 3);

o Co-pseudoplectic forms (i.e. stable (2k —1)-forms in dimension 2k +1, k> 2);



o SL(3;R)? 3-forms;

o Go 3-forms;

o Gy 4-forms.

As an immediate consequence of Theorem and Theorem , one obtains:

Theorem 1.0.10. If M admits any Go 3-form, then every degree 3 de Rham class on M can be
represented by a Go 3-form and likewise for Go 4-forms, SL(3;R)? 3-forms, co-symplectic forms and
co-pseudoplectic forms. Moreover, the Hitchin functionals on Go 3-forms, Go 4-forms, SL(3;R)?
3-forms, SL(3;C) 3-forms and co-symplectic forms are always unbounded above, whenever defined
(note that (co-)pseudoplectic forms do not have a corresponding Hitchin functional): e.g. in the case
of SL(3;R)? 3-forms, let M be any closed, oriented 6-manifold admitting SL(3;R)? 3-forms. Then
for each o € H(?{R(M), the functional:

H:CIE () > (0,00)

1s unbounded above. More generally, if M is a closed, oriented 6-orbifold and le,+(o<) + &, then the

same conclusion applies.

In particular, note that Theorem provides an alternative proof of the unboundedness above of
ﬁg and ﬁ4 shown in Part I.

Essential to the proof of Theorem is the technique of convex integration, introduced by
Gromov in [61] and developed in [62, 116, 42, 98]. In particular, by using convex integration, the
following result, which plays a key role in the proof of Theorem 7 is established:

Theorem 1.0.11 (Theorem ) Let o9 € N’ (R™)" be stable. Given an arbitrary p form T on
R"™ Y define:

Noo (T) = {1/ e N1 (]Rn_l)* | Orv+re N, (REBR”_I)*} c N (Rn_l)yr

where 6 is the standard annihilator of R*' c R@ R . Suppose that, for every T, the set Ny, (1) is
ample in the sense of affine geometry, i.e. Ny (7) is either empty, or the convex hull of every path
component of Ny, (7) equals NP~ (R”_l)* (in such cases, say that oq itself is ample). Then og-forms
satisfy the relative h-principle.

I remark that Theorem subsumes all three previously known h-principles for stable forms,
viz. the relative h-principles for stable 2-forms in (2k+1)-dimensions (k > 2), Go 4-forms and SL(3;C)
3-forms; see §@

Theorem , together with the relative h-principle for SL(3;C) 3-forms, shows that the topo-
logical properties of the spaces of Gy 3- and 4-forms, SL(3;C) 3-forms and SL(3;R)? 3-forms which
are closed, or which lie in any given cohomology class, can be understood by studying the spaces of
all Gy 3- and 4-forms, SL(3;C) 3-forms and SL(3;R)? 3-forms, respectively. These spaces can be

investigated using the standard bundle-theoretic techniques of characteristic classes and obstruction



theory; Part II ends in Chapter a by carrying out such an investigation. Chapter B begins by proving

the following conjecture of Lé in [92]:

Theorem 1.0.12. Let M be an oriented 7-manifold (not necessarily closed). Then M admits Go-

structures if and only if it is spin.

In the process, the following result is established, which the author hopes will have many appli-

cations beyond those used in this thesis:

Theorem 1.0.13. Suppose there is an assignment to each n-manifold M (with — possibly empty —
boundary) of a degree p cohomology class v(M) € HP (M; G), where G is either a field or a finite Abelian
group, and suppose moreover that the assignment is natural, in the sense that for each embedding
f:M < M of n-manifolds with boundary, the identity:

v(M) = f*v (M)

holds. Finally, suppose that v vanishes on all closed (resp. closed, oriented) n-manifolds. Then v

vanishes on all (resp. all oriented) n-manifolds with boundary.

Combining Theorem with Theorem yields the following corollary:

Theorem 1.0.14. Let M be an oriented 7-manifold. If M is spin, then every degree 3 de Rham class

can be represented by a Go 3-form and every degree 4 de Rham class can be represented by a Go

4-form.

Next, Chapter E investigates the link between closed SL(3;C) and SL(3;R)? 3-forms in 6-
dimensions and closed Gy 3-forms in 7-dimensions. Say that an SL(3;C) or SL(3;R)? 3-form p
on an oriented 6-manifold N is extendible if there exists an oriented 7-manifold with boundary M
such that OM contains N as a connected component, and a closed Go 3-form ¢ on M such that
gﬂN = p. Motivated by Donaldson’s notion of Gg-cobordism introduced in [37], say that two oriented
6-manifolds (Ny,p1) and (Na, p2) equipped with closed, extendible, SL(3;C) (resp. SL(3;R)?) 3-
forms are Go-cobordant if there exists an oriented 7-manifold M with boundary OM = N; [IN; and a
closed Gy 3-form 5 on M such that:

¢|N1 =pr and ¢‘N2 =p2
(where overline denotes orientation-reversal).

Theorem 1.0.15. Let N be a 6-manifold and let p, p' be closed, extendible SL(3;C) (resp. SL(3;R)?)
3-forms on N. Suppose that p and p’ are homotopic and lie in the same cohomology class. Then
(N, p) and (N, p') are Go-cobordant.

I remark that, in contrast, the analogous result for Ga-cobordisms is not known; see [37], partic-

ularly the discussion on p. 116.



Motivated by Theorem , the remainder of Chapter E investigates when two closed SL(3;C)
(resp. SL(3;R)?) 3-forms are homotopic, and when a given SL(3;C) (resp. SL(3;R)?) 3-form is
extendible. Let N be an oriented 6-manifold and let SLc(N) denote the set of homotopy classes
of SL(3;C) 3-forms on N. Since SL(3;C) deformation retracts onto the simply-connected subgroup
SU(3) c SO(6), each SL(3;C) 3-form p defines a choice of spin structure on N, which depends only
on the homotopy class of p. Thus there is a map:

0:S8Lc(N) - Spin(N)

Theorem 1.0.16. The map o is bijective. In particular, there is a 1-1 correspondence between
homotopy classes of SL(3;C) 3-forms on N (equivalently closed SL(3;C) 3-forms, or SL(3;C) 3-
forms in any fized degree 3 de Rham class) and spin structures on N, which in turn correspond

non-canonically with elements of H* (N, Z/Qz).

I remark that Theorem corrects an error in Donaldson’s paper [37, p. 116], where it is

stated that any two SL(3;C) 3-forms on a given oriented 6-manifold are homotopic.

Theorem 1.0.17. Let N be an oriented 6-manifold. If the Euler class e(N) =0, then any SL(3;C)

3-form on N is extendible. In particular:
o IfN is open, then any SL(3;C) 3-form on N is extendible.

o If N is closed and the Euler characteristic x(N) = 0, then any SL(3;C) 3-form on N is

extendible.

Conversely, if e(N) # 0 and in addition b*> = 0 (i.e. H*(N;Z) and H*(N;Z) are pure torsion), then
no SL(3;C) 3-form on N is extendible.

Turning to the case of SL(3;R)? 3-forms, by using the results of Thomas [119, Cor. 1.7], a lower

bound on the number of homotopy classes of SL(3;R)? 3-forms is obtained:

Theorem 1.0.18. Let N be a closed, oriented, 6-manifold with e(N) = 0 and suppose wa(N)? = 0.
Write py : H* (N; Z) - H* (N; Z/Qz) for reduction modulo 2 and define:

H*(N;Z),,, = {ueH* (N;Z) | pouuws(N) =0}.

4
Then there is an injection from H (N Z)lwz/Q—torsz'on into the set of homotopy classes of SL(3;R)?

3-forms on N (equivalently closed SL(3;R)? 3-forms, or SL(3;R)? 3-forms in any fized degree 3 de
Rham class). In particular, if N is spin and b*(N) > 0, then each of these sets is infinite.

As an immediate corollary of Theorem , one obtains:

Corollary 1.0.19. Let N be a closed, oriented, spin 6-manifold. Then N admits SL(3;R)? 3-forms
if and only if e(N) = 0.



Finally, Chapter g ends by investigating the extendibility of SL(3;R)? 3-forms. Firstly, the mani-
fold T2 xE, where € denotes the Enriques surface, is shown to admit infinitely many distinct homotopy
classes of (closed) SL(3;R)? 3-forms, none of which are extendible. Secondly 652 distinct homotopy

classes of (closed) extendible SL(3;R)? 3-forms on T are constructed.

In Part III, the thesis adopts a new focus. Recall that there is currently only one known
invariant of ‘Gy-manifolds’ (i.e. oriented 7-manifolds equipped with torsion-free Ga-structures) wiz.
the -invariant defined by Crowley—Goette—Nordstrom [31]. Whilst the value of 7 can be effectively
computed for the ‘twisted connected sum’ Geg-manifolds constructed in [87, 29, 110] (see [31, p7])
there is no known general method of computing the v-invariant for the Go-manifolds constructed by
Joyce [[76, 77, 78].

Part III introduces two new invariants of closed Gg-manifolds (and, more generally, of Go-
orbifolds), which I denote p3 and pg. It was proven in [[71] that the critical points of the functional Hs
on a closed, oriented 7-manifold are non-degenerate local maxima, modulo the actions of diffeomor-
phisms. The same argument also proves the corresponding result for orbifolds. Likewise, Proposition
proves that the critical points of H4 on a closed, oriented 7-orbifold are non-degenerate saddles,
modulo the action of diffeomorphisms.ﬂ Motivated by classical Morse theory, Part III addresses the
question of whether a torsion-free Go-structure on an oriented 7-orbifold has a well-defined notion
of Morse index, when viewed as a critical point of the functionals H3 and H,. Whilst the classical
Morse indices of the critical points are not well-defined, by using the theory of spectral invariants
developed by Seeley [115] and Atiyah—Patodi-Singer [8, 9, 10], and later elaborated by Kawasaki [85]
and Farsi [44], I show that the critical points of Hz and H4 both have a well-defined regularised
notion of Morse index, denoted u3 and g4 respectively. Explicitly, given a closed, oriented orbifold
M and a torsion-free Go 3-form ¢ on M, us(¢) is the value at 0 of the meromorphic extension to C

of the holomorphic function:

u¢:{seC‘9{es>%}—>C

S ” Z)\ESPEC(DZH3) |>‘|_s
A<0

where D?*H3 is viewed as a linear operator (rather than a bilinear form) via a suitable L2-inner

product. py is defined analogously. The main result of Part III is the following theorem:

Theorem 1.0.20. Given A € End(R"), define:

TI'R7(A)2 - TI'R7(A2)
2

TV (4) = — 2Trgr(A) +1

! After proving Proposition [L1.4.1], the author discovered that a related result was obtained in [59]. Note, however,
that Proposition differs from [59, Prop. 3.4] firstly, since it proves not only that the critical points of Ha
are non-degenerate, but also that they are saddles; and secondly, since it considers not only manifolds, but also
orbifolds.



and:

TI‘]R7 (A)3 + 2 TI']R7 (AS) -3 TI‘]R7 (AQ) TI']R7 (A) _ TI“R7(A)2 - TI“R7(A2) _
6 2

Ty (A) = 2.

Let Mr = F\T be a Joyce orbifold and let f%TF(MF) denote the moduli space of torsion-free Go-

structures on Mp. Then the invariants:
ps:% T(Mp) > R*  and  pa:%y " (Mp) - R?

are constant, given by the formulae:

-1 S -1 5
#3(Mr) = Nl > TrgU(g)(A) and  pa(Mr) = Il > Trlg(g)(A).
I A=(A,t)el 7| A=(Ttyer

The proof of Theorem reveals an interesting link between the p-invariants and twisted
Epstein (-functions, as introduced in [43]; see § for details. Theorem serves as the intro-
duction to what will of necessity be a much larger project, which seeks to compute the p-invariants

on the Gg-manifolds constructed by Joyce in [76, 77, 78]. The conjectural shape of this project is
briefly discussed at the end of Part III.
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Chapter 2

Preliminaries

This chapter recounts the prerequisite theory regarding orbifolds, Go- and Go-forms, stable forms

and Hitchin functionals, metric geometry, and h-principles which will be assumed in this thesis.

2.1 Differential topology of orbifolds

The main references for this section are [, §§1.1-1.3] and [38, §14.1].

2.1.1 Basic definitions

Let E be a topological space.

Definition 2.1.1. An n-dimensional orbifold chart = is the data of a connected, open neighbourhood

U in E, a finite subgroup I' ¢ GL(n;R), a connected, I'-invariant open neighbourhood U of 0 e R"
and a homeomorphism Yy : F\U — U. Write ¥ for the composite U quot, F\U 5 U. Say that = is
centred at e € E if e = X(0). In this case, T is called the orbifold group of e, denoted T'.. e is called a
smooth point if I'. = 0, and a singular point if I'; # 0.

Now consider two orbifold charts Z1 = (Ul,Fl,fjl,Xl) and =9 = (UQ,FQ,U'Q,XQ) with Uy ¢ Us.
An embedding of =; into Z5 is the data of a smooth, open embedding ¢15 : Uy < Uy and a group
isomorphism Az : I't = Stabr, (¢12(0)) such that for all x € U, and all o € T'y: t12(o-x) = Ma2(o) -

t12(x), and such that the following diagram commutes:

~ . ~
U 1 12 > U2
l%l l)?z
U, incl s Us

Now let =1 and Zo be arbitrary. Z; and Z5 are compatible if for every e € Uy n Us, there
exists a chart Z, = (Ue,f‘e,ﬁe,xe) centred at e together with embeddings (te1,Ae1) : Ee = Z1 and
(te2, Ae2) : Ze¢ = Zo. If Uy nUs = @, then Z1 and Z9 are automatically compatible, however if

Ui nUs #+ @ and Z; and Zy are compatible, then =; and =9 have the same dimension; moreover, if
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=1 and Zy are centred at the same point e € E, then I'y 2 I's and therefore the orbifold group I is
well-defined up to isomorphism.

An orbifold atlas for E is a collection of compatible orbifold charts 2 which is maximal in the
sense that if a chart = is compatible with every chart in 2, then = € 2. An orbifold is a connected,
Hausdorff, second-countable topological space E equipped with an orbifold atlas (. Every chart of

FE has the same dimension n; call this the dimension of the orbifold.

Definition 2.1.2. Let Ey, E5 be orbifolds. A continuous map f : By — FEs is termed smooth if
for any point e € E7, there exists a chart =, = (Ue,Fe,Ue,Xe) for F7 centred at e, a chart Efte) =
(Uf(e),Ff(e),Uf(e) Xf(e)) for Eo centred at f(e), a group homomorphism y : I'c - I'(.) and a
smooth map f : U, — Uf(e) satisfying f(o - ) = kf(o)- f(x) for all z € U, and o € T, such that the

following diagram commutes:

f N

Ue 7 Uf((i)
lSZe ; lSZf(e) (2.1.3)
Ue > Ur(e)

The lift f need not be unique, even modulo the action of the groups I'c and I't(.y; see, e.g. [27,
Example 1.4.3]. Nevertheless, Definition P.1.9 is independent of the choice of charts =, and Z f(e) and

the map f has a well-defined differential in the following sense: the bottom arrow in the diagram:

R Do s R

l/pro ' lpT'O i

is independent of the choice of f.

2.1.2 Suborbifolds and stratifications

Definition 2.1.4 (See [121, Defn. 13.2.7]). Let E be an orbifold. A subset S ¢ E is termed a
suborbifold if for each e € S, there exists a chart Z, = (Ue,Fe,ﬁe,xe) for E centred at e and a

I'-invariant subspace I, ¢ R™ such that:
X (SnU) =Tenl,. (2.1.5)

Call such a chart regular for S and call I, the regular subspace. If the action of I' on I, is trivial for
all e € S, then call S a submanifold.

A subset S can have at most one suborbifold structure, as the following (readily verified) propo-

sition demonstrates:

Proposition 2.1.6. Let E be an orbifold, S ¢ E be a subset, e, f € S and let . = (U,,Te, Ue, Xe),
Zp = (Uf,Ff,Uf,Xf) be regqular charts for S centred at e and f respectively. Then ZE. and Zf are
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compatible via reqular charts. Specifically, let g € U.nUyn S. Then there exists a reqular chart
Ey centred at g together with embeddings (tge; Age) and (L, Agf) into Ze and Zy respectively. In

particular, suborbifolds inherit a natural orbifold structure.

Using this terminology, one can make the following generalisation of Mather’s terminology [100,
§5] to orbifolds:

Definition 2.1.7. Let E be an orbifold. A stratification ¥ of E is a partition of E into disjoint
submanifolds E = U}, E;. Say that ¥ satisfies the condition of the frontier if, in addition, for each
i€{0,...,n}, there exists I(i) € {0,...,n} such that:

Ei= U Ej (2.1.8)
Jel(i)
where E; denotes the topological closure of F; in E.

Now let X = {E;}, ¥ = {E]’} be two stratifications of E. Say that X' is a refinement of ¥ if for
every j, there exists and ¢ such that E]' ¢ F;. Finally, given stratified orbifolds (El, Y= {El,i}il)
and (Eg, Yo = {EQ’Z‘}ZI)), a smooth map f : E1 — Fs is a stratified diffeomorphism if it is an orbifold
diffeomorphism (i.e. it has a smooth inverse) and f(E4 ;) = Ea; for each ¢ (in particular, ¥; and X9

have the same number of strata).

Remark 2.1.9. A stratification as defined above is not the same as a Whitney stratification, the latter
being a strictly stronger notion; see [100, §5] for further details. Indeed, the strong notion of a

Whitney stratification will not be required for the purposes of this thesis.

A key source of stratifications is provided by the following definition:

Definition 2.1.10. Let E be an orbifold. For each isomorphism class of finite groups [T'], the set:
E([I'])={eeE|Tce[I']}

is either empty or its connected components are submanifolds of E, with E(1) being always an open
and dense subset of E. Take E; to be an enumeration of the connected components of the E([T']) as
[['] varies. Then one can show that (at least when F is compact) there are only a finite number of
strata E; and that X4, = {E;} defines a stratification of F known as the canonical stratification of

E. One may verify that this stratification satisfies the condition of the frontier.

Example 2.1.11. Consider:

F:{(1 0)7(—1 0)7(1 0)7(—1 0)}CGL(2;R). (2.1.12)
0o 1)'\o 1)'\o -1)'\o -1

The quotient E = p\RQ is a 2-dimensional orbifold. The canonical stratification of F is given by:

13



Eq Ey

E3 Es

Note that whilst each F; is a submanifold of F, the singular locus S = Fy U Es U E3 is not even a
suborbifold of E: indeed, in the natural (global) orbifold chart for E, S corresponds to the subset
R x {0} U {0} x R c R? which is not a linear subspace.

2.1.3 Vector bundles over orbifolds

Definition 2.1.13 (Cf. [38, §14.1]). Let 7 : E - B be a smooth map of orbifolds. An (orbifold)
vector bundle chart O for m about b € B is the data of:

e A chart Z for B centred at b;
« A chart Z, for E centred at a suitable e € 771(b);
e Alocal lift 7: U, —» U, for 7 and a homomorphism k, : I'. - Iy as in Definition 7
such that:
1. 7:U, —» U, is a vector bundle of some rank k and 0 € U, is the zero of the fibre over 0 € Uy:
2. Ky :Te = T'y is an isomorphism and I'e 2 I'y acts on (76 via vector bundle automorphisms.

An embedding of a chart Oy, = (Zy,,Zc,, 71, (kr)1) into Op, = (5 ,E¢,, T2, (kr)2) is the data of
embeddings of orbifold charts (tp,6,, Ao,b,) @ Eb, = Zb, a0d (Lejeys Aeje,) * Ze, = v, such that the

—e,

induced equivariant commutative square:

L61€2

€1 €2
ke ke
tbyby

Ub1 > U52

is a bundle isomorphism (and thus the ranks of the two bundles are equal). In particular, given a
point b € B, the distinguished point e € 771(b) is unique and does not depend on the choice of chart.

As for orbifolds, two vector bundle charts ©p, and Oy, are called compatible if for all b € Uy, Uy, ,
there exists a chart Oy centred at b which embeds into both 6, and 0y,. An (orbifold) vector bundle
is then a smooth map 7w : E - B of orbifolds together with a maximal atlas of compatible vector
bundle charts. Note that m has a well defined rank k. The fibre Ej over a point b € B is naturally
identified with the space pb\Rk . A section of FE is then simply a continuous map X : B — E such that

for each chart ©y = (2, Ze, 7, kir) for E, there is a smooth, I'y 2 Te-equivariant, section X : Uj, — U,
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such that the following diagram commutes:

Uy > U
% | (2.1.14)
U, X s UL

Note in particular, that X o is invariant under the action of I, 2 T’y on the fibre (76|0. Thus X|, can
be regarded as an element of the subspace of R¥ upon which T, acts trivially, denoted Fizr, (RF),
which in turn, can be regarded as a subspace of Fb\Rk. Finally, let 7 : E — B be a vector bundle and
let F' ¢ E be a suborbifold. The smooth map 7|p : F - B is called a sub-vector bundle of 7 : E - B if

for any chart ©y = (5, Ze, 7, fir) for m, the subset Y. 1(U.n F) ¢ U, is a Ty = T'p-invariant sub-vector

bundle of 7 : U, — Up,.

Let E be an n-orbifold. Given any chart = = (U,F, U, X) for E, the action of T' on U naturally
lifts to an action of I' on TU by bundle automorphisms. Given a second chart =’ = (U’,T",U", ")

embedding into =, the map U’ — U induces an equivariant embedding TU’ < TU. Define:

TE - [Ha(r\Tﬁ)]/N (2.1.15)

where the quotient by ~ denotes that one should glue along the embeddings TU' < TU. The resulting
space TFE is an orbifold vector bundle over E and is termed the tangent bundle of E. Given e € E, the
tangent space at e, denoted T F, is the preimage of e under the map TF — E and may be identified
with the quotient space F@\R", where I'; is the orbifold group at e. In a similar way, one may define
the cotangent bundle of an orbifold, tensor bundles, bundles of exterior forms, etc., denoted in the
usual way. Say that an n-orbifold FE is orientable if A" T* E and FxR are isomorphic as orbifold vector
bundles; in particular, all of the orbifold groups of E are necessarily orientation preserving. (When
this latter condition holds, I say that E is pre-orientable, although this terminology is non-standard.)

Now let 7 : F — E be such a vector bundle over F of rank k and let A ¢ R¥ be a GL(k;R)-
invariant subset. For each e € E, the subset Fe\A c Fe\Rk is well-defined and gives rise to a subset

of m71(e) under the identification 77! (e) = F@\Rk. As e € E varies, this defines a subbundle of F.

Definition 2.1.16. Let E be an n-orbifold and consider the bundle @& T* E. The subspace &7 (R")" c
& (R™)" is GL(n;R)-invariant and hence defines a corresponding subbundle of & T*E, denoted
@2 T*E. An (orbifold) Riemannian metric on E is then simply a section g of @ T*E. Like-
wise, the set 2, (R")" ¢ & (R")" is also GL(n;R)-invariant and thus gives rise to subbundle
@2, T*E c & T*E; sections h of this bundle are termed (orbifold) Riemannian semi-metrics.

Given a Riemannian (semi)-metric g on E, recall that for each e € E, g|. can be regarded as
an element of the space Fizr, (@2 (R”)*) c Fe\®2 (R™)" Thus, given u,u’ € T.E = Fe\R"’ the

quantity g(u,u’) is well-defined. In particular, given a Riemannian metric g on E and a C! curve
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v :[a,b] > X, one can define:

o0 | ez (2.1.17)

where .Z denotes the Lebesgue measure on [a,b]. If 7 is merely piecewise-C!, ie. ¥y =172 ... -

is the concatenation of C''-curves, then define:

k
(y) = ;ﬁg(%)- (2.1.18)

Analogous definitions apply if g is only assumed to be a Riemannian semi-metric.

2.1.4 Stratified distributions

A distribution on an orbifold F is simply a sub-vector bundle D of TFE. Given a Riemannian metric

g on E, define the orthocomplement D* to D via the formula:

DYe={ueTE | g(u,u)=0 for all u’ € D|.}.

Then D* is also a distribution over E. Indeed recall that, locally, D is given by Fe\ﬁ for some

[ -invariant distribution D ¢ TU, where U is a local chart for E, and g is induced by a I'c-invariant
Riemannian metric § over U; from this the result is clear.
Now let 3 be a stratification on E. Even in the case where F is a manifold, a general distribution

D can be ‘incompatible’ with ¥ in the following sense:

Example 2.1.19. Consider the distribution D over E = R? given by D = (01 + 2'0;) and the
stratification X of E given by:

Eo=R*\(Rx{0}) and F;=Rx{0}=R.

Then DnTFE; is not a distribution over F1, since over the non-zero points of Fy 2 R, D only intersects

TE; along its zero-section, however over the point 0 the fibres of D and TF; coincide.

This potential for incompatibility motivates the following definition, which cannot (to the author’s

knowledge) be found in the literature:

Definition 2.1.20. Let (E,X = {E;}) be a stratified orbifold. A distribution D on E is termed
stratified if D; = D nTE; ¢ TE; is a distribution over F;, for all 1.

I remark if D is stratified, then for every Riemannian metric g, the orthocomplement C = D* is
also stratified. Indeed, for each i:
CnTE; = (D;)",

where the orthocomplement is defined using Riemannian metric g|g, on the stratum E;.
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2.2 3- and 4-forms of G- and Go-type

The main references for this section are [78, 71, 68, 21].

2.2.1 Basic definitions

Consider the 3-form:
00 = 123 | gl45 | gl6T | 246 _ g257 _ 9347 _ 356 /\3(R7)*. (2.2.1)

The stabiliser of @¢ in GL,(7;R) is 14-dimensional, compact, connected and simply-connected, with
Lie algebra a compact real form of the exceptional simple Lie algebra go c; thus the stabiliser may
be identified with the exceptional Lie group Go [21, §2, Thm. 1]. Since Gg is 14-dimensional, writing
N, (R7)* for the GL,(7;R)-orbit of @g, one finds that:

dim A?, (R7)" = dim GL, (7;R) - dim G = 49 - 14 = 35 = diim A\? (R7) ",

and hence /\3+ (R7)* c A (R7)* is open (in particular, @ is stable; see §@) The geometric interest
in @q lies in its link with Gs-structures on 7-manifolds. Let M be an oriented 7-manifold, define a
subbundle /\3+T*M c NNT*M via, for x € M:

8 TXM = {p€ NTiM | Jorientation preserving isomorphism (222)
a:T;M = R with ¢, = a* (9o)}

and write Q3 for the corresponding sheaf of sections. Since Stabar,, (7;r)(®0) = G2, given a section
¢ € Q3(M), the collection of all orientation-preserving isomorphisms a : T,M — R7 identifying
¢l with @g defines a Gg-structure on M, i.e. a principal Gg-subbundle of the frame bundle of M.
Accordingly, sections of A3, T*M are termed G 3-forms.

Go-structures on oriented 7-manifolds can equivalently be defined via suitable 4-forms, as I now
describe. Recall from [21, §2, Thm. 1] that Go c SO(7). Thus any Gy 3-form ¢ € Q3 (M) induces a
Riemannian metric g4 on M, defined at each x € M by pulling back the Euclidean inner product on
R7 along any isomorphism « identifying ¢, with @g. Hence ¢ also defines a volume form voly, Hodge
star operator %, and Levi-Civita connection v?. The 4-form * ¢ is pointwise oriented-isomorphic
to the 4-form:

11)0 — *O(PO _ 04567 + 92367 + 92345 + 01357 _ 91346 _ 91256 _ 91247 c /\4(]R7)>+7 (2'2'3)

where % denotes the Euclidean Hodge star on R”; 4-forms with this property are termed Gg 4-forms.
The stabiliser of Py in GL,(7;R) is also Gg; consequently the GL,(7;R)-orbit of Py in A* (]1%7)yr
is once again open and Ge-structures on oriented 7-manifolds can be equivalently defined using Go
4-forms. Write A*, T*M for the bundle of Gy 4-forms on M and write Q% (M) for the corresponding

sheaf of sections.
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Remark 2.2.4. Although @ and Py have the same stabiliser in GL,(7;R), if one also considers

orientation-reversing endomorphisms, one finds:

Stabgr,(7;r) (©0) = Stabgr, (7;r) (o) = G2

whilst:
Stabar(7:r) (o) = Stabar, (7r) (Wo) x {+1} = Go x {1}

Thus, there is a subtle difference between Go 3- and 4-forms on manifolds M which are orientable but
unoriented: if ¢ is a 3-form on M such that, for all z € M, there exists an isomorphism a : T;M - R”
satisfying a* @ = ¢|z, then ¢ still defines a Go-structure (and hence an orientation) on M, whilst a
4-form which is pointwise isomorphic to VP only induces a Gy x {£1}-structure on M and does not
induce a preferred choice of orientation. However, this thesis takes the perspective described in [7§],
that the orientation on M should be considered primary and that one should restrict attention to

those Ga-structures compatible with the chosen orientation. Thus, the above subtlety will not arise.

Now consider the 3-form:
60 — 9123 _ 9145 _ 9167 + 9246 _ 0257 _ 0347 _ 0356 c /\3(R7)x—. (225)

The stabiliser of @ in GL,(7;R) is 14-dimensional, connected, centreless and doubly connected (i.e.
has first fundamental group Z / 9), with Lie algebra a split real form of the exceptional Lie algebra
g2,c; thus the stabiliser may be identified with the exceptional Lie group G 21, §2, Thm. 2] (cf. also
[68]). Write A3, (R7)* for the GL, (7;R)-orbit of @ in A (]R7)*; as for Gy 3-forms, since Gy is 14-
dimensional, A2, (R7)* c A (R7)* is open. Given an oriented 7-manifold M, write A3, T*M for the
bundle of 3-forms which are pointwise oriented-isomorphic to @o, and write Q2, for the corresponding
sheaf of section. Then sections of A3, (R7))e are equivalent to Go-structures on M; accordingly, such
3-forms are termed Gg 3-forms. As for Go-forms, it can be shown [21), §2, Thm. 2] that Gy c SO(3,4)
(again, cf. [6§]). Thus any Gy 3-form ¢ € Q2 (M) induces a pseudo-Riemannian metric gz on M,
defined at each x € M by pulling back the indefinite inner-product:

B3 ()7 -3 0)°

=4

on R along any isomorphism identifying ¢|, with @o. (See [18, Ch. 1.C] for an exposition of the
elementary properties of pseudo-Riemannian metrics.) Hence é also defines a volume form vola,

Hodge star operator * and Levi-Civita connection Vg. The 4-form *55 is pointwise oriented-

isomorphic to the 4-form:
To = TP = 01967 — 2367 _ 92345 | 91357 _ 1346 _ 1256 _ 1247 /\4(]R7)*, (2.2.6)

where % denotes the Hodge star defined by the metric Go. The stabiliser of g in GL,(7;R) is also
(~}2; consequently the GL,(7;R)-orbit of flgo in At (R7)* is open and Gg—structures on oriented 7-
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manifolds can be equivalently defined using Go 4-forms. Write AL T*M for the bundle of Gy 4-forms
on M and write Q24 (M) for the corresponding sheaf of sections.

Since /\3+T*M, /\4+T*M, ALT*M and AL T*M are fibre bundles over M with non-trivial fibres,
the bundles need not admit any global sections over a general oriented manifold M. It is a well-
known theorem of Gray [58] that A3, T*M (equivalently A%, T*M) admits a global section if and only
if M is spin. The corresponding result for the bundle A3, T*M (and thus equivalently A% T*M was
conjectured by Lé in [92], who proved the result in the special case of closed manifolds. A full proof

of the conjecture is provided in Chapter E

Remark 2.2.7. Since the subsets /\3Jr (R7)* ,/\SN (R7)* c AP (R7)* and /\4Jr (R7)* ,/\4N (R7)* c A (R7)*
are GL, (7;R)-invariant, the bundles A2, T*M, A2, T*M, AL T*M and AL T*M can be defined over
any pre-orientable orbifold (see §) In this way, the discussion regarding Go- and Ga-structures
in this section can be generalised to orbifolds. For simplicity I shall state the results for manifolds;
from these statements, the corresponding results for orbifolds can be written down without extra

work.

2.2.2 Type decomposition induced by Gs- and Gy-structures

Recall that the groups Go and Go have identical real representation theories, each coinciding with
the complex representation theory of the simple Lie algebra goc. Given a Ga- (resp. ég-) structure
on a 7-manifold M, the induced fibrewise action of Gy (resp. (~}2) on the exterior bundles of M is,
in general, reducible. The corresponding decomposition of the exterior bundles into subbundles of
fibrewise simple modules was first computed by Ferndndez—Gray in 1982 [49] in the G, case and Kath
[84] in the Gy case, leading to the following result:

Proposition 2.2.8 (Cf. [78, Prop. 10.1.4]). Let M be an oriented 7-manifold with Ga- (resp. Ga-)
structure, with corresponding metric g and Hodge star %. Then the fibres of the bundles N°T*M,
AT*M, AST*M and N'T*M are simple Go (resp. 62) modules. For the remaining exterior bundles,

there are natural decompositions:

/\2T*M = /\27T*M D /\214T*M,
NT*M= A T"Me AL T"Me A%, T*M;
N'TM= NIT"Me AL T*Me AL TOM;
NTM= AT Me N, T*M,

(2.2.9)

where the subscript in each case denotes the rank of the bundle, the fibres of each NyT*M are
simple Go (Tesp. Gg} modules and any two bundles of a given rank are isomorphic; in particular
* : N T*M — /\7q_pT*M is a Go- (resp. 62-) equivariant isomorphism for each p, q. Write
mq 2 NT*M - A°, T*M for the g-orthogonal projection; since for each exterior power no subscript

occurs more than once, no ambiguity should arise from this notation.

The subbundles in Proposition admit very explicit descriptions. Indeed let ¢ and ¥ be the
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3- and 4-forms corresponding to the Go- (resp. éz—) structure on M. The for any = € M:

ZTiM = {v 1, | veT,M} 2T, M;

2uTiM = {a e A’ToM | anty, =0} = g (resp. §a);
NITIM=R-¢, 2 R; (2.2.10)
NALTIM = {v J9p, | v e T,M} = T, M;

5T M ={ae N’TiM | a A ¢, =0anda Ath, =0} = (O TEM,

(where @3 T;M denotes the space symmetric bilinear forms on T, M which are trace-free with respect
to g4) with descriptions of all the other simple modules following from the Hodge star. For an
arbitrary p-form o, the decomposition o = 3, mg(0) is called the type decomposition of o.

Write © : A3, (R*) - AL (]R7)* for the map given by ©(@) = %, (¢ = +,~) and write (1) = Jy P
for the inverse map. The derivatives of © and 3 can be explicitly computed using type-decomposition.
For the map © in the Gg case, this was first stated by Joyce [76], and later re-proved by Hitchin in [[71]
using representation theoretic arguments. Since Ga and G have identical representation theories,

the same formula for DO holds in the G case. The formula for DY then follows at once:

Proposition 2.2.11. Let e = +,~ as appropriate. Then the differentials of © and ¥ at @ € N>, (R7)*
and P e A, (R7)>e respectively are given by:

DOy A (B) —— A (RT) Dxy A (R) —— N )
ocr— *q,I(p(a) o Ky, Jy(0), -

where:

Iy(0) = %171'1 (o) +m7(o) —mar(o) and Jy(o)= Zm(a) +77(0) — mor(0).

Here, the projections we are defined with respect to @ and \ respectively.

2.2.3 Torsion-free structures and Hitchin functionals for Go- and Go-forms

A Go- or Go-structure is called torsion-free if the corresponding 3-form ¢ satisfies the non-linear PDE
V%¢ = 0 (or, equivalently, the corresponding 4-form satisfies V¥ = 0). The name derives from the
fact that 74 = V?¢ can be identified with the intrinsic torsion of the G- or Go-structure induced by
¢ [114, Cor. 2.2] (see [79, §2.6] for the definition of intrinsic torsion). A Gy-manifold is simply an
oriented 7-manifold equipped with a torsion-free Go 3- (equivalently, 4-) form; the term Go-manifold
is defined analogously.

Further significance of the torsion-free condition is provided by the following result:

Proposition 2.2.13 ([21, §1]). Let (M, g) be a Riemannian manifold with holonomy contained in
Go. Then there is a G 3-form ¢ € Q3 (M) such that:

g=9gs and v =0.
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The analogous result holds for pseudo-Riemannian metrics with holonomy contained in Go.
The torsion-free condition can alternatively be characterised via the following result:
Theorem 2.2.14 ([21, §3]; see also [49]). Let M be an oriented 7-manifold with Gy (resp. Go) 3-
and 4-forms ¢ and 1p. Then (p,1) is torsion-free if and only if:
d¢p=0 and dy=0.

It should be noted that whilst each of d¢ = 0 and di) = 0 are individually linear, the relationship
between ¢ and 1 is non-linear. Thus, the combination of these two equations defines a non-linear
PDE, as expected. It is common practice to refer to the underlying oriented G- or Gao-structure as
closed if d¢ = 0 and coclosed if dip = 0.

On closed manifolds, an alternative perspective on the torsion-free condition is provided by the
notion of a Hitchin functional, introduced in [71]. Given a closed Gg 3-form ¢ on a closed, oriented

manifold M, define a functional Hg by:
Hs : [0]. = {0 € [¢] € Hip(M) | ¢' is of Ga-type} —— (0, 00)
¢/ I > fM UOld)l.

Likewise, given a closed Go 4-form ¥ on M, define a functional H4 by:

Hy: []s ={¢" e [¢] [ ¢ is of Ga-type} ——— (0, 00)

(2.2.15)
(i : [M VOlyy.

The definitions can naturally be generalised to Go-structures, yielding the following defintion:

Definition 2.2.16. Let M be a closed, oriented 7-manifold and let 5 be a closed Gy 3-form on M.
Define the functional Hz on (M, ¢) by:

Hs:[@]. = {d €[d] e HIR(M) | ¢’ is of Go-type} —— (0, 00)

Q' > fM vola,.

Likewise, given a closed Ga 4-form ¢ on M, define the functional H4 on (M, ) by:

Hy: [ﬂw = {{/7’ € [{/7] | ¢’ is of Gg—type} — (0, 00)

P > vaolJ,.

Since A3, T*M c A*T*M is an open subbundle and M is closed, the subset [¢], c [¢] is open in
the C°-topology and thus one can identify Ty[¢]. = dQ?(M) for all ¢ € [¢],. A similar argument
applies to [¢],, [ﬂN and [@]N Using type decomposition, one can explicitly compute the functional
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derivatives of Hs, Ha, Hs and Hy. For Hs, this was accomplished by Hitchin in [71, Thm. 19 &
Lem. QO]E. Analogous arguments can be used to compute the first and second derivatives of Hy; see
[72, Thm. 1] and also [p9, Prop. 3.3 & 3.4]. Since the computation of these derivatives is completely
representation-theoretic, and since Go and Go have identical representation theories, the formulae for

773 and ﬁ4 are identical. Thus one obtains:

Proposition 2.2.17. The first and second derivatives of Hs (equivalently 773) are given by:

(~) (~)
DHslp:dQ*(M) ——— R D*Hsly : AQ*(M) x dQ*(M) —— R

o %‘/;/IO-A*Q%Z) (0'1,0'2) _ %[hdglA*¢I¢(U2)

and the first and second derivatives of Hy (equivalently Hy) are given by:

(~) (~)
DHyly : AP (M) ——— R D*Hyly : A3 (M) x A} (M) ———— R
w — }L‘/;AWA*‘M/] (ZUﬂEQ) _ 1—11‘/1:/[?,@'1 /\*1/1‘]1/1(w2)
where:
4 3
Iy(o) = §7Tl(0') +m7(0) —mr(o) and Jy(o) = 171'1(0) +77(0) — mor(0). (2.2.18)

(Here, the projections mwe are defined with respect to ¢ and b respectively.)

In particular, ¢’ is a critical point of H3 if and only if it satisfies d¥ 4 ¢’ = 0, i.e. it is torsion-free,
and similarly for the other three functionals. Moreover, in [71], Hitchin proved that the Hessian
D?H3 was non-positive definite, and negative definite transverse to the action of diffeomorphisms; in
particular, the critical points of Hg are all local maxima. However before this thesis, the corresponding

results for the functionals Hy, ﬁg and ﬁ4 have remained unknown. I resolve this issue in Chapter B

(see also Proposition in Chapter EI)

2.2.4 Results specific to Go-structures

Algebraically, Go- and Go-structures are very similar, largely due to the equality of their represen-
tation theories. However, since Go-structures induce positive definite metrics, whereas Go-structures
induce indefinite metrics, there are notable differences between the analytic properties of Go- and
Gg—structures. It is for this reason that Part I of this thesis considers both Go- and Gg—structures,
whilst Part IIT only considers Go-structures.

Firstly, since torsion-free Go-structures induce Ricci-flat Riemannian metrics, Bochner’s technique

can be applied to Ge-manifolds, yielding:

'Note that the formulae for DH3|s and D*H3|4 differ from those in [71], as the author of this thesis has discovered
an error in the numerical factor of 1—78 used op. cit., which has been corrected to % in the formulae here presented.
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Theorem 2.2.19 ([78, Thm. 3.5.4 and 3.5.5]). Let (M, ¢) be a closed Go-manifold. Then b*(M) <
dimM and the universal cover (1\71,’%) of (M, gg) is isometric to a Riemannian product R D) N,
where RE' M has the (flat) Euclidean metric and N is Ricci-flat, closed and simply-connected.

Significantly, this theorem places topological restrictions on which manifolds can admit torsion-free
Go-structures. In particular, using Theorem , it can be proven that every manifold with holon-
omy G has finite fundamental group. More specifically:

Theorem 2.2.20 ([78, Prop. 10.2.2]). Let (M, ¢) be a closed Ga-manifold. Then Hol(gy) = Go if
and only if |1 (M)| < co.

A further topological condition on Gs-manifolds arises from considering its first Pontryagin class
p1(M). Recall that, on a general Riemannian manifold (M, g), the Riemann tensor R takes values in
the bundle &? (/\QT*M) and that, according to Chern—Weil Theory, the real first Pontryagin class
can be represented by the closed 4-form 8# Tr(RAR), where A acts (say) on the first factor of A?T*M
and Tr acts on the second. In the case of a Ge-manifold (M, ¢), it can be shown that the Riemann
tensor R takes values in the bundle & (A%,T*M). Thus, by using the identity a A ¢ = —HaHéon)
for v € /\214T*M together with the fact that d¢ = 0, it follows that:

(r (M) u[6], [M]) = f S TH(RAR) A 6= - f I RI vl
M M

where p;(M) denotes the real first Pontryagin class of M, (,) denotes the usual pairing between

cohomology and homology and M denotes the fundamental class of M. In particular, one obtains:

Theorem 2.2.21 (cf. [78, Prop. 10.2.7]). Let M be a closed, oriented 7-manifold with vanishing real
first Pontryagin class. Then, any torsion-free Ga-structure on M induces a flat metric, and thus
the corresponding holonomy group is discrete. In particular, if a closed oriented 7-manifold admits a
torsion-free Go-structure with holonomy Gs, then p1(M) # 0.

Secondly, since Ga-structures induce positive definite metrics, the Hodge Laplacian induced by a
Go-structure is an elliptic (rather than hyperbolic) operator. Thus Ge-structures have a well-defined

notion of Hodge Theory, which is compatible with the Go-structure when the structure is torsion-free:

Theorem 2.2.22 (See [7§, Thm. 3.5.3]). Let (M, ) be a Ga-manifold and let A denote the Hodge
Laplacian determined by ¢. Then:
Aomg=mgoA (2.2.23)

for any q. In particular, if M is closed, then the Hodge decomposition on M may be refined to give:

OF(M) = EP%Ik(M) ® AQL(M) (2.2.24)

where ,%’j]k(M) = % (M) n QZ(M) is the space of harmonic k-forms of type q and q runs over the
appropriate irreducible representations of Go. In particular, there is a decomposition of the de Rham
cohomology of M which is analogous to the type decomposition described in eqn. ); once more,
any two groups Hg(M) and ngl(M) with the same q are isomorphic.
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The relationship between Hodge Theory and type-decomposition can be made yet more explicit:
as in Kéhler geometry, for Go-manifolds one may decompose the exterior derivative according to type.

Indeed, define the following ‘refined’ exterior differential operators:

dz : Q°(M) > Q'(M) d7: Q'(M) - Q' (M) dj, - 21 (M) > Q4 (M)

fl—>df (0 =d *¢d(0&/\w) Oél—>7l'14(d04)

d;7 QN (M) > Q5’7(M) d;?l : 9%4(1\/[) - 937(1\/{) d%? : Q5’7(M) - 937(1\/{)
Oé'—>71'27d*¢(04/\¢) B'—)’R’27(d5) ’y'—>*¢7T27(dﬁ).

Note that dg and d%; are both formally L2-self-adjoint. Analogously, define d? = (d%)*’ di4 = (dz D5
d%" = (dZ,)* and d?] = (di1)*. Then one has:

Theorem 2.2.25 (Bryant-Harvey, [22, §5]). All exterior and co-exterior derivatives on the G-
manifold (M, ¢,1) can be expressed purely in terms of the operators d%, dI, dr, dh, d%4, d;7, d?’,
d%‘%, dﬂ and d% In particular, the Hodge Laplacian operator can be expressed in terms of the same

operators.

The explicit formulae are presented in Appendix @ They will be needed for calculations in Part
III of this thesis.

2.3 Stable forms and Hitchin functionals in 6- and 7-dimensions

The main references for this section are [[71, [72].

Definition 2.3.1. A p-form oy € A? (R™)” is termed stable if its GL, (n; R)-orbit in A? (R™)" is open
(equivalently, if its GL(n;R)-orbit is open). Thus if oy is stable, all sufficiently small perturbations of
oo have the same algebraic properties as gg. I shall further term o a Hitchin form if it additionally
satisfies Stabar, (n;r)(00) € SL(n;R). In particular, note that ¢q, Po, Po and g are all Hitchin
forms.

Given an orbit O ¢ A’ (R™)” of Hitchin forms, fix og in O and define a map vol : O - A" (R™)”
by vol, = a*voly for any a € GL,(n;R) such that o = a*oy. Then vol is well-defined up to an overall
positive constant multiple. Since © ¢ AP (R™)" is open, the derivative of vol at o is a linear map
NP (R™)" - A* (R™)", i.e. an element of the space APR" ® A" (R™)" =~ AP (R™)”*. Thus there is an
element of AP (R"™)", denoted Z(o), such that:

Dvol|,(a) = anZ(0).
I term = the Hitchin duality map. It defines a GL, (n;R)-equivariant map from O to an open orbit in

AP (R™)" and is unique up to a constant positive multiple. Since vol(c) is homogeneous of degree

% in o, Euler’s Theorem for homogeneous functions gives:
_ n
ocANE(0) = ;vol(a). (2.3.2)
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In the case o = @g, Vo, Po or Po, note that = is simply the map © or ¥, as appropriate (up to a
constant positive multiple).

Hitchin forms are of particular interest when considering stable forms on manifolds. Let M be an
oriented n-manifold and let oy € A” (R™)" be a stable p-form on R™. By analogy with the notions
of Gy and Ga-forms, say that o € QP(M) is a og-form if, for all € M, there exists an orientation-
preserving isomorphism « : T,M — R" such that o, = a*(0¢). Allowing = € M to vary, the set of all
such a defines a Stabgr,, (n;r)(00)-structure on M. Write A, T*M for the bundle of oo-forms and
QL for the corresponding sheaf of sections.

Now suppose that og is a Hitchin form. Then for each x € M, o], induces a volume form vol,|,
which may be integrated over all of M. In the special case where do = 0 one defines the Hitchin

functional:
H:Cl,([0]) = {0’ e[o0] e HE. (M) | o’ is a gp-form} —— (0, 00)

ol > fM v0lgr.

The functional derivative of H is then given by:

DH|r : AP (M) ——— R

dy ——— [Md'y/\E(J’)

In particular, o’ is a critical point of the functional H if and only if d=(¢") = 0. This motivates the

following definition:
Definition 2.3.3. Say that a Hitchin form o on M is biclosed if do = 0 and d=(o) = 0.

Biclosed stable forms are often of significant geometric interest. E.g. a Go- or Go-form is biclosed
if and only if it is torsion-free. As a second example, it was proven in [71, Thm. 12] that an SL(3;C)
3-form (defined in the next subsection) is biclosed if and only if it defines an (integrable) complex

structure with trivial canonical bundle.

2.3.1 Stable 3-forms in 6-dimensions

The classification of stable 3-forms in 6-dimensions was accomplished by Hitchin in [71]. I recount
his construction below.
Given a 3-form p € A3 (RG)*, consider the linear map K, : R® — R® @ A (]RG)yr defined by

composing the map:
RO A (RO’

vr (vIp)Ap

with the canonical isomorphism A® (RG)* = RO @ N9 (RG)*. Using K, one can define a GL, (6;R)-
* * 2

equivariant map A : A3 (RG) - ( N (Rﬁ) ) by:

A(p) = éTr (Kg) .
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2
(Recall that the space (/\6 (R6) ) is canonically oriented by declaring s ® s > 0 for any s # 0 €
N (RG)*.) The following result is essentially proved in |71, §2] (although see [28, Prop. 1.5] for the

expression for I, and the explicit formulae for vol, I, and J, when p = p.):

Proposition 2.3.4. The action of GL,(6;R) on A3 (Rﬁ)* has precisely two open orbits, namely:
N, (RG))e = {p e \? (]RG)* ‘ A(p) > 0} and  N\L (]RG)* = {p e\’ (Rﬁ)* ’ A(p) < 0},

both of which are invariant under GL(6;R). Representatives of N>, (RG)* and N> (RG)* may be

taken to be:

pr =0 1+0%0  and  p_=0"%" - 910 920 _ 9215 = me( (0" +i6%) A (6% +i0%) A (6° +i6°) )
(2.3.5)
respectively. Each p € N3, (R6)* induces a volume form vol, = (A(p))% and para-complex structure
I, = vol;le on RS (i.e. I, is an automorphism of RS such that Ig =1d, with +1 and -1 eigenspaces
E. , each having dimension 3), and Stabgr,, (6;r)(p) = SL(3; R)? acting diagonally on RS = E.,®E_,.
Explicitly for p=py:

= 123456

vOlp 5 Ip+ = (61562,63764565766) = (617627635_647_657_66);

E.,, =(e1,e2,e3) and E_, =(es,es,eq).

By contrast, each p e N> (RG)* induces a volume form vol, = %(—A(p))% and a complex structure
Jp= —%vol;le on R, and Stabgy,, (6:r)(p) = SL(3;C). Euplicitly for p=p_:

| _ 128456

vol,, and J,_ = (e1,e2,e3,e4,65,¢6) = (e2,—€1,e4,—€3,66,—€5).

Note in particular that both SL(3;C) 3-forms and SL(3;R)? 3-forms are Hitchin forms.

2.3.2 Stable 3- and 4-forms in 7-dimensions

As described in §@, 3- and 4-forms of Go- and Ga-type are all stable (and indeed, Hitchin) forms.
These are, in fact, essentially the only stable 3- and 4-forms in 7-dimensions. Given ¢ € A3 (R7)*,
define a quadratic form Q, on R” valued in A’ (R7)* by Qg(v) = %(v _lqﬁ)2 ANpe N (]R7)*. The
determinant of Q4 is a polynomial in ¢ and thus {qf) | Qg is degenerate} is an affine subvariety of
N (]R7)* of positive codimension; hence )y must be non-degenerate whenever ¢ is stable. The

following proposition is easily deduced from the results of [6§]:

Proposition 2.3.6. The action of GL,(7;R) has precisely 4 open orbits, corresponding to Q having
signature (7,0), (3,4), (4,3) and (0,7). Ezplicitly:

{(;5 | Q¢ has signature (7,0)} = /\3+ (]1%7)yr {(b | Q¢ has signature (3,4)} = /\3~ (R7)>e
{qb | Q¢ has signature (4,3)} = —/\3N (]R?)yr {qb | Qg has signature (0, 7)} = —/\3Jr (]R7)* :
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For ¢ e N, (]R7)*: Q¢ = g ®voly, where gy and voly are as defined in @ and can be characterised
by the condition H<Z>||§db = 7. Likewise, for ¢ € N, (R7)*: Qg = g5 ® volg where g5 and voly are as in

and can be characterised by the condition H¢||§¢ 7.
Using Proposition , the following result is easily deduced (see also [21], p. 541]):

Proposition 2.3.7. The action of GL,(7;R) on AL (R7)* has precisely 4 open orbits, given by
AL (R7)*, A (R7)*, NS (R7)* and — N, (R7)*, each of which are also orbits of GL(7;R).

2.4 Metric spaces and Gromov—Hausdorff distance

2.4.1 Gromov—Hausdorff distance and forwards discrepancy

The main reference for the material on Gromov-Hausdorff distance in this subsection is [25, §7.3].

Let (X,d) be a metric space. Given Y ¢ X, let N(Y) = {x € X | d(«,Y) <n} be the open
n-neighbourhood of Y, where d(z,Y) =inf {d(z,y) | y € Y}. Given A, B ¢ X non-empty, closed and
bounded, define the Hausdorff distance between A and B to be:

dy(A,B)=inf{n>0| AcN,(B) and B<c N, (A)}.

Now let (Y,dy) and (Y, dy+) be compact metric spaces. The Gromov-Hausdorff distance between
(Y,dy) and (Y',dy) is defined to be:

dgy [(Y,dy), (Y, dy:)] = inf{ﬁ >0

there exists (X, d) together with isometric embeddings
1Y o> X,/ Y- X such that dy [«(Y),/(Y')] <n

It can be shown that dg# [(Y,dy), (Y',dy/)] = 0 if and only if (Y,dy ) and (Y”’,dy) are isometric,
and thus dgy defines a metric on the collection of isometry classes of compact metric spaces. In light
of this, a family (Y;,d;)ien of compact metric spaces is said to converge to a compact metric space
(Y, d) in the Gromov-Hausdorff sense as i - oo if dgy [(Y,d;), (Y,d)] - 0.

Gromov-Hausdorff distance is closely related to the notion of e-isometry. Recall that for metric
spaces (X,d), (X',d") and € > 0, an e-isometry is a set-theoretic function f: X — X’ (which need

not be continuous) satisfying:

o Forall 2’ € X' there exists € X such that d'(f(z),2") <e (f(X) is an ‘e-net’ in X');

o Forall z,ye X: |d'(f(z),f(y))—d(z,y)|<e.

The relation between Gromov-Hausdorff distance and e-isometries can be quantified as follows:

Proposition 2.4.1 ([25, Cor. 7.3.28]). Let (X,d) and (X',d") be compact metric spaces. Then:
dgn [(X,d),(X',d")] < 2inf{e > 0 | There exists an e-isometry f: (X,d) - (X',d")}.
Motivated by this result, I make the following definition:
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Definition 2.4.2. Let (X,d) and (X’,d") be compact metric spaces. The forwards discrepancy
between (X, d) and (X', d"), denoted D[(X,d) — (X',d")], is defined to be:

D[(X,d) » (X',d")] =inf {e > 0 | There exists an e-isometry f:(X,d) - (X', d")}.

(Note that the infimum is finite since, choosing ¢ = max [diam(X, d), (X',d")], any map f: X - X'

is an e-isometry.)

The definition of forwards discrepancy naturally extends to semi-metric spaces. Recall from [25,
§1.1] that a semi-metric d satisfies all the usual conditions of a metric, except that distinct points z
and y are permitted to satisfy d(z,y) = 0. Given a semi-metric space (X,d), define an equivalence
relation ~; on X via x~gy if and only if d(z,y) = 0. Then d descends to define a metric d~ on the
quotient X/Nd. In this thesis, I term (X/Nd ,dw) the free metric space on (X, d) (the name deriving
from the fact that the assignment (X, d) — (X/“d ,dN) is left-adjoint to the natural inclusion functor
of the category Met of metric spaces and non-expansive maps into the category SMet of semi-metric
spaces and non-expansive maps). I say that a semi-metric space is compact if its corresponding free
metric space is compact in the usual sense. Then it is clear that the notion of forwards discrepancy
is well-defined not just on the class of compact metric spaces, but also on the class of compact
semi-metric spaces.

The key result concerning Gromov-Hausdorff distance and forwards discrepancy which I shall

require is the following:

Proposition 2.4.3. Let (X,d) be a compact metric space and let (X',d") be a compact semi-metric

space. Then:

dgr [ (X, d), (X [y 1dl)] <2D[(X.d) > (X', d)].
In particular, given a family of compact metric spaces (X*,d") er1,00) such that 2D[(X*,d") —
(X",d")] = 0 as p — oo, the spaces (X*,d") converge in the Gromov-Hausdorff sense to (X,/Nd, ,d'N)

as pu — oo.

Proof. Firstly note that whilst forwards discrepancy does not satisfy the triangle inequality, it does

satisfy the weaker inequality:
DI(X,d) > (X", d")] < D[(X,d) > (X',d)] + 20[(X',d') - (X",d")].

for any compact semi-metric spaces (X,d), (X',d") and (X",d"): indeed, given e-isometries f :
X > X" and f': X' > X" for some g, > 0, one can verify directly that f'o f: X - X" is an
(g + 2¢")-isometry. Secondly, note that given a compact semi-metric space (X,d), the quotient map
f:(X,d) - (X/Nd ,dN) is an e-isometry for any £ > 0 and thus @EX,CZ), (X/Nd ,dN)] =0. The
result follows by combining these two observations with Proposition .

O

Proposition decouples the task of computing Gromov—Hausdorff limits into two distinct

stages: firstly, given a family (X*,d") 11,00y Of metric spaces, one finds a compact semi-metric space
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(X°,d*®) such that D[(XH,d") - (X*,d*)] - 0 as u — oo. By applying Proposition , it
follows that (X*,d") — (Xoo/wdw ,di") in the Gromov—Hausdorff sense, as 1 — oo; thus, the task of
computing the Gromov—Hausdorff limit of the family (X*,d") is reduced to describing the free metric
space (X = / ~ oo ,d°N°). This two stage process will underpin the treatment of Gromov—Hausdorff

convergence in Chapter H

2.4.2 Length structures

The main reference for this subsection is [25, Ch. 2]. Let X be a topological space. A length structure
on X is a class A of continuous paths in X together with an assignment £: A — (0, oo] satisfying the

following four conditions:

L If (y:[a,b] > X) € A and ce [a,b], then (V|[a,e) ¢ [a;¢] > X)), (Vep) : [¢,0] = X) € A and:

¢ (’7) =/ (7|[a,c]) +4 (/y|[c,b]) .
Moreover, £ ('y|[a7c]) is continuous, when viewed as a function of c.

2. Ify: [a,b] - X is continuous and c € [a, b] is such that (V](ac : [a,¢] > X)), (Ve : [e:b] — X) €
A, then (v:[a,b] > X) € A,

3. If (y:[a,b] > X) e Aand ¢: [¢,d] - [a,b] is a homeomorphism of the form ¢ — at+ 3 (a #0),
then (yo¢:[c,d] > X)eAand £(yoep)=1L(7).

4. For all z € X and all open neighbourhoods U of x:
inf {¢(7) | (v:[a,b] > X) € A satisfies y(a) =z and v(b) e X\U} > 0.
Every length structure (A,£) on X defines a metric d 4 via:

deaey(z,y) =inf{(vy) | (v:[a,b] > X) € A satisfies y(a) = x and v(b) = y} .

Such metrics are termed intrinsic. The following example of length structures will be of particular

significance in this thesis:

Example 2.4.4. Let E be an orbifold, let A denote the set of piecewise-C! curves in E and let ¢
be a Riemannian metric on E. Then the map 9 : A — (0, 00] defined in eqns. () and ()
defines a length structure on E; write d9 for the induced intrinsic metric.

I remark that, whilst in general the topology on X induced by an intrinsic metric need only be no
coarser than the original topology (in the sense that if U € X is open, then it is open with respect to
d(a,) for any length-structure (\A,£)), for intrinsic metrics of the form d?, and for all other intrinsic
metrics considered in this thesis, the two topologies in fact coincide.

Finally, I say that (A, /) is a weak length structure if it satisfies conditions 1-3 above. In this

case, (A,¢) naturally induces a semi-metric d(A,¢) on X. As a key example of this notion, given a
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Riemannian semi-metric on an orbifold E, (A, ¢9) defines a weak length structure on E and hence

induces a semi-metric d9.

2.5 Differential relations and h-principles

The main reference for this section is 42, Chs. 1, 5, 6].

Definition 2.5.1. Let M"™ be a manifold, let F' - M be a fibre bundle of dimension n + ¢ over M
and fix r € N. Given a point p € M, two sections f € T'(Op(p), F') and g € T'(Op(p), F) are said to be
r-tangent at p if:

o f(p)=9();

« For any system of coordinates (!, ..., 2™) on Op(p), any local trivialisation Flopp) 2 Op(p)xF)
and any coordinate neighbourhood U ¢ R? in F), such that f(p) = g(p) € Op(p) x U, regarding

f and g as maps Op(p) — U € R? via this trivialisation, one has:

olol ¢
oz

oldlg
T

for all multi-indices « such that |a < 7.

p

The notion of r-tangency is independent of any choices and defines an equivalence relation ~,. on the
set of pairs {(Op(p),f € F((’)p(p),F))}. The 7" jet space Fér) of F at p is the set of equivalence

classes under this relation, i.e.:

EM = {(Op(p), f € T(Op(p), E))} [~r.

The ™ jet bundle of F is then defined to be F(") = L pem Fér), together with its natural (smooth)
bundle structure. Since ~p is a finer equivalence relation than ~, when R > r, there are natural maps
DR : FU) o ) for R > r. In particular, there is a map p, : F(") - F which assigns to each r-jet

its underlying value in F. Conversely, given a section f: M — F, define the ' jet extension of f by:

jr(f):M_’F(r)
p = [(Op(p), f)]~,-

Clearly Dbro ]r(f) = f.

This thesis restricts attention to the case where F' = E is a vector bundle and » = 1. In this
case, given a connection V on E, by [111, §9, Cor. to Thm. 7] there is a bundle isomorphism EM
E e (T*M ® E) such that the following diagram commutes:

I (M, EM) = s D(M,E® (T*M®E))
\jl\ . 4@Vs (2.5.2)
(M, E)
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In particular, note that £V naturally has the structure of a vector bundle over M. More generally,
given g > 0, let D? denote the g-dimensional disc and write Fp« for the pullback of the vector bundle
FE along the projection D? x M — M; explicitly, Ep. is the vector bundle D? x E T, D?x M. By a
section of Epa, I shall mean a continuous map ¢ : DY x M — D% x E satistying 7g,, o s = Id paxy, and
depending smoothly on x € M; in particular, sections of Ep. over D? x M correspond to continuous
maps DY - T'(E,M). Write qu) for the vector bundle (E(l))Dq and note that E]()lq) * (EDq)(l), since
only derivatives in the ‘M-direction’ are considered in the bundle qu). A section of qu) is termed
holonomic if it is the 1-jet of a section of Epa, i.e., using the identification in eqn. (), if it can be
written as s @ Vs for some section s of Eps. A fibred differential relation (of order 1) on D%indexed
families of sections of E is simply a subset #Z < qu) . Z is termed an open relation if it is open as a
subset of qu).

Definition 2.5.3. Let M be an n-manifold. A subset A € M is termed a polyhedron if there exists
a smooth triangulation £ of M identifying A with a subcomplex of A (in particular, A is a closed
subset of M). I define the boundary of A to be A = A\A where A denotes the topological interior
of Ain M. Then 0A is a subpolyhedron of A and A = 9A if and only if A has positive codimension
in M.

Note that every sufficiently small open neighbourhood of a polyhedron A ¢ M deformation retracts
onto A. T will always implicitly assume that Op(A) has been chosen small enough to ensure that

Op(A) deformation retracts onto A; in particular, the cohomology rings of A and Op(A) are identical.

Definition 2.5.4. Let Z be a fibred differential relation over a manifold M. Say that & satisfies the
relative h-principle if for every polyhedron A ¢ M, every ¢ > 0 and every section Fy of Z over DY x M
which is holonomic over (9D? x M) u (D9 x Op(A)), there exists a homotopy (F})s[o,1] of sections
of Z, constant over (0D x M) u (D x Op(A)), such that F} is a holonomic section of Z. Say that
Z satisfies the C%-dense relative h-principle if, in addition, the induced homotopy p; (F;) of sections
of E can be taken to be arbitrarily small in the C°-topology.

Remark 2.5.5. Note that the case A = M is vacuous in the above defintion; thus without loss of
generality one can always assume A # M. Moreover, one can also assume without loss of generality

that A has positive codimension in M: indeed, the relative h- pr1nc1ple for the pair (M, A) is equ1valent
to the relative h-principle for the pair (M\A A\A) with A\A having positive codimension in M\A for

A # M. (Note that, although M\A need not be a manifold, it is triangulable and thus the techniques
for proving h-principles used in [42] apply.) Consequently, although [42] only considers the case where

A has positive codimension, its results are equally valid for the codimension-0 case.

2.5.1 Convex integration

The main reference for this subsection is [42, Chs. 17, 18].

Definition 2.5.6. Let A be a real affine space. Say that a subset .S ¢ A is ample if the convex hull of

each path-component of S is equal to A. In particular, note that the empty set @ is formally ample.
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Now fix a point p € M. Identifying E(V) = E® T*M ® E, the fibre of the map p; : EV » E over
e € E, is isomorphic to the space pi'(e) = {e} x TsM®E, = {e} xHom(T,M, E,). Each codimension-1
hyperplane B ¢ T,M and linear map A : B — E,, thus define a so-called principal subspace of p;!(e)
by:
II.(B,\) = {e} x {L e Hom(T,M, E,) | L|g = A}.

TI(B, )

I1.(B, \) is an affine subspace of p7'(e) modelled on E,, though not, in general, a linear subspace.
(Note also that changing the choice of connection V on E changes the identification pyl(e) = {e} x
T,M® E, by an affine linear map and so the collection of principal subspaces of p7'(e) is independent

of the choice of connection.)

Definition 2.5.7. Let E - M be a vector bundle, let ¢ > 0 and let £ ¢ qu) be an open fibred
differential relation. For each s € DY, define Z, ¢ E) by the formula:

(s} x Bs =% ({5} x EW).

Say that #Z is ample if, for every s € DY, e € E and principal subspace Il c p;l(e), the subset
Zs N1l c Il is ample in the sense of Definition .

The following special case will be of particular interest in this thesis. Suppose # has the form:
X = FEpa X(DaxM) = Ep. ® (T*M ® E)Dq

for some subbundle #’ ¢ (T*M ® E) p,,, where x(paxn) denotes the fibrewise Cartesian product of
bundles over D? x M. Define Z. by the equation:

{s}xZ =" 0 [{s} x (T"Me E)] c (T"M& E) 5, -
Then for all s € DY, e € E and principal subspaces I (B, \) c 771 (e):
Rs N1 (B, \) = {s} x {e} x (Z.nII(B,\)),

and thus Z is ample if and only if Z. NnII(B, ) c II(B, \) is ample for all B and . In particular, the
underlying point e is irrelevant for relations of this form.

The significance of ample differential relations lies in the following result:

Theorem 2.5.8 ([12, §§17-18]). Let E — M be a vector bundle, let ¢ > 0 and let # < E(qu) be a fibred

differential relation which is open and ample. Then % satisfies the CO-dense, relative h-principle.

2.5.2 Convex integration with avoidance

The main reference for this subsection is [98] (although note that the presentation and notation used

below differs from that op. cit.).
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Configuration spaces for hyperplanes

Let A be a n-dimensional vector space and write Grg)_ol) (A) for the collection of all finite subsets of
Grp-1(A). Gr(m)(A) shall be termed the configuration space for hyperplanes in A and can be given
a natural ‘smooth structure’ as follows. For any k > 1, consider the manifold [T§ Gr,_1(A) parame-
terising ordered k-tuples of hyperplanes in A. The symmetric group Symy acts on I‘I’f Gr,-1(A) by
permuting the factors, however this action is not free and thus the resulting quotient is not a smooth
manifold, but rather an orbifold. Now define the subset:

for some i # j: B; :IB%j}

k k
(H Grn—l(A)) = {(Bla 7Bk’) € HGrn—l(A)
1 sing 1

of tuples whose elements are not distinct. This set consists precisely of those elements of ]'[lf Gr,-1(A)
with a non-trivial stabiliser in Symj and may naturally be regarded as a stratified submanifold of
[1% Gr,_1(A) of codimension n — 1 = dim Gr,,_1(A). The complement of this set:

If[ Grnr () - If[ Grm(A)\(fI Grnl(A))

sing

is thus an open and dense subset of Hlf Grp-1(A) on which the group Symy acts freely. In par-

k
ticular, the space [17 Grp-1(A) Symy, 18 naturally a smooth manifold. Denote this manifold by

k (A) and denote the natural quotient map by o : [1¥ Grp_1(A) — Gr(k)1 (A). Since Gr ) [(A) =
I_[ el Grn 1(A) as sets, Gr (A) inherits a natural topology such that each connected component is

a smooth manifold.

Avoidance templates

Consider the vector bundles TM over M and TMp« over D?x M. Applying the construction of §
to each fibre of these vector bundles yields bundles Gr(w) (TM) and Gr(w) (TMp.) over M and DIxM
respectively, termed the bundle of configurations of hyperplanes over M, resp. D7 x M. (Note that

(W)(TMDQ) is simply the bundle D? x Gr(w)(TM) - D% x M.) Write #Z X(quM) Gr (TMDq)
for the bundle over D x M given by taking the fibrewise product of Z and G‘rrn_1 (TMpa )7 explicitly:

R % Doty Gri) (TMpo) = {[(5,T), (5,2)] €~ Zx G (TMpa) | 7 (T) = T gy ()

E(Dq XE(l))x(quGrff_ol)(TM))

where mga) and denote the bundle projections E(") — M and Gr(m)(TM) — M respec-

Gr{=)(T™)
tively. Let & € Z x(pax) Grrn_1 (TMp.). Given s € D7, x € M and a configuration of hyperplanes
(5,2) € Grff_ol) (TMpa) (s,z) = {5} x Grgfl)(TxM), there is a natural subset < (s,=) ¢ ESY given by:
(5,2) ={T e ESV | [(5,T),(5,E)] € Ha) }-
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Similarly, given a 1-jet (s,T") € Z(s ), there is a natural subset .7 (s,T) ¢ Grffl)(TmM) given by:

o (s,T) = {2 e Gl (T, M) | [(5,T),(5,E)] € Hs.0)}-

n
Definition 2.5.9 ([98, Defn. 4.1]). Let M, ¢ and Z be as above. Say &/ € Z Xpaxm Grgi) (TMp.)
is a fibred avoidance pre-template for Z if:
1. & € X X(pax) Grffl)(TMDq) is an open subset;

2. For all s € DI, € M and all pairs 2’ ¢ = € Grg)_ol) (TzM), there is an inclusion 7 (s,Z) <
o (s,Z).
Say that 27 is a fibred avoidance template for £ if, in addition, it satisfies the following two conditions:

3. For all s € DY, 2 € M and (5,T) € %), the subset &/ (s,T) ¢ Grffl)(TxM) is dense (and

open);

4. For all s e DI, x e M, E ¢ Grglofl)(TzM), B e = X\ e Hom(B,E,) and e € E;, the subset
o (s,Z) NI (B, \) c II.(B, \) is ample.

Again, the following special case will be of particular interest in this thesis. Suppose an avoidance
pre-template &7 has the form:

' = Epaq X (DaxM) ' € Epa X (DaxM) I:(T*M(X)E)Dq X (DaxM) Grgo_ol)(TMDq):I

for some subbundle &’ ¢ (T*M ® E) p, X(pax) Gr7(1°_°1) (TMpa). In this case, given s € DY, 2 € M and
= e Grl®) (T, M), define

A'(5,2)={T e T;M@E, | [(5,T),(5,E)] € &1} -
Then for all B e =, A e Hom(B, E, ) and e € E,:
#(5,2) N1 (B, )) = {e} x [/(5,8) N TI(B, )) ]

and thus &7 (s,Z) nIL.(B, \) c II.(B, \) is ample if and only if /" (s,Z) nII(B, \) < II(B, \) is ample
for all B and A.

Theorem 2.5.10 ([98, Thm. 5.1]). Let M be an n-manifold, let E — M be a vector bundle, let ¢ >0
and let Z# < qu) be an open fibred differential relation on sections of E. Suppose that % admits an
avoidance template &/ € X x(paxm) Gré"_ol)(TMDq). Then Z satisfies the relative h-principle.

As remarked in [98, Cor. 5.5], Theorem is a special case of Gromov’s general theory of
convex integration via convex hull extensions introduced in [62] and developed in [116]. Note also
that & = % x(paxwm) Grff_ol) (TMp.) is an avoidance template for Z if and only if Z is an ample fibred
relation in the classical sense and thus, in this case, Theorem recovers the classical convex
integration theorem as proved in [42, Chs. 17-18].
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Part 1

The unboundedness of Hitchin
volume functionals on Gs- and

Go-structures
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Chapter 3

Large volume limits of the Hitchin functional on

Go 3-forms and associated collapsing results

This chapter uses scaling arguments to prove the unboundedness above of the Hitchin functional Hs
on two examples of closed 7-manifolds with closed Ga-structures. The first is a 4-dimensional family
of closed Gy 3-forms on the product S* x X (where X is the Nakamura manifold constructed by
de Bartolomeis—Tomassini [[14]) inspired by Ferndndez’ short paper [16]. The second is the manifold
constructed by Ferndndez—Fino—Kovalev—-Muifloz in [48]. In the latter example, careful resolution of
singularities is required, in order to ensure that the rescaled forms are cohomologically constant. By
combining suitable geometric estimates with a general collapsing theorem for orbifolds (proved in

Chapter @) explicit descriptions of the large volume limits in both examples are also obtained.

3.1 A general unboundedness result for 3
I begin with an algebraic lemma:
Lemma 3.1.1. 1. Recall the standard Go 3-form @ and write:
Qo = 0123 1 145 4 9167 | 246 _ g25T _ 347 _ 356
=¢1 +P2 +P3 +Ps +P5 +Ps + 1.
Then for all A1,..., A7 € (0,00):
Oy hr) = i)\iﬁbi

is of Go-type and:

2. Let F be a 4-dimensional real vector space equipped with a complex structure J. Let w be a
real, positive (1,1)-form on F and let Q be a complex (2,0)-form on F. Define a constant v >0 by
the equation:

2w = QA Q. (3.1.2)

37



Then given a 3-dimensional real vector space G with basis (91,92,93) of G*, the 3-form on Fe G
defined by:
¢ =g+ gt Aw—g? AReQ + ¢ A TmQ (3.1.3)

is of Go-type. Moreover:

FBAOAQ (3.1.4)
*yd = %Q A+ i gB AW+ gB AR + 17 g2 A TmQ
where g,, is the metric on F induced by J and the real, positive (1,1)-form w.

Proof. Begin with (1). Let g, ..., u7 € (0,00) be chosen later, define ¥ = 1;6° for all i and consider
the Go 3-form:

123, g5 L gl6T | 9246 _ 9257 _ 9347 _ 4356

(p(:u“la "'7,“7)

H123P1 + 14502 + (16703 + [246P4 + [o57P5 + [347P6 + 13567
where g5, = piprjp. Clearly:

79 1234567

VOl (puy,..pir) = H123456 = 111234567000 - (3.1.5)

I claim that @(p1, ..., u7) = P(Ay,...,n;) for suitable ;. Indeed, this equation is equivalent to the system
of equations:
H123 = A1 H145 = A2 p167 = A3

H246 = A4 H257 = A5 347 = A6 (3.1.6)
1356 = A7,

and taking log (which is possible since all p; and \; are positive) yields the invertible linear system:

1 1.1 0 0 0 0)/{logus log \q
1001 1 0 0f]logpus log \o
10000 1 1||logus| [loghs
01 01 0 1 Offlogpa]=|1logAs]-. (3.1.7)
010010 1||logus| |loghs
001 1 0 0 1]|logus log \g
0010 1 1 0/\logur) \loghs

Taking the product of the equations in eqn. () yields:

3

(1)
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,,,,, A,y now follows from eqn. ()

Now let F, G, J, w, Q and ¢’ be as in (2). Since w is a positive (1,1)-form and € is a (2,0)-form
with respect to J, one can choose a basis (fl,fz,fg,f‘l) of F* such that f!'+if? and f3 +if* are
(1,0)-forms with respect to J and:

The formula for UOl¢( N

w=f2+ 3 and Q=v (P if) A (P +ift), (3.1.8)
where v is defined in eqn. () Consider the (correctly oriented) basis:

(91792a93794>057‘96707) (flv_f27 _gla _927 _f37_f47 _93)

of (F@ G)"; then with respect to this basis:
@ = 0128 1 g5 4 T1gIoT 1246 | m1g25T _ 34T _ 356

This is of Go-type by (1). The explicit formulae for g4, vols and % 4¢ follow by solving the linear
system in eqn. (B.1.7) explicitly to obtain the ‘Go basis’:

(01,02, 9%,9%,9°,9°,97) = (zf%el, V02, 1503 u*ée‘*,f%ef’,f%eﬁ,féw).
O

Applying Lemma to manifolds yields the following unboundedness result for the functional
Hs:
Proposition 3.1.9. 1. Let M be a closed, parallelisable 7-manifold, let 01, ...,07 be a basis of 1-forms
and let ¢ be the Go 3-form:
¢ _ 9123 + 9145 + 9167 + 6246 _ 6257 _ 9347 _ 0356
(3.1.10)
=¢1 +d2 +P3 +¢s +P5 +Ps + o1

Suppose that d¢ = 0 and that there exists I € {1,...,7} such that ¢; = Y5 &; is exact. Then for
all X 20, ¢(N) = ¢+ Aoy is a closed Go 3-form in the same cohomology class as ¢ satisfying
Hs(dp(N)) = (1+ /\)lSA’Hg((ﬁ). In particular:

sup H3z(¢') = oo.
¢'e[o]+

2. Let M be a closed, oriented 7-manifold, let TM = R3 @ F for some rank 4 distribution F on
M (such a splitting always exists by [39, Table 1)), let (g, 9%, ¢%) be a basis of 1-forms for the trivial
bundle (R?’)* c (R3 69.7-")* = T*M, let J be a section of End(F) satisfying J*> = —1d, let (w,§) be
(1,1) and (2,0)-forms on F with respect to J and let ¢' be the Go 3-form:

¢ = g"B + gt Aw—g? AR + g3 A TmQ.
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Suppose that d¢’ = 0 and that g' Aw is exact. Then for all A\ >0, ¢'(X) = ¢’ + A\g! Aw is a closed G
3-form in the same cohomology class as ¢' satisfying Hs(¢' (V) = (1 +N)iHs(¢'). In particular:

sup  Hz(¢") = co.
P"e[¢']+

Likewise, if g A ReQ) — g3 A ImQ is exact, then for all A >0, ¢"(\) = ¢’ — X (g2 AReQ - g3 A JmQ)
is a closed Gy 3-form in the same cohomology class as ¢' satisfying Ha (6" (X)) = (1+ )3 H3(¢'), so

that once again:

sup Hs(¢") = oo.
¢//E[¢/]+

3.2 The unboundedness above of Hz on (N, ¢(a, 5, \))

I begin by recalling the construction of the Nakamura manifold X from [14]. Define a product * on

C? via the formula:

(ul,u2,u3) * (wl,w2,w3) = (ul + wl,e_w1u2 + wQ,ewlu?’ + w3) .
Then ((C3, *) is a complex, soluble, non-nilpotent Lie group, which I denote H. Equivalently, one
may identify:

e 0 0 0
0 e¥ 0 0

H = € SL(4;C Law? w?)eC?}. 3.2.1
o 0 1 0 (4,C) | (w',w”,w”) (3.2.1)
w? w? w1

The basis (complex) right-invariant 1-forms on H are given by:

o' =dw', ©?=¢"dw?® and ©°=e" dud. (3.2.2)

Let ¢ = log 33/5, m = @ and define A ¢ H to be the uniform (i.e. discrete and co-compact)

subgroup generated by the six elementsﬂ:

hi = (£,0,0), he = (273,0,0),  h3=(0,—m,1)
hy=(0,1,m), hs=(0,-2mim,2nwi), he= (0,27, 2wim).

!These formulae differ from those in [14], as the author of this paper has discovered an error op. cit., which has
been corrected in the formulae here presented.
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The quotient X = / A is a compact soluble manifold called a Nakamura manifold (the first such

- 1
examples being constructed by Nakamura in [109]). Explicitly, write P = ( In ); then clearly:
m

H/(hz,h37h4,h5,h6 = / 2miZ, X CQ/P +2miZ?) - (3.2.3)

S =%

-0
P 2 1 Pl e OZ
1 1 0 e

-4
0
it follows that the linear map (60 é) on C? descends to define a map A on the complex torus ¥.
e

Moreover, from the equation:

One can then write:

B9 [y

where T is the automorphism given by (w,p) €e Rx T — (w + £, A(p)) € R x T. The right-invariant

1-forms © descend to a basis of (complex) 1-forms on X, again denoted ©F, which satisfy:
de'=0, de*=e'r0? de’*=-0're3 (3.2.4)

Write g! = MeO! and ¢ = ImO?, so that in particular dg! = dg? = 0.
Now consider the manifold N = X x S'. I begin by recording the following result, which is not

proved in the literature but which nevertheless appears known to some authors (cf. [22, §6, Example

2]):
Proposition 3.2.5. The manifold N admits no torsion-free Go-structures.

Proof. The argument is largely topological in nature. It follows from [14, Thm. 4.1] that b'(N) = 3.
Thus by Theorem , if N admitted a torsion-free Go-structure, then the universal cover of N
would be homeomorphic to R x N for some simply-connected, closed 4-manifold N. However the
universal cover of X is H hogeo C? (a fact which holds more generally for any complex soluble manifold
[109, p. 86]) and thus the universal cover of N is R, not R® x N. Thus no torsion-free Go-structures
on N can exist.

O]

N does, however, admit closed Gy 3-forms. Consider the (complex) rank 2 distribution on X
given by F = Ker ©! and define (1,1) and (2,0)-forms on F by:

w =

[@ NC) +@3/\@] pzé[@%@Q—@%@?’] and Q=02A05%

[\DIN

Then (w, ) satisfies:
dw=2¢"Ap and dQ=0. (3.2.6)
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Write g% for the canonical 1-form on S'. For each a € R\{0}, 8 € R\{0} and A € C\{0} define a
3-form on N by:
(e, B, N) = afg'® + ag' Aw - Bg? AReAQ + g A TmAQ. (3.2.7)

o(a, B, ) defines a Gg-structure on N, by Lemma (applied to the forms ag!, Bg%, ¢, w, AQ).
Moreover d¢(a, 8, ) =0, by eqn. ()

Remark 3.2.8. The construction of ¢(«, 3, \) above was inspired by the Gg 3-forms defined by Fernén-
dez’ [46]. Indeed, in the special case that A = 1 and o = 3 lies in the discrete set {x € R | ex +eT € Z\{2}},
the forms ¢(«, 3, \) are closely related to Fernandez’ definition. The key differences are firstly that,
for H as defined above, Fernandez considers a left-quotient of H and thus constructs left-invariant Go
3-forms rather than right-invariant Go 3-forms, and secondly that Ferndndez reverses the roles of g2
and the canonical 1-form on S'; this arises since [46] uses the opposite convention for the orientation
of Ga-structures to the one used in this paper; see [82, §2.1] for a discussion of the two conventions.
Also, Fernandez’ treatment in [46] focuses almost exclusively on the manifold N from the perspective
of real differential geometry, and thus does not notice the natural SU(2)-structure (with torsion)

underlying the construction op. cit..

Theorem 3.2.9. The map:

(R\{0})* x (C\{0}) ——— Hr(N)
(OZ?ﬁa)‘) — [¢(a7ﬁ7>‘)]

is injective, and for all (c, B, ) € (R\{0})% x (C\{0}), the functional:

H3 : [¢(aaﬁ7)‘)]+ - (0700)

is unbounded above.

Proof. Since each of (%69)2, g2 AReQ, -1 ATmQ, g1 AReQ and g% A TmQ are closed, there is a
map:
H3(N) ———— RO
ng A (Re)?

ng A gl A ReQ
€] ——— /Nf/\—gl3 A JmQ
ng A gt A TmQ
ng A gl A ReQ
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A direct calculation shows that, writing A = /N B A (i)%eQ)2 = [N g' A (’Jmﬂ)2 >0, one has:

ap
Re

x ([¢(a, B,A)]) = A-| JmA
BReA
BImA

Thus the composite (R\{0})? x (C\{0}) oGm0, H3:(N) % R is injective, and hence so too is

(R\{0})? x (C\{0}) 2222 3, ().

Finally, note that g' Aw = %dp is exact. Thus the unboundedness of H3 on the classes [¢(a, 3, )],
follows immediately from Proposition (2); in particular, writing:
o, B, A1) = aBg ' + aplgt Aw - Bg® AReAQ + g% A TmAQ
for p > 1, Proposition (2) shows that:

HS (QZS((X,,B,)\;M)):M4H3 (QZ)(O(,B,)\)) - 0 as H—> 00,

completing the proof.

3.3 The large volume limit of (N, ¢(a, 5, ;1))

The aim of this section is to describe the geometry of (N, ¢(av, B, A; 1)) as u — oo. Recall the group H
defined in eqn. () and the uniform subgroup A. The subgroup K c H corresponding to w! = 0 is
a connected, normal, Abelian Lie subgroup of H, which is maximal nilpotent since H is non-nilpotent
and codim(K, H) = 1. By Mostow’s Theorem [109, p. 87], there is a fibration:

Frx=HIp (H/K)/(A-K/K)

with fibre & / An K- Explicitly, recall that X = S x (Rx%T) / (T, where % is the 4-torus defined
in eqn. () and T is the automorphism given by (w,p) e Rx T~ (w+ ¢, A(p)) e Rx . Then § is

simply the natural projection:
st x BxT) [y 2% 51 < Ry
with fibre T. Using f, define a fibration p: N — R/ (7, via:

proja

p:N:SlxX%XLSlxR/gZ%R/gz.
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Theorem 3.3.1. Let (o, 3,\) € (R\{0})? x (C\{0}) and let (N, ¢(cv, B, A; 1)) pe[1,00) be the family

constructed in the proof of Theorem . Then the large volume limit of (N, ¢(c, B, \;p)) corre-
sponds to an adiabatic limit of the fibration p. Specifically:

(N7M_12¢(a767>‘;u)) - (R/EZ 7042 ()‘X)_g gEucl) as = 090,

where the convergence is in the Gromov—Hausdorff sense.

The proof uses the following convergence result:

Theorem 3.3.2. Let E and B be closed manifolds, let w: E - B be a submersion, let g"* be a family

of Riemannian metrics on E and let g be a Riemannian metric on B. If g* — n*g uniformly and
there exist constants Ay, > 0 such that:

lim A, =1

H—>00

and g > Afﬂr*g for all pe[1,00),

(3.3.3)
then (E, g") converges to (B, g) in the Gromov-Hausdorff sense as y — oo.

Since Theorem is a result in metric geometry, rather than Go geometry, the proof is postponed

to Chapter @ of this thesis (see Theorem ), so as not to detract from the main thrust of the current
chapter. Using Theorem , I now prove Theorem :

Proof. By Proposition applied to the forms ag', g2, g%, u®w, \Q (so that v =
compute that:

\;‘TGX) one may
/,68(12 1\®2
9o(a.phip) = T

() )

wl=

T o +

Rescaling the Go 3-forms ¢(o, B, \; i) = p~'2¢(ar, B, \; 1), one finds that:

2 , (OO0 (O
Iu=2¢(a,Bhip) = T _— 2 (91)® + %gw + (W)
AN)° H

g [ 9 (gz)®2 N (g3)®2]

(3.3.4)
- a? ()\X)_% (gl)®2 =p” [a2 ()\X)_% gEud] uniformly as pu — oo,

where ggyuc denotes the Euclidean metric on R/ (7, Moreover:

ol

Gu-126(aB ) 2 P [012 (M) °

gEud] for all p.
The result now follows from Theorem .

(3.3.5)

O
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3.4 The unboundedness above of H3; on (M, gg)

3.4.1 The construction of (I\V/I,é)

A 0
For full details of the construction, see [48]. Let G = {( Ol A ) € SL(12;R)}, where, for (z!,..,27) €
2
R”:
1 -2%2 2t 2t -zlz 20 1 -22 2t 2 -zlz z7
0 1 0 -z 't %(xl)z 0 1 0 -2t ot %(azl)Q
o 0 1 0 - —xt o 0 1 0 - —°
A1 = v v and A2 = v v
0 O 0 1 0 0 0 O 0 1 0 0
0 0 0 0 1 z! 0 0 0 0 1 r!
0 O 0 0 0 1 0 0 0 0 0 1
(3.4.1)

Write I' ¢ G for the discrete subgroup corresponding to (z!,...,x7) € 2Z x Z5 and define M = F\G, a

closed nilmanifold. G admits a basis of left-invariant 1-forms given by:

o' =dz', #%=dz?, 6 =d2®, 6*=dz*-2%dst (3.42)
0° = da® - 22dat, 0% =da®+2lda?, 07 =dz” +2'dad
which descend to define a basis of 1-forms on M (also denoted 6?) satisfying:
doP=0 (i=1,2,3), do*=0'2 d0°=6'3, d0°=0" and do7 =0, (3.4.3)
Define a closed Gg 3-form on M by:
@ = 0123 4 15 4 Lo _ 246 | 25T | g34T | 4356 (3.4.4)
Then M admits a (non-free) involution Z given by:
Z:T. (xl,x2,x3,:ﬂ4,x5,x6,x7) -1 (—xl, 22,23, 2t -2, —:Uﬁ,:v7) (3.4.5)

which preserves @ and hence @ descends to define a closed (orbifold) Gg 3-form @ on M= I\M.

Let S denote the singular locus of M and write S for the preimage of S under the natural projection
M — M. By eqn. () (see §5 of the arXiv version of [48])E S = 1aent Sa Where a = (a',a?,a%, a%) €
2 ={0,1} x {0,1}” and:

~ {{F (0,@2,x3,m4,a5,a6,m7) | 23,2t 27 e R} ifa' =0

: {F- (1,@2,:1:3,:1:4,a5, %a2 +ab —x4,x7) | xs,:v4,:n7 € R} if ot = 1.

2My investigation of the manifold (1\71, qz) revealed some errors in the journal version of [48], which have been
communicated to the authors of [48] and since corrected in the arXiv version of the article.
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Similarly, write S = Hae S, where each Sy is the image of S, under the projection M — M. The

map:
Do: T3 x B > M

3.4 .7 3 (1.2 5 6 1.2 .3 4.5 1.3 6 7 1/ 1\2 3 (3.4.6)

[(v*.vhy")+2°, (v' v* 0,y )]HP(y T A TR T S T TN T T & GV I )
defines an embedding onto an open neighbourhood of Sy identifying T? with S¢ and Z with Idps x —
Idp: for € > O sufficiently small. Similarly, for each a = (0,a2,a5,a6), there is an embedding P, :
T3 xB2 - M given by ®, = fa0®g, where f, is a diffeomorphism of M induced by a left-translation of

G, commuting with Z and mapping Sg to S,. For the other components of the singular locus, define

1 0 0
alattice A=Z-1 0 |+Z-|1|+Z-|0]|cR3 and Writeﬁ:R3/A. Writing 1 = (1,0,0,0), the map:
1
-z 0 1
2

Dy : T3 x Bg - M
[(y3,y4,y7) +A, (y17y2’y5’y6)] T (y1 + 1,y2,y3,y4,y5 + ylyS’yG _ y4,y7 _ y5 _ y1y3 _ % (y1)2 y3) .
(3.4.7)
is an embedding onto an open neighbourhood of Sy for € > 0 sufficiently small identifying T3 with S1
and Z with Idg x—Idps. Similarly, for each a = (l, a’,a’, a6), there is an embedding ®, : T3 ><B‘51 - M
given by @, = gao®1, where g, is a diffeomorphism of M induced by a left-translation of G, commuting

with Z and mapping S7 to Sa.

Let T denote either T3 or T3 as appropriate and write @, for the composite T x Bﬁ 2e, M — M.
For each a = (al, a’,a’, a6) € A, define U, = &, (T X B?) and U, = @, (T X {il}\Bﬁ ); for sufficiently
small € > 0 the U, are disjoint. Then shrinking € > 0 still further if necessary, there exists a closed,
orbifold Go 3-form ¢ on M such that ¢ = @ on M\Haem Ua and on each W, = O, (T X {il}\Bgﬂ)
one has:

@ = dy'2 4 dy™® 4 dyt67 - dy6 4 dy®T + Ay + 4y,

where the 3 are defined in eqns. (B.4.6) and () Identify {il}\Bg/Q C {il}\cz by writing
wh = y! +iy? and w? = y° +iy% and define:

—

W= (dw1 Adwt + dw? A d@Q) and Q= dw' Adw?.

N | .

Then on W,, one has:

6 = dy**" + dy® A w - dy*ReQ + dy ImAQ.

Now recall the space [97, §2]:
X = 0cp (-2) = {((U, U2) [W" s W?]) e C2 P! | U (W?) =02 (W)} = T*CP.
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together with the continuous (non-smooth) blow-up map p: O¢p: (-2) - {il}\(c2 given by:
(U, 0?),[Wh: W) = (VO VT?), (3.4.8)

where the square-roots on the right-hand side are constrained by the condition VUITW? = \/le,
and write & = p~1({0}) for the exceptional divisor. Using the map p, identify the spaces X \(‘3 and
({:I:l}\(c2 ) \{0}. It can be shown that the form £ on X\@ extends over all of X to define a smooth,
closed, (2,0)-form Q. however the form @ on X \QE cannot be extended over €. Instead, one considers
the so-called Eguchi-Hanson metrics @; on X defined as follows: let 7% = ‘wl‘Z + ‘w2‘2 denote the

distance squared from the origin in {il}\CQ and define:

2

& = iddc [m+ 2log (ﬁ)] on ({il}\CQ )\{0}. (3.4.9)

Then &; can be extended smoothly over € to define a Ricci-flat Kéhler form on X [78, p. 60]. The
forms @; can be used to ‘extend’ @ over the exceptional divisor in the following sense: for € > 0, write
X (¢) for the pre-image of {:I:l}\Bg under the map p: X — {il}\CQ. Then for every € > 0, there

exists ¢ sufficiently small (depending on ¢) and a Kéhler form c; on X such that:
o~ S\ (1 - ~(1
w; =W on X\X(ée) and @ =W onX(Zs).
Now define a new manifold M by:
N - (m ]_[Wa)u(]_[Tx)?(g))
ael ~ \ae2l

where | denotes that for each a € 2, the region Ua\Wa should be identified with the region T x

X’(s)\f(%s) > T x ({:I:l}\Bg)\({:tl} B%g) using @,. Denote the image of T x X(e) in M
corresponding to a € 2 by U, and the image of T" x X (%6) by Wa. Define a three-form qVS on M by
setting q; = a on (M\Haeg Wa) and setting:

qvb = dy347 + dy3 AWy — dy4 A ReC) + dy7 A Jm)
on the region Wy for each a. This yields:

Theorem 3.4.10 (|48, Thm. 21)). Let p: M — M denote the ‘blow-down’ map. Then there exists a

smooth, closed Go 3-form J) on M such that p*gz = ¢ outside of a neighbourhood of the singular locus
S.

Remark 3.4.11. Tt is well-known that @, defines a non-zero cohomology class on X which depends
on t. Using [48, Prop. 22|, it follows that the cohomology class of $ depends on the choice of ¢ and
hence . To prove the unboundedness of Hs on (1\71, (ZVS), I construct a family of closed Ga 3-forms gZ;”
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with unbounded volume in the fixed cohomology class [gzuﬁ], thus they must all have the same ‘choice

of ¢’. This is an important technical subtlety in the construction of the forms (5“.

3.4.2 The unboundedness of H;

Theorem 3.4.12. The Hitchin functional:

Hs: [(ZL_ - (O,oo)
1s unbounded above.

Whilst the manifold (I\V/I,q;) does not satisfy the hypotheses of Proposition , the manifold

(M, @) does satisfies the hypotheses of Proposition (1), since, by eqn. (), the 3-form 123 =
d (025) is exact. Thus, by Proposition (1), for each p > 1, the 3-form:

@ = 10912 1 gL45 | gl6T _ 9216 | 25T | g34T | 356

is of Go-type and satisfies volyn = p?vol,. By eqn. (), both the 3-form 623 and the 2-form 62°
are Z-invariant and thus descend to the orbifold M. Hence the forms @* descend to define closed Go
3-forms @ on M with unbounded volume, which lie in the fixed cohomology class [@].

To complete the proof of Theorem therefore, it suffices to ‘resolve the singularities’ of
(M, @“). The obvious approach is to mimic the construction of (1\7[, gZ))7 by first deforming ®* into
the form:

& = 18yt 4 dyt® + Ay — Ay 4 dy®T + Ay + 4y (3.4.13)

in a neighbourhood of the singular locus, and then resolving the singularity in E using wy as above.
However this approach fails: in order to deform @* into &* on the region U = T x {il}\Bg, it is
necessary for € to depend on p. This implies that the cohomology class of the resolved 3-form ¢* also
depends on  (see Remark ) and thus this construction fails to demonstrate the unboundedness
of the Hitchin functional H3 on the fixed cohomology class [(5] Thus instead, I deform @* into the

form:
g,u, +y1dyl47 _ M6dy123 +dy145 +dy167 _ dy246 +dy257 +dy347 + dy356 +y1dy147 (3414)

near the singular locus. This deformation can be performed on U, = T x {il}\Bg with e chosen

independently of ;. The additional term y'dy'4”

persists during the resolution of singularities, before
being cut-off near the exceptional divisor, at some distance from the exceptional divisor depending

on y. This enables the resolved 3-forms qz“ to lie in a fixed cohomology class, completing the proof
of Theorem .

Remark 3.4.15. The reader will recall that Joyce [[76, [77, [/§] constructed numerous Ge-manifolds by
resolving the singularities in finite quotients of the torus (T7, (;50). Despite the similarities between
Joyce’s construction and the construction of (M, 5), the results of this chapter do not apply to Joyce’s

manifolds since, unlike (M, @), the torus (’]I‘77 qbg) itself does not satisfy the hypotheses of Proposition
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. Thus, the question of whether Hs is unbounded above on manifolds admitting torsion-free Go
3-forms appears to remain beyond our current understanding.

I begin with the following lemma:

Lemma 3.4.16. Let ac @, let v > 0 denote the radial distance from the singular locus in Uy, i.e.:
2 2 2 2
=) () () + ()

where the y' are defined in eqns. (|34d) and (|347|), and define:

= 18y 1 Ay + A7 - dy4 1 dy®T + Ay + 4y,
Then there exist a constant C' >0 and a 2-form @a on Ua, both independent of p, satisfying:
|@a|§b <Cup'r?  and |d623|@ <Cr (3.4.17)
such that:
@' - & =y'dy'"" +daa,

(Here ||E“ denotes the pointwise norm induced by the Go 3-form €*. E.g. in the case w=1, this is

just the Buclidean norm in the y* coordinates, denoted |- |guc-)

Proof. Begin by working on U,. Using the equation:

fao®o ifal=0;
b, =
ga o P if al =1,

together with the fact that both f, and g, are induced by left-translations, and hence preserve each

0%, one sees that:

oo =

a

o' if ol = 0;
®310' ifal =1.
Using the explicit expressions for ®¢ and ®; given in eqns. (B.4.6) and ()7 together with eqn.

(), it follows that:

o o1 dy1
92 02 dy2
63 63 dy3
oyl ot |=27|0] = dy? - y2dy! . (3.4.18)
6° 6° dy’ +y'dy’
06 06 dy6 + yldy4
o7 o7 dy™ +yidyS + % (yl)Qdy3
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Therefore:

(p,u _ g,u, — yl (dy147 _ dy156 _ dy134 + dy237) + y2 (dy137 _ dy126)
+ % (y1)2 (2dy145 —dy'30 +dy235) +yly? (dy135 —dy124) B % (y1)3 dyt34

147

= yldy + daa,

where:
o =dy' A [(s'9° + 3 (7)) s’ + ((5) 0" + 3" (17)) dy' - L (4") " Py’
= Ba
+dyd A [(_% (yl)2 _ % (y1)4)dy4 +y1y2dy7+ % (y1)2y2dy5].

:’7a

Observe that there exists C > 0 independent of u such that:

C C
|/8a|Euc17 |'Ya|Eucl < 57'2 and |dﬁa|Euda |d'7a|Eucl < 57‘

Also, by solving the linear system in eqn. (B.1.7), one may verify that:
ger = 1t ((dy")™ + (a?)™ + (a9?) ™) 2 (@)™ + (@)™ + (@)™ + (") ™). (3419)

In particular ge. > 1 2gEuel when acting on vectors. It follows that |- | g < | |Euel Wwhen acting on
1-forms, and |- | g < 112 |Euel when acting on 2-forms. Hence:

C
2

C
|5a|§l‘a |’7a|§ﬂ < E,U/'"2 and |dﬁa|§ﬂy |d'Ya|§M < —pr

One may also compute that ‘dy1| g = ‘dy3‘ g = p2. Therefore:

|val gn < \dy1|5u |Balen + \dyg\gu [Yalgr
<Cpr?,
as required. Likewise day, = dy1 AdfBs + dy3 A d7ya and hence \daalfu < COr. Since T%qy = g, Qn

descends to define the required 2-form @, on U,.

O
Remark 3.4.20. The term y'dy'*" is also exact with primitive % (y1)2 dy*", however one may calculate
that: )
Loo1n2 o oa7 B2
- dy?7| . =& :
30 7 -

thus this primitive does not satisfy the bounds in eqn. () It is for this reason that the term
13,147
y dy

Using Lemma , I now prove:

is dealt with separately to the other terms in the expression for @# — £
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Proposition 3.4.21. There exists ey > 0, independent of u, such that for all e € (0,e¢], the following
18 true:
For all > 1, there exists a closed, orbifold Go 3-form a" on M such that:

5“:(5” on M ]_[Ua
aell

and on each Wy for a e, one has:

—

¢u — MGdy123 " dy145 +dy167 —dy246 4 dy257 +dy347 +dy356 +y1dy147.

Proof. Again, begin by working at the level of M. Let f:[0,00) - [0,1] be a smooth function such
that:

e { =0 on an open neighbourhood of [0, %] ;
e f=1 on an open neighbourhood of [1, c0); (3.4.22)

o <3

Consider the 3-form ¢ on U, defined by:

O = e 4yt dy™T 4 d [f (f) aa] . (3.4.23)
€
Clearly ¢" is closed and satisfies:
o ¢ +yldy' on Wy
ot near the boundary of U,.

On U,, using eqns. (E.4.1§), (E41ﬂ) and ()7 one may compute that:
171 oo

3

¢ — §M|gu < |y1dyl47‘§u + |d04a|gu +
<(4C+1)e

ldrgn oalgn (3.4.24)

where C > 0 is as in Lemma (recall that |dr|§u < W, as in the proof of Lemma ) Thus ¢*
is of Go-type for all € > 0 sufficiently small, independent of u, by the stability of Go 3-forms. Since
", y'dy™ and aa are all Z-invariant, the form ¢* descends to define an orbifold Gg 3-form @* on
M, completing the proof.

O

One can also use Lemma to give an explicit formula for aon the region U,. Explicitly, one
takes:

$=E+d[f(f)(%(yl)Qdy“ma)]. (3.4.25)
€
In particular, note that whilst @' = @, it is not true that 51 = a
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The task now is to resolve the singularities in ¢*. I begin by introducing some notation. Firstly,
for k € (0, 00), define:

B! (Le, k) = {(wl,wQ) e C?

K [ + |2’ < %g}

Thus B* (%5, k:) is a complex ellipse with radius %k:“gg in the w'-direction and radius %5 in the w?-
direction. Also define X (%5, k:) to be the pre-image of {:l:l}\B4 (%5 ) k) under the blow-down map p
and, for k € [2‘%, oo), define VvVan to be the subset of Uy corresponding to T' x X (%E,k). (k> 273 is

needed to ensure that Wak c Ua) Secondly, define:

3
T3 = R /,u?’ZEBZGBZ-

Analogously, let A, denote the image of A under the map (y3,y*,y") e R? » (1393, y*,y") e R? and

define:
";Z - RE;/ Au ’
As above, use T}, to denote either Tz or fi as appropriate.
Begin by considering the space Ry, = (Tp,) s 4 7 X X (%6’M_1)y17y27y5,y6 2T, x X (%6) Define a
3-form o on R, via:
a:d[f(%) : % (yl)QdyM:I, (3.4.26)

where f is as defined in eqn. () Clearly, o vanishes near the exceptional locus and thus o defines

a smooth 3-form over all of R, via extension by zero. Moreover, outside the region T}, x X (%5) (i.e.

on the region {7’ > %E}) o is simply given by y'dy'".

Next, define a 3-form ¢ on R, via:
¢ =dy® +dy?® Ay — dy? AReQ + dy” A Tm (3.4.27)

for &; as above. ( defines a Go 3-form on R, by Lemma . Finally, define a 3-form ¢* on R, as
follows:

1
(uZC-F—SO'.
1

Lemma 3.4.28. For ¢ > 0 sufficiently small, independent of u, and for u sufficiently large, C* is of
Go-type on Ry,.

Proof. The proof is, again, an application of the stability of Gy 3-forms. Firstly, consider the region
T, x X (%g,u‘l)\y (%5) (i.e. the region {r 2 %6}) Here, ¢ = Eand o =y'dy'?7, so:

3
Ep
ol = [y'] < 5

and thus:

E.

N |~

" =l <
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Hence ¢, is of Go-type on T}, x X (%z—:, ,u’l)\f (%5) for all y if € is sufficiently small, independent of
73

Now fix ¢ and consider the region T}, x X (3¢). On this region ol < C for some fixed C' > 0
independent of . Thus: o

¢" = ¢l < R
Thus for p sufficiently large, ¢# is also of Ga-type on the region T}, x X (%5) Thus ¢* is of Ga-type
on all of R, and the result is proven.
O

Using this lemma, the Go 3-forms required for the resolution can be constructed. Firstly, consider
2 2 .
the map {:I:l}\(c - {:I:l}\(c given by:

(wl,wg) — (u?’wl,wQ) .

Restricting this map to the region ({il}\CQ ) \ {0} and using the blow-up map p, this gives rise to
a map h*: X\(’E - X\@ which extends to all of X. Now define:

W, (T) x X (%5) - (Tu)yg_7y47y7 x X (%5,,1[1) (3.4.29)

Y2ty yly2 0 s yly2 Ry

where the action of H* on T is induced by the map (y3, 4%, ¢y7) € R? » (1243, 5%, y") € R? and H*
acts on X (%5) by h*, and write:
CP = =3 (H1)* ¢Cr. (3.4.30)

By Lemma , this is a smooth, closed, Go 3-form on W,. An explicit computation shows that
near the boundary of Wa (and, more generally, on an open neighbourhood of the region Wa\Wa# ):

92

C,LL _ ,LLGdy123 + dy145 +dy167 _dy246 + dy257 +dy347 +dy356 +y1dy1477 (3431)

which is exactly the ‘boundary-conditions’ required for the resolution. Thus for each p € [1,00), one
obtains a smooth, closed Gy 3-form @ on M by setting P = P outside Wa for each a € 2 and
(5” = (f“ on each Wi.

Now let 1\0/1 = M\Uaem Ua. Then on 1\0/[ one has QVSN = " and hence voly, = 126017 by Proposition
. Hence, one may compute that:

Hs (") > fﬁvolq;” = 12 [ﬁelm? — 00 as 1 — 0. (3.4.32)
Thus, the proof of Theorem is completed by the following result:

Proposition 3.4.33. Let (1\7[,95) be as defined in Theorem and let giv)“ be as defined above.
Then:

[&“] = [(]3] € H§’R (M) for all > 1.
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Proof. 1t suffices to prove that the difference gE“ - qzuﬁ is exact for each pu > 1. The strategy is to prove

that q;" - q; is exact on each of the regions:

. Wa for a € A;

. M\Haem Ua;

. (?a\Wa for a € A,
and then to verify that the primitives may be combined to define a global primitive on all of M.
W, for a € 2A: Recall the map h* defined above. One can verify that:

¢ = dy™ 4 dy® A (0")" @ - dy* AR + dy” A TmE +d [f (—2 (h:)* 74) : % (yl)Qdy‘”]

and thus:

P —d=dy* A[(5")" @D -] +d [f (2“’6&) : % (y1)2dy47:| on W.

The second term is manifestly exact. For the first term, recall the Generalised Poincaré Lemma [94,
Prop. 17.10]:

fi
Theorem 3.4.34. Let X, Y be smooth manifolds, let X ?ﬁ Y be smooth maps and let F': f; =

i
f2 be a smooth homotopy. Then the maps H3ig(Y) ? Hiz(X) are equal.

Since h* is homotopic to the identity on X, it follows that (5")* 0 — &y = dr for some suitable 7.

Thus, on the region Wa, one finds that:

o= d[TAdy3 + f(_Q(bZ)*r) : % (yl)QdyM]

=dw.

In order to extend w to all of M below, it is necessary to compute w explicitly near the boundary

of Wa. For the second term in w, since (b*)* () > r, one finds that:

200" r\ 1 i
f( (b") 7”) 1 (y1)2 Ay = (yl)zdy47 near the boundary of Wi.

€ 2

For the first term in w, recall that the Generalised Poincaré Lemma stated above may be proved by
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I
s
constructing an explicit chain homotopy Q°(Y) ﬂ& Q°(X) defined by:
?)r

F:Q(Y) > QN X)

f (0 (F*w))d (3.4.35)
=g s _
w o] Ly w))ds
and calculating that:
aF+Fd=f3 - f7, (3.4.36)

where the homotopy F' is viewed as a map F : [0,1] x X — Y and s denotes the embedding
X 2 {s} x X - [0,1] x X. Using the specific homotopy hVI+s(-1) = Fof X connecting Id to h¥,

one may calculate that:

6
— 1 .
r=t 5 (yldyz - y2dy1) near the boundary of Wj,.
Thus:
PO-1 1 95 9.1y 1,1y g y
@ = "= ('™ ~y*dy™®) + 5 (") dy"" near the boundary of Wi, (3.4.37)

l\V/I\]_[aEQl Ua: As discussed at the start of §, by eqn. () one has:
P == (15 -1)6" = (4 - 1) (6%) = de.
Using eqns. (), () and (), one finds that:

w = (MG - 1) (dy25 + yldy23) near the boundary of Us,. (3.4.38)

Tja\Wa for a € : Finally, using eqns. (5423) and (5.4.25), one finds that on ﬁa\Wa for a e A:

= (u6—1)dy123+d{[1—f(£)] (%(yl)zdyﬂ)}-

Thus giv)” - gZ; = dw, where:

6 _
e B a0 () o )

s sra)

This satisfies:
MG_l 1723 2113 1\2 ;. 47 y
w="——(y'dy” - y’dy )+(1(y ) dy ) near the boundary of W,

2
2 (3.4.39)

w = (,u6 - 1) (dy25 + yldy23) near the boundary of Ua.
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Combining eqns. (t3.4.37|)7 (|3.4.3§), (B.4.3d), one sees that w defines a smooth 2-form on all of M
such that:

¢ﬂ_€z:dw7

as required.

This completes the proof of Theorem .

Remark 3.4.40. Recall that, for a closed Gy 3-form ¢, the Laplacian flow of ¢ is the solution of the
evolution PDE [22, §6]:
9¢(t)

o = Dad(t) = ~dkondO(6()  and  9(0) = o.

Laplacian flow can be regarded as the gradient flow of #H3 [24, §1.5]; in particular, 3 increases strictly
along the flow. Accordingly, Laplacian flow has been used in the literature to provide examples of
7-manifolds on which H3 is unbounded above; see, e.g., [22, §6] and [0, §5].

The family ¢(«, 3, \; 1) constructed in §@ can also be interpreted via Laplacian flow. Using
Lemma B.l.]], eqn. (l324l) and eqn. (), one may compute that:

4(AX)

~AdK (0,820 d0(d(, B, A 1)) = i 9" rw.

Wl

On the other hand, allowing u = u(t) gives:

8¢(a,6,)\;u) sdp o
— =6y — .
ot H dtag nw

Thus ¢(a, 8, A; u(t)) is a flow line of Laplacian flow starting from ¢(«, 5, \) if p satisfies the ODE:

a2
dt  3a2u”

Wl

and p(0) =1.

It follows that the Laplacian flow starting from ¢(c, 3, A) exists for all ¢ > 0 and is given by:

A‘s\Jw(/\X)gt 1
¢ avﬁa ) T"‘

In general, however, Laplacian flow can only be explicitly solved on manifolds with a high de-
gree of symmetry, and thus cannot be used to investigate the unboundedness above of Hs on more

complicated manifolds. As a illustration, note that, even at the level of the manifold (M, ¢):
Ap@ = —dk,dO(@) = 20" + 29145 — 9136 4 9127,
and consequently the equation a—a‘f;—t = Ay, @; cannot (to the author’s knowledge) explicitly be solved
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starting from @g = ¢. However, §@ has shown that the scaling arguments described in §@ can
be applied to successfully prove the unboundedness above of Hs on (1\71, gg) This suggests that
Proposition is a more widely applicable technique for proving the unboundedness above of Hg

than Laplacian flow.

3.5 The large volume limit of (1\7[, &)

The aim of this section is to describe the geometry of (1\7[, (5“) as @ — oo. The arguments presented
require new notions of geometric structures on orbifolds known as stratified Riemannian metrics (and

other stratified geometric structures) to be introduced, so I begin by defining these concepts.

3.5.1 Stratified (semi-)Riemannian and quasi-Finslerian structures on
orbifolds

I begin by recalling the following definition [81, §15.10]:

Definition 3.5.1. Let A be a real vector space. A quasinorm on A is a map £ : A - R satisfying

the following three properties:
1. For all a € A: L(a) >0, with equality if and only if a =0 (L is ‘positive definite’);

2. Forall AeR, a€A:
L(A-a) = |- L(a);

3. There exists some k = k(L) > 0 such that for all a,a’ € A:

L(a+a")<k(L(a)+L(a)).

Note that in the case k = 1, this reduces to the definition of a norm.

In this thesis, I restrict attention to continuous quasinorms. In this case, condition (3) above

becomes automatic:

Proposition 3.5.2. Let A be a finite-dimensional real vector space and let L : A — R be a continuous
map satisfying conditions (1) and (2) from Definition . Then L is a quasinorm.

Proof. Consider the continuous map:

[+ (Ax A)\{0} — [0, 00)
L(a+a")
L(a)+ L(a")

(a,a") ~

(Note that f is well-defined by condition (1) in Definition ) For a contradiction, suppose f is
unbounded and pick a sequence (a;,a}) € (A x A)\{0} such that f(a;,a]) - oo as i - co. Choose

i
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some norm || — || on A and consider the new sequence:

/

E— ,)eAxA.
laill +llai] ™ il + [ af]

a;

(o)

Clearly (a;, a}) is bounded in the norm | —|| and hence converges subsequentially to some (a,a’) € AxA
(since A is finite-dimensional). Moreover, by construction, the sequence (a;, a}) satisfies |a;| +[a;| =1
and thus |a] + |a’| = 1. Hence (a,a") € (A x A)\{0} and thus f(a,a’) is well-defined and finite. By
condition (2) in Definition , f satisfies f(A—, A=) = f(—,—) for any A # 0. Therefore:

' subsequentially

: = f(as,a;) ————— f(a,a") <
T e ) o (o) <o

a; [0

faial) = f(

contradicting the fact that f(a;,a;) - oo as i - co. Thus f is bounded and £ is a quasinorm.
O

Let F be a manifold. A quasi-Finslerian structure on E shall mean a continuous map £: TFEF - R
such that the restriction of £ to any fixed tangent space is a (continuous) quasinorm. (Note that in
the case where £ is smooth and a fibrewise norm, this recovers the usual definition of a Finslerian
structure.) Using this terminology, I now define the required generalisations of Riemannian metrics
to stratified orbifolds:

Definition 3.5.3. Let (E,X = {E;};) be a stratified orbifold.

o A stratified Riemannian metric § = {g;}; on E is the data of a Riemannian metric g; on each
stratum F; satisfying the extendibility condition that for each ¢, there exists a continuous

orbifold Riemannian metric g; on E whose tangential component along E; is g;.

o A stratified Riemannian semi-metric g = {g;}; on F is the data of a Riemannian semi-metric g;
on each stratum E; satisfying the analogous condition that for each 7, there exists a continuous
orbifold Riemannian semi-metric g; on TE whose tangential component along E; is g;. If, in
addition, D is a stratified distribution on F, then § is regular with respect to D if for each
1 = 0,...,n, the kernel of the Riemannian semi-metric g; is precisely the distribution D. In
particular, this implies that the kernel of the Riemannian semi-metric g; on E; is precisely
D;=DnTE,;.

o A stratified quasi-Finslerian structure on F is the data of a quasi-Finslerian structure £; on
each Fj; satisfying the property that for every continuous orbifold Riemannian metric h on TE

and each index i, there exists a continuous function C': E; — (0, 00) such that
1
cl-lesLicCl=]n on Ei (3.5.4)

Remarks 3.5.5.

o Any two continuous quasinorms £ and £’ on a finite-dimensional vector space A are Lipschitz

equivalent. Indeed, let & ¢ A be the unit sphere with respect to some norm on A; then
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c
Vg
In light of this, the function C' in eqn. () automatically exists on F;. The significance of

:S > (0, 00) is well-defined and continuous, and hence has compact image (as S is compact).

eqn. () is that C' can be extended continuously over the boundary of F;, i.e. over the set
E\E;.

o The extendibility condition for stratified Riemannian metrics can alternatively be stated as

follows: for every subset K ¢ E; which is relatively compact in E:

1. gi|lk is uniformly continuous;

2. g; is uniformly Lipschitz equivalent to g|g, for any continuous Riemannian metric g on

E.

The reader will note, by contrast, that condition (1) is not imposed on stratified quasi-Finlserian
structures. This extra condition is required for stratified Riemannian metrics to facilitate some

technical steps in Chapter H

The stratified structures defined in Definition naturally induce (semi-)metrics on the under-
lying orbifold E, in the following way:

Definition 3.5.6. Let (E,X = {F;};) be a stratified orbifold and recall the set A of piecewise-C!
curves in E. Let § = (g;), be a stratified Riemannian (semi-)metric on £ and let (v: [a,b] - E) € A.
Since each stratum E; ¢ F is locally-closed, I; = v~ 1(E;) € [a,b] is also locally closed and hence
measurable. Moreover, since 7 is piecewise-C'! on the compact interval [a, b], it is Lipschitz continuous
on [a,b] and hence on each I; (with respect to any Riemannian metric on E). It follows from [45,
Lem. 3.1.7] that  lies in the subspace TE; € TE, and hence g; (¥) is well-defined, almost everywhere
on I;. Now define g(¥) : I — [0, 00) by:

g(¥) =9:(7) on L.
Since each g; can be extended to a continuous (semi-)metric g; on all of E, one has:

[7(¥)| < maxsup [g; (7(t))| almost everywhere
vt tel

and thus § (%) defines a non-negative element of L*°(I). One then defines:
O = [ 3¢z
I

where .Z denotes the Lebesgue measure on I. (A, £9) defines a (weak) length structure on E; denote
the corresponding (semi-)metric by d9. A similar construction applies to stratified quasi-Finslerian

structures £, resulting in a metric d~.

Note that any two stratified Riemannian metrics § and 7 on E are locally uniformly Lipschitz

equivalent on E, in the sense that for all K € E compact, there exists a constant C'(K) > 0 such that
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for all E;:
1

gz\hz\C(K)gz on F; n K.
C(K)

(Indeed, by compactness of K, for each Ej, there exists C;(K) > 0 such that (K)gz < hi < Ci(K)g;
on K; hence the result follows by setting C'(K) = max; C;(K).) In particular, the metric d? induces
the usual topology on E. The analogous result holds for stratified quasi-Finslerian structures.

By contrast, two stratified Riemannian semi-metrics are not, in general, even pointwise Lipschitz
equivalent. However if one fixes a stratified distribution D on E, then any two stratified Riemannian
semi-metrics g and h on E which are regular with respect to D are locally uniformly Lipschitz

equivalent.

Remark 3.5.7 (Refinement of stratification). Every orbifold Riemannian (semi-) metric g on a strati-
fied orbifold (E, X = {E;};) defines a stratified Riemannian (semi-) metric g on E in the obvious way,
by setting g; = g|g, (where g|g, denotes the tangential component of g along E;). Then £9(v) = £9(v)
for all piecewise-C! paths in E and hence d? = d9, i.e. the (semi-) metrics induced by g and § are the
same.

More generally, given a stratified orbifold (E,% = {E;};) and a refinement %" of ¥ (see Definition
), every stratified Riemannian (semi-) metric 7= {g;}; on E with respect to the stratification X
also defines a stratiﬁedNRiemannian (semi-) metric §’ = {g}}; with respect to ¥’ via g} = g;(j|;. It is
again clear that d9 = d9 . The corresponding results for stratified quasi-Finslerian structures are also

valid.

Aside. Let E be a stratified orbifold and let £ be a stratified quasi-Finslerian structure on E. Then the
length-structure £~ has the surprising property that the quantity £ () does not depend continuously
on the piecewise-C! curve . This phenomenon can be observed even on an unstratified manifold;

see [25, Example 2.4.4]. This observation will not, however, be significant to this thesis.

3.5.2 A collapsing result for (1\71 )

Recall that there is a natural fibration [48, §9:

q:M s T3

r-(z%...,27) —— (g—l + 7,2 +Z,m3+Z)

with (non-calibrated coassociative) fibres diffeomorphic to T*. Let Z denote the involution of M
defined in eqn. () and define a non-free involution J of T2 by acting on the first two factors of
T3 by —1Id and on the final factor by Id. Then goZ = Jo ¢ and so ¢ descends to define a singular
fibration:

T:8 - 5\T = o\ T xs? =

with {il}\TQ being homeomorphic (although obviously not diffeomorphic) to CP'. The fibres of 7
are all path-connected, the generic fibres being 4-tori and the fibres over the singular locus of B being

diffeomorphic to {il}\P]IQ x T2. Combining § with the natural ‘blow-down’ map p: M - M similarly
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yields a fibration 7 of M over B:

I N V|
\ .

e\ x5t

M

Away from the exceptional locus of M the map 7 is a smooth surjection, with fibre T#. Near the

exceptional locus, the map 7 is modelled on:

T o ((a1)\C ) o T I (1,3\C) xS,

where X is the blow-up of {il}\CQ at the origin as in §. The fibre of X - {il}\CQ - {j:l}\(c
over 0 is the union of the proper transform of {:1:1}\({0} xC) — denoted {ﬂ:l}\({o} X (C)PT — and
the exceptional divisor CP* intersecting transversally at a single point; hence for each y® € S', the
fibre of 7 over {0} x{y?} is the union of {il}\({o} x C) o {2} xT? and CP' x{y*} xT?, intersecting
transversally along a single T2. Tt follows that the singular fibres of 7 are homeomorphic to four copies
of CP' x T? intersecting a fifth copy of CP' x T? transversally along four distinct copies of "]I‘Q.E
Since 7 is induced by the submersive map ¢ : M — T3, 7 induces a natural stratification ¥ on
M by ‘pulling back’ the canonical stratification on B (see Corollary for a proof of this fact):
explicitly, the strata of 3 consist firstly of the pre-image under § of the smooth locus of B, i.e. the
collection of all smooth fibres of the map §. Secondly, they consist of the smooth locus of the four
singular fibres of . Finally, they consist of the 16 components of the singular locus of M. By pulling
> back along the blow-down map p: M — M, one obtains a stratification of M, say Y/, Explicitly, the
stratification X’ consists of firstly the collection of all smooth fibres of ¢, secondly the four singular

fibres of ¢ with their exceptional loci removed, and thirdly the 16 exceptional loci of M.

Theorem 3.5.8. Let (1\71, gE“)HG[l o0 be the family constructed in the proof of Theorem . Then
the large volume limit of (M,(ﬁ“) corresponds to an adiabatic limit of the fibration m. Specifically:

(Su3) > (BE) as pi—oo

in the Gromov—Hausdorff sense, where Lisa stratified quasi-Finslerian structure on B (with respect
to the canonical stratification of B) defined explicitly as follows: fix a stratum B; in the canonical
stratification of B and write 7-1(B;) = U?:o S;, where each S; is a stratum in the stratification 3 of
M. Then given p € B; and u € T, B;, define

k
Li(u) = miél inf{Hu'Hg?o | u' € TS such that dg(u') = u (and in particular q(z) :p)}. (3.5.9)
Jj= ’

3Note that [48, p. 35] contains an error in its description of the singular fibres of 7, of which the authors of [4g]
have been informed.
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Moreover, outside a neighbourhood of the singular locus of B, L is simply given by the Euclidean

norm.

Consider the map f: M — St given by:
r-(z'..,2") 23+ 2.
Then § descends to a map f: M — S!. Define f:/f\o p: M — St and, for cach a € 2, define:
fa=fli,, and Ta =Tl .- (3.5.10)

Explicitly, the maps ]%a and /f\a may be described as follows: writing WaJ = Thys gyt y7 X { jcl}\B4(€),

one finds:

¥a : I/\Va,l - Sl
(v') = v°
and similarly for /f\a.
Now let g#* be the Riemannian metric on M induced by the Go 3-form u‘6q3 and write g for

the induced stratified Riemannian metric on M as in Example . Write d* for the metric on M
induced by g*. For all k € [1, 00), consider the space:

M® = 81\ [] Was
ae

where W&k was defined in § and write Wa,k =p (Wak) The proof of Theorem starts from
the following result, which should be regarded as a stratified generalisation of Theorem :

Theorem 3.5.11. Suppose that there exists a stratified Riemannian semi-metric = on M such that

the following five conditions hold:
Conditions 3.5.12.

1. Write D for the distribution over M given by ker d7 and note that D is stratified with respect
to Y. Then §* is regular with respect to D;

2. On each M) ke [1,00):

G" - 7~ uniformly as p — oo,

and there exist constants A, (k) > 0 such that:

lim A,(k)=1 and G > A,(k)?g™ for all pe[l,00), (3.5.13)
lLL—)OO

where G is regarded as a stratified Riemannian semi-metric on M*) using the blow-up map

p;

lim limsup max sup diamg. [?;1({]9}) n Wak] =0;
13 1

—00 TS aell peS
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Jim e s diam [ (1)) 0 W] =0

lim limsup max sup|d" —d™|=0,
ae

k—oo oo o,k

where d* is the semi-metric on M induced by G (regarded as a semi-metric on Oy j using the

identification p) and, for simplicity of notation, I write O for the subset 8Wa7k £ 8Wa7k.
Then the manifolds (l\u/[,,u‘ﬁqvﬁ“) converge to (B, L), as claimed in Theorem .

(As for Theorem , since Theorem is a result in metric geometry, rather than Go
geometry, the proof is postponed until Chapter H of this thesis (see Theorem ), S0 as not to
detract from the main thrust of the current chapter. For comparative purposes, the reader may wish
to note that M, M and p above correspond to Fq, Fo and ® in Chapter H respectively, and that Wa’k,
W&k above correspond respectively to Ul(k_l)(j), UQ(k_l)(j) in Chapter H, the rest of the notation
being obviously equivalent.)

Thus, to prove Theorem , it suffices to establishing the five conditions in Conditions .
The remainder of this chapter will be devoted to this task.

3.5.3 Bounding the volume form induced by &

Recall the Kéahler forms & interpolating between @ and the Eguchi-Hanson metric @; on X used in
the construction of gg For the purpose of proving Conditions , I require a lower bound on the
volume forms induced by w; which is both sharp and ¢-independent. The purpose of this subsection
is to derive this bound.

I begin by providing an alternative perspective on the Eguchi—-Hanson forms @;. Consider the
problem of trying to construct Ricci-flat Kéhler metrics on ({il}\c2 ) \{0}. One possible approach
is as follows: suppose one is given a closed, positive, real (1,1)-form @ on ({il}\(cz )\{0} with the
following property:

& = (Re))” = (3m0)” = 200, (3.5.14)

(Here Q = dw' A dw? as usual and voly denotes the Euclidean volume form on {:l:l}\(c2 given by
dz! A dyt A dz? A dy?, where w! = 2! + iy and w? = 2?2 +iy?) Then the triple (w,fﬁeﬁ,ﬁmﬁ)
defines an Sp(1)-structure on ({:I:l}\(c2 )\{0} and the condition d& = d9eQ = dJm& = 0 implies
the vanishing of the torsion of this Sp(1)-structure [73, Lem. 6.8, p. 91], i.e. the triple defines a hyper-
Kahler structure. This implies that the holonomy of the Kéhler metric induced by @ is contained in
Sp(1) = SU(2) which is a Ricci-flat holonomy group [79, p. 55].

To ensure that @ is closed and a (1,1)-form, apply the ansatz:
—~ 1 C !/ — 1 " c
W= de [a(A)]=d (N)@+ 2° (A)d(A) Ade(N), (3.5.15)
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where \ = 72 = |w1‘2 + |w2‘2 is the radial distance squared from 0 e {il}\c2, a:(0,00) > Risa

smooth, real-valued function and @ = % (dw1 Adwt + dw? A d@Q) is the standard Euclidean Kéhler
form on {:I:l}\(c2 (in particular, note that @ only depends on a’). A long but elementary calculation
yields:

2= i (V' (V)]
A

Thus eqn. () is reduced to the second-order ODE:

volp. (3.5.16)

d o
o [A\2d'(A)?] = 2.

=1+ 5 (3:5.17)

for some t > 0 (the positive square root is needed to ensure that & is a positive (1,1)-form). In the

Integrating this equation gives:

case where t = 0, Wy = %ddcao()\) is simply the Euclidean form @, however in the case ¢ > 0, one
recovers the Eguchi-Hanson metrics @; defined in §, eqn. ()

Remark 3.5.18. The fact that the 1-parameter family @; of Eguchi-Hanson metrics can naturally be

extended to include the metric @ (corresponding to the case t = 0) may appear initially surprising,

since the metrics @ for ¢ > 0 are defined on the manifold X whereas the metric @ is defined on the
2

orbifold {:I:l}\(c . However as t — 0, the diameter of the exceptional divisor € tends to zero and so
~ 2

the manifolds (X ,@) converge in the Gromov—Hausdorff sense to the orbifold ({:I:l}\C ,@), and

hence the result is not as surprising as it first appears. See also [b, p. 21].

Using this perspective, I now prove the required bound on the volume form of &;:
Proposition 3.5.19. There exist R > 0, v € (0,1), independent of t > 0, such that the following is
true:

For every t > 0, there exists a closed, real, positive (1,1)-form @y on X satisfying the following

three properties:
1. @y =W on the region {p eX ‘ r(p) < %};
2. @ =0 on a neighbourhood of the region {p e X | r(p) > tR};

3. &} > 2voly on all of X, with equality holding at least on {peX ‘ r(p) =tt}, where t; €
(4L tR).

Remark 3.5.20. It is not difficult to show that any &; of the form considered in eqn. () which
satisfies points (1) and (2) cannot also satisfy w? > 2volg on all of X, and thus there is some v =
v(t) € (0,1) such that &2 > 2v(t)?voly, with equality realised at some point. The significance of the

above result is that v can be taken to be independent of ¢.

Proof. Let v € (0,1) be a chosen later and write ¢ = 2 — 202, 1 begin with the following auxiliary

claim:
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Claim 3.5.21. There exists Ry = Ro(c) >0 (i.e. depending on ¢ but independent of t) such that the
following s true:
For all R > Ry and all t >0, there exists a smooth function k; : [0,t?R?] - (=00, 0] satisfying the

following three properties:
(i) kt=0 on [0, %] and on a neighbourhood of t*R? in [0,t>R?];
(i) JE k(A)dA = -t
(iii) ki(N) > —cX for all X € [0,t*R?], with equality holding at some point 2 € [0, R?].

Proof of Claim. For such a function k; to exist, it is necessary and sufficient that:

t’R?
f X di st

t2R2

(Given this, one constructs k; by smoothing out the piecewise constant function:

0 on [0, tzfz)

k(M) =1{-cA on [tZRZ,tQRQ)

4
0 at \ = t2R?

whilst ensuring that f0t2R2 ki(A\)dX = —t* and that k;(t?) = —ct? still holds at some point t? € [0, t? R?].

The converse is clear.) However:

cAdA =

t*R? 15¢t* R4
f >t
£2r2 32

whenever Ry(c) > \/ 1:%’ completing the proof.

The proof of Proposition now proceeds as follows. Define:

he(X) = fOAkt(s)ds S

and define: )
Qp = dec [a: ()],

af(\) =\/1+ i—z + ht;;\). (3.5.22)

For \ € (0, #], ht = 0 by Claim (i), hence o = ay (see eqn. ()) and whence &, = @; for
r e (0, %) It follows that &; extends over the exceptional divisor in X and satisfies property (1)

where ay : (0,t2R?] — R satisfies:
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in Proposition . Similarly, for A in a neighbourhood of t?R? in (0,t2R2], hy = —t* by Claim
(i)f(ii)7 hence o} = ap and whence & = @ for r in a neighbourhood of ¢R in (0,¢R]. Thus &
extends over the whole of X and satisfies property (2) in Proposition . Thus to complete the
proof of Proposition 7 it suffices to prove that &y is positive and satisfies property (3).

To prove positivity, I use the following well-known fact: if w is a real, positive (1,1)-form on
an almost complex manifold M and w’ is a real (1,1)-form on M with |w’ — w|, < 1, then w’ is also
positive (this can easily be verified by working in local coordinates). To apply this to &, firstly note
that since @; and @ are both positive, one can restrict attention to the region r € (%%,tR). Thus it
suffices to prove that:

‘a (ozt(r )w+ L)) A de(r )) <1 forre(%,tR).

w

Using the triangle inequality:

4 — 1 " C
’at(TQ) - 1| @5 + 1 ‘O‘t (7"2)‘ : |d(7”2) Ad (72)‘@
(3.5.23)

‘w (at(r2)w+ Lo (r2)d(r2)/\dc(r2))

Using eqn. (), it follows that:

4+ hy(r? 4 tR
g (r?) - 1] < r—j(r) <o forre (T,tR), (3.5.24)

since h; < 0. Using eqn. () once more, one sees:

_t4+ht(r2) hi(r?)

2 274

0 (1) =
1 + -+ ‘(T )

and hence:

\+mvﬂ\vmﬂn
o2

Since —t* < hy(r?) <0, —er? < hj(r?) <0 and % <7 <tR, it follows that:

r? ‘a 2)|

16
oy (r%)] < T g (3.5.25)

A snnple calculation shows that [@|5 = \/_ 2 and d(r2) A dc(r2)|A 4Cr? for some C > 0 independent
of 72, R and t. Thus, by combining eqns. ( E D. 2211) and -

42 .\ 16C  Cec

A A T

Define ¢ = C~! (note that C is independent of R and t) and choose R > Rgy(c) such that:

42 16C 1

R T RE S
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Then [ - &y|5 <1 for r e (%%, tR) and thus the positivity of &; has been verified.

Finally, let me establish property (3) of Proposition . Clearly for r ¢ (%,tR , one has
&2 = 2voly, since both @ and @; have this property. For r € (%,tR), by combining eqn. () and

(), one computes:
2 hi(r?)
wt =12+ 5 ’UOZ().
r

Now by property (iii) in Claim , uAG) > —c = 20% - 2 with equality holding at r = t; € [0,tR],

r2

as required. This completes the proof.
O

3.5.4 Defining a suitable g>

For simplicity of notation, write (T)“ = ,u_Gggu so that g" = ¢ - The next task is to understand the
limit of the Riemannian metrics g* away from the exceptional locus S.

Define: 5 y 5
QI]a = m Wa,k 2 Sa
k>1

so that in local coordinates:

N | —

W= {y' 02 = 0.(57)" + ()" <

i

¥\ ] 9 - (M Uﬁa)u(u ﬁa\wa)u(u W\an)

ael ae ae ae

and write:

1\0/[ Mint

I shall consider the behaviour of g# on each of these three regions in turn.

The region M

Recall that on M:
(bu — 9123 + M—G (9145 + 9167 _ 9246 + 9257 + 6347 + 0356) )

Using the Ga-basis (91, 62,03 1m30%, 117305, 11365, M_397)7 it follows that
gM — ((01)@2 " (02)®2 n (03)®2) N M_6 ((04)692 + (05)®2 + (96)®2 + (07)®2)
- (91)®2 + (92)®2 + (93)®2 uniformly on l\o/I as (1 — oo.

Thus define:

o

9= = (01 + (6% + (6*)* on M. (3.5.26)
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Then g" — g*° is non-negative definite for all p € [1,00) and thus eqn. () holds with A, = 1 for all
p. Moreover (see [48, §9]) it can be shown that ker d7 = (eq4, €5, €6, €7), where (e;) denotes the basis of
left-invariant vector fields on M dual to the basis of left-invariant 1-forms (#°). (Note that whilst the
forms e; do not themselves descend to the orbifold M, the distribution (e, ..., e7) is invariant under
the involution Z defined in eqn. () and thus does descend to M.) Thus from eqn. (B.5.26), one

sees that ¢* is positive definite transverse to ker dg on M.

The region [[,cy Wa\‘fﬂa

For simplicity, fix some choice of a € 2. Recall from eqn. () that on the region Wa\Wa’H:
J)M — dy123 + //L_G {dy145 + dy167 _ dy246 + dy257 + dy347 + dy356 + yldy147} )

In particular, for any given k € [1,00) and all p > k, since Wa\Wa,k c Wa\Wa7M one may calculate
that on Wa\Wa,k:

N2\ F
Gn = |1~ (y4) { [(dyl)Q H(dy?) + () +y'dyt o dy’|

w0 [(dy*)” + ()" + (d°)” + (dy") "+ y'dy? 0 dy® + g dy® 0 dy7 | }

Define:

=1

6

o _ 1_
g 1

{(ay")" + (d?)” + (a) +y'dy @ dy®} on Wa\a . (3.5.27)

Then g# — ¢*° uniformly on VvVa\VT/a’k as p — oo. Moreover when p > k, g — ¢ is non-negative
definite for ¢ > 0 sufficiently small, independent of p (where ¢ is the size of the surgery region used
in the construction of M). Thus eqn. () holds once again by setting A, (k) =1 for all p € [k, 00).
Moreover, using eqns. (M) and (M), one can show that on the region U, for a € 2A:

o o0 o0 0

ker dg = (=) ==, —, —

)- (3.5.28)

Thus by eqn. (), g% is positive definite transverse to ker dg on Wa\Wak for all € > 0 sufficiently

small, independent of p.

The region Mint

By analogy with the notation (T)“ = M_GQZ;“, define " on M,y by:
B = OFH = gyl 4 O {dy145 Tyt — dy?4S ¢ 4T 4 4yt 4 dy356}.
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Recall also that, by Proposition , on the region M,
PP =40 {yldy147 +d [f (f) aa]} (3.5.29)
3

where ag (defined in Lemma ) is independent of ;1 and at least quadratic in (y', 2, 5%, y%).
To analyse the behaviour of g* on Mint as y — oo, it is useful to introduce a third Go 3-form =Z#
on M. To define E#, firstly write PH =TH + Yi<icj<k<t ,u‘Gaijkdyijk, where each coefficient o is a

smooth function on M,y independent of x and satisfying:
|loijr| < Cr (3.5.30)
for some fixed C' > 0, independent of u, € and r. Then define:

S L oiindy™ ¥,
1@23 * (3.5.31)
4<j<k<7

Lemma 3.5.32. There exist constants C1,Cs independent of p and r such that:

L e -2

E“ < 017','

2. H(T)“ - E#HEH < Cop™3r.

Proof. Observe that € has the Go-basis (191, vy 197) = (dyl, dy?, dy?, p=3dy?, p=3dy®, p3dyS, u‘3dy7).
With respect to this basis one can write:

Th o 123 | 145 | 9167 _ 9246 9257 | 9347 4356 Z oy ip 0F

=" = 1J .

N 1<i<3 (3.5.33)
&M 4<j<k<7

(1) then immediately follows from eqn. ()

For (2), note that from eqn. ()

O = = O orasdyP + Y oypdyE

1<i<j<3

4<k<T
(The fact that there are no terms of the form dy“* with 4 <i < j < k < 7 follows from eqn. ()
and the precise expression for o given in Lemma ) Writing this in terms of the Ga-basis (¢9°)
gives:

e M VGt U D W e

1<i<j<3
4<k<T

from which, together with eqn. (), (2) is immediately clear.
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Informally, this result says that (a) Z* is of Ga-type and ‘close’ to T if € > 0 is sufficiently small
uniformly in g and (b) the difference between = and (I)“ is negligible as yt - oo. Thus to understand

the behaviour of (T)“ as = oo, [ begin by studying =* as y — oo.

Lemma 3.5.34. One can write:

gz =y, G+g)dy'ody + ™0 Y (65 +gi)dy' © dy
1<ij<3 4<ig<T

for some smooth functions g;; on M, independent of w and satisfying:
|9i5| < Csr (3.5.35)

for some constant C3 > 0 independent of i, € and r.

Proof. Recall eqn. ()

- 19123 + 19145 + ?9167 _ ,19246 + 19257 + 19347 + ,19356 + Z Uijkﬁwk-
— 1<i<3
iH 4<j<k<T

Then one can automatically write:

g=n = Z ((SZ] + gw)ﬂl © Q?j

1<i,5<7

for some g;; independent of p and satisfying eqn. () Recalling the definition of the ¥, to
complete the proof, it suffices to prove that g;; =0if 1 <¢<3 and 4<j<7.

To this end, recall from [21, §2, Thm. 1] that:
=uvolzn = [(=) JEF]A[(=) 2EF] A ER.
Thus, it suffices to prove that for all 1 <i<3 and 4<j<T:
[0; aZF]A[9; aEF]AEF =0,

where (91, ...,97) is the basis of vectors dual to (91, ...,97). Define:

D =(V1,02,93) and T =(04,...,97)
so that TM;,,; = D @ T. By examining eqn. (), one can verify that:

=t e N°D* +D* @ N2T.

It follows that for 1 <7 < 3:
¥; 12" e N’D* + N2T* /\QT*I\V/IW
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and that for 4 <5< T:
¥ JEF e D* @ T* ¢ AXT Mips.
Thus:
[9; JEF A [0 SEFIAZF e AD* @ T + A'D* 0 NPT + N2D* @ N’ T,

with all three summands vanishing since rank D = 3 and rank 7 = 4. This completes the proof.

It follows at once that g=. converges uniformly to:

9°= 3 (6i+gy)dy' 0 dy’ (3.5.36)

1<4,5<3

on M as 1 — oo, and moreover that g=. —g* is non-negative definite for all . Once again, recalling

that:
g o0 9 0

oyt 0y>" 0y ay”
(see eqn. ()) one sees that ¢g* is positive definite transverse to ker dg on M.
I now return to the metrics g = Ypu'

ker dg = ( ).

Proposition 3.5.37. The metrics g* converge uniformly on Mns to g% (as defined above), and

2

moreover there exist constants Aj, - 1 as j1 — oo such that gt > (AL) g% for all pe[l,00).

Proof. Recall the ‘standard’ G 3-form @g on R7 defined in §@ Since the assignment @ € A, (R7)* >
Jo € On (R7)* is smooth, there exist constants d1,Ag > 0 such that if |@ — @o|p,e < 1, then:

|9¢ = 9Bucllgua < D0 P = @olgyc - (3.5.38)

Since every Go 3-form on a 7-manifold is pointwise isomorphic to @q, it follows that eqn. (B.5.38)
holds for general Gy 3-forms on manifolds, with the same values of §; and Ay.
The proof now proceeds via repeated application of eqn. (), together with the following

result:

Lemma 3.5.39. Let (A, g) be a finite-dimensional inner product space and write || — || for the norm

on & A* induced by g. Then for any symmetric bilinear form h on A:
h<|h|g-g. (3.5.40)

Proof. Firstly, recall the definition of ||h[4. Pick any g-orthonormal basis (az,...,an) of A. Then:

IRy = \‘ > h(as,a;)2.
ig=1

Now fix any vector a € A. By scale invariance of eqn. (), one may assume without loss of

generality that g(a) = 1. One can then extend a to a g-orthonormal basis (a1 = a,...,a,) of A and
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compute:
h(a) <[h(a)|

=v/h(a)?

< \} >, h(ai,a7)? = Ay,
ij=1

as required.

By combining point 1 from Lemma with eqn. (), for all e < & (a condition which is

1
independent of ), one obtains:

o= g5y, < BolE ~Bl,, < BaCic

Applying Lemma , it follows that:
gz — gz $ DoCiegg,  and gz, — g=» < ApCiege,

and hence:
(1 - A()Clﬁ)gzu < g=n < (1 + A()Cls)gzu.

In particular, for e < ﬁ (a condition which is independent of 1) g¢, and g=. are Lipschitz equivalent
on l\v/[mt, uniformly in p. Now by Lemma , point 2: H(T)“ - E“HgA — 0 as p — oo and hence
Eu

by the Lipschitz equivalence just established Hcf)“ - = Hg:“ — 0 as p — oo. Using eqn. () again,

one sees that for all u sufficiently large:
lo# g2 lge, < Boé -2,
and hence by using Lemma again:

0> (1= Ao~ Yoz > (12 b -2

gEu)gw’

where in the final line I have used that g=. > ¢* for all u as above. Thus, setting AL = \/1 -Ayg H(T)“ - ENHQW
for all uu sufficiently large, one has Aj, - 1 as required. Therefore to conclude the proof, it suffices to

prove that g" — ¢* uniformly on Mt as 1 — oo,

To this end, fix a reference metric g on My, Since gz» — ¢° uniformly, it follows that ||gz. | N

2|g*|, = D for all u sufficiently large. Thus by applying Lemma one final time it follows that:
gz« < Dy
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for all u sufficiently large. Thus g=» > D3¢ when acting on 3-forms. In particular:

3t — g=
g <D ”g g=n HgEu

<D3A Hcf)“ —E“ng - 0as yu— oo.

lg" — g=»

Thus since g=« tends to g°° uniformly, it follows that g* also tends to ¢g°° uniformly. This completes
the proof.
O

In summary, it has been shown that one may define a Riemannian semi-metric g* on M\Uaem 2,
with kernel precisely ker dg such that on each 1\7[(k), gt — g% uniformly and there exist constants
A, (k) > 0 such that:

lim A,(k)=1 and g" 3> A,(k)?g™ for all yue[1,00).
;},—)00

I now explain how to define the limiting stratified Riemannian semi-metric g on all of M. Using
p, one may identify M\Haem 2, with a subset of M. By examining eqn. (), one may verify
that ¢*° can be smoothly extended to a semi-metric on all of M.

Recall that the strata of 3 (the stratification of M induced by Q) consist firstly of the preimage
under ¢ of the smooth locus of B, secondly of the smooth loci of the singular fibres of 7 and thirdly
of the components of the singular locus § ¢ M. On the first two types of strata of ¥, simply define
G to be the restriction of the semi-metric ¢> to the stratum. On the strata S,, define g to be the
semi-metric:

ga = v’ (dy3)®2 (3.5.41)

)

where v is defined in Proposition . (The motivation for this definition will become apparent
in the next section.) Again, this can be extended to a semi-metric on all of M; indeed, it is easy to
verify that:

vig®lg = g2 (3.5.42)

Thus G* defines a stratified Riemannian semi-metric on M. Moreover, since:

d d d d =

= d
ker dgn TS, = — 7 7)=T5a

dyt" dy

(cf. eqn. ()) it follows that gg° is positive definite transverse to ker dgn TS,. Thus G is regular
with respect to the stratified distribution D.

Thus in summary, I have defined the stratified Riemannian semi-metric on all of M, and have
shown that with this definition, points 1 and 2 of Conditions hold.

3.5.5 Estimates on g>

The purpose of this subsection is to verify points 3, 4 and 5 of Conditions . Specifically:
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Proposition 3.5.43.

3.
lim limsup max sup diamgu [fa ({p}) N Wa k] =0;
k—oo =00 ae peS
4.
li diam geo nW, 0;
e g e (0D 0] -
5.
lim limsup max supl|d” -d™|=
k—»oo [—> 00 ael 8a’k
where d* is the metric on M induced by G (regarded as a metric on Oy using the identification
p) and, for simplicity of notation, I write O, for the subset OVVan £ OW&;C.
Proof.

3) For each p e St write:
( ) p )
diam [;;1 ({p}) [“[ ak» g,u]

for the diameter of the space f;'({p}) N Way with respect to the intrinsic metric induced by the
Riemannian metric g, i.e. the metric defined using paths contained entirely within f3'({p}) N Wa..

Then clearly:
diamg. [f,' ({p}) 0 Was] < diam [f3" ({p}) 0 Wa. 9]

and so it suffices to prove that:

lim limsup max sup diam [fa ({p}) " War, g ]:0.

k— o0 p—> 00 ae pESl

Initially, fix k € [1,00), a € 2 and consider u > k. Recall from eqn. () that there is a
homothety:

7" W, (T)y iy % X (% ) - (Tu)y37y4,y7 x X (%6,/[1)

yhy2,y°,y8 TRRTERTERTE

(given by rescaling the y*, y? and y3 directions by p®) which identifies the Gy 3-form cZ)“ on the
left-hand side with the Go 3-form p=3¢* = p=3 (C + ,u’?’cr) on the right-hand side, where ¢ and o are
defined in eqns. (B427|) and (B42d) respectively. In particular, the homothety identifies (f)“ = u_6g5“
on the left-hand side with the Gy 3-form p°¢* on the right-hand side.

Note also that there is a natural map f:7), —» 138t given by projecting onto the first coordinate

(ie. y3). Given p € St, write T, for the fibre of this map over the point pwPp e 38, which can
naturally be identified with the torus T?, irrespective of whether T, = ’]I‘i or ']I‘i. Then, using the

diffeomorphism invariance of intrinsic diameter, one may compute that:

v v o 1
diam [§;' ({p}) n Wa . ¢"] = diam [X (—g, E) x Typy u-ggﬂ]
t 2 M 9.
Lk (3.5.44)
= M_g diam [X (55, l—j/) X T/»%P? CM:I .
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3 Q
Now as seen in Lemma ,

C' > 0 independent of p, which may be made arbitrarily small by choosing e sufficiently small

,u’?’crHC is bounded on X (%5,;[1) x T, by some absolute constant

(independent of u) and p sufficiently large. So without loss of generality one may assume that

C’ < 01 for 61 as in eqn. () and thus:
lgce = gclle € AgC” on X (%g,u_l) x T),.
Since X( €, —) xTypc cX (%5,;[1) x T}, it follows by Lemma that:
) (1 k&
gen < (1+A0C")ge on X (55, ;) x Ty p.

Therefore: Lk 1k
diam I:X(§ ,;) p7< ] 1 +AOC'diam I:)’Z(§€,;) XTM’p’C:I. (3545)

Now outside the region (% ) ( ) the metric induced by ( is just Euclidean. It follows that:

(1 k 3
dlam[X(ie,;) XTM’p’CjI QC//(%) (3546)
for some C” > 0 independent of &, p and p. Combining eqns. (E.5.4;}])7 (5545) and () gives:
3
diam [51({p}) 0 Wars 0] < 5=3/1+ C70C” (%) T Ak,

Taking supremum over p € S', maximum over a € 2, limit superior over y — oo and then the limit

over k — oo then gives the required result.

(4) Since every point of Sy is a limit point of ’W&k\ga, one clearly has:

lim max sup diam e ra ({pr}) ﬂWak] = hm max Sup diam ge ra ({p}) n Wa k\S ].

k—oo ae peS k—oo ae peS

Now g is simply given by ¢g* on M\§ . Thus, one has:

lim max sup d1amdwr ({p})n Wak\S ] 11m max sup diam ra ({p}) n Wak\Sa,g ]
peS

k—oo ae pE k— oo ae

where again diam ﬁ;l({p}) N Wa,k\g\a , 9% | denotes the diameter of ' ({p})n Wa,k\ga with respect
to the intrinsic semi-metric defined by ¢*°, i.e. the semi-metric defined using paths contained entirely

within T;1({p}) n Wa,k\ga-
Now fix a € 2 and recall that:
(1) 0 Was\Sa = [( 121y \B* (25 0) )\ (0} ] <75
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where T, is the fibre over p € § L of the projection T'— ST onto the first coordinate, and:

ﬂ?

oo _ 1—
9 4

{(ay")" + (d?)” + (a?) + ' dy' @ dy?}
Write ¢°° = gsgucl + @ Where:

9sEucl = (dy1)2 + (dy2)2 + (dy3)2 and = goo ~ 9sEucl-

Note that ¢*° and gsguc are not Riemannian metrics on Wa,k\§a and so a priori it is not clear that
Lemma applies. However, if one restricts attention to the distribution (, , 8%3)7 then
both ¢*° and gsgye are non-degenerate (i.e. inner-products) and hence Lemma applies. One
may compute that on this distribution, over the region W\a7k\§a:

< DEk™3

9sEucl X

|=
for some D > 0 independent of k. Thus by Lemma :
9% < (1+ Dk™®) gsmual- (3.5.47)
Hence:
diam [T, ({p}) 0 War\Sa g™ ] < V1+ Dk~ diam [T ({p}) 0 War\Sa » Gsuc]

Clearly diam [’f\;l({p}) a Wa,k\g\a ,gsEucl] is bounded by D’k~3 for some D’ > 0 independent of k and
p. Thus one has:
diam [T, ({p}) " War\Sa 9] < D'k™*V1+ D=3

Taking supremum over p € S;37 maximum over a € 2 and the limit as & — oo gives the required result.

(5) To prove this result, it is useful to introduce a third semi-metric on the region 0,y as follows.
Equip S with the metric vnguch where v is as defined in Proposition . Pulling this metric
back along the restriction ]Ea =Fa Oaj = S 1 defines a (p-independent) semi-metric on Oa k, Which I

shall denote dj. Explicitly:
di(,y) = v dpua (fa(), Ja(y))

Then to prove (5) in Proposition , I shall prove the following two statements:

o1.
lim limsup max sup|d* - di| = 0;

—00 TS ael ok

Di1.
lim limsup max sup|d; —d*|=0.
0,

k—oo f—> 00 ae o ke
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Clearly, these collectively imply (5).

To prove (5i), I employ the following strategy: it is necessary to bound both dj — d* and d" — dj,
from above. For the first of these two quantities, I show that on all of M: ‘gt > Ugi* JREucl’ in the limit
as pu — oo. Thus ‘d* > d*’ (again, in a limiting sense) and hence dj, — d* can be bounded above. For
the second, for any two points x,y € J; I write down an explicit path v : x - y whose length with
respect to gt is approximately d(z,y), with this approximation becoming exact in the limit as first

p — oo and then k — co. The strategy for (5i7) is similar.

(5i) Recall the following decomposition of M:

M:f/IUMmU(L{Wa).

ael

As in §, I shall consider each region in turn.

M: Here:

and thus evidently:
®2 ®2 v, 4y,
g“ 2 (93) = (d$3) = f gEucl 2 V3§ gBucl (3548)

o

on M (recall that v < 1).

M;ps: On this region, recall that ¢ = w0¢", where ¢ was defined in Proposition . Moreover,

recall from the proof of the same proposition that:
|$“ - E“|@ <(4C+1)e
for some constant C' > 0 independent of i, where g“ is given by:
B = 18yt 4 dy'® + Ayt — Ay + dy®T + Ay + 4y

Hence, by applying a simple rescaling:

| —E”‘E# <(4C +1)g,

where € = ;7 0¢ as in § It follows from eqn. () that for all ¢ > 0 sufficiently small
(independent of u) the metric g* induced by $H satisfies:

<C'e
gE;L

9" - gz.
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for some constant €' > 0 independent of 1. By applying Lemma B.5.3d, it follows that on M
g >(1- C’e)g@.
However an explicit calculation shows that:
gz = (") ™+ (ay?)™ + () ™) + 70 (") + (a®)™ + (a5°) + (7))
and thus:
gz > (d5%) = (d2*)* = Fgpua.

Thus on Mmtz
g# 2 (1 - 0,5) f*gEucl-

Now recall that v < 1 is independent of 1 and ¢ and hence also independent of €. Thus for € sufficiently

small independent of i, one has that:

Wl

1-C'¢e

Vv

v3.

Thus, reducing e equally for all p if necessary, one has that on Mmti

7" > U5 gEual. (3.5.49)

Haesnt Wa: Fix some Wa, a € 2, and as for point 3 begin by considering the homothetic region
T, x X (%5,;[1) equipped with the Go 3-form ¢# = ¢ + p~30 (cf. Lemma )

Initially, consider the region outside T}, x X (%5), i.e. the region {r > %5} On this region ¢ = é is
just the standard (Euclidean) Gy 3-form in the coordinates (') and so:

gc 2 (dy3)®2 = f*gEuclv

where f denotes the composite:

= i1 v 'y )-y?
Tu XX(%E,M_l) proy TM ( ) M351

)

as above. Moreover, recall from Lemma that outside T}, x X (%5):

1
I -l < 5.

and thus by eqn. (), for all € > 0 sufficiently small (independent of p):

Boz

g = g¢ll, < 5
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Hence by applying Lemma :
Ao&

gen 2 (1 - T)gc 2 (1 - T)f*gEucl-

As before, reducing € equally for all y if necessary, of may assume that 1 - % >v3 and thus that:

g¢n 2 Uéf*gEucl (3550)
outside 7T}, x X (%5)
Now consider the region 7, x X (%5) By Lemma , on this region one can write:
gc = 1/% (dy3)®2 + U_§ [(dy4)®2 + (dy7)®2] N If%gwt

where v is defined by the equation:

Then clearly:
gc > ]/% (dy3)®2 2 'U% (dy3)®2’ (3551)

where the final equality follows from the fact that v was defined precisely as the minimum value of

v. Now recall that on the region T}, x X (%5) one has:

for some C' > 0 independent of u. Thus, by eqn. (), for all p sufficiently large one can write:

1
—0
13

‘ C
S
¢ M

CAp
n o= g . Je
lgce = acll,, 3 (3.5.52)
Applying Lemma yields:
CA CA 4 .y
e > (1- 552 0c > (1- S52) v £ g (3.5.53)
[ It
on the region T}, x X (%5) Combining eqns. () and () then yields the estimate:
CAo\ 1 ,.
g¢w 2 (1 - M3O)U3f 9Eucl (3554)

on all of T}, x X (%5,;[1).

Now recall the homothety W, = T'x X (3¢) R T, xX (3e,17') and recall from eqn. () that
the 3-form ¢* on W, is defined by:

bF = " (9" ¢".
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Note also that the diagram:

WangX(%s) BRI TMXX(%au‘l)

L

Xp
s udSt

commutes. Applying the homothety H* to eqn. () yields:

CAO 4%
9" =94, 2 (1 - —3)U3f JEucl
1
on the region Wa.

Combining this with eqn. () and () yields:

CA 4y
g’ > (1 - Mgo)USf*gEucl (3.5.55)
on all of M, hence:
d">q[1- CASO di
1
and whence: OA
di - d" < =52, (3.5.56)

since manifestly di(z,y) < v% <1 for all T,y € M. Thus, the quantity di —d" has been bounded above

uniformly on all of M.

Now fix a € 20 and turn attention to bounding the quantity d* —dj, from above on the subset 9y .
Recall the distance t defined in Proposition . For each p € S, define a point p € VvVa’k using the

local coordinates (3!, ...,y") on Wa,k as:

e o y . g}
b= (E,o,p,o,o,o,O) T ({p}) N W < F2 ({p}) N W,

where the final membership holds when p > k. The first task is to understand the distance between

points of the form p with respect to the metric d".

Given p,q € S', pick the shorter segment ~ connecting p - ¢ in S' and use it to define a path ¥
in VvVaM connecting p — ¢ via:

7= (5:0.2:0.0,0,0).
L

Then clearly:
d" (p,q) <lgu ().

To compute £gu (), consider the homothety Waw T xX (%5,u) A, T, x X (%5) and recall that
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CTJ“ = 2 (H*)* ¢*. Under H*, § becomes the path:
3 = (x,0,47,0,0,0,0).
Begin by considering the Gy 3-form . This induces the metric:
gc = Vi (dy3)®2 +v7E [(dy4)®2 + (dy7)®2] + V_%gwt

where vy = ¢ = v. The length of 5 with respect to the metric induced by ¢ is then clearly v P dgya (p, q).-

Applying Lemma to eqn. () once again yields:

CA
gen < (1 + ’uso)gg. (3.5.57)

5 CAg :
fgqu (7,) < mvsugdlﬂud(pa Q)'

Pulling this equation back along the homothety $* (and rescaling by p~3) gives:

and so:

d" (9, q) < Lgn(7)

Ay -
<y\/1+ N30U3dEucl(pvQ) (3.5.58)

. CA
<di (9, q) + 70,

where again, I have used v dgua(p,¢) <1 for all p,q e St

Now pick two arbitrary points z,y € ). Define p = f(z) and ¢ = f(y). Then clearly:

d*(z,y) < d" (z,p) +d" (p,q) + d"(4,y)
N—— | —
< diamgs [fa' ({p}) 0 Was] < diamge [§5"({g}) 0 War]
<" (5. @) + 25up diama. [13! ({5) 0 W] (3.5.59)
seSt

CA ) o y
<dp(z,y) + MSO +2 51}91? diam . [fal({s}) N Wa,k] ,

where eqn. () was used in passing to the final line. Combining eqns. (ESE)a) and (E55a) gives:

CA ) o g
|d" (z,y) — di(z,y)| < MSO +2 S%Iz diam gy [fal({s}) N Wan]

uniformly in « and y. Taking max over a € 2, limsup over u — oo and subsequently the limit over
k — oo, together with point 2 from Proposition gives the required result.

(5¢i) The argument in this case is similar but easier. Firstly, by taking the (pointwise) limit of eqn.
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() as j1 — oo, one obtains that on M\Uaem W, :
9% > 03T giual

and hence by continuity this inequality holds on all of 1\71\§ . Moreover, for each a € 2:
92 = 0T gmuc

It follows that:
d™ > dy (3.5.60)

on all of M.
For the converse bound, given ,y € dj, define p = f(z), ¢ = f(y) and consider the points:

p=(0,0,p,0,0,0,0) and ¢=(0,0,¢,0,0,0,0) ¢ Wa,k.

Then clearly:

d=(z,y) < d* (z,D) +d* (P, q) + d= (q,y)
N e’ L N e’ _
< diamg [T ({p}) 0 Wa] < diamg [f' ({g}) 0 Wak]

<d™ (5,q) +2 sup diamng- [Tl ({s}) nWay] .

However d* (p,q) can easily be bounded as follows: choose the shorter segment v : p — ¢ in St. This
defines a path 7 from p to 7 in Wa,k via (0,0,7,0,0,0,0) which has length Ungucl(p,q) = di(z,y)
with respect to the g3°. Thus:

d%(2,y) < di(w,y) + 2sup diamg- [fal ({s}) N War]. (3.5.61)
Finally, combining eqns. () and () gives:
4% (2,) - di(2,y)| < 25up diamg= (' ({s}) 0 Way]
uniformly in ,y € Oy ;. Taking max over a € 2, limsup over p — oo and subsequently the limit over

k — oo, together with point 4 of Proposition gives the required result.
O
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Chapter 4

Convergence and collapsing result for orbifolds

This chapter proves a general collapsing result (Theorem ) for families of stratified Riemannian
metrics g* on a compact orbifold E, subject to suitable limiting conditions on the metrics g* as u — oo,
which subsumes Theorems @ and Theorem . The result is distinct from similar theorems
in the literature since it does not require bounds on curvature or injectivity radius of (E,g") and
thus allows for Gromov—Hausdorff limits of (E,§") which have strictly lower dimension than E. The
chapter also introduces and studies a new class of stratified fibrations between orbifolds, termed weak

submersions, which play a key role in the proof of the main theorem.

4.1 Stratified fibrations between orbifolds

Following [27, §3.2], I call a smooth map f: E — B a submersion if for all e € E, there exists a chart
Ee centred at e, a chart Zf(.) centred at f(e), and a local representation (f.k ) in these charts such
that fis submersive and sy is surjective. The following result may not, to the author’s knowledge,
be found in the literature. It is the analogue of Ehresmann’s Theorem for orbifolds (see e.g. [122,

Thm. 9.3] for the classical statement):

Proposition 4.1.1. Let E, B be orbifolds and let m: E — B a proper, surjective submersion. Let
kerdm be the vertical distribution of w, pick a Riemannian metric g on E and let C = kerdwt be the

corresponding horizontal distribution.

1. Let v : (~1,1) - B be an embedded curve. Then n=1(y(~1,1)) € E is a suborbifold, denoted
E.. Write Eg =71(7(0)). Then there is an orbifold diffeomorphism:

E’y ~ Fiy x ’y(—l, 1)

identifying ™ with projection onto the second factor and C with the product connection;

2. Let U € B be an open ball and write Ey = n=(U) ¢ E. Write b for the centre of the ball U and
write By = m1(b). Then Ey is an a suborbifold of E and there is an orbifold diffeomorphism.:

Eyz2EyxU
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identifying m with projection onto the second factor (although the identification does not identify
C with the product distribution, in general).

To prove Proposition , I begin by recording the following equivariant version of the Implicit
Function Theorem:

Proposition 4.1.2. LetT'; ¢ GL(n;;R) be finite subgroups, i = 1,2, and let U cR™ be a Ty -invariant
open neighbourhood of 0. Suppose one is given a group homomorphism v : 'y - I's and a smooth
map f:U — R™ which is t-equivariant, which maps 0 € R™ 0 € R™ and has surjective derivative
at 0. Write K = ker(df|o), a T'y-invariant subspace of R™ of dimension ny —ny and let T be any
I’y -invariant complementary subspace to K in R™.

Then (shrinking U if necessary) there is a I'1-equivariant diffeomorphism:
F:UcKxT-F(U)cKxR"™

(where T'1 acts on R™ wvia the map ¢ : Ty - T'y) such that dF )|y identifies T with R™ and such that

the diagram:

UcR™ r » F(U) cKxR™
\) %
R

commutes and is equivariant. In particular, if v is surjective, then the bottom arrow in the following

diagram is an isomorphism:

The proof is a simple application of the Inverse Function Theorem, and so it is omitted here.

Proof of Proposition , That E, and Ey are suborbifolds of E follows at once from the local
description of 7 afforded by Proposition . Moreover, Proposition shows that for each e € F,
dr|e defines an isomorphism C, — Ty (c)B.

Now consider (1). Choose a point e € Ey. The derivative of 7 defines a natural map +: (-1,1) —
TB|,. Using dm, one may lift this uniquely to a map (-1,1) — C; integrating this vector field along
(=1,1) defines the horizontal lift of v starting from e, denoted 7.. Now define a map:

EO X (—1, 1) - E,y
(e,1) = 7e (1)

Omne may verify that this is the required diffeomorphism. Given (1), (2) follows as for manifolds, by
trivialising 7 along radial paths emanating from b.
O
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In general, the requirement that the homomorphisms x; be surjective can be rather strict. The

following definition relaxes this condition:

Definition 4.1.3. A smooth map of orbifolds f : ' — B is a weak submersion if for all e € F, there
exists a chart Z, centred at e, a chart Zf.y centred at f(e), and a local representation (f, Kf) in

these charts such that ]?is submersive. (In particular, k¢ is not assumed to be surjective.)

Clearly Proposition does not apply to weak submersions in general, as the following example
illustrates:

Example 4.1.4. Let E = {il}\TQ, B = {il}\[Tl x{0}] and let 7 : E — B denote the canonical
projection. Then F is the ‘pillowcase’, homeomorphic to a 2-sphere, with singular points precisely the
four corners of the ‘pillowcase’ and B is a closed interval, with singular points precisely the endpoints

of the interval.

(4.1.5)

b e .

7 is a surjective, proper, weak submersion, however whilst the preimage of a smooth point in B is
topologically a circle, the preimage of a singular point is topologically a closed interval. Thus 7 is
not a locally-trivially fibration (or even a Serre fibration, since the homotopy groups of its fibres are
not constant over the connected base space). Note also that the points e and b satisfy I, = 1 and

Iy = Z/Q. Thus dne : C. - T B is not an isomorphism (in fact, it is a 2:1 quotient).
Nevertheless, a stratified version of Proposition still holds for weak submersions:

Corollary 4.1.6. Let E and B be orbifolds and let m : E — B be a proper, surjective, weak submersion
and let ©(B) = {B;} be a stratification of B. For each B;, the subset 7' (B;) € E is a suborbifold
and the restriction of m to 71 (B;) € E defines a submersion onto the submanifold B; € B in
the usual orbifold sense. Let {Ef}] denote the strata in the canonical stratification of 7= (B;).

Then T : Ef - B; is a surjective submersion for all i,5. Moreover, the collection {EZJ} ~define
Z?]

a stratification of E, denoted X (m, E,B) with respect to which the distribution D = ker(dr) is a

stratified distribution. In particular, the orthocomplement of the vertical distribution (with respect to

any Riemannian metric) is also stratified.

Proof. Firstly, note that any weak submersion from an orbifold to a manifold is (trivially) a submer-

sion, since any group homomorphism to the trivial group is surjective. The rest of the corollary follow
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simply by working in appropriate local charts as in the proof of Proposition . For example, to see
that the distribution D is stratified with respect to the induced stratification X (m, E, B), one notes
that by Proposition , if one picks a stratum B; in B and a point b € B;, then each canonical
stratum of the orbifold 77! (B;) is locally given by the product of a union of canonical strata in
7~ 1(b) with open discs in the base space B;; from this, the result is clear.

O]

Remark 4.1.7. Note that in the proof above, each canonical stratum of 7~ (B;) need not be given
locally as the product of a single canonical stratum of 7~1(b) with an open disc in the base: indeed,
consider the Mébius band M (viewed as an orbifold with singular set precisely its boundary) and let
7: M - S! be the usual projection. Then the stratification of M induced by = is simply its canonical
stratification (which has two strata), whereas the canonical stratification of the preimage of any point
in the base has 3 strata, the two endpoints being different strata of the preimage, but belonging to
the same stratum of M.

More generally, in Proposition , if one writes {F}}; for the canonical stratification of F' = E
and {E;}; for the stratification of E induced by , then the stratification of Ey; given by {F; x Up};
is a refinement of the stratification {E; n Ey};. Phrased differently, the stratification of E induced
by 7 is stable under ‘horizontal transport maps’ used in the proof of Proposition .

Example 4.1.8. Return to eqn. () The stratification (7, E, B) is depicted below:

Ej Ey

4.2 Statement of main result

The purpose of this section is to present a precise statement of the main theorem of this chapter. I

begin by introducing the necessary notation:
Notation 4.2.1.
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1. Let Es be a compact orbifold, let (B,Xp = {B;};) be a stratified orbifold, let 7 : F3 - B be
a surjective, weak submersion with path-connected fibres and let ¥y = {(E>);}; be the induced
stratification on Eo (see Corollary ) Let G be a stratified Riemannian semi-metric on Eo
which is regular with respect to the stratified distribution ker dm and write d*° for the semi-metric
on FEs induced by §*°.

2. Let (E1,%1) be a second compact, stratified orbifold and, for i = 1,2, let S;(j) € E; (j =1,...,N)

be disjoint, closed, subsets. Write:
N
Si=118:(4)
j=1

and suppose there is a stratified orbifold diffecomorphism @ : E1\S; - E5\Ss.

3. For each 5 =1,...,N, let (Ul(r)(j)) 1] be a family of open neighbourhoods of S1(j) ¢ E; such
re(0,

that Ul(r) c Ul(s) for r < s. Suppose moreover that for all j # j" € {1,..., N}:

v ) nuM () = o. (42.2)

Write UQ(T) (5) = E2\<I> (El\Ul(T) (])) for the corresponding nested open neighbourhoods of S3(j) ¢

E5, where Uz(l)(j) and Uél)(j’) are, again, disjoint for distinct j and j'. Write:

N
v =11 G), i=1,2.

J=1

4. For each j =1,...,N, let S(j) be a set and let f; ; : Ui(l)(j) — 5(7) be surjective maps such that

the following diagram commutes:

v ()\$10) e 05 ()\S2(9)

(4.2.3)
fl‘j f2,j

53)

Intuitively, one should think of S and Sy as representing ‘singular’ regions in E7 and Fs respec-
tively. The existence of ® then asserts that the orbifolds E7 and Es are diffeomorphic ‘away from
their singular regions’ and condition 4 states that, for each j, the singular regions S1(j) and Sa(j)
are ‘fibred’ over a common base space S(j). Using ®, I shall henceforth identify E1\S; with E2\Ss
and write T = B\U = B;\US™ . Similarly, T shall write 9 (5) = 0U" (5) = oUS" ().

Remark 4.2.4. Tn the case of the manifold M considered in Chapter E, the above definition takes the

following concrete form:

1. E;=M (a manifold), Ey = M, 5 is the stratification ¥ = & (Z]\, M, B ) induced by the submersion
7:M - B, and ¥ is ¥, the pullback of ¥ along p-

2. ® is the restriction of p: M — M to M\S.
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3. The index j € {1,..., N} is simply a € 2 and for r € (0,1]:
U(a) =W, .
1 a,; -’
Likewise:

UQ(T)(a) :W 7%.

4. S(a) =S! for all a and:

fl,a = ?a and f2,a :/f\aa

where fa and /f\a are defined in eqn. ()

5. For each p € [1,00), take " to be the stratified Riemannian metric obtained from 9,
the refinement procedure detailed in Remark .

—6(5;1 by

Theorem 4.2.5.

1. Fix a stratum B; in B, write 771(B;) = Ufzo(Eg)j(l) and write g;(;) for the component of > on
the stratum (E2);¢;). Define a map £L; : TB; — R as follows: given p € B; and u € T}, B;, define

k
L;(u) = min inf {||u'||gj(l) | u' € Ty (E2);y such that dm(u) = u}. (4.2.6)
=0 re (EQ)j(l) N 7T_1(p)

Then L = {L£;}, defines a stratified quasi-Finslerian structure on B (see Definition ) and (B, Z)
is the free metric space on (E2,5%).

2. Now suppose further that (g*) je[l,00) are stratified Riemannian metrics on Ey inducing metrics
d*, such that the following 4 conditions are satisfied:
(i) For all € (0,1]:

=H

§" — g uniformly as g — oo on the space E)

and there exist constants A, () > 0 such that:

lim A,(r)=1 and g >A,(r)*g> on E™ for all pe[1,00); (4.2.7)
!,LA)OO

limsup limsup max sup diamg. [ﬁl]({p}) n Ul(r)(j)] =0;
r—0 HU—>00 jE{l,...,N} pES(]) ’

limsu max  sup diamge |§5 AU (G =0;
nsup | max - sup diamg [f25((p}) 0037 ()]
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limsup limsup max sup |d" -d*=|=0.
r—0 p—oo  JE{LsN} 9(m) (4)

Then:
(El)d”)%(B7Z) as H = 00,

in the Gromov—Hausdorff sense.

(By ‘g* - g uniformly on FE ()’ T mean that for each fixed reference stratified Riemannian metric
h on FE1, one has:

g = g7°l,, =0 as p—ooon (Br);nE.

Since any two stratified Riemannian metrics on a compact orbifold are uniformly Lipschitz equivalent,

this definition is independent of the choice of F.)

Remark 4.2.8. Note that if the bilinear form g is given on each stratum (Es) ; lying over B; as m*h;,
where h = {h;}; is a stratified Riemannian metric on B (write §%° = n*h), then £ = h and (B, dﬁ) is
clearly the free metric space on (FEy,d*). More generally, if g = 7*h on some proper subset U of
FE, then once again it is clear that L ="h over U, since the value of £ at a point b € B only depends
on the values of §*° on the fibre over b. However due to the global definition of the metrics dg and
d£ , the assumption g = 7*h on U provides no simplification and the proof that dg = df — far from

being trivial — assumes its general form in this case.

Note also that Theorem clearly subsumes Theorems and , as stated in Chapter

H

Intuitively, condition (i) states that the metrics g* on Ej converge locally uniformly away from
the singular region S; to a stratified Riemannian semi-metric §°°, which extends to some given
compactification Ey of E1\S1; conditions (ii) and (iii) state that the fibres of the maps f; ; : Ui(r)(j) -
S(j) are ‘small’ with respect to g% and g*° respectively, provided that p is sufficiently large and r
is sufficiently small and, finally, condition (iv) states that the two metrics d* and d*° approximately
agree near the singular regions S; and S;. Further intuition can be gained by considering the case
where the map ® : F1\S; — E»\S2 admits a non-smooth extension to a map ®: E; > F5. In this
case, by considering the composite 7 o ® : E; - B, one can regard E; as fibred over the space B
and Theorem can then be regarded as a ‘collapsing’ theorem for this fibration which states,
informally, that if the diameter of the fibres of E; - B (with respect to the metrics §*) tends to zero
away from some singular set S7 and if the limiting size of the region S7 is ‘not too large’; then the
orbifold Ej collapses to the orbifold B in the limit as y - oo. The use of Theorem in Chapter

E is an example of such an application.

The proof of Theorem occupies the rest of this chapter. I begin by explaining why the
hypotheses of Theorem are necessary.

Firstly, let me explain why it is necessary to use quasi-Finslerian structures, rather than the more

usual Finslerian or Riemannian structures, to describe the free metric space on (E3,5%). Consider
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the following simple (unstratified) example, where A > 2 is a constant:

proj
W:E:Tg192XT1 —>T5192:B

«

g= (1 + A cos? a) (d91)®2 + (1 + Asin? a) (d92)®2

Write 0; = % (1=1,2), let p= (01,92,a) € E and for each a,b € R, let u(a,b) be any vector in T,T?
such that dr|,(u(a,b)) = ad; + bds. Then:

|u(a,b)||y = v/a% + (A +1)b2 + X (a2 - b2) cos® o = \/(/\+ 1)a2 + b2+ X (b2 - a?)sin®

and thus:

Vaz+ A+ 1)b2 if |a| > b
VA+1)a?2+0% if |a| <|b|.

Whilst this function is continuous, it is not differentiable along a = b. Moreover:

L(ady +bds) = {

L(O1+02)=VA+2>2=L(01)+ L(D2)

and thus £ does not satisfy the triangle inequality. This is the motivation behind the definition of
stratified quasi-Finslerian structures in §.

Secondly, let me explain why the existence of A,(r) — 1 in condition (i) is necessary for the
second conclusion of Theorem to be valid. Take F; = Fy = ']I‘glﬂ2 with the trivial (1-stratum)

stratifications, let Ui(r) =S, =@ fori=1,2let g~ = (d91)®2 and let:
7= (1+p7) (46 - 2571 d0" © d6? + 72 (d6%)®.

Since U, i(r) = S; = @, conditions (ii)—(iv) in Theorem are automatically satisfied. Moreover, since
7" — G uniformly as p — oo, condition (i) is also satisfied, expect for the existence of suitable A,,.

However d* — 0 uniformly as p — co. Indeed, for each a € [0, 1], consider the path:

v:[0,a] - T?
s (s, 1u-8).

Then one may calculate that g (¥) = p~! and thus:

IN
=
=

" [(07 0)7 (a,u . a)] < au7%

Likewise, by considering a vertical path between (a,b) and (a, uu-b) one sees that d* [(a,b), (a,p-a)] <
p~! for any b e [0,1] and thus for all (a,b) € T?:

d" [(070)7(%[))] $,u_1+,u_é -0 as p— oo.
By [25, Example 7.4.4] it follows that (’]I‘Q,’g‘“) converges to the one-point space as u — oo. However,
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the free metric space on (Tz,’g“”) is (Tél, (d91)®2). This shows the necessity of the existence of the
A, — 1. An analogous phenomenon was observed (albeit from a very different perspective) in [89].
(To see why no such A, — 1 can exist, suppose that the inequalities g* > Aig"" held for all
p€[1,00). Then the bilinear form g" — Aigoo would be non-negative definite and hence would have
non-negative determinant, i.e.:
w2 (1t - A2) 50

This rearranges to A2 < u~! and hence would force A, —0as p— o00.)

4.3 Proof of Theorem 4.2.5: Part 1

The purpose of this section is to prove the first part of Theorem . The reader should note that
the orbifold E; (and also the sets S;(7), Ui(r) (7) and their associated data) plays no role in this
section. Thus in this section, for simplicity of notation, I denote E5 by E, 39 by ¥ and g by §. The
reader should also note that the results of this section remain valid when E is non-compact, provided

that the map « is proper.

The first task is to verify that £ is a well-defined stratified quasi-Finslerian structure on B:

Proposition 4.3.1. For each stratum B; in B, recall the definition:

k
L;(u) = min inf {Hu'ng(l) ’ u' € ToEjq) such that dm(u') = u}, (4.3.2)
=0z e BjgynmH(p)

for we T, B;, where 7 H(B;) = Uf:o Ej;qy and gjqy is the component of g on the stratum Ejqy. Then

L= {L;}, defines a stratified quasi-Finslerian structure on B.

Proof. Firstly, note that £; is well-defined. Indeed | B,oy ¢ Ejay — Bi Is a surjective submersion
for each I € {0,...,k} and so for each x € Ejiy n 7 *(p) there exist vectors u’ € T, E;( satisfying
dr(u') = u. Moreover |u'g,,, is independent of the choice of u', since any two such choices of u’
differ by an element of ker(dn)|, N T, Ej(y which is in turn precisely the kernel of g;y, since g is

regular with respect to kerdm.

The proof now breaks into two cases of increasing generality:

Case 1: B is a manifold. Let p € B and u € T,B. It is beneficial to have a preferred choice
of preimage u' of u under dr : T,E — T,B for each z € 77!(p). To this end, choose a stratified
‘horizontal distribution’ C, complementary to D. Then (cf. Proposition ):

dmy :Cp = TpB
is an isomorphism for all x € E;; let u, denote the preimage of v under this isomorphism. Then since
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C ¢ TE; over the stratum FE; for all 7, one has

L£(u) =min inf {|u,

o lzent(p)n El}

(4.3.3)

=L

Next, note that given quasi-Finlserian structures £1, Lo on B, their pointwise minimum £ =
min(L1, L2) is also a quasi-Finslerian structure. Thus, it suffices to prove that each £; defines a

quasi-Finlserian structure on B.

It is clear from eqn. () that £; is non-negative and satisfies:
Li(A-u) =|A[Li(u)

for all w € TB and A € R. To see that £; is positive definite, let u € T}, B satisfy £;(u) = 0. Choose
a sequence T, € 71 (p) N E; such that |ug, |, — 0 as n — co. Since 7 is proper, 771(p) is compact
and thus z,, converges subsequentially to some x € 771(p); passing to a subsequence, one may assume
without loss of generality that x,, > . Since g; may be extended to a continuous Riemannian metric

g; on all of E, one has:

lu, [l g, = vz, g, = g g, as n—oo.

Thus [us|g, = 0 and hence u, = 0, since g; is non-degenerate on C, which in turn follows from the
regularity of § with respect to D. Thus:

w=dm(ug) =0,

as required. Thus to prove that £; is a quasi-Finlserian structure, it suffices to prove continuity.

To this end, choose b € B, u € Ty, B and pick a sequence u,, € Tj B tending to u as n - oo (in

particular, b, — b as n — 00). Pick a sequence x,,, € 7-1(b) n E; such that:

Li(u) = lim |ug, |g,-
m—o0
Then, by properness of m, 7~1(b) is compact and so z,, converges subsequentially to some x € 771(b);

by passing to a subsequence, without loss of generality z,, - x as m — oo.

By Proposition , one may choose a neighbourhood Uy of b satisfying 71 (Uy) = Uy x 7~ 1(b).
Without loss of generality assume that all b,, lie in Uy. Note that both (uy) s, 2,) and u, ., ) converge

to u(pe) € C as n — oo. Thus:

||(un)(bn717n) gi» |U(b,zn) g ”U(b,z) 7, as n — oo (4.3.4)

(note that (b, x,) € E; implies that (by,,z,) € E;; see Remark ) Now clearly:

”(un)(bn,mn) 9 2 L;(un)
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for each n. Thus eqn. () implies that:

9 = ﬁz(u)

n—00

n—oo

Thus suppose, for the sake of contradiction, that liminf, . £;(u,) < L£;(u) —n for some n > 0.
Then L;(uy) < L;(u) —n for infinitely many n, and without loss of generality for all n by passing to

a subsequence if necessary. For each n, choose 4, € 71(b) n E; such that:
n
H(un)bmyn Hg, < El(un) + 5 (435)

Using compactness of 771(b) again, by passing to a subsequence if necessary 4, -y € 7~*(b). Thus

as above:

| (un) ) lgis |ty g = lu@lg,  as n— oo (4.3.6)

Choose n sufficiently large so that || (wn) . 4. lg: = %) la| < 2. Then:

[‘Z(u) < Hu(b,yn)

gi

n
o+ =
9.7 3

<Liun) + 23—77 (by eqn. (1.3.5)).

<[ (wn) 0,9,

However by assumption L;(un) < Li(u) —n and thus £;(u) < Li(u) - %, a contradiction. Thus
liminf, o L£i(u,) > Li(u) and so L;(u,) - Li(u) as n - oo, proving that £; is continuous, as

required.

Case 2: General Case. Using case 1, for each stratum B; of B, the function £; is a quasi-Finslerian
structure on B;. Thus, to prove that £ = {£;}; is a stratified quasi-Finslerian structure on B — and
hence to complete the proof of Proposition — it suffices to prove that given a Riemannian metric
h on B, each L; is Lipschitz equivalent to h up to the boundary of B;. However this is clear: fix a
stratum E; of £ and recall the extension g; of g; to all of E. Since both the Riemannian semi-metrics
7*h and g; vanish on D = kerdr and are positive definite on C, it follows that there is a continuous
map D : E — (0, c0) such that:
1

—n*h<g; < Dn*hon all of E.
D J

Since 7 is proper, one may define a continuous map C : B — (0, 00) such that for all e € E:
D(e) < C(m(e)).
Then it follows immediately from eqn. () that:
1
5“ —|ln <Li<C| = |p on B;.
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This completes the proof.

I now prove the first part of Theorem :

Proposition 4.3.7. Let L be as in Proposition . Then (B,dz) is the free metric space on
(E,d7).

The proof proceeds by a series of lemmas.

Lemma 4.3.8 (‘A Priori Bound’). Let 7: E — B be as above and let vy be a piecewise-C* path in B.
There exists a constant C' >0 depending only on v such that for all piecewise-C* lifts 7 of v along :

—

g (77) < C almost everywhere.

Proof. The argument is similar to the proof of the general case in Proposition . By considering
each C! portion of v separately, without loss of generality assume that v is C'. Let h be a Riemannian
metric on B and recall that there is a continuous map ¢: B — (0, o) such that, for each stratum E;

of £, writing g, for the extension of g; to all of E:

Gjle <c(m(e))m™hl for all e € E.
Thus for all ¢ in the domain of definition of ~:

= ~ » < o

35 (3) bs(r) < CUNR G| gy

Since the domain of definition of  is compact, the right-hand side may be bounded uniformly above
by some C > 0. The result follows.
O

Lemma 4.3.9 (‘Piecewise-C! Lifts with Specified Endpoints’). Let v :[0,1] - B be a C* path in B,
let b; = (i) and let e; € 7= 1(b;) fori=0,1 respectively. Then there exists a piecewise-C* 7 :[0,1] - E
such that w (7) =~ and 7(i) = e; for i =0,1 respectively.

Remark 4.3.10. Note that the ability to lift paths along 7 is a non-trivial result since, as explained
in Example , m need not even be a Serre fibration. In particular, Lemma does not appear

to follow from any known result in the literature.

Proof. Firstly, I claim that there exists a piecewise-C! lift 7 of v along 7 satisfying 7(0) = eg. Indeed,
by applying Proposition , one can choose a chart Z¢, = (Ue,, ey, A1 x Az, xe,) about eg in E, a
chart =5, = (Up,, ', , A2, X5,) about by in B and a homomorphism £ : I'e, = I'y, such that 7 may be
locally lifted as:

Ay x Ay %AQ
N——— ——
O (@)

Feo :‘i—w) Fbo
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and where I'¢, acts on Ag via kr. Let 7 : [0,e) - Ay for some ¢ > 0 be a local representation of
« in the chart =, (note that the equivariance of this local representation is trivial, since [0,¢) is a
manifold and so its orbifold group about each point vanishes). Lift 7 to a map [0,&) - A; x Ay as:
0x7:[0,e) > Ay x Ay,

Under the projection A; x Ag e, Feo\Al x AZ, the map 0 x 7 defines a C* lift 7 of v along 7 on
the interval [0,¢). To obtain a piecewise-C! lift of the path ~ over the whole interval [0,1], one then
proceeds inductively, repeating the above process starting from some point &’ € [0,¢); the inductive
process can be made to terminate in finite-time by compactness of [0, 1] and properness of the map
.

Next, I claim that one may ‘improve’ the lift from 7 to a lift 5 such that F(b;) = e; for both
i=0and ¢ =1. To this end, define ] =7(1). Since 7 has path-connected fibres, one may choose a
piecewise-C! path o : [0,1] - 771(b1) such that ¢(0) = €} and o(1) = e;. The task is to deform the
endpoint of 7 along the path o.

The argument is very similar to the construction of 7. Initially, one chooses charts = =
(Uer, T, B1 x Ba, xer ) about €] in £ and Zp, = (Up,, 'y, , B2, xp,) about by in B and a homomor-
phism fir : I'er = I'p, such that 7 can be written in the local form:

By x By — 2% B,

Se——’ —~—
O @)

Pe’l For > Pbl

Since 7 is continuous, there exists € € (0, 1) such that F((e,1]) ¢ Ue;. Then choose a local represen-
tation 7 = (’;‘1,’5\2) : (e,1] > By x By (so that 7, (1) = 0). Now choose ¢ > 0 such that o(t) € Ue; and
lift the point o(t) to some preimage (@, O) under the projection map B; x Bo pre, Lo \Bl x By
By altering the function 7, : (¢,1] - B; on some compact subset of (e,1], one can ensure that

71(1) = o(t). Denote the new local representation (”_71,”_’)72) by ”_7,. Projecting ”;J under the map:
Bl X BQ ﬂ) Fe’l\Bl X BQ

yields a new lift 7" covering « with the property that 7'(1) = o(¢). Now iterate this argument, noting
again that the process can be made to terminate in finite time by compactness of the domain of

definition of o.
O

Lemma 4.3.11 (‘Convergence in Measure’). Let «:[0,1] - B be a piecewise-C path. Then there

exists a sequence of piecewise-C't lifts ¥, of v along 7 such that:

o=

”g‘(ﬁn) N E(f'y)é in measure as n — oo.
Moreover, the endpoints of the lift, viz. 7,,(0) and 7, (1), may be chosen to be any points in W_l(’Y(O))
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and 7 1(y(1)) respectively.

Proof. Firstly, note that it suffices to lift each C' portion of v separately to a piecewise-C' curve
in F and then use the freedom in specifying the endpoints of these separate lifts to ensure that the
combined lift of 7y is continuous over the non-differentiable points of «v. Thus without loss of generality

one may assume that 7 is everywhere C'!.

Write I = [0,1]. For each stratum B; of B, recall the measurable subset:
Li=y(B;)cl.

Write .Z for the Lebesgue measure on I and define:

LLin(z—-r,xz+71)]
L(x-rx+r)]

fi:{:cefim(O,l)‘liné :1}g1m(0,1).
r—

By [L08, Cor. 2.9, p. 20], .Z (I;\L;) = 0. Define:

Then by [45, Lem. 3.1.7, p. 217, & (IZ\TZ) = 0. For notational convenience later in the proof, define
T=U;T.

Fix n > 1. For each i and each z € T;, choose j = j(x,n) and y = y(z,n) € F; € n1(B;) such that
for all lifts u of ¥(x) to Ty FE; along d:

00 - £ (@) <

(Note that the left-hand side is automatically non-negative, by definition of £;.) Choose a chart
2y = (Uy, Ty, Uy, xa) about v(x) € B which is regular for the submanifold B;, with regular subspace
I (see Definition ):
Us=ArxI—>,\M1 <1 2 Us.
Xa
(Here, A; and I are finite-dimensional real vector spaces and I';, acts on A;.) By Proposition ,
shrinking U, if necessary one can choose a chart =, = (Uy, 'y, Ag x Ay x I, x,) and a homomorphism

kg Iy = 'z such that m may be expressed in the charts =, and =, as the projection map:

Ag x Ay xI — P77 o AL XTI
T P (4.3.12)
T, _ ' T,

Since x € I; € (0,1) and + is continuous, one can choose n(z,n) > 0 such that (z —n(z,n),z +
n(z,n)) < (0,1) and:
v[(z-n(z,n),z+n(x,n))]cU = (Fx\Al ) x T.
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Since z € I; € I;, one has:

hm.i”[lim(x—r,x+r)] :hmE[Eﬂ(x—an)] _
r—0 f[(x—r,x+’r)] r—0 D%[(x—r,x+'r)]

(where the first equality follows from the fact that & (I \I ) ) and so by reducing n(x,n) > 0 if
necessary, one may assume that for all 0 < r < n(x,n):

-1 n-1

L(x-rx+r)]=2r (4.3.13)

LNLin(@-rz+r)]>

Since 7y defines a smooth map from the manifold I to the orbifold B, by reducing n(z,n) > 0 still
further if necessary, one may assume that v has a local lift 7 with respect to the coordinate charts

(x—=n(x,n),z+n(x,n)) and Z,:

/ Alf I

(z=n(z,n),z+n(x,n)) BN px\Al xIzU,

(Note that the equivariance of the lift 7 is vacuous, since I is a manifold and so has trivial orbifold
groups about every point.) Using the local representation of 7 given in eqn. (), one can lift 7
to the map 0 x 7 as below:

Angle

l‘pwj

Alxﬂ

/l

(x =n(x,n),z+n(x,n)) AN T, \Al x12U,

Projecting 0 x 7 via Ag x Ay x T — (Fy\A2 X A1) x I defines a local lift (C!) of v along 7 over the
region (z —n(x,n),x +n(x,n)); denote this lift by F(z,n).

Note that on the region I; n (z —n(z,n),z +n(z,n)) (where v € B;) the curve F(z,n) lies in Ej;.
Indeed:

Yzl (x—n(z,n),x+n(z,n)) [0]xT < (I‘y\AZ X Al) x I

and one may verify that [0] xI lies in the stratum E;. Hence by [45, Lem. 3.1.7, p. 217], g, (W(x, n)t)
is well-defined for almost every t € I; 0 (xz —n(z,n),z +n(z,n)) and thus for almost every t € I; n (x —

n(x,n),z +n(x,n)). Now consider the function:
('y(ac n))? - L; (% )% where defined on T; N (z — n(z,n), z + n(z,n)).
This is a continuous, non-negative map which is less than % at the point . Therefore, by reducing
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n(x,n) > 0 if necessary, one may ensure that:

1
2

. 1 2 ~
g; (F(z,n))? = £; (%)* < = almost everywhere on I; n (z - n(z,n),z + n(z,n)). (4.3.14)
n

Now consider the collection of subsets of I given by:
S, = {(:U—r,x+r) ‘ T e:f,r € (O,n(z,n))}.

By applying the Vitali Covering Theorem [102, Thm. 2.2, p. 26|, there exist z, € T and rp €
(0,n(zp,n)), for p e N, such that:

« The sets {(zp —1p, Tp + 1p) } oy are disjoint;

« & [I\UpeN(xp —Tp, Tp + ’I“p)] =Y [T\UPEN(ZEP —Tp, Tp + rp)] =0.

Choose N = N(n) sufficiently large such that:

N(n) 1
LI\ U (zp—rp,zp+1p)| < —. (4.3.15)
p=0 n

Now construct the lift 7, as follows:
e On each set (a:p - ”T_lrp,a;p + ”T_lrp), p=0,...,N(n), define:

= 'y(acp,n)|(xp - nT_lrpa Tp + nT_lr )

« Since the open sets {(z, —rp,zp + rp)}pe{o,...,N(n)} are disjoint, the complement of the union
of the smaller open sets {(mp - "T_lrp,:np + nT_lrp)}pe{O,...,N(n)} is a finite collection of closed
intervals, including two intervals of the form [0, «] and [3,1]. On each of these closed intervals,
use Lemma to choose some piecewise-C'! lift of v along 7, with endpoints chosen so that the
resulting lift 7, is piecewise-C'* and so that 7, (0), 7, (1) take the required values in 7~1(y(0))

and 771(y(1)) respectively.

I now claim that: . 5 5
g[{xef‘g(%)5|x—f(~y)5|x> }]<—, (4.3.16)
n

n

=

a result which would imply the convergence of the functions fq‘(ﬁn) L ("y)% in measure. To verify
eqn. (), for each x, choose i(p) such that x, € I;() and recall from eqn. () that:

=

~ .1 2 ~ -1 -1
- L()? < — almost everywhere on I;,) N (a:p - n—rp, Tp+ n—rp) .
n n

(%) ;
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Therefore:

(i \E =, . 1 2 N n-1 n-1
Z[{xe] ‘ g(%) |x_[’(7)2|w>_}]<1_$[ U {Ii(p)ﬁ(xp__rpaxp+ Tp)}
n p=0 n n
N(n)

~ -1 -1
=1- Z A [Ii(p) N (a:p s Tp, Tp + n-- rp)] ,
p=0 n n

where the final equality follows from the fact that the union is disjoint. Now from eqn. (), for
each p:

~ -1 -1 -1 -1 -1
Z [Il-(p) N (mp - n—rp, Ty + n—rp)] > [(xp - n—rp,xp + n—rp)]
n n n

n n
n-1\2
= (T) ZL(wp—rp,2p+7p)],
and therefore:
N(n) ~ n-1 n-1 n—1\2Nm
Z Z [Ii(p) n (xp - TpTpt _Tp)] 2 (_) Z L [(xp—1p,mp +1p)]
oy n n n 0
n-1 2 N(n)
= (—) ZI: U (zp—1pyzp+1p) |-
n p=0

By eqn. ([13.13):

N n-1
Ll U (@p—rp,zp+rp)|>
n

p=0

and hence:

N(m) -1 -1 -1)3
Z X[Ii(p) m(xp—n—rp,:vp+ n rp)] > (n )
n n

p=0

and whence: ) 3
2leer|gG)tL-Ehtle 2} () <2

n n

This completes the proof of Lemma .

Using Lemmas |4.3.§j7 |43q and |4.3.1]J7 I now prove Proposition :

Proof of Proposition , By the definition of Z, for all e, ¢’ € E and all piecewise-C' paths 7 : e —

e’

T >L (71'(’)/)) almost everywhere,
and hence:

l(7) 2 La(m(7)) > d“(n(e), m(e))).
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Taking the infimum over all such v shows that:
d(c,e') > d5(n(e),m(e")).

Conversely, let v : [0,1] = B be a piecewise-C! path 7(e) — 7(e’). By Lemma , there exists
a sequence of piecewise-C' lifts 7, : e — €’ of v along 7 such that:

fq‘(ﬁn)5 - Z(ﬁ)% in measure as n — oo.
By the a priori bound in Lemma the Dominated Convergence Theorem (DCT) applies, and so:

d(e,e') < lim £5(F,) = lim [[Ol]g(fyn)?dg _ /[Ol]f(ry)dgézzz(ry).
' pct

Taking the infimum over v completes the proof.

4.4 Proof of Theorem 4.2.5: Part 2

The purpose of this section is to complete the proof of Theorem . By applying Proposition
and the results of §@, it suffices to prove the following result:

Proposition 4.4.1. Let notation be as in Notation and assume that conditions (i)-(iv) in

Theorem holds. Then:
D[(E1,d") > (E2,d”)] >0 as p— oo

The proof proceeds via a series of lemmas.

4.4.1 Convergence on the regions E(")

Consider the region E(") ¢ Eq\S; 2 E5\Ss. The restriction of each stratified Riemannian metric g* to
E™ induces a metric on E, denoted d*". (Note that, in general, d*" # d"|g) since the metric on
the left-hand side is intrinsic, defined by optimising over the length of paths contained only in E(),
while the metric on the right-hand side is extrinsic, defined by optimising over the length of paths
in E1.) Analogously, the restriction of the stratified Riemannian semi-metric g*° to E™ induces a

semi-metric on E( denoted d*" (where again d*" # d°°| ) in general).

Lemma 4.4.2. Assuming condition (i) from Theorem , for all fized r € (0,1]:
d*" — d®" uniformly as p — oo.

Proof. Fix z,y € E) and let v be any piecewise-C'! path from z to y in E(. Since §* - §* uniformly
on B it follows that fgu(7y) — fg=(7) as u — co. Moreover, one clearly has d*"(x,y) < £gu(7)
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for each p. Taking first the limit superior over p and then the infimum over all + in this inequality,
therefore, yields:

limsup d"’ (z,y) < d*"(z,y). (4.4.3)
I

Conversely, for any v as above, by eqn. () in condition (i), one has:
b () 2 Aplg () 2 Apd™" (2, y).

Since A, — 1 as p — oo, taking firstly the infimum over all v and then the limit inferior over all
yields:
liminf d*"(z,y) > d™"(z,y). (4.4.4)
o

Combining eqns. (|4431) and (|444I) gives:

d*"(xz,y) < liminf d"*" (x,y) < limsup d*" (z,y) <d™"(z,y)
H H

for all 2,y € E and hence d*" — d*" pointwise on E().
Now fix some reference stratified Riemannian metric 7 on E; and write d” for the (intrinsic)

metric on E() induced by ﬁ| (. By assumption, for each stratum E; of E7\S:
lgt - gi° ”hz - 0 uniformly on B; n B as p — oo,

where | — | p; denotes the pointwise norm on symmetric bilinear forms induced by h;, as in Lemma
. Next, note that since g;° may be continuously extended to a semi-metric g;° on all of E (and
likewise for h;), then by compactness of Es there exists some constant C; > 0 such that |g5°|| h S %
on all of E; n E(M. Tt follows that for all sufficiently large 7%

l9¢'Ip; < Ci on B0 B,

Taking C' = max; C;, it follows from Lemma that for all sufficiently large u: g* < Ch and in
particular:

dhr < O3

By applying the triangle inequality, it follows that for all pairs (z,y), (z’,y") € ET x E() and all
sufficiently large p (including p = o0):

A (2, y) - d*T (2, ') < OF (d (@, 2") + d (y,4'))

and thus the family of functions d*" : E( x E(™ - R is uniformly Lipschitz (at least for all sufficiently
large 1) and hence equicontinuous. By combining this equicontinuity with the pointwise convergence
d"" — d°" the proof of Proposition is now completed by the following variant of the well-known
Ascoli—-Arzela theorem:

Theorem 4.4.5. Let (X,d) be a compact metric space and let f, : X - R be equicontinuous functions
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converging pointwise to a continuous function f. Then f, — f uniformly.

The proof is simple, and I omit it. This completes the proof of Lemma .

4.4.2 Combinatorial preliminaries

Recall that the ‘singular’ regions S1(j) are indexed by j € {1,..., N} and likewise for Fy. Recall also
the sets 9 (5) = 8U1(r)(j) > (9U2(T)(j). Write [N] = {1,..., N} and given any 1 < k < N, let [N]®
denote the set of ordered tuples of k distinct elements of [N ], which will be denoted (41, ..., jx). For

notational convenience, use A to denote the binary minimum of two numbers, i.e.: a A b= min(a,b).

Lemma 4.4.6. Fiz 1€ (0,1] and let z,y € E. Then for all p> 1 (including p = o)

d"(x,y) = d"" (z,y)A

k
. : inf amr +dmT + d*(z: ;) + d*" (v . s
B o 0 | iy & () A () ; (i) + (o)
i=1,.k
(4.4.7)

In particular:
sup |d"(2,y) —d™(z,y)| (N +2) sup [d""(2,y") = d™" (2, y")]
z,yEE(T) z’,y’eE(T)
+ N max sup |d* (2" ,y") —d>= (2", y")|.
]E[N] z”,y”ea(r) (])

Proof. 1t suffices to prove eqn. (), the final claim being a direct consequence of this. I prove eqn.
() in the case p < oo, the case p = oo being identical.

Write Q(z,y) for the set of all piecewise-C! paths 7 from z to y in Ey and Qq(z,y) € Q(z,y) for
the set of all piecewise-C'! paths ~ from z to y which lie entirely within £ . Let v € Q(z,3)\Qo(z,y)
and write [a,b] c R for the domain of . Assign to v an index j;(y) € [N] and a number ¢, () € [a, b]

as follows:
Define:
to(y) = inf {t €[a,b] | v(t) € UI(T)(j) for some j € [N]},

the right-hand side being non-empty, precisely because v ¢ Qo(z,y). The by eqn. () in condition
3 of Notation , there is a unique j € [N] such that y(to(7)) € Ul(r) (4); denote this unique j by
J1(7y). Now define:

t1(7) = sup{t e [a,b] | ¥(1) € U (a (1))} -

Now suppose that ¢1(v) < b and that the path 7|, (1),5] € Q0(7(t1(7)),b). Then one may define:
J2(7) = 1Ot ene)  and t2(y) = (e () .0)-
(Observe that ja(7y) # j1(7y), since v never lies in Ul(r)(jl (7)) after time ¢1(7).) One may continue
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in this vein, defining:

Jee1(7) =11 (Ve p)  and 1 () = 11 (Vg (9),07)-

until either ¢4 () = b for some k or |, ()61 € Qo(7(tk(7)), ), one of these two conditions necessarily
being reached for some k € [ V] due to the fact that the j1(7v),72(7),73(7), ... are all distinct elements
of the finite set [N]. Call:

(71(7)s s (7)) € [N]P)

the characteristic tuple of ~.
Now for each k € [N] and each tuple i € [N]®) define Q;(x,y) to be the set of all v € Q(z,y)

with characteristic tuple i. The above discussion shows that there is a disjoint union:

Qz,y) =Q(z.y) [I| I Q)|
ke[N]
ie[N](®)

However, by definition:

inf  flg.(y) =d""(x,y).
o G () (z,9)

Similarly, for each k € [N] and i € [N]®*), one may verify that:

k
inf g (z,y) = inf  d""(z,21) + A" (Yn,y) + D dH (@ ye) + AT (yis ).
Ve (z,y) i,y:€0 (i) i=1
i=1,...,k

The result now follows.

4.4.3 Completing the proof of Theorem 4.4.1

Let & be some fixed, possibly discontinuous, extension of the map ® : E1\S; — FE3\S; such that
$(S1) ¢ Sy and the following diagram:

v () s uG)
S(j)

commutes for each j € {1,..., N}. Explicitly, for each j € {1,..., N} and each = € S1(j), choose some
point y € fglj({flj(x)}) nS5(j) and define (z) = y. Recalling the definition of forwards discrepancy
from §, to prove Theorem it suffices to prove that, given any n > 0, P is an n-isometry
(Ey,d") - (E2,d*) whenever pu is sufficiently large (depending on n). This is equivalent to the

following two lemmas:
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Lemma 4.4.8. &(E,) € Fsy is dense with respect to the semi-metric d*.

Lemma 4.4.9.

lim sup |d"(z,y)-d™ (5(1‘), $(y))‘ =0.
H=0 3 yeE,

Proof of Lemma @ Clearly ®(E;) 2 ®(F;\S1) = E2\Ss. Thus, to prove that ®(F;) is dense, it
suffices to prove that for all j € {1,..., N}, all w e So(j) and all > 0, there exists x € E; such that:

d= (w, 5(30)) <.

To this end, given w € S2(j), choose x to be any point of ﬁlj({fgj(w)}) N S1(j). Then by definition
of ®: _ .
O(z) €y ({f2.5(w)}) N S2(4)
€ f2y ({25 () }) 0 037 (§) for amy 1€ (0,1].

Hence for all r € (0,1]:

0 (w,B(x)) < diamg [ 15 ({f2,5 (w)}) 0 US” ()]

< max  sup diamg |§55(p) n U (5
je{1,...N} pesg) d [flj(p) 2 (J)]

and thus:

d* (w,®(z)) < limsu max  sup diamg |55 (p) n UM ()| =0,
(w,@()) <limsup  max s [R5 n U7 ()]

the final equality being condition (iii) in Theorem . The result follows.

Proof of Lemma @ Pick z,y € E; and let r € (0,1]. Define (potentially) new points " = 2'(r)
and y' = y/'(r) in B via:
x if z e B

!
xTr =

some point in E™ nfiL({f1,;(2)) n U () €0 () if x € U ()
and analogously for y’. Note that:

d*(z,2"),d"(y,y') < max sup diamg. [fI,lj({p})ﬂUfr)(j)]- (4.4.10)
Je[N1 pes ()

Now let me bound d*° (i(x),x’) and d*° (a(y),y'), where 2’ and 3 are identified with ®(a') =
®(z") and ®(y') = ®(y) in the usual way. Clearly if 2 € E(™ | then ®(z) = z = 2’ and d* (5(3:), ') =
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0. Thus suppose x € Ul(r)( j) for some j. The commutative diagram:

v ()\$10) s ;" ()\S209)

F1,5 f2.5
S()

shows that:

2 e B n il ({f15(2)) n U () 2 O a iL (g (2) ) n U7 (5) € 97 (),

using the identification ® in the usual way. Moreover, from the definition of ® one may verify that
() € o5 ({f15(2)}) UL (j). Thus:

d” (®(z),2') < max sup diamge |f55 AU ()]
(8(@).") < mas sup diama [135({}) U3 5)] (4.4.11)

The same bound holds for d*° (5(@/), y'). Thus by the triangle inequality:

|d" (z,y) — d= (D(x), B(y))| < |d"(2',y") —d™ (2", y")|
+d*(z,2") +d"(y,y")
+d° (6(@, x') +d*° (y', 5(3/))
<|d* (2 y") —d= (')

+2max sup diamg. [f;L({p AU J
mx sup diamg [ ({1 n U7 ()]

+2max sup diamge |f55({p mU(T)j ,
max sup [R5 ({ph) n U ()]

where eqns. (|441d) and (|441]J) have been used in passing to the final inequality. Taking supremum
over x and y and applying Lemma yields:

sup | (2, y) = d= (8(x), B(y))| < (N +2) sup )Id’”(l”,y’) —d="(a',y")]
T,Yy€ln z'y' ek

4 N max sup |d“(ﬂ7", yll) _ doo (l'”, y”)l
jG[N] xll7yllea(7‘)(j)

+2max sup diamg. |§7L nU(r) ]
max sup diamg [R5 (pH n U ()]

+2max sup diamge |§51 ﬂU(T) 1)1 .
mx sup diamg [R5(pH U ()]
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By Proposition , taking the limit superior as y — oo yields:
limsup sup |d"(z,y) - d™ (®(z),®(y))|< Nlimsupmax  sup |d"(z”,y") —d*(2",y")|
p—oo  xyekE; H—>00 JE[N] x”,y”ea(")(j)

+2limsup max sup diamg. [f{lj({p}) N Ul(r) (j)]
p—oo  Je[N1peS(5) ’

+2max sup diamge |55 ({p AU (]
max sup diamae [135({1) U7 )]

Moreover, by conditions (ii), (iii) and (iv) in Theorem , taking the limit as r» — 0 yields:

limsup sup \d“(x,y) -d” (5(3:), 6(y))‘ =0,
p—oo  xyek,

and hence the limit at y — oo also equals zero, as required.
O

Combining Lemmas I;4§ and shows that © [(E1,d*) — (E2,d*)] - 0 as u — oo, completing

the proof of Proposition §.4. I . The proof of Theorem 4.2.5 is now completed by combining Proposition

and Proposition EA. i, together with Theorem E4§
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Chapter 5

The unboundedness above and below of Hy, 7:23, Hy

and the unboundedness below of #3

This chapter combines direct local calculations with the Vitali Covering Theorem to prove the un-
boundedness above and below (in a logarithmic sense) of the Hitchin functionals on Gg 4-forms, Gy
3-forms and ég 4-forms, and the unboundedness below of the Hitchin functional on Go 3-forms. As
scholia, initial conditions of the Laplacian coflow which lead to non-convergent solutions are shown to
be dense and the critical points of the Hitchin functionals on Go 4-forms, ég 3-forms and Gg 4-forms

are shown to be saddles.

5.1 Local volume-altering perturbations of closed G, 4-forms

View R as a manifold with canonical coordinates (x!,...,27) and let B;, denote the ball of Euclidean
radius 1 > 0 about 0. Given ¢ € QI(R"), write Hy p, (1) = fB voly. Initially consider the Go 4-form
on R defined by:

wo - dx4567 +dl’2367 +d$2345 + dx1357 —d$1346 —dx1256 _ dx1247. (511)

The key result upon which this chapter’s investigation of H,4 is founded is:

Lemma 5.1.2.
1. There exist a* € Q3(R") with supp(a®) € By such that

D*My B, |y, (da*, da*) 20.

2. There exist B* € Q3(R") with supp(5*) € By such that:
V* =4 +dB* is a Ga 4-form (5.1.3)

and

Hap, (VF) 2 Has, (Y0) (5.1.4)
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Proof. Using Proposition , the Hessian of H4 g, is given by:

1/3
D2H4,B1|wo(71,72)=/ Z(Zgwo (171, T192) + Gy (T771, T772) = Gus (7T277177T2772))U05w07
B,

(5.1.5)
where 7, denotes the type decomposition with respect to 1. For (1), consider the choices:

at = f(r).*%% and o = f(r) -dx123,

where 7 = \/(#1)2+ ...+ (27)2 and f : [0,1] - [0,1] is a smooth function such that f = 1 on
a neighbourhood of 0 and f = 0 on a neighbourhood of 1. Then since d¥,10 = 0, one finds
dat = df A sy, bo € Q3(B1) (cf. eqn. ()) Hence using eqn. ()

1
D2H47Bl‘¢o(da+7da+) = / Z_l ”dOzJr Hio ’UOlw0 >0,
B

as required. For o, one computes that:

j—fl(xld:zl +o+zdz’) Adat? =
rr

af1
drr

)

da” =d(f(r)-dz'*?) =
where v = (zldz! + ... + 27dz") A d2'?3. One can verify directly that:

@), =0, Ime ()12, = 7 (@42 + @)+ @)+ (T)?)
Imar ()13, = 2 (@42 + (@) + () + (2T)2)

Thus, for this choice of @™, one computes using eqn. () that:

2
D*Ma g, |y, (da”,da”) = - '/Bl é (%%) ((334)2 + ()% + (2%)% + (x7)2) volg < 0.

For (2), take 8* = ta* for some ¢ > 0 to be determined later. Then 1)*(¢) satisfies eqn. () for
all t sufficiently small, since Go 4-forms are stable. Using Proposition , one may Taylor expand:

t t2
Ha, (V™) = Hap, (Yo) + 1 / da™ A Sy, 1o + §D2H4,Bllwo(d0¢ia da*) + O(t%).
B,

Since supp(a®) € By and d¥, 1o = 0, by Stokes” Theorem one finds fB1 do A Sy, = 0. Thus:

t2
Hap, (V%) = Hap, (Vo) + 5D Hap, |y, (do®,da®) + O(F),

Part (2) of the lemma now follows by taking ¢ > 0 sufficiently small.
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Next, I generalise the results of Lemma to arbitrary closed Go 4-forms. Let ¢ be a closed
Gg 4-form on R such that v|o = 9plo. (Note that this condition always holds in suitable coordinates
on R".) Let B, (3) denote the geodesic ball of radius 1 centred at 0, defined by the metric g,.

Proposition 5.1.6. There exist ng >0 (depending on 1) and € >0 (independent of 1) such that for
all ne (07 770]

1. There exist o € Q3(R") with supp(a;;) € By () such that

'D2'H473n(¢) |¢(da7j7:, da;) 20.

2. There exist (3} € Q3(R7) with supp(8;) € By (¥) such that ¢; = +dp; is a Ga 4-form and:

HaB, () (1/1;) 2 (1+ 5)7'[4,131,(1/1) ().

Proof. The proof is a simple scaling argument. Firstly, note that the statements in (1) and (2) are

diffeomorphism invariant and invariant under rescaling:
N Ain, e Y, ap e Aay  and By e ABy

for any A > 0 (in particular, note that B )\%n()«/}) = B, (¢)). For each n > 0, consider the diffeomor-
phism i, : x € R” = nz € R” and define Py = n‘4u7’;¢. Then by scale and diffeomorphism invariance,
to prove the proposition it suffices to prove that for all > 0 sufficiently small (depending on 1) there

exist o, B* satisfying:

supp(a™®), supp(5*) € By (¢y) (5.1.7)
such that:
D*Ha g, () |, (do*, da*) 20; (5.1.8)
thy +dS* is a Gy 4-form (5.1.9)
and:
Ha B, (g,) (Vy +dB%) 2 (L) Ha s, (4,) (¥n)- (5.1.10)

Fix a*, * to be as in Lemma and choose € > 0 such that:
Hap, (VF) 2 (L £e)Has, (Y0)-

Then by Lemma each of eqns. (bl?i), (l51d), (I51Q) and () hold with ¢ in place of

¥y (note in particular that By(vp) = B1). Now as n — 0, ¢, — 9o locally uniformly on R” in all
derivatives. As each of eqns. (bl?l), (15154), (151Q) and (blld) are open conditions on the underlying
Gg 4-form 1)y, it follows that the equations are satisfied for all > 0 sufficiently small. This completes

the proof.
O
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As an initial application of Proposition , I prove the first part of Theorem :

Theorem 5.1.11. The critical points of Ha are always saddles. Specifically, let M be a closed,
oriented 7-manifold (or, more generally, 7-orbifold) let 1p be a torsion-free Go 4-form on M and
consider the Hitchin functional Hy : [¥]4 — (0,00). Then there exist infinite-dimensional subspaces
St (¢) ¢ Ty[]+ 2 dQ3(M) along which D*Hay is positive definite and negative definite respectively.

Proof. Let {B;},.,y be a countable disjoint collection of open balls in M (in the case that M is an
orbifold, require the balls to lie in the smooth locus of M). By Proposition , for each 7 € N
there exist 3-forms af on M with supp(«f) € B; such that D*Hy|y, is positive definite (respectively
negative definite) along da¥. Now take Sf(%) to be the infinite-dimensional subspace of dQ3(M)
given by all finite linear combinations of the da;. It is simple to verify that D2H4|w is positive and
negative definite along Si (1)) respectively, as required.

O]

5.2 Laplacian coflow: density of initial conditions leading to

non-convergent solutions

Let M be an oriented 7-manifold (not necessarily closed), let 1) € QF(M) be a closed Gy 4-form and
recall the set [1], ¢ Q*(M). Given a Riemannian metric g on M and a countable exhaustion of M
by compact subsets Ky € K € ... € M, the countable family of seminorms || — ”Cg( K,) on QM) is
separating and induces the C° topology on Q*(M) (and hence on [1],); this topology is independent
of the choice of g and K.

Now recall that the Laplacian coflow of ¢ is the solution of the evolution PDE:

O (t)

ot = Aiﬁ(t)w(t) = dd;(t)¢(t) and  (0) =. (5.2.1)

Using this terminology, I now prove:

Theorem 5.2.2. Let M be an oriented 7-manifold (not necessarily closed) and let ¢ € Q3 (M) be a

closed Gy 4-form. Consider the space:

no solution to the Laplacian coflow started
at ¢’ converges to a torsion-free Go 4-form

OLyy, = {w’ e[vls

Then Oy, © [¢]; is dense in the C° topology.

Proof. Begin by considering the open ball B,, c R7 equipped with the standard flat Go 4-form 1y and
choose a, € (9% (By,) compactly supported such that:

D*Hap, |y, (dag, day) >0 (5.2.3)
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according to Proposition . I begin by proving that for all s > 0 sufficiently small, the Laplacian
coflow on By, starting from 1o + sday; cannot converge to a torsion-free Go 4-form.
Indeed, let ¢ be a torsion-free Gg 4-form on R such that:

supp ({/}\— wo) € B,. (5.2.4)

Since 9 is torsion-free, 97 s Ricci-flat [114, Prop. 11.8]. Moreover, the mean curvature of 8B_,7 = Sg
as a submanifold of (R”, ga) with respect to the inwards pointing normal is %, since g is simply the
Euclidean metric in a neighbourhood of Sg by eqn. () Thus, using [67, Thm. 2.1}, it follows that:

n 7
Hip, () < f (1—5) dr-volsg(i)
0 il (5.2.5)

- gVolsg(%),

where Volgs ({Z)\) is the volume of Sg with respect to the metric induced by {Z)\, which is the same as
the metric induced by 1)y using eqn. () A direct calculation shows that eqn. () is saturated
when {ﬂ =1)g. Hence for all torsion-free {Z)\ as above:

Hap, (V) < Hap, (o). (5.2.6)

Now let 14(t) denote a solution to the Laplacian coflow started at g + sda;’) and suppose that
1s(t) existed for all ¢t and converged to a torsion-free Gy 4-form ¥ as t — oo. Since Laplacian coflow

preserves 1y, ¥s(t) is fixed on the region where 1(0) = 1y and hence:

supp ({j;— ¢0) c supp(¢s(0) — o) € By,

A

Thus, using eqn. (p.2.6), one has Hy g, (J) < Hap, (Yo). However, the Laplacian coflow increases

volume pointwise [59, eqn. (4.32)]. Hence:

Hap, (9) > Hap, (:(0)) = Hap, (Yo + sdaj)
> Hap, (1)

where the last line follows from eqn. () for all s > 0 sufficiently small (cf. the proof of Lemma
) contradicting eqn. ()

Thus there are (uniformly) arbitrarily small compactly-supported perturbations 5(0) = 1o +sda,
of 1y such that the Laplacian coflow started from 15(0) cannot converge to a torsion-free Go 4-form.
To complete the proof therefore, it suffices to prove that given any M, 9 as in the statement of the
theorem and any ¢’ € [¢],, there exists a closed Gg 4-form " € [¢],, arbitrarily close to ¢’ in the
C° topology, such that " is diffeomorphic to 1y in some small neighbourhood of M. This follows

from the subsequent local result:

Claim 5.2.7. Let ¢ be a closed Go 4-form on RT such that ¥|o = volo. Then for all § > 0, there
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exists >0 and a € Q3(R") with supp(a) € By, such that:
Y +da=1vy on B, and Hda||cz, <.

(Note that ' + da is automatically of Ga-type for 6 > 0 sufficiently small, by the stability of Ga
4-forms.)

Proof of Claim. Consider the 4-form 1o —1’. Since 19 — 1" vanishes at 0, there is some constant
C1 > 0 such that for all n:
[0 = %'l co, (8.,) < Crn- (5.2.8)

Similarly, since (1o —1') = 0, one can choose a primitive @ € Q3 (R7) for g — 1’ such that for some
constant C > 0 and all n:

[@lco, (8., < Con®. (5.2.9)
Indeed (cf. [48, p. 16]) identify R7\ {0} = (0, 00) x S® and write ¢y — ¢’ = o1 + dt A 02, where ¢ is the
parameter along (0, 00), o; depends parametrically on ¢ (i = 1,2) and do; = 0 and aa% = doy (since
d(1ho - ') = 0). Set w = [ oadt. Then:

t
dwzf %dt+dt/\02=01+dt/\02=¢0—¢,
0

and w clearly satisfies eqn. (), as required.
Next, fix a smooth function f:[0,1] — [0,1] such that f =1 on a neighbourhood of 0 and f =0
on a neighbourhood of 1. Given any 7, define:

1 re[0,n],
= f(T;n) re[n,2n]

and set o = f,(r)w. Then ¢’ + da = 9" + dw =1 on By, as required. Moreover:

df,
HdaHozl = Hd—:dr AT+ fndw‘

CO
»!
sup | f’
< 47 n oo, 0 + 1950 = 9l o
T’ P P
S 0377’

where the first inequality follows from the fact that supp( f;) € Ba, and the second inequality follows
from eqns. () and () The claim now follows by taking n > 0 sufficiently small. This in turn
completes the proof of Theorem .

O
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5.3 The unboundedness above and below of H,

The aim of this section is to prove the following result:

Theorem 5.3.1. The functional Hy is always unbounded above and below. Specifically, let M be a
closed T-manifold (or, more generally, a closed orbifold) and let 1) be a closed Go 4-form on M. Then:

wify )70t ) Pl e

Let (X,d) be a metric space and p a Borel measure on X. Write B,.(z) for the closed metric ball
of radius r > 0 centred at = € X. (X,d,u) is termed a doubling metric measure space if there exist
constants C, R > 0 such that for all x € X and r € (0, R]:

1 (Bar(2)) < Cpu (B, (). (5.3.2)

Doubling metric measure spaces satisfy the following important property [66, Thm. 1.6] (N.B. whilst
the statement loc. cit. requires that eqn. () hold for balls of arbitrarily large radius, the proof

only uses the weaker condition stated above):

Theorem 5.3.3 (Vitali Covering Theorem). Let (X,d,u) be a doubling metric measure space, let
A c X be Borel measurable and suppose that F is a family of closed balls in X centred at points of A
such that inf {r ‘ B,(a) € 9} =0 for every a € A. Then there exist disjoint balls {Bri(ai)} e FN

i=0
such that:
Iz (A\U B, (ai)) =0.
i=0

Now let (M, ) be an oriented 7-manifold equipped with a closed Gy 4-form and for each p € M,
let B,(p) denote the geodesic ball of radius r centred at p defined by the metric g,. By applying
Proposition about each point p € M, one immediately obtains the following result:

Lemma 5.3.4. Let € > 0 be as in Proposition . Then for each p € M, there exists n, > 0
(depending on 1) such that for all n € (0,n,], there exist dg/i e O3 (M) with supp(éz%/i) € B,(p)
satisfying:

PP = p+ dabl* s a Go 4-form

and:

Hap, @) (V) 2(1 +e)Has, p) (V)

I now prove Theorem :

Proof. Firstly, choose v > 0 sufficiently small that:
€ €
(1+8)(1—V)>(1+§) and 1—5+u5<(1—§), (5.3.5)
where € > 0 was defined in Proposition .
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Initially, let M be a closed, oriented 7-manifold and v a closed Gg 4-form on M. The Riemannian
metric gy and the volume form voly define a natural metric dy, and measure p,, on M and, since M

is compact, (M, dy, ttyy) is a doubling metric measure space. Now take:
7 = {B,() |p€M, ne(0,m)}

for 1, as in Lemma |, and choose {B,, (p; disjoint and measure-theoretically covering M, as
Tp n: \P 0 J

in Theorem . Since:
1 (B (00) \ B, () = 0

for all 4, it follows that the open balls {By,(pi)};-, also measure-theoretically cover M. Hence:

Ha(y) = §H4,Bm(pi)(w)‘

In particular, the right-hand sum is convergent and so there is N > 0 such that:

i Hap,, () (V) <vH4(V). (5.3.6)
i=N+1

Now let: N
Y=+ ;)ddz:/*,
1=

where dnj/ * are defined according to Lemma . Then 5 € [¢]+. Moreover, by the estimates

obtained in Lemma and eqn. ()

Ha(Yy) = 2%413”1(;% (Y1) + Z Hap, () (Y1)

i=N+1
(1_6)ZH4BW(]D,)(¢)+ ; Hap,, (p) (V)
<(1-e)Ha(p) +¢ Z Has,, (p) (V)
i=N1

<(1-e+ve)Ha(v) (1 - %)'H4(w)

and

N
M) > S Ham, 0 (1) > (L) (1-0)Ma() > (14 3) (e,

Now recursively define 9% by applying the above argument to 1_; respectively for n > 2. Then since
the value of € in Proposition is independent of the choice of closed Ga 4-form, it follows that
for all n > 0:

Ha(1h,,) < (1 - g)n’}-[4(w) —-0asn— oo
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and

Ha(r) 2 (1 + g) Ha()) > +00 as n — oo,

as required.

In the case where M is a closed orbifold, consider the smooth locus Mgeetn, (note that the
singular locus has positive codimension and thus measure zero). For each component M" of Mg,00th,
the Riemannian metric gy and volume form vol,, again define a metric dy, and measure j,; on M,
and (M, dy, f1) is a doubling metric measure space by compactness of the original orbifold M. The
rest of the argument now proceeds as before.

O

Remark 5.3.7. In [36, B7, B5], Donaldson explained how to extend the Hitchin functional Hs from
closed 7-manifolds to compact 7-manifolds with boundary, by considering the data of SL(3;C) 3-
forms on the boundary of M. In the same way one can also extend the functional H4 to compact
manifolds with boundary by considering suitable geometric data on the boundary. Theorem
is then also valid on compact manifolds with boundary; the argument is essentially the same as the
orbifold case, with Mg ,e0tn replaced by M\OM.

Likewise, the unboundedness of the functionals H3 and Hy proved in this chapter also holds

equally on compact manifolds with boundary.

5.4 The unboundedness below of Hj

The deduction of Lemma (2) from Lemma (1), the proof of Proposition and the
arguments of §@ all apply equally to either Hs or Hy. However Lemma (1) has no complete
analogue for Hs. Indeed, let B; ¢ R7 denote the open unit ball in R” and let:

o = dz'? + Az 1+ 407 4 Az - 4a2Y7T — 4T - 420

be the ‘standard’ flat Go 3-form on R”. Suppose there were a* such that D*Hs g, |4, (da™,dat) > 0.
Then embedding B; < R’ / 377 = T7 and extending « by zero over all of T7, one would find:

'DH3’T7 ]¢(da+, doﬁ) > 0.

However, in [[71] Hitchin proved that on any closed manifold M with torsion-free Gy 3-form ¢, the
Hessian 'DQ'H3|¢ is negative definite (modulo diffeomorphisms), and thus a contradiction has been
reached. In particular, the arguments presented in this chapter cannot be applied to prove that Hs
is unbounded above. There is, however, a partial analogue of Lemma for Ha:

Lemma 5.4.1. There exists o~ € Q?(R") with supp(a~) € By such that:
D2H37Bl‘¢0 (daf,dof) < 0.

115



Proof. From Proposition it suffices to construct a~ € Q*(R7) with suppa~ € By such that:

4 - - p—
S = f (g”m(da )E, + 7 (da)]Z, - [rr(de )Hio)vol% <0.
By

Consider o~ = f(r) - da'?, where f : [0,1] - [0,1] is a smooth function such that f = 1 on a
neighbourhood of 0 and f =0 on a neighbourhood of 1 (and r =+/(z!)2 + ... + (#7)2). Then:

df1 df1
=d(f(7“)-:cl) 47 ~(ztdat +. +:U7d:c7)/\dx12=—f—-y,
drr rr
where v = (z'dz! + ... + 27dz") Adz'?. A direct calculation yields:
1
[v13, = @)% + (@) + (2°) + (%) + ()2, Im )13, = ;(333)2,

()13, = 7 (42 + @) + (@02 + (07)2).

Thus, for this choice of o~
df1 1
j /(drr) ( 3)2+5((«T4)2+(IL’5)Q+(JZ6)2+(ZIJ7)2))UOZ<O
as required. O
I thus obtain:

Theorem 5.4.2. For any closed, oriented 7-manifold (or, more generally, 7-orbifold) M and any

closed Go 3-form ¢ on M:
inf  Hsz(¢") =0.
yelol

5.5 The unboundedness above and below of 7:23 and 7:24

The aim of this section is to prove the following result:

Theorem 5.5.1. Let M be a closed 7-manifold (or, more generally, a closed orbifold) and let é and
J be closed Go 3-forms and Ga 4-forms on M respectively. Then:

. mf [&]N’Hg( ) 0cmdsup¢, [~] ’Hg(gb) 00
. mf [mN’H4( ) Otmdsupd), [«] ’H4(¢) 0.

As in §@, by repeating the arguments of §§E| & @, it suffices to prove the following result:

Lemma 5.5.2. Let By c R” denote the open unit ball in R” and let:

Bo = dz'? — Az — 4197 4 4?6 — 4zYT — 4T — 2350

To = Az 1507 — 42367 _ 452345 | q1357 _ 41346 _ 1256 _ 41247

116



be the ‘standard’ flat Go 3-form and Go 4-form on R” respectively. Then:

1. There exists B* € Q*(R") with supp(8*) € By such that:

4
I = f (gllm(dﬁi)%o +[mr(dB*))5 - 7r27(d5i)||§;0)vol020. (5.5.3)
B
2. There exists % € Q3(R7) with supp(5*) € By such that:

S = f (an(dﬁ)n%,;o +|mr(dB*)15 - ||7r27(dﬁ*)§;o)voz0;o. (5.5.4)
B

Proof. (1) Again let r = \/(21)2+ ...+ (27)2 and f:[0,1] - [0,1] be a smooth function such that
f =1 on a neighbourhood of 0 and f =0 on a neighbourhood of 1. I claim that:

Bt = f(r)dz'? and B = f(r)da'

satisfy eqn. () A direct calculation yields:

e f (ALY (2(x3>2 @) @) @) W)MO

dr r

and

drr 2 2 3 2

[ (my((wzf RGN <w;>2)wz0.

Observe also that, by symmetry, for any distinct 4,5 € {1,...,7}:

—/Bl (g%)z ((1,1)2 - (CCj)Q) volg = 0.

Thus, for 8%, one sees that:

e (2

Similarly, for 57, one sees that:

2

22 5
f_:—f(gl) (x)vol0<0.
B, drr 3

Bt = f(r)dz'?®*  and B = f(r)dz'?h

(2) Now take:
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By direct calculation:

and:

o, / dfl x>2_<x5>2_<x6>2_3<z7)2 ol =~ fBl(ﬂz)Q <$6>2+3<fj>2 volo < 0.

drr 2 2

using symmetry as above.

As in §@, as a corollary, one obtains:

Theorem 5.5.5. Let M be a closed, oriented 7-manifold (or, more generally, 7-orbifold) and let b be
a torsion-free Go 8-form on M. Then there exist infinite-dimensional subspaces 83 (E) along which
D2H3| 3 is positive definite and negative definite respectively. Similarly, let 1 be a torsion-free Go
4-form on M. Then there exist infinite-dimensional subspaces S (¢) along which D2H4|~ is positive
definite and negative definite respectively. In particular, the critical points of both Hs and Ha are
always saddles.
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Chapter 6

Concluding remarks and open questions

Here, I briefly describe two implications of the results from Part I with impact beyond the research

area of Hitchin functionals.

6.1 Gromov—Hausdorff convergence without assumptions on

curvature or injectivity radius

It is well-known that for alln e N, » >0, V >0, D > 0, s € R, the following two sets of manifolds are

precompact in the Gromov-Hausdorff metric [25, p. 265]:
1. the set of all n-manifolds with volume at most V' and injectivity radius at least r;

2. the set of all n-manifolds with diameter at most D and sectional (or Ricci) curvature at least

K.

As a consequence, theorems which prove Gromov—Hausdorff convergence typically require either a
lower bound on either injectivity radius or sectional/Ricci curvature.

By contrast, Theorem assumes no lower bound on curvature or injectivity radius, and there-
fore (combined with Theorem ) can be used to prove Gromov—Hausdorff convergence even in the

absence of such bounds.

It is therefore possible that Theorems |44]J and |437| could provide useful tools for proving

Gromov—Hausdorff convergence in other situations where lower bounds on curvature/injectivity ra-

dius are not available.

6.2 The structure of Laplacian coflow in a neighbourhood of

a torsion-free Go-structure

Lotay—Wei recently proved the following result on the structure of Laplacian flow near a torsion-free
Go 3-form:
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Theorem ([96, Thm. 1.3]). Let ¢ be a torsion-free Go 3-form on a closed 7-manifold M. Then there
exists a neighbourhood U of ¢ in [¢], such that for any ¢’ € U, the Laplacian flow:
9¢(t)

o Agiyd(t),  ¢(0) =¢'

exists for all time and converges smoothly to some ¢o € Diffo(M) - ¢ as t - oo.

In contrast, currently nothing is known about the behaviour of the Laplacian coflow in a neigh-
bourhood of a torsion-free Go 4-form .

Theorem provides some potential insight into this problem. In Chapter (specifically
Proposition ) it is proven that the saddle-like critical points of the functional H4 are non-
degenerate modulo the action of diffeomorphisms, giving explicit formulae for subspaces S;(v) along

which D?H, is positive and negative definite respectively. Thus, one can write:

Ty[¢]s = T (Diffo(M) - ¥) & Sj(¢) @ Sy (¥).

Motivated by this, it is natural to ask the following question:

Question 6.2.1. Let M be a closed, oriented 7-manifold and let 1 be a torsion-free Go 4-form on
M. Does there exist an infinite-dimensional stable manifold #; (¢) c [¢]+, tangent to S; () at 1,
and an infinite-dimensional unstable manifold 7} (1)) c [¢]+, tangent to S; (1) at 1, such that for
any sufficiently small neighbourhood U of 1) in [¢], the following is true:

o Forally' eUn . (), the Laplacian coflow:

Oy (1)

5 =Ayy(t),  ¥(0) =1

exists for all time and converges smoothly to some 1o, € Diffg(M) -1 as t — oo.

o Forally' eUn (), the time reversed Laplacian coflow:

20— Ay, ()=

exists for all time and converges smoothly to some 1o, € Diffg(M) -1 as t - oo.

o No other trajectories of either the Laplacian coflow or the time-reversed Laplacian coflow in U
converge to any e € Diffg(M) -1y nU. (Here, U denotes the closure of U.)

Further evidence to support the third point above is Theorem , which states that, at least in
the C°-topology, most trajectories of the Laplacian coflow in any neighbourhood of 1 fail to converge
to any torsion-free Go 4-form.

Question seems to be far more challenging than Lotay—Wei’s theorem, since it is known
from Grigorian [59] that, unlike Laplacian flow, neither Laplacian coflow nor time-reversed Laplacian
coflow is parabolic modulo diffeomorphisms, even when restricted to the direction of closed forms.

This lack of parabolicity poses a significant technical hurdle to the study of Laplacian coflow.
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Part 11

h-principles for stable forms
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Chapter 7

Relative h-principles for closed stable forms

This chapter uses convex integration to prove four new relative h-principles for closed, stable, exterior
forms on manifolds, viz. the relative h-principle for co-symplectic forms, co-pseudoplectic forms and
G 3- and 4-forms. New proofs of the three previously known relative h-principles are also provided.

The implication of these results for the unboundedness of Hitchin functionals is discussed.

7.1 Algebraic preliminaries: co-symplectic, pseudoplectic and
co-pseudoplectic forms
The aim of this section is to establish the fundamental properties of stable 2-forms and (n —2)-forms

which will be needed in this chapter. I begin with some general results on stable forms. Fix a volume

form vol on R™; the following result is easily verified by direct calculation:

Lemma 7.1.1. Consider the anti-isomorphism:

®:GL,(n;R) - GL,(n;R)

) 7.1.2
F s det(F)m» - F!, (71.2)

with inverse given by ¥ : F det(F)% -F~Y. Then the following GL,(n;R)-equivariant diagram

commutes:
N'R™ GL:(n;R)
lo»o_wol ltb (713)

AP (R D QL, (n;R)

where the left-hand vertical arrow is an isomorphism, the top action is a left action and the bottom

action is a right action.
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Next, given a p-form oy on R" define linear maps ¢, and &5, by:

Loyt R™ — /\p_1 (Rn)* €op - (Rn)* - /\p+1 (Rn)*

(7.1.4)
U u oy B B Aoyg.

Recall from [93, §2] that a p-form o on R™ is termed multi-symplectic if ¢, is injective.ﬂ Analogously,
I term o multi-co-symplectic if €5, is injective. Write GL_(n;R) for the set of orientation-reversing
automorphisms of R"™ and Stabar,_(n:r)(00) for the set of orientation-reversing automorphisms fixing
a given p-form oy.

Lemma 7.1.5.
1. Let a e N (R™)" be a multi-symplectic form, embed R" < RF @ R" = R"™* for some k > 0 and
embed N° (R”)* - NP (R”*k)* in the canonical way. Then:

Apxke Bisxn) | A € GL,(k;R), B e End(R",R¥),
Stabar,, (n+k;r) (@) =

Onxk Cnxn Ce StabGL+ (n;R)(a)
Akxk kan
H {( Onxk Cnxn)

Thus if Stabgrn;r) () is connected, then Stabgr, (n+k;r) () is also connected.
2. Now let ace N’ (R™)" be a multi-co-symplectic form. Then:

A € GL_(k;R), B € End(R",R¥),
Ce StabGL_(mR)(oz) '

A X 0 Xn
Stabar,, (nekr) (072 A o) = {( ok : )

By det(A) 7 Crun

A ¢ GL,(k;R), B ¢ End(RF,R"),
Ce Stath(n;R)(a)

Akxk Ok:xn
I1 i
B |det(A)|[» Chxn

where J € GL(n;R) is any map such that J*« = —a. If either:

C e J-Stabgr_,.,(nr) (@)
(7.1.6)

o « and —« lie in separate GL(n;R)-orbits, or
s «a and —« lie in the same GL,(n;R)-orbit and Stabgr(n;r) (@) = Stabgr, (nr) (@),

then the second set on the right-hand side of eqn. ) is empty. In particular, if either of these
conditions holds and additionally Stabgr,, (nr)(v) is connected, then Stath(mk;R)(GlQ'“k A Q) is
also connected.

Proof. (1) Since a € A’ (R™)" is multi-symplectic, the kernel of the linear map:

Rn+k _)/\p—l (Rn+k)*

Uu—udoa

! Caveat: not every stable form is multi-symplectic, despite the claim to the contrary in [93, Cor. 2.3]. A
counterexample is provided by pseudoplectic forms; see Proposition .
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is precisely R¥ @ 0 and hence this subspace is invariant under Stabar,, (n+k;r) (). Thus any element
Akxk kan

Ok Cnxn
C € GL(n;R). Therefore F*a = C*a = a and the result follows.

(2) Since o€ A? (R™)" is multi-co-symplectic, the kernel of the linear map:

of Stabgr,, (n+k;r) (@) has the form F' = ( for some A € GL(k;R), B € End(R",R¥) and

(Rn+k)* _)/\p+1 (Rn+k)*
5 N ,8/\ (912...k /\OZ)

is precisely (Rk)* @ 0 and hence this subspace is invariant under StabGL+(n+k;R)(912“‘k A «). Thus

Akxk kan

any element of StabGL+(n+k;R)(912”'k A «) has the form F = ( ) for some A € GL(k;R),

nxk ann

B ¢ End(R*,R") and D e GL(n;R), hence F* (012“'k /\a) = det(A)0'2* A D*a = 1%F A o and
whence:

det(A) - D*a = a. (7.1.7)

If det(A) > 0, one can rewrite eqn. () as (det(A)% -D)yP a = a. Since det(F') = det(A) det(D) >
0, it follows that det (det(A)% -D) >0 and thus C = det(A)i - D € Stabgr,, (n;r) (@) as claimed.
Now suppose det(A) < 0 and rewrite eqn. () as (|det(A)|% -D)*a = —a, where now C =

|det(A)|% - D has negative determinant. Then clearly o and —« lie in the same GL(n;R)-orbit;
let J be some fixed element of GL(n;R) (not necessarily equal to C) such that J*a = —a. If
a and -« lie in different GL,(n;R)-orbits, then J is automatically orientation-reversing and so
C € J - Stabgr, (n;r) (@) as required. Else, J may be chosen to be orientation-preserving and hence
C-J is an orientation-reversing automorphism of a, implying that Stabgr,(n;r) (@) # Stabgr,, (n;r) (@)
and C € J - Stabgr,_(n;r) (), again as required. This completes the proof.

O

7.1.1 (2k-2)-forms in 2k-dimensions, k >3

I begin by recalling the following well-known result:

Proposition 7.1.8. Let k > 2. The action of GL,(2k;R) on A2 (R%)* has exactly two open orbits,
given by:

N (RF) = {we N2 (R*) [wF >0} and AL (R*) = {we A2 (R*)" | wF <0} (7.09)

which form a single orbit under GL(2k;R). The stabiliser in GL.(2k;R) (equivalently GL(2k;R)) of
forms in either orbit is isomorphic to the real symplectic group Sp(2k;R). ‘Standard’ representatives

of the two orbits are given by:
wie(k) =02+ 03+ 10212 and  w_(k) = -0+ 03 + 4 9212 (7.1.10)
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respectively.

Forms in A, (R%)* are here termed emproplectic and forms in A2 (]Rzk )* termed pisoplectic.E
The GL(2k;R)-orbit comprising of both emroplectic and pisoplectic forms is termed the orbit of

symplectic forms w and can be characterised by the property that the linear map ¢, is an isomorphism

(see eqn. ())

Using Proposition , I prove the following result (some aspects of which appear to be known;
see, e.g. [12]):

Proposition 7.1.11. Let k > 3. The action of GL,(2k;R) on A?F~2 (R%)* has exactly two open

orbits, given by:
N2 (R?) = (P | w s emproplectic) — and NP2 (R*)" = {~*™ | w is pisoplectic) .

Call forms in /\Qf_2 (Rzk)* co-emproplectic and forms in N2F2 (R%)* co-pisoplectic. Standard ex-

amples of co-emproplectic and co-pisoplectic forms are given by:

b 2. 9TTTi 21,2k a0k we(B)F!
=2 :
and: i -
i-1,2i...2k- w- (k)™
w_(k) — (2 012...2 1,2:..2k 1,2]{:) _ 034...2k‘ - _ (k(_)l)' , (7113)
i=2 !

where ™ denotes that the corresponding indices should be omitted. The stabiliser in GL4(2k;R) of a
co-emproplectic or co-pisoplectic form is isomorphic to Sp(2k;R). If k is odd, then /\Qf_2 (]ng)* and
N2k-2 (Rzk)* are both individually invariant under GL(n;R), while if k is even, the two GL,(n;R)-
orbits form a single GL(n;R)-orbit. I shall say that w is co-symplectic if it lies in /\21:“_2 (]R%)yr u

N2 (R%)*. This is equivalent to the condition that e is an isomorphism.

Proof. Recall diagram () and let n = 2k and p = 2. Let w denote an emproplectic (resp. piso-

plectic) element of A2R%* and let @ = w Jwvol. Then one obtains the following diagram:

GL, (2k;R) -w:> GL, (2k;R)
l/a»—»UJvol l/‘ID

GL, (2k;R) -WD GL.(2k;R)

Since the left-hand vertical arrow is an isomorphism, it follows that Stabgr,, (2xr) (@) = @ (StabGL+(2k;R) (w))

2T have created these non-standard terms, in keeping with the term ‘symplectic’ (literally, ‘braided together’).
‘Emproplectic’ (literally, ‘braided forwards’) denotes that forms in the first orbit induce the ‘correct’ orientation
on the underlying space, whilst ‘pisoplectic’ (literally, ‘braided backwards’) denotes that forms in the second orbit
induce the ‘opposite’ orientation.
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As Stabgr, (2k:r) (W) 2 Sp(2k; R) € SL(2k; R), ®(F) = F~! on Stabgr,, (2k:r) (w) (see eqn. ()) and
hence Stabgr,, (2k:r) (@) = Stabgr,, (2k;r) (w) = Sp(2k; R), as required.
Now take w = e12 + €34 + ... + €51 2% and recall w, (k) = 0'2 + 03 + ...+ 0212k defined in eqn.

() Taking vol = w*lglf)k, one finds that:

w (k,)k—l 3 "
wJ’l)Olzﬁ:er(k)e/\%f 2(R2k) )
Likewise, if one takes w = —e12 + e34 + ... + eg5_1 25 and vol = w*,(j)k = —w’]gf)k7 one finds:
Cw (B 2%k-2 (m2k\*
vaol——W—w,(k:)E/\_ (R )

as required. To prove the statement regarding GL(2k;R)-orbits, let w be an emproplectic form, let
F ¢ GL_(2k;R) and consider —F*w. If k is odd, (—F*w)k = (-1)FF* (wk) =-F" (wk) > 0 and so
—F*w is emproplectic. Thus F™* (wk_l) = (—F*u))k*1 is co-emproplectic as claimed. Alternatively, if
k is even, then (—F*w)k < 0, hence so —F*w is pisoplectic and whence F* (wk‘l) = - (—F"w)k_1 is
pisoplectic, as claimed. The final statement regarding the characterisation of co-symplectic forms is
clear.

O]

I remark that the notions of co-emproplectic and co-pisoplectic forms are still valid in dimension 4,
however in this case they coincide with emproplectic and pisoplectic forms respectively. Accordingly,
I reserve the terms co-emproplectic and co-pisoplectic for dimension 2k, k > 3. Also note that given
a co-emproplectic form @ on an oriented 2k-manifold, the form —w is a co-pisoplectic form on M,

where the overline denotes orientation-reversal.

7.1.2 2- and (2k - 1)-forms in 2k + 1-dimensions, k > 2

Although some aspects of the following result are known, to the author’s knowledge, the complete

statement does not appear in the literature:

Proposition 7.1.14. Let k > 2. The action of GL,(2k + 1;R) on A2 (R%”)* has a unique open

orbit:
/\2P (R2k+1)* _ {Me/\z (R2k+1)* | Mk th} (7.1.15)

which is also an orbit of GL(2k + 1;R). Equivalently, a 2-form p lies in /\2P (R%”)* if and only if
tu has rank 2k (see egn. )) Call forms in this orbit pseudoplectic; a standard representative of

this orbit may be taken to be:
po(k) = 0% + 0% + 4 922 (7.1.16)

The stabiliser of any pseudoplectic form is connected and is isomorphic to the group:

Aix1 Bixok
O2kx1 Corxork

AeRyg,Be(R*) and C e Sp(2k;]R)}. (7.1.17)
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Likewise, the action of GL,(2k + 1;R) on A?F! (R%*l)* has a unique open orbit:
25;113 (R%”)* = {f € /\2’“’1 (R%”)* | the linear map ¢ has rank Qk} (7.1.18)

which is also an orbit of GL(2k + 1;R). Term forms in this orbit co-pseudoplectic. A standard

representative of this orbit may be taken to be:
k S
é—o(k;) — Z9123...22,21+1...2k,2k+1 — 91 A W+(k/’), (7119)
i=1

where w, (k) is viewed as a form on R**1 via R?* = (e, ..., eap41) € R (and formally w, (k) =

wy (k) when k =2). The stabiliser of any co-pseduoplectic form is isomorphic to the group:

Ay O1x
bd o Tk AeRyo, BeR? and C e Sp(2k;R) }. (7.1.20)
Bagx1  A772 - Copxar

In particular, the stabiliser is connected.

Proof. The set {u e N (R%”)*
subset of A2 (Rzk”)* it must have positive codimension, and hence can contain no open orbits of
GL, (2k+1;R). Thus to prove eqn. () it suffices to prove that A% (RQk”)* = {N e N (R%”)* pk o+ 0}

is non-empty and a single orbit.

uk = O} is an affine subvariety of A? (R%*l)*, so if it is a proper

Firstly, let me show that A% (]R%“)’r is a single orbit of GL, (2k+1;R). Given pe A% (R%”)*,
since the rank of an anti-symmetric bilinear form is always even (and the dimension of R?**1 is odd)
it follows that ¢, has a non-trivial kernel. Pick a 1-dimensional subspace L of the kernel and let
B c R?**! be a 2k-dimensional complement to L in R%*!. Since p* # 0, one may regard u as an
emproplectic 2-form on B for some suitable choice of orientation on B. Thus one can pick a correctly-
oriented basis (fa, ..., fors1) of B with dual basis (f2,..., f2*1) such that p = f23 + ...+ f2F2**1 Now
define f; to be a non-zero vector in L such that (fi,..., far,1) is a correctly oriented basis of RZF+1.
Then with respect to this basis:

= [Py ARkl

Thus /\2P (R%*l)* is a single orbit under GL,(2k + 1;R). This also shows that /\2P (R%*l)* + O
(since (f23 +o.+ f%’z’”l)k # 0 in the above basis) and:

N (R%H))e = {M e \? (Rzkﬂ)* | v, has rank Zk}.

Moreover, since this is the only open orbit of GL,(2k + 1;R), it follows that /\2P (R%”)* must also
form a single GL(2k + 1; R)-orbit.

R2k+1

Now fix a (positive) volume element vol on R?*! let p e A2 and write £ = p Jvol. Recall
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that ¢ and ¢, denote the linear maps:

€§ . (R2k+1)* - /\2]{} (R2k+1)* L# . (R2]€+1)* — R2]€+1

arant armalp
respectively. The first step is to understand how the maps ¢ and ¢, are related:

Claim 7.1.21. The maps e¢ and v, satisfy the relation:
€¢ = —Ly Jvol.

Proof of Claim. Firstly, given a € (R™)*, B € A°R"™ and v € A (R™)", a direct calculation verifies the
following identity:
an(Bay)=—(aap)any. (7.1.22)

Thus given « € (R%”)*, one computes that:

ee(a)=ang
=a A (udvol)

=—(adp) dvol = -1, () Jvol,

where eqn. () has been used in passing to the final line.
0

Thus ¢, has the same rank as ¢ and so ¢, has rank 2k if and only if ¢ has rank 2k. It follows at
once from Lemma that the action of GL, (2k + 1;R) on AZF7! (R%“)* has a single open orbit
(which is also an orbit of GL(2k + 1;R)) given by:

o—

25‘1;) (R%“)* = {5 € /\%_1 (R%”)* ’ e¢ has rank 2k}.

Likewise, the explicit formula for &y also follows at once.

The formula for the stabiliser of pseudoplectic forms is a simple application of Lemma (1)
For the stabiliser of co-pseudoplectic forms, one uses Lemma (2), together with the observations
that:

o If k is odd, then —w, (k) = —% is co-pisoplectic (since —w, (k) is pisoplectic when k

is odd) and since (when k is odd) the orbit of co-emproplectic and co-pisoplectic forms are
each closed under the action of GL(2k;R) (and not just GL,(2k;R)) it follows that <, (k)
and —w, (k) lie in separate GL, (2k;R)-orbits. This forces the second bracket in eqn. ()
to vanish, as claimed.

o If k is even then —w, (k) = W@(_—kl))),H is co-emproplectic (since —w, (k) is emproplectic when

k is even) and thus w, (k) and —w, (k) lie in the same GL, (2k;R)-orbit. On the other hand,
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since k is even:
Stabgr(akr) (@+(k)) = Stabgr, cox;r) (@+(k))

and thus once again the second bracket on the right-hand side of eqn. () vanishes. This

completes the proof.

O]

In particular, note from eqns. () and () that neither pseudoplectic forms nor co-

pseudoplectic forms are Hitchin forms.

Remark 7.1.23. Let u € /\2P (R%”)*. The kernel of the linear map ¢, defines a 1-dimensional subspace
of R?**1 which I denote £,,. Moreover, the orientation on R%**! induces a natural orientation on 4,
defined as follows: given a 1-form 6 on R?**! which does not vanish on {,,, say that 6 is positive on
£, it O A pF > 0. Likewise, let £ € /\2(’3;1 p (IR%”)>e be co-pseudoplectic. Then the annihilator of the

1-dimensional subspace Ker(e¢) c (R%”)* defines a hyperplane in R?*+1
hyperplane by II¢. By eqn. (

associated to &; denote this
), every element F' of Stabqr,, (2x+1;r) (§) restricts to an orientation
preserving automorphism of Il¢; thus, it is again possible to orient the planes II¢ consistently for all £.
Specifically, there is a unique orientation on Il¢ such that { =A@ = 0 AwF=1, where 6 is a compatibly
oriented generator of Ann(Il|¢) = Ker(e¢) and w is a co-emproplectic form on Il with respect to the
given orientation (equivalently, w is a emproplectic form on II¢). Moreover, as @ varies, w defines a
conformal class of emproplectic forms on Il¢; thus § determines a co-oriented almost contact structure
on R?**! (in an algebraic sense) [42, §10.1.B]. E.g. in the case of the standard co-pseudoplectic form
So(k) = 0" A, (k), g k) = (€2,...,e241) and the corresponding conformal class of emproplectic
forms on Il¢ is just A- (923 ot 9%’2]“1) for A > 0.

7.1.3 Classification of stable forms

For the sake of completeness, I briefly recount the classification of stable forms; see [93] for further
details of the 8-dimensional case (although note that the formulae for (. s, differ from those op. cit.,
and were computed by the author of this thesis in order to ensure that the corresponding metrics
9ec, s,m assumed standard forms; likewise, the formulae for 7., were also computed by the author
of this thesis):

Theorem 7.1.24. The action of GL,(n;R) on A’ (R™)" has precisely the following open orbits for
2<p<n-2:
n = 2k, k> 2: N} (R¥*)" and N2E2 (R?*);
= 2k+1, k> 2 /\QP (R2k+1)* and /\2&113 (R2k+l)*;
=6 N, (RG))e and N3, (RG)*;
=7 N, (RT), £ A (RT), £ A% (RT) and £ AL (RT);
= 8: The action of GL,(8;R) on A} (Rg)* has precisely three open orbits, represented by the

S 3 3 3
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3-forms:

=012 Louar _1gise  Lgoas  Lposr  Lpsas  Lpser \/39458 . \/39678,
[ 9
2

2 2 2 2 2 2 2
¢ = ?0147 B ?0156 L9238 %9246 3 %9257 N %9347 + %9356 . %0458 B %9678;
(=012 _ 19156 3 19178 N 10257 B 19268 _ 19358 3 19367 _ 69458 N §04677
2 2 2 2 2 2 2 2

with stabilisers PSU(3), SL(3;R) and PSU(1,2) respectively. Here, PSU(3) acts on R® = su(3) via
the diagram:

SU(3)

lquot&

PSU(3) — GL. (su(3))

and preserves the inner-product g¢. = >3, (Hi)m, SL(3;R) acts on R® = sl(3;R) (faithfully) via its
adjoint representation and preserves the indefinite inner-product gcg = Z?zl (Hi)®2 - Z§=6 (Hi)®2, and
PSU(1,2) acts on R® = su(1,2) via the diagram:

SU(1,2)

lquot Xd)

PSU(1,2) — GL,(su(1,2))

and preserves the indefinite inner-product g¢,, = Zil (Qi)®2 - Z§=5 (Hi)®2. Likewise, the action of
GL,(&R) on A’ (RS)* has precisely three open orbits, represented by the 5-forms:

e = _\/5912345 B \/3912367 B 1‘912458 + 1912678 + 1913468 + 1913578 _ 1923478 + 1923568 + gA5678,
Cc — I
2 2 2 2 2

2 2 2
D = Lgioaas _ Lgioser | Lpioars | L groses _ 1gisaes | 1guss7s _ graser 6923478 N ﬁ923568;
2 2 2 2 2 2 2 2
= _§912358 N £9123G7 _ Lpraass _ Lgroaer _ 1guaasr | Lpisaes _ L pasase _ 1 gosars pIETS
2 2 2 2 2 2 2 2

with stabilisers again given by PSU(3), SL(3;R) and PSU(1,2), preserving the inner products g, =
1\ ®2 1\ ®2 i\ ®2 1\ ®2 i\ ®2 X

Z?:l (91) » 9ns = Z?:l (ez) - Z?:G (92) and gy, = Z?:l (91) - Z§=5 (92) respectively.  In

particular, note that for any stable form oo € NP (R™)" with 2<p<n -2, Stabqr,, (n:r) s connected.

The results of Theorem are summarised in Table EI, which also provides explicit formulae
for the Hitchin duality maps = (when defined).
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Dim. Stable Forms and Hitchin dualities
2k
k>2 emproplectic co-emproplectic pisoplectic co-pisoplectic
(resp. forms forms forms forms
k 2 = =
3) w — s whl w — y —whl
w < = Pkt w < = | —whl
2k +1 {pseudoplectic forms} {co-pseudoplectic forms}
k22 (2 undefined) (2 undefined)
6 {SL(3; R)j—structures} {SL(3; C)_—structures}
p —s —I;p p— J;p
{Gg 3-forms} <—— {Gg 4-forms} -{Gy 3-forms} «+— —{Gy 4-forms}
¢ " 0(9) ~p ———— -0(9)
() ) —
7
{(~}2 3—f0rms} — {(~}2 4—forms} - {(~}2 S—forms} — — {(N}g 4—f0rms}
ey = > 0(9) -3 = » -0(9)
S () < = X -3 () < = -
{PSU(3) 3-forms} «— {PSU(3) 5-forms} {SL(3;R) 3-forms} +—— {SL(3;R) 5-forms}
¢ = > *eC ¢ = r —%k¢(C
LOUR = n * 0 < = in
8
{PSU(1,2) 3-forms} <— {PSU(1,2) 5-forms}
¢ = > *eC
L OV = in

Table 7.1: Classification of Stable Forms and Hitchin Dualities
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7.2 Relative h-principles for stable forms: precise formula-

tion and corollaries

Let o9 € A’ (R")" and let M be an oriented n-manifold. Recall that a p-form o € QP(M) is a oo-
form if, for each x € M, there exists an orientation-preserving isomorphism « : T,M — R" satisfying
a*og = o. Write Ny, T*M for the bundle of g¢-forms over M and QF, for the corresponding sheaf of
sections.

Let A ¢ M be a polyhedron, let D? denote the g-dimensional disc (¢ > 0), let o : DI — HY (M)

be a continuous map and let Fo : DI - Qb (M) be a continuous map such that:
1. For all s € 9D?: dFo(s) =0 and [Fo(s)] = a(s) € HE, (M);

2. For all s € D% d(Fo(s)|opa) =0 and [Fo(s)|opa)] = a(s)lopa) € Hix (Op(A)).

(Recall that, from §@, one can always assume that Op(A) deformation retracts onto A and hence
Op(A) and A have identical cohomology rings. Thus condition (2) is independent of the choice of
Op(A).) The following definition combines the h-principles defined in [42, §6.2.C] and [32, Thm. 5.3].

Definition 7.2.1. og-forms shall be said to satisfy the relative h-principle if for every M, A, ¢, «
and Fo as above, there exists a homotopy F. : [0,1] x D? - QF (M), constant over DY, satisfying:

3. For all se DY and t € [0,1]: 3t(8)|op(,4) = SO(S)|OP(A);
4. For all s € D?: d§1(s) =0 and [F1(s)] = a(s) € HiR (M).

Definition has two notable consequences. Firstly, given og € A? (R™)", an oriented n-manifold
M and a fixed cohomology class o € HYp (M), write Clb, (M) for the set of closed op-forms on M and
Clb, () for the set of closed og-forms representing the cohomology class . More generally, given a
polyhedron A c M, let o, be a closed og-form on Op(A) such that [o,] = alopa)y € Hiz (Op(A)) and

write:

Q0 (M;o0,) = {0 e Q2 (M) | olopa) =ov}
Cll (M;o,) ={o e (M;o,) | do =0}
Cl (c;o0) = {0 eCll (M;0,) | [0] = a e Hi,(M)}.
Standard homotopy-theoretic arguments (see [42, §6.2.A]) then yield:

Theorem 7.2.2. Suppose that og-forms satisfy the relative h-principle. Then for every M, A, o and
oy, the inclusions:
Clg0 (a;0p) = Clgo(M; or) < Q{';O(M; or)

are homotopy equivalences (where p = 3,4,2k — 2,2k — 1 as appropriate). In particular, taking A = @,
the inclusions:
e, () = CI2, (M) = 92, (M)

are also homotopy equivalences. Thus if M admits any og-form, then every degree p cohomology class

on M can be represented by a (closed) oo-form.
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Secondly, let og be as above and suppose additionally that og is a Hitchin form.

Theorem 7.2.3. For any closed, oriented n-manifold M admitting og-forms and any o € HgR(M),
the Hitchin functional:
H: Clg, (o) = (0,00)

is unbounded above. More generally, if M is a closed, oriented n-orbifold and Clb («) + @, then the

same conclusion applies.

Proof. Begin with the case where M is a manifold. Since Q5 (M) # @ and Cl}, () < Qb (M) is a
homotopy equivalence, Cl5 (a) # @. Thus pick o € Cl (a). Let f: B}(0) & M be an embedding,
write W = f(B7(0)) and U = f(BZ (O)) and consider the polyhedron A c M given by A =U uM\W.
Let x : M - [0,1] be a smooth function on M such that X|Op(U) =1 and x|opanw) = 0, and for each
A€ (0,00) define oy € Qb (M) by:
ox=(1+X-x)o.

Then doy = 0 on Op(A) since do = 0 and x is locally constant on Op(A), and hence o) ¢
Qoo (M; 02 |op(ay) for all A > 0. Moreover, the restrictions o|p,a)y and ox|opcay both lie in afp,ay €
HE, (Op(A)) (for this point, it is useful to recall that U is contractible), so by the relative h-principle,
ClE (a; oxlopcay) = Qoo (M;0x|opcay) is a homotopy equivalence and thus one can continuously de-

form oy relative to Op(A) into o} € Cl%, (o) such that:
oyx=(1+XN)oonU and o)=0on M\W.

One now computes that:

/H(O-S\)Z/UOZUI\:foOl(1+)\)a:(1+>\)z /Uolo-—>oo as A\ — oo,
U U U

as required. In the case where M is an orbifold, provided CI5 () # @, one can apply the above
argument to the smooth locus of M, leading to the same conclusion.
O

As a simple application, note that Theorem can be used to prove that emproplectic forms
do not satisfy the relative h-principle. Indeed, let M be a 2k-dimensional closed manifold and let w

be an emproplectic form on M. For every emproplectic form w’ € Cli+( 1y ([w]):

’H(w')=A;(w')“([w']u'“»[M]F([w]Uk,[M]),

independently of w’, where [M] € H?** (M;R) denotes the fundamental class of M and (,) de-
notes the usual pairing between cohomology and homology. In particular, the Hitchin functional
on Cli+( k)([w]) is constant, and thus not unbounded above (see § for further discussion of this).
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Remark 7.2.4. Recall from the discussion at the end of § that given a co-emproplectic form w on
an oriented 2k-manifold M, the form —w is a co-pisoplectic form on M. It follows that co-emproplectic
forms satisfy the relative h-principle if and only if co-pisoplectic forms satisfy the relative h-principle.
Analogous remarks apply to five other pairs of orbits of stable forms, wviz. A% (R% )*, + N\, (R7)*,
+ A3, (R7)*, + A\L (R7)* and + AL (]R7)*. Thus, for the purpose of considering which stable forms
satisfy the relative h-principle, the 22 types of stable forms described in Theorem can be further
grouped into 16 classes (as claimed in the introduction to this thesis) where each of /\2i (R%)*,
/\Qf‘2 (]R%)*7 + /\3Jr (R7)*, £ A3, (R7)*, + /\4+ (R7))e and + AL (R7)* is considered a single class.

7.3 Relative h-principle for stable, ample forms
The aim of this section is to prove the following theorem:

Theorem 7.3.1. Let og e NP (Rn)* be stable. Given an arbitrary p form T on Rn—l; define:
Na) = e NP ) [0nrsm e, (OB e o ()’

where 0 is the standard annihilator of R™™ c R@ R™1. Suppose that, for every 7, the set Ny, (T) is
ample in the sense of affine geometry, i.e. Ny (7) is either empty, or the convex hull of every path
component of Ny, (1) equals N°~1 (R"‘l)* (in such cases, say that oq itself is ample). Then og-forms
satisfy the relative h-principle.

Let M be an oriented n-manifold. Recall that the symbol of the exterior derivative on (p —1)-
forms is the unique vector-bundle homomorphism D : AP *T*M™) - APT*M such that the following

diagram commutes:

r'(M, NI T*MD) > QF (M)

Qr~H(M)

Explicitly, identifying AP *T*M®) = AP-IT*M @ (T*M ® /\p’lT*M) as usual, D is simply the com-

posite map:

NT Mo (T*M e A TM) 22222, pevie AP P ToM B APTML
It follows that D : AP T*M®) - APT*M is a fibrewise surjective linear map.

Definition 7.3.2. Let a : D? - QP(M) be a continuous map. Define fibred differential relation
Ko, (a) C p_lT*ng) via:

Ho,(a) = {(s,T) e NI T M)

D(T) +a(s) € Nop, T*M} .
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Equivalently, %,,(a) is the preimage of Af,, T*Mp. under the fibred map:
N B AT M.

Lemma 7.3.3. Suppose that, for every q > 0 and every continuous a : D? - QP(M), the relation
Hs,(a) satisfies the relative h-principle. Then og-forms satisfy the relative h-principle.

Proof. Let A c M be a (possibly empty) polyhedron, let a : D? - HY, (M) be a continuous map and
let Fo: D9 — Qb (M) be a continuous map such that:

1. For all s € 9D?: dFo(s) =0 and [Fo(s)] = a(s) € Hix (M);

2. For all s € D% d(Fo(s)|opa) =0 and [Fo(s)lopca)]| = 2(s)|opca) € Hix (Op(A)).

Then §g is a D%indexed family of p-forms on M, and thus one may regard §y as a section of
the bundle (A’T*M)p,. Let a: D9 - QP(M) be a continuous map such that a(s) represents the

cohomology class a(s) for each s € DY and consider the diagram:

(/\p—lT*M)SB D+a N (/\pT*M)Dq
\ % (7.3.4)
So
D7 x M
The task is to lift the section §y along the map D + a to a section Fy of (/\p_lT*M)gq) which is

holonomic over the region (0D? x M)u[D? x Op(A)], and then apply the relative h-principle for the
fibred relation %Zy,(a).

Firstly, note that the map (/\p‘lT*M)Sq) Dt
of vector bundles; thus the preimage of the section §g under D + a defines an affine bundle over
D% x M denoted A. For each s € D?, Fo(s)|opcay — a(s)|opcay is exact, since Fo(s) and a(s) both
represent the cohomology class a(s) when restricted to Op(A). Pick 1 : DY - QP71 (Op(A)) such that
dn(s) = Fo(s)|opcay — a(s)lopa) for all s € DY, view 7 as a section of A" T*Mp, over DI x Op(A)

(NT*M) p, is an affine linear and surjective map

and write Go(s) = jin(s) for the corresponding 1-jet. Then Gy defines a section of the bundle A
over the region D? x Op(A); choose some extension of Gy to the whole of D? x M (which is possible
since the extension problem for sections of affine bundles is trivial). Next, note that for each s € DY,
So(s) —a(s) is exact and thus one can choose ¢ : 9D? — QP(M) such that d{(z) = Fo(x) — a for each
s € ODY. Write Hy = j1( as above and extend Hy to a section of A over all of D? x M. Now let

X : D?—[0,1] be a continuous function such that x|sp. = 0 and consider the section:
Fy=xGo+ (1-x)Hy
of A. T claim that Fp is holonomic over (9D9 x M) u [D? x Op(A)]. Indeed, on D? x Op(A):
Fo=x-gin+(1=-x)-51¢ = 1(xn + (1-x)0),
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while on 0D? x M:
Fo=(1-x)Ho=(1-x)j1¢=751((1-x)Q).
Since A ¢ %y, (a), one can apply the relative h-principle for the relation %,,(a) to obtain a homotopy

of sections Fy of %,,(a), constant over (0D x M) u[D? x Op(A)], such that Fj is holonomic. Then
$+ = DF; + a defines the required homotopy of Fp, showing that og-forms satisfy the h-principle.

O]

Note that the homotopy of sections §; : [0,1] x D9 x M - (APT*M)p, cannot be taken to

be arbitrarily C°-small, due to the well-known consequence of Stokes” Theorem that QF (M) c

QP(M) is closed in the C%-topology and not just the C'-topology. Nevertheless, for the choices of o
considered in this paper, the relation %,,(a) satisfies the C%-dense relative h-principle and thus the
homotopy p1 F; of sections of AP"?T*Mp, arising in the above proof can be taken to be arbitrarily
C%-small. This is not a contradiction, however, since §; depends on the full 1-jet F}, and not just on
the underlying section pi F}.

In view of Lemma , to prove Theorem , it suffices to prove that if o is stable and ample,
then %, (a) satisfies the relative h-principle for any a : D9 — QP(M). This follows by combining the
Convex Integration Theorem with the following result:

Proposition 7.3.5. Fiz ¢>0 and a: D? - QP(M).
1. Ry, (a) is an open subset of N~ T*MW if and only if og is stable.
2. Ho,(a) is an ample fibred differential relation if and only if oo is ample.

Proof. 1 is clear, since A’T*Mpaq X9, NT*Mp. is a homeomorphism and /\p‘lT*ng) 2 NT*Mpa

is continuous and open (being a fibrewise linear surjection). For 2, note that, as in the discussion

after Definition :
z@go(a) = /\p_lT*MDq X(DaxM) ;@éo(a) c /\p_lT*MDq X (DaxM) (T*M ® /\p_lT*M)Dq

where:

Ry (a) ={(5,T) e (T*Me N'T*M) ., | A(T)+a(s) e N, T*M}.
Then, in the notation introduced after Definition , for each s e D?:
Al (a)s ={T eT*Me N 'T*M | A(T) +a(s) e N, T*"M}.

As explained after Definition , R, (a) is ample if and only if for all z € M, B c T, M a hyperplane
and A € B* @ NI TiM: Z), (a)s n1I(B, \) c II(B, A) is ample.
Choose a splitting T, M =L & B and pick an orientation on B. This choice canonically orients L;

choose a correctly oriented generator 6 of L*. Using this data, one may write:
T*M=R-00B* and A’ 'T*M=6r/N’B* e N 'B.
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Hence there is an isomorphism:

N2B @ NIBY @ (B @ AVTITEM) —=— TXM e AP TEM

aDOUD N y 0@ (OAna+v)+ A

(For completeness, in the case p = 1 one simply treats the space A’2B* as 0, although I shall only

be concerned with the case p > 2.) Using this isomorphism, one obtains the explicit description:
(B, \) = AP 2B* x A\PIB* x {\}.
Now define vy € A’"'B* and 79 € \’B* by the equation:
AA) +a(s) =0 A+ 7. (7.3.6)
Then given (o, v) € A’2B* @ A’"'B*, one can compute that:
AO®(OAa+v)+A]+a(s)=0A(v+uwy)+To,
which is a og-form if and only if v + v € Ny, (79). Thus:
R, (a)s NTI(B,A) = NP 2B* x (N, (10) - 10) x {A} € AP2B* x AP7'B* x {A} 2 TI(B, \).

Thus %), (a)s NTI(B,\) ¢ II(B, \) is ample if and only if Ny, (70) — 1o € A’"'B* is ample, which in
turn is equivalent to Ny, (79) € AP"!B* being ample.

Finally, note that, for fixed a(s), the assignment A — (v, 9) described in eqn. () is surjective,
and thus as \ varies, 7 realises all possible values in A’B*. Hence %,,(a) is ample if and only if og

is ample, as claimed.
O

7.4 Faithful, connected and abundant p-forms
The aim of this section is to develop theoretical tools for effectively verifying whether a given stable
form is ample. Let Emb (R”_l,R") denote the space of linear embeddings ¢ : R* ! - R”. Given

oo € AP (R™)”, there is a natural map:

Emb (R, R") —Z22 A (RP1)"

Lt s ¥ o).

GL,(n-1;R) acts on Emb (]R"‘l, R”) via precomposition, and the quotient Emb (Rn_la Rn)/GL+(n - L;R)
can naturally be identified with the oriented Grassmannian Gr,_; (R"). Given f € GL,(n - 1;R), a
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direct computation shows:
Tao(Lo f)=f"1" (00) = f* T, (1)

Thus .7, descends to a map:
Write S(op) for the stabiliser of og in GL,(n;R) and note that S(og) acts on Emb (R”_l,R") (and

hence on Gr,_; (R™)) on the left via post-composition. Clearly .7, is invariant under this action and
thus 7, descends further to a map:

1 o)\ T @) s W [ 1wy

Using this notation, I make the following definition:
Definition 7.4.1. Let o9 € A’(R™)".

1. o9 is termed faithful if 75, is injective.

2. og is termed connected if for each orbit O € S(Uo)\Grn_l (R™) the stabiliser of some (equiv-
alently any) 7 € 7,,(O) is path-connected.

3. 09 is termed abundant if for all O € g UD)\GVTn—l (R™) and some (equivalently any) 7 € 75, (O):

0 Conv Ny, (1) c N\P! (Rn_l)* .

In words, oy is faithful if for all oriented hyperplanes B, B’ c¢ R™, the restrictions og|p and og|p/
are isomorphic if and only if B and B’ lie in the same orbit of S(oy), o¢ is connected if for every
oriented hyperplane B c R", the stabiliser of og|g in GL;(B) is connected, and o is abundant if for
every T € NP (R"‘l)*, either Ny, (7) is empty, or the convex hull of N, (7) contains 0.

Verifying the above three properties in practice is greatly helped by the following three results:

Proposition 7.4.2. Let o9 € NP (R™)" be stable and equip the spaces 5(00)\’(}7%—1 (R™) and
N (Rn_l) /GL+(n— 1,R) with their natural quotient topologies. Then the map T, is an open
map. In particular, if O € S(UO)\@En—l (R™) s an open orbit, then T, (O) is also an open orbit,

i.e. the orbit of a stable p-form on R™1.
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Proof. Consider the commutative diagram:

Too

Emb (R™1,R") > NP (RY)

lquot lquot

S(UO)\@En—l (R") T, NP (Rn—l)*/GL+(n ~1,R)-

Since the left hand map is a continuous surjection and the right hand map is open, to prove 7Ty, is
open it suffices to prove that .7, is open. To this end, let ¢ : R*! - R™ be an embedding and fix a

splitting 3 of the exact sequence:
A (R™) 4? AP (RP1) —— 0.

Consider 7 € A (]R"‘l)*. Since oy is stable, for all 7 sufficiently small there is F' € GL,(n;R) (close
to Id) such that:
F*O'() =00 +5(T).

Set /' =Foi1e Emb (R"‘l, R”). For 7 small enough, ¢ can be taken arbitrarily close to ¢. Moreover:
og=1"F*og=1"(00+ B(7)) =00 + T,

since ¢* o f =1d. Thus .7, is an open map and the result follows.
O

Proposition 7.4.3. Let o9 be a stable p-form on R™ and suppose that S(og) acts transitively on
Grpo1 (R™). Then oq is faithful and connected. In particular, if S(oo) contains a subgroup which
preserves an inner-product and acts transitively on the corresponding unit sphere in R™ (equivalently
in (R™)*) then og is faithful and connected.

Proof. Faithfulness is clear. Since S(og) acts transitively on Gr,_; (R"), the unique orbit must be
open and hence by Proposition , it must map under 75, to the orbit of a stable form. However,
using the results of Theorem , the stabiliser in GL,(n - 1;R) of every stable form on R™! is

*

connected. The final statement follows since Gr,,_; (R™) is isomorphic to the unit sphere in (R™)
O

Proposition 7.4.4. If there exists an orientation-reversing automorphism of R™ which preserves oy,
then oq is abundant. In particular, if n = 2k +1 is odd and 2 < p < 2k is even, then any oo € N’ (R™)"

is abundant.

Proof. Fix re N (R”‘lye and suppose N, (7) # @. Choose some v € N (7). I claim that —v also

lies in Ny, (7). Indeed since 6 Av + 7 € NP (R ® R”_l) is a op-form, by assumption there exists an
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orientation reversing map F € GL(R ® R"!) preserving 6 A v + 7. Now consider the map:

ZT:ReR"! — 5 Re R*!
VOW H—— -V dw.

Since Z is also orientation-reversing, the composite F' o Z is orientation preserving and thus (F' o
) (T +0 Av) is a op-form. On the other hand:

(Fol) (tr+0Av)=T"(F)* (t+0Av)
=I*(t+0Av)
=7-0Av
and thus —v € N, (7) as claimed. The proof is completed by noting that if n =2k +1 and 2 < p < 2k

is even, then —Id is an orientation-reversing automorphism preserving og.
O

The significance of the notions of faithfulness, connectedness and abundance lies in the following

result:

Theorem 7.4.5. Let og € N’ (R™)” be stable, faithful, abundant and connected. Then oq is ample;

in particular, og-forms satisfy the h-principle.
Remark 7.4.6. The converse need not hold: see §@

The proof proceeds by a series of lemmas.

Lemma 7.4.7. Let A be a (real) finite-dimensional vector space and let A € A be a path-connected,

open subset such that:

o 0eConv(A);

o A is scale-invariant, i.e. for all A€ (0,00), \- A= A.
Then Conv(A) = A, i.e. A is ample.

Proof. Since A is open and scale-invariant, so too is Conv(A). However by assumption Conv(A)

contains 0, and thus by openness it contains a small open ball about 0 in A. The scale-invariance of
ConvA then implies that Conv(A) = A.
O

Lemma 7.4.8. Let g € N’ (R"), T € /\p(R”_l) and suppose Ny, (17) + @. Then Ny, () is scale-
invariant, i.e. for all A€ (0,00): X\ Ngy (1) = Ny, (7).

Proof. Suppose v € N, (1), i.e. 0Av+T1e N (R @R”’l)* is a og-form. Consider the orientation-
preserving isomorphism:
F:ReR"' —— R oR"!
VOW ——— AU ®w.
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Then F*o =0 A (A\v) + T is a og-form, as required.
O

Lemma 7.4.9. Let og € N’ (R™)" and suppose that O € S(O_O)\@}n—l(Rn) satisfies To.' (T5,(0)) =
{O}. Suppose moreover that some (equivalently every) T € To,(O) has path-connected stabiliser in
GL,(n - 1;R). Then for all T € T,,(O), the space Ny, (1) c NP~ (R”_l)* is path-connected. In
particular, if oq is faithful and connected, then for every T € NP (R"‘l)*, either Ny (1) = @ or Ny, ()

s path-connected.

Proof. Let O be as in the statement of the lemma, let 7 € 75, (O) and let v1,v9 € Ny, (7). Then by

definition, the two p-forms:
0'1'29/\1/1'+TE/\p(R@Rn_1)*, 1=1,2

are both og-forms on R @ R™!. Thus, there is F' € GL, (R @ R"‘l) such that F'* oy = 0.

Claim 7.4.10. The oriented hyperplanes R"™' and F (R”_l) in R&eR™ lie in the same orbit of the

stabiliser of os.

Proof of Claim. Since oy is a oo-form, there is an oriented isomorphism .# : R@ R™! - R” such that
F*oy = 02. Hence it is equivalent prove that the oriented hyperplanes . (R”_l) and £ o F (]R”_l)
in R™ lie in the same S(og)-orbit.

Consider the commutative diagram:

Emb (Rn—l’ Rn) oo > NP (Rn—l)*

lquot l/quot

S(Uo)\a;n_l (R") Ty AP (Rn_l)*/GL+(n ~1,R) -

Since 7.1 (T5,(0)) = {O}, it suffices to prove that both Z, (S |g+-1) and Ty, ((& 0 F)[gs-1) lie in
the orbit 75, (0) e N (R™1) /GL+(n —1,R)- But this result is clear, since:

(S |gn-1)" 00 = g2|rn-1 = 7 € T5, (O)
and
((F 0 F)|gn-1)" 00 = (F*02)|gn-1 = 01|gn-1 = 7 € Tg,, (O).
]

Thus choose G € GL, (]R ® ]R"_l) stabilising o9 such that Go F’ (R”_l) =R! (and Go F identifies
the orientations). By replacing F' with G o F', one may assume without loss of generality that F' fixes
the space R"!. Then:

7= O1lgas = (F02)lgn-1 = (Flre-1)” 02lgas = (Flro2)" 7.
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Thus F lies in the space:
H ={F eGL, (RoR" ") | F/(R*") =R"" and F'|g.: € Stab(7) € GL.(n - 1,R)}.

Since Stab(7) ¢ GL4(n — 1,R) is path-connected, so too is £ c GL. (]R ® ]R”_l), so one can choose
a smooth 1-parameter family (F});e[0,1] € # such that Fy =1d, I} = F. Then for each t:

Floo=0Av(t)+T

for some v(t) € Ny, (1) (note that F; o9 is evidently a og-form for each t) such that v(1) = v; and
v(0) = vy. Thus N, (7) is path-connected.
O

I now prove Theorem :

Proof of Theorem . Let 09 € A’ (R™)" be stable, faithful, connected and abundant, let 7 €
N (]R”_l)’F and suppose Ny, (7) # @. Since oy is stable, N, (7) ¢ AP~ ]R”_l)’P is open. Moreover
Ny, (7) is scale invariant by Lemma , path-connected by Lemma and 0 € Conv (N, (7))
since 7 is abundant. Hence Ny, (7) is ample by Lemma .

O

7.5 [Initial applications: Gy 4-forms, SL(3;C) 3-forms and

pseudoplectic forms

This section illustrates the results of §§@ and @, by providing new, unified proofs of the three
previously established relative h-principles, viz. the relative h-principles for Ga 4-forms [32], SL(3;C)
3-forms [37] and pseudoplectic forms [104].

7.5.1 Gy 4-forms

Theorem 7.5.1 (32, Thm. 5.3]). Ga 4-forms satisfy the relative h-principle.

Remark 7.5.2. In [B2], Crowley—Nordstrom only state the non-relative version of the h-principle for
G2 4-forms (corresponding to A = &, in the notation of the introduction), however their proof can

easily be generalised to the case A + @.

Proof. Let o9 = Pg € AY(R7)* be the standard Go 4-form (see eqn. ()) and write gg for the
corresponding metric. Since G preserves an inner-product and acts transitively on S, by Proposition
Vg is faithful and connected. Moreover, since Py has even degree on an odd-dimensional space,
Vg is abundant by Proposition . Thus the result follows by Theorem .

O
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7.5.2 SL(3;C) 3-forms

Theorem 7.5.3 ([37, §4]). SL(3;C) 3-forms satisfy the relative h-principle.

Proof. Let og = p_ € N} (R(j)* be the standard SL(3;C) 3-form (see eqn. ()) The stabiliser
SL(3;C) of p_ contains the subgroup SU(3) which preserves an inner-product and acts transitively
on S°; thus p_ is faithful and connected by Proposition . Moreover, by Proposition , -
is fixed by an orientation-reversing automorphism of R and thus p_ is abundant by Lemma .
Thus the result follows by Theorem .

O

7.5.3 Pseudoplectic forms

Theorem 7.5.4 ([104, Thm. 2.5]). Pseudoplectic forms satisfy the relative h-principle.

The proof in this case is slightly more involved.

Proof of Theorem 7,5.14, Let po(k) = 623 + 6% + ...62%2%+1 he the standard pseudoplectic form on

RZ¥*+1 (see eqn. (2.1.16)), write S for the stabiliser of pg(k) in GL,(2k + 1;R) and recall the 1-
R2k+1,

dimensional subspace £,,,(x) = (e1) defined in Remark . Given an oriented hyperplane B c
on dimensional grounds, either dim(Bn¢,, )) = 1, in which case £,, (1) ¢ B and po(k)[p is a degenerate
bilinear form, or dim(B N £,,x)) = 0 and B is transverse to £, k), in which case po(k)|p is either

emproplectic or pisoplectic on B. Thus the image of the map:

Tuatt S\Gvr% (®*) A () / GL, (2k,R)

contains at least three distinct orbits and thus the action of S on ’G?gk (R2k+1) has at least 3 orbits.

Therefore, to prove that ug(k) is faithful, it suffices to prove that the action of S on Grog (R%*l)
has exactly three orbits. Recall from Proposition that, with respect to the splitting R?**1 =
(i) © (€2, ..., €a141), the stabiliser S consists precisely of those (2k + 1) x (2k + 1)-matrices of the

A Gokxa
O1x2r  Forxok

where F' € Sp(2k;R) and A > 0. Next, note that oriented hyperplanes in R%+1 containing Lo (k) are

form:

in 1-1 correspondence with oriented hyperplanes in (e, ..., e9r41) and since SU(k) c Sp(2k;R) acts
transitively on oriented hyperplanes in (e, ..., e9r41) (see Proposition ) it follows that S acts
transitively on the set of oriented hyperplanes in R?**! containing €0 (ky- Similarly, the (unoriented)
hyperplanes in R?**! transverse to £, (k) are in 1-1 correspondence with linear maps (ez, ..., €g+1) =
{1y and S acts transitively on this space. Thus the action of S on oriented hyperplanes in R2k+1
transverse to £, (x) has at most 2 orbits. It follows that the action of § on Gra (R%”) has exactly
three orbits and ug(k) is faithful. To see that ug(k) is also connected, firstly note that the stabiliser
of both emproplectic and pisoplectic forms on R?* is connected, being isomorphic to Sp(2k;R). For
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the remaining case, suppose £, 5y € B; then the restriction po(k)|p may be written in some basis

(f1,--, for) as:

1o (k)|s = 12, +f2k—3,2k—2‘

This is an emproplectic form on (fi, ..., for_o2). Splitting B 2 (f1, ..., fox—2) ® ( fox_1, for) and applying
Lemma [7.1.5, it follows that the stabiliser of o (k)|p in GL,(B) is connected. Thus po(k) is connected.
Finally, since pseudoplectic forms constitute a single GL(2k + 1;R)-orbit, it follows from Lemma

that pseudoplectic forms are abundant. Thus the result follows by Theorem .
O

Remark 7.5.5. Crowley—Nordstrom and Donaldson used a technique known as ‘Hirsch’s microexten-
sion trick’ (after its use by Hirsch in [69]) to prove the h-principles for Gy 4-forms and SL(3; C) 3-forms
respectively. E.g. for G 4-forms, the argument may be sketched as follows: given any 8-manifold N,
define a subset S(N) c A*T*N by declaring o € /\4T;N to lie in S(N) if and only if the restriction of
a to every hyperplane in T,N is a Gy 4-form. Then S(N) is an open, Diff((N)-invariant subbundle of
A*T*N. Given an oriented 7-manifold M, it can be shown that every Go 4-form 1) on M extends to a
4-form W on the open (i.e. non-closed) manifold (—¢,) xM such that ¥ € S((-¢,) xM) for some € > 0
sufficiently small. The h-principle for coclosed Go-structures then follows from Gromov’s h-principle
for open, diffeomorphism-invariant relations on open manifolds; cf. [42, Thm. 10.2.1]. This method is
limited in scope, however, since for a general stable p-form oy on R™, there are no p-forms o on R™*!
such that the restriction ol is a og-form for every hyperplane A ¢ R"*. As a simple example of this
phenomenon, suppose that Stabgr, (n:r)(00) = Stabar,n;r)(00), i.e. 0o has no orientation-reversing
automorphisms. If there were some o € AP (R””)* such that for all A € Gr, (R””) the restriction
o|a was a op-form for some choice of orientation on A, then this choice of orientation would be unique
(since the stabilisers of oy in GL,(n;R) and GL(n;R) coincide) and would thus define a section of
the “forgetful’ degree 2 covering map Gr, (R””) - Gry, (R”“), yielding a contradiction, as claimed.

By contrast, the techniques introduced in this thesis can be used to prove h-principles for stable
forms o satisfying Stabgr, (n;r)(00) = Stabgr,nr)(00); indeed, this property is satisfied by both
Go 3-forms and co-emproplectic forms in dimension 2k, where k is odd, both of which are shown to

satisfy the h-principle in this thesis.

7.6 Co-emproplectic and co-pseudoplectic forms

The aim of this section is to prove the relative h-principles for co-emproplectic and co-pseudoplectic

forms. The proofs proceed via a series of lemmas:

Lemma 7.6.1. Let k > 2 and let wi (k) € N2, (R%)* be the standard emproplectic form on R?*

defined in eqn. ) Identify R?* = R @ R?*~1 in the usual way and fix 7 € N (R%_l)*. Then
No, () (1) # @ if and only if T is pseudoplectic. Moreover in this case:

Nw+(k)(7') = {1/ € /\1 (R%_l)* ‘ V|€T > O}
(see Remark for the definition of ().
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Proof. Write 6 for the standard annihilator of R?*7! in R?* and define w = @ A v + 7. Then:
W= At

Thus w is emproplectic if and only if 7571 # 0 (i.e. 7 is pseudoplectic) and v| 0> 0 (by definition of
the choice of orientation on ¢;).
O

Corollary 7.6.2. Let k > 3, let w, (k) € /\sz_2 (R%)* be the standard co-emproplectic form on R?F
defined in eqn. ), identify R%* =R @ R**7! and fix 7 e N2F72 (R%‘l)*. Then:

Ne, () (1) = {1/ e \N*F3 (R%_l)* | v is co-pseudoplectic and Ty, > 0}
see Remark for the definition of the hyperplaneIL, ). In particular, if T = 0 then N, (1y(7) = @.
+ (k)

Proof. The proof uses the duality described in Lemma . Write e = 1® 0 € R ® R*7!, choose
o>0e AP TR2 1 and set v = eac > 0 € A?*R?*. Then as in Lemma , 0 Av+T is co-emproplectic
if and only if:

(OAav+T)dv=vio+en(Tl0)

*

is emproplectic on (R%)*, which by Lemma is equivalent to v 1o being pseudoplectic on (R%‘l)
and (7 J0)| b 0. However using the duality as in Lemma again, v o is pseudoplectic on

(R%‘l)yr if and only if v is co-pseudoplectic on R?*~1. Moreover, one may verify that:
4, s = Ann(1I,)

compatibly with orientations, and thus (7 a)|€ug > 0 if and only if 7|r, > 0.

Lemma 7.6.3. Let k>2. Then:
Conv (/\25—2 (R%)*) _ /\2k—2 (R%)* '
(Note that when k = 2, /\Qf_2 (R%)* is simply the orbit of emproplectic 2-forms.)

Proof. Since /\Qf‘2 (R%)* c N2k-2 (R%)* is open, path-connected and scale-invariant, by Lemma
, it suffices to prove that:

0 € Conv (/\2f_Z (R%)*) _ /\2k—2 (R%)* .

Write (91, ey 92k) for the canonical basis of (R%)* and recall:

k s
w+(k) _ Z 012...22—1,21.,.2]{3—172]6.
=1
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(Recall also that formally <, (2) = w;(2).) Choose r > 1 such that r + % =k > 2. For each ordered
pair of distinct p,q € {1,...,k}, let F(p,q) denote the orientation-preserving automorphism of R
given by:

-r «~ 2pth Trow

F(p,q) =

« 2qth row

S =

T 1
2ph col.  2¢™ col.

Then for all p, ¢ and r:
F(p,q) @ (k) e N2 (R*)

and thus:

A(k-Dme(k)s 5 P @ (k) € Cony (A2 (m2)).
p#qe{l,....k

(N.B. The coefficients in the linear-combination on the left-hand side of the above expression are all
positive and thus, even though they do not sum to 1, the above expression is valid since /\Qf‘2 (R%)yr

is scale-invariant.) A direct calculation shows that:

2b- D@ (B)+ Y P @) = (- 1) (k-r- )@ (k) =0,
pxqe{l,....k}

as required.

Theorem 7.6.4. Co-symplectic forms satisfy the relative h-principle.

Proof. Recall that the stabiliser of w, (k) in GL,(2k;R) is isomorphic to Sp(2k;R). Since SU(k) c
Sp(2k;R), it follows by Proposition that w, (k) is faithful and connected. Thus, it suffices to
prove that . (k) is abundant. When k is even, this follows from Lemma since w, (k) admits
an orientation-reversing automorphism (see Proposition ) However, in general, by Corollary
one must prove directly that 0 lies in the convex hull of the set:

Na, iy (T) = {V € /\%_3 (]R%_l)yr ‘ v is co-pseudoplectic and 7|, > 0} .

Choose a correctly-oriented basis (eg, ..., ea) of R?*71 with dual basis (02, e 6?2]“) such that 7 =
6342 Then for all w e A2 (R%_Q), observe that v = 6% A w € N ()(7) and thus:

0% A /\25_4 (R%_Q)* c sz(k)(T)-
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But by Lemma , 0 € Conv (/\Qf’4 (Rzk’Q)*), completing the proof.
O

Now fix k& > 2 and consider the standard co-pseudoplectic form &y(k) = QL AR | 9232020+ 2k2k+1 ¢

/\2&1 P (R%*l)*. Theorem does not apply to co-pseudoplectic forms, since &y(k) is not faithful.
Indeed, recall from Remark thaf &o(k) canonically defines an oriented hyperplane e,y =
(e2, ..., e2x). Then both {Hgo(k)} and {Hgo(k)} (where the overline denotes orientation-reversal) form
singleton orbits for the action of S(&y(k)) on Gray (R?*+1), however:

&o()ln ) = &0()lg, =0
Despite this observation, Theorem does apply to co-pseudoplectic forms:
Theorem 7.6.5. (k) is ample; hence co-pseudoplectic forms satisfy the relative h-principle.

Proof. Write Gray, (R%*l)gen = Grap (R2F1)\ {Hgo(k)>ﬁ§0(k)}- Then S(&p(k)) acts transitively on
Grop (R%”)gen: indeed, let IT € Grgy, (R%”)gen. IT intersects Ig (xy transversely and thus IINTg (x)
has dimension 2k — 1. Moreover I n1lg (xy can be canonically oriented as follows: choose any u € I1

such that 6'(u) > 0. Then the chosen orientation on II together with the decomposition:
I = (u) @ (1N T, i) )

orients IINTlg, () and thus IINIlg, (4) defines an element of Grop_1 (Hgo(k))- Since Sp(2k;R) acts tran-
) it follows that S(&o(k)) acts transitively on Grog_; (Heyxy)

and thus without loss of generality one may assume that:

sitively on Grop_1 (R%), by equn. (|

N Tg k) = (€3, .., €2k41),
compatibly with its orientation. Thus:
II= <61 +teg, €3, ..., 62k+1)

for some ¢ € R. Now consider the automorphism of R?**! given by:

By examining eqn. (), F eS8(&(k)) and clearly F(II) = (e1,es, ..., €2k+1); thus Grog (R2k+1)
forms a single orbit, as claimed. Moreover, T, (k) (G?gk (R%*l)gm) is precisely the orbit of non-zero
(2k — 1)-forms on R?*,

Now let 7 € T¢, (k) (a}gk (R%*l) ) Clearly the stabiliser of 7 in GL, (2k;R) is connected. Also,

gen

gen
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since:

Tertry (Teo iy [Gran (R ) gen]) = Grop (R 1) ger

the set Ne, (x)(7) is path-connected for any 7 # 0 by Lemma . Moreover, since the GL, (2k+1;R)-
orbit of co-pseudoplectic forms is closed under the action of GL(2k + 1;R), by Lemma it follows
that &y(k) is abundant. Thus by Lemma , Ne, k) (7) is ample for all 7 # 0.

Now consider 7 = 0. Note that 8 Av is co-pseudoplectic if and only if v is co-symplectic and thus:

Neygin (0) = N2 (R™) " 0 A%72 (R*F)

This space has two path components, and thus abundance alone is not sufficient to deduce that
Ny (k) (0) is ample. However by Lemma , the convex hull of each path component of N, ) (0)
equals AZF2 (Rzk )* and thus &y(k) is ample, as claimed.

O

7.7 (N}g 3- and 4-forms

The aim of this section is to prove the relative h-principles for Go 3- and 4-forms. Let R” have basis
(e1,...,e7) and dual basis (01, - 07) as usual. Recall the standard Go 3- and 4-forms defined in eqns.

() and () respectively by:

(’50 _ 0123 _ 0145 _ 0167 + 0246 _ 0257 _ 0347 _ 0356

T = G967 — 92367 _ 2345 | 1357 _ 91346 _ 91256 _ 1247

inducing the metric go = Y5, (6°)®2 - 27, (6°)®2 and volume form 627, For the purposes of calcu-

lations, it is advantageous to have a second ‘standard representative’ of Gs 3- and 4-forms:

Proposition 7.7.1. The 3-form:

By = % (9147 + 9156 _ 257 | 216 _ 315) (7.7.2)

is of Go-type. It induces the metric and volume-form:
1
Gi=-0'00+0200°-0*00°-0*00* and wvol = 501234567.

Moreover:
{i;l -0(d1) = i (92356 + 992347 _ 9plds6 | 1357 _ 01267) .

(To prove this result, one simply calculates the bilinear form Qg, = % (-2 (~p1)2 A @1 explicitly, from

which the metric and volume form can simply be written down.)

G (T
Now consider the space GQ\GTG(R ). Since o is non-degenerate, taking orthocomplement with

149



respect to Go establishes a Go-equivariant isomorphism:

Grl(R7) = GI‘B(R7)
L L (7.7.3)
B < B.

Motivated by this, I term a hyperplane B c R7 spacelike, timelike or null according to whether its
orthocomplement is spacelike, timelike or null and write Gr67+(R7), Grg - (R7) and Gr670(R7) for the
corresponding Grassmannians. (Recall that a 1-dimensional subspace ¢ is spacelike, timelike or null

according to whether go(u,u) >0, <0 or = 0 respectively for some (equivalently all) u € £\{0}.)

Lemma 7.7.4. .
GQ\Gm(R?) — {Gre(RT) | i=+,-,0}.

Proof. If B is either spacelike or timelike, then R” = B* @ B and so eqn. () can be lifted to an
isomorphism Gry , (R7) = Grg . (R7). Thus since Gy acts transitively on each of Gry . (R”) [84, Prop.
2.2], each of Grg . (R7) are orbits of Gy.

For null planes, B* ¢ B and so a different approach is required. Since Go acts transitively on
Gr10(R7) [68, Prop. 5.4], Gy also acts transitively on Grgo(R”) by eqn. () and thus the action
of Gy on @6,0(R7) has at most two orbits. Now recall the Go 4-form g and consider the oriented

null 6-plane B = (ey, ea, e4, €5, €6, €3 + e7). Consider F € Gy given by:

(617 €2,€3,€4, €5, €6, 67) g (61) —€2,—€3, €4, €5, —€6, _67)'

Then F preserves B and Fg is orientation reversing. Thus G~r6’o(R7) forms a single orbit of Gy as
claimed.
O

7.7.1 h-principle for G, 4-forms
Theorem 7.7.5. Gy 4-forms satisfy the relative h-principle.

Proof. By Lemma , Gy 4-forms are automatically abundant. Thus it suffices to prove that G
4-forms are faithful and connected. Initially, consider the Go 4-form Vg and the hyperplanes:

B, = (ea, €3, €4, €5, €6, e7) € Grg + (R”)
B_ = (e1, €2, €3, e4, €5, ¢6) € Grg - (R")

Then:
$0|IB+ _ 9567 _ 92367 _ 2345 _ % (023 9% _ 967)2

is a co-emproplectic form, with connected stabiliser in GL, (B, ) isomorphic to Sp(6;R), while:

Tolg, = 67345 — 91346 _ 1256 _ _% (6% + 6% + 934)2
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is co-pisoplectic (also with connected stabiliser in GL,(B_)).

Now turn to the null case. Consider the Gy 4-form 2{1;1 and the null-hyperplane By = (e, ..., eg).
Then:
2[5, = %92356 _ 1456 _ (%923 _ 914) A 056

is a degenerate 4-form (i.e. neither co-emproplectic nor co-pisoplectic) and hence Gs 4-forms are faith-
ful. To verify that the stabiliser of 2f|31|15gO in GL, (By) is connected, split By = (e5, e6)®(e1, €2, e3,64) 2
R? @ R* and apply Lemma, to the pisoplectic (and hence multi-co-symplectic) 2-form:

o = %023 _ 914 € /\2 (RZL)* ’

noting that —a and «a lie in the same GL, (4;R)-orbit (since (-a)? = o = —}191234) and that the
stabilisers of v in GL4(2k;R) and GL(2k;R) coincide and are connected. Thus Gy 4-forms are also
connected.

O]

7.7.2 Faithfulness of G, 3-forms

Proposition 7.7.6. @ is faithful. More specifically, the orbits Tg, (@fg;(l@)) e N (RG)/GL+(6;R)
are precisely the orbits N, (Rﬁ) of SL(3;R)? 3-forms and SL(3;C) 3-forms respectively, while the
orbit T, (6}6,0(R7)) e N (R6)/GL+(6;R) is not open, i.e. forms in this orbit are not stable.

Proof. T consider each orbit in turn. For the timelike case, it suffices to prove that for some Go 3-form
@ on R” and some oriented timelike subspace B c R”, the restriction | is an SL(3;R)? 3-form. Con-
sider 291 (see eqn. ()) and let B c R” be the oriented timelike hyperplane (e1, es, g, —€2, €3, e7).
Then 2@1[p = 6'°¢ — 6?37 is an SL(3;R)? 3-form on B. For the spacelike case, consider @ and let
B c R7 be the oriented spacelike hyperplane (ez, e3, €4, €5, €6, e7). Then @olp = H246 — 257 — 9347 — 9356
is an SL(3;C) 3-form on B.

Finally, for the null case, consider 2@ and let B ¢ R be the oriented null hyperplane (e, e3, e4, €5, €6, €7).
Define:

Po = 2(’51’3 = —0237 + 9246 — 9345. (777)

The ‘Hitchin map’ K,, : B - B ® A° (RG)* defined in § is given by:

e5 ® 9P if =2

e6 ® O34T if =3

K, (€;) = T, (7.7.8)
0 otherwise.
In particular, Kgo =0, and so by the results of §, po is not stable.
O
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The space Tg, (C‘EG,O (]R7)) shall be termed the orbit of parabolic 3-forms, and denoted /\30 (]R6)*.
(The motivation for this name derives from the fact that the stabiliser in Go of a non-zero null
vector is a maximal parabolic subgroup of Ga: see [68, §5].) In Djokovié’s classification of 3-forms in
dimensions n < 8, parabolic 3-forms correspond to the real form of the complex orbit ‘IV’; see [34,
§9].

I remark that Proposition also shows, for all p € T, (C‘:r(;,i (R7)), that the stabiliser of p in
GL, (6;R) is connected, being isomorphic to SL(3;C) and SL(3;R)? respectively. By Theorem ,

proving the relative h-principle for Go 3-forms, is thus reduced to the following three lemmas:
Lemma 7.7.9. For each (equivalently any) p € N3, (RG)*: 0 € Conv (Ng,(p)).
Lemma 7.7.10. For each (equivalently any) p € N> (]RG)*: 0 € Conv (Ng,(p)).

Lemma 7.7.11. For each (equivalently any) p € N5 (Rﬁ)*, Stabgr, (6:r)(p) is connected and 0 €
Conv (Mg, (9)-

The rest of this chapter is devoted to proving each lemma in turn.

7.7.3 Timelike case: Lemma [7.7.9

Let pe /\?’Jr (RG)yr be an SL(3;R)? 3-form. The decomposition R® = E, ® E_ gives rise to a decompo-
sition (RG)* = E7 ® E7 and hence:
N(R) =@ NE;eNE = @ N°(R°) . (7.7.12)

r+s=p r+s=p

p defines an element of A>° (Rﬁ)* o N3 (Rﬁ)*; thus the map:

RG s /\2,0 (RG)* ® /\0,2 (RG)*

(7.7.13)
U > udp
is an SL(3;R)2-equivariant isomorphism. Moreover, I o defines a map:
ot (RO @ (R
(7.7.14)

[ N {(a,b) > % [w(pa,b) +w(Ipb,a)]}

(where & denotes the symmetric square) which vanishes on the subspace A*° (RG)* e N2 (RG)*
and satisfies 2 w(ui,u2) = w(l,u1,ug) for w e AL (R6)*. In particular, .7, defines an injection

/\1,1 (R6)* N @2 (RG)*'

Proposition 7.7.15. Let p be an SL(3;R)? 3-form on RS. Then:

Nao(p) = {we N (R®)

Fw has signature (3,3) and w® < 0}. (7.7.16)
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Proof. Firstly, I claim:

N3 (p) = [Nao(p) n A (RE) @ A (R) @ \O2 (R®)" (7.7.17)
Indeed, let w e A? (R6)* and define a 3-form on R” 2 R @ R via:

d=0Aw+p. (7.7.18)
Let u € RS and consider the orientation-preserving automorphism of R given by:
e (11><1 O1x6 )
ugx1  Idexe

Then F*¢ =60 A (w+uJp)+p. Thus w e Ng, (p) if and only if w+u 1 p e N, (p) for all u e RS and

eqn. () follows by eqn. () Moreover, given w € A2 (RG)*, Fpw and w3 only depend on the
(1,1)-part of w. Thus, to prove Proposition , it suffices to prove:

5.(p) N /\1,1 (RG)* _ {w c /\1,1 (RG)*

Recall the invariant quadratic form Q7 defined in Proposition . Using eqn. (), foraeR
and u € R® one may compute:

Jw has signature (3,3) and w?® < 0}. (7.7.19)

(ae1+u) Jp=aw—-0A(uJw)+uip
and hence:

6Q$(CL€1 +u) = [(ael +u) _lqAﬁ]Q A
=a?0nWP +0AwA (udp)?=2a0 A (uJw) Aw A p+2a0 Aw? A (up)
1) 2) (3) (7.7.20)
—20An (udw)A(udp)Ap.
4)

Term (2) vanishes since w € Ab! (Rﬁ)* and p e A (RG)* @ N3 (]RG)’r and hence w A p =0. To

simplify the remaining terms, I utilise the following lemma:
Lemma 7.7.21. For a e N°(R")*, B e A{(R™)* withp+q=n+1:
VueR": (uia)AfB=(-1)P"ran (uip).

(To prove this lemma, by linearity, it suffices to consider u = e, a = @it B = @IrJa with
1<i; <...<ip<nand 1<j; <... < jg <n. The result then follows by direct calculation.)

Returning to eqn. (), firstly consider term (3). Applying Lemma on R® yields w? A
(uap)=—(u_tw?)Ap=-2(u_Iw)AwA p, which vanishes as above. Similarly, for term (1), since
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wA(uap)?=walus((uip)ap)l, Lemmayields:
wA(uap)?==(uiw)A(uldp)Aap

and hence terms (1) and (4) may be combined to give —30 A (uJw) A (udp)Ap. However (udp)Ap =
I,(u) Jwol,, by definition of I,, and thus by Lemma again:

—(udw) A (uap)Ap=Ihw(u,u)-vol,.
Hence terms (1) and (4) may collectively be written as 3.7,w(u,u) -8 Avol, and whence:
6Qz(aer +u) = a0 A w® + 37,0 (u,u)f Avol,,. (7.7.22)

In particular, L = R @0 and B = 0 ® R® are orthogonal with respect to Q¢~>'

Recall that ¢ is a Go 3-form if and only if Qg has signature (3,4). Moreover, since ¢|g = p is an
SL(3;R)? 3-form, by Proposition whenever 5 is a Gy 3-form, the hyperplane B c R7 is timelike.
Since IL and B are orthogonal, it follows that 6 is a Gy 3-form if and only if Q(—g has signature (3,3)
on B and signature (0,1) on L. But by eqn. (), this is precisely the statement that #,w has
signature (3,3) and w? < 0, as required.

O

I now prove Lemma :

Proof of Lemma . Without loss of generality take p = p, (see eqn. ()) and consider the
2-forms:

w1 =201 0% - 030wy =0 4202 03  and  wy=-0"-6% +26%.

Then:

Fpw1=40' 060" -20200° - 200 0°, 7, wy=-20" 060" +460% ©0° - 20° © 6°
and .7, w3 =-20" 0" - 207 © 6° + 46° © 6°

which all have signature (3,3). Moreover w? = —120'2+% for i = 1,2,3. Thus by Proposition
w; € Ng,(p+) for all ¢ = 1,2,3. Therefore:

1
Conv (Ng,(p+)) 3 3 (w1 +w2 +w3) =0,

as required.

7.7.4 Spacelike case: Lemma [7.7.10

The spacelike case is closely analogous to the timelike case; accordingly, the exposition in this
subsection will be brief. Let p € A> (RG)* be an SL(3;C) 3-form. The complex structure J, in-
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duces a type-decomposition AP (RG)* ®r C = @pysp \7° (]RG)*. As in [114, p. 32|, for r # s, write
H/\T’s (R6)*ﬂ = (/\’”’5 (RG)* &N (]R6)*) nA™* (]R6)* for the set of real forms of type (r,s) + (s,7);
likewise, write [/\T’T (RG)*] =N"T (RG)’r nAZ (R6)* for the set of real forms of type (r,7). Then for
all p:

r+s=2p
r<s

r+5=2p
r<s

/\Q”(RG)“( N (RG)*H)®[/\Z””(R6)*] and - ATT(RY) = @ A (R)].

As in the timelike case, p defines an element of [[/\3’0 (R6)*]] andue RS > wu_ipe HA2’0 (RG)*H defines

an SL(3; C)-equivariant isomorphism. Moreover, J, defines a map:

S0 N (RY) » @ (RY)

(7.7.23)
w ——— {(a,0) > ~L [w(Tpa,b) + w(T,b.a)] }

(note the difference in sign convention from the timelike case) which vanishes on the subspace

H/\Q’0 (R6)*ﬂ and satisfies #Z,w(ur,u2) = —w(Jpur,uz) for w e [/\1’1 (Rﬁ)*]. In particular, ¢, defines
an injection [/\171 (RG)*] > P (]RG)*.
Proposition 7.7.24. Let p be an SL(3;C) 3-form on RS. Then:

N, (p) = {w e \? (]RG)* | Fow has signature (2,4)}. (7.7.25)
Proof. As in the proof of Proposition , it suffices to prove that:

N, (p)n [/\1’1 (R6)*] = {w € [/\1’1 (RG)*] | Y ,w has signature (2,4)}. (7.7.26)

Given w € | Al (RG)*], writing 5 =OAw+peN (]R @ RG)*, the calculations from the proof of
Proposition yield:

6Qz(aer +u) = a?0 AW +6_Zow(u,u) Avol,, (7.7.27)
where the final term has a factor of 6 now (rather than a factor of 3) since:
(wap)Ap=-2J,(u)dvol, and _Zyw(ui,ug) = —% [w(Jput, ug) +w(Jyug,ur)]
when p is an SL(3;C) 3-form, as opposed to:
(wap)np=1,(u)dvol, and Fw(ui,uz)= +% [w(put,uz) +w(lpuz, ur)]

when p is an SL(3;R)? 3-form. In particular, L = R® 0 and B = 0 @ RS are again orthogonal with
respect to Qg).
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Since @l = p is an SL(3; C) 3-form, by Proposition whenever ¢ is a Go 3-form, the hyperplane
B c R is spacelike and thus Q7 must have signature (2,4) upon restriction to B and (1,0) upon
-

restriction to L. Thus by eqn. ( ), one sees that & is a Go 3-form if and only if Fpw has signature

(2,4) and w® > 0. However now (unlike the timelike case), the condition that #,w has signature

2 4) automatically forces w® > 0. Thus:
(2, y

N, (p) = {w e \? (Rﬁ)* ‘ Y pw has signature (2,4)}

as required.

I now prove Lemma :

Proof of Lemma |7.7.19. Without loss of generality take p = p_ (see eqn. ()) and consider the

2-forms:
w1 =202 03— 050wy =02 4203 -0  and  wy=-0'2 -3 +26%.

Then: 2 2 2 2 2 2
T =2(0)7 +2(0%)7 - (6%)7 - (07 - (0°)" - (6°)°

/p_w2 —_ (61)®2 _ (92)(82 +9 (93)(82 +9 (94)®2 _ (05)®2 _ (96)®2
oy == (0% = (7% = (6% - (0)% +2(0°)* + 2(6°)*
which all have signature (2,4). Thus by Proposition w; € N, (p-) for all i = 1,2, 3. Therefore:

1
Conv (Ng,(p+)) 3 3 (w1 +ws +ws) =0,

as required.

7.7.5 Null case: Lemma [7.7.11] — connectedness of Stabq, .:r)(p)

As usual, without loss of generality assume that p = pg (see eqn. ([.7.7)). To prove Lemma -
which is manifestly invariant under the natural GL,(6;R) action on py — it is beneficial to reduce
this ‘gauge freedom’ to SL(6;R); the ‘gauge’ is (partially) fixed by defining vol,, = 6?3*°67. One can
then define a linear map H,, : RS - RS via:

K,, = H,, ®vol,,. (7.7.28)

(The need to arbitrarily fix a volume form arises since K, being nilpotent, has no non-trivial
( N (RG)*)n-valued invariants for any n and thus parabolic 3-forms do not canonically define volume
forms as SL(3;C) and SL(3;R)? 3-forms do.)

To compute Stabgr,, (6;r) (o), I begin by identifying a convenient subgroup:
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Proposition 7.7.29. Identify RS = (es,e3,e4) @ (e5,€6,e7) = R3 @ R? and let SL(3;R) act diago-
nally on RS according to this splitting. Write € : SL(3;R) — SL(6;R) for the corresponding group
homomorphism. Then (SL(3;R)) preserves po, voly, and Hp, .

Proof. Clearly £(SL(3;R)) preserves vol,,. Moreover, with respect to the basis (ea, ..., e7):

0 0
H =
ro (Id 0)

0 0
A 0) = HPO O&(A),

and thus for A € SL(3;R):
g(A) °© HPO = (

as required. Now consider the map:

i N (RY) » N (R%)
09— H* (07) A 0%+ H (07) A" AH (0°) +09 A H 5 (07).

Since £(SL(3;R)) preserves H,,, it also preserves j. However —j(6°57) = —237 4 9246 — 9345

thus £(SL(3;R)) also preserves py.

= po and
O]

Note that the subspace (es, eg, e7) can be invariantly defined as the kernel of the map K,,. By
applying Proposition 7 one obtains:

Corollary 7.7.30. Every F € Stabgr,, (6:r)(po) preserves the subspace (es, eq,er). Moreover Stabgr,, (6:r)(p0)

acts transitively on non-zero vectors and on ordered pairs of linearly independent vectors in (e, eg, 7).
I now prove the first half of Lemma . Specifically:
Lemma 7.7.31. Stabgr, (6:r)(p0) is connected. Explicitly:
Stabgr, (6:r)(p0) = § (SL(3;R)) - ¢

where € was defined in Proposition , & is the contractible subgroup of Stabgr,, (6;r)(po) defined
by:

d
e d!
-1
g -1t d 5 d>0 and drel+d ' fm-d?k-s-0=0 (7.7.32)
E I m|d
no o p |de 1
q T s | df 1
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and £ (SL(3;R)) ¥ =£(G), where G c SL(3;R) consists of the set of 3 x 3-matrices of the form:

1
Al for A, e R.
o 1

Proof. Define:

@ = {F € StabGL+(6;R)(p0) ‘ F(€6) = €4 and F(€7) = 67} .
Then since (by Corollary ) Stabar, (6;r) (o) preserves (es, eq,e7) and {(SL(3;R)) acts transi-
tively on ordered pairs of linearly independent vectors in (e, eg, e7), it follows that:

Stabar, (6:r)(P0) = {(SL(3;R)) - 9.

The next task is to verify eqn. () Let F e ¥. Since 6?3 = —e; 1 pg, and F preserves py and
er, it follows that F*0?3 = #?% and similarly F*6%* = #%4, since #** = eg i pg. Since F also preserves

(es, e, e7), with respect to the decomposition R® = (es, e3,e4) ® (€5, €6, €7) one can write:

Fy
F= ¢ ,
Frlb 1
c 1

where a,b, c € R with a # 0, F» € End(R3,R?), F} € GL(3;R) is such that F}*6%3 = 2% and F;6%* = 64,
and a-det(Fy) > 0.
To better understand the map Fi, let B = (eg,e3,e4) and temporarily restrict attention to B.

023

Since (e4) c B is the kernel of the linear map u € B — u 16 € B*, the space (e4) must be preserved

by Fy. Likewise {e3) must also be preserved by F since Fy preserves §2*. Thus:

d
F1= e A
f %

for some d, 1, A € R\{0} and e, f € R. The conditions F;6?3 = 2% and F}6* = 6?* then force \ = d™*
and p=d.

Returning now to R, it has been shown that:

d
e dt
F= / a”
k1 a
n o p |b 1
q s |c 1




for k,1,m,n,0,p,q,r,s € R. One may then compute that F*pg = pg is equivalent to a = d?, ¢ = df,
b = de, together with the condition:

dlel+dtfm-d2k-s-0=0.

Moreover, given a = d? one has det(F) = d > 0. Thus, it has been established that:

d
e d!
@ - / ! d -1 -1 -2 _
= 5 >Oand del+d " fm-d“k-s-0=0
kIl m|d
n o p |de 1
q s | df 1
as claimed.

The expression for £(SL(3;R)) Nn¥ is now manifest. To see that ¢ is contractible, consider the

projection:

4 ul 5 (0,00) x RS
(d7e?f’k7l’m7n’07p?q’/rﬁs) lﬁ (d7e’f7n7p’q?r)'
Then 7 is surjective, with fibre over (d, e, f,n,p,q,r) given by:

{(k,m,l,o,s) eR® ‘ d_2k—d_1fm—d_1el+o+s=0}.

Thus ¥ is topologically a rank-4 vector bundle over the contractible space (0, c0) x R, hence con-

tractible. This completes the proof.

O
7.7.6 Null case: Lemma [7.7.11 — 0 € ConvConv (N3, (p))
By analogy with eqns. () and (), define:
12 (B & (&)’
w i {(a,b) > § [w(Hp,a,b) + w(Hy,b,a)] }.
Proposition 7.7.33.
N, (po) = {w e \? (Rﬁye ‘ Fpw has signature (2, 1,3)}. (7.7.34)

(Here signature (2,1,3) means that €, has a mazimal positive definite subspace of dimension 2, a

mazximal negative definite subspace of dimension 3 and a 1-dimensional kernel.)

The proof proceeds via a series of lemmas:
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Lemma 7.7.35. For n > 1, x1,....,z, € R\{0} and y € R, any symmetric, ‘forward-triangular’
(2n+1) x (2n+ 1) bilinear form:

* % * * 1
* * * To
M= = Y
* CEQ
X

is non-degenerate if and only if y # 0, having signature (n+1,n) if y >0 and signature (n,n + 1) if

y < 0. Moreover, the 2n x 2n bilinear form:

* * * X
* * o
M’ =
* i)
I

has signature (n,n).

Proof. Start with the matrix M, call the diagonal running from the (2n+1, 1)-entry to the (1,2n+1)-
entry the counter diagonal and call the elements in front of the counter diagonal the strictly forward
entries. Clearly the bilinear form is degenerate when y = 0. Moreover, when y # 0, M is non-singular
for any values of the strictly forward entries and thus it suffices to compute the signature of M when
all of the strictly forward entries vanish. However, in this case, M has eigenvalues y, +x1, £Z9,...,+Lx,
with corresponding eigenvectors:

0 1 0 0

0 0 1

11,101, 01p,--,]10
: : +1

0 0 +1

0 +1 0 0

The case of M’ is similar.

Lemma 7.7.36.
Ker(.7,) = R° 1 py.
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Proof. Take a basis of R% _i pg as follows:
(e2 2 po,es Jpo,...,er Jpo) = (—937 +0%6 927 _ g% %6 1 935 _p3t 9%, —023) .
Extend this to a basis of A2 (Rﬁ)* via:
(925, 636 947 936 57 (6T 926 4 g% 2T 4 g5 0T 4 946) _

(By analogy with the spacelike and timelike cases, denote the span of this latter set of vectors by
AL (RG)*.) Then:

A2 (R®)" = AV (R®)" @ R® L py, (7.7.37)
although the reader should note that I only define this splitting for pg; no attempt is made to define
AbL (]R6)* for an arbitrary parabolic 3-form. Then 7, vanishes identically on RS J po: indeed:

03T 446 0y g3 0t g3 ot = 0
02 _gis o 2 60t L2 004 = 0

and similarly for the other basis vectors. Moreover, one may verify that:

625 Y
s Y
o1 Ys
6 02 0 05— 69 © 6°
o7 | |e2ooT-0te6d . (7.7.38)
667 62 007 - 0" © 6°
026 + 0% 262 0 6°
027 + 010 262 0 0
037 + 6 ~26% 0 9

Since these images are linearly independent, the map 77, is injective when restricted to AL (RG)*.

This completes the proof.
O

*

Lemma 7.7.39. For all we N2 (]RG)
Ker(4%,,w) N (es, es, e7) # 0.
Here Ker(7,,w) denotes the kernel of the map:

RO (R
u e S w(u, ).
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Proof. It is equivalent to show that b (e, ¢, e, is Dot injective. Thus fix w € N (RG)*. Recalling that
J,, vanishes on RS i py and inspecting eqn. (), one sees that b|<€5,€6,e7> only depends on the
component of w in the subspace (86,657, 657) c AL (]RG)*, so without loss of generality assume that:

w = )\1956 + /\2057 + )\3967.

Thus:
Hpyw =X (0°00°-0°00°)+ X2 (07007 -0"00°)+ A3 (0° 00" -0* 0 6°).

Hence b (e, eq,e,) Maps (€5, €g,e7) into (e2,e3, e4) and is represented by the matrix:

(0 M
S 0 (7.7.40)
X2 =X 0

which has determinant 0, as required.

O
I now prove Proposition :
Proof of Proposition . As in the proof of Proposition :
N, (po) = [pro(/)o) nAM (RG)*] ®R° Jpg
and therefore, since 4%, vanishes on RS i py, it suffices to prove that:
N, (po) n A (R(i)* = {w e \M (Re’)* | J,,w has signature (2, 1,3)}. (7.7.41)

Let we Ab! (Rﬁ)* and define 5 =6 Aw+ pg. Proceeding as in the proof of Proposition , one
obtains:

6Qz(aer +u) = a?0t A WP —6a0 A (uJw) Aw A po + 35w (u,u)0" Avol,, (7.7.42)

where now, unlike for SL(3;R)? and SL(3;C) 3-forms, wA pg need not vanish. Initially suppose that ¢
is of Go-type and write B = 0@ R® ¢ R7. Since Zﬂg = po is parabolic, it follows that B is null, hence QEE
has signature (2, 1,3) upon restriction to B and whence by eqn. () Jt,,w has signature (2,1,3),
as required.

Conversely, suppose that .7, w has signature (2,1,3). Then %, w has a 1-dimensional kernel
which by Lemma must be contained in (es, eg, e7). By applying a suitable SL(3; R)-symmetry
(see Proposition ), without loss of generality one can assume that:

Ker(7,,w) = (er).
Since w € Al (]RG)*, by examining the matrix for b |, c;.e,) in eqn. (), it follows that w has the
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form:

w= A% + BO® + COY + DO + E (6% + 6%) + F (6° +6%) + G (6°7 + 6%°),

for some constants A, B,C,D,E,F,G € R with D # 0. Upon restriction to (es, ...,e¢) the bilinear

form 7, w is represented by the matrix:

€2
€9 -A
€3 -F
es |-F
€5 0
e \ 2

By assumption, this bilinear form is non-degenerate with signature (2,3), and thus it follows from

Lemma that C' > 0.

Next, observing w A pg = —D#?3557 yields:

((-)aw)rwApy=D (0«97 + FO° + GOG) ® vol,, .-

Substituting this result into eqn. () and polarising shows that QQ(}; is represented by the sym-

metric 7 x 7T-matrix:

el
€7
€2
€3
€4
es

€6

€1 er €2 €3 €4 €5 €6
4 -DC -DF -DG
-DC
-A -E -F 0 %
-E -B -G -%
-F -G -C
-DF o -2
-DG 2

where H € R is such that 8" Aw?® = HO' A vol,,. Thus to complete the proof, it suffices to prove that

this matrix has signature (3,4). In fact, I show that for any h,r,s,t € R, r # 0, the matrix:

€1 €r €2 €3 €4 €5 €6
e1 h r s t
er | r
€2 -A -E -F 0 2
es -E -B -G -%
ea -F -G -C
es s 0 —%
€g t %




4
has signature (3,4) (which completes the proof, as ~DC # 0). Since det My, .5, = —Cr? (%) £ 0,
My, s+ is non-singular for all values of h, s,t and thus it suffices to consider My ;.0,0. However My 0,0

is block diagonal with blocks:

S}

|
Q
|
vy @

By Lemma the former block has signature (1,1) and the latter block has signature (2,3), and
thus My ;0,0 has signature (3,4), as claimed.
]

I now prove the second part of Lemma . Specifically:
Lemma 7.7.43. For each (equivalently any) p € A, (RG)*, 0 € Conv (Ng,(p)).

Proof. As usual, without loss of generality let p = py. Consider the 2-form wqy = =207 + 2(9%7 + 625 -
63%) for some e € R\{0} to be specified later. One may compute using eqn. () that:

Hpywo =200 @ 0% +2:(0° 00" -0 00° - 6% © 0% + 6° ® 6°).
This may be represented by the 6 x 6-matrix:

€2 €3 €7 €4 € €5

€2 -2

e3 2 €

e 3

€4 2 —&

€6 —&

€5 0

which has signature (2,1,3), by applying Lemma to each matrix along the (block) diagonal.
Thus wo € N, (po).
Now consider w, = 64" + 7%, Then one may verify again using eqn. () that:

Hywe =0 ® 0"+ (020 6° - 0° 0 6°)

both of which have signature (2,1,3). Thus w, € Ng,(po). However N, (po) c A? (Rﬁye is open, so
it follows that for all € e R\{0} with |e| sufficiently small, the 3-forms:

wh = w, —e(657 + 6% - 30)
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also lie in Ng,(po). Fix some suitable choice of ¢; then the three 2-forms wp,w?} all lie in Ng,(po).

Moreover, one may compute that:

% (wo +w! +w’) :% (=207 + 22 (057 + 6% - 6°°)
+ 947 + 056 _ 5(967 + 925 _ 036)
+ 947 _ 056 _ 8(067 + 025 _ 936))

completing the proof.

Thus, by Theorem , it has been proven:

Theorem 7.7.44. Gy 3-forms satisfy the relative h-principle.
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Chapter 8

h-principle for SL(3;R)? 3-forms

This chapter uses convex integration with avoidance, together with careful analysis of the rank 3
distributions induced by SL(3;R)? 3-forms, to prove the relative h-principle for SL(3;R)? 3-forms on

oriented 6-manifolds.

8.1 Lack of ampleness of SL(3;R)? 3-form

Consider the standard SL(3;R)? 3-form p, = e'23 + €% on RS and recall the +1-eigenspaces of the

para-complex structure I, :
E, =(e1,e9,e3) and E_ = (eq4,e5,€6).
Given a hyperplane B c R, on dimensional grounds one of the following statements holds:
1. dim(Bn E,) = 2;
2. dim(Bn E,) =2 but dim(Bn E_) =3 (equivalently E_ c B);
3. dim(Bn E_) =2 but dim(Bn E,) =3 (equivalently F, c B).

Denote the sets of oriented hyperplances corresponding to conditions 1, 2 and 3 above by E}vrg,,gen(RG),
Grs_(R%) and Grs . (R%) respectively.

Proposition 8.1.1.
— e N N _
SL(3: R)Z\GIB(R ) = {Grs gen(R%), Grs _ (R), Grs . (R%)} .
Proof. Firstly note that there is an isomorphism:

6;5’_,_ (RG) — @;2 (E_)

NI—IInE.

where II n E_ is oriented via the decomposition II = E, & (IIn E_). Recalling that SL(3;R)? acts
on R® diagonally via the decomposition R® = E, @ E_, and that 1 x SL(3;R) acts transitively on
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Gry (E_), it follows that Grs 4 (R) is a single orbit for the action of SL(3; R)?. Likewise Grs,_ (RY)
is a single orbit.

In the remaining case, firstly note that Grs gen (RG) forms a single orbit for SL(3;R)2. Indeed,
there is a natural line bundle £, over Gra(E;) with fibre over 7, € Gry(FE,) given by:

£+|7|'+ = E+/7T+ .

The action of SL(3;R) x 1 on Gra(E,) lifts naturally to define an action on £, which one may verify
acts transitively on £,\Gry(E, ), the complement of the zero section. The analogous statement holds
for £_\Gra(E-). Now note that there is a surjective map:
£+\Gr2(E+) X £—\Gr2(E—) —_— GI‘5,gen (Rﬁ)
(u+ + 7, € E+/7r+ JU_+TT_ € E‘/w,) — T &7 @ (uy +u_).
Since SL(3;R)? acts transitively on £,\Gra(E,) x L_\Gra(E.), it follows that Grs gen (R%) forms a

single SL(3;R)2-orbit as claimed. To verify that moreover (F}Vr5,gen (RG) forms a single orbit, it suffices
to consider B ¢ a{"g,,gen (RG) with oriented basis (e1, ez, €4, €5, €3 + €g) and note that:

F= € SL(3;R)?

preserves B and F'|g is orientation-reversing.

Clearly @7579671 (]R6) c Grj (RG) is open and dense. By Proposition , it follows that 7,, (@7“57gen(R6))
must be the (unique) open orbit of 3-forms on R? i.e. /\30 0P (R5). Now consider the orbit @?5’+(R6).
Taking B = (eq,...,e5) € @?5,+ (RY) yields:

p+|IB - 9123‘

It follows that 7, (@57+(R6)) is the orbit of non-zero, decomposable 3-forms on R®. By considering
B = (e2,...,e6) € Grs (R®), one sees that 7T, (@7‘57_(]1%6)) is precisely the same orbit.

Proposition 8.1.2. Let 7€ /\3Co—P (]R5), Then N, (1) is ample. In contrast, now let T be a non-
zero decomposable 3-form on R®. Then N, (1) consists of two convex, connected components; in

particular, it is not ample.

168



Proof. Let 7€ Np, p (R5)*. Then Stabgr,, (5;r)(7) is connected by Proposition and:
To (Tp. [Grs gen (R")]) = {Grs,gen (R) }
by the above discussion. Since p, admits the orientation-reversing automorphism:
€1 <> €4, €2 <> €5, €3 <>C6

it follows from Proposition that NV,, () is ample.
Now let 7 be a non-zero, decomposable 3-form. Identify R® with the subspace (es, ..., eg) of RO
and take 7 = %56, Then:

Ny (1) = {w € /\2(02, .., 0% ‘ 0 Aw+ 6% ¢ /\3+ (RG)*}'

Recall that a 3-form p e A? (]RG)’F is of SL(3;R)2-type if and only if the quadratic invariant A defined
in § is positive. A direct calculation shows that:

MO Aw+60) = w(en, e3)? - (8123456)82,
Thus:
Ny (1) = {w € /\2(92, ...,96) ‘ w(es, e3) # 0},

which has the form claimed.

8.2 Defining an avoidance template for #, (a)

The remainder of this chapter is devoted to proving:
Theorem 8.2.1. SL(3;R)? 3-forms satisfy the relative h-principle.

Recall from Lemma that in order to prove Theorem , it suffices to show that for all
oriented 6-manifolds M, ¢ > 0 and continuous maps a : D¢ - Q3(M), the fibred differential relation
X,,(a) over M satisfies the relative h-principle. Since p, is not ample, by Proposition the
relation Z,, (a) is not ample, and thus convex integration cannot be used to establish the h-principle
for %, (a). Instead, I employ Theorem . Therefore, to prove Theorem 7 it suffices to show
the existence of an avoidance template for Z,, (a). The aim of this section, therefore, is to define an
avoidance template .o/ for %,, (a) and prove that it satisfies conditions (1)-(3) in Definition .

Definition 8.2.2. Let p € A%, (RG)* be an SL(3;R)? 3-form and let {By,..., By} € Grék)(RG) be

a configuration of hyperplanes in R®. Say that {By,...,B} is generic with respect to p if for all

i€ {l,...k}: B; € G5 4en, (R%) and if for all distinct 4, € {1,...,k}, at least one of the conditions:
BinE,,+B;nE,, o BnE ,+B;nE_, holds.
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Write Gréj’;’gn (RY) p for the collection of all generic configurations of hyperplanes in RS with respect

to p, or simply Grézzn(RG), when p is clear from context. (Note that formally Grégen (RY) =
Gr5ygm (R6))

The appellation ‘generic’ is justified by the following proposition:

Proposition 8.2.3. Let pe A3, (R6)* be an SL(3;R)? 3-form. Then:

Gréj’;’zn (R%) c Gréoo) (R%)

s an open and dense subset.

Proof. Recall from above that Grs gen (R6) c Gry (]RG) is open and dense. Thus it is equivalent to

prove that Grggg)en (R%) c Grék)(R6) is open and dense for every k > 2.

Fix k > 2 and recall the open, dense subset:

k k
1;[ GI‘5(R6) = {(Bl, ,Bk) € III GI“5(R6)

k
for all i + j: B; # Bj} c [T Gr5(R%),
1

whose complement (H’f Gr;p (Rﬁ’))smg
Define G c [T Gr5(R®) c T1¥ Grs(R%) by:

is a stratified submanifold of codimension 5 in the space [T¥ Grs (R%).

k
g-= {(Bl, ey Bi) € H Grs,gen(R6)
1

foralli#j: BinE, #B;nE, orBiﬂE_iBjﬂE_}.

(k)

Then G is precisely the preimage of Grz gen

(RG) under the quotient map:

k k
1:[Gr5 (RS) - 11 G5 (RG)/Symk = Gri™ (RY) .

Since the quotient is open and surjective, to prove Proposition it suffices to prove that G c
Hlf Grs(R%) is open and dense, or equivalently that G c Hlf Gr57gen(R6) is open and dense (since
I} Grs gen(RY) c T1% Grs(R®) is also open and dense).

To this end, note that there is an inclusion:

ﬁ Grg,,gen(RG)\g c {(18%1, By € ﬁ Grs gen(R®) | for some i # j: B;n E, =B; n E+} =S.
1 ' (8.2.4)
However S is a stratified submanifold of H]f Gr5,gen(R6) of codimension 2. Indeed, there is a
SL(3;R)?-equivariant map:
N : Grs gen(R®) —— Gra(E,)
Br——BnkE,

which is submersive since SL(3;R)? acts transitively on Gro(E,). Taking the Cartesian product
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yields a submersion:
k k k
H n*: H Gl"57gen(R6) e H GI‘Q(E+).
1 1 1

By definition:
-1

(i) e

From §, the set (H’f Gra(E,)) . < 1% Gra(E,) is a stratified submanifold of codimension

sing

dim Gra(E,) = 2. Using the Preimage Theorem (which applies equally well to stratified submanifolds;

sing

see e.g. [42, p. 17]) it follows that S is a stratified submanifold of codimension 2. The openness and
density of G in TI} Grs gen (R®) now follows from eqn. (), completing the proof.
O

Definition 8.2.5. Let M be an oriented 6-manifold, fix ¢ > 0 and let a : D? - Q3(M) be a continuous

map. Define:
o = {[(S I ) (S “)] €EX (a) X GI‘( )(TM ) | =€ GI‘( ) (TM) }
) s\ 9y — P+ (DaxM) 5 Da 5,9en D(T)+a(s) ( -

Proposition 8.2.6. </ is a pre-template for %, (a). Moreover, for each s € DI, x € M and
(S,T) € %p+ (a)(sw):
o (s,T) c Gr{™) (T, M)

is a(n open and) dense subset.

Proof. It is clear that </ c Z,,(a) X(paxwm) Gréw)(TMDq) is open, since for p € A3, (RG)* and
= e Gréw)(RG), the condition = € Gré‘zgn(RG)p is open in both p and Z. Now fix s € DY and
x € M, consider Z' ¢ = € Grgm)(TmM) and suppose T € &/(s,2) ¢ EWM . Write p=D(T) + a(s).
Then = € Gréoo)(TxM)p,gen and so since E' ¢ E, it follows that Z’ € Gréze)n(TIM)p and hence that
T e o/ (s,2"). Thus &/(s,2) € ./ (s,E") and hence &/ is a pre-template for %, (a), as claimed. The
final claim follows immediately from Proposition .

O

Note that the pre-template <7 has the form described in the discussion after Definition . Thus
to prove that 47 is an avoidance template for Z,, (a), and hence complete the proof of Theorem ,
it suffices to prove that for all s € D4, x € M, E ¢ Grgm)(TmM), B e =, \eHom(B,A°T:M) and
e € N>T:M, the subset:
A'(s,2) n1I(B, \) c II(B, \)

is ample. Fix B € =, choose an orientation on B, fix an oriented splitting T,M =L @ B and choose
an oriented generator 6 of the 1-dimensional oriented vector space Ann(B) c T;M. Then there is an
isomorphism:

B* & A°B* @ (B* @ A°T;M) +—— TiM e A*TiM

adrveoN — 0 (0 ra+v)+ A

171



Using this identification:
(B, \) = B* x A’B* x {\}

and thus:

OAv+A(N)+a(s)e e A3, T:M and

' (s,2)nI(B,\) 2B* x{ve A\’°B*
(5,2) nII(B, ) { A = is generic for O A v+ A(N) + a(s)],

}x o,

In particular, the amplitude of «7’(s,Z) nII(B, ) depends only on A(A) (for a fixed choice of a).
Thus, writing 7 = A(X) + a(s)|, the task is to prove that for each 7 € A3B*, the subset:

N(m;:E,B) = {ve N’B*

OAv+Te /\3+T;M and Z is generic for f Av + 7} c A\*B*

is ample. If this set is empty, the result is trivial, so without loss of generality one may assume that
there exists vy € A’B* such that p =6 A vy + 7 is an SL(3;R)? 3-form on T,M with respect to which
= is generic. Since N (7;Z,B) = N (p; Z,B) + 1, one sees that to prove Theorem , it suffices to

prove:

Proposition 8.2.7. Let p € N, (]R6) be an SL(3;R)% 3-form, let = € Gréw)(RG) be a generic
configuration of hyperplanes with respect to p, let B € Z, choose an orientation on B, fix an oriented

splitting RS = L ® B and choose an oriented generator @ of the I1-dimensional oriented vector space
Ann(B) c (]R6)*. Define:

N(p;E,B) = {y e \’B*

OAv+pe /\?’Jr (RG)* and = is generic for 0 Av + p} .
Then N (p;Z,B) c A>B* is ample.
I begin with an elementary lemma:

Lemma 8.2.8. Let X be a connected topological space and let Y ¢ X have empty interior. Suppose
that for every y € Y, there exists an open neighbourhood Uy, of y in X such that U,\Y is connected.
Then X\Y is connected.

Proof. The proof is a simple exercise in point-set topology. Suppose that A, B < X\Y are open,
disjoint subsets such that X\Y = Au B. For each y € Y, since U,\Y is connected, it follows that
either:

U\YcA o U\YCcB. (8.2.9)
Thus define: o v there exists some open neighbourhood 89,10
SARE W, of y in X such that W,\Y ¢ A (8:2.10)

and let B’ be defined analogously. Then by eqn. (), clearly A/uB"= AuBuUY = X. Next, note
that A’ ¢ X is open. Indeed, since A ¢ X\Y is open, there exists an open subset O ¢ X such that
A=0n(X\Y). Then clearly every y e OnY also lies in A" (just take Wy, =0) so AcOc A’". Now
let y e Y n A" and let Wy be as in eqn. () Then every y' € W, nY also lies in A" (just take
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Wy =W,) and so y € W, ¢ A". Thus:

A'cou | wW,cd,
yeYnA’
hence equality holds, and whence A’ is open. Similarly B’ € X is also open.

Now suppose there exists y € A’n B’. Then clearly y € Y (since A nB'n(X\Y)=AnB=92).
By definition, there exist neighbourhoods W, and Wy of y in X such that W,\Y ¢ A and W)\Y ¢ B.
Then:

(WynW)n(X\Y)c AnB =g,

which contradicts the density of X\Y (since W, n Wy is an open neighbourhood of y in X). Thus
A'n B’ = @. Since X is connected, it follows that one of A" and B’ must be empty, and hence so
must one of A and B.

O

Now let A be an affine space and X € A an open subset. I term a subset ¥ c¢ X macilent if
it is closed and if, for every point y € Y, there exists an open neighbourhood U, of y in X and a

submanifold Sy c Uy of codimension at least 2 such that:
YU, <8, (8.2.11)
Say that a subset Y c X is scarce if it is a finite union of macilent subspaces.

Lemma 8.2.12. Let X € A be open and path-connected, and suppose that Conv(X) =A. Let Y c X
be scarce. Then X\Y is path-connected and Conv(X\Y) = A. In particular, if X' € A is open and

ample and Y' ¢ X" is scarce, then X'\Y' is open and ample.

Remark 8.2.13. A related result concerning so-called ‘thin’ sets was stated without proof in [42,
§18.1], however to the author’s knowledge, the formulation used in this paper cannot be found in the

literature.

Proof. Begin with the first statement. By writing Y as the union of n macilent subsets and inducting
on n, without loss of generality assume that Y is macilent. Since S, has codimension at least 2 in
Uy, it follows that ¥ has empty interior in X and that U,\S, is connected for all y € Y. But U,\S,
is dense in Uy, hence certainly dense in U,\Y and whence U,\Y is also connected for all y € Y. It
follows from Lemma that X\Y is connected. Since X\Y is open in X and X is open in A, it
follows that X\Y is also locally path-connected and hence it is path-connected, as claimed. To see
that Conv(X\Y') = A, note that for each y € Y, by eqn. ()

y € Conv(U,\Y) ¢ Conv(X\Y)

and hence:
Conv(X\Y) = Conv(X) = A,
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as required. The final claim now follows by applying the above result to each path-component of X'.
O

Now return to Proposition . The proof of this result is broken into two stages. Firstly, define
the larger set:

N(p;E,B); = {y e \’B*

Onv+pe N, (Re’)*} c \*B*.
Since E is generic for p and B € Z, it follows that 7 = p|p is a co-pseudoplectic form on B. Noting that
N(p;E,B)1 is just a translated copy of N, (7), by Proposition it follows that A'(p; Z,B); c A?B*
is ample.

Next, for each B' € Z, define a closed subset ¥/ ¢ N'(p;E,B); by:

Yp = {v e N(p;E,B)1 | B’ is not generic for  Av + p}

and define:
N (p:E.B)s - N(p;E,B)l\ U =y .

B =

Explicitly:
N(p;E,B)s = {1/ e \’B* | Orv+pe N, (RG)* and every B’ € = is generic for 0 A v + ,0}.
Finally, for each pair {B’,B”} ¢ = define a closed subset E{B’,]B%”} c N(p;E,B)s by:
(B B} = {veN(p;E,B)2 | B' N Eyprvap =B N Esprip}-

Then:

N(pEB) = N(pEB)\ U S gy
(57} e =

By applying Lemma twice, to prove Proposition 7 it suffices to prove the following two
lemmas:

Lemma 8.2.14. For all B’ € =, the subset Y ¢ N(p;Z,B); is scarce.

Lemma 8.2.15. For all {B',B"} c =, the subset S B} © N(p;Z,B)q is scarce.

8.3 A preparatory result: computing the derivatives of the
maps F,

Given p € /\3+ (RG)*, recall that there is a decomposition R® = E,,® E_, Thus, there is also a

decomposition:

NERY =@ NE , e NE ,= @ N*(R°)".

T+8=p r+8=p
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Define SL(3;R)?-equivariant isomorphisms K N0 (RG)* - E,,and £, : N2 (Rﬁ)* - F_ , as the

inverses to the maps:

Bip — N (R6)* and E-p N (R6)* respectively.
w— w (p|E+,p) W w (p|E_,p)

Proposition 8.3.1. Consider the smooth maps:

E.: N, (R%)" — Grs (R%)
pr——— B,

Fiz pe N3, (]RG)*, Then:

DE.|,: N> (R®) — (B, ,)" ® E_, = Hom(E, ,, E- )
ot » —(Id®k,)(m12(a))

and
DE_|,: N*(R®) — E,,®(E_,)" 2 Hom(E_ ,, E, )

a » (1, ®1d)(m2,1())

respectively, where m, s denotes the projection onto forms of type (r,s).

Proof. Start with the first statement. Since /\3+ (Rf’)* c A3 (]1{6))e is open, one has T, /\?’Jr (]RG)yr =
A (RG)*. Likewise, the decomposition R® = E, , ® E_ , yields Tg, Gr3 (R6) = Hom(FE, p, E_ ).
Since the only simple SL(3;R)?submodule of A3 (Rﬁ)* which is isomorphic to Hom(E, ,, E_ ) =
(B, p) ® B, is A1 (]RG)*, it follows that:

DE,|,(a) = Cld®k, (71 2())

for some constant C.

_ 123 | 456

The value of C may be computed directly. Consider p = p, and write:

pr = py + 1015
A direct calculation shows that:

E. ,, =(e1—tes, e2,e3)

so that: d
—F = -0' ® es.
dt +,Pt -0 6
By comparison:

(Id ®/€;+)(7T172(9145)) = 6! ® €g,
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forcing C' = -1, as claimed. The calculation of DE_|, is similar.

8.4 Lemma 8.2.1@‘: the scarcity of Xy

Recall the subsets:

N(p;E,B); = {V e \*B* | Onv+pe N, (R6)*} c \*B*
and:

Y = {v e N(p;E,B)1 | B’ is not generic for @ Av+p}.

Lemma 8.4.1.
Y =4a.

Proof. Indeed, let v e N'(p;Z,B)1, i.e. suppose that A v + p is an SL(3;R)? 3-form. Then:

(Onv+p)ls = pls.

Since B is generic for p, p|p is a co-pseudoplectic 3-form and thus B must also be generic for f Av +p

(else (8 Av+ p)|p would be decomposable).
O

Remark 8.4.2. The above proof also shows that if B is non-generic for p (equivalently if p|g is decom-
posable) then it is also non-generic for all 9 Av+p. At first sight, this result seems surprising, since one
expects non-genericity to be destroyed by pertubations. On closer examination, however, the result
is less surprising, since the space of perturbations of p of the form 6 A v + p is (g) = 10-dimensional,

whereas the space of all perturbations of p is instead (g) = 20-dimensional.

Lemma 8.4.3. Let v e N(p;Z,B)1 and write:

p':QAy+pe/\3+(]R6)*.
Then:
(BnE,,)®e(BnE_,))=(BnE,y)a(BnE_,).

Proof. By applying a suitable orientation-preserving automorphism of RS one can always assume
that:
p=02340%% and B-= (e1,e2,€4, €5, €3 + €g).

Hence:
(BnE,,)®(BnE_,)=(e1,e2) ® (es,e5) = (€1,€2, €4, €5). (8.4.4)

Now take L = (e3 —eg), 0 = 62 — 6% and write:
p =0+ 0% 4 (0% - 65) Av.
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Write I, for the para-complex structure induced by p'.

Claim 8.4.5.

Iy ({e1,e2,e4,e5)) € (e1,e2,e4,€5).

Proof of Claim. Recall the map:
iy RO ——— A’ (RO)
vi— (vap)ap.

Then, by the definition of I/, it is equivalent to prove that:

iy ((e1,e2,ea,5)) € 039 A NP (RY).

Consider the subgroup SL(2;R)? c SL(3;R)? acting block diagonally on (e, e2)®{e4, e5) and trivially
on (e3,eq). Clearly SL(2;R)? preserves p, B, L and @ as described above, and acts transitively on the

set of non-zero vectors in both (eq,e2) and (e4,e5). By exploiting this freedom, it suffices to prove:
iy(e1),ip(eq) €0°° A NP (RY).
However, a direct calculation shows that:

(e1apYAp = (0% =0°A(e1av) +0° A (e1 av)) A (0 + 0455 + (6 - 6°) A V)
=(9245—92/\I/+912/\(el_II/)+945/\(61_|I/))/\936
while:
(exap)np = (0" =0°A(eg av) +0° A (e av)) A (0" + 070+ (6° - 0°) Av)

= (-0 -0 rv+ 0% A (eg 1)+ 02 A (eyq 1 v)) A 6%,

as required.

2
Using the claim, (Ipf|<elez’e4’es)) =1d and thus:
(e1,€2,eq,e5) =€, D e

where e, are the +1-eigenspaces of Iy|(c, e, e,,e5)- SinNcCe (€1, €2, €4,e5) ¢ B, it follows that e, cBNE,
and hence:
(e1,e2,eq,e5)=e,®@e_C(BnE, )& (BnE_,).

However B is generic for p’ by Lemma and hence:
dlm [(B N E+7P’) @ (IB n E_ypl)] =4.
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Therefore (see eqn. ())
(B n E+7p/) D (B n E_7pf) = (61, €9, ey, 65) = (B n E+7p) D (IB N E_7p),

as required.
O

Lemma 8.4.6. Let v e N'(p;Z,B), and write p' = 0 anv+pe NS, (RG)*, Suppose a hyperplane B’ + B
satisfies:
BAE,,cBnE., ad BnE ,cB nE_,. (8.4.7)

Then eqn. ) also holds with respect to p, i.e.:

BNnE,,cB'NE,, and BnE_,cB'nE_, (8.4.8)
In particular, {B,B'} is non-generic for p.
Proof. Firstly, note that:

BnE,,=[(BnE,,)e®(BnE_,)]nE,,
[(BnE,,)®BnE_,y)]nE., byLemma
[(B'nE,,)e B nE_,)]nE., byeqm. 547
B'nE,,,

N

N

as required. For the final statement, note that either B’ is non-generic for p, or else dim(B'n E. ,) =
dim(B’' n E_ ;) = 2 together with eqn. () forces:

BnE,,=B'nE,, and BnE_,=B'nE_,

O]

Remark 8.4.9. If both B and B’ are individually generic for p, it is clear that {B,B’} is non-generic
for p if and only if eqn. () is satisfied.

I now prove Lemma . Recall the statement of the lemma:

Lemma . For all B' € 2, the subset X ¢ N (p;Z,B)1 is scarce. More precisely, it is either

empty, or the union of two closed submanifolds, each of codimension 3.

Proof. By Lemma , it suffices to consider B’ # B. Consider the maps:

E.: N(p;Z,B); — Grs (RY)

vVi———— FE, grvip-
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(Note that, unlike the maps E,, the arguments of the maps E, are 2-forms, and not SL(3;R)? 3-
forms.) Consider the submanifold Grs(B’) ¢ Grz (R®) and recall that B’ is non-generic for 6 A v + p
if and only if either E, (v) or E_(v) lies in Gr3(B"). Thus:

S = [(B)7 Grs(B) | L[ (B) ™ Gry(B)].
Claim 8.4.10. The maps E. are transverse to the submanifold Grs(B').

Proof. 1 consider E,, the case of E_ being essentially identical. Suppose that v € N'(p;=,B); sat-
isfies E,(v) € Grg(B'). Write p’ = 0 Av + p and after applying a suitable orientation-preserving

automorphism of R®, one may assume that:

. pl — 9123 + 9456;

o B’ =(e1,e2,e3,€e4,€5).

(Note that there is a residual SL(3;R) x SL(2;R) freedom in choosing such an automorphism, acting
diagonally on (e1, ea,e3) ® (e4, e5) and trivially on (eg), a fact which will be exploited below.) Then
one may identify Tg, (,)Grz(B") = Hom({(e1, 2, €3), (€4, e5)) and moreover:

T RS ~ H
20108 (R) [ 1, () = HomUen ez €ads (04, €5:€6)) [om(ey, 0, e0), (e, )
~ Hom((eq, e2,€3), (€6)).
Next recall that Ann(B) = (6) and write:
6 3 5 ,
0= N0 =D N0+ > N0+ A6
i=1 i=1 =4

By exploiting the residual SL(3;R) x SL(2;R) freedom described above, without loss of generality
one can assume that:
0 = M0" + Ag0* + \60°.

I claim that Ay # 0. Indeed suppose 6 = A0 + \g6%. If \g = 0, then E_ ,» = (e4, e5,¢e6) c Ker(0) = B,

hence B is non-generic for p’ and whence v € ¥p, contradicting Lemma 8.4.1[. Thus A\g # 0 and:

Bn E_7p/ = (64, 65> =B'n E_7pr.

However, since E, , c B, one trivially has that Bn E, , c B'n E, ,. Thus using Lemma , the
pair {B,B’} ¢ = is not generic for p, which contradicts the assumption that = is generic for p. Thus
Aq # 0, as claimed.

Finally, note that T,N (p; Z,B)1 = A*B* since N'(p; Z,B)1 ¢ A2B* is open (since SL(3; R)? 3-forms
are stable). Choose v; € A2B* for i = 1,2,3 such that:

OAv; =0 A0,
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(Such v; exists, since (6 A 6%)|g =0.) Then:
DE,|y(v;) = -1d &k, (m12(0 A 07))

= /\49i ® eg — )\ﬁgi ® eyq

which projects to the element A\40’ ® eg in Hom((e1, ea,e3), (eg)) = TE.(1)GT3 (RG)/TE (1 Cr3(B)-

Since A4 # 0, this proves the surjectivity of the composite:

NB* 22 Ty )Gy (RY) —— TaoonGrs (BY) [ ()

Thus E, is transverse to Grs(B’).
O

Resuming the main proof, since Grs(B’) is closed and has codimension 9 -6 = 3 in Grs (Rﬁ), by
Claim it follows that the submanifolds (E,) ' Grs(B') and (E_)™" Grs(B’) of N(p; =, B); are
closed and each have codimension 3, and hence:

S = (E.) " Grg(B') u (E-)™' Grs(B)

is scarce. This completes the proof.

8.5 Lemma 8.2.15: the scarcity of > p,

Recall the set:

N(p;E,B)s = {1/ e \’B*

Oav+pe N, (Rﬁ)* and every B’ € = is generic for 0 A v + ,0}.
For each {B’,B"} c Z, recall further the subset E{Br B} C N (p;Z,B)2 defined by:
Z{B,,B”} = {I/ € N(p, E,B)Q ‘ IB, N E:t,@/\y+p = B" n E:t,6'/\V+p} .

Lemma 8.5.1. For all {B,B'} c =:
E{B,]B’} =d.
Proof. Suppose v € E{IB% B and write p' =0 Av+pe /\3+ (RG)*. Then:
BnE,,=BnE,,.
Applying Lemma , it follows that {B,B’} € = is not generic for p, contradicting the fact that =
is generic for p. Thus E{IB% B =9 for all {B,B'} c =.

O]
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Now suppose that B’ # B # B”. Define three new closed subsets of 2 (B, B") by:

EIES' = {I/ € E{]B',B”} | B’ n E+,9/\V+p =Bn E+,9/\1/+P}
EI_BSI = {l/ € E{]B,,B”} | B n E—,O/\VHJ =Bn E—,Q/\u+ﬂ}

E/{B',B”} = {I/ € E{B’,E”} ‘ B n Ed:,@/\u+p +Bn E:l:,@/\y+p} .

Then clearly:
E{B,,B"} = EIE, U EIEB/ (@] ZI{BI7BII}. (852)

Lemma 8.5.3. Let {B',B"} € = satisfy B’ + B + B”. Then EIiB%’ c N(p;E,B)2 are both macilent.

Proof. Write ¢ = BnB’, a 4-dimensional subspace of R (since B # B’). Using €, one may stratify
the manifold Grz (R°) as:
GI‘3 (Rﬁ) = 21 @] 22 @] 23

where:

Y = {EeGr3(R°%) | dim(¢n E) =i}.

Explicitly, ¥ is the open and dense subset of 3-planes intersecting € transversally, while 33 = Grs(¢).
To understand the submanifold structure on X, it is useful to describe its tangent space as a subspace
of the tangent space of Grs (]RG). Specifically, fix E € 39 and write € = En €. Choose splittings:

E=-¢’qg!, c¢=¢’0F and R°-¢’og'eg’er, (8.5.4)

where the superscripts denote the dimension of the respective subspaces. Then, TgGrs (R6) may be
identified with the space:

Hom(¢ o £,F o R) 2 Hom(€¢,§) @ Hom(¢&, R) @ Hom(L,§) ® Hom(L, R).
Using this description, T35 is given by the subspace:
TgYs =Hom(€,§) ® Hom(£,F) ® Hom(£, R),
and hence TEGT3 (R6)/TE22 may be identified with:
6
TpGrs (R )/TE22 ~ Hom(€&, &).

In particular, the codimension of Yo in Grs (RG) is dim Hom(€, ) = 2.

Now consider the smooth maps:

E.: N(p;E,B); — Grs(R)

vVi———— FE, grvip-
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Since € = BnB’, one has:
E,(v)n€=(E,(v)nB)n(E.(v)nB').

Since both E, (v)nB and E, (v)nB’ are 2-dimensional, it follows that dimE, (v)n€ < 2, with equality
if and only if E,(v) nB =E,(v) nB’. Thus E, (N (p;=,B)2) €31 UXs and:

2 € ()7 (D).

Likewise X5, ¢ (E-)™" (Z3). Therefore (since X, are both closed) to prove that ¥, are macilent,
+

B" 1
Yo c Grg (RG) at v. (Note that I do not claim E, are transverse to Xy at all points of (E;)  (X2)
and thus I do not claim that (E.)' (23) themselves are submanifolds of A'(p;=,B)s. The fact

that E, are transverse to Xz at (and hence also near) each point of Xz, shows that (E.) " (5,) are

it suffices to prove that for all v € 37,, the maps E, respectively are transversal to the submanifold

+

B which is sufficient to establish the macilence

submanifolds of codimension 2 near each point of X
Of EI:E,)

Firstly consider the case of EI_Bé" Let v e EI_EB’ and define p' =9 Av+pe A2, (RG)*. After applying

a suitable orientation-preserving automorphism of R%, one may assume that:
p =012 4+01%  and B= (e1,e2,64,e5,€3 + €6).

Since v € X, one has B'NnE_, =BnE_, = (eses5). If additionally B'n E, , = Bn E, ,, then
vey (B,B'} contradicting Lemma . Thus B'nE, , and BnE, , intersect along a 1-dimensional
subspace of B n E, , = (e1,e2) which, by applying a suitable SL(2;R) symmetry to the subspace
(e1,e2), can be taken to be (e1). Therefore B’ n E, , = (e1, Aea + e3) for some A € R. Now consider
F € SL(3;R)? given by:

(e1,e2,€e3,€e4,€5,e5) — (e1,e2,e3 — Nea, eq, €5, €6).
Then F preserves p’ and B (and hence B'n E_ , =B n E_ /) and maps:
{e1,Ae2 +e3) = (e1, e3).
Thus without loss of generality one can take B’ n E, , = (e1,e3). Therefore:
B’ = (e1, e3, €4, €5, piea + veg)

for some p,v € R. Note that p # 0 (as else E_ , ¢ B’ and so B’ is non-generic for p’, contradicting
v e N(p;Z,B)2) and similarly v # 0 (as else E, , c B'). Thus, by rescaling y and v, one may assume

without loss of generality that v = 1. Now consider G € SL(3;R)? given by:

. -
G : (e1,e2,e3,64,e5,¢65) = (per, 1t ez, e3,e4,€5,6€6).
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Then G preserves p’, B and preserves B’ n E, , = (e1, e3) and maps:

-1
(e1,€3,€4,€5, puea + €g) = (11 €1, €3,€4,€5,€2 + €g) = (€1, €3, €4, €5, €2 + €6).

Thus without loss of generality one can take B’ = (eq, e3, eq, €5, €2 + €¢) and thus:
BB’ = (e1,eq,e5 62 +e3+eg).
One can then choose:
¢ =(eq,65), L=(eg), T=(er,ea+ez+eg) and K= {(ez—e3).

Note that 6 = 62 — 5 (up to rescaling).

The proof now proceeds by direct calculation. Choose v, € AN2B* such that:
Onvi=0n0" and OAva=0n0".
(Such v; exists, since (8 A 0'*)|z = (0 A 0'%)|g = 0.) Using the identification:
Tg_,Grs (Rﬁ) ~Hom (E_ v, E. ) = Hom ((ey4, e5, €6), (€1, €2, €3))
and using Proposition , one computes that:

DE_|, (11) = K, ® 1d(m2,1 [(6° - 6°) £ 6™4])
= 94 ® €9

and:
DE_|, (v2) = K, ® Id(m2,1 [(6° - 6°) £ 6'°])

= 95 ® €.

Replacing the identification in eqn. () with the identification:

Tpg_,Grs (]R6) =Hom(¢ & £,F @ R) = Hom({ey4, €5, €5), (€1, €2 — €3,e2 + €3 + €5))

the above results become:
4 1 5 1
DE_|,(v1)=0"® €2+§€6 and DE_|,(1r)=6"® €2+§€6

and hence: )
DE_(T,N(p;E,B)2) 2 Hom ((64, es), (62 + §e6>) :

Thus:

1
DE_ (T, N(p;E,B)2) + Tp_ ,%2 2 Hom ((64, es), (62 + 56(;)) + Hom(¢€,§)

+Hom(£,§) + Hom(£, R).

183

(8.5.5)



Substituting the formulae for Hom (&, §), Hom(£,§) and Hom(£, R), it follows that:
DE_ (TVN(/); E,B)Q) + TE‘_,p,EQ 2 Hom((e4, €5, €6>, (61, €y —e3,62 + €3+ 66)) = TE_,p,Gl‘g (RG) .

Thus E_ is transverse to Y9 as required.

The case of EIE%’ is analogous. In a similar fashion to above, one argues that without loss of

generality:
/_ 123 | p456 / 3 46
p'=0""+0""  B=(eezeq,e5e3+e6), B =(er,e,e4,66,e3+e5) and O6=06"-0",

takes:
¢ =(e1,e2), L=(e3), F=(es,ez+es5+eg) and K= (e5—eg)

and identifies:

Tg, ,Grs (RG) =Hom(¢ a £,F @ R) = Hom({e1, e2,e3), (€4, €5 — €5, €3 + €5 + €5)).

By considering the derivative in the ' and #?* directions, one verifies that:

DE, (T,N(p;=Z,B)2) 2 Hom ((61, ea), <%63 + e5>)

from which the result follows.

’ oI - . ’ " / = . .
.5.6. , cE . , ', .
Lemma 8.5.6. Let {B',B"} c = satisfy B’ # B+ B"”. Then E{IBi B") c N(p;Z,B)2 is macilent

Proof. Since B’ # B”, defining ¢’ = B’ nB” one finds that once again ¢’ ¢ R® is 4-dimensional and
induces a stratification:
Gr3 (R%) =X uzjux)

where:

¥/ = {EeGr3(R°) | dim(¢' nE) =i}.

Consider the map:
E,: N(p;E,B), — Grs (RY)
Vi— E+,0/\zz+p-

Since €’ =B’ nB”, one has:
E,(v)n€ =(Ei(v)nB)n(E,(v)nB"). (8.5.7)
Since both E,(v) nB’ and E,(v) nB"” are 2-dimensional, it follows that dimE,(v) n €’ < 2, with
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equality if and only if E,(v) nB' =E,(v) nB”. Thus E, (N (p;Z,B)2) € X1 U Xy and:
(B, 3y € (B (52).

(Likewise 3/ c (E-)"' (23), a fact which will prove useful below.) Since ¥4 has codimension

{]Bl7 B//}

2 in Grs (R6), to complete the proof of the thinness of E,{IB%’ B} it suffices to prove the following

claim:

Claim 8.5.8. ForallveY’

(BB}’ the map B, is transverse to the submanifold ¥, c Grs (Rﬁ) at v.

(Again, it is not claimed that E, is transverse to X at all points of (E,)™" (25).)

Proof of Claim. Suppose that v € E/{B’ B} and write p’ = 6 A v+ p. After applying a suitable

orientation-preserving automorphism of R, one may assume that p’ = 0123+645 B = (eq, e, e4, €5, €3+
eg) and 0 = 03 — 0. Recall from eqn. () that:
E.yn€'=E, ynB =E, y,nB".

Hence by definition of E/{IB%’ B}’ since v € E,{B’ B} it follows that E. y n ¢’ # Bn E, , for both
9y ’
‘+” and ‘. Therefore E, , n¢" must intersect Bn E, , = (e1, e2) in a 1-dimensional subspace, which

without loss of generality may be taken to be (e;). Thus:
E, yn€ =(e1, Neg +e3) for some X € R.
Analogously, one can assume without loss of generality that:
E_ yn¢€ = (eq, pes + eg) for some peR.
Since €’ is itself 4-dimensional, it follows that:
¢ = (e1, Nea + e3, eq, s + €).
Thus, using notation analogous to eqn. (), one has:
¢ =E,(v)n€ = (e, Nes +e3)
and one may then choose £',§, & as:
£ =(es), F =(es,pes+eg) and K =(es).
Now choose vy, 1 € A’B* such that:
OAv;=0A0% and OAvy =00
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(Such v; exists, since (6 A 6%)|g = (8 A6')|g = 0.) Now compute:

DE+|pI(0 A Vl) = _Id®H;'(ﬂl,2((63 _ 96) A 946))

=0® ®es
while:
DE.|y (0 Av) = —idek, (m12((0° - 0°) A 0™))
=0'® es.
Thus:
DE, (T,N(p; E,B)2) 2 Hom({e1, e3), {e5))
and thus:

DE, (T, N (p;E,B)2) + Tg, ,¥2 2 Hom({e1,e3), {e5)) ® Hom(€&', )
® Hom(£',§) ® Hom(£', &)
= Hom((e1, €2, €3), (€4, e5,¢6)) = Tp, ,Grs (RG) ,

which is the required statement of transversality, completing the proof of the claim and hence of

Lemma .

O

O]

Thus X (B',B") is the union of three macilent subsets of N (p;Z,B)2, and hence is scarce. This
completes the proof of Lemma and hence of Theorem .
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Chapter 9

Topological properties of closed Gs, SL(3;C) and
SL(3;R)? forms on manifolds

This chapter uses characteristic classes and obstruction theory, together with the h-principles for
Gs and SL(3;R)? forms established in Chapters H, E, to prove various theorems on the topological
properties of closed Go, SL(3;C) and SL(3;R)? forms on oriented 6- and 7-manifolds. Results
obtained include a criterion for an arbitrary oriented 7-manifold to admit a closed Ga-structure (in the
process, proving a conjecture of Lé), a generalisation of Donaldson’s ‘Ga-cobordisms’ to (~}2, SL(3;C)
and SL(3;R)? forms, and a complete classification of closed SL(3;C) 3-forms up to homotopy. A
lower bound on the number of homotopy classes of closed SL(3;R)? 3-forms on a given manifold is

also obtained.

9.1 A vanishing result for natural cohomology classes
The aim of this section is to prove the following result:

Lemma 9.1.1. Suppose there is an assignment to each n-manifold M (with, possibly empty, boundary)
of a degree p cohomology class v(M) € H? (M; G), where G is either a field or a finite Abelian group,

which is natural, in the sense that for each embedding f: M < M’ of n-manifolds with boundary:
v(M) = frv(M).

Then if v vanishes on every closed (resp. closed, oriented) n-manifold, it vanishes on every (resp.

every oriented) n-manifold with boundary.

Examples of such classes v are any cohomology class which is constructed only from Stiefel-
Whitney classes, or only from the reduction of the Chern, Pontryagin and Euler classes to real
coefficients. More generally, for any cohomology operation © : H? (—;G) — H? (-; G") (see [65, p.
448)), if (M) € H? (M; G) is natural, then © ov(M) € H? (M; G") is also natural. Note also that only
the case G = Z / 97, will be used in this chapter, however I allow more general G in Lemma since

the proof for all such G is essentially the same.
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Proof of Lemma . By assumption v(M) = 0 for all closed (resp. closed, oriented) n-manifolds

M. The proof proceeds by considering three cases of increasing generality.

Case 1: M is compact with boundary. Consider the double ZM = Mugy M formed by gluing
M to a second copy of itself M (now with the opposite orientation, if appropriate) along the boundary
OM. Then M is a closed (resp. closed, oriented) n-manifold and thus v(ZM) = 0, by assumption.
Writing ¢ : M = 2M for the natural inclusion, the naturality of v implies that:

v(M) =" v(ZM) = 0.

Case 2: M is non-compact and without boundary. Let f : M — R be a proper Morse
function (see, e.g. [106, Thm. 6.6]) and choose increasing unbounded sequences iy € R,y and ji €
R, such that both i and —j, are regular values of f for all £k € N. Then for each k£ the subset
f [ ~jr,ix] = My, is a compact submanifold-with-boundary of M (see [63, Lem., p. 62] for a similar
result). Moreover, each My, is obtained from My, by attaching a finite number of m-cells, for suitable
choices of m, and thus the function f gives M the structure of a CW complex such that each My, is

a subcomplex of M. Define:

lim H” (My; G) = {(mk)k e [TH? (My; G) | for all k>0 : my|m, = mk}
i=0

Suppose initially that G = Q, or G = Z/qZ for some prime g. Then by [65, Prop. 3F.5], the natural
map:
HP (M;G) - limH? (My; G
(M; G) — lim B (My; G) o1
is an isomorphism. Thus v(M) = 0 if and only if v(M)|y, = 0 for each k. However by naturality
v(M)|m, = v(My), which vanishes by case 1, yielding (M) = 0, as required.

For more general G, eqn. () is replaced by [105, Lem. 2] the short exact sequence:
im L P . P . ; P .
0—lim"H (My;G) - H (M,G)—>££1H (My; G) - 0,

where 1(1311 is the first right-derived functor of lim (see [105] for a more explicit definition). Thus,
to prove the lemma when G is an arbitrary field or finite Abelian group, it suffices to prove that
LiLanp -1 (My;G) = 0 in this case. However this is clear: since each My is a finite cell-complex,
the spaces H? -1 (Mg; G) are finite-dimensional G vector spaces if G is a field, and are finite Abelian
groups if G is a finite Abelian group. The result now follows by [124, Exercise 3.5.2].

Case 3: M is non-compact with boundary. By considering the double DM of M and using
case 2, it follows that v(M) = 0.
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9.2 Existence of (N}g-structures

The aim of this section is to prove the following result, conjectured by Lé in [92]:

Theorem 9.2.1. Let M be an oriented 7-manifold (not necessarily closed). Then M admits Go-

structures if and only if it is spin.

Combining Theorem with the h-principles established in Theorems t7.7.44l and i??d yields

the following corollary:

Theorem 9.2.2. Let M be an oriented 7-manifold. If M is spin, then every degree 3 de Rham class

can be represented by a Go 3-form and every degree 4 de Rham class can be represented by a Go

4-form.
I begin by recalling the following definition, taken from [64]:

Definition 9.2.3. Let ¢ € A, (R7)*. An oriented 3-plane C' € Grz(R") is called calibrated with
respect to ¢ if, writing volc for the volume form on C' induced by the metric gy|c and the orientation

on C', one has:

dle = volc.

Analogously, let ¢ e A, (R7)*. I call an oriented 3-plane C' ¢ @?3(}1%7) positively calibrated if 95
is positive definite on C' and, writing volc for the volume form on C' induced by the metric g¢7|c and

the orientation on C, one has:

dlc =volc.

It is well-known that Go acts transitively on the set of calibrated planes and that the stabiliser of

any calibrated plane is isomorphic to SO(4) (see [[78, §10.8]). Similarly:

Proposition 9.2.4. Gy acts transitively on the set of positively calibrated planes and the stabiliser

of any positively calibrated plane is a mazimal compact subgroup of Ga isomorphic to SO(4).

Proof. To prove transitivity of the action, consider the standard Gy 3-form @o on R” and let C' be
positively calibrated with respect to ®g. Pick an oriented orthonormal basis (¢, c¢a,c3) of C' with
respect to Go|c (which exists since §p is positive definite on C'). By [84, Prop. 2.3], G, acts transitively
on ordered pairs of orthonormal, spacelike vectors in R”, so without loss of generality ¢; = e; (i=1,2).

Since @g|c = volc and (e1, c2,¢3) is an oriented orthonormal basis of C, one has:

®o(c1,c2,c3) = 1.

It follows that c3 = e3 + u for some u € (ey,...,e7). Since Go(cs,c3) = 1, u satisfies Go(u,u) = 0 and
hence u = 0, since Go is negative definite on (ey, ...,e7). Thus C = (ey, ea, e3) up to the action of Gy
and hence Gy acts transitively on positively calibrated planes. The statement regarding stabilisers is
proven in [68, Prop. 4.4].

O
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(Positively) calibrated planes have the following desirable property:
Lemma 9.2.5. 1. Let ¢ be a Gy 3-form on R” and let C be a calibrated plane. Then:

bc =2¢lc - ¢

defines a Go 3-form on R” and C is positively calibrated with respect to ¢ (here ¢|c is interpreted as
a 3-form on R” using the splitting RT = C&C*, where the orthocomplement is taken with respect to 9¢)-

2. Let (2; be a Gy 3-form on RT and let C' be a positively calibrated plane. Then:
¢c=20lc-¢
defines a G 3-form on R” and C' is calibrated with respect to ¢¢ (again $|C is interpreted as a 3-form

on R” using the splitting R = C & C*, where the orthocomplement is taken with respect to 95).

Proof. The proof is by direct calculation. For 1, since Go acts transitively on the set of calibrated

planes, without loss of generality one may assume that ¢ = @ and C = (e1, €2, e3). Then:
b = 20123 — (9123 + QU5 | gl6T | 246 _ g25T _ 347 _ 9356) _ gl23 _ la5 _ gl6T _ g246 257 347 | 4356

which is easily seen to be of Gg—type and have C as a positively calibrated plane. The converse is
similar.

O]

Since SO(4) c Gs is a maximal compact subgroup, the quotient Go / SO(4) is contractible. Thus,

given any oriented 7-manifold M equipped with a Go 3-form 5, there exists a positively calibrated
rank 3 distribution C' on M. The corresponding result in the Gy case is non-trivial, since Go / SO(4)

is not contractible.

Proposition 9.2.6. Let M be an oriented 7-manifold and let ¢ be a Go 3-form on M. Then M

admits a 3-plane distribution C' which is calibrated with respect to ¢.

Proof. The proof is a generalisation of Friedrich-Kath—-Moroianu—Semmelmann’s proof of the exis-
tence of SU(2)-structures on closed 7-manifolds with Ga-structures (see [51, Thm. 3.2]). Define a

cross-product x on M by the equation:

g(u x ug,uz) = p(u1,u2,u3)

for all pe M and w; € T,M, (i =1,2,3). An easy calculation then shows that if u; and uy are linearly
independent, then:

Span{u, ua, ur x us)

together with its natural orientation induced by the above ordering of basis vectors defines a calibrated
plane in T,M. If M is closed, M admits a pair of everywhere linearly independent vector fields by
[120].
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To prove Proposition P.2.G for open (i.e. non-closed) manifolds, therefore, it suffices to prove
every open orientable 7-manifold M also admits two everywhere linearly independent vector fields.
By [107, Thm. 12.1] (see also the preceding discussion op. cit.), the condition wg(M) = 0 is necessary
and sufficient to ensure the existence of two vector fields X and Y defined over the 6-skeleton of M
which are everywhere linearly independent. Moreover, since M is open, M deformation retracts onto
a subcomplex of its 6-skeleton (cf. [42, Prop. 4.3.1]) and thus M itself admits two globally defined
vector fields X and Y if and only if wg(M) = 0. By [99, Thm. III], we vanishes on every closed
oriented 7-manifold. Thus by Lemma it follows that wg vanishes on every oriented 7-manifold,
completing the proof.

O

Using Proposition , I now prove Theorem :

Proof of Theorem , By a well-known result of Gray ([22, Remark 3]; cf. [58]) M admits a Go-
structure ¢ if and only if M is orientable and spin. By Proposition , M admits a pair (¢,C) of
a Go 3-form ¢ together with a calibrated distribution C' if and only if M admits a Ge-structure. By
Lemma , M admits a pair (5, C ) with ¢ a Go 3-form and C' a positively calibrated distribution
if and only if M admits a pair (¢,C) with ¢ a Gg 3-form and C a calibrated distribution. Finally
— as discussed above — since SO(4) c G- is maximal compact, the quotient space Ga / SO(4) is
contractible and thus a manifold M admits a Go 3-form @ if and only if it admits a pair (5, C ) with
a a Gy 3-form and C a positively calibrated distribution. The result follows by combining these four

logical equivalences.
O]

9.3 (N}g-cobordisms

The aim of this section is to introduce a Go-analogue of Donaldson’s theory of Go-cobordisms between
closed SL(3;C) 3-forms. For brevity of notation, I shall use the term ‘SL form’ to refer to either a
SL(3;C) 3-form or a SL(3;R)? 3-form, as appropriate.

Definition 9.3.1. Let N be an oriented 6-manifold. Let /\(g)T*N denote the pullback of the bundle
A’T*N - N along the bundle A*T*N - N and write p : /\(g)T*N — A’T*N for the natural projection:

ADTN Py 2T*N

! |

ANT*N — 3 N

Write A%, T*N for the bundle of SL(3;R)? 3-forms on N and define a subbundle &, of /\(i)T*N over
A2, T*N by declaring the fibre over p e A2, T*N to be:

Eilp = {w € /\(ﬁ,) T*N|, | #,(pw) has signature (3,3) and (pw)® < 0}
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(see eqn. () for the definition of .#,). Likewise, define a subbundle £_ of /\(i)T*N over A> T*N
by:

E_lp= {w € /\(i)T*N|p Zp(pw) has signature (2,4)}

(see eqn. () for the definition of 7).

Now let p be an SL form, i.e. a section of A3, T*N as appropriate. I term p extendible if there
exists a lift w of the section p along the map &, — A%, T*N:

&

Pt
w 7
7
P
.

N 2 A, T*M
Proposition 9.3.2. Let N be an oriented 6-manifold and let p be a (closed) SL form on N. Then

the following are equivalent:

o There exists an oriented 7-manifold-with-boundary M together with a (closed) Ga 3-form a such
that N is a connected component of OM and q?\N = p;

e p is extendible.

Proof. Suppose that p is extendible and let w be a lift of p along £, - A>, T*N. Let f: N - (0, )

be chosen later and consider the manifold:

M ={(t,p) €[0,00)xN |0<t< f(p)}.

Define a 3-form ¢ on M via:

¢ =dt A (pw) + p + td(pw).

By Propositions t7.7.24l and 17.7.15, 5 is of Go-type along {0} x N and hence, by the stability of Go
3-forms, it is of Go-type on all of M if f (p) is sufficiently small, depending on p € N. Moreover do = dp

and thus if p is closed on N, then 25 is closed on M, as claimed.

Conversely if N is a connected component of 9M, then by the Collar Neighbourhood Theorem ([94,
Thm. 9.25]; cf. also [19, Lem. 5]) there is an open neighbourhood of N in M which is diffeomorphic
to [0,1) x N. One now simply applies the above argument in reverse.

O

I now prove the main result of this section:

Theorem 9.3.3. Let N be a 6-manifold and let p, p' be closed, extendible SL(3;C) (resp. SL(3;R)?)
3-forms on N. Suppose that p and p’ are homotopic and lie in the same cohomology class. Then
(N, p) and (N, p') are Go-cobordant.

Proof. Let p; denote a homotopy of sections of A3, T*N over N such that pg = p and p1 = p’, and
choose a lift w of p along £, — A%, T*N. Using the covering homotopy property for fibre bundles [75,
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Ch. III, Thm. 4.1], there is a homotopy of sections w; : N - &, such that for each t € [0,1], w; is a
lift of p; along & — A, T*N.

Write « for the common cohomology class defined by p and p’ and consider the space M =
[0,1]¢ x N. Since M and N have identical cohomology, « also defines a cohomology class on M. Let
fi: M > [0,00) be a smooth function which is identically 1 on an open neighbourhood of {0} x N,
but which vanishes outside some larger neighbourhood of {0} x N. Likewise, let fo : M — [0, 00)
be identically 1 on a small open neighbourhood of {1} x N and vanish outside some larger open

neighbourhood. Define a 3-form ¢ on M via:

¢ =dt A (pwy) +py + [tf1+ (¢ = 1) f2]dn (per),

where dy denotes the exterior derivative on N. Then by Propositions t7.7.24l and t?.?.ld dt A (pwy) + py

is of Ga-type on M; hence, by the stability of Go 3-forms, if the supports of f1 and fy are chosen to
be sufficiently small, then ;5 too is of Go-type. Moreover, a direct calculation shows that da =0 on
{fi =1}U{f; =1} and that ¢ represents the restriction of the class a to {f; = 1} u{fp = 1}. Without
loss of generality assume Op(OM) ¢ {f1 =1} U {f2 = 1} and recall the sets:

0%, (M; dlopamy) = {¢" € 25, (M) | &lop(a) = dlopa) }
Cl%o (a; $|Op(8M)) = {(E, € Q%O (M; $I|@p(aM)) ‘ d(;g, =0 and [a’] = Q€ HSR(M)} .

Note that ¢ defines an element of Q%O (M; gﬂ@p(aM)). By Theorem (see also Theorem ),
Cl%o (a;qﬂop(aM)) o Q%O (M;¢~5|Op(8M)) is a homotopy equivalence. Thus, one can deform ¢ €

Q%O (M; $|@p(aM)) relative to Op(dM) into a closed Gy 3-form ¢’ on M (representing the class ).
The pair (M, @) then gives the required cobordism from (N, p) to (N, p').
O

9.4 Topological properties of SL(3;C) 3-forms

The aim of this section is to investigate when two SL(3;C) 3-forms are homotopic, and when a single
SL(3;C) 3-form is extendible.

9.4.1 Homotopic SL(3;C) 3-forms
In this subsection, I prove Theorem . Recall the statement of the theorem:

Theorem . There is a 1-1 correspondence between homotopy classes of SL(3;C) 3-forms on
N (equivalently closed SL(3;C) 3-forms, or SL(3;C) 3-forms in any fixed degree 3 de Rham class)
and spin structures on N which in turn correspond non-canonically with elements of H! (N, Z/gz).
(More precisely, the set of spin structures, and hence the set SLc(N) of homotopy classes of SL(3;C)
3-forms, possibly closed or in any given de Rham class, is a torsor for the group ! (N, Z/Qz), i.e.
it admits a faithful, transitive action by the group H! (N, Z/Qz),)
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I begin by remarking that the existence of the faithful, transitive action of H (N; Z/ QZ) on
SLc(N) can be proven directly via classical Obstruction Theory, without any reference to spin
structures. Indeed, the fibre of the bundle A> T*N of SL(3;C) 3-forms over N is homeomorphic
to GL+(6§R)/SL(3;@), which deformation retracts onto the space 80(6)/SU(3) ~ RP’. Since
T (RIP’7) =0 for n = 2,...,6, classical Obstruction Theory (see [125, Thm. 6.13]) implies that the set
of homotopy classes of sections of A>. T*N over N is a torsor for the group H' (N;7r1 (/\37TfN )),
where 7 (/\3_TfN) denotes the bundle of groups over N given by the first fundamental groups
of the fibres of A> T*N. Since m (RIP’7) = Z/ 97, has no non-trivial automorphisms, the bundle
T (A?’_TfN) itself must be trivial (or simple, in the terminology of [125]; see p. 263 op. cit.) and thus
H! (N; m ( AT N)) is simply the usual cohomology group H! (N; Z / QZ)- Thus, the set of homotopy
classes of SL(3;C) 3-forms is a torsor for H! (N; Z/zz), as claimed.

The action of x € H! (N; Z/Qz) on SLc(N) admits a very explicit description in the case that x
lies in the image of the natural map 7o : H! (N;Z2) —» H! (N; Z/Qz). Indeed, firstly note that, given
any pe N> (R6)*, the map:

71 U(1) ——— A% (RS)

e —— cos(0)p + sin(0)J, p

generates the first fundamental group of A> (Rﬁ)*. Next, recall that the cohomology group H' (N;Z)
can be identified with the space of homotopy classes of maps N — U(1). Thus, let p be an SL(3;C)
3-form on N representing the homotopy class [p] € SLc(N), pick some X' € r3'(x) € H' (N;Z)
and choose some f : N — U(1) representing the class x’. Then, x - [p] € SLc(N) can be explicitly
represented by the SL(3;C) 3-form p’ = Re(f)p +Im(f)Jp.

I now return to the full statement of Theorem . Fix a Riemannian metric g on N and
write P for the SO(6)-structure on N induced by g. Recall that a spin structure on N is a principal
Spin(6)-bundle Q together with a 2-sheeted covering map ¢ : @ — P, such that the following diagram

Q D Spin(6)

e

N q

\
P > S0(6)

(The reader may wish to note that the bundle Q alone does not determine the map g; see, e.g. [91,
p. 84, Remark 1.14].) I now prove Theorem .

commutes:

Proof of Theorem . Firstly, note that homotopy classes of SL(3; C) 3-forms (equivalently, SL(3;C)-
structures) on N correspond bijectively to homotopy classes of principal SU(3)-subbundles of P. In-
deed, writing F,N for the oriented frame bundle of N, SL(3;C)-structures on N are equivalent to
sections of the bundle F+N / SL(3;C), and likewise principal SU(3)-subbundles P are equivalent to
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sections of the bundle P / SU(3)- The equivalence now follows from the observation that the fibres of

the natural map ‘7:+N/SL(3; C) ~ P/SU(?)) are contractible. Thus, to complete the proof of Theo-
rem , it suffices to prove that there exists a map o from homotopy classes of SU(3)-subbundles

of P to spin structures on (N, ¢g) and that o is bijective.

The existence of the map o is essentially well-known (see, e.g. [f8, Prop. 3.6.2] for a related
result). Indeed, let R ¢ P be an SU(3)-subbundle. Consider the diagram:

Spin(6)

s (9.4.1)
SU(3) —“— SO(6)

Since SU(3) is simply connected, Covering Space Theory implies that there is a unique homomorphism
SU(3) N Spin(6) lifting the inclusion SU(3) < SO(6) along the homomorphism 7 : Spin(6) - SO(6).
Diagram () induces a diagram of bundles:

R x, Spin(6)

Is

R —— R x,50(6) 2P

and thus, setting Q@ = Rx,Spin(6) (together with the natural map ¢ induced by 7 : Spin(6) - SO(6)),
it has been shown that every SU(3)-subbundle R c P canonically induces a spin structure on N, which
clearly depends only on the homotopy class of R, thus defining the map o.

Before proving that o is bijective, it is useful to note that the spin structure induced by R
may alternatively be characterised as follows. Given any choice of spin structure (Q,q) on (N,g),
the bundle R’ = ¢"1(R) defines an (SU(3) x {«1})-subbundle of Q. Clearly, if (Q,q) is the spin
structure induced by R, then ¢: R’ — R is a disconnected 2-1 cover, i.e. R @ R x {£1}. Conversely,
if R 2R x {£1}, then:

Q 2 R x(su(3)x{s1}) SPIn(6) = (R x {£1}) x(su(3)x{+1}) SPin(6) = R xsy(3) Spin(6)

with ¢ defined accordingly, and thus (Q, ¢) is precisely the spin structure on N induced by R.
Using this observation, I now prove that o is bijective. Given a choice of spin structure (Q,q)

on N, consider the bundle < / SU(3): where one identifies SU(3) c Spin(6) via p, and observe that

sections of the bundle Q/SU(S) correspond to SU(3)-subbundles of Q. Since Spin(6) = SU(4)

(see 91, Ch. I, Thm. 8.1]), Spin(ﬁ)/SU(3) = SU(4)/SU(3) ~ S and thus it follows from classical
Obstruction Theory (see [125, Thms. 6.11 & 6.12]) that Q admits an SU(3)-subbundle and that any
two such subbundles are homotopic. Given such a subbundle R’, the image R = ¢(R’) c P defines
an SU(3)-subbundle of P and since ¢~} (R) 2 R x {1}, (Q, q) is precisely the spin structure induced
by R; thus the map o is surjective. Moreover, since homotopic SU(3)-subbundles of Q give rise to

homotopic SU(3)-subbundles of P, the injectivity of o is now clear.
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Remarks 9.4.2.

1. The above argument provides an alternative proof that H' (N; Z/Qz) acts faithfully and
transitively on SLc(N), by using the well known result (see [91, p. 82, Thm. 1.7]) that the space of
spin structures on a spin manifold N forms a torsor for the group H' (N; Z / QZ)-

2. Returning to the perspective of classical Obstruction Theory, recall from [125, Thm. 6.11] that
the primary (and, in this case, only) obstruction to the existence of a section of A> T*N is determined

by an obstruction class:
yeH* (N;m (ALTiN)) 2 H? (N; Z/97) .

Theorem shows that ~ is simply the second Stiefel-Whitney class of N.

Note that the bundle € / SU(3) arising in the above proof is essentially the unit sphere bundle
in the spinor bundle S(N) = Q xgpin(6) C* associated with (Q,q), where Spin(6) acts on C* via
the identification Spin(6) = SU(4). Using this observation, it is possible to provide a very explicit
description of the correspondence between homotopy classes of SL(3;C) 3-forms and spin structures.
Indeed, fix a choice of spin structure (Q,q) on N and recall that the rank 10 complex vector bundle
@ S(N) is isomorphic to the bundle /\3(C sp T*N of complex self-dual 3-forms, i.e. 3-forms « satisfying
*« = i, where % denotes the Hodge star induced by the metric g. Given a non-zero section ¢ of
S(N), the section ¢ ® ¢ € @%S (N) corresponds to a complex 3-form a¢ and thus to a real 3-form
pe = ac + ac. Since the stabiliser of ¢ in Spin(6) at each point of N is isomorphic to SU(3), the
stabiliser of p. in SO(6) at each point of N is also isomorphic to SU(3), and thus p. is an SL(3;C)
3-form such that the metric g is Hermitian with respect to J,. Since all non-zero sections of § (N)
are homotopic, it is immediately clear that all SL(3;C) 3-forms obtained in this way are likewise
homotopic.

Conversely, given an SL(3;C) 3-form p, choose a Hermitian metric g on N (with respect to J,).
For each spin structure (Q, ¢) on (N, g), there is a unique section ¢ of the bundle S(N)\N/{il} such
that p = pc (note that pc is well-defined, since p_g = ps for each non-zero spinor s). It follows from
the proof of Theorem , that there is a unique spin structure (Q,q) such that the section ¢ of
S(N)\N / {+1} can be lifted to a section of S(N)\N and this is precisely the spin structure induced
by p.

I end this subsection by providing some explicit examples.

Examples 9.4.3.

1. Consider the torus N = T% and let p_ denote the ‘standard’ SL(3;C) 3-form on T defined by
identifying T (']I‘ﬁ) with T6 x R®. Since H' (T®; Z/Qz) = (Z/Qz)G, T admits 25 = 64 distinct homo-
topy classes of SL(3;C) 3-forms. Moreover, since the map H! (TG; Z) - H! (’]1‘6; Z/Qz) is surjective,
one may provide an explicit description of all 64 classes as follows. Let (:Bl, v :176) denote the canon-

ical periodic coordinates on T RG/ZG and, for each a = (ay,...,a¢) € (Z/22)6 ~ H' (T*; Z/Qz),
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consider the map:
fo:T6 ———— U(1)

(:L‘l, ...,mG) —— exp (z Z?=l aj:cj) .

The map f, represents a cohomology class in H! (']I‘G;Z) which maps to a under 7o : H' (TG;Z) -
H! (’]I‘6; Z / QZ)- It follows that the 64 homotopy classes of SL(3;C) 3-forms on T% can be explicitly
represented by the 3-forms:

6 . 6 .
Pa = COS (Z ajxj) p_ +sin (Z ajxj) Jpp-.
j=1

j=1

2. Let (N, J,g) be a compact, Hermitian manifold. By [6, Prop. 3.2] (see also [70, Thm. 2.2]),
there is a bijective correspondence between spin structures on N and holomorphic square roots of the
canonical bundle A>*T*N. Thus, given an SL(3;C) 3-form p on N such that:

J,=J, (9.4.4)

Theorem 9.4.1 predicts that p defines a holomorphic square root of A¥°T*N.

In the case where A>YT*N = O (i.e. (N, J, g) has trivial canonical bundle) this may be seen directly
as follows. Initially, let p be an SL(3;C) 3-form on N satisfying eqn. () such that dp=dJ*p=0.
Then, Q = p+iJ* p defines a non-zero holomorphic (3, 0)-form on N, hence a holomorphic trivialisation
of A>9T*N and whence a natural square root of NOT*N, viz. O.

Now, let p’ be an arbitrary SL(3;C) 3-form satisfying eqn. () Firstly, note that p’ canonically
defines a class d,/ in H! (N; Z/Qz). Indeed, p" defines a unique map f, : N - C\{0} via p’ +
iJ*p" = fQ. Define §, to be the reduction modulo 2 of the pullback of the canonical generator
1 ¢ H' (C\{0};Z) along the map for. Next, by [70, p. 15], the space of holomophic square roots
of A*°T*N is naturally a torsor for the group H! (N; Z/ 2Z)~ Indeed, the short exact sequence of

sheaves:

1—— Z/oy > O* > O* y 1
fr—1F
induces a sequence:
0 — H'(N; Z/97) — H' (N;0*) —— H' (N;0%)
——— ——
=Pic(N) ~Pic(N)

L— [®2

as claimed. The square root of A**T*N defined by the SL(3;C) 3-form p’ is then simply dp - O.

I end by remarking on one interesting aspect of this case. By Theorem 9.4.1, two SL(3;C) 3-
forms p’ and p” satisfying eqn. () are homotopic through arbitrary SL(3;C) 3-forms if and only
if 7 = 8,». However, clearly p" and p” are homotopic through SL(3; C) 3-forms satisfying eqn. ()
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if and only if the induced maps f,, f,» : N = C\{0} are homotopic, which occurs if and only if the
classes f},1 and f},1 in H! (N;Z) coincide. Thus, in general, there exist pairs of homotopic SL(3;C)
3-forms, each satisfying eqn. (), which nevertheless cannot be connected by any path of SL(3;C)

3-forms satisfying eqn. ()

9.4.2 Extendibility of SL(3;C) 3-forms

By Definition , p is extendible if and only if the almost complex manifold (N,J,) admits a
pseudo-Hermitian metric of (real) signature (2,4). In general, the existence of metrics of indefinite
signature is an open problem and thus completely classifying when p is extendible appears unfeasible.

Nevertheless, much insight into the extendibility of p can be gained by the following proposition:

Proposition 9.4.5. Let N be an oriented 6-manifold and p an SL(3;C) 3-form on N. Then p is
extendible if and only if the (complex) projectivised tangent bundle of N, Pc(TN, J,), admits a global

section, i.e. (TN, J,) admits a complex line subbundle.

Proof. Initially, suppose that £ c (TN, J,) is a complex line subbundle. Let g be any Hermitian

metric (of real signature (3,0)) on N and write:
IN=Ze2", g=glz+gle,

where the orthocomplement is defined with respect to g. Then g — g, is a pseudo-Hermitian metric
of (real) signature (2,4).

Conversely, let § be a pseudo-Hermitian metric of real signature (2,4). Define a subbundle
Iz c Pc(TN, J,) via:

Ilgl, = {Z € Pc(TN, J,)l, | g is positive definite on .Z c TpN}.

Given .Z € H~§|p, every other L € H§|p can be written as a graph over .Z. Thus IIy has contractible
fibres and hence admits a global section, and whence so does Pc(TN, J,).
O

I now prove the main result of this subsection:

Theorem 9.4.6. Let N be an oriented 6-manifold. If the Euler class e(N) = 0, then any SL(3;C)

3-form on N is extendible. In particular:
o IfN is open, then any SL(3;C) 3-form on N is extendible.

o If N is closed and the Euler characteristic x(N) = 0, then any SL(3;C) 3-form on N is
extendible.

Conversely, if e(N) # 0 and in addition b*> = 0 (i.e. H* (N;Z) and H* (N;Z) are pure torsion), then
no SL(3;C) 3-form on N is extendible.
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Proof. Firstly note that if e(N) = 0, then N admits a nowhere vanishing vector field. Indeed if N is
closed this follows from [[74], whereas if N is open, this follows since N deformation retracts onto a
subcomplex of its 5-skeleton and every rank 6 vector bundle over a 5-dimensional cell-complex admits
a nowhere vanishing section. Thus let X be a nowhere vanishing vector field on N and let p be an
SL(3;C) 3-form on N. Then the real rank 2 distribution on N generated by X and J,X defines a
complex line subbundle of (TN, J,) and hence p is extendible, by Proposition .

Conversely, suppose e(N) # 0 (in particular, N must be closed) and let p be an extendible SL(3;C)
3-form on N. By Proposition , one can write (TN, J,) = % & % with £} » complex subbundles
of (TN, J,) of (complex) ranks 1 and 2 respectively. Then:

e(N) =e(A)ue( L) eHY (N;Z) 2 Z,

where U denotes the usual cup-product on cohomology. Since e(N) is non-zero, neither e(.%;) nor
e(%,) can have finite order (since Z is torsion-free). Thus b%(N) # 0, as claimed.
O

Using Theorem P.4.6, it is possible to give many examples of extendible and non-extendible
SL(3;C) 3-forms:

Examples.

1. Let K be any closed, oriented (connected) spin 5-manifold and set N = S* x K. Then N is also
oriented and spin. Thus since x(N) = 0 and:

H' (8" xK; Z/o7) = H' (K;: Z/9z) @ H (K; Z/9z) = H' (K; Z/2z) ® Z[97,.,

1(N.Z
by Theorem the manifold N admits 21+b (N’ / 2) > 2 distinct homotopy classes of
SL(3;C) 3-forms, all of which are extendible by Theorem . As a special case, T% ad-
mits 2% = 64 distinct homotopy classes of extendible SL(3;C) 3-forms.

2. Consider the sphere S%. Clearly S® is orientable and spin, and H! (56; Z/Qz) = 0. Thus S°
admits a unique homotopy class of SL(3;C) 3-forms, which is not extendible since x(S¢) = 2.
In particular, recall that the embedding S¢ — R”, where R” is equipped with its standard (flat)
Gy 3-form ¢y, induces the ‘standard’ SL(3;C) 3-form on S%; then ¢g|gs is not extendible (to a

Gy 3-form).
3. Consider the manifold ¥; = RP® x RP® and let Y, = Yi#...#Y1, where # denotes connected
| ——
n times

2
sum. Then Y, is spin and H! (Yn; Z/ 2z) = (Z/ 22) n, so Y, admits 22" distinct homotopy

classes of SL(3;C) 3-forms. However, the Betti numbers of Y,, are:
(b°,6", 0%, 0,6, 5°,0%) = (1,0,0,2n,0,0,1)
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and so x(Y;,) = 2 - 2n, whilst b?(Y;,) = 0. Thus for n > 1, none of the 22" homotopy classes of
SL(3;C) 3-forms on Y, are extendible.

9.5 Topological properties of SL(3;R)? 3-forms
9.5.1 Homotopic SL(3;R)? 3-forms
Let N be an oriented 6-manifold.

Proposition 9.5.1. Write SCr(N) for the set of homotopy classes of SL(3;R)? 3-forms on N and
GR3(N) for the set of homotopy classes of sections of Grs(N). Then there is a 1-1 correspondence:

& 18£R(N) - ﬁg(N)

given by [p] = [Es ). In particular, N admits SL(3;R)? 3-forms if and only if it admits oriented
rank 3 distributions. The same conclusion applies to homotopy classes of closed SL(3;R)? 3-forms,

or to homotopy classes of closed SL(3;R)? 3-forms representing a fized de Rham class.
Proof. Write A, T*N for the bundle of SL(3;R)? 3-forms over N and consider the diagram:

N, T*N

PHE+,pl

Gr3(TN) — N

Then the left-hand map is a fibration, with fibre diffeomorphic to Stabgr, (6;r) (£+) / SL(3;R)?
where E, = (ey, ez, e3) denotes the +1-eigenspace of the standard para-complex structure Iy on R®.

Explicitly:

A C
StabGL+(6;]R)(E+) = {( B) ‘ A,B € GL+(3;R),C € g[(B;R)} .

The result follows, since the quotient Stabar, (6:r) (E+) / SL(3;R)? is contractible. The final remark
now follows from Theorem .
O

Explicitly, the inverse to £ can be described as follows: given an oriented rank 3 distribution F
on N, choose a distribution E’ such that TN = E @ E’. Since E and TN are oriented, so is B’ and

thus one can pick volume elements @, € A*E;. Using the inclusion:
NEZo NE > N(E, @ B.)" = N'T*(T%)

one may regard p = w, + w_ as a 3-form on TS. It is then simple to verify that p is an SL(3;R)?

3-form on T® such that E, are the +1-eigenbundles of the para-complex structure I -
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Note that in order for N to admit an oriented rank 3 distribution, the Euler class e(N) must

vanish (cf. [93, Prop. 5.1.1]). I now prove the main result of this subsection:

Theorem 9.5.2. Let N be a closed, oriented, 6-manifold with e(N) = 0 and suppose wa(N)? = 0.
Write py : H* (N; Z) - H* (N; Z/Qz) for reduction modulo 2 and define:

H*(N;Z),,, = {ueH* (N;Z) | pouuws(N) =0}.

4
Then there is an injection from H (N; Z)sz/Q-torsion into the set of homotopy classes of SL(3;R)?

3-forms on N (equivalently closed SL(3;R)? 3-forms, or SL(3;R)? 3-forms in any fived degree 3 de
Rham class). In particular, if N is spin and b*(N) > 0, then each of these sets is infinite.

Proof. Recall the first spin characteristic class ¢; defined by Thomas in [118, Thm. 1.2], which is
related to the first Pontryagin class p; by p1 = 2¢1. Now assume e(N) = 0 and wy(N)? = 0. By
applying [119, Cor. 1.7], for every u € H* (N; Z) >
E on N with ¢;(E) = 2u. Given classes u,u’ ¢ H* (N;Z),,,, with corresponding bundles E and
E’. note that if E and E’ are homotopic as sections of Gr3(TN), then ¢i(E) = ¢1(E’), and hence
2(u—u") =0. The result follows.

there exists an oriented, spin, rank 3 distribution

O]

Corollary now follows at once, by restricting attention to the case wy(N) = 0. I remark that
wo(N) = 0 is actually necessary for N to admit any extendible SL(3;R)? 3-forms; indeed, this result
follows from Proposition and Theorem , together with the fact that the boundary of a spin
manifold is also spin. Thus the condition that N be spin is very natural from the perspective taken
in this paper.

Using the above results, one can give many examples of manifolds admitting multiple homotopy
classes of SL(3;R)? 3-forms:

Examples 9.5.3.

1. As a simple example, take N = TS, T is parallelisable and so trivially it is orientable, spin and
has vanishing Euler class. Since H* (']I‘ﬁ;Z) ~ 715 it follows that T® admits infinitely many
distinct homotopy classes of SL(3;R)? 3-forms.

2. Now consider N = S%  Since x(S%) = 2, S% admits no SL(3;R)? 3-forms. Likewise, the
manifolds Y, (n > 1) considered in § admit no SL(3;R)? 3-forms.

3. Let N = S xK where K is any closed, orientable, spin 5-manifold. Then S* x K is also spin and
has vanishing Euler class. Thus S! x K admits SL(3;R)? 3-forms. Moreover, if b*(N) = 0, then
the relation b"(N) = b"(K) + b" 1 (K) forces b3(K) = b*(K) = 0, and hence b*(K) = b*(K) = 0
too, by Poincaré duality, i.e. K is a rational homology sphere. Thus, unless K is a rational

homology sphere, N admits infinitely many distinct homotopy classes of SL(3;R)? 3-forms.

4. Let £ denote the Enriques surface — i.e. the quotient of a K3-surface by a fixed-point-free

holomorphic involution — viewed as a real 4-manifold. Then the 6-manifold N = T? x £ provides
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an example of a non-spin manifold which admits SL(3;R)? 3-forms; in fact, N admits an infinite
number of distinct homotopy classes of SL(3;R)? 3-forms, none of which can be extendible, by

the above remark.

To verify this, it is necessary to recall some results on the topology of £. Recall that [13, Lem.
15.1], 83, §6.10]1.
H? (&:2) = 7 @ Z/QZ

where the Z / 97.-factor is generated by ¢;(€) and recall also that the Betti numbers of £ are
V(&) =bH(&) =1, b1(E) = b3(E) = 0 and b*(E) = 10. The restriction of ¢;(£) modulo 2 is
non-zero and thus w2(€) # 0 and £ (and hence N) is not spin. Nevertheless x(€) = 12 which
vanishes modulo 2 and thus wz(€)Y? = wy (&) = 0. Hence by Theorem N = T? x £ admits
SL(3;R)? 3-forms. Moreover, given a class u € g (N;Z), identifying c1(€) with an integral

degree 2 cohomology class on N in the natural way, one finds that:
2(wuci(&))=uu2c(E)=0

and hence u U ¢1(€) = 0, since H® (N;Z) has no 2-torsion. Since wa(N) = pge1(€) it follows
that:
pauUwa(N) = pa(uuci(€)) =0,

and thus H* (N;Z),,,. = H*(N;Z). Since b*(N) = 11, it follows that SLx(N) is infinite, as

claimed.

9.5.2 Examples of extendible SL(3;R)? 3-forms

The previous subsection saw examples of non-extendible SL(3;R)? 3-forms, however so far no explicit
examples of extendible SL(3;R)? 3-forms have been provided. This section aims to provide such

examples. I begin with a preparatory result:

Proposition 9.5.4. Let N be an oriented 6-manifold and let p be an SL(3;R)? 3-form on N. Then p
is extendible if and only if the bundle Iso(E, ,, E_ ,) of isomorphisms from E, , to E_ , has a global

section.

Proof. By Definition , p is extendible if and only if N admits a 2-form w satisfying w? < 0 such
that .#,w is a pseudo-Riemannian metric of signature (3,3). Thus suppose p is extendible and define
= Fpw. One may verify that §(I,-,1,) = —g(-,-). Thus given u € E, ,, for any other w € E, , one
has:

9(u,w) =g(Lu, I,w) = =g(u,w) =0 (9.5.5)

and hence §(v,-) may naturally be identified with an element of (E_,)".
Now choose a positive definite metric h on E_ , and define L(v) € E_ , to be the unique element
such that:

B(L(v).) =5(v.) € (B-)". (9.5.6)

'Note a slight error in this second reference: h*°(€) =0, not 1 as stated loc. cit..
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Then L defines an isomorphism F, , - E_ ,.

Conversely, let L: E, , - E_ , be a fibrewise isomorphism. Define subbundles F, ¢ TN by:
F,=(Id+L)(F:,).

Then TN = F, @ F_ and I, maps F, isomorphically onto F_ and vice versa.
Now choose any positive definite metric [ on F, extend it to a symmetric bilinear form on TN
by setting {(F_,-) = 0 and define:
g('f) = l(-,-) - l(Ip’vIp')-

Then w(-,-) = G(1,,-) is a 2-form and .#,w = § has signature (3,3). In particular, it follows that w? # 0
and hence, by replacing w by —w if necessary, one may assume that w® < 0. Thus p is extendible.
O

I remark that Proposition has the following, curious result. Recall that if p is an SL(3;C)
3-form, then p is always homotopic to —p [B7, §4]. By applying Proposition , a partial analogue
for SL(3;R)? 3-forms may be obtained:

Corollary 9.5.7. Let N be an oriented 6-manifold and let p be an extendible SL(3;R)? 3-form on
N. Then p is homotopic (through SL(3;R)? 3-forms) to —p.

In particular, by Theorem , if p is closed and extendible, then p is homotopic to —p through
closed SL(3; ]R)2 3-forms and, likewise, if p is exact and extendible, then p is homotopic to —p through
exact SL(3;R)? 3-forms.

Proof. By Proposition , it is equivalent to prove that the sections of Gr3(N) induced by E, ,and
E+,p (the same bundle equipped with the opposite orientation) are homotopic. Since p is extendible,
one can choose L € Iso(E, p, E_ ). For t € [0,1], define:

by, > TN
v —— cos(mt)v + sin(wt) L(v).

Then «;(E, ,) defines the required homotopy from E, , to E, ,.
O

The converse of Corollary does not hold. Indeed, consider the manifold N = T?x& of Example
(4). It is known [13, Lem. 15.1], [B3, §6.10] that the intersection form of £ is indefinite with

signature (&) = 8; in particular, since y(€) = 12 the equations:
o(€)+x(€)=0 mod 4

hold. Using [101, Thm. 2(A)], it follows that there exists an oriented rank 2 distribution £, which I
shall denote by 7. Write 01,0 for the standard basis of constant vector fields on T? and define an
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oriented rank 3 distribution F on N = T2 x £ via:
E= <81) (CXe

where F is oriented according to the ordering of the summands. Then E' is manifestly homotopic to

E: an explicit homotopy is given by:
E; = (cos(mt)0; +sin(wt)0s2) & 7.

However, as observed above, none of the SL(3;R)? 3-forms on N are extendible.
I now return to the task of constructing explicit examples of extendible forms. Recall the following

definition:

Definition 9.5.8 (See [L1, §2]). Let M be an arbitrary manifold. A vector bundle E - M is termed
flat if it admits some connection of curvature 0. Equivalently, write M for the universal covering
space of M and view M — M as a principal m1(M)-bundle over M. Then a vector bundle E - M of

rank k is flat if and only if it can be written as:

E=M XRk/Wl(M)

for some representation 71(M) - GL(k;R).

6
This definition can be made very explicit for TS: identify T6 ~ R / 76 so that the quotient map
RS — TS is also the universal cover. Then for every representation o : Z% - GL(k;R), one obtains

the following commutative diagram:

Rﬁ % Rk quot RG x Rk/(zG’ Q) -F

lprojl l

]R(j quot Rﬁ/zfi ~ TG

where Z% acts on R® by translation and R¥ via p. Then E — T is the flat bundle corresponding
to the representation p. Moreover, note that T(T®) is simply the flat bundle corresponding to the
trivial representation o : Z% - GL(6;R).

The following result was proved in [11, Thm. 3.3]:

Theorem 9.5.9 (Auslander-Szczarba). Let By and Eq be flat, rank k vector bundles over T®. Then

E1 and Eo are isomorphic if and only if their first and second Stiefel-Whitney classes coincide.

I restrict attention to flat, orientable bundles; these correspond to representations ¢ whose image
lies in GL, (k,R). By Theorem , two flat, orientable, rank k vector bundles over T are isomorphic
if and only if their second Stiefel-Whitney classes coincide. Using this result, one can construct a

large number of (non-homotopic) extendible SL(3;R)? 3-forms on T®.
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Construction 9.5.10. By Proposition , it suffices to construct oriented rank 3 distributions
E, c T(T®) such that one can write T(T®) = E, ® E_ for some E_ = E,. Let E be a flat, orientable,
rank 3 vector bundle over T® and define T = E, @ E_, where E, = E_ = E are all identical and the

subscripts only serve to keep track of the summands. Then T is automatically orientable and so
w1 (T) = 0. Moreover:

wa(T) = 2-wa(E) +wi (E)? =0 H* (T% Z/97),

where U denotes the usual cup-product on cohomology; thus by Theorem , T is isomorphic to
T(T®). Write E, for the images of E, respectively under this isomorphism and note that the bundle
Iso(E,, E-) has a natural global section, corresponding to Id € Iso(E,,E_).

Given flat, orientable, rank 3 bundles E and E’ with corresponding SL(3;R)? 3-forms p and p’,
by Proposition P.5.1] p and p’ are homotopic if and only if E and E’ are homotopic. If E and E’
are homotopic, then clearly ws(E) = wo(E"); moreover, the converse holds by Theorem . The
following result classifies which classes in H? (TG, Z / 2Z) can arise as the second Stiefel-Whitney class

of a flat, orientable, rank 3 vector bundle:

Proposition 9.5.11. Let w € H? (’]TG, Z/Qz). Then w is the second Stiefel-Whitney class of a flat,
orientable, rank 3 vector bundle over TO if and only if it can be written as w = a U b for some classes
a,beH! (T6, Z/gz),

Proof. Firstly, from the Kiinneth formula ([65, Thm. 3.15]), one may prove by induction that for any

n:
H (T Z/97,) = N (Z/2z)",
where:

A (Z)az)" - ® (Z/gz)n/hm:o |ve(P/2z)"}

as usual. (Here, the tensor product is taken over Z /[27.")

Now, by [11, Thm. 3.2], every flat vector bundle over a torus is isomorphic to a Whitney sum of
flat line bundles. (The statement of Thm. 3.2 in [11] does not include the fact that the line bundles
are themselves flat, however this result follows from the proof given on p. 273 op. cit..) Thus consider
E = {1 ® {5 & U5 for ¢; flat line bundles over T®. The requirement that IE be orientable is equivalent to
the requirement that w(E) =0, i.e. that:

w1 (63) = W1 (fl) + W1 (62)
Using this relation, one may compute that:

’wg(E) = wl(ﬁl) @] w1(€2) + wl(él) @] [wl(ﬁl) + w1(£2)] + wl(ﬁg) @] [wl(ﬁl) + wl(ﬁg)]
= wl(ﬁl) @] wl(ﬁg)

since w1 (£1)Y? = w1 (£2)Y? = 0, and so wo(E) has the form claimed.
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Conversely, suppose given a class w € H? (']I‘ﬁ, Z/Qz) such that w=aub for a,b e H (T6, Z/Qz).
Using the diagram:

Hom (1 (T®), O(1)) = Hom (Hy(T% Z), Z/97,)

~

112

H' (% Z/97,)

w1

1R

isomorphism

Flat bundles / .

there exist flat line bundles #1, £ and ¢35 over T% such that wy(¢1) = a, wi(£3) = b and wy(¢3) = a+b.
Then w1 ({1 @l @ 03) =a+b+ (a+b) =0 and thus E = {1 & {5 & £3 is orientable. Moreover, the earlier

calculation also shows that ws(IE) = a Ub, as required.
O

Using Proposition , one can count the number of distinct homotopy classes of extendible
SL(3;]R)2 3-forms produced by Construction . Firstly, note that there is a 1-1 correspondence
between the non-zero elements of H? (']I‘ﬁ, Z/Qz) and Pz/o (H2 (’]I‘G, Z/Qz)). Since:

B2 (1%, Z/o7,) = N H' (T, 2/2z),

where the exterior-square is taken over the base field Z/ 97,, it follows that the set of non-zero second
Stiefel - Whitney classes of flat orientable rank 3 bundles over TS is precisely the image of the ‘Pliicker-
type’ embedding;:
Gra (H' (T, Z/57,)) — Prpp (N H'(T°, 2/27))
Il + > NIL

Since Gro (H1 ("]I“G7 Z/ 22)) contains 651 elements (see Appendix B) Construction generates
652 = 651 +1 distinct homotopy classes of extendible SL(3;R)? 3-forms over T® (the extra case arising
from ws(E) = 0.) Moreover, by applying the h-principle for closed SL(3;R)? 3-forms (Theorem )
and since extendibility is a homotopy invariant, Construction P.5.1(0 implies the existence of 652

distinct homotopy classes of closed, extendible SL(3;R)? 3-forms on T®.
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Chapter 10

Concluding remarks and open questions

In this chapter, I make some brief remarks regarding the 7 classes of stable form for which the
relative h-principle is still unverified, viz. G 3-forms, PSU(3) 3- and 5-forms, PSU(1,2) 3- and 5-
forms and SL(3;R) 3- and 5-forms. T explain that, whilst the techniques developed in Part IT cannot
be straightforwardly applied to prove the relative h-principle for these 7 classes of stable forms, the
relative h-principle should reasonably be expected to hold in all remaining 7 cases. The chapter ends

with some brief comments regarding other partial differential relations on stable forms.

10.1 Limitations of convex integration

To understand why Gg 3-forms cannot be investigated using convex integration, I record the following

result:
Proposition 10.1.1. Gy 3-forms are not ample.

Proof. Recall from § that Go acts transitively on Grg (R7). The image of this single orbit under
the map T, is well-known to be the orbit of SL(3;C) 3-forms on RY; see e.g. [37]. Moreover, for
peN. (RG)*, it follows from p. 106 op. cit. that:

N, (p) = {y e /\? (Rﬁ)* | Jov is a (positive definite) Hermitian form } .

However this is a convex subset of A2 (RG)* which does not contain 0.
O

Thus convex integration cannot be used to prove the h-principle for Gy 3-forms. Moreover, since
Go 3-forms are not ample along any hyperplane, convex integration with avoidance cannot be used
either.

By contrast, in 8-dimensions, it is not known whether stable forms are ample or not. The difficulty

in verifying amplitude can be understood via the following result:

Proposition 10.1.2. PSU(3) 3- and 5-forms are not faithful. In particular, the action of PSU(3)
on Gry (R8) has an infinite number of orbits.
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Proof. As usual, since PSU(3) c SO(7), there is a PSU(3)-equivariant isomorphism:
ST = Gry (R®) > Gry (R®)

and thus it suffices to understand the orbit space ]P’SU(3)\S7~
Recall that PSU(3) acts on R® = su(3) via the adjoint representation. It is well-known that
for a compact Lie group G with Lie algebra g, after choosing a Cartan subalgebra b (in this case,

equivalently a maximal Abelian subalgebra) there is an isomorphism:

Ad(@)\? = we\D.
where W denotes the Weyl group of G (this result is essentially the infinitesimal version of [86, Thm.
4.44]). Thus:
Ad(@)\%e = W\

where Sy denotes the unit sphere in g and Sy = Sy nh. In the specific case of SU(3), dimb = 2 and
Wa = Dg, the dihedral group of order 6, and thus:

psu@)\% = D\

is infinite, as claimed. The final comment follows from the fact that action of GL,(8;R) on A3 (RS)*
(and hence on A° (RS)*) has only finitely many orbits [34].
O

It follows that Theorem does not apply to PSU(3)-forms. Moreover, since p SU( 3)\6;7 (RS)

is infinite, explicit ‘orbit-by-orbit’ calculations as performed for Go 3-forms, co-pseudoplectic forms
and SL(3;R)? 3-forms do not appear feasible for P SU(3)-forms. Moreover, for PSU(1,2)-forms and
SL(3;R)-forms, the situation is further complicated by the need to distinguish between orbits of
spacelike, timelike and null hyperplanes. Thus stable forms in 8-dimensions appear to lie outside the

scope of the techniques developed in this thesis.

10.2 Biclosed forms and conjectural h-principles

Recall that emproplectic forms do not satisfy the relative h-principle [42, Ch. 11.1.C]. My first ob-
servation is that, since emproplectic forms are closed if and only if they are biclosed, this failure of

the h-principle is a special case of the following result:

Proposition 10.2.1. Biclosed stable forms never satisfy the h-principle. Specifically, given any stable

form oq € N’ (R™)*, there exist oriented n-manifolds admitting oo-forms but no biclosed ao-forms.

Proof. Let M be a closed, oriented n-manifold and let o € Q5 (M) be biclosed. Then by eqn. ()

(([e]u[E(e)]),[M]) = ./MJ ANE(o) >0, (10.2.2)
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where [o] and [E(0)] denote the cohomology classes of o and Z(o) respectively, [M] denotes the
fundamental class of M and (,) denotes the usual pairing between cohomology and homology. In
particular [0] # 0 and hence HA. (M) # 0. The proof is now completed by the following list of explicit

counterexamples:

+ (co)-emproplectic forms: Consider the manifold M = (56)n. Since S® admits an almost

complex structure, so too does M, and hence M admits emproplectic and co-emproplectic
forms. However Hig (M) = H{2(M) = 0.

+ SL(3;C)3 -forms: Consider M = S%. Then M admits SL(3;C) 3-forms since it is orientable
and spin (see Theorem [1.0.16) however Hig (M) = 0.

+ SL(3;R)? 3-forms: Consider M = S! x §°. Then M admits SL(3;R)? 3-forms by Example
E.5.§j.2, however H3p (M) = 0.

¢ Go- and ég—structures: Consider M = S7. M admits both Go- and C‘rg—structures since it is
orientable and spin (see [22, Remark 3] and [92] respectively), however H3 (M) = Hiz (M) = 0.

+ PSU(3)-, SL(3;R)- and PSU(1,2)-structures: Consider M = S! x S7. M admits PSU(3)-,
SL(3;R)- and PSU(1, 2)-structures since it is parallelisable, however H3; (M) = H3g (M) = 0.

O]

(A similar topological obstruction exists for the ‘extension problem’ for biclosed forms, the simplest
form of relative h-principle; for a discussion of this in the symplectic case, I refer the reader to [42,
Ch. 11.1.CJ.)

Significantly, emproplectic (and pisoplectic) forms are the only classes of stable forms for which
closedness and biclosedness coincide. Thus, in the author’s opinion, the failure of the relative h-
principle for emproplectic forms should be regarded as anomalous and should not be used to predict
the validity of the h-principle for the remaining 7-classes of stable forms.

Therefore, the fact that the relative h-principle has been shown to hold for every class of stable
forms (other than emproplectic forms) for which the answer is known, together with the recent result
of Bertelson—Meigniez [17] that the h-principle for emproplectic forms does hold if the condition of

biclosedness is weakened to ‘conformal closedness’ leads me to the following conjecture:

Conjecture 10.2.3. All the remaining 7 classes of closed, stable forms satisfy all forms of the
h-principle. Specifically:

o Closed Go 3-forms;
o Closed PSU(3) 3- and 5-forms;
o Closed SL(3;R) 3- and 5-forms;

o Closed PSU(1,2) 3- and 5-forms,
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i any given cohomology class satisfy all forms of the h-principle. In particular, the Hitchin functional

on each of these 7 classes of closed, stable forms is always unbounded above.

In particular, this result (if proven) would completely answer Bryant’s 2005 question of whether
‘Hs is unbounded above or not [22, Remark 17].

10.3 Other partial differential relations

In the past, h-principles for stable forms have mostly been considered on an individual ad hoc basis
(104, B2, B, 17]. This thesis has sought to provide the first systematic investigation of h-principles
for stable forms, by making a thorough study of the closed partial differential relation (PDR) on
stable forms. However, there are many other natural PDR’s which can be imposed on stable forms,
for example by demanding the vanishing of certain irreducible components of the intrinsic torsion of
the principle bundle induced by the stable form (defined in e.g. [78, §2.6]). In light of the flexibility of
the closed PDR demonstrated in this thesis, it is an interesting question to ask whether other natural

PDR’s on stable forms might also satisfy the h-principle.
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Part 111

Spectral invariants of torsion-free
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Chapter 11

Spectral Morse indices and the definition of the

p~-invariants

This chapter introduces two new spectral invariants of torsion-free Go-structures on closed orbifolds
and computes their values on all Joyce orbifolds. The invariants may be viewed as regularisations of
the classical Morse indices of the Hitchin functionals on closed and coclosed Ga-structures respectively.

In the case of Joyce orbifolds, an interesting link with twisted Epstein (-functions is also observed.

11.1 The moduli space of torsion-free G, 3-forms on Joyce
orbifolds

Let:
b0 = dz'2 + de'™ 4 42167 4+ 42246 _ 3257 _ qu347 — 356

denote the standard, flat Gy 3-form on R (viewed as a manifold) and consider the orbifold Mr = F\T7
for I' ¢ SL(7;Z) x T” a finite subgroup of automorphisms of T7. If ¢ is a torsion-free Gy 3-form on
Mr, then ¢ lifts to define a I'-invariant torsion-free Go 3-form ¢ on T” which by Theorem is
necessarily constant (with respect to the usual parallelism of T7), since b*(T7) = 7 = dim(T"). Thus

¢ = F*¢q for some F € GL,(7;R). Conversely, given F' € GL,(7;R), the Gy 3-form F*¢q descends
to Mr if and only if T preserves F**¢q. This is equivalent to the condition that for all A= (A,t) el c
SL(7;Z) x T7, A*F*¢g = F*¢y, i.e. that FAF~! € Gy. Thus, writing p; : SL(7;Z) x T7 — SL(7;Z)

for the projection homomorphism and defining:
G2 = {F e GL,(m;R) | Fp1(D)F ™' c Go}
it has been established that the map:

B:GE —— 9l F(Mr)

Fr— s F*¢

is surjective. Call Mr a Joyce orbifold if G?z #+ @, equivalently if M admits torsion-free Go-structures.
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Next, note that Go acts on G?2 on the left, and that the map f is invariant under this action.
Moreover, the automorphism group of Mr is Normgr,(7,z)x17(I'), the normaliser of T" in SL(7;Z) x T7,
where A € Normgy,(7.z)x17 (I') € SL(7; Z) x T” acts via the diagram:

7 —2— 17

lquot lquot

F\W . P\'Jr7

Then p; (NormSL(7;Z)KT7(F)) acts on Glg"‘ on the right, and the map g is invariant under this action.
It follows that the moduli space of torsion-free Ga-structures on Mr is given by:

TF ~ G2
g2 (MF) = GQ\GF /p1 (NormSL(7;Z)xT7(P)) : (11'1'1)

(Cf. 126, p. 314] for a similar discussion of flat metrics on tori.)

11.2 A spectral generalisation of Morse indices in infinite

dimensions

Recall the following classical definition [106, §2]:

Definition 11.2.1. Let b € &> A* be a symmetric bilinear form on a finite-dimensional real vector
space A. The index of b is the dimension of any maximal subspace B ¢ A such that b|g is negative
definite. Equivalently, using a choice of inner-product on A, one may regard b as a self-adjoint linear
map o - A - A; then the index of b is simply the number of negative eigenvalues of ol

Now let N be a finite-dimensional manifold, let f : N - R be a Morse function (i.e. a function
with only non-degenerate critical points) and let p € N be a critical point of f. The Morse index of
f at p is the index of the symmetric bilinear form D? f |p € & T,N.

In this section, I use the results of [85, 44] (see also [115, B, 9, [10]) to propose an extension of this
definition to infinite dimensions, resulting in the notion of spectral Morse indices.

Let (N, h) be a closed, oriented, Riemannian orbifold of odd dimension n equipped with a real
orbifold vector bundle E with metric k¥ and let A be a smooth, elliptic, real, self-adjoint pseudodif-
ferential operator of positive order m acting on sections of E. (See [44, Defn. 1.2] for the definition of
pseudodifferential operators on orbifolds.) Then A defines a densely-defined, closed, self-adjoint linear
operator on L?(N, E), where the L?-norm is defined using the metrics h, h”. Define the spectral (-
and n- functions of A to be the partial functions:

4:C——C na:C + C

. o (11.2.2)
8 —— Y xeSpec(AN{0} A 8 > Y xeSpec(A)\{0} SIENAA[’,

defined wherever the sums converge absolutely and locally uniformly. Using [85, 4], it follows that:
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Theorem 11.2.3. For N, h, E, h¥ and A as above, the spectral - and n-functions Cao and na

converge absolutely and locally uniformly on the region:

{SE(C ‘ %e(s)>%}

and admit meromorphic continuations to all of C which are holomorphic on a neighbourhood 0; let
C(A) and n(A) denote their respective values at 0. Then ((A),n(A) € R, and for any £ > 0:

((€A) =¢(A) and n(lA)=n(A).
Moreover, the maps:
C : \Ijz?'r?v—sa(N; E) — R n: \Ilz?’r?v—sa(N; E) — R
A —— ¢a(0) A —— 1a(0)

>0

are smooth, where V) _ (N; E) denotes the space of (smooth) invertible, real, self-adjoint pseudodif-

ferential operators of positive order acting on E.

Using Theorem , I make the following definition:

Definition 11.2.4. Let N, h, E, h¥ and A be as above. I define the spectral Morse index of A to
be: n n

Snd(A) = %
Then #nd(A) is real and invariant under rescalings A — (A for £ > 0. Moreover, /nd defines a
smooth map:

Ind : U0

inv-sa (N; E) > R.
The motivation for Definition can be understood as follows: define the spectral Morse
function of A to be:

MA:{SE(C‘D%S>%}—)C

St ” Z)\GSpec(A) |)‘|_S'
A<0

Then by Theorem , 14 admits an analytic continuation to all of C and p4(0) = #nd(A). If A
has only finitely many negative eigenvalues, then the sum defining 14 converges on all of C and p4(0)
is simply the number of negative eigenvalues of A. Thus in general, one should think of #nd(A) as

a regularised measure of the ‘number of negative eigenvalues of A’.

11.3 p3: Morse indices of the critical points of Hj

The aim of this section is to prove that the critical points of the functional H3 have well-defined
spectral Morse indices. Let M be a closed, oriented 7-orbifold and let ¢ be a torsion-free Go 3-form

on M. Since H3 is diffeomorphism invariant, it induces a functional #j : (] / Diffo(M) ~ (0, 00).
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The following result generalises [71, Thm. 19 and Prop. 21] to the case of orbifolds, as well as
rephrasing the argument op. cit. to obtain an explicit expression for D2H;’3 transverse to the action

of diffeomorphisms:

Proposition 11.3.1. The tangent space T¢([¢]+/Diffo(l\/[)) can formally be identified with the
space:
d* Q3 (M) n Q%,(M).

Moreover, using the natural L* inner-product on d*Q3(M)nQ32,(M) induced by ¢, the Hessian D*H}),
can formally be identified with the invertible, linear map E(¢) = —%d*d. In particular, the critical

points of Hb are non-degenerate.

Proof. Recall that Ty[¢]. is simply dQ?(M), by the stability of Go 3-forms. Let X € I'(M, TM) be
a vector-field on M. The Lie derivative of ¢ along X may be computed using Cartan’s formula [123,
Prop. 2.25(d)] to be:

Lxp=X 21dop+d(X 29) =d(X 1¢),

since d¢ = 0. Thus, as X varies, the space of Lie derivatives Zx ¢, and hence the tangent space to
the orbit of Diffo(M) through ¢, is precisely the space dQ2(M).

Next, I describe the tangent space T4y ( [¢]+ / Diffo (M) ) Recall that the usual Hodge decompo-
sition:
QP (M) = 2P (M) @ AP (M) @ d* QP (M)

is valid on closed orbifolds. Using the isomorphism:
d
A3 (M) 7 d*(M)
d*G

(where G is the Green’s operator for the Hodge Laplacian A induced by ¢) I identify Ty[¢], =
d*Q3(M) and:

Ty Diffg(M) 2 d*GAQ2(M) = d*dQF (M) c d*Q* (M)
where the middle equality uses that G commutes with type-decomposition, since ¢ is torsion-free
(see Theorem ) Thus, one can identify T ( [¢]- / Diffo(M)) with the L?-orthocomplement
of d*dQ%(M) in d*Q3(M). Explicitly, writing (,) for the L? inner-product on forms induced by 9
given v e d*Q3(M) and & € Q2(M), one computes that:

{7,d"dé) = (d*dv,d) = (Ay,0) = (v, Ad)

and thus v € d*dQ3(M)* if and only if y1AQ2(M). Using the refined Hodge decomposition (see

Theorem ) :

Q7 (M) = 77 (M) ® AQH(M)

and since v € d*Q3(M) is automatically orthogonal to (M), it follows that v € d*dQ%(M)* if and
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only if y1Q2(M) and thus:
d*dQ2(M)* = d* Q3 (M) n Q3,(M).

Using this description, together with Proposition , the second functional derivative of #j
at ¢ is:

. 2
D2y : (A7 Q3(M) N Q3,(M)) s R
(11.3.2)
(71,72) ¢ » %fM’Yl A dep(d* Idye).
Using eqn. (), one may compute that for v e d*Q3(M) n Q2,(M):
d*Idy = -d*d~.
Thus, writing (, ) for the L?-inner product on d*Q3(M) induced by ¢, it follows that:
294/ 1
D sl (v1,72) = —§<d’717d72>7
as claimed.
O

In light of Proposition , and motivated by Morse theory, it is natural to ask whether the
critical point ¢ has a well-defined notion of Morse index. Clearly the classical Morse index of ¢ is
infinite, since D2H§|¢ is negative definite. Nevertheless, ¢ has a well-defined spectral Morse index.

In particular, consider the second-order pseudodifferential operator acting on Q2(M) via:
E(P) = Tharm,e + A +2d71d,

where 7pqrm,¢ denotes the L?-orthogonal projection onto ¢-harmonic forms. With respect to the

decomposition:
Q*(M) = 2% (M) & dQ' (M) @ d*dQ3 (M) @ [d*Q* (M) n QF,(M) ]
obtained in the proof of Proposition 7 the operator &(¢) acts diagonally, given explicitly by:

id on J%2(M);
dd* on dQ'(M);

E(¢) = ) (11.3.3)
d*d  on d*dQz(M);

~d*d  on d*Q3(M) n Q2,(M).

In particular, the operator &(¢) is invertible and self-adjoint, and has the same negative spectrum
as the operator £(¢) defined in Proposition (up to a factor of %, which is irrelevant by the
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scale-invariance of spectral Morse indices). Thus, by Definition , the sum:

N¢:{seC‘9‘ies>%}—>C

St ? Z)\eSpec(c‘)(qﬁ)) |/\|75
A<0

converges absolutely and locally uniformly, and admits a meromorphic continuation to all of C which
is holomorphic at 0. Moreover, the value at 0 is simply .#nd(&(¢)) and since &(¢) depends smoothly
on ¢ and #nd : U0 — R is smooth, it follows that 114(0) depends smoothly on ¢. Thus, I obtain:

mv—-sa

Theorem 11.3.4. Let M be a closed, oriented 7-orbifold and let gQTF(M) denote the moduli space
of torsion-free Go-structures on M. Define the ps-invariant of a torsion-free Go 3-form ¢ to be the
value of the meromorphic function pug at 0. Then pg is diffeomorphism invariant, invariant under

rescaling ¢ — L3¢ for £ >0 and defines a smooth map:
s LT (M) > R,

Proof. The only statement which remains to be proven is that p3(¢3¢) = u3(¢). However, ggg = £2g,
and thus by [7, p. 306] d* ~ ¢~2d*. Hence, whilst it is not true that &(£3¢) = £726(¢) (due to the
presence of Tpqrm, ¢ in the definition of &(¢)) it is true that the negative spectrum of & (£3¢) coincides
with the negative spectrum of £-2&(¢); the result now follows from the scale-invariance of .#nd.

O]

11.4 p4: Morse indices of the critical points of H,

The aim of this section is to prove that the critical points of the functional H,4 also have well-defined
spectral Morse indices. Let M be a closed oriented 7-orbifold, let 1 be a torsion-free Go 4-form on
M and write H) for the functional W]*/Diffo(l\/l) - (0,00) induced by H4. The Hessian D*H)],, is

completely described via the following result:

Proposition 11.4.1. Write Q},,(M) as a shorthand for Q}(M) @ Q23,(M). Then the tangent space
Ty, ( [¢]+/Diffo(M)) can formally be identified with the space:

d* Q1 (M) N Qfgor (M).
Moreover, there is an L*-orthogonal decomposition:

d* QM (M) N Q3557 (M) = {w e d*Q* (M) n Q457 (M) | mordw = 0} & (4*Q* (M) n Q3,(M))
=81 (¥) & S (¥)

and, using the L? inner-product, D2’Hﬁl|¢ can formally be identified with the invertible linear map
F()=d*de-d*d on S (¢) @ S;(¥). In particular, D*H})|, is positive/negative definite on S (1))

respectively and the critical points of H} are non-degenerate.
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Proof. As in the proof of Proposition , one can identify T[], and Ty, (Diffo(M) - 1)) with the
spaces d*Q*(M) and d*dQ3(M) respectively. Hence one can identify Ty, ( WL/DifEO(M)) with the
L%-orthocomplement of d*dQ3(M) in d*Q*(M), wviz.:

d* Q1 (M) N Qfgor (M),

Using this description, together with Proposition , the second functional derivative of
at ¢ is:
. 2
D¥Hjly : (4" (M) 1 Qg7 (M)) >R

(11.4.2)

(w1, ws) > zll.[M wi A dey(d* Jdws)
where J = %771 + 77 — mo7 was defined in eqn. () To further analyse D?*H}|y, I prove:
Claim 11.4.3. There is an L*-orthogonal decomposition:
d* QY (M) N Qfg07(M) = {w e d* QY (M) N QY07 (M) | mardw = 0} @ {w € d*Q* (M) n Q307 (M) | 77dw = 0}.
=Si(¥) =S1(¥)

Moreover:

{wed Q' (M) N Qg7 (M) | m7dw = 0} = d*Q (M) n Q3,(M).

Proof of Claim. Recall that in the statement of Theorem , there are no operators of the form
d% and d%7. This implies, in particular, that:

d(23527 (M) ) € Q7 (M) @ Q5 (M) (11.4.4)

and hence the spaces dSj (v) ¢ Q3(M) and dS; (v) ¢ Q3,(M) are L?-orthogonal. Using Theorem
, one can also verify that d*dS;(v) = AS; () = Si(v). Thus:

S; (1) and S; (1) are L*-orthogonal < d*dS] () and Sy (t) are L*-orthogonal
< dS; () and dS; (v) are L*-orthogonal,

so Sf () and Sy (¢) are indeed L2-orthogonal as claimed. To prove the claim, therefore, it suffices
to prove that each w € d*Q*(M) N Q3,7 (M) can be written as w = w* +w™, for some w* € S§ (7).
Given w € d* Q1 (M) n QF o, (M), write w = f¢ + for some unique f € Q°(M) and v € Q3,(M).

Note that one may trivially write:

w= ( fo+ %d;d?cy) + (’y - 1—7201;7(1%707) —wttw, (11.4.5)
where G denotes the Green’s operator for the Hodge Laplacian defined by 1. I claim that w* € S (v),
ie.:

wFed* QM (M) N QY or (M),  mordw* =0 and  wrdw” =0.
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Begin with the first of these points. Since clearly w* € Q‘;’@W(M), it suffices to prove w* € d*Q*(M).
Since w = fo +7v € d*QHM) c AQ3(M), it follows that f¢ € AQ3(M) by Theorem and hence
it is orthogonal to J#2(M); likewise vy € AQ3.(M) is orthogonal to s#3(M). Moreover:

v
12

7
TG = L Gy € A ()
and hence 1—72dg7d%7G7 is also orthogonal to % (M). It follows that w* are each orthogonal to
3(M) and so to prove that w* e d*Q*(M), it suffices to prove that d*w* = 0.

In general, given £ € Q°(M) and 7' € Q3-(M), by eqns. (|AO]J) and (|A04l) the condition d*(f'¢+

~") =0 is equivalent to the pair of equations:

d%77' =3df’ and dﬂfy' =0. (11.4.6)

Since w = fé +~ e d*Q*(M), it follows that d27y = 3df and d?}y = 0. Therefore:

7 .
A7 (S50 aTGy ) = T (AGy - (@)*G7)  (using eqn. (R.0.) and @3y =0)
=42 AGy - (AFd3) d3IGy  (using v L (M) and eqn. (A.0.1))
= T
e
1
=27y — —d? (d2"d3) Gy (using two subequations from eqn. ())
PN
I
=7’y (using di3Gy = Gdify = 0).

Likewise:

7 .
a7 (505 Gr) = diT - (F8]) a6y (using ean. (103)

_ ~—-

-0
= —id&d%?

1
=—dl, (d$7d%;) G~ (using two subequations from eqn. ())

4 —_—

3
- -

=0 (using d¥7Gy = G321y = 0).

It follows from these last two calculations, together with the conditions d%7'y =3df and dﬂ’y =0,
that w* each satisfy eqn. () and hence d*w* = 0. Thus, all that remains is to prove mo7dw* =0
and mrdw™ = 0.
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Using eqn. (), one computes:

7
marde’ = oy (AFT) ATGy (by ean. (A0.3)

S —

- Ld}.d]
7
- orxedhy (d7aF7) Gy (by ean. (A.0.9))
N——
= -3dz"di]
7

redidiaticn -0,

since d21Gy = Gd?7 = 0. Similarly:

7

T 6a| no=0,

mrdw™ = 1d$7 [7 -
4
since d27 (5d7;d?’Gy) = d¥7y, as above. Thus w* € Sf(v), as claimed.

Finally, to verify that Sy (v) = d*Q*(M) n Q3. (M), note that Sy (¢) € d*Q*(M) nQ3.(M) follows
by eqn. () Conversely, if y € d*Q*(M) n Q3.(M), then d*v = 0 forces d27y = 0 by eqn. ()
and hence m7dy = 0 (see eqn. ()) Thus v € S; (¢) as claimed.

O

Given this claim, Theorem follows swiftly. Indeed, recalling the definition of J in eqn.
(2.2.18), it follows that for w e d*Q*(M) n Q3 (M):

) {+d*dw eSHW)  ifweSHW):;
d*Jdw =
—dtdw e Sp () if we ST(¥).

Thus, the symmetric bilinear form D2Hfl|¢ is given by:

+H{dwy, dwa) if wy,wo € S5 (¥);

D*H)|y (wi,w2) =
—(dwy,dwa)  if wi,wa € S (V).

O]

It follows from Theorem that both S* are infinite dimensional. In particular, the classical
Morse index of 9 is, as for Hg, infinite. Nevertheless, it is again possible to define the regularised

Morse index of 1. Consider the second-order pseudodifferential operator:
g(’(/)) = Tharmp t A +2d*Jd

where 7jqpm, denotes the L?-orthogonal projection onto t-harmonic forms. With respect to the
decomposition:
Q3 = 3 (M) @ AQ*(M) @ d*dQ2(M) @ Sf (v) @ Sy ()
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obtained in the proof of Proposition , the operator % (1)) acts diagonally, given explicitly by:

id on J3(M);

dd* on dQ?(M);

F(¢)=4d*d  on d*dQ3(M); (11.4.7)
3d*d  on S (v);

-d*d  on S5 ().

In particular, the operator .# (1) is invertible and self-adjoint, and has the same negative spectrum
as the operator F (1) defined in Proposition (up to a factor of 1, which is irrelevant by the
scale-invariance of spectral Morse indices). Thus, by Definition , the sum:

py:{seC|Res>2} ———— C

5 > 2 AeSpec(F () |A 7
A<0

converges absolutely and locally uniformly, and admits a meromorphic continuation to all of C which
is holomorphic at 0. Moreover, the value at 0 is simply #nd(.%(v)) and since .% (v)) depends
smoothly on 9 and #nd : ¥>¥ — R is smooth, it follows that f,,(0) depends smoothly on .

muv—sa

Moreover 11,;(0) is scale-invariant by the same argument as for pz. Thus, it has been shown that:

Theorem 11.4.8. Let M be a closed, oriented 7-orbifold and let gQTF(M) denote the moduli space
of torsion-free Go-structures on M. Define the pgq-invariant of a torsion-free Go 4-form i to be the
value of the meromorphic function py, at 0. Then py is diffeomorphism invariant, invariant under

rescaling 1 = 4 for >0 and defines a smooth map:

pa: % T (M) > R.

11.5 Computing the eigenvalues of £(¢) and (1) on Joyce
orbifolds

This is the first of two sections which aim to compute p3 and pg on an arbitrary Joyce orbifold Mr.
Let ¢ be a (constant) torsion-free Go 3-form on Mp and let ¢ denote the corresponding Go 4-form.
Recall from § that ps(o) is the value at 0 of the meromorphic extension of:

H¢:{SEC‘%€S>%}—)C

St ? Z)\eSpeC(S(d))) |)"_S
A<0
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where £(¢) acts on d*Q3(Mr) n Q2,(Mr) via —d*d. Thus the task is to explicitly compute the
spectrum of £(¢). Since exterior forms on Mr are equivalent to I'-invariant exterior forms on T7 and
—d*d is a real operator, and using elliptic regularity, this is equivalent to computing the spectrum of

—d*d acting on the complex Hilbert space:
. r
H' = (d*H'Q*(T7)c n L2Q1, (T )e)

where (=)¢ = (=) ®& C, L? and H' denote Lebesgue and Sobolev spaces of sections respectively and
(—)F denotes the I'-invariant subspace.

To this end, identify (T0T7) c2 (R7) c and recall that every w e A° (R7)(Z defines a left-invariant,
complex exterior form on T7 which I also denote by w. This defines a natural embedding A® (R7)é >
Q°*(T7)¢ onto the space of constant (equivalently, ¢-harmonic) complex exterior forms on T7. Given
an [ € Z7, define a smooth C-valued function y; : T7 - C by:

xi:T">C

T+ Z? — e27rzg(l,x)7

where g = g4 denotes the metric induced by ¢. Define:
H; = {Xl yo! | o€ /\214 (R7); satisfies [ Ja = O}
and finally define:
L={-ar®|l)2 | 1eZ"}.
Proposition 11.5.1. For each X € L\{0}, define:

H(\) = P H.
LeZT: —4m?|l|2 = A

Then there is a decomposition:

H= @ HW)
Xe £1{0}

of H into eigenspaces of E(¢) = —-d*d, where E(¢p) acts on H(N) via A1d.
Proof. By the Peter—Weyl theorem [113]:

L2Q%4(T7)C = @7 {Xla | ae N4y (R7)(E}.
leZ

Given a = ¥z xiot € L2Q2,(T7)¢, observe that:
2 *
Tharm® = aO € /\ 14 (R7)C :

Similarly, using the identity:
Xm = QWinlb,
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where * : R” - (R7)* denotes the musical isomorphism induced by g, one computes that for « €
Q2,(T")¢ smooth:

d*a=-2mi Y y(l o al).
I/

Since the space H = d* H'Q3(T")¢ n L?Q2,(T7)¢ is simply the closure of the space:
{a € 9%4(’]?7)@ | Tharme =0 and d*a = O}

in the L?-norm, it follows that:

H= @ H

1eZ7\{0}

=T @ HO.
Xe £\[0}

Thus to complete the proof, it suffices to note that, for y;a! € Hj:
—d*d(xia') = —47?|ll|2xie,

which follows from [ 1o = 0 (see [15, p. 363]). Thus H(\) is in fact the A-eigenspace of —d*d, as

required.

O

Since I' commutes with the action of —d*d, it follows that:

H = @ HWL.

e £\{0}
Thus, for Re(s) > %, one finds that:
dim H(M)T
pe)(s)= ThE (11.5.2)
AeL\{0}

The calculation for py4 is closely analogous: firstly note that the negative spectrum of F (1)) is the

same as the spectrum of —d*d acting on the space:
(H)" = (a*H'QH(T7)e 0 L203.(T7)e)
For 1 € Z" and X € L, define:
Hj = {Xl X | ae Ny (]R7); satisfies [ Ja = O}
and:
H()) = D H,.
leZ": —47r2HlH§ =A
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Then as for ps:

@)= @ HOT
A e £\{0}

where —d*d acts on each H'(A) by AId. It follows that for Re(s) > %:

dim H/ ()
pry(s) = —F
AeLV{0}

Thus, the computation of ps(¢) and p4(e) has been reduced to the representation-theoretic problem
of computing dimH(A)!" and dimH’(A\)! for each A € £\{0}. This will occupy the next section.

11.6 Multiplicities of the eigenvalues of £(¢) and F (7))

Write pM for the representation of I' on H(\) = @l 77 H;. Recall that the character

-4 |12 = A
XM T = R of p™ is defined by:

XNV (A) = Tragy (6V(A)), AeT.
The dimension of H(A)' can be computed using x) via the formula [52, eqn. (2.9)]:

dimH(\) = 1

XM (A). (11.6.1)
|F| Ael’

Thus, the task is to compute the character X(’\). This is accomplished by the following proposition:

Proposition 11.6.2. Given A e End(R"), define:

TI‘R7 (A)2 - TI‘R7 (AQ)
2

Trg” P (4) = — 2 Trgr(A) + 1. (11.6.3)
Moreover, given X € L\{0} and A= (A,t) e SL(7;Z) x T7, define:
GNA) ={leZ" | —an®|l|Z =X, Al =1}.

Then: \ omia(l SU(3)
M) = Y 2D Tt (4),

leG(X,A)
In particular, by egn. )
1

dimH(\)! = o » 5 2mig(lt) TrES;U(S)(A).
| |A=(A,t)eFleg(>\,,A)

The proof proceeds by a series of lemmas:
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Lemma 11.6.4. For each H; c H(X), define a representation p; of T' on H; via:
pi(A)[u] = projg, {p()‘)(.A)[u]} , AeTl, ueHy,

where projy, denotes the projection H(\) = EBZ, €77 _4n? “l,Hg _ )\Hl/ — Hy, and write x; for the

corresponding character. Then for each A€l

XV = ¥ alA). (11.6.5)
leG(\,A)

Proof. For all A el', the linear map p(’\)(A) is represented by the block matrix:

P (A *
*  p,(A)

where H(X) =H;, ® H;, @ .... In particular:

YA =

Xi-
11.6.6
l€Z7:—47T2HlH§=)\ ( )
Now given A = (A,t) e T c SL(7;Z) x T7, for x;of = 2™9(:0) ol e Hy:
A*(e27rig(l,:r:)al) _ e?m’g(l,t)eQm’g(ATl,x)A*al € H 4r;. (11.6.7)

Thus p;(A) is non-zero if and only if ATl =1, which is equivalent to Al = (since A preserves g). This

completes the proof.

O]

Lemma 11.6.8. Given l € G(\, A), define:
Ap={ae N3, (R") | loa=0}.
Then the trace Tra,) (A) of A=p1(A) acting on (A;)¢ via pullback is:

TI‘R7(A)2 - TI‘R7(A2)
2

Tr(s,).(A) = Trg D (4) = — 2 Trpr (A) + 1.

Proof. Firstly, note that since complexification does not affect the trace of a real operator, it is
equivalent to compute the trace of A acting on A;. Identify Stabgr,, (7.r)(¢) with the group Gz and
recall that Stabg, (1) 2 SU(3) [68, Prop. 2.7]. Let B = (I)* with its natural orientation, let 6 € (R7)*
be a correctly oriented annihilator of B and using the splitting R” = (1) @ B write:

p=0Arw+p.
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Since SU(3) ¢ GL(3;C), B inherits a natural complex structure J with respect to which w is a

positive (1,1)-form on B [35] and there is an SU(3)-invariant decomposition:
/\2]8* “R-wa [ 1éIB>e:| ® II/\Q,O]B*H

where [/\IéIIB%*] is the orthocomplement to R -w in [/\1’118*] and [[/\Q’OIBB*]] ={uap|lueB}=B. (In
fact, the 3-form p is an SL(3;C) 3-form, and the complex structure may be written explicitly in terms

of p; see [71]). Define an isomorphism:
X6 LB [[/\2,OIB*H
vdw v dp.

Then by [35, Lem. 1]:
N (R7)* = 15;115%*] ®{20 A+ xp(a) | aeB*}.
In particular:
A= {a e N4y (R7) ‘ lJa= O} = [ 18’1183*]

and thus Try, (A) is simply the trace of A acting on the space [/\léIIB*].
Using [52, Prop. 2.1], the trace of A acting on A? (R7)* is:
TI']R7 (A)2 - TI'R7 (AQ)

TI'/\Q(R7)*(A) = 5 . (1169)

Hence, using A2 (R7)* =A% (R7)* e N4, (R7)* ~R7 @ N2, (R7)*, one finds that:

TTR7(A)2 - TI“R7(A2)
2

Trp, @y (A) = — Trre (A). (11.6.10)

Next, note that Trg(A) = Trrr(A) - 1, since Al =1. Thus A%, (R7)* *Beo [/\lélB*], yields:

TI“R7 (A)2 - TI“R7 (A2)
2

T‘r[/\1é1B*](A) = TI'/\214(R7)*(A) - TI'R7(A) +1= - 2TI‘R7(A) + 1,

as required.

]
Proof of Proposition 11.6.4. By eqn. (), it follows that for A= (A,t) e, leG(\,A):
XI(A) _ e27rig(l,t) Tr(Al)C (A) _ eQﬂ'ig(l,t) TrSU(S) (A)
The result now follows from Lemma .
]
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Using Proposition , it follows that for all Re(s) > %:

1 1 1 SU
Mé‘(d))(s) _ Z W (m Z Z e2mig(lit) Trg (3)(A)) ) (11.6.11)
AeLV{0} A=(At)el 1eG(MA)

Write G(A) = {l eZ” | Al = l}, a lattice in the 1-eigenspace of A. Note that:

o The 1-eigenspace of A is non-zero, since A is orientation-preserving and preserves the metric g
(and the dimension of R” is odd);

o Whilst the lattice G(.A) need not have rank equal to the dimension of the 1-eigenspace of A, it
must certainly be non-zero. Indeed, since A € SL(7;Z), A defines a linear map on Q7 ¢ R” which
also has a (non-zero) eigenvector u € Q7 with eigenvalue 1 and by rescaling u appropriately,
one may ensure that u € Z7\{0}.

Then by rearranging eqn. ([L1.6.11]), one finds:
1 SUG) eQﬂ'ig(l,t)
pew)(8)= oo 2 Ty A Y |-
(2m)> 0] 4o (Tyer gy I5°

The sum of the form:
6271'ig(l,t)

12li3°
legCanoy Il

is an example of an Epstein (-function, and hence the value at s = 0 of its meromorphic extension to
C is always —1, independent of ¢ or the rank of the lattice [43, p. 627]. Thus:
-1

us(Mr,¢) = = > Trg P (A);
Ul ac@yer

in particular, this formula is independent of ¢. Thus it has been established:

Theorem 11.6.12. Let Mr = F\T7 be a Joyce orbifold. The ug-invariant uz : 935 (Mrp) — R is
constant, taking the value:
-1
ps(Mp)=— 3 Trg" P (4).
|F| A=(A,t)el’

Now consider py. All of the above analysis is easily adapted to the case of py4 except Lemma
, which must be replaced by the following result:

Lemma 11.6.13. Given l € G(\, A), define:

Aj={ae Ny (RT). | 1sa=0}.

Then the trace Tr(,,y (A) of A=pi(A) acting on (A])

¢ via pullback is:

Trrr(A)3 + 2 Trgr (A3) - 3 Trpr (A%) Trrr (A)  Trrr(A)? — Trer(A?)
6 2

SU(3
Tr(ap). (A) = Tryy ) (A) = 2.
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Proof. As before, note that Tr(ar).(A) = Tra;(A). Let B, 0, p, w and .J be as in the proof of Lemma

. Then there is a decomposition:
NB =R (p.J"p) @ [N B ] & [\}:B"]
[/\(370)153*]] H/\(Z,I)B*H

into simple SU(3)-modules, where [/\26118%*]] ={¥Arw|v¥eB*} 2B and |I/\21’§IB%*]] denotes the ortho-
complement to HAzélB*ﬂ in [[/\Q’IIB*H. Define an isomorphism:

5(‘/6 B = [[/\Q,OB*H

uSweudJp.
Then one may verify that:
LA =R (40 w-3p) @ {0AXs(a) —anw|aeB oo n[AY'B e [A%B7]

and hence:
Al={ae N4 (RT) | 1oa=0) = [AZLB].

One may compute directly that:

TI'R7 (A)3 + 2 TI‘]R7 (AS) -3 TI“R7 (A2) TI‘R7 (A)

11.6.14
S ( )

Tr/\s(R7)* (A) =

Hence, using the Go-invariant decomposition A3 (R7)>e *ReR"o /\327 (R7)*, one finds that:

Trr7(A)? + 2 Trgr (A3) - 3 Trrr (A%) Trrr (A)

5 Trg-(A) - 1. (11.6.15)

Tr/\327(R7)* (A) =

Now, since there is an SU(3)-invariant decomposition /\327 (]R?)* *ReBe [AlélB*] ® |I/\21’§IB%*]], it
follows that:

Tr[[/\2i§B*H(A) = Tr/\327(R7)*(A) -1- TI"]B(A) - Tr[/\lgﬁ*](A) (11 6 16)
= Trys, @y (A) - Trpr (4) - Trg " (4). -

The result follows.

Arguing as in for ug, one obtains:
Theorem 11.6.17. Let My = F\T7 be a Joyce orbifold. Then the pg4-invariant iy : %QTF(MF) - R
is constant, taking the value:

1

- SU
pa(Mr) = — > Trp, (3)(A)-
|F| A:(A,t)EF
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11.7 Examples

Using the explicit formulae for pus and pyg given in Theorems and , many explicit
examples of ug and p4 can be computed in practice. I give a few examples below:

Example 11.7.1 (Flat Tori). Firstly consider the case I' = 1. Then:
ps(T7) = = Try " (1d) = -8

and:
pa(TT) = =T}y P (1d) = -12.

(Note that TrgU(g)(Id) = dim [/\15’;1183*] and Tr:fg(s)(ld) = dim [{/\21’518*]], as expected.)

For the first non-trivial case, let me consider a family of examples in [77, §3.1]. Consider r=

(o, B,7) € (G2 nSL(7;Z)) x T7 where:
2,$3,$4,$5,$67$7) = (_xla_x27_x37_x47$57$67$7)
B: (2,22 2% 2,28, 27) o (B 0% — 2%, 2%, o, o, a2

v (@l 22,23, 24,20, 18, 2T) (Cl R RN JE B R _$5’$6’_x7)

a:(zhx

where b1, 0%, ¢!, 3, ¢ € {0, %} Then it is shown in [77] that T (2/2)3, generated by «, 8 and ~.
One may compute that for all A = (A,t) € T\{Id}, A is diagonal, with diagonal entries (in some
order):

1,1,1,-1,-1,-1,-1.

Thus, one may verify that for all A = (A,t) e T\{Id}:
TV (4) =0 and TP (4) = 4.
Using this, one can compute further examples:

Example 11.7.2 (K3 Orbifold). Take I'; = (a) ¢ T. Then M; = My, = (Z/2)\T4 x T3 where

(Z /2)\T4 is the standard orbifold used in the Kummer construction of the K3 surface. Using
Theorems |11.6.1j and |11.6.17|, one may compute that:

1s(M,) = _71(8+0) _ 4

and: .
pa(My) = 7(12 +4) =-8.

Example 11.7.3 (Calabi-Yau Orbifold). Set (b',b%) = (%,O) and take I's = (a,3) ¢ T. Then

My = M, 2 (Z/2)2\T6 x S, where (Z/Q)Q\1T6 is an SU(3)-orbifold admitting a smooth Calabi-
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Yau 3-fold as a crepant resolution. Then:
-1
/1/3(M2) = Z(8+ 3 % 0) =-2

and: X
p1a(Ms) = %(12 +3x4)=-6.

Example 11.7.4 (Go Orbifold). Now consider the full group I's = . Then for suitable choices of b’
and ¢/, the orbifold M3 = Mp, may be resolved to form a smooth Gg-manifold (see [76, 77]). Then:

-1
N3(M3) = §(8+ 7 x 0) =-1

and: X
p1a(Ms) = ’?(12 +7x4)=-5.

Using similar methods, many further explicit examples can be computed.

Remark 11.7.5. In [B1], Crowley-Goette-Nordstrom defined a different spectral invariant of torsion-
free Go-structures on manifolds, denoted 7. By [44, Thm. 7.7], 7 is equally well-defined on closed
Go-orbifolds. Moreover, for any closed Ga-orbifold (M, ¢) which admits an orientation-reversing
isometry, 7(¢) =0 (cf. B, Prop. 1.5(iii)]).

Now consider the torsion-free Go-structure ¢g on the orbifolds T7, M; and My above. Each of
(T7, ¢o), (M1, dg) and (Ma, ¢o) admits an orientation-reversing isometry, since each orbifold is the
Riemannian product of S* with a 6-orbifold. Thus:

(T, ¢o) = 7(My, ¢o) = 7(Ma, ¢hp) = 0;

in particular, the v-invariant alone cannot distinguish between these three non-diffeomorphic Gs-

orbifolds. By contrast:

N3(T7) =-8, p3(Mp)=-4 and p3(Mg)=-2
pa(T7) = =12, py(Mi) =-8 and  py(Ms) = -6

and thus either of s or u4 alone is sufficient to distinguish the orbifolds T7, M; and My. This
provides some evidence that the us and pg might be better suited than the p-invariant to studying

Joyce orbifolds, and thus perhaps also to studying Joyce manifolds.
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Chapter 12

Concluding remarks and open questions

Prior to this thesis, the v-invariant discussed above was the only known invariant of torsion-free Ga-
structures. Whilst 7 has been effectively computed for the extra-twisted connect-sum Ga-manifolds
constructed in [B0, 110], it is not known how to compute 7 for Joyce manifolds.

The p-invariants introduced above aim to address this issue. In particular, Chapter [L1] lays the
foundations for a larger project for obtaining formulae for the p-invariants ps and p4 on an arbitrary
Joyce manifold, as constructed in [76, 77, [7§]. T now briefly outline the proposed shape of such a
project.

Recall that, given a Joyce orbifold Mr with torsion-free Go 3-form ¢ equipped with a choice of
resolution data (see [78, Defn. 11.4.1]) there is a smooth resolution Mp of M together with a family of
torsion-free Gg 3-forms ¢, for ¢ > 0 sufficiently small such that (Mp, ¢>t) tends to the orbifold (Mr, ¢)
in the Gromov—Hausdorff sense as ¢ - 0 (cf. [7&, Thm. 11.6.2]). The first stage in the project would
be to verify that the value us(¢:) was independent of ¢, and similarly for u4. Specifically, I conjecture
that:

Conjecture 12.0.1. Let M be a closed, oriented 7-orbifold. Then the p-invariants:
paat 9 (M) - R
are locally constant (i.e. constant on each connected component of the moduli space).

Given Conjecture , to compute the value of p3 4(¢¢) at any fixed value of ¢, it would suffice
to compute the limiting value of 113 4(¢¢). It is then hoped that this limiting value will be closely
related to pz 4(¢), the ps 4-invariant of the orbifold (Mr, ¢), which can be explicitly calculated using
the results of Chapter El

The proof of Conjecture is anticipated to proceed as follows: restricting for simplicity to the
case of manifolds, it follows from the results of [L0] that given a 1-parameter family ¢(s) € 5 (M)
(s € (-¢,¢)), the derivative %/,LgA(gZ)(s))‘S:O is local, meaning that it can be written in the form:

f ao (6(0),6(0))
M
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for some 7-form aq depending linearly on ¢(0). By exploiting Go-invariance as in [7], one can verify
that ap is in fact a polynomial in the derivatives of ¢(O) and the derivatives of the Riemann tensor R
of ¢(0), which is linear in qS(O) Moreover, the possible monomials occurring in this polynomial can be
explicitly computed (although computing the coefficients is impractical). Thus, to prove Conjecture
, the task is to prove that each monomial vanishes when integrated over M, a result which is
expected to follow from the fact that ¢(0) may be taken to be harmonic with respect to ¢(0) (since
Ty %5 £ (M) = J"ff (M); see [[78, Thm. 10.4.4]). Verifying this result will form the basis of a future

0
project.
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Appendix A

Formulae for refined exterior derivatives on

Go-manifolds

Recall that on a Ga-manifold (M, ¢), the usual exterior derivative may be decomposed according to

type, vielding the ‘refined’ exterior differential operators:

db : Q0(M) > Q' (M) A QM) - QM) d],0N(M) - 92,(0)
fdf a ked(an) a v my(da)

diy : Q'(M) > Q3;(M) dy7 s Q14 (M) > Q3 (M) di7: Q3 (M) - Q3;(M)
Ozl—>7T27d*¢(Oz/\¢) ﬂ'—>71'27(d5) ’y'—>*¢71'27(d,3).

Analogously, define d] = (d})*, d¥* = (df,)*, d27 = (d%;)* and d2] = (di3)*, where * denotes the
formal L? adjoint (d? and d37 are both formally L? self-adjoint). Then the main result of [22, §5] is:

Theorem. All exterior and co-exterior derivatives on the Go-manifold (M, ¢) can be expressed purely
in terms of the operators d&, dz, d;, dh, d%4, dg7, d$7, d%‘%, dﬂ and d%; Ezxplicitly:

o For feQO(M):
df =dif, d(fe)=difré and d(fy)=df At (A.0.1)
o For aeQ'(M):

. 2
dac= “ % (dfan kg0) +dlya,  d(ang) = Zdiang = dgdiyo,

4 1
dkg(an ) = ?(dIa)@z) + 5dga Ao+ kpdira, (A02)

d (R nHyp)) = —% (dia) ¢ - %*(p (dfa n @) +disa,
dlany) = *¢d;aﬁl and d(Hkga) = - (d{a) vol .

'This is incorrectly stated in [22, §5] as d(a A1) = —%,d7. The error was pointed out by Bryant-Xu in [24].
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e For BeQ2,(M): X
dg = Z*¢(d%45 AP)+diB  and  d*B=d¥p; (A.0.3)

o For~eQ3 (M):
L o7 27
d"}’ = Zd'? A gb + *¢d27"}’ and d Y= *¢(d7 Y AN 1/}) + *¢d14'7 (AO4)
The condition d? = 0 corresponds to the 14 identities:

12
dld =0, dldb=0, dldl=0, di*d],==(dD)’, d27d27_(d$)2+7d%d1,

COI[\D

d4dl +2d3id%; =0, 3djdiy+di,df =0, 2d3id}; -didi=0, didi'=0,

(A.0.5)
dZdit +2d27d37 =0,  dI,di* +4d3ld3r =0, 3di'di) +dIdZ =0,
2d27d3T — dfd3" =0, d],d?" +4d}id3t =
Finally, all Hodge Laplacians can be expressed in terms of the same operators. Explicitly:

o For feQ°(M):

Af =dldif. (A.0.6)
o For aeQ'(M):

Aa = (d ) a+d7d (A.0.7)
e For BeQ3,(M):

5

Ap = S diydy' B+ diidyr . (A.0.8)

e ForyeQ3(M):
7
Ay = bl + BT + (03D (409

Formulae for the Hodge Laplacian acting on sections of the remaining bundles Ny T*M are obtained
by identifying Nog T*M with either NT*M, AIT*M, A%, T*M or A2 27 T*M as appropriate, and noting
that, since ¢ is torsion-free, A commutes with the identification (so that, e.q. A(fo) = (Af)).
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Appendix B

Enumerating k-planes in (Z/ QZ)n

The aim of this appendix is to prove the following result.

Proposition B.0.1. Let F be a finite field. Recall the q-Pochhammer symbol:
n—1 )
(a;q)n=[](1-aq"),
i=0
where a € R, g€ (0,1) and n e N. Then:

|Gy, (F™)| = NH=0)

Initially, let F be an arbitrary field.
Lemma B.0.2.
G (F") = GL(F) [ L (1 F) « GL(n - & F)) x End (F"*, F¥)
where the multiplication on ( GL(k;F) x GL(n - k:,IF)) x End (F”_k,lﬁ‘k) is given by:
(A,B;C)-(A',B';C") = (AA’,BB', AC'B™ + C).
Here A, A" e GL(k;F), B, B’ € GL(n - k,F) and C,C’ € End (F**,F*).

Proof. Clearly GL(n,F) acts transitively on Gry(F™). Thus fix IT € Gri(F"™) and choose an algebraic
complement II" to IT in F™. With respect to the splitting II & IT" = F", the stabiliser in GL(n,F) of

IT consists precisely of those linear maps of the form:

(15)

where A € GL(k;F), B € GL(n - k;F) and D € End (F"*,F¥). The map (A4, B,D) ~ (A, B,DB™")
defines an isomorphism from the stabiliser of II to the group ( GL(k;F)xGL(n-k;F) ) xEnd (]F”_k, ]Fk)
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as defined above.

Now restrict attention to the case where F is a finite field, say |F| = N.

Lemma B.0.3. Write FP"! = Gry(F"). Then:

N™"-1

[FP"!| = .
N-1

Proof. Every non-zero element in F™ (of which there are N™ — 1) determines a unique line through
the origin, however each line through the origin contains precisely N — 1 non-zero points. The result

follows.
O

Lemma B.0.4. ‘
2y 11\* 2(1 1
GL(n,F)| = N(™) 1-(—) = N" (—-—) . B.0.
|GL(n, )| H( N NN (B.0.5)

i=1

Proof. Proceed by induction. In the case n = 1, GL(1,F) consists of the non-zero elements of F and

thus has size (N — 1), as required. In general, using Lemma , one sees that:

|GL(n + 1;TF)| _
|GL(1;F)| x |GL(n; F)| x |(F)”|

[FP"|

Thus, by using Lemma together with |(IE‘”)* = N™, one sees inductively that:

N-1 N'N

——
FTL . ‘ —_— —
[E)*| | aL(L;F)) FP"| |GL(n; F)|

_ ezl 1_(1)"” (1,;)
N N’Nn

- N(n+1)? (ii)
N’ N n+1’

n+l _ )
GL(n+1L;F)[= N" . (N-1) .M.Nm)(i.i)
n

as required.

I now prove Proposition .

Proof. Using Lemma , one computes that:

|GL(n; F)|
|GL(k; F)| x |GL(n — k; F)| x [End (F*%, FF)|’

|Gy (F™)] =
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Substituting the result of Lemma together with ‘End (F”’k,IFk)| = NF(=F) yields:

)

N7 (4 .
%)(n—k)

I EES R

2[
2| =

|Gry (F™)] =

[

The result follows from the identity k2 + (n - k)? + k(n - k) = n? = k(n - k).

In particular, the number of 2-planes in 6-dimensional space over F = Z/ 97, is:

A = 651,

EERCD)

22~4

I DN
NI [ N~

|l

N[ =

?

as claimed in Construction .
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