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Hitchin Functionals, h-Principles and Spectral Invariants
Laurence Hamilton Mayther

Abstract

This thesis investigates Hitchin functionals and h-principles for stable forms on oriented manifolds, with a
special focus on G2 and G̃2 3- and 4-forms. Additionally, it introduces two new spectral invariants of torsion-free
G2-structures.

Part I begins by investigating an open problem posed by Bryant, viz. whether the Hitchin functional H3

on closed G2 3-forms is unbounded above. Chapter 3 uses a scaling argument to obtain sufficient conditions
for the functional H3 to be unbounded above and applies this result to prove the unboundedness above of H3

on two explicit examples of closed 7-manifolds with closed G2 3-forms. Chapter 3 then proceeds to interpret
this unboundedness geometrically, demonstrating an unexpected link between the functional H3 and fibrations,
proving that the ‘large volume limit’ of H3 in each case corresponds to the adiabatic limit of a suitable fibration.
The proof utilises a new, general collapsing result for singular fibrations between orbifolds, without assumptions
on curvature, which is proved in Chapter 4. Chapter 5 broadens the focus of Part I to include the Hitchin
functionals H4, H̃3 and H̃4 on closed G2 4-forms, G̃2 3-forms and G̃2 4-forms respectively. In its main result,
Chapter 5 proves that H4, H̃3, H̃4 are always unbounded above and below (whenever defined), and also that H3

is always unbounded below (whenever defined). As scholia, the critical points of the functionals H4, H̃3 and H̃4

are shown to be saddle points, and initial conditions of the Laplacian coflow which cannot lead to convergent
solutions are shown to be dense. Part I ends with a short discussion of open questions, in Chapter 6.

Part II investigates relative h-principles for closed, stable forms. After establishing some prerequisite alge-
braic results, Chapter 7 begins by proving that if a class of closed, stable forms satisfies the relative h-principle,
then its corresponding Hitchin functional is automatically unbounded above. By utilising the technique of
convex integration, Chapter 7 then obtains sufficient conditions for a class of closed, stable forms to satisfy
the relative h-principle, a result which subsumes all previously established h-principles for closed stable forms.
Until now, 12 of the 16 possible classes of closed stable forms have remained open questions with regard to the
relative h-principle. In the main result of Part II, Chapters 7 and 8 prove the relative h-principle in 5 of these
open cases. The remaining 7 cases are addressed in the final chapter of Part II, where it is conjectured that
the relative h-principle holds in each case. Chapter 9 applies the h-principles established in this thesis to prove
various results on the topological properties of closed G̃2, SL(3;C) and SL(3;R)2 forms. Firstly, it characterises
which oriented 7-manifolds admit closed G̃2 forms, in the process introducing a new technique for proving the
vanishing of natural cohomology classes on non-closed manifolds. Next, it introduces G̃2-cobordisms of closed
SL(3;C) and SL(3;R)2 3-forms and proves that homotopic forms are G̃2-cobordant. Additionally, Chapter 9
classifies SL(3;C) 3-forms up to homotopy and provides a partial classification result on homotopy classes of
SL(3;R)2 3-forms. Part II ends with a short discussion of open questions, in Chapter 10.

Part III introduces and examines two new spectral invariants of torsion-free G2-structures. Although the
notion of an invariant is a central theme in geometry and topology, currently, there is only one known invariant
of torsion-free G2-structures: the ν-invariant of Crowley–Goette–Nordström. Part III defines two new invariants
of torsion-free G2-structures, termed µ3- and µ4-invariants, by regularising the classical notion of Morse index
for the Hitchin functionals H3 and H4 at their critical points. In general, there is no known way to compute ν for
G2-manifolds constructed via Joyce’s ‘generalised Kummer construction’. Chapter 11 obtains closed formulae
for µ3 and µ4 on the orbifolds used in Joyce’s construction, leading to a conjectural discussion in Chapter 12 of
how to compute µ3 and µ4 on Joyce’s manifolds.
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Notation

• Unless stated otherwise, (e1, ..., en) shall denote the standard basis of Rn, so that ei is given
by the transpose of

ei = (0, ...,0, 1
®

ith position

,0, ...,0),

and (θ1, ..., θ7) shall denote the corresponding dual basis of (Rn)∗. Multi-index notation:

θij...k = θi ∧ θj ∧ ... ∧ θk and eij...k = ei ∧ ej ∧ ... ∧ ek

is used throughout this thesis. The canonical orientation on Rn is then fixed by declaring
θ1...n > 0.

• Use the symbol ⊙n to denote the nth exterior tensor power. Thus given a real vector space A,
⊙2A∗ is the space of symmetric bilinear forms on A. Write ⊙2

+A∗ for the space of positive-
definite symmetric bilinear forms (i.e. inner-products) on A and write ⊙2

⩾0A∗ for the space
of non-negative definite symmetic bilinear forms on A. Define a partial order on ⊙2A∗ by
declaring g ⩾ g′ if and only if g − g′ ∈ ⊙2

⩾0A∗. Given g ∈ ⊙2A∗ and a ∈ A, write g(a) as an
abbreviation for g(a, a). Finally, given g ∈⊙2A∗, define the kernel of g to be the kernel of the
linear map ()♭ ∶ a ∈ A↦ g(a,−) ∈ A∗.

• Following [62], given a topological space X and a subset A ⊂X, write Op(A) for an arbitrarily
small but unspecified open neighbourhood of A in M, which may be shrunk whenever necessary,
and given x ∈X, write Op(x) as a short-hand for Op({x}).

• Given a manifold M and a bundle π ∶ E →M, unless alternative notation is defined, use Γ(E,−)
to denote the sheaf of smooth sections of E.

• Define symbols >< and ⩾⩽ be analogy with ± to ‘mean greater than or less than, respectively’
and ‘greater than or equal to, or less than or equal to, respectively’, where, by convention, the
upper-most symbol should be read first. Thus the equation a ± b >< c should be interpreted as
the pair of equations:

a + b > c and a − b < c

while the equation a ∓ b ⩾⩽ c denotes:

a − b ⩾ c and a − b ⩽ c.
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Chapter 1

Introduction

In 1955, Berger [16] published the first list of possible pseudo-Riemannian holonomy groups of simply
connected, non-locally symmetric manifolds whose holonomy group acts irreducibly. Since then,
Berger’s list has been perfected through the work of many authors, including [3, 4, 20, 26, 21, 54, 55]
and others, and is now known to contain 6 exceptional holonomy groups, viz. G2, G̃2 GC

2 , Spin(7),
Spin(3,4) and Spin(7;C), which can occur only in dimensions 7, 7, 14, 8, 8 and 16 respectively (see
[53, §2.2] for the full classification). The initial motivation for this thesis stems from one of these
exceptional groups, viz. G2.

The existence of (incomplete) manifolds with holonomy G2 was first established by Bryant [21],
with complete examples later independently constructed by Bryant–Salamon [23] and Gibbons–Page–
Pope [56]. The first compact manifolds with holonomy G2 were constructed by Joyce [76, 77, 78] with
further examples constructed by Kovalev [87], Kovalev–Lee [88], Corti–Haskins–Nordström–Pacini
[29], Joyce–Kariagiannis [80], Nordström [110] and others.

One further candidate for constructing compact manifolds with holonomy G2 was proposed by
Bryant (jointly with Altschuler) in [22]. Their proposal is most appropriately phrased in terms of
Hitchin functionals, introduced in [71, 72]. Given an oriented 7-manifold M, a G2-structure on M

may be characterised by a 3-form ϕ of a certain algebraic type, called a G2 3-form (see §2.2 for a
precise defintion). Since G2 ⊂ SO(7), ϕ induces a metric gϕ and orientation on M, and hence a volume
form volϕ and Hodge star ☀ϕ. When dϕ = 0 and M is closed, the Hitchin functional H3 on (M, ϕ) is
defined by:

H3 ∶ [ϕ]+ = {ϕ′ ∈ [ϕ] ∈H3
dR(M) ∣ ϕ

′ is of G2-type} (0,∞)

ϕ′ ∫M volϕ′

Since G2 3-forms are stable in the sense of Hitchin [72], [ϕ]+ ⊂ [ϕ] is open in the C0-topology. The
critical points ϕ′ of H3 are then characterised by the condition d☀ϕ′ϕ

′ = 0, which is equivalent to
Hol(gϕ′) ⊆ G2 by a well-known result of Fernández–Gray [49]; such ϕ′ are termed torsion-free. In
view of this, Altschuler–Bryant proposed a construction whereby closed manifolds with holonomy G2

would be constructed as the limit of the gradient flow of the H3. As remarked in [22, Remark 17],
for this construction to be feasible, it would be desirable for the functional H3 to be bounded above.
This motivated the initial question for this thesis:

1



Question 1.0.1. Is the functional H3 unbounded above?

Part I of this thesis examines Question 1.0.1 in depth. Chapter 3 introduces a new scaling argu-
ment (Proposition 3.1.9) for proving the unboundedness above of the functional H3 and applies the
argument to prove the unboundedness above of the Hitchin functionalH3 on two examples of closed 7-
manifolds with closed G2-structures. The first is a 4-dimensional family (N,ϕ(α,β, λ))(α,β,λ)∈(R/{0})2×(C/{0})
of closed 7-manifolds equipped with closed G2 3-forms inspired by Fernández’ short paper [46], where
N is the product of S1 with the Nakamura manifold constructed by de Bartolomeis–Tomassini [14]).
The second is the manifold (M̆, ϕ̆) constructed by Fernández–Fino–Kovalev–Muñoz in [48].

Theorem 1.0.2 (Theorems 3.2.9 and 3.4.12).

1. The map:
(R/{0})2 × (C/{0}) H3

dR(N)

(α,β, λ) [ϕ(α,β, λ)]

is injective, and for all (α,β, λ) ∈ (R/{0})2 × (C/{0}), there exists a family ϕ(α,β, λ;µ) ∈
[ϕ(α,β, λ)]+, µ ∈ [1,∞) such that:

lim
µ→∞
H3(ϕ(α,β, λ;µ)) =∞;

2. There exists a family ϕ̆µ ∈ [ϕ̆], µ ∈ [1,∞) such that:

lim
µ→∞
H3 (ϕ̆µ) =∞.

In proving (2), careful treatment of the resolution of singularities in the construction of the manifold
M̆ is required, in order to ensure that the rescaled forms are cohomologically constant.

The explicit families (ϕ(α,β, λ;µ))µ∈[0,∞) and (ϕ̆µ)
µ∈[0,∞) constructed in Theorem 1.0.2 are each

of further geometric interest. Recall from [48] that the manifold M̆ can be regarded as the total space
of a singular fibration π over S1×T2/{±1} with generic fibre T4. Chapter 3 shows that N can also be
regarded as the total space of a (twisted) T6-fibration p over S1. The families (ϕ(α,β, λ;µ))µ∈[0,∞)
and (ϕ̆µ)

µ∈[0,∞) are closely related to the fibrations p and π; this relation is made precise by the
following theorem:

Theorem 1.0.3 (Theorem 3.3.1 and 3.5.8).

• Let (α,β, λ) ∈ (R/{0})2×(C/{0}) and let (N,ϕ(α,β, λ;µ))µ∈[1,∞) be as in Theorem 1.0.2. Then
the large volume limit of (N,ϕ(α,β, λ;µ)) corresponds to an adiabatic limit of p. Specifically,
writing ℓ = log 3+

√
5

2 for the constant arising in the construction of the Nakamura manifold X:

(N,µ−12ϕ(α,β, λ;µ))→ (R/ℓZ , α
2 (λλ)−

2
3 gEucl) as µ→∞,

where the convergence is in the Gromov–Hausdorff sense.
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• Let (M̆, ϕ̆µ)
µ∈[1,∞) be as in Theorem 1.0.2. Then the large volume limit of (M̆, ϕ̆µ) corresponds

to an adiabatic limit of the fibration π. Specifically, let B denote the orbifold {±1}/T
2 × S1.

Then:
(M̆, µ−6ϕ̆µ)→ (B,d) as µ→∞

in the Gromov–Hausdorff sense, where d is some suitable metric (i.e. distance function) on B.

I remark that, since neither N nor M̆ admit torsion-free G2-structures, Theorem 1.0.3 demonstrates
the potential geometric relevance of the functional H3 even to manifolds which do not admit torsion-
free G2-structures.

The limiting metric d on the base space B cited in Theorem 1.0.3 is locally Euclidean outside a
neighbourhood of the singular locus of B, but globally is not induced by a Riemannian metric; rather
it is induced by a certain ‘stratified’ geometric structure, which I term a stratified quasi-Finslerian
structure. This new class of structures on orbifolds is defined formally in §3.5.1. The proof of Theorem
1.0.3 combines suitable geometric estimates on the Riemannian metrics induced by µ−12ϕ(α,β, λ;µ)
with µ−6ϕ̆µ with a technical collapsing result for singular fibrations between orbifolds, stated in
Theorem 4.2.5. This theorem is distinct from similar theorems in the literature since it does not
require bounds on curvature or injectivity radius of (E, ĝµ) and thus allows for Gromov–Hausdorff
limits which have strictly lower dimension than the family whose limit is under consideration. The
proof of Theorem 4.2.5 occupies Chapter 4, and requires the introduction and investigation of a new
class of stratified fibrations between orbifolds, termed weak submersions.

Part I ends by considering two possible generalisations of Question 1.0.1. Firstly, attention is
broadened from the functional H3 on G2 3-forms, to include the analogous Hitchin functionals H4,
H̃3 and H̃4 on G2 4-forms, G̃2 3-forms and G̃2 4-forms respectively (see §2.2.3 for a precise definition).
Secondly, it is asked whether the functionals H3, H4, H̃3 and H̃4 are bounded bounded below, in a
logarithmic sense (i.e. bounded away from 0). As its main result, Chapter 5 proves:

Theorem 1.0.4. The functionals H4, H̃3 and H̃4 are always unbounded above and below, and H3

is always unbounded below. Specifically, let M be a closed 7-manifold (or, more generally, 7-orbifold)
and let ϕ, ψ, ϕ̃ and ψ̃ be closed G2 3-forms, G2 4-forms, G̃2 3-forms and G̃2 4-forms on M respectively
and let [ϕ̃]∼ and [ψ̃]∼ be as defined in §2.2.1. Then:

• infψ′ ∈ [ψ]+H4 (ψ′) = 0 and supψ′ ∈ [ψ]+H4(ψ′) =∞;

• inf
ϕ̃′ ∈ [ϕ̃]∼

H̃3 (ϕ̃′) = 0 and sup
ϕ̃′ ∈ [ϕ̃]∼

H̃3 (ϕ̃′) =∞;

• inf
ψ̃′ ∈ [ψ̃]∼

H̃4 (ψ̃′) = 0 and sup
ψ̃′ ∈ [ψ̃]∼

H̃4 (ψ̃′) =∞;

• infϕ′ ∈ [ϕ]+H3 (ϕ′) = 0.

Recall that it was shown by Hitchin [71] that the critical points ofH3 are local maxima. Previously,
however, the nature of the critical points of H4, H̃3 and H̃4 has not been established. As a scholium
of Theorem 1.0.4, Chapter 5 obtains:
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Theorem 1.0.5 (Theorems 5.1.11 and 5.5.5). The critical points of H4, H̃3 and H̃4 are always
saddles. Specifically, let M be a closed, oriented 7-manifold (or, more generally, 7-orbifold) and let ψ
be a torsion-free G2 4-form on M. Then there exist infinite-dimensional subspaces S±4 (ψ) ⊂ Tψ[ψ]+
along which D2H4∣ψ is positive definite and negative definite respectively. The analogous statement
holds for the functionals H̃3 and H̃4.

As a second scholium, let M be an oriented 7-manifold and recall that, given a closed G2 4-form
ψ on M, the Laplacian coflow of ψ is defined to be the solution of the evolution PDE:

∂ψ(t)
∂t

=∆ψ(t)ψ(t) = dd∗ψ(t)ψ(t) and ψ(0) = ψ. (1.0.6)

(Note that I adopt the sign convention for Laplacian coflow used in [59], rather than that used in
the the original paper [83].) Whilst the existence and uniqueness of the Laplacian coflow have yet
to be proven, Laplacian coflow can be regarded as the gradient flow of the Hitchin functional H4

[59]. Consequently, Theorems 1.0.4 and 1.0.5 intuitively suggest that most solutions of the Laplacian
coflow on a given manifold M (when they exist) will not converge to a torsion-free G2 4-form as
t→∞. Chapter 5 confirms this expectation, by proving the following result:

Theorem 1.0.7. Let M be an oriented 7-manifold (not necessarily closed) and let ψ ∈ Ω4
+(M) be a

closed G2 4-form. Consider the space:

O[ψ]+ = {ψ
′ ∈ [ψ]+ ∣

no solution to the Laplacian coflow started at
ψ′ converges to a torsion-free G2 4-form

}.

Then O[ψ]+ ⊂ [ψ]+ is dense in the C0 topology.

Part II broadens the scope of investigation from G2 and G̃2 forms to more general classes of
geometric structures. Recall that, in the terminology of Hitchin [72], a p-form σ0 ∈ ⋀p (Rn)∗ is stable
if its GL+(n;R)-orbit in ⋀p (Rn)∗ is open; examples include the G2 and G̃2 forms considered in Part
I. Given an oriented n-manifold M, say that σ ∈ Ωp(M) is a σ0-form if, for each p ∈ M, (TpM, σ∣p)
is oriented-isomorphic to (Rn, σ0). If M is closed and dσ = 0, then provided StabGL+(n;R)(σ0) ⊆
SL(n;R), there is a natural Hitchin functional H on the set Clpσ0

([σ]) of σ0-forms in the de Rham
class [σ], defined by analogy with H3. The initial motivation for Part II was to generalise the
questions posed in Part I to these more general Hitchin functionals, and study their unboundedness
above via the notion of relative h-principles, which I now briefly define.

Given σ0 ∈ ⋀p (Rn)∗, an oriented n-manifold M and a fixed cohomology class α ∈ Hp
dR(M), write

Clpσ0
(M) for the set of closed σ0-forms on M and recall the set Clpσ0

(α). More generally, given a
possibly empty submanifold A ⊂M, let σr be a closed σ0-form on Op(A) such that [σr] = α∣Op(A) ∈
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Hp
dR(Op(A)) and write:

Ωpσ0
(M;σr) = {σ ∈ Ωpσ0

(M) ∣ σ∣Op(A) = σr}

Clpσ0
(M;σr) = {σ ∈ Ωpσ0

(M;σr) ∣ dσ = 0}

Clpσ0
(α;σr) = {σ ∈ Clpσ0

(M;σr) ∣ [σ] = α ∈Hp
dR(M)} .

Say that σ0-forms satisfy the relative h-principle if for every M, A, α and σr, the inclusions:

Clpσ0
(α;σr)↪ Clpσ0

(M;σr)↪ Ωpσ0
(M;σr)

are homotopy equivalences. (In fact, this thesis uses a slightly stronger notion of h-principle; see
§7.2.) Such an h-principle is of significant independent geometric interest: indeed, taking A = ∅, the
inclusions:

Clpσ0
(α)↪ Clpσ0

(M)↪ Ωpσ0
(M)

are also homotopy equivalences and thus, if M admits any σ0-form (a question which can be answered
using purely topological methods), then every degree p de Rham class on M can be represented by a
σ0-form. In addition to this, the relative h-principle is relevant to the study of Hitchin functionals,
as the following result demonstrates:

Theorem 1.0.8 (Theorem 7.2.3). Let σ0 be a stable form such that StabGL+(n;R)(σ0) ⊆ SL(n;R)
and suppose that σ0-forms satisfy the relative h-principle. For any closed, oriented n-manifold M

admitting σ0-forms and any α ∈Hp
dR(M), the Hitchin functional:

H ∶ Clpσ0
(α)→ (0,∞)

is unbounded above. More generally, if M is a closed, oriented n-orbifold and Clpσ0
(α) ≠ ∅, then the

same conclusion applies.

If A = ∅ and M is open (i.e. not closed), the inclusions Clpσ0
(α) ↪ Clpσ0

(M) ↪ Ωpσ0
(M) are known

to be homotopy equivalences for any σ0, by the techniques introduced [60] (see also [42, 32]). However
if M is closed, or A ≠ ∅, the question of which σ0 satisfy the relative h-principle remains an open
problem. More specifically, there are essentially 16 classes of closed stable forms (see §7.1.3 and
Remark 7.2.4). Of these 16 classes, only 3 are known to satisfy the relative h-principle, viz. stable
2-forms on odd-dimensional manifolds (McDuff [104]), G2 4-forms (Crowley–Nordström [32]) and
SL(3;C) 3-forms (Donaldson [37]). Conversely, symplectic forms are widely known not to satisfy the
relative h-principle (see, e.g. [42]). The answer in all remaining 12 classes has remained open. The
main result of Part II, proven in Chapters 7 and 8, resolves 5 of these open cases:

Theorem 1.0.9 ((Theorems 7.6.4, 7.6.5, 7.7.5, 7.7.44, 8.2.1)). The relative h-principle holds for each
of the following classes of closed, stable forms:

• Co-symplectic forms (i.e. stable (2k − 2)-forms in dimension 2k, k ⩾ 3);

• Co-pseudoplectic forms (i.e. stable (2k − 1)-forms in dimension 2k + 1, k ⩾ 2);
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• SL(3;R)2 3-forms;

• G̃2 3-forms;

• G̃2 4-forms.

As an immediate consequence of Theorem 1.0.9 and Theorem 1.0.8, one obtains:

Theorem 1.0.10. If M admits any G̃2 3-form, then every degree 3 de Rham class on M can be
represented by a G̃2 3-form and likewise for G̃2 4-forms, SL(3;R)2 3-forms, co-symplectic forms and
co-pseudoplectic forms. Moreover, the Hitchin functionals on G̃2 3-forms, G̃2 4-forms, SL(3;R)2

3-forms, SL(3;C) 3-forms and co-symplectic forms are always unbounded above, whenever defined
(note that (co-)pseudoplectic forms do not have a corresponding Hitchin functional): e.g. in the case
of SL(3;R)2 3-forms, let M be any closed, oriented 6-manifold admitting SL(3;R)2 3-forms. Then
for each α ∈H3

dR(M), the functional:

H ∶ Cl3ρ+(α)→ (0,∞)

is unbounded above. More generally, if M is a closed, oriented 6-orbifold and Cl3ρ+(α) ≠ ∅, then the
same conclusion applies.

In particular, note that Theorem 1.0.10 provides an alternative proof of the unboundedness above of
H̃3 and H̃4 shown in Part I.

Essential to the proof of Theorem 1.0.9 is the technique of convex integration, introduced by
Gromov in [61] and developed in [62, 116, 42, 98]. In particular, by using convex integration, the
following result, which plays a key role in the proof of Theorem 1.0.9, is established:

Theorem 1.0.11 (Theorem 7.3.1). Let σ0 ∈ ⋀p (Rn)∗ be stable. Given an arbitrary p form τ on
Rn−1, define:

Nσ0
(τ) = {ν ∈⋀p−1 (Rn−1)

∗ ∣ θ ∧ ν + τ ∈⋀pσ0
(R⊕Rn−1)∗} ⊂⋀p−1 (Rn−1)

∗

where θ is the standard annihilator of Rn−1 ⊂ R⊕Rn−1. Suppose that, for every τ , the set Nσ0
(τ) is

ample in the sense of affine geometry, i.e. Nσ0
(τ) is either empty, or the convex hull of every path

component of Nσ0
(τ) equals ⋀p−1 (Rn−1)

∗ (in such cases, say that σ0 itself is ample). Then σ0-forms
satisfy the relative h-principle.

I remark that Theorem 1.0.11 subsumes all three previously known h-principles for stable forms,
viz. the relative h-principles for stable 2-forms in (2k+1)-dimensions (k ⩾ 2), G2 4-forms and SL(3;C)
3-forms; see §7.5.

Theorem 1.0.9, together with the relative h-principle for SL(3;C) 3-forms, shows that the topo-
logical properties of the spaces of G̃2 3- and 4-forms, SL(3;C) 3-forms and SL(3;R)2 3-forms which
are closed, or which lie in any given cohomology class, can be understood by studying the spaces of
all G̃2 3- and 4-forms, SL(3;C) 3-forms and SL(3;R)2 3-forms, respectively. These spaces can be
investigated using the standard bundle-theoretic techniques of characteristic classes and obstruction
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theory; Part II ends in Chapter 9 by carrying out such an investigation. Chapter 9 begins by proving
the following conjecture of Lê in [92]:

Theorem 1.0.12. Let M be an oriented 7-manifold (not necessarily closed). Then M admits G̃2-
structures if and only if it is spin.

In the process, the following result is established, which the author hopes will have many appli-
cations beyond those used in this thesis:

Theorem 1.0.13. Suppose there is an assignment to each n-manifold M (with – possibly empty –
boundary) of a degree p cohomology class ν(M) ∈ Hp (M;G), where G is either a field or a finite Abelian
group, and suppose moreover that the assignment is natural, in the sense that for each embedding
f ∶M↪M′ of n-manifolds with boundary, the identity:

ν(M) = f∗ν(M′)

holds. Finally, suppose that ν vanishes on all closed (resp. closed, oriented) n-manifolds. Then ν

vanishes on all (resp. all oriented) n-manifolds with boundary.

Combining Theorem 1.0.12 with Theorem 1.0.10 yields the following corollary:

Theorem 1.0.14. Let M be an oriented 7-manifold. If M is spin, then every degree 3 de Rham class
can be represented by a G̃2 3-form and every degree 4 de Rham class can be represented by a G̃2

4-form.

Next, Chapter 9 investigates the link between closed SL(3;C) and SL(3;R)2 3-forms in 6-
dimensions and closed G̃2 3-forms in 7-dimensions. Say that an SL(3;C) or SL(3;R)2 3-form ρ

on an oriented 6-manifold N is extendible if there exists an oriented 7-manifold with boundary M

such that ∂M contains N as a connected component, and a closed G̃2 3-form ϕ̃ on M such that
ϕ̃∣N = ρ. Motivated by Donaldson’s notion of G2-cobordism introduced in [37], say that two oriented
6-manifolds (N1, ρ1) and (N2, ρ2) equipped with closed, extendible, SL(3;C) (resp. SL(3;R)2) 3-
forms are G̃2-cobordant if there exists an oriented 7-manifold M with boundary ∂M = N1∐N2 and a
closed G̃2 3-form ϕ̃ on M such that:

ϕ̃∣N1
= ρ1 and ϕ̃∣N2

= ρ2

(where overline denotes orientation-reversal).

Theorem 1.0.15. Let N be a 6-manifold and let ρ, ρ′ be closed, extendible SL(3;C) (resp. SL(3;R)2)
3-forms on N. Suppose that ρ and ρ′ are homotopic and lie in the same cohomology class. Then
(N, ρ) and (N, ρ′) are G̃2-cobordant.

I remark that, in contrast, the analogous result for G2-cobordisms is not known; see [37], partic-
ularly the discussion on p. 116.
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Motivated by Theorem 9.3.3, the remainder of Chapter 9 investigates when two closed SL(3;C)
(resp. SL(3;R)2) 3-forms are homotopic, and when a given SL(3;C) (resp. SL(3;R)2) 3-form is
extendible. Let N be an oriented 6-manifold and let SLC(N) denote the set of homotopy classes
of SL(3;C) 3-forms on N. Since SL(3;C) deformation retracts onto the simply-connected subgroup
SU(3) ⊂ SO(6), each SL(3;C) 3-form ρ defines a choice of spin structure on N, which depends only
on the homotopy class of ρ. Thus there is a map:

σ ∶ SLC(N)→ Spin(N)

Theorem 1.0.16. The map σ is bijective. In particular, there is a 1-1 correspondence between
homotopy classes of SL(3;C) 3-forms on N (equivalently closed SL(3;C) 3-forms, or SL(3;C) 3-
forms in any fixed degree 3 de Rham class) and spin structures on N, which in turn correspond
non-canonically with elements of H1 (N, Z/2Z).

I remark that Theorem 1.0.16 corrects an error in Donaldson’s paper [37, p. 116], where it is
stated that any two SL(3;C) 3-forms on a given oriented 6-manifold are homotopic.

Theorem 1.0.17. Let N be an oriented 6-manifold. If the Euler class e(N) = 0, then any SL(3;C)
3-form on N is extendible. In particular:

• If N is open, then any SL(3;C) 3-form on N is extendible.

• If N is closed and the Euler characteristic χ(N) = 0, then any SL(3;C) 3-form on N is
extendible.

Conversely, if e(N) ≠ 0 and in addition b2 = 0 (i.e. H2(N;Z) and H4(N;Z) are pure torsion), then
no SL(3;C) 3-form on N is extendible.

Turning to the case of SL(3;R)2 3-forms, by using the results of Thomas [119, Cor. 1.7], a lower
bound on the number of homotopy classes of SL(3;R)2 3-forms is obtained:

Theorem 1.0.18. Let N be a closed, oriented, 6-manifold with e(N) = 0 and suppose w2(N)2 = 0.
Write ρ2 ∶ H4 (N;Z)→ H4 (N; Z/2Z) for reduction modulo 2 and define:

H4 (N;Z)�w2
= {u ∈ H4 (N;Z) ∣ ρ2u ∪w2(N) = 0} .

Then there is an injection from H4 (N;Z)�w2/2-torsion into the set of homotopy classes of SL(3;R)2

3-forms on N (equivalently closed SL(3;R)2 3-forms, or SL(3;R)2 3-forms in any fixed degree 3 de
Rham class). In particular, if N is spin and b4(N) > 0, then each of these sets is infinite.

As an immediate corollary of Theorem 9.5.2, one obtains:

Corollary 1.0.19. Let N be a closed, oriented, spin 6-manifold. Then N admits SL(3;R)2 3-forms
if and only if e(N) = 0.
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Finally, Chapter 9 ends by investigating the extendibility of SL(3;R)2 3-forms. Firstly, the mani-
fold T2×E , where E denotes the Enriques surface, is shown to admit infinitely many distinct homotopy
classes of (closed) SL(3;R)2 3-forms, none of which are extendible. Secondly 652 distinct homotopy
classes of (closed) extendible SL(3;R)2 3-forms on T6 are constructed.

In Part III, the thesis adopts a new focus. Recall that there is currently only one known
invariant of ‘G2-manifolds’ (i.e. oriented 7-manifolds equipped with torsion-free G2-structures) viz.
the ν-invariant defined by Crowley–Goette–Nordström [31]. Whilst the value of ν can be effectively
computed for the ‘twisted connected sum’ G2-manifolds constructed in [87, 29, 110] (see [31, 57])
there is no known general method of computing the ν-invariant for the G2-manifolds constructed by
Joyce [76, 77, 78].

Part III introduces two new invariants of closed G2-manifolds (and, more generally, of G2-
orbifolds), which I denote µ3 and µ4. It was proven in [71] that the critical points of the functional H3

on a closed, oriented 7-manifold are non-degenerate local maxima, modulo the actions of diffeomor-
phisms. The same argument also proves the corresponding result for orbifolds. Likewise, Proposition
11.4.1 proves that the critical points of H4 on a closed, oriented 7-orbifold are non-degenerate saddles,
modulo the action of diffeomorphisms.1 Motivated by classical Morse theory, Part III addresses the
question of whether a torsion-free G2-structure on an oriented 7-orbifold has a well-defined notion
of Morse index, when viewed as a critical point of the functionals H3 and H4. Whilst the classical
Morse indices of the critical points are not well-defined, by using the theory of spectral invariants
developed by Seeley [115] and Atiyah–Patodi–Singer [8, 9, 10], and later elaborated by Kawasaki [85]
and Farsi [44], I show that the critical points of H3 and H4 both have a well-defined regularised
notion of Morse index, denoted µ3 and µ4 respectively. Explicitly, given a closed, oriented orbifold
M and a torsion-free G2 3-form ϕ on M, µ3(ϕ) is the value at 0 of the meromorphic extension to C
of the holomorphic function:

µϕ ∶ {s ∈ C ∣ Res > 7
2
} C

s ∑λ∈Spec(D2H3)
λ<0

∣λ∣−s

where D2H3 is viewed as a linear operator (rather than a bilinear form) via a suitable L2-inner
product. µ4 is defined analogously. The main result of Part III is the following theorem:

Theorem 1.0.20. Given A ∈ End(R7), define:

Tr
SU(3)
8 (A) = TrR7(A)2 −TrR7(A2)

2
− 2TrR7(A) + 1

1After proving Proposition 11.4.1, the author discovered that a related result was obtained in [59]. Note, however,
that Proposition 11.4.1 differs from [59, Prop. 3.4] firstly, since it proves not only that the critical points of H4

are non-degenerate, but also that they are saddles; and secondly, since it considers not only manifolds, but also
orbifolds.
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and:

Tr
SU(3)
12 (A) = TrR7(A)3 + 2TrR7(A3) − 3TrR7(A2)TrR7(A)

6
− TrR7(A)2 −TrR7(A2)

2
− 2.

Let MΓ = Γ/T be a Joyce orbifold and let G TF
2 (MΓ) denote the moduli space of torsion-free G2-

structures on MΓ. Then the invariants:

µ3 ∶ G TF
2 (MΓ)→ R2 and µ4 ∶ G TF

2 (MΓ)→ R2

are constant, given by the formulae:

µ3(MΓ) =
−1
∣Γ∣ ∑
A=(A,t)∈Γ

Tr
SU(3)
8 (A) and µ4(MΓ) =

−1
∣Γ∣ ∑
A=(A,t)∈Γ

Tr
SU(3)
12 (A).

The proof of Theorem 1.0.20 reveals an interesting link between the µ-invariants and twisted
Epstein ζ-functions, as introduced in [43]; see §11.6 for details. Theorem 1.0.20 serves as the intro-
duction to what will of necessity be a much larger project, which seeks to compute the µ-invariants
on the G2-manifolds constructed by Joyce in [76, 77, 78]. The conjectural shape of this project is
briefly discussed at the end of Part III.
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Chapter 2

Preliminaries

This chapter recounts the prerequisite theory regarding orbifolds, G2- and G̃2-forms, stable forms
and Hitchin functionals, metric geometry, and h-principles which will be assumed in this thesis.

2.1 Differential topology of orbifolds

The main references for this section are [1, §§1.1–1.3] and [38, §14.1].

2.1.1 Basic definitions

Let E be a topological space.

Definition 2.1.1. An n-dimensional orbifold chart Ξ is the data of a connected, open neighbourhood
U in E, a finite subgroup Γ ⊂ GL(n;R), a connected, Γ-invariant open neighbourhood Ũ of 0 ∈ Rn

and a homeomorphism χ ∶ Γ/Ũ → U . Write χ̃ for the composite Ũ quot
ÐÐ→ Γ/Ũ

χ
Ð→ U . Say that Ξ is

centred at e ∈ E if e = χ̃(0). In this case, Γ is called the orbifold group of e, denoted Γe. e is called a
smooth point if Γe = 0, and a singular point if Γe ≠ 0.

Now consider two orbifold charts Ξ1 = (U1,Γ1, Ũ1, χ1) and Ξ2 = (U2,Γ2, Ũ2, χ2) with U1 ⊆ U2.
An embedding of Ξ1 into Ξ2 is the data of a smooth, open embedding ι12 ∶ Ũ1 ↪ Ũ2 and a group
isomorphism λ12 ∶ Γ1 → StabΓ2

(ι12(0)) such that for all x ∈ Ũ1 and all σ ∈ Γ1: ι12(σ ⋅ x) = λ12(σ) ⋅
ι12(x), and such that the following diagram commutes:

Ũ1 Ũ2

U1 U2

ι12

χ̃1 χ̃2
incl

Now let Ξ1 and Ξ2 be arbitrary. Ξ1 and Ξ2 are compatible if for every e ∈ U1 ∩ U2, there
exists a chart Ξe = (Ue,Γe, Ũe, χe) centred at e together with embeddings (ιe1, λe1) ∶ Ξe ↪ Ξ1 and
(ιe2, λe2) ∶ Ξe ↪ Ξ2. If U1 ∩ U2 = ∅, then Ξ1 and Ξ2 are automatically compatible, however if
U1 ∩ U2 ≠ ∅ and Ξ1 and Ξ2 are compatible, then Ξ1 and Ξ2 have the same dimension; moreover, if
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Ξ1 and Ξ2 are centred at the same point e ∈ E, then Γ1 ≅ Γ2 and therefore the orbifold group Γe is
well-defined up to isomorphism.

An orbifold atlas for E is a collection of compatible orbifold charts A which is maximal in the
sense that if a chart Ξ is compatible with every chart in A, then Ξ ∈ A. An orbifold is a connected,
Hausdorff, second-countable topological space E equipped with an orbifold atlas A. Every chart of
E has the same dimension n; call this the dimension of the orbifold.

Definition 2.1.2. Let E1, E2 be orbifolds. A continuous map f ∶ E1 → E2 is termed smooth if
for any point e ∈ E1, there exists a chart Ξe = (Ue,Γe, Ũe, χe) for E1 centred at e, a chart Ξf(e) =
(Uf(e),Γf(e), Ũf(e), χf(e)) for E2 centred at f(e), a group homomorphism κf ∶ Γe → Γf(e) and a
smooth map f̃ ∶ Ũe → Ũf(e) satisfying f̃(σ ⋅ x) = κf(σ) ⋅ f̃(x) for all x ∈ Ũe and σ ∈ Γe, such that the
following diagram commutes:

Ũe Ũf(e)

Ue Uf(e)

f̃

χ̃e χ̃f(e)
f

(2.1.3)

The lift f̃ need not be unique, even modulo the action of the groups Γe and Γf(e); see, e.g. [27,
Example 1.4.3]. Nevertheless, Definition 2.1.2 is independent of the choice of charts Ξe and Ξf(e) and
the map f has a well-defined differential in the following sense: the bottom arrow in the diagram:

Rne Rnf(e)

Γe/R
ne

Γf(e)/
Rnf(e)

Df̃ ∣0

proj proj

is independent of the choice of f̃ .

2.1.2 Suborbifolds and stratifications
Definition 2.1.4 (See [121, Defn. 13.2.7]). Let E be an orbifold. A subset S ⊆ E is termed a
suborbifold if for each e ∈ S, there exists a chart Ξe = (Ue,Γe, Ũe, χe) for E centred at e and a
Γ-invariant subspace Ie ⊂ Rn such that:

χ̃−1e (S ∩Ue) = Ũe ∩ Ie. (2.1.5)

Call such a chart regular for S and call Ie the regular subspace. If the action of Γ on Ie is trivial for
all e ∈ S, then call S a submanifold.

A subset S can have at most one suborbifold structure, as the following (readily verified) propo-
sition demonstrates:

Proposition 2.1.6. Let E be an orbifold, S ⊆ E be a subset, e, f ∈ S and let Ξe = (Ue,Γe, Ũe, χe),
Ξf = (Uf ,Γf , Ũf , χf) be regular charts for S centred at e and f respectively. Then Ξe and Ξf are
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compatible via regular charts. Specifically, let g ∈ Ue ∩ Uf ∩ S. Then there exists a regular chart
Ξg centred at g together with embeddings (ιge, λge) and (ιgf , λgf) into Ξe and Ξf respectively. In
particular, suborbifolds inherit a natural orbifold structure.

Using this terminology, one can make the following generalisation of Mather’s terminology [100,
§5] to orbifolds:

Definition 2.1.7. Let E be an orbifold. A stratification Σ of E is a partition of E into disjoint
submanifolds E = ⋃ni=0Ei. Say that Σ satisfies the condition of the frontier if, in addition, for each
i ∈ {0, ..., n}, there exists I(i) ⊆ {0, ..., n} such that:

Ei = ⋃
j∈I(i)

Ej , (2.1.8)

where Ei denotes the topological closure of Ei in E.
Now let Σ = {Ei}, Σ′ = {E′j} be two stratifications of E. Say that Σ′ is a refinement of Σ if for

every j, there exists and i such that E′j ⊆ Ei. Finally, given stratified orbifolds (E1,Σ1 = {E1,i}ni=1)
and (E2,Σ2 = {E2,i}ni=1)), a smooth map f ∶ E1 → E2 is a stratified diffeomorphism if it is an orbifold
diffeomorphism (i.e. it has a smooth inverse) and f(E1,i) = E2,i for each i (in particular, Σ1 and Σ2

have the same number of strata).

Remark 2.1.9. A stratification as defined above is not the same as a Whitney stratification, the latter
being a strictly stronger notion; see [100, §5] for further details. Indeed, the strong notion of a
Whitney stratification will not be required for the purposes of this thesis.

A key source of stratifications is provided by the following definition:

Definition 2.1.10. Let E be an orbifold. For each isomorphism class of finite groups [Γ], the set:

E([Γ]) = {e ∈ E ∣ Γe ∈ [Γ]}

is either empty or its connected components are submanifolds of E, with E(1) being always an open
and dense subset of E. Take Ei to be an enumeration of the connected components of the E([Γ]) as
[Γ] varies. Then one can show that (at least when E is compact) there are only a finite number of
strata Ei and that Σcan = {Ei} defines a stratification of E known as the canonical stratification of
E. One may verify that this stratification satisfies the condition of the frontier.

Example 2.1.11. Consider:

Γ =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
1 0

0 1

⎞
⎠
,
⎛
⎝
−1 0

0 1

⎞
⎠
,
⎛
⎝
1 0

0 −1
⎞
⎠
,
⎛
⎝
−1 0

0 −1
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
⊂ GL(2;R). (2.1.12)

The quotient E = Γ/R
2 is a 2-dimensional orbifold. The canonical stratification of E is given by:
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E0E1

E2E3

Note that whilst each Ei is a submanifold of E, the singular locus S = E1 ∪ E2 ∪ E3 is not even a
suborbifold of E: indeed, in the natural (global) orbifold chart for E, S corresponds to the subset
R × {0} ∪ {0} ×R ⊂ R2, which is not a linear subspace.

2.1.3 Vector bundles over orbifolds

Definition 2.1.13 (Cf. [38, §14.1]). Let π ∶ E → B be a smooth map of orbifolds. An (orbifold)
vector bundle chart Θb for π about b ∈ B is the data of:

• A chart Ξb for B centred at b;

• A chart Ξe for E centred at a suitable e ∈ π−1(b);

• A local lift π̃ ∶ Ũe → Ũb for π and a homomorphism κπ ∶ Γe → Γb as in Definition 2.1.2,

such that:

1. π̃ ∶ Ũe → Ũb is a vector bundle of some rank k and 0 ∈ Ũe is the zero of the fibre over 0 ∈ Ũb;

2. κπ ∶ Γe → Γb is an isomorphism and Γe ≅ Γb acts on Ũe via vector bundle automorphisms.

An embedding of a chart Θb1 = (Ξb1 ,Ξe1 , π̃1, (κπ)1) into Θb2 = (Ξ′b2 ,Ξ
′
e2 , π̃2, (κπ)2) is the data of

embeddings of orbifold charts (ιb1b2 , λb1b2) ∶ Ξb1 ↪ Ξb2 and (ιe1e2 , λe1e2) ∶ Ξe1 ↪ Ξ′e2 such that the
induced equivariant commutative square:

Ũe1 Ũe2

Ũb1 Ũb2

ιe1e2

π̃2 π̃2
ιb1b2

is a bundle isomorphism (and thus the ranks of the two bundles are equal). In particular, given a
point b ∈ B, the distinguished point e ∈ π−1(b) is unique and does not depend on the choice of chart.

As for orbifolds, two vector bundle charts Θb1 and Θb2 are called compatible if for all b ∈ Ub1 ∩Ub2 ,
there exists a chart Θb centred at b which embeds into both Θb1 and Θb2 . An (orbifold) vector bundle
is then a smooth map π ∶ E → B of orbifolds together with a maximal atlas of compatible vector
bundle charts. Note that π has a well defined rank k. The fibre Eb over a point b ∈ B is naturally
identified with the space Γb/R

k . A section of E is then simply a continuous map X ∶ B → E such that
for each chart Θb = (Ξb,Ξe, π̃, κπ) for E, there is a smooth, Γb ≅ Γe-equivariant, section X̃ ∶ Ũb → Ũe
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such that the following diagram commutes:

Ũb Ũe

Ub Ue

X̃

χ̃b χ̃e

X

(2.1.14)

Note in particular, that X̃ ∣0 is invariant under the action of Γe ≅ Γb on the fibre Ũe∣0. Thus X ∣b can
be regarded as an element of the subspace of Rk upon which Γb acts trivially, denoted FixΓb(Rk),
which in turn, can be regarded as a subspace of Γb/R

k . Finally, let π ∶ E → B be a vector bundle and
let F ⊆ E be a suborbifold. The smooth map π∣F ∶ F → B is called a sub-vector bundle of π ∶ E → B if
for any chart Θb = (Ξb,Ξe, π̃, κπ) for π, the subset χ̃−1e (Ue ∩F ) ⊆ Ũe is a Γb ≅ Γe-invariant sub-vector
bundle of π̃ ∶ Ũe → Ũb.

Let E be an n-orbifold. Given any chart Ξ = (U,Γ, Ũ , χ) for E, the action of Γ on Ũ naturally
lifts to an action of Γ on TŨ by bundle automorphisms. Given a second chart Ξ′ = (U ′,Γ′, Ũ ′, χ′)
embedding into Ξ, the map Ũ ′ ↪ Ũ induces an equivariant embedding TŨ ′ ↪ TŨ . Define:

TE = [∐Ξ (Γ/TŨ )]/∼ (2.1.15)

where the quotient by ∼ denotes that one should glue along the embeddings TŨ ′ ↪ TŨ . The resulting
space TE is an orbifold vector bundle over E and is termed the tangent bundle of E. Given e ∈ E, the
tangent space at e, denoted TeE, is the preimage of e under the map TE → E and may be identified
with the quotient space Γe/R

n , where Γe is the orbifold group at e. In a similar way, one may define
the cotangent bundle of an orbifold, tensor bundles, bundles of exterior forms, etc., denoted in the
usual way. Say that an n-orbifold E is orientable if ⋀nT∗E and E×R are isomorphic as orbifold vector
bundles; in particular, all of the orbifold groups of E are necessarily orientation preserving. (When
this latter condition holds, I say that E is pre-orientable, although this terminology is non-standard.)

Now let π ∶ F → E be such a vector bundle over E of rank k and let A ⊆ Rk be a GL(k;R)-
invariant subset. For each e ∈ E, the subset Γe/A ⊆ Γe/R

k is well-defined and gives rise to a subset

of π−1(e) under the identification π−1(e) ≅ Γe/R
k . As e ∈ E varies, this defines a subbundle of F .

Definition 2.1.16. LetE be an n-orbifold and consider the bundle⊙2T∗E. The subspace⊙2
+ (Rn)

∗ ⊂
⊙2 (Rn)∗ is GL(n;R)-invariant and hence defines a corresponding subbundle of ⊙2T∗E, denoted
⊙2
+T
∗E. An (orbifold) Riemannian metric on E is then simply a section g of ⊙2

+T
∗E. Like-

wise, the set ⊙2
⩾0 (Rn)

∗ ⊂ ⊙2 (Rn)∗ is also GL(n;R)-invariant and thus gives rise to subbundle
⊙2
⩾0T

∗E ⊂⊙2T∗E; sections h of this bundle are termed (orbifold) Riemannian semi-metrics.

Given a Riemannian (semi)-metric g on E, recall that for each e ∈ E, g∣e can be regarded as
an element of the space FixΓe (⊙2 (Rn)∗) ⊆ Γe/⊙

2 (Rn)∗ . Thus, given u,u′ ∈ TeE ≅ Γe/R
n , the

quantity g(u,u′) is well-defined. In particular, given a Riemannian metric g on E and a C1 curve
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γ ∶ [a, b]→X, one can define:

ℓg(γ) =∫
[a,b]

g (γ̇)dL (2.1.17)

where L denotes the Lebesgue measure on [a, b]. If γ is merely piecewise-C1, i.e. γ = γ1 ⋅ γ2 ⋅ ... ⋅ γk
is the concatenation of C1-curves, then define:

ℓg(γ) =
k

∑
i=1
ℓg(γi). (2.1.18)

Analogous definitions apply if g is only assumed to be a Riemannian semi-metric.

2.1.4 Stratified distributions

A distribution on an orbifold E is simply a sub-vector bundle D of TE. Given a Riemannian metric
g on E, define the orthocomplement D� to D via the formula:

D�∣e = {u ∈ TeE ∣ g(u,u′) = 0 for all u′ ∈ D∣e} .

Then D� is also a distribution over E. Indeed recall that, locally, D is given by Γe/D̃ for some

Γe-invariant distribution D̃ ⊆ TŨ , where Ũ is a local chart for E, and g is induced by a Γe-invariant
Riemannian metric g̃ over Ũ ; from this the result is clear.

Now let Σ be a stratification on E. Even in the case where E is a manifold, a general distribution
D can be ‘incompatible’ with Σ in the following sense:

Example 2.1.19. Consider the distribution D over E = R2 given by D = ⟨∂1 + x1∂2⟩ and the
stratification Σ of E given by:

E0 = R2/(R × {0}) and E1 = R × {0} ≅ R.

Then D∩TE1 is not a distribution over E1, since over the non-zero points of E1 ≅ R, D only intersects
TE1 along its zero-section, however over the point 0 the fibres of D and TE1 coincide.

This potential for incompatibility motivates the following definition, which cannot (to the author’s
knowledge) be found in the literature:

Definition 2.1.20. Let (E,Σ = {Ei}) be a stratified orbifold. A distribution D on E is termed
stratified if Di = D ∩TEi ⊆ TEi is a distribution over Ei, for all i.

I remark if D is stratified, then for every Riemannian metric g, the orthocomplement C = D� is
also stratified. Indeed, for each i:

C ∩TEi = (Di)� ,

where the orthocomplement is defined using Riemannian metric g∣Ei on the stratum Ei.
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2.2 3- and 4-forms of G2- and G̃2-type

The main references for this section are [78, 71, 68, 21].

2.2.1 Basic definitions

Consider the 3-form:

φ0 = θ123 + θ145 + θ167 + θ246 − θ257 − θ347 − θ356 ∈⋀3(R7)∗. (2.2.1)

The stabiliser of φ0 in GL+(7;R) is 14-dimensional, compact, connected and simply-connected, with
Lie algebra a compact real form of the exceptional simple Lie algebra g2,C; thus the stabiliser may
be identified with the exceptional Lie group G2 [21, §2, Thm. 1]. Since G2 is 14-dimensional, writing
⋀3+ (R7)∗ for the GL+(7;R)-orbit of φ0, one finds that:

dim⋀3
+ (R7)∗ = dimGL+(7;R) − dimG2 = 49 − 14 = 35 = dim⋀3 (R7)∗ ,

and hence ⋀3+ (R7)∗ ⊂ ⋀3 (R7)∗ is open (in particular, φ0 is stable; see §2.3). The geometric interest
in φ0 lies in its link with G2-structures on 7-manifolds. Let M be an oriented 7-manifold, define a
subbundle ⋀3+T∗M ⊂ ⋀3T∗M via, for x ∈M:

⋀3
+T
∗
xM = {ϕ ∈⋀3T∗xM ∣ ∃ orientation preserving isomorphism

α ∶ TxM Ð̃→ R7 withϕ∣x = α∗(φ0)}
(2.2.2)

and write Ω3
+ for the corresponding sheaf of sections. Since StabGL+(7;R)(φ0) = G2, given a section

ϕ ∈ Ω3
+(M), the collection of all orientation-preserving isomorphisms α ∶ TxM → R7 identifying

ϕ∣x with φ0 defines a G2-structure on M, i.e. a principal G2-subbundle of the frame bundle of M.
Accordingly, sections of ⋀3+T∗M are termed G2 3-forms.

G2-structures on oriented 7-manifolds can equivalently be defined via suitable 4-forms, as I now
describe. Recall from [21, §2, Thm. 1] that G2 ⊂ SO(7). Thus any G2 3-form ϕ ∈ Ω3

+(M) induces a
Riemannian metric gϕ on M, defined at each x ∈ M by pulling back the Euclidean inner product on
R7 along any isomorphism α identifying ϕ∣x with φ0. Hence ϕ also defines a volume form volϕ, Hodge
star operator ☀ϕ and Levi-Civita connection ∇ϕ. The 4-form ☀ϕϕ is pointwise oriented-isomorphic
to the 4-form:

ψ0 =☀0φ0 = θ4567 + θ2367 + θ2345 + θ1357 − θ1346 − θ1256 − θ1247 ∈⋀4(R7)∗, (2.2.3)

where ☀0 denotes the Euclidean Hodge star on R7; 4-forms with this property are termed G2 4-forms.
The stabiliser of ψ0 in GL+(7;R) is also G2; consequently the GL+(7;R)-orbit of ψ0 in ⋀4 (R7)∗

is once again open and G2-structures on oriented 7-manifolds can be equivalently defined using G2

4-forms. Write ⋀4+T∗M for the bundle of G2 4-forms on M and write Ω4
+(M) for the corresponding

sheaf of sections.
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Remark 2.2.4. Although φ0 and ψ0 have the same stabiliser in GL+(7;R), if one also considers
orientation-reversing endomorphisms, one finds:

StabGL(7;R)(φ0) = StabGL+(7;R)(φ0) = G2

whilst:
StabGL(7;R)(ψ0) = StabGL+(7;R)(ψ0) × {±1} ≅ G2 × {±1}.

Thus, there is a subtle difference between G2 3- and 4-forms on manifolds M which are orientable but
unoriented: if ϕ is a 3-form on M such that, for all x ∈M, there exists an isomorphism α ∶ TxM→ R7

satisfying α∗φ0 = ϕ∣x, then ϕ still defines a G2-structure (and hence an orientation) on M, whilst a
4-form which is pointwise isomorphic to ψ0 only induces a G2 × {±1}-structure on M and does not
induce a preferred choice of orientation. However, this thesis takes the perspective described in [78],
that the orientation on M should be considered primary and that one should restrict attention to
those G2-structures compatible with the chosen orientation. Thus, the above subtlety will not arise.

Now consider the 3-form:

φ̃0 = θ123 − θ145 − θ167 + θ246 − θ257 − θ347 − θ356 ∈⋀3(R7)∗. (2.2.5)

The stabiliser of φ̃0 in GL+(7;R) is 14-dimensional, connected, centreless and doubly connected (i.e.
has first fundamental group Z/2), with Lie algebra a split real form of the exceptional Lie algebra
g2,C; thus the stabiliser may be identified with the exceptional Lie group G̃2 [21, §2, Thm. 2] (cf. also
[68]). Write ⋀3∼ (R7)∗ for the GL+(7;R)-orbit of φ̃0 in ⋀3 (R7)∗; as for G2 3-forms, since G̃2 is 14-
dimensional, ⋀3∼ (R7)∗ ⊂ ⋀3∼ (R7)∗ is open. Given an oriented 7-manifold M, write ⋀3∼T∗M for the
bundle of 3-forms which are pointwise oriented-isomorphic to φ̃0, and write Ω3∼ for the corresponding
sheaf of section. Then sections of ⋀3∼ (R7)∗ are equivalent to G̃2-structures on M; accordingly, such
3-forms are termed G̃2 3-forms. As for G2-forms, it can be shown [21, §2, Thm. 2] that G̃2 ⊂ SO(3,4)
(again, cf. [68]). Thus any G̃2 3-form ϕ̃ ∈ Ω3∼(M) induces a pseudo-Riemannian metric gϕ̃ on M,
defined at each x ∈M by pulling back the indefinite inner-product:

g̃0 =
3

∑
i=1
(θi)⊗2 −

7

∑
i=4
(θi)⊗2

on R7 along any isomorphism identifying ϕ̃∣x with φ̃0. (See [18, Ch. 1.C] for an exposition of the
elementary properties of pseudo-Riemannian metrics.) Hence ϕ̃ also defines a volume form volϕ̃,
Hodge star operator ☀ϕ̃ and Levi-Civita connection ∇ϕ̃. The 4-form ☀

ϕ̃ϕ̃ is pointwise oriented-
isomorphic to the 4-form:

ψ̃0 = ☀̃0φ̃0 = θ4567 − θ2367 − θ2345 + θ1357 − θ1346 − θ1256 − θ1247 ∈⋀4(R7)∗, (2.2.6)

where ☀̃0 denotes the Hodge star defined by the metric g̃0. The stabiliser of ψ̃0 in GL+(7;R) is also
G̃2; consequently the GL+(7;R)-orbit of ψ̃0 in ⋀4 (R7)∗ is open and G̃2-structures on oriented 7-
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manifolds can be equivalently defined using G2 4-forms. Write ⋀4∼T∗M for the bundle of G2 4-forms
on M and write Ω4∼(M) for the corresponding sheaf of sections.

Since ⋀3+T∗M, ⋀4+T∗M, ⋀3∼T∗M and ⋀4∼T∗M are fibre bundles over M with non-trivial fibres,
the bundles need not admit any global sections over a general oriented manifold M. It is a well-
known theorem of Gray [58] that ⋀3+T∗M (equivalently ⋀4+T∗M) admits a global section if and only
if M is spin. The corresponding result for the bundle ⋀3∼T∗M (and thus equivalently ⋀4∼T∗M was
conjectured by Lê in [92], who proved the result in the special case of closed manifolds. A full proof
of the conjecture is provided in Chapter 9.

Remark 2.2.7. Since the subsets⋀3+ (R7)∗ ,⋀3∼ (R7)∗ ⊂ ⋀3 (R7)∗ and⋀4+ (R7)∗ ,⋀4∼ (R7)∗ ⊂ ⋀4 (R7)∗

are GL+(7;R)-invariant, the bundles ⋀3+T∗M, ⋀3∼T∗M, ⋀4+T∗M and ⋀4∼T∗M can be defined over
any pre-orientable orbifold (see §2.1.3). In this way, the discussion regarding G2- and G̃2-structures
in this section can be generalised to orbifolds. For simplicity I shall state the results for manifolds;
from these statements, the corresponding results for orbifolds can be written down without extra
work.

2.2.2 Type decomposition induced by G2- and G̃2-structures

Recall that the groups G2 and G̃2 have identical real representation theories, each coinciding with
the complex representation theory of the simple Lie algebra g2,C. Given a G2- (resp. G̃2-) structure
on a 7-manifold M, the induced fibrewise action of G2 (resp. G̃2) on the exterior bundles of M is,
in general, reducible. The corresponding decomposition of the exterior bundles into subbundles of
fibrewise simple modules was first computed by Fernández–Gray in 1982 [49] in the G2 case and Kath
[84] in the G̃2 case, leading to the following result:

Proposition 2.2.8 (Cf. [78, Prop. 10.1.4]). Let M be an oriented 7-manifold with G2- (resp. G̃2-)
structure, with corresponding metric g and Hodge star ☀. Then the fibres of the bundles ⋀0T∗M,
⋀1T∗M, ⋀6T∗M and ⋀7T∗M are simple G2 (resp. G̃2) modules. For the remaining exterior bundles,
there are natural decompositions:

⋀2T∗M =⋀2
7T
∗M⊕⋀2

14T
∗M;

⋀3T∗M =⋀3
1T
∗M⊕⋀3

7T
∗M⊕⋀3

27T
∗M;

⋀4T∗M =⋀4
1T
∗M⊕⋀4

7T
∗M⊕⋀4

27T
∗M;

⋀5T∗M =⋀5
7T
∗M⊕⋀5

14T
∗M,

(2.2.9)

where the subscript in each case denotes the rank of the bundle, the fibres of each ⋀pqT∗M are
simple G2 (resp. G̃2) modules and any two bundles of a given rank are isomorphic; in particular
☀ ∶ ⋀pqT∗M Ð̃→ ⋀7−pq T∗M is a G2- (resp. G̃2-) equivariant isomorphism for each p, q. Write
πq ∶ ⋀●T∗M → ⋀●qT∗M for the g-orthogonal projection; since for each exterior power no subscript
occurs more than once, no ambiguity should arise from this notation.

The subbundles in Proposition 2.2.8 admit very explicit descriptions. Indeed let ϕ and ψ be the
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3- and 4-forms corresponding to the G2- (resp. G̃2-) structure on M. The for any x ∈M:

⋀2
7T
∗
xM = {v ⌟ ϕx ∣ v ∈ TxM} ≅ TxM;

⋀2
14T

∗
xM = {α ∈⋀2T∗xM ∣ α ∧ ψx = 0} ≅ g2 (resp. g̃2);

⋀3
1T
∗
xM = R ⋅ ϕx ≅ R;

⋀3
7T
∗
xM = {v ⌟ ψx ∣ v ∈ TxM} ≅ TxM;

⋀3
27T

∗M = {a ∈⋀3T∗xM ∣ a ∧ ϕx = 0 anda ∧ ψx = 0} ≅⊙2
0T
∗
xM,

(2.2.10)

(where ⊙2
0T
∗
xM denotes the space symmetric bilinear forms on TxM which are trace-free with respect

to gϕ) with descriptions of all the other simple modules following from the Hodge star. For an
arbitrary p-form σ, the decomposition σ = ∑q πq(σ) is called the type decomposition of σ.

Write Θ ∶ ⋀3● (R∗)→ ⋀4● (R7)∗ for the map given by Θ(φ) =☀φ (● = +,∼) and write Σ(ψ) =☀ψψ
for the inverse map. The derivatives of Θ and Σ can be explicitly computed using type-decomposition.
For the map Θ in the G2 case, this was first stated by Joyce [76], and later re-proved by Hitchin in [71]
using representation theoretic arguments. Since G2 and G̃2 have identical representation theories,
the same formula for DΘ holds in the G̃2 case. The formula for DΣ then follows at once:

Proposition 2.2.11. Let ● = +,∼ as appropriate. Then the differentials of Θ and Σ at φ ∈ ⋀3● (R7)∗

and ψ ∈ ⋀4● (R7)∗ respectively are given by:

DΘφ ∶ ⋀3 (R7)∗ ⋀4 (R7)∗ DΣψ ∶ ⋀4 (R7)∗ ⋀3 (R7)∗

σ ☀φIφ(σ) σ ☀ψJψ(σ),
(2.2.12)

where:
Iφ(σ) =

4

3
π1(σ) + π7(σ) − π27(σ) and Jψ(σ) =

3

4
π1(σ) + π7(σ) − π27(σ).

Here, the projections π● are defined with respect to φ and ψ respectively.

2.2.3 Torsion-free structures and Hitchin functionals for G2- and G̃2-forms

A G2- or G̃2-structure is called torsion-free if the corresponding 3-form ϕ satisfies the non-linear PDE
∇ϕϕ = 0 (or, equivalently, the corresponding 4-form satisfies ∇ψψ = 0). The name derives from the
fact that τϕ = ∇ϕϕ can be identified with the intrinsic torsion of the G2- or G̃2-structure induced by
ϕ [114, Cor. 2.2] (see [79, §2.6] for the definition of intrinsic torsion). A G2-manifold is simply an
oriented 7-manifold equipped with a torsion-free G2 3- (equivalently, 4-) form; the term G̃2-manifold
is defined analogously.

Further significance of the torsion-free condition is provided by the following result:

Proposition 2.2.13 ([21, §1]). Let (M, g) be a Riemannian manifold with holonomy contained in
G2. Then there is a G2 3-form ϕ ∈ Ω3

+(M) such that:

g = gϕ and ∇ϕϕ = 0.
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The analogous result holds for pseudo-Riemannian metrics with holonomy contained in G̃2.

The torsion-free condition can alternatively be characterised via the following result:

Theorem 2.2.14 ([21, §3]; see also [49]). Let M be an oriented 7-manifold with G2 (resp. G̃2) 3-
and 4-forms ϕ and ψ. Then (ϕ,ψ) is torsion-free if and only if:

dϕ = 0 and dψ = 0.

It should be noted that whilst each of dϕ = 0 and dψ = 0 are individually linear, the relationship
between ϕ and ψ is non-linear. Thus, the combination of these two equations defines a non-linear
PDE, as expected. It is common practice to refer to the underlying oriented G2- or G̃2-structure as
closed if dϕ = 0 and coclosed if dψ = 0.

On closed manifolds, an alternative perspective on the torsion-free condition is provided by the
notion of a Hitchin functional, introduced in [71]. Given a closed G2 3-form ϕ on a closed, oriented
manifold M, define a functional H3 by:

H3 ∶ [ϕ]+ = {ϕ′ ∈ [ϕ] ∈H3
dR(M) ∣ ϕ

′ is of G2-type} (0,∞)

ϕ′ ∫M volϕ′ .

Likewise, given a closed G2 4-form ψ on M, define a functional H4 by:

H4 ∶ [ψ]+ = {ψ′ ∈ [ψ] ∣ ψ′ is of G2-type} (0,∞)

ψ′ ∫M volψ′ .
(2.2.15)

The definitions can naturally be generalised to G̃2-structures, yielding the following defintion:

Definition 2.2.16. Let M be a closed, oriented 7-manifold and let ϕ̃ be a closed G̃2 3-form on M.
Define the functional H̃3 on (M, ϕ) by:

H̃3 ∶ [ϕ̃]∼ = {ϕ̃
′ ∈ [ϕ̃] ∈H3

dR(M) ∣ ϕ̃
′ is of G̃2-type} (0,∞)

ϕ̃′ ∫M volϕ̃′ .

Likewise, given a closed G̃2 4-form ψ̃ on M, define the functional H̃4 on (M, ψ) by:

H̃4 ∶ [ψ̃]∼ = {ψ̃
′ ∈ [ψ̃] ∣ ψ̃′ is of G̃2-type} (0,∞)

ψ̃′ ∫M volψ̃′ .

Since ⋀3+T∗M ⊂ ⋀3T∗M is an open subbundle and M is closed, the subset [ϕ]+ ⊂ [ϕ] is open in
the C0-topology and thus one can identify Tϕ′[ϕ]+ ≅ dΩ2(M) for all ϕ′ ∈ [ϕ]+. A similar argument
applies to [ψ]+, [ϕ̃]∼ and [ψ̃]∼. Using type decomposition, one can explicitly compute the functional
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derivatives of H3, H4, H̃3 and H̃4. For H3, this was accomplished by Hitchin in [71, Thm. 19 &
Lem. 20].1. Analogous arguments can be used to compute the first and second derivatives of H4; see
[72, Thm. 1] and also [59, Prop. 3.3 & 3.4]. Since the computation of these derivatives is completely
representation-theoretic, and since G2 and G̃2 have identical representation theories, the formulae for
H̃3 and H̃4 are identical. Thus one obtains:

Proposition 2.2.17. The first and second derivatives of H3 (equivalently H̃3) are given by:

(∼)
DH3∣ϕ ∶ dΩ2(M) R

(∼)
D2H3∣ϕ ∶ dΩ2(M) × dΩ2(M) R

σ 1
3∫M

σ ∧☀ϕϕ (σ1, σ2) 1
3∫M

σ1 ∧☀ϕIϕ(σ2)

and the first and second derivatives of H4 (equivalently H̃4) are given by:

(∼)
DH4∣ψ ∶ dΩ3(M) R

(∼)
D2H4∣ψ ∶ dΩ3(M) × dΩ3(M) R

ϖ 1
4∫M

ϖ ∧☀ψψ (ϖ1ϖ2) 1
4∫M

ϖ1 ∧☀ψJψ(ϖ2)

where:

Iϕ(σ) =
4

3
π1(σ) + π7(σ) − π27(σ) and Jψ(σ) =

3

4
π1(σ) + π7(σ) − π27(σ). (2.2.18)

(Here, the projections π● are defined with respect to ϕ and ψ respectively.)

In particular, ϕ′ is a critical point of H3 if and only if it satisfies d☀ϕ′ϕ
′ = 0, i.e. it is torsion-free,

and similarly for the other three functionals. Moreover, in [71], Hitchin proved that the Hessian
D2H3 was non-positive definite, and negative definite transverse to the action of diffeomorphisms; in
particular, the critical points ofH3 are all local maxima. However before this thesis, the corresponding
results for the functionals H4, H̃3 and H̃4 have remained unknown. I resolve this issue in Chapter 5
(see also Proposition 11.4.1 in Chapter 11).

2.2.4 Results specific to G2-structures
Algebraically, G2- and G̃2-structures are very similar, largely due to the equality of their represen-
tation theories. However, since G2-structures induce positive definite metrics, whereas G̃2-structures
induce indefinite metrics, there are notable differences between the analytic properties of G2- and
G̃2-structures. It is for this reason that Part I of this thesis considers both G2- and G̃2-structures,
whilst Part III only considers G2-structures.

Firstly, since torsion-free G2-structures induce Ricci-flat Riemannian metrics, Bochner’s technique
can be applied to G2-manifolds, yielding:

1Note that the formulae for DH3∣ϕ and D2H3∣ϕ differ from those in [71], as the author of this thesis has discovered
an error in the numerical factor of 7

18
used op. cit., which has been corrected to 1

3
in the formulae here presented.
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Theorem 2.2.19 ([78, Thm. 3.5.4 and 3.5.5]). Let (M, ϕ) be a closed G2-manifold. Then b1(M) ⩽
dimM and the universal cover (M̃, g̃ϕ) of (M, gϕ) is isometric to a Riemannian product Rb1(M) ×N,
where Rb

1(M) has the (flat) Euclidean metric and N is Ricci-flat, closed and simply-connected.

Significantly, this theorem places topological restrictions on which manifolds can admit torsion-free
G2-structures. In particular, using Theorem 2.2.19, it can be proven that every manifold with holon-
omy G2 has finite fundamental group. More specifically:

Theorem 2.2.20 ([78, Prop. 10.2.2]). Let (M, ϕ) be a closed G2-manifold. Then Hol(gϕ) = G2 if
and only if ∣π1(M)∣ <∞.

A further topological condition on G2-manifolds arises from considering its first Pontryagin class
p1(M). Recall that, on a general Riemannian manifold (M, g), the Riemann tensor R takes values in
the bundle ⊙2 (⋀2T∗M) and that, according to Chern–Weil Theory, the real first Pontryagin class
can be represented by the closed 4-form 1

8π2 Tr(R∧R), where ∧ acts (say) on the first factor of ⋀2T∗M
and Tr acts on the second. In the case of a G2-manifold (M, ϕ), it can be shown that the Riemann
tensor R takes values in the bundle ⊙2 (⋀214T∗M). Thus, by using the identity α∧α∧ϕ = −∥α∥2ϕvolϕ
for α ∈ ⋀214T∗M together with the fact that dϕ = 0, it follows that:

⟨p1(M) ∪ [ϕ], [M]⟩ =∫
M

1

8π2
Tr(R ∧R) ∧ ϕ = −∫

M

1

8π2
∥R∥2ϕvolϕ,

where p1(M) denotes the real first Pontryagin class of M, ⟨, ⟩ denotes the usual pairing between
cohomology and homology and M denotes the fundamental class of M. In particular, one obtains:

Theorem 2.2.21 (cf. [78, Prop. 10.2.7]). Let M be a closed, oriented 7-manifold with vanishing real
first Pontryagin class. Then, any torsion-free G2-structure on M induces a flat metric, and thus
the corresponding holonomy group is discrete. In particular, if a closed oriented 7-manifold admits a
torsion-free G2-structure with holonomy G2, then p1(M) ≠ 0.

Secondly, since G2-structures induce positive definite metrics, the Hodge Laplacian induced by a
G2-structure is an elliptic (rather than hyperbolic) operator. Thus G2-structures have a well-defined
notion of Hodge Theory, which is compatible with the G2-structure when the structure is torsion-free:

Theorem 2.2.22 (See [78, Thm. 3.5.3]). Let (M,ϕ) be a G2-manifold and let ∆ denote the Hodge
Laplacian determined by ϕ. Then:

∆ ○ πq = πq ○∆ (2.2.23)

for any q. In particular, if M is closed, then the Hodge decomposition on M may be refined to give:

Ωk(M) =⊕
q

H k
q (M)⊕∆Ωkq(M) (2.2.24)

where H k
q (M) = H k(M) ∩ Ωkq(M) is the space of harmonic k-forms of type q and q runs over the

appropriate irreducible representations of G2. In particular, there is a decomposition of the de Rham
cohomology of M which is analogous to the type decomposition described in eqn. (2.2.8); once more,
any two groups Hk

q (M) and Hk′

q (M) with the same q are isomorphic.
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The relationship between Hodge Theory and type-decomposition can be made yet more explicit:
as in Kähler geometry, for G2-manifolds one may decompose the exterior derivative according to type.
Indeed, define the following ‘refined’ exterior differential operators:

d17 ∶ Ω0(M)→ Ω1(M) d77 ∶ Ω1(M)→ Ω1(M) d714 ∶ Ω1(M)→ Ω2
14(M)

f ↦ df α ↦☀ϕd(α ∧ ψ) α ↦ π14(dα)

d727 ∶ Ω1(M)→ Ω3
27(M) d1427 ∶ Ω2

14(M)→ Ω3
27(M) d2727 ∶ Ω3

27(M)→ Ω3
27(M)

α ↦ π27d☀ϕ(α ∧ ψ) β ↦ π27(dβ) γ ↦☀ϕπ27(dβ).

Note that d77 and d2727 are both formally L2-self-adjoint. Analogously, define d71 = (d17)∗, d147 = (d714)∗,
d277 = (d727)∗ and d2714 = (d1427)∗. Then one has:

Theorem 2.2.25 (Bryant-Harvey, [22, §5]). All exterior and co-exterior derivatives on the G2-
manifold (M, ϕ,ψ) can be expressed purely in terms of the operators d17, d71, d77, d714, d147 , d727, d277 ,
d1427, d2714 and d2727. In particular, the Hodge Laplacian operator can be expressed in terms of the same
operators.

The explicit formulae are presented in Appendix A. They will be needed for calculations in Part
III of this thesis.

2.3 Stable forms and Hitchin functionals in 6- and 7-dimensions
The main references for this section are [71, 72].
Definition 2.3.1. A p-form σ0 ∈ ⋀p (Rn)∗ is termed stable if its GL+(n;R)-orbit in ⋀p (Rn)∗ is open
(equivalently, if its GL(n;R)-orbit is open). Thus if σ0 is stable, all sufficiently small perturbations of
σ0 have the same algebraic properties as σ0. I shall further term σ0 a Hitchin form if it additionally
satisfies StabGL+(n;R)(σ0) ⊆ SL(n;R). In particular, note that φ0, ψ0, φ̃0 and ψ̃0 are all Hitchin
forms.

Given an orbit O ⊂ ⋀p (Rn)∗ of Hitchin forms, fix σ0 in O and define a map vol ∶ O → ⋀n (Rn)∗

by volσ = α∗vol0 for any α ∈ GL+(n;R) such that σ = α∗σ0. Then vol is well-defined up to an overall
positive constant multiple. Since O ⊆ ⋀p (Rn)∗ is open, the derivative of vol at σ is a linear map
⋀p (Rn)∗ → ⋀n (Rn)∗, i.e. an element of the space ⋀pRn ⊗⋀n (Rn)∗ ≅ ⋀n−p (Rn)∗. Thus there is an
element of ⋀n−p (Rn)∗, denoted Ξ(σ), such that:

Dvol∣σ(α) = α ∧Ξ(σ).

I term Ξ the Hitchin duality map. It defines a GL+(n;R)-equivariant map from O to an open orbit in
⋀n−p (Rn)∗ and is unique up to a constant positive multiple. Since vol(σ) is homogeneous of degree
n
p in σ, Euler’s Theorem for homogeneous functions gives:

σ ∧Ξ(σ) = n
p
vol(σ). (2.3.2)
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In the case σ = φ0,ψ0, φ̃0 or ψ̃0, note that Ξ is simply the map Θ or Σ, as appropriate (up to a
constant positive multiple).

Hitchin forms are of particular interest when considering stable forms on manifolds. Let M be an
oriented n-manifold and let σ0 ∈ ⋀p (Rn)∗ be a stable p-form on Rn. By analogy with the notions
of G2 and G̃2-forms, say that σ ∈ Ωp(M) is a σ0-form if, for all x ∈ M, there exists an orientation-
preserving isomorphism α ∶ TxM→ Rn such that σ∣x = α∗(σ0). Allowing x ∈M to vary, the set of all
such α defines a StabGL+(n;R)(σ0)-structure on M. Write ⋀pσ0

T∗M for the bundle of σ0-forms and
Ωpσ0

for the corresponding sheaf of sections.
Now suppose that σ0 is a Hitchin form. Then for each x ∈ M, σ∣x induces a volume form volσ ∣x

which may be integrated over all of M. In the special case where dσ = 0 one defines the Hitchin
functional:

H ∶ Clpσ0
([σ]) = {σ′ ∈ [σ] ∈Hp

dR(M) ∣ σ
′ is a σ0-form} (0,∞)

σ′ ∫M volσ′ .

The functional derivative of H is then given by:

DH∣σ′ ∶ dΩp−1(M) R

dγ ∫M dγ ∧Ξ(σ′)

In particular, σ′ is a critical point of the functional H if and only if dΞ(σ′) = 0. This motivates the
following definition:

Definition 2.3.3. Say that a Hitchin form σ on M is biclosed if dσ = 0 and dΞ(σ) = 0.

Biclosed stable forms are often of significant geometric interest. E.g. a G2- or G̃2-form is biclosed
if and only if it is torsion-free. As a second example, it was proven in [71, Thm. 12] that an SL(3;C)
3-form (defined in the next subsection) is biclosed if and only if it defines an (integrable) complex
structure with trivial canonical bundle.

2.3.1 Stable 3-forms in 6-dimensions
The classification of stable 3-forms in 6-dimensions was accomplished by Hitchin in [71]. I recount
his construction below.

Given a 3-form ρ ∈ ⋀3 (R6)∗, consider the linear map Kρ ∶ R6 → R6 ⊗ ⋀6 (R6)∗ defined by
composing the map:

R6 →⋀5 (R6)∗

v ↦ (v ⌟ ρ) ∧ ρ

with the canonical isomorphism ⋀5 (R6)∗ ≅ R6 ⊗⋀6 (R6)∗. Using Kρ, one can define a GL+(6;R)-

equivariant map Λ ∶ ⋀3 (R6)∗ → (⋀6 (R6)∗)
2

by:

Λ(ρ) = 1

6
Tr (K2

ρ) .
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(Recall that the space (⋀6 (R6)∗)
2

is canonically oriented by declaring s ⊗ s > 0 for any s ≠ 0 ∈

⋀6 (R6)∗.) The following result is essentially proved in [71, §2] (although see [28, Prop. 1.5] for the
expression for Iρ and the explicit formulae for vol, Iρ and Jρ when ρ = ρ±):

Proposition 2.3.4. The action of GL+(6;R) on ⋀3 (R6)∗ has precisely two open orbits, namely:

⋀3
+ (R6)∗ = {ρ ∈⋀3 (R6)∗ ∣ Λ(ρ) > 0} and ⋀3

− (R6)∗ = {ρ ∈⋀3 (R6)∗ ∣ Λ(ρ) < 0} ,

both of which are invariant under GL(6;R). Representatives of ⋀3+ (R6)∗ and ⋀3− (R6)∗ may be
taken to be:

ρ+ = θ123 + θ456 and ρ− =θ135 − θ146 − θ236 − θ245 =Re( (θ1 + iθ2) ∧ (θ3 + iθ4) ∧ (θ5 + iθ6) )
(2.3.5)

respectively. Each ρ ∈ ⋀3+ (R6)∗ induces a volume form volρ = (Λ(ρ))
1
2 and para-complex structure

Iρ = vol−1ρ Kρ on R6 (i.e. Iρ is an automorphism of R6 such that I2ρ = Id, with +1 and −1 eigenspaces
E±,ρ each having dimension 3), and StabGL+(6;R)(ρ) ≅ SL(3;R)2 acting diagonally on R6 ≅ E+,ρ⊕E−,ρ.
Explicitly for ρ = ρ+:

volρ+ = θ123456; Iρ+ = (e1, e2, e3, e4, e5, e6)↦ (e1, e2, e3,−e4,−e5,−e6);

E+,ρ+ = ⟨e1, e2, e3⟩ and E−,ρ+ = ⟨e4, e5, e6⟩.

By contrast, each ρ ∈ ⋀3− (R6)∗ induces a volume form volρ = 1
2 (−Λ(ρ))

1
2 and a complex structure

Jρ = −1
2vol

−1
ρ Kρ on R6 , and StabGL+(6;R)(ρ) ≅ SL(3;C). Explicitly for ρ = ρ−:

volρ− = θ123456 and Jρ− = (e1, e2, e3, e4, e5, e6)↦ (e2,−e1, e4,−e3, e6,−e5).

Note in particular that both SL(3;C) 3-forms and SL(3;R)2 3-forms are Hitchin forms.

2.3.2 Stable 3- and 4-forms in 7-dimensions

As described in §2.2, 3- and 4-forms of G2- and G̃2-type are all stable (and indeed, Hitchin) forms.
These are, in fact, essentially the only stable 3- and 4-forms in 7-dimensions. Given ϕ ∈ ⋀3 (R7)∗,
define a quadratic form Qϕ on R7 valued in ⋀7 (R7)∗ by Qϕ(v) = 1

6 (v ⌟ ϕ)
2 ∧ ϕ ∈ ⋀7 (R7)∗. The

determinant of Qϕ is a polynomial in ϕ and thus {ϕ ∣ Qϕ is degenerate} is an affine subvariety of
⋀3 (R7)∗ of positive codimension; hence Qϕ must be non-degenerate whenever ϕ is stable. The
following proposition is easily deduced from the results of [68]:

Proposition 2.3.6. The action of GL+(7;R) has precisely 4 open orbits, corresponding to Q having
signature (7,0), (3,4), (4,3) and (0,7). Explicitly:

{ϕ ∣ Qϕ has signature (7,0)} =⋀3
+ (R7)∗ {ϕ ∣ Qϕ has signature (3,4)} =⋀3∼ (R7)∗

{ϕ ∣ Qϕ has signature (4,3)} = −⋀3∼ (R7)∗ {ϕ ∣ Qϕ has signature (0,7)} = −⋀3
+ (R7)∗ .
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For ϕ ∈ ⋀3+ (R7)∗: Qϕ = gϕ ⊗ volϕ, where gϕ and volϕ are as defined in §2.2 and can be characterised
by the condition ∥ϕ∥2gϕ = 7. Likewise, for ϕ̃ ∈ ⋀3∼ (R7)∗: Qϕ̃ = gϕ̃ ⊗ volϕ̃ where gϕ̃ and volϕ̃ are as in
§2.2 and can be characterised by the condition ∥ϕ∥2gϕ = 7.

Using Proposition 2.3.6, the following result is easily deduced (see also [21, p. 541]):

Proposition 2.3.7. The action of GL+(7;R) on ⋀4∼ (R7)∗ has precisely 4 open orbits, given by
⋀4+ (R7)∗, ⋀4∼ (R7)∗, −⋀4∼ (R7)∗ and −⋀4+ (R7)∗, each of which are also orbits of GL(7;R).

2.4 Metric spaces and Gromov–Hausdorff distance

2.4.1 Gromov–Hausdorff distance and forwards discrepancy
The main reference for the material on Gromov–Hausdorff distance in this subsection is [25, §7.3].

Let (X,d) be a metric space. Given Y ⊆ X, let Nη(Y ) = {x ∈X ∣ d(x,Y ) < η} be the open
η-neighbourhood of Y , where d(x,Y ) = inf {d(x, y) ∣ y ∈ Y }. Given A,B ⊆ X non-empty, closed and
bounded, define the Hausdorff distance between A and B to be:

dH(A,B) = inf {η > 0 ∣ A ⊆ Nη(B) and B ⊆ Nη(A)} .

Now let (Y, dY ) and (Y ′, dY ′) be compact metric spaces. The Gromov–Hausdorff distance between
(Y, dY ) and (Y ′, dY ′) is defined to be:

dGH [(Y, dY ), (Y ′, dY ′)] = inf {η > 0 ∣
there exists (X,d) together with isometric embeddings
ι ∶ Y ↪X, ι′ ∶ Y ′ ↪X such that dH [ι(Y ), ι′(Y ′)] ⩽ η

} .

It can be shown that dGH [(Y, dY ), (Y ′, dY ′)] = 0 if and only if (Y, dY ) and (Y ′,dY ′) are isometric,
and thus dGH defines a metric on the collection of isometry classes of compact metric spaces. In light
of this, a family (Yi, di)i∈N of compact metric spaces is said to converge to a compact metric space
(Y, d) in the Gromov–Hausdorff sense as i→∞ if dGH [(Yi, di), (Y, d)]→ 0.

Gromov–Hausdorff distance is closely related to the notion of ε-isometry. Recall that for metric
spaces (X,d), (X ′, d′) and ε > 0, an ε-isometry is a set-theoretic function f ∶ X → X ′ (which need
not be continuous) satisfying:

• For all x′ ∈X ′, there exists x ∈X such that d′(f(x), x′) ⩽ ε (f(X) is an ‘ε-net’ in X ′);

• For all x, y ∈X: ∣d′(f(x), f(y)) − d(x, y)∣ ⩽ ε.

The relation between Gromov–Hausdorff distance and ε-isometries can be quantified as follows:

Proposition 2.4.1 ([25, Cor. 7.3.28]). Let (X,d) and (X ′, d′) be compact metric spaces. Then:

dGH [(X,d), (X ′, d′)] ⩽ 2 inf {ε > 0 ∣ There exists an ε-isometry f ∶ (X,d)→ (X ′, d′)} .

Motivated by this result, I make the following definition:
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Definition 2.4.2. Let (X,d) and (X ′, d′) be compact metric spaces. The forwards discrepancy
between (X,d) and (X ′, d′), denoted D[(X,d)→ (X ′, d′)], is defined to be:

D[(X,d)→ (X ′, d′)] = inf {ε > 0 ∣ There exists an ε-isometry f ∶ (X,d)→ (X ′, d′)} .

(Note that the infimum is finite since, choosing ε = max [diam(X,d), (X ′, d′)], any map f ∶ X → X ′

is an ε-isometry.)

The definition of forwards discrepancy naturally extends to semi-metric spaces. Recall from [25,
§1.1] that a semi-metric d satisfies all the usual conditions of a metric, except that distinct points x
and y are permitted to satisfy d(x, y) = 0. Given a semi-metric space (X,d), define an equivalence
relation ∼d on X via x∼dy if and only if d(x, y) = 0. Then d descends to define a metric d∼ on the
quotient X/∼d . In this thesis, I term (X/∼d , d∼) the free metric space on (X,d) (the name deriving
from the fact that the assignment (X,d)↦ (X/∼d , d∼) is left-adjoint to the natural inclusion functor
of the category Met of metric spaces and non-expansive maps into the category SMet of semi-metric
spaces and non-expansive maps). I say that a semi-metric space is compact if its corresponding free
metric space is compact in the usual sense. Then it is clear that the notion of forwards discrepancy
is well-defined not just on the class of compact metric spaces, but also on the class of compact
semi-metric spaces.

The key result concerning Gromov–Hausdorff distance and forwards discrepancy which I shall
require is the following:

Proposition 2.4.3. Let (X,d) be a compact metric space and let (X ′, d′) be a compact semi-metric
space. Then:

dGH [(X,d), (X
′/∼d′ , d

′∼)] ⩽ 2D[(X,d)→ (X ′, d′)].

In particular, given a family of compact metric spaces (Xµ, dµ)µ∈[1,∞) such that 2D[(Xµ, dµ) →
(X ′, d′)]→ 0 as µ→∞, the spaces (Xµ, dµ) converge in the Gromov–Hausdorff sense to (X ′/∼d′ , d

′∼)
as µ→∞.

Proof. Firstly note that whilst forwards discrepancy does not satisfy the triangle inequality, it does
satisfy the weaker inequality:

D[(X,d)→ (X ′′, d′′)] ⩽D[(X,d)→ (X ′, d′)] + 2D[(X ′, d′)→ (X ′′, d′′)].

for any compact semi-metric spaces (X,d), (X ′, d′) and (X ′′, d′′): indeed, given ε-isometries f ∶
X → X ′ and f ′ ∶ X ′ → X ′′ for some ε, ε′ > 0, one can verify directly that f ′ ○ f ∶ X → X ′′ is an
(ε + 2ε′)-isometry. Secondly, note that given a compact semi-metric space (X,d), the quotient map
f ∶ (X,d) → (X/∼d , d∼) is an ε-isometry for any ε > 0 and thus D [(X,d), (X/∼d , d∼)] = 0. The
result follows by combining these two observations with Proposition 2.4.1.

Proposition 2.4.3 decouples the task of computing Gromov–Hausdorff limits into two distinct
stages: firstly, given a family (Xµ, dµ)µ∈[1,∞) of metric spaces, one finds a compact semi-metric space
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(X∞, d∞) such that D[(Xµ, dµ) → (X∞, d∞)] → 0 as µ → ∞. By applying Proposition 2.4.3, it
follows that (Xµ, dµ)→ (X∞/∼d∞ , d∞∼ ) in the Gromov–Hausdorff sense, as µ→∞; thus, the task of
computing the Gromov–Hausdorff limit of the family (Xµ, dµ) is reduced to describing the free metric
space (X∞/∼d∞ , d∞∼ ). This two stage process will underpin the treatment of Gromov–Hausdorff
convergence in Chapter 4.

2.4.2 Length structures
The main reference for this subsection is [25, Ch. 2]. Let X be a topological space. A length structure
on X is a class A of continuous paths in X together with an assignment ℓ ∶ A→ (0,∞] satisfying the
following four conditions:

1. If (γ ∶ [a, b]→X) ∈ A and c ∈ [a, b], then (γ∣[a,c] ∶ [a, c]→X) , (γ∣[c,b] ∶ [c, b]→X) ∈ A and:

ℓ (γ) = ℓ (γ∣[a,c]) + ℓ (γ∣[c,b]) .

Moreover, ℓ (γ∣[a,c]) is continuous, when viewed as a function of c.

2. If γ ∶ [a, b]→X is continuous and c ∈ [a, b] is such that (γ∣[a,c] ∶ [a, c]→X) , (γ∣[c,b] ∶ [c, b]→X) ∈
A, then (γ ∶ [a, b]→X) ∈ A;

3. If (γ ∶ [a, b]→X) ∈ A and ϕ ∶ [c, d]→ [a, b] is a homeomorphism of the form t↦ αt+β (α ≠ 0),
then (γ ○ ϕ ∶ [c, d]→X) ∈ A and ℓ (γ ○ ϕ) = ℓ (γ).

4. For all x ∈X and all open neighbourhoods U of x:

inf {ℓ(γ) ∣ (γ ∶ [a, b]→X) ∈ A satisfies γ(a) = x and γ(b) ∈X/U} > 0.

Every length structure (A, ℓ) on X defines a metric d(A,ℓ) via:

d(A,ℓ)(x, y) = inf {ℓ(γ) ∣ (γ ∶ [a, b]→X) ∈ A satisfies γ(a) = x and γ(b) = y} .

Such metrics are termed intrinsic. The following example of length structures will be of particular
significance in this thesis:

Example 2.4.4. Let E be an orbifold, let A denote the set of piecewise-C1 curves in E and let g
be a Riemannian metric on E. Then the map ℓg ∶ A → (0,∞] defined in eqns. (2.1.17) and (2.1.18)
defines a length structure on E; write dg for the induced intrinsic metric.

I remark that, whilst in general the topology on X induced by an intrinsic metric need only be no
coarser than the original topology (in the sense that if U ⊆X is open, then it is open with respect to
d(A,ℓ) for any length-structure (A, ℓ)), for intrinsic metrics of the form dg, and for all other intrinsic
metrics considered in this thesis, the two topologies in fact coincide.

Finally, I say that (A, ℓ) is a weak length structure if it satisfies conditions 1–3 above. In this
case, (A, ℓ) naturally induces a semi-metric d(A, ℓ) on X. As a key example of this notion, given a
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Riemannian semi-metric on an orbifold E, (A, ℓg) defines a weak length structure on E and hence
induces a semi-metric dg.

2.5 Differential relations and h-principles
The main reference for this section is [42, Chs. 1, 5, 6].

Definition 2.5.1. Let Mn be a manifold, let F → M be a fibre bundle of dimension n + q over M

and fix r ∈ N. Given a point p ∈M, two sections f ∈ Γ(Op(p), F ) and g ∈ Γ(Op(p), F ) are said to be
r-tangent at p if:

• f(p) = g(p);

• For any system of coordinates (x1, ..., xn) onOp(p), any local trivialisation F ∣Op(p) ≅ Op(p)×Fp
and any coordinate neighbourhood U ⊆ Rq in Fp such that f(p) = g(p) ∈ Op(p)×U , regarding
f and g as maps Op(p)→ U ⊆ Rq via this trivialisation, one has:

∂ ∣α∣f

∂xα
∣
p

= ∂
∣α∣g

∂xα
∣
p

for all multi-indices α such that ∣α∣ ⩽ r.

The notion of r-tangency is independent of any choices and defines an equivalence relation ∼r on the
set of pairs {(Op(p), f ∈ Γ(Op(p), F ))}. The rth jet space F (r)p of F at p is the set of equivalence
classes under this relation, i.e.:

F (r)p = {(Op(p), f ∈ Γ(Op(p),E))} /∼r.

The rth jet bundle of F is then defined to be F (r) = ∐p∈M F
(r)
p , together with its natural (smooth)

bundle structure. Since ∼R is a finer equivalence relation than ∼r when R > r, there are natural maps
pR,r ∶ F (R) → F (r) for R > r. In particular, there is a map pr ∶ F (r) → F which assigns to each r-jet
its underlying value in F . Conversely, given a section f ∶M→ F , define the rth jet extension of f by:

jr(f) ∶M→ F (r)

p↦ [(Op(p), f)]∼r .

Clearly pr ○ jr(f) = f .

This thesis restricts attention to the case where F = E is a vector bundle and r = 1. In this
case, given a connection ∇ on E, by [111, §9, Cor. to Thm. 7] there is a bundle isomorphism E(1) ≅
E ⊕ (T∗M⊗E) such that the following diagram commutes:

Γ (M,E(1)) Γ (M,E ⊕ (T∗M⊗E))

Γ(M,E)

≅

s↦s⊕∇sj1
(2.5.2)
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In particular, note that E(1) naturally has the structure of a vector bundle over M. More generally,
given q ⩾ 0, let Dq denote the q-dimensional disc and write EDq for the pullback of the vector bundle
E along the projection Dq ×M→M; explicitly, EDq is the vector bundle Dq ×E Id×πÐÐÐ→Dq ×M. By a
section of EDq , I shall mean a continuous map ς ∶Dq ×M→Dq ×E satisfying πEDq ○ s = IdDq×M, and
depending smoothly on x ∈ M; in particular, sections of EDq over Dq ×M correspond to continuous
maps Dq → Γ(E,M). Write E(1)Dq for the vector bundle (E(1))

Dq
and note that E(1)Dq ≠ (EDq)(1), since

only derivatives in the ‘M-direction’ are considered in the bundle E(1)Dq . A section of E(1)Dq is termed
holonomic if it is the 1-jet of a section of EDq , i.e., using the identification in eqn. (2.5.2), if it can be
written as s⊕∇s for some section s of EDq . A fibred differential relation (of order 1) on Dq-indexed
families of sections of E is simply a subset R ⊆ E(1)Dq . R is termed an open relation if it is open as a
subset of E(1)Dq .

Definition 2.5.3. Let M be an n-manifold. A subset A ⊆ M is termed a polyhedron if there exists
a smooth triangulation K of M identifying A with a subcomplex of K (in particular, A is a closed
subset of M). I define the boundary of A to be ∂A = A/

○
A, where

○
A denotes the topological interior

of A in M. Then ∂A is a subpolyhedron of A and A = ∂A if and only if A has positive codimension
in M.

Note that every sufficiently small open neighbourhood of a polyhedron A ⊆M deformation retracts
onto A. I will always implicitly assume that Op(A) has been chosen small enough to ensure that
Op(A) deformation retracts onto A; in particular, the cohomology rings of A and Op(A) are identical.

Definition 2.5.4. Let R be a fibred differential relation over a manifold M. Say that R satisfies the
relative h-principle if for every polyhedron A ⊆M, every q ⩾ 0 and every section F0 of R over Dq ×M
which is holonomic over (∂Dq ×M) ∪ (Dq ×Op(A)), there exists a homotopy (Ft)t∈[0,1] of sections
of R, constant over (∂Dq ×M) ∪ (Dq ×Op(A)), such that F1 is a holonomic section of R. Say that
R satisfies the C0-dense relative h-principle if, in addition, the induced homotopy p1(Ft) of sections
of E can be taken to be arbitrarily small in the C0-topology.

Remark 2.5.5. Note that the case A = M is vacuous in the above defintion; thus without loss of
generality one can always assume A ≠ M. Moreover, one can also assume without loss of generality
that A has positive codimension in M: indeed, the relative h-principle for the pair (M,A) is equivalent
to the relative h-principle for the pair (M/

○
A,A/

○
A), with A/

○
A having positive codimension in M/

○
A for

A ≠M. (Note that, although M/
○
A need not be a manifold, it is triangulable and thus the techniques

for proving h-principles used in [42] apply.) Consequently, although [42] only considers the case where
A has positive codimension, its results are equally valid for the codimension-0 case.

2.5.1 Convex integration
The main reference for this subsection is [42, Chs. 17, 18].

Definition 2.5.6. Let A be a real affine space. Say that a subset S ⊆ A is ample if the convex hull of
each path-component of S is equal to A. In particular, note that the empty set ∅ is formally ample.
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Now fix a point p ∈M. Identifying E(1) ≅ E ⊕T∗M⊗E, the fibre of the map p1 ∶ E(1) → E over
e ∈ Ep is isomorphic to the space p−11 (e) = {e}×T∗pM⊗Ep = {e}×Hom(TpM,Ep). Each codimension-1
hyperplane B ⊂ TpM and linear map λ ∶ B → Ep thus define a so-called principal subspace of p−11 (e)
by:

Πe(B, λ) = {e} × {L ∈ Hom(TpM,Ep) ∣ L∣B = λ}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Π(B, λ)

.

Πe(B, λ) is an affine subspace of p−11 (e) modelled on Ep, though not, in general, a linear subspace.
(Note also that changing the choice of connection ∇ on E changes the identification p−11 (e) = {e} ×
T∗pM⊗Ep by an affine linear map and so the collection of principal subspaces of p−11 (e) is independent
of the choice of connection.)

Definition 2.5.7. Let E → M be a vector bundle, let q ⩾ 0 and let R ⊆ E(1)Dq be an open fibred
differential relation. For each s ∈Dq, define Rs ⊆ E(1) by the formula:

{s} ×Rs =R ∩ ({s} ×E(1)) .

Say that R is ample if, for every s ∈ Dq, e ∈ E and principal subspace Πe ⊂ p−11 (e), the subset
Rs ∩Πe ⊆ Πe is ample in the sense of Definition 2.5.6.

The following special case will be of particular interest in this thesis. Suppose R has the form:

R = EDq ×(Dq×M)R
′ ⊆ EDq ⊕ (T∗M⊗E)Dq

for some subbundle R′ ⊆ (T∗M⊗E)Dq , where ×(Dq×M) denotes the fibrewise Cartesian product of
bundles over Dq ×M. Define R′s by the equation:

{s} ×R′s =R′ ∩ [{s} × (T∗M⊗E)] ⊂ (T∗M⊗E)Dq .

Then for all s ∈Dq, e ∈ E and principal subspaces Πe(B, λ) ⊂ π−1(e):

Rs ∩Πe(B, λ) = {s} × {e} × (R′s ∩Π(B, λ)) ,

and thus R is ample if and only if R′s ∩Π(B, λ) ⊆ Π(B, λ) is ample for all B and λ. In particular, the
underlying point e is irrelevant for relations of this form.

The significance of ample differential relations lies in the following result:

Theorem 2.5.8 ([42, §§17–18]). Let E →M be a vector bundle, let q ⩾ 0 and let R ⊆ E(1)Dq be a fibred
differential relation which is open and ample. Then R satisfies the C0-dense, relative h-principle.

2.5.2 Convex integration with avoidance

The main reference for this subsection is [98] (although note that the presentation and notation used
below differs from that op. cit.).
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Configuration spaces for hyperplanes

Let A be a n-dimensional vector space and write Gr
(∞)
n−1 (A) for the collection of all finite subsets of

Grn−1(A). Gr
(∞)
n−1 (A) shall be termed the configuration space for hyperplanes in A and can be given

a natural ‘smooth structure’ as follows. For any k ⩾ 1, consider the manifold ∏k1 Grn−1(A) parame-
terising ordered k-tuples of hyperplanes in A. The symmetric group Symk acts on ∏k1 Grn−1(A) by
permuting the factors, however this action is not free and thus the resulting quotient is not a smooth
manifold, but rather an orbifold. Now define the subset:

(
k

∏
1

Grn−1(A))
sing

= {(B1, ...,Bk) ∈
k

∏
1

Grn−1(A) ∣ for some i ≠ j: Bi = Bj}

of tuples whose elements are not distinct. This set consists precisely of those elements of∏k1 Grn−1(A)
with a non-trivial stabiliser in Symk and may naturally be regarded as a stratified submanifold of
∏k1 Grn−1(A) of codimension n − 1 = dimGrn−1(A). The complement of this set:

̃k

∏
1

Grn−1(A) =
k

∏
1

Grn−1(A)/(
k

∏
1

Grn−1(A))
sing

is thus an open and dense subset of ∏k1 Grn−1(A) on which the group Symk acts freely. In par-

ticular, the space
̃∏k1 Grn−1(A)/Symk

is naturally a smooth manifold. Denote this manifold by

Gr
(k)
n−1(A) and denote the natural quotient map by σ ∶ ̃∏k1 Grn−1(A) → Gr

(k)
n−1(A). Since Gr

(∞)
n−1 (A) =

∐∞k=1Gr
(k)
n−1(A) as sets, Gr

(∞)
n−1 (A) inherits a natural topology such that each connected component is

a smooth manifold.

Avoidance templates

Consider the vector bundles TM over M and TMDq over Dq ×M. Applying the construction of §2.5.2
to each fibre of these vector bundles yields bundles Gr

(∞)
n−1 (TM) and Gr

(∞)
n−1 (TMDq) over M and Dq×M

respectively, termed the bundle of configurations of hyperplanes over M, resp. Dq ×M. (Note that
Gr
(∞)
n−1 (TMDq) is simply the bundle Dq ×Gr

(∞)
n−1 (TM) → Dq ×M.) Write R ×(Dq×M) Gr

(∞)
n−1 (TMDq)

for the bundle over Dq ×M given by taking the fibrewise product of R and Gr
(∞)
n−1 (TMDq); explicitly:

R ×(Dq×M) Gr
(∞)
n−1 (TMDq) = {[(s, T ), (s,Ξ)] ∈ R ×Gr

(∞)
n−1 (TMDq)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊆(Dq×E(1))×(Dq×Gr(∞)n−1 (TM))

∣ πE(1)(T ) = πGr(∞)n−1 (TM)(Ξ)},

where πE(1) and π
Gr(∞)n−1 (TM) denote the bundle projections E(1) → M and Gr

(∞)
n−1 (TM) → M respec-

tively. Let A ⊆ R ×(Dq×M) Gr
(∞)
n−1 (TMDq). Given s ∈ Dq, x ∈ M and a configuration of hyperplanes

(s,Ξ) ∈ Gr
(∞)
n−1 (TMDq)(s,x) = {s} ×Gr

(∞)
n−1 (TxM), there is a natural subset A (s,Ξ) ⊆ E(1)x given by:

A (s,Ξ) = {T ∈ E(1)x ∣ [(s, T ), (s,Ξ)] ∈ A(s,x)}.
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Similarly, given a 1-jet (s, T ) ∈R(s,x), there is a natural subset A (s, T ) ⊆ Gr
(∞)
n−1 (TxM) given by:

A (s, T ) = {Ξ ∈ Gr
(∞)
n−1 (TxM) ∣ [(s, T ), (s,Ξ)] ∈ A(s,x)}.

Definition 2.5.9 ([98, Defn. 4.1]). Let M, q and R be as above. Say A ⊆ R ×Dq×M Gr
(∞)
n−1 (TMDq)

is a fibred avoidance pre-template for R if:

1. A ⊆R ×(Dq×M) Gr
(∞)
n−1 (TMDq) is an open subset;

2. For all s ∈ Dq, x ∈ M and all pairs Ξ′ ⊆ Ξ ∈ Gr
(∞)
n−1 (TxM), there is an inclusion A (s,Ξ) ⊆

A (s,Ξ′).

Say that A is a fibred avoidance template for R if, in addition, it satisfies the following two conditions:

3. For all s ∈ Dq, x ∈ M and (s, T ) ∈ R(s,x), the subset A (s, T ) ⊆ Gr
(∞)
n−1 (TxM) is dense (and

open);

4. For all s ∈ Dq, x ∈ M, Ξ ∈ Gr
(∞)
n−1 (TxM), B ∈ Ξ, λ ∈ Hom(B,Ex) and e ∈ Ex, the subset

A (s,Ξ) ∩Πe(B, λ) ⊆ Πe(B, λ) is ample.

Again, the following special case will be of particular interest in this thesis. Suppose an avoidance
pre-template A has the form:

A = EDq ×(Dq×M) A
′ ⊆ EDq ×(Dq×M) [ (T∗M⊗E)Dq ×(Dq×M) Gr

(∞)
n−1 (TMDq)]

for some subbundle A ′ ⊆ (T∗M⊗E)Dq ×(Dq×M)Gr
(∞)
n−1 (TMDq). In this case, given s ∈Dq, x ∈M and

Ξ ∈ Gr
(∞)
n−1 (TxM), define

A ′(s,Ξ) = {T ∈ T∗xM⊗Ex ∣ [(s, T ), (s,Ξ)] ∈ A ′
(s,x)} .

Then for all B ∈ Ξ, λ ∈ Hom(B,Ex) and e ∈ Ex:

A (s,Ξ) ∩Πe(B, λ) = {e} × [A (s,Ξ)′ ∩Π(B, λ)]

and thus A (s,Ξ)∩Πe(B, λ) ⊆ Πe(B, λ) is ample if and only if A ′(s,Ξ)∩Π(B, λ) ⊆ Π(B, λ) is ample
for all B and λ.

Theorem 2.5.10 ([98, Thm. 5.1]). Let M be an n-manifold, let E →M be a vector bundle, let q ⩾ 0
and let R ⊆ E(1)Dq be an open fibred differential relation on sections of E. Suppose that R admits an
avoidance template A ⊆R ×(Dq×M) Gr

(∞)
n−1 (TMDq). Then R satisfies the relative h-principle.

As remarked in [98, Cor. 5.5], Theorem 2.5.10 is a special case of Gromov’s general theory of
convex integration via convex hull extensions introduced in [62] and developed in [116]. Note also
that A =R×(Dq×M)Gr

(∞)
n−1 (TMDq) is an avoidance template for R if and only if R is an ample fibred

relation in the classical sense and thus, in this case, Theorem 2.5.10 recovers the classical convex
integration theorem as proved in [42, Chs. 17–18].
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Part I

The unboundedness of Hitchin
volume functionals on G2- and

G̃2-structures
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Chapter 3

Large volume limits of the Hitchin functional on
G2 3-forms and associated collapsing results

This chapter uses scaling arguments to prove the unboundedness above of the Hitchin functional H3

on two examples of closed 7-manifolds with closed G2-structures. The first is a 4-dimensional family
of closed G2 3-forms on the product S1 × X (where X is the Nakamura manifold constructed by
de Bartolomeis–Tomassini [14]) inspired by Fernández’ short paper [46]. The second is the manifold
constructed by Fernández–Fino–Kovalev–Muñoz in [48]. In the latter example, careful resolution of
singularities is required, in order to ensure that the rescaled forms are cohomologically constant. By
combining suitable geometric estimates with a general collapsing theorem for orbifolds (proved in
Chapter 4) explicit descriptions of the large volume limits in both examples are also obtained.

3.1 A general unboundedness result for H3

I begin with an algebraic lemma:

Lemma 3.1.1. 1. Recall the standard G2 3-form φ0 and write:

φ0 = θ123 + θ145 + θ167 + θ246 − θ257 − θ347 − θ356

= ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6 + ϕ7.

Then for all λ1, ..., λ7 ∈ (0,∞):

ϕ(λ1,...,λ7) =
7

∑
i=1
λiϕi

is of G2-type and:

volϕ(λ1,...,λ7) = (
7

∏
i=0
λi)

1
3

volϕ.

2. Let F be a 4-dimensional real vector space equipped with a complex structure J . Let ω be a
real, positive (1,1)-form on F and let Ω be a complex (2,0)-form on F. Define a constant ν > 0 by
the equation:

2ω2 = ν2Ω ∧Ω. (3.1.2)
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Then given a 3-dimensional real vector space G with basis (g1, g2, g3) of G∗, the 3-form on F ⊕G
defined by:

ϕ′ = g123 + g1 ∧ ω − g2 ∧ReΩ + g3 ∧ ImΩ (3.1.3)

is of G2-type. Moreover:

gϕ′ = ν
4
3 (g1)⊗2 + ν−

2
3 [(g2)⊗2 + (g3)⊗2] + ν−

2
3 gω

volϕ′ =
ν

2
3

4
g123 ∧Ω ∧Ω

☀ϕ′ϕ
′ = ν

2
3

4
Ω ∧Ω + ν−

4
3 g23 ∧ ω + ν

2
3 g13 ∧ReΩ + ν

2
3 g12 ∧ ImΩ

(3.1.4)

where gω is the metric on F induced by J and the real, positive (1,1)-form ω.

Proof. Begin with (1). Let µ1, ..., µ7 ∈ (0,∞) be chosen later, define ϑi = µiθi for all i and consider
the G2 3-form:

φ(µ1, ..., µ7) = ϑ123 + ϑ145 + ϑ167 + ϑ246 − ϑ257 − ϑ347 − ϑ356

= µ123ϕ1 + µ145ϕ2 + µ167ϕ3 + µ246ϕ4 + µ257ϕ5 + µ347ϕ6 + µ356ϕ7,

where µijk = µiµjµk. Clearly:

volφ(µ1,...,µ7) = µ1234567θ
1234567 = µ1234567volϕ. (3.1.5)

I claim that φ(µ1, ..., µ7) = ϕ(λ1,...,λ7) for suitable µi. Indeed, this equation is equivalent to the system
of equations:

µ123 = λ1 µ145 = λ2 µ167 = λ3
µ246 = λ4 µ257 = λ5 µ347 = λ6

µ356 = λ7,

(3.1.6)

and taking log (which is possible since all µi and λi are positive) yields the invertible linear system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 0 0 0 0

1 0 0 1 1 0 0

1 0 0 0 0 1 1

0 1 0 1 0 1 0

0 1 0 0 1 0 1

0 0 1 1 0 0 1

0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

logµ1

logµ2

logµ3

logµ4

logµ5

logµ6

logµ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

logλ1

logλ2

logλ3

logλ4

logλ5

logλ6

logλ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.1.7)

Taking the product of the equations in eqn. (3.1.6) yields:

7

∏
i=1
λi = (

7

∏
i=1
µi)

3

.
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The formula for volϕ(λ1,...,λ7) now follows from eqn. (3.1.5).
Now let F, G, J , ω, Ω and ϕ′ be as in (2). Since ω is a positive (1,1)-form and Ω is a (2,0)-form

with respect to J , one can choose a basis (f1, f2, f3, f4) of F∗ such that f1 + if2 and f3 + if4 are
(1,0)-forms with respect to J and:

ω = f12 + f34 and Ω = ν−1 (f1 + if2) ∧ (f3 + if4) , (3.1.8)

where ν is defined in eqn. (3.1.2). Consider the (correctly oriented) basis:

(θ1, θ2, θ3, θ4, θ5, θ6, θ7) = (f1,−f2,−g1,−g2,−f3,−f4,−g3)

of (F⊕G)∗; then with respect to this basis:

ϕ′ = θ123 + ν−1θ145 + ν−1θ167 + ν−1θ246 − ν−1θ257 − θ347 − θ356.

This is of G2-type by (1). The explicit formulae for gϕ, volϕ and ☀ϕϕ follow by solving the linear
system in eqn. (3.1.7) explicitly to obtain the ‘G2 basis’:

(ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6, ϑ7) = (ν−
1
3 θ1, ν−

1
3 θ2, ν

2
3 θ3, ν−

1
3 θ4, ν−

1
3 θ5, ν−

1
3 θ6, ν−

1
3 θ7) .

Applying Lemma 3.1.1 to manifolds yields the following unboundedness result for the functional
H3:

Proposition 3.1.9. 1. Let M be a closed, parallelisable 7-manifold, let θ1, ..., θ7 be a basis of 1-forms
and let ϕ be the G2 3-form:

ϕ = θ123 + θ145 + θ167 + θ246 − θ257 − θ347 − θ356

= ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6 + ϕ7.
(3.1.10)

Suppose that dϕ = 0 and that there exists I ⊆ {1, ...,7} such that ϕI = ∑i∈I ϕi is exact. Then for
all λ ⩾ 0, ϕ(λ) = ϕ + λϕI is a closed G2 3-form in the same cohomology class as ϕ satisfying
H3(ϕ(λ)) = (1 + λ)

∣I∣
3 H3(ϕ). In particular:

sup
ϕ′∈[ϕ]+

H3(ϕ′) =∞.

2. Let M be a closed, oriented 7-manifold, let TM ≅ R3 ⊕ F for some rank 4 distribution F on
M (such a splitting always exists by [39, Table 1]), let (g1, g2, g3) be a basis of 1-forms for the trivial
bundle (R3)∗ ⊂ (R3 ⊕F)∗ ≅ T∗M, let J be a section of End(F) satisfying J2 = − Id, let (ω,Ω) be
(1,1) and (2,0)-forms on F with respect to J and let ϕ′ be the G2 3-form:

ϕ′ = g123 + g1 ∧ ω − g2 ∧ReΩ + g3 ∧ ImΩ.
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Suppose that dϕ′ = 0 and that g1 ∧ ω is exact. Then for all λ ⩾ 0, ϕ′(λ) = ϕ′ + λg1 ∧ ω is a closed G2

3-form in the same cohomology class as ϕ′ satisfying H3(ϕ′(λ)) = (1 + λ)
2
3H3(ϕ′). In particular:

sup
ϕ′′∈[ϕ′]+

H3(ϕ′′) =∞.

Likewise, if g2 ∧ReΩ − g3 ∧ ImΩ is exact, then for all λ > 0, ϕ′′(λ) = ϕ′ − λ (g2 ∧ReΩ − g3 ∧ ImΩ)
is a closed G2 3-form in the same cohomology class as ϕ′ satisfying H3(ϕ′′(λ)) = (1+ λ)

4
3H3(ϕ′), so

that once again:
sup

ϕ′′∈[ϕ′]+
H3(ϕ′′) =∞.

3.2 The unboundedness above of H3 on (N,ϕ(α,β,λ))

I begin by recalling the construction of the Nakamura manifold X from [14]. Define a product ∗ on
C3 via the formula:

(u1, u2, u3) ∗ (w1,w2,w3) = (u1 +w1, e−w
1

u2 +w2, ew
1

u3 +w3) .

Then (C3,∗) is a complex, soluble, non-nilpotent Lie group, which I denote H. Equivalently, one
may identify:

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜
⎝

ew
1

0 0 0

0 e−w
1

0 0

0 0 1 0

w3 w2 w1 1

⎞
⎟⎟⎟⎟⎟
⎠

∈ SL(4;C)

RRRRRRRRRRRRRRRRRRRRRR

(w1,w2,w3) ∈ C3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

. (3.2.1)

The basis (complex) right-invariant 1-forms on H are given by:

Θ1 = dw1, Θ2 = ew
1

dw2 and Θ3 = e−w
1

dw3. (3.2.2)

Let ℓ = log 3+
√
5

2 , m =
√
5−1
2 and define ∆ ⊂ H to be the uniform (i.e. discrete and co-compact)

subgroup generated by the six elements1:

h1 = (ℓ,0,0), h2 = (2πi,0,0), h3 = (0, −m,1)

h4 = (0,1,m), h5 = (0,−2πim,2πi), h6 = (0,2πi,2πim).

1These formulae differ from those in [14], as the author of this paper has discovered an error op. cit., which has
been corrected in the formulae here presented.
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The quotient X = H/∆ is a compact soluble manifold called a Nakamura manifold (the first such

examples being constructed by Nakamura in [109]). Explicitly, write P =
⎛
⎝
−m 1

1 m

⎞
⎠

; then clearly:

H/⟨h2, h3, h4, h5, h6⟩ ≅ C/2πiZ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≅ S1 ×R

× C2/P (Z2 + 2πiZ2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= T

.
(3.2.3)

Moreover, from the equation:

P
⎛
⎝
2 1

1 1

⎞
⎠
P −1 =

⎛
⎝
e−ℓ 0

0 eℓ
⎞
⎠

it follows that the linear map
⎛
⎝
e−ℓ 0

0 eℓ
⎞
⎠

on C2 descends to define a map Λ on the complex torus T.

One can then write:
X = S1 × (R ×T)/⟨T ⟩

where T is the automorphism given by (w,p) ∈ R × T ↦ (w + ℓ,Λ(p)) ∈ R × T. The right-invariant
1-forms Θi descend to a basis of (complex) 1-forms on X, again denoted Θi, which satisfy:

dΘ1 = 0, dΘ2 = Θ1 ∧Θ2, dΘ3 = −Θ1 ∧Θ3. (3.2.4)

Write g1 =ReΘ1 and g2 = ImΘ1, so that in particular dg1 = dg2 = 0.
Now consider the manifold N = X × S1. I begin by recording the following result, which is not

proved in the literature but which nevertheless appears known to some authors (cf. [22, §6, Example
2]):

Proposition 3.2.5. The manifold N admits no torsion-free G2-structures.

Proof. The argument is largely topological in nature. It follows from [14, Thm. 4.1] that b1(N) = 3.
Thus by Theorem 2.2.19, if N admitted a torsion-free G2-structure, then the universal cover of N
would be homeomorphic to R3 × Ñ for some simply-connected, closed 4-manifold Ñ . However the
universal cover of X is H homeo

≅ C3 (a fact which holds more generally for any complex soluble manifold
[109, p. 86]) and thus the universal cover of N is R7, not R3 × Ñ . Thus no torsion-free G2-structures
on N can exist.

N does, however, admit closed G2 3-forms. Consider the (complex) rank 2 distribution on X

given by F = KerΘ1 and define (1,1) and (2,0)-forms on F by:

ω = i
2
[Θ2 ∧Θ2 +Θ3 ∧Θ3] , ρ = i

2
[Θ2 ∧Θ2 −Θ3 ∧Θ3] and Ω = Θ2 ∧Θ3.

Then (ω,Ω) satisfies:
dω = 2g1 ∧ ρ and dΩ = 0. (3.2.6)
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Write g3 for the canonical 1-form on S1. For each α ∈ R/{0}, β ∈ R/{0} and λ ∈ C/{0} define a
3-form on N by:

ϕ(α,β, λ) = αβg123 + αg1 ∧ ω − βg2 ∧ReλΩ + g3 ∧ ImλΩ. (3.2.7)

ϕ(α,β, λ) defines a G2-structure on N , by Lemma 3.1.1 (applied to the forms αg1, βg2, g3, ω, λΩ).
Moreover dϕ(α,β, λ) = 0, by eqn. (3.2.6).

Remark 3.2.8. The construction of ϕ(α,β, λ) above was inspired by the G2 3-forms defined by Fernán-
dez’ [46]. Indeed, in the special case that λ = 1 and α = β lies in the discrete set {κ ∈ R ∣ e 1

κ + e− 1
κ ∈ Z/{2}},

the forms ϕ(α,β, λ) are closely related to Fernandez’ definition. The key differences are firstly that,
for H as defined above, Fernández considers a left-quotient of H and thus constructs left-invariant G2

3-forms rather than right-invariant G2 3-forms, and secondly that Fernández reverses the roles of g2

and the canonical 1-form on S1; this arises since [46] uses the opposite convention for the orientation
of G2-structures to the one used in this paper; see [82, §2.1] for a discussion of the two conventions.
Also, Fernández’ treatment in [46] focuses almost exclusively on the manifold N from the perspective
of real differential geometry, and thus does not notice the natural SU(2)-structure (with torsion)
underlying the construction op. cit..

Theorem 3.2.9. The map:

(R/{0})2 × (C/{0}) H3
dR(N)

(α,β, λ) [ϕ(α,β, λ)]

is injective, and for all (α,β, λ) ∈ (R/{0})2 × (C/{0}), the functional:

H3 ∶ [ϕ(α,β, λ)]+ → (0,∞)

is unbounded above.

Proof. Since each of (ReΩ)2, g13 ∧ReΩ, −g13 ∧ ImΩ, g12 ∧ReΩ and g12 ∧ ImΩ are closed, there is a
map:

H3
dR(N) R5

[ξ]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∫N ξ ∧ (ReΩ)2

∫N ξ ∧ g13 ∧ReΩ

∫N ξ ∧ −g13 ∧ ImΩ

∫N ξ ∧ g12 ∧ ImΩ

∫N ξ ∧ g12 ∧ReΩ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

χ
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A direct calculation shows that, writing A = ∫N g123 ∧ (ReΩ)2 = ∫N g123 ∧ (ImΩ)2 > 0, one has:

χ ([ϕ(α,β, λ)]) = A ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

αβ

Reλ

Imλ

βReλ

βImλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Thus the composite (R/{0})2 × (C/{0})
ϕ(−,−,−)
ÐÐÐÐ→ H3

dR(N)
χ
Ð→ R5 is injective, and hence so too is

(R/{0})2 × (C/{0})
ϕ(−,−,−)
ÐÐÐÐ→H3

dR(N).
Finally, note that g1∧ω = 1

2dρ is exact. Thus the unboundedness ofH3 on the classes [ϕ(α,β, λ)]+
follows immediately from Proposition 3.1.9(2); in particular, writing:

ϕ(α,β, λ;µ) = αβg123 + αµ6g1 ∧ ω − βg2 ∧ReλΩ + g3 ∧ ImλΩ

for µ ⩾ 1, Proposition 3.1.9(2) shows that:

H3 (ϕ(α,β, λ;µ)) = µ4H3 (ϕ(α,β, λ))→∞ as µ→∞,

completing the proof.

3.3 The large volume limit of (N,ϕ(α,β,λ;µ))
The aim of this section is to describe the geometry of (N,ϕ(α,β, λ;µ)) as µ→∞. Recall the group H
defined in eqn. (3.2.1) and the uniform subgroup ∆. The subgroup K ⊂H corresponding to w1 = 0 is
a connected, normal, Abelian Lie subgroup of H, which is maximal nilpotent since H is non-nilpotent
and codim(K,H) = 1. By Mostow’s Theorem [109, p. 87], there is a fibration:

f ∶X = H/∆ → (
H/K )/(∆ ⋅K/K )

with fibre K/∆ ∩K . Explicitly, recall that X ≅ S1 × (R ×T)/⟨T ⟩ , where T is the 4-torus defined
in eqn. (3.2.3) and T is the automorphism given by (w,p) ∈ R ×T ↦ (w + ℓ,Λ(p)) ∈ R ×T. Then f is
simply the natural projection:

S1 × (R ×T)/⟨T ⟩
proj
ÐÐ→ S1 × R/ℓZ ,

with fibre T. Using f, define a fibration p ∶ N → R/ℓZ via:

p ∶ N = S1 ×X
proj2ÐÐÐ→X

fÐ→ S1 × R/ℓZ
proj2ÐÐÐ→ R/ℓZ .
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Theorem 3.3.1. Let (α,β, λ) ∈ (R/{0})2 × (C/{0}) and let (N,ϕ(α,β, λ;µ))µ∈[1,∞) be the family
constructed in the proof of Theorem 3.2.9. Then the large volume limit of (N,ϕ(α,β, λ;µ)) corre-
sponds to an adiabatic limit of the fibration p. Specifically:

(N,µ−12ϕ(α,β, λ;µ))→ (R/ℓZ , α
2 (λλ)−

2
3 gEucl) as µ→∞,

where the convergence is in the Gromov–Hausdorff sense.

The proof uses the following convergence result:

Theorem 3.3.2. Let E and B be closed manifolds, let π ∶ E → B be a submersion, let gµ be a family
of Riemannian metrics on E and let g be a Riemannian metric on B. If gµ → π∗g uniformly and
there exist constants Λµ ⩾ 0 such that:

lim
µ→∞

Λµ = 1 and gµ ⩾ Λ2
µπ
∗g for all µ ∈ [1,∞), (3.3.3)

then (E, gµ) converges to (B,g) in the Gromov–Hausdorff sense as µ→∞.

Since Theorem 3.3.2 is a result in metric geometry, rather than G2 geometry, the proof is postponed
to Chapter 4 of this thesis (see Theorem 4.2.5), so as not to detract from the main thrust of the current
chapter. Using Theorem 3.3.2, I now prove Theorem 3.3.1:

Proof. By Proposition 3.1.1 applied to the forms αg1, βg2, g3, µ6ω,λΩ (so that ν = µ6

√
λλ

) one may
compute that:

gϕ(α,β,λ;µ) =
µ8α2

(λλ)
2
3

(g1)⊗2 + µ2 (λλ)
1
3 gω +

(λλ)
1
3

µ4
[β2 (g2)⊗2 + (g3)⊗2] .

Rescaling the G2 3-forms ϕ(α,β, λ;µ)↦ µ−12ϕ(α,β, λ;µ), one finds that:

gµ−12ϕ(α,β,λ;µ) =
α2

(λλ)
2
3

(g1)⊗2 +
(λλ)

1
3

µ6
gω +

(λλ)
1
3

µ12
[β2 (g2)⊗2 + (g3)⊗2]

→ α2 (λλ)−
2
3 (g1)⊗2 = p∗ [α2 (λλ)−

2
3 gEucl] uniformly as µ→∞,

(3.3.4)

where gEucl denotes the Euclidean metric on R/ℓZ . Moreover:

gµ−12ϕ(α,β,λ;µ) ⩾ p∗ [α2 (λλ)−
2
3 gEucl] for all µ. (3.3.5)

The result now follows from Theorem 3.3.2.
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3.4 The unboundedness above of H3 on (M̆, ϕ̆)

3.4.1 The construction of (M̆, ϕ̆)

For full details of the construction, see [48]. Let G =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
A1 0

0 A2

⎞
⎠
∈ SL(12;R)

⎫⎪⎪⎬⎪⎪⎭
, where, for (x1, .., x7) ∈

R7:

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −x2 x1 x4 −x1x2 x6

0 1 0 −x1 x1 1
2(x

1)2

0 0 1 0 −x2 −x4

0 0 0 1 0 0

0 0 0 0 1 x1

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −x3 x1 x5 −x1x3 x7

0 1 0 −x1 x1 1
2(x

1)2

0 0 1 0 −x3 −x5

0 0 0 1 0 0

0 0 0 0 1 x1

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.4.1)
Write Γ ⊂ G for the discrete subgroup corresponding to (x1, ..., x7) ∈ 2Z ×Z6 and define M = Γ/G , a
closed nilmanifold. G admits a basis of left-invariant 1-forms given by:

θ1 = dx1, θ2 = dx2, θ3 = dx3, θ4 = dx4 − x2dx1

θ5 = dx5 − x3dx1, θ6 = dx6 + x1dx4, θ7 = dx7 + x1dx5
(3.4.2)

which descend to define a basis of 1-forms on M (also denoted θi) satisfying:

dθi = 0 (i = 1,2,3), dθ4 = θ12, dθ5 = θ13, dθ6 = θ14 and dθ7 = θ15. (3.4.3)

Define a closed G2 3-form on M by:

φ = θ123 + θ145 + θ167 − θ246 + θ257 + θ347 + θ356. (3.4.4)

Then M admits a (non-free) involution I given by:

I ∶ Γ ⋅ (x1, x2, x3, x4, x5, x6, x7)↦ Γ ⋅ (−x1,−x2, x3, x4,−x5,−x6, x7) (3.4.5)

which preserves φ and hence φ descends to define a closed (orbifold) G2 3-form φ̂ on M̂ = I/M .
Let Ŝ denote the singular locus of M̂ and write S for the preimage of Ŝ under the natural projection

M→ M̂. By eqn. (3.4.5) (see §5 of the arXiv version of [48])2 S =∐a∈A Sa where a = (a1, a2, a5, a6) ∈
A = {0,1} × {0, 12}

3 and:

Sa =
⎧⎪⎪⎨⎪⎪⎩

{Γ ⋅ (0, a2, x3, x4, a5, a6, x7) ∣ x3, x4, x7 ∈ R} if a1 = 0
{Γ ⋅ (1, a2, x3, x4, a5, 32a

2 + a6 − x4, x7) ∣ x3, x4, x7 ∈ R} if a1 = 1.

2My investigation of the manifold (M̆, ϕ̆) revealed some errors in the journal version of [48], which have been
communicated to the authors of [48] and since corrected in the arXiv version of the article.

45



Similarly, write Ŝ = ∐a∈A Ŝa where each Ŝa is the image of Sa under the projection M → M̂. The
map:

Φ0 ∶ T3 ×B4
ε →M

[(y3, y4, y7) +Z3, (y1, y2, y5, y6)]↦ Γ ⋅ (y1, y2, y3, y4, y5 + y1y3, y6, y7 − 1
2
(y1)2 y3)

(3.4.6)

defines an embedding onto an open neighbourhood of S0 identifying T3 with S0 and I with IdT3 × −
IdB4

ε
for ε > 0 sufficiently small. Similarly, for each a = (0, a2, a5, a6), there is an embedding Φa ∶

T3×B4
ε →M given by Φa = fa ○Φ0, where fa is a diffeomorphism of M induced by a left-translation of

G, commuting with I and mapping S0 to Sa. For the other components of the singular locus, define

a lattice Λ = Z ⋅
⎛
⎜⎜
⎝

1

0

−1
2

⎞
⎟⎟
⎠
+Z ⋅
⎛
⎜⎜
⎝

0

1

0

⎞
⎟⎟
⎠
+Z ⋅
⎛
⎜⎜
⎝

0

0

1

⎞
⎟⎟
⎠
⊂ R3 and write T̃3 = R3/Λ . Writing 1 = (1,0,0,0), the map:

Φ1 ∶ T̃3 ×B4
ε →M

[(y3, y4, y7) +Λ, (y1, y2, y5, y6)]↦ Γ ⋅ (y1 + 1, y2, y3, y4, y5 + y1y3, y6 − y4, y7 − y5 − y1y3 − 1
2
(y1)2 y3) .

(3.4.7)
is an embedding onto an open neighbourhood of S1 for ε > 0 sufficiently small identifying T̃3 with S1
and I with IdT̃3 ×−IdB4

ε
. Similarly, for each a = (1, a2, a5, a6), there is an embedding Φa ∶ T̃3×B4

ε →M

given by Φa = ga○Φ1, where ga is a diffeomorphism of M induced by a left-translation of G, commuting
with I and mapping S1 to Sa.

Let T denote either T3 or T̃3 as appropriate and write Φ̂a for the composite T ×B4
ε

ΦaÐ→M → M̂.
For each a = (a1, a2, a5, a6) ∈ A, define Ua = Φa (T ×B4

ε) and Ûa = Φ̂a (T × {±1}/B
4
ε ); for sufficiently

small ε > 0 the Ua are disjoint. Then shrinking ε > 0 still further if necessary, there exists a closed,
orbifold G2 3-form ϕ̂ on M̂ such that ϕ̂ = φ̂ on M̂/∐a∈A Ûa and on each Ŵa = Φ̂a (T × {±1}/B

4
ε/2 )

one has:
ϕ̂ = dy123 + dy145 + dy167 − dy246 + dy257 + dy347 + dy356,

where the yi are defined in eqns. (3.4.6) and (3.4.7). Identify {±1}/B
4
ε/2 ⊂ {±1}/C

2 by writing
w1 = y1 + iy2 and w2 = y5 + iy6 and define:

ω̂ = i
2
(dw1 ∧ dw1 + dw2 ∧ dw2) and Ω̂ = dw1 ∧ dw2.

Then on Ŵa, one has:
ϕ̂ = dy347 + dy3 ∧ ω − dy4ReΩ + dy7ImΩ.

Now recall the space [97, §2]:

X̃ = OCP1(−2) = {((U1, U2) , [W 1 ∶W 2]) ∈ C2 ×CP1 ∣ U1 (W 2)2 = U2 (W 1)2} ≅ T∗CP1.
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together with the continuous (non-smooth) blow-up map ρ ∶ OCP1(−2)→ {±1}/C
2 given by:

((U1, U2) , [W 1 ∶W 2])↦ ± (
√
U1,
√
U2) , (3.4.8)

where the square-roots on the right-hand side are constrained by the condition
√
U1W 2 =

√
U2W 1,

and write E = ρ−1({0}) for the exceptional divisor. Using the map ρ, identify the spaces X̃/E and
({±1}/C

2 ) /{0}. It can be shown that the form Ω̂ on X̃/E extends over all of X̃ to define a smooth,
closed, (2,0)-form Ω̃, however the form ω̂ on X̃/E cannot be extended over E. Instead, one considers
the so-called Eguchi–Hanson metrics ω̃t on X̃ defined as follows: let r2 = ∣w1∣2 + ∣w2∣2 denote the
distance squared from the origin in {±1}/C

2 and define:

ω̃t =
1

4
ddc [

√
r4 + t4 + t2 log( r2√

r4 + t4 + t2
)] on ({±1}/C

2 ) /{0}. (3.4.9)

Then ω̃t can be extended smoothly over E to define a Ricci-flat Kähler form on X̃ [78, p. 60]. The
forms ω̃t can be used to ‘extend’ ω̂ over the exceptional divisor in the following sense: for ε > 0, write
X̃(ε) for the pre-image of {±1}/B

4
ε under the map ρ ∶ X̃ → {±1}/C

2 . Then for every ε > 0, there
exists t sufficiently small (depending on ε) and a Kähler form ω̆t on X̃ such that:

ω̆t = ω̂ on X̃/X̃ (1
2
ε) and ω̆t = ω̃t on X̃ (1

4
ε) .

Now define a new manifold M̆ by:

M̆ = (M̂/∐
a∈A

Ŵa)⋃
∼
(∐
a∈A

T × X̃(ε))

where ⋃∼
denotes that for each a ∈ A, the region Ûa/Ŵa should be identified with the region T ×

X̃(ε)/X̃ (12ε) ≅ T × ({±1}/B
4
ε )/({±1}/B

4
1
2
ε ) using Φ̂a. Denote the image of T × X̃(ε) in M̆

corresponding to a ∈ A by Ŭa and the image of T × X̃ (12ε) by W̆a. Define a three-form ϕ̆ on M̆ by
setting ϕ̆ = ϕ̂ on (M̂/∐a∈A Ŵa) and setting:

ϕ̆ = dy347 + dy3 ∧ ω̆t − dy4 ∧ReΩ̃ + dy7 ∧ ImΩ̃

on the region W̆a for each a. This yields:

Theorem 3.4.10 ([48, Thm. 21]). Let ρ ∶ M̆ → M̂ denote the ‘blow-down’ map. Then there exists a
smooth, closed G2 3-form ϕ̆ on M̆ such that ρ∗ϕ̆ = ϕ̂ outside of a neighbourhood of the singular locus
S.

Remark 3.4.11. It is well-known that ω̃t defines a non-zero cohomology class on X̃ which depends
on t. Using [48, Prop. 22], it follows that the cohomology class of ϕ̆ depends on the choice of t and
hence ε. To prove the unboundedness of H3 on (M̆, ϕ̆), I construct a family of closed G2 3-forms ϕ̆µ
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with unbounded volume in the fixed cohomology class [ϕ̆]; thus they must all have the same ‘choice
of ε’. This is an important technical subtlety in the construction of the forms ϕ̆µ.

3.4.2 The unboundedness of H3

Theorem 3.4.12. The Hitchin functional:

H3 ∶ [ϕ̆]+ → (0,∞)

is unbounded above.

Whilst the manifold (M̆, ϕ̆) does not satisfy the hypotheses of Proposition 3.1.9, the manifold
(M,φ) does satisfies the hypotheses of Proposition 3.1.9(1), since, by eqn. (3.4.3), the 3-form θ123 =
d (θ25) is exact. Thus, by Proposition 3.1.9(1), for each µ ⩾ 1, the 3-form:

φµ = µ6θ123 + θ145 + θ167 − θ246 + θ257 + θ347 + θ356

is of G2-type and satisfies volφµ = µ2volφ. By eqn. (3.4.5), both the 3-form θ123 and the 2-form θ25

are I-invariant and thus descend to the orbifold M̂. Hence the forms φµ descend to define closed G2

3-forms φ̂µ on M̂ with unbounded volume, which lie in the fixed cohomology class [φ̂].
To complete the proof of Theorem 3.4.12 therefore, it suffices to ‘resolve the singularities’ of

(M̂, φ̂µ). The obvious approach is to mimic the construction of (M̆, ϕ̆), by first deforming φ̂µ into
the form:

ξ̂µ = µ6dy123 + dy145 + dy167 − dy246 + dy257 + dy347 + dy356 (3.4.13)

in a neighbourhood of the singular locus, and then resolving the singularity in ξ̂ using ω̆t as above.
However this approach fails: in order to deform φ̂µ into ξ̂µ on the region Ûa ≅ T × {±1}/B

4
ε , it is

necessary for ε to depend on µ. This implies that the cohomology class of the resolved 3-form ϕ̆µ also
depends on µ (see Remark 3.4.11) and thus this construction fails to demonstrate the unboundedness
of the Hitchin functional H3 on the fixed cohomology class [ϕ̆]. Thus instead, I deform φ̂µ into the
form:

ξ̂µ + y1dy147 = µ6dy123 + dy145 + dy167 − dy246 + dy257 + dy347 + dy356 + y1dy147 (3.4.14)

near the singular locus. This deformation can be performed on Ûa ≅ T × {±1}/B
4
ε with ε chosen

independently of µ. The additional term y1dy147 persists during the resolution of singularities, before
being cut-off near the exceptional divisor, at some distance from the exceptional divisor depending
on µ. This enables the resolved 3-forms ϕ̆µ to lie in a fixed cohomology class, completing the proof
of Theorem 3.4.12.

Remark 3.4.15. The reader will recall that Joyce [76, 77, 78] constructed numerous G2-manifolds by
resolving the singularities in finite quotients of the torus (T7, ϕ0). Despite the similarities between
Joyce’s construction and the construction of (M̆, ϕ̆), the results of this chapter do not apply to Joyce’s
manifolds since, unlike (M,φ), the torus (T7, ϕ0) itself does not satisfy the hypotheses of Proposition
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3.1.9. Thus, the question of whether H3 is unbounded above on manifolds admitting torsion-free G2

3-forms appears to remain beyond our current understanding.

I begin with the following lemma:

Lemma 3.4.16. Let a ∈ A, let r ⩾ 0 denote the radial distance from the singular locus in Ûa, i.e.:

r2 = (y1)2 + (y2)2 + (y5)2 + (y6)2 ,

where the yi are defined in eqns. (3.4.6) and (3.4.7), and define:

ξ̂µ = µ6dy123 + dy145 + dy167 − dy246 + dy257 + dy347 + dy356.

Then there exist a constant C > 0 and a 2-form α̂a on Ûa, both independent of µ, satisfying:

∣α̂a∣ξ̂µ ⩽ Cµ
−1r2 and ∣dα̂a∣ξ̂µ ⩽ Cr (3.4.17)

such that:
φ̂µ − ξ̂µ = y1dy147 + dα̂a

(Here ∣ ⋅ ∣
ξ̂µ

denotes the pointwise norm induced by the G2 3-form ξ̂µ. E.g. in the case µ = 1, this is
just the Euclidean norm in the yi coordinates, denoted ∣ ⋅ ∣Eucl.)

Proof. Begin by working on Ua. Using the equation:

Φa =
⎧⎪⎪⎨⎪⎪⎩

fa ○Φ0 if a1 = 0;
ga ○Φ1 if a1 = 1,

together with the fact that both fa and ga are induced by left-translations, and hence preserve each
θi, one sees that:

Φ∗aθ
i =
⎧⎪⎪⎨⎪⎪⎩

Φ∗0θ
i if a1 = 0;

Φ∗1θ
i if a1 = 1.

Using the explicit expressions for Φ0 and Φ1 given in eqns. (3.4.6) and (3.4.7), together with eqn.
(3.4.2), it follows that:

Φ∗0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

θ1

θ2

θ3

θ4

θ5

θ6

θ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Φ∗1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

θ1

θ2

θ3

θ4

θ5

θ6

θ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

dy1

dy2

dy3

dy4 − y2dy1

dy5 + y1dy3

dy6 + y1dy4

dy7 + y1dy5 + 1
2
(y1)2 dy3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.4.18)
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Therefore:

φµ − ξµ = y1 (dy147 − dy156 − dy134 + dy237) + y2 (dy137 − dy126)

+ 1
2
(y1)2 (2dy145 − dy136 + dy235) + y1y2 (dy135 − dy124) − 1

2
(y1)3 dy134

= y1dy147 + dαa,

where:
αa = dy1 ∧ [(y1y5 + 1

2
(y2)2)dy6 + ((y1)2 y5 + 1

2y
1 (y2)2)dy4 − 1

2
(y1)2 y6dy3]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= βa

+ dy3 ∧ [(−1
2
(y1)2 − 1

8
(y1)4)dy4 + y1y2dy7 + 1

2
(y1)2 y2dy5]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶= γa

.

Observe that there exists C > 0 independent of µ such that:

∣βa∣Eucl, ∣γa∣Eucl ⩽
C

2
r2 and ∣dβa∣Eucl, ∣dγa∣Eucl ⩽

C

2
r.

Also, by solving the linear system in eqn. (3.1.7), one may verify that:

gξµ = µ4 ((dy1)
⊗2 + (dy2)⊗2 + (dy3)⊗2) + µ−2 ((dy4)⊗2 + (dy5)⊗2 + (dy6)⊗2 + (dy7)⊗2) . (3.4.19)

In particular gξµ ⩾ µ−2gEucl when acting on vectors. It follows that ∣ ⋅ ∣ξµ ⩽ µ∣ ⋅ ∣Eucl when acting on
1-forms, and ∣ ⋅ ∣ξµ ⩽ µ

2∣ ⋅ ∣Eucl when acting on 2-forms. Hence:

∣βa∣ξµ , ∣γa∣ξµ ⩽
C

2
µr2 and ∣dβa∣ξµ , ∣dγa∣ξµ ⩽

C

2
µ2r.

One may also compute that ∣dy1∣ξµ = ∣dy
3∣ξµ = µ

−2. Therefore:

∣αa∣ξµ ⩽ ∣dy
1∣ξµ ∣βa∣ξµ + ∣dy

3∣ξµ ∣γa∣ξµ

⩽ Cµ−1r2,

as required. Likewise dαa = dy1 ∧ dβa + dy3 ∧ dγa and hence ∣dαa∣ξµ ⩽ Cr. Since I∗αa = αa, αa

descends to define the required 2-form α̂a on Ûa.

Remark 3.4.20. The term y1dy147 is also exact with primitive 1
2
(y1)2 dy47, however one may calculate

that:
∣1
2
(y1)2 dy47∣

ξ̂µ
= µ

2

2
∣y1∣2 ;

thus this primitive does not satisfy the bounds in eqn. (3.4.17). It is for this reason that the term
y1dy147 is dealt with separately to the other terms in the expression for φ̂µ − ξ̂µ.

Using Lemma 3.4.16, I now prove:
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Proposition 3.4.21. There exists ε0 > 0, independent of µ, such that for all ε ∈ (0, ε0], the following
is true:

For all µ ⩾ 1, there exists a closed, orbifold G2 3-form ϕ̂µ on M̂ such that:

ϕ̂µ = φ̂µ on M̂/∐
a∈A

Ûa

and on each Ŵa for a ∈ A, one has:

ϕ̂µ = µ6dy123 + dy145 + dy167 − dy246 + dy257 + dy347 + dy356 + y1dy147.

Proof. Again, begin by working at the level of M. Let f ∶ [0,∞) → [0,1] be a smooth function such
that:

● f ≡ 0 on an open neighbourhood of [0, 12] ;
● f ≡ 1 on an open neighbourhood of [1,∞);
● ∥f ′∥∞ ⩽ 3.

(3.4.22)

Consider the 3-form ϕ on Ua defined by:

ϕµ = ξµ + y1dy147 + d [f (r
ε
)αa] . (3.4.23)

Clearly ϕµ is closed and satisfies:

ϕµ =
⎧⎪⎪⎨⎪⎪⎩

ξµ + y1dy147 on Wa;
φµ near the boundary of Ua.

On Ua, using eqns. (3.4.19), (3.4.17) and (3.4.22), one may compute that:

∣ϕµ − ξµ∣ξµ ⩽ ∣y
1dy147∣ξµ + ∣dαa∣ξµ +

∥f ′∥∞
ε
∣dr∣ξµ ∣αa∣ξµ

⩽ (4C + 1)ε
(3.4.24)

where C > 0 is as in Lemma 3.4.16 (recall that ∣dr∣ξµ ⩽ µ, as in the proof of Lemma 3.4.16). Thus ϕµ

is of G2-type for all ε > 0 sufficiently small, independent of µ, by the stability of G2 3-forms. Since
ξµ, y1dy147 and αa are all I-invariant, the form ϕµ descends to define an orbifold G2 3-form ϕ̂µ on
M̂, completing the proof.

One can also use Lemma 3.4.16 to give an explicit formula for ϕ̂ on the region Ûa. Explicitly, one
takes:

ϕ̂ = ξ̂ + d [f (r
ε
)(12 (y

1)2 dy47 + αa)] . (3.4.25)

In particular, note that whilst φ̂1 = φ̂, it is not true that ϕ̂1 = ϕ̂.
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The task now is to resolve the singularities in ϕ̂µ. I begin by introducing some notation. Firstly,
for k ∈ (0,∞), define:

B4 (1
2ε, k) = {(w

1,w2) ∈ C2 ∣ k6 ∣w1∣2 + ∣w2∣2 < 1

2
ε} .

Thus B4 (1
2ε, k) is a complex ellipse with radius 1

2k
−3ε in the w1-direction and radius 1

2ε in the w2-
direction. Also define X̃ (12ε, k) to be the pre-image of {±1}/B

4 (1
2ε, k) under the blow-down map ρ

and, for k ∈ [2− 1
3 ,∞), define W̆a,k to be the subset of Ŭa corresponding to T × X̃ (12ε, k). (k ⩾ 2− 1

3 is
needed to ensure that W̆a,k ⊂ Ŭa.) Secondly, define:

T3
µ = R3/µ3Z⊕Z⊕Z .

Analogously, let Λµ denote the image of Λ under the map (y3, y4, y7) ∈ R3 ↦ (µ3y3, y4, y7) ∈ R3 and
define:

T̃3
µ = R3/Λµ .

As above, use Tµ to denote either T3
µ or T̃3

µ as appropriate.
Begin by considering the space Rµ = (Tµ)y3,y4,y7 × X̃ (

1
2ε, µ

−1)
y1,y2,y5,y6

⊇ Tµ × X̃ (12ε). Define a
3-form σ on Rµ via:

σ = d [f (2r
ε
) ⋅ 1

2
(y1)2 dy47] , (3.4.26)

where f is as defined in eqn. (3.4.22). Clearly, σ vanishes near the exceptional locus and thus σ defines
a smooth 3-form over all of Rµ via extension by zero. Moreover, outside the region Tµ × X̃ (12ε) (i.e.
on the region {r ⩾ 1

2ε}) σ is simply given by y1dy147.
Next, define a 3-form ζ on Rµ via:

ζ = dy347 + dy3 ∧ ω̆t − dy4 ∧ReΩ̃ + dy7 ∧ ImΩ̃ (3.4.27)

for ω̆t as above. ζ defines a G2 3-form on Rµ by Lemma 3.1.1. Finally, define a 3-form ζµ on Rµ as
follows:

ζµ = ζ + 1

µ3
σ.

Lemma 3.4.28. For ε > 0 sufficiently small, independent of µ, and for µ sufficiently large, ζµ is of
G2-type on Rµ.

Proof. The proof is, again, an application of the stability of G2 3-forms. Firstly, consider the region
Tµ × X̃ (12ε, µ

−1)/X̃ (12ε) (i.e. the region {r ⩾ 1
2ε}). Here, ζ = ξ̂ and σ = y1dy147, so:

∣σ∣ζ = ∣y
1∣ ⩽ εµ

3

2

and thus:
∣ζµ − ζ ∣ζ ⩽

1

2
ε.
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Hence ζµ is of G2-type on Tµ × X̃ (12ε, µ
−1)/X̃ (12ε) for all µ if ε is sufficiently small, independent of

µ.
Now fix ε and consider the region Tµ × X̃ (12ε). On this region ∣σ∣ζ ⩽ C for some fixed C > 0

independent of µ. Thus:
∣ζµ − ζ ∣ζ ⩽

C

µ3
.

Thus for µ sufficiently large, ζµ is also of G2-type on the region Tµ × X̃ (12ε). Thus ζµ is of G2-type
on all of Rµ and the result is proven.

Using this lemma, the G2 3-forms required for the resolution can be constructed. Firstly, consider
the map {±1}/C

2 → {±1}/C
2 given by:

(w1,w2)↦ (µ3w1,w2) .

Restricting this map to the region ({±1}/C
2 ) / {0} and using the blow-up map ρ, this gives rise to

a map hµ ∶ X̃/E → X̃/E which extends to all of X̃. Now define:

Hµ ∶ W̆a ≅ (T )y3,y4,y7 × X̃ (
1
2ε)y1,y2,y5,y6 → (Tµ)y3,y4,y7 × X̃ (

1
2ε, µ

−1)
y1,y2,y5,y6

, (3.4.29)

where the action of Hµ on T is induced by the map (y3, y4, y7) ∈ R3 ↦ (µ3y3, y4, y7) ∈ R3 and Hµ

acts on X̃ (12ε) by hµ, and write:
ζ̆µ = µ−3 (Hµ)∗ ζµ. (3.4.30)

By Lemma 3.4.28, this is a smooth, closed, G2 3-form on W̆a. An explicit computation shows that
near the boundary of W̆a (and, more generally, on an open neighbourhood of the region W̆a/W̆a,µ ):

ζ̆µ = µ6dy123 + dy145 + dy167 − dy246 + dy257 + dy347 + dy356 + y1dy147, (3.4.31)

which is exactly the ‘boundary-conditions’ required for the resolution. Thus for each µ ∈ [1,∞), one
obtains a smooth, closed G2 3-form ϕ̆µ on M̆ by setting ϕ̆µ = ϕ̂µ outside W̆a for each a ∈ A and
ϕ̆µ = ζ̆µ on each W̆a.

Now let
○
M = M̆/∐a∈A Ŭa . Then on

○
M one has ϕ̆µ = φ̂µ and hence volϕ̆µ = µ

2θ1...7 by Proposition
3.1.9. Hence, one may compute that:

H3 (ϕ̆µ) ⩾ ∫ ○
M
volϕ̆µ = µ

2∫ ○
M
θ1...7 →∞ as µ→∞. (3.4.32)

Thus, the proof of Theorem 3.4.12 is completed by the following result:

Proposition 3.4.33. Let (M̆, ϕ̆) be as defined in Theorem 3.4.10 and let ϕ̆µ be as defined above.
Then:

[ϕ̆µ] = [ϕ̆] ∈H3
dR (M̆) for all µ ⩾ 1.

53



Proof. It suffices to prove that the difference ϕ̆µ − ϕ̆ is exact for each µ ⩾ 1. The strategy is to prove
that ϕ̆µ − ϕ̆ is exact on each of the regions:

• W̆a for a ∈ A;

• M̆/∐a∈A Ŭa ;

• Ŭa/W̆a for a ∈ A,

and then to verify that the primitives may be combined to define a global primitive on all of M̆.

W̆a for a ∈ A: Recall the map hµ defined above. One can verify that:

ζ̆µ = dy347 + dy3 ∧ (hµ)∗ ω̆t − dy4 ∧ReΩ̃ + dy7 ∧ ImΩ̃ + d [f (2 (h
µ)∗ r
ε

) ⋅ 1
2
(y1)2 dy47]

and thus:
ϕ̆µ − ϕ̆ = dy3 ∧ [(hµ)∗ ω̆t − ω̆t] + d [f (

2 (hµ)∗ r
ε

) ⋅ 1
2
(y1)2 dy47] on W̆a.

The second term is manifestly exact. For the first term, recall the Generalised Poincaré Lemma [94,
Prop. 17.10]:

Theorem 3.4.34. Let X, Y be smooth manifolds, let X Y
f1

f2
be smooth maps and let F ∶ f1 ⇒

f2 be a smooth homotopy. Then the maps H●dR(Y ) H●dR(X)
f∗1

f∗2

are equal.

Since hµ is homotopic to the identity on X̃, it follows that (hµ)∗ ω̆t − ω̆t = dτ for some suitable τ .
Thus, on the region W̆a, one finds that:

ϕ̆µ − ϕ̆ = d [τ ∧ dy3 + f (2 (h
µ)∗ r
ε

) ⋅ 1
2
(y1)2 dy47]

= dϖ.

In order to extend ϖ to all of M̆ below, it is necessary to compute ϖ explicitly near the boundary
of W̆a. For the second term in ϖ, since (hµ)∗ (r) ⩾ r, one finds that:

f (2 (h
µ)∗ r
ε

) ⋅ 1
2
(y1)2 dy47 = 1

2
(y1)2 dy47 near the boundary of W̆a.

For the first term in ϖ, recall that the Generalised Poincaré Lemma stated above may be proved by
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constructing an explicit chain homotopy Ω●(Y ) Ω●(X)
f∗1

f∗2

F defined by:

F ∶ Ω●(Y )→ Ω●−1(X)

ω ↦ ∫
[0,1]

ι∗s (∂s ⌟ (F ∗ω))ds
(3.4.35)

and calculating that:
dF + Fd = f∗2 − f∗1 , (3.4.36)

where the homotopy F is viewed as a map F ∶ [0,1] × X → Y and ιs denotes the embedding
X ≅ {s} ×X ↪ [0,1] ×X. Using the specific homotopy h

3
√
1+s(µ3−1) = Fs of X̃ connecting Id to hµ,

one may calculate that:

τ = µ
6 − 1
2
(y1dy2 − y2dy1) near the boundary of W̆a.

Thus:
ϖ = µ

6 − 1
2
(y1dy23 − y2dy13) + 1

2
(y1)2 dy47 near the boundary of W̆a. (3.4.37)

M̆/∐a∈A Ŭa : As discussed at the start of §3.4.2, by eqn. (3.4.3) one has:

ϕ̆µ − ϕ̆ = (µ6 − 1) θ123 = (µ6 − 1)d (θ25) = dϖ.

Using eqns. (3.4.2), (3.4.6) and (3.4.7), one finds that:

ϖ = (µ6 − 1) (dy25 + y1dy23) near the boundary of Ŭa. (3.4.38)

Ŭa/W̆a for a ∈ A: Finally, using eqns. (3.4.23) and (3.4.25), one finds that on Ŭa/W̆a for a ∈ A:

ϕ̆µ − ϕ̆ = (µ6 − 1)dy123 + d{[1 − f (r
ε
)] (12 (y

1)2 dy47)} .

Thus ϕ̆µ − ϕ̆ = dϖ, where:

ϖ = µ
6 − 1
2
(y1dy23 − y2dy13) + (µ6 − 1)d(f (r

ε
)(y2dy5 + 1

2y
1y2dy3))

+ [1 − f (r
ε
)] (12 (y

1)2 dy47) .

This satisfies:

ϖ = µ
6 − 1
2
(y1dy23 − y2dy13) + (12 (y

1)2 dy47) near the boundary of W̆a

ϖ = (µ6 − 1) (dy25 + y1dy23) near the boundary of Ŭa.

(3.4.39)
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Combining eqns. (3.4.37), (3.4.38), (3.4.39), one sees that ϖ defines a smooth 2-form on all of M̆
such that:

ϕ̆µ − ϕ̆ = dϖ,

as required.

This completes the proof of Theorem 3.4.12.
Remark 3.4.40. Recall that, for a closed G2 3-form ϕ, the Laplacian flow of ϕ is the solution of the
evolution PDE [22, §6]:

∂ϕ(t)
∂t

=∆ϕ(t)ϕ(t) = −d☀ϕ(t)dΘ(ϕ(t)) and ϕ(0) = ϕ.

Laplacian flow can be regarded as the gradient flow ofH3 [24, §1.5]; in particular, H3 increases strictly
along the flow. Accordingly, Laplacian flow has been used in the literature to provide examples of
7-manifolds on which H3 is unbounded above; see, e.g., [22, §6] and [50, §5].

The family ϕ(α,β, λ;µ) constructed in §3.2 can also be interpreted via Laplacian flow. Using
Lemma 3.1.1, eqn. (3.2.4) and eqn. (3.2.6), one may compute that:

−d☀ϕ(α,β,λ;µ)dΘ(ϕ(α,β, λ;µ)) =
4 (λλ)

2
3

αµ2
g1 ∧ ω.

On the other hand, allowing µ = µ(t) gives:

∂ϕ(α,β, λ;µ)
∂t

= 6µ5dµ
dt
αg1 ∧ ω.

Thus ϕ(α,β, λ;µ(t)) is a flow line of Laplacian flow starting from ϕ(α,β, λ) if µ satisfies the ODE:

dµ

dt
=
2 (λλ)

2
3

3α2µ7
and µ(0) = 1.

It follows that the Laplacian flow starting from ϕ(α,β, λ) exists for all t > 0 and is given by:

ϕ

⎛
⎜⎜
⎝
α,β, λ;

8

¿
ÁÁÀ16 (λλ)

2
3 t

3α2
+ 1
⎞
⎟⎟
⎠
.

In general, however, Laplacian flow can only be explicitly solved on manifolds with a high de-
gree of symmetry, and thus cannot be used to investigate the unboundedness above of H3 on more
complicated manifolds. As a illustration, note that, even at the level of the manifold (M,φ):

∆φφ = −d☀φdΘ(φ) = 2θ123 + 2θ145 − θ136 + θ127,

and consequently the equation ∂φt
∂t = ∆φtφt cannot (to the author’s knowledge) explicitly be solved
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starting from φ0 = φ. However, §3.4 has shown that the scaling arguments described in §3.1 can
be applied to successfully prove the unboundedness above of H3 on (M̆, ϕ̆). This suggests that
Proposition 3.1.9 is a more widely applicable technique for proving the unboundedness above of H3

than Laplacian flow.

3.5 The large volume limit of (M̆, ϕ̆)

The aim of this section is to describe the geometry of (M̆, ϕ̆µ) as µ →∞. The arguments presented
require new notions of geometric structures on orbifolds known as stratified Riemannian metrics (and
other stratified geometric structures) to be introduced, so I begin by defining these concepts.

3.5.1 Stratified (semi-)Riemannian and quasi-Finslerian structures on
orbifolds

I begin by recalling the following definition [81, §15.10]:

Definition 3.5.1. Let A be a real vector space. A quasinorm on A is a map L ∶ A → R satisfying
the following three properties:

1. For all a ∈ A: L(a) ⩾ 0, with equality if and only if a = 0 (L is ‘positive definite’);

2. For all λ ∈ R, a ∈ A:
L(λ ⋅ a) = ∣λ∣ ⋅L(a);

3. There exists some k = k(L) > 0 such that for all a, a′ ∈ A:

L(a + a′) ⩽ k(L(a) +L(a′)).

Note that in the case k = 1, this reduces to the definition of a norm.

In this thesis, I restrict attention to continuous quasinorms. In this case, condition (3) above
becomes automatic:

Proposition 3.5.2. Let A be a finite-dimensional real vector space and let L ∶ A→ R be a continuous
map satisfying conditions (1) and (2) from Definition 3.5.1. Then L is a quasinorm.

Proof. Consider the continuous map:

f ∶ (A ×A)/{0}→ [0,∞)

(a, a′)↦ L(a + a′)
L(a) +L(a′)

(Note that f is well-defined by condition (1) in Definition 3.5.1.) For a contradiction, suppose f is
unbounded and pick a sequence (ai, a′i) ∈ (A × A)/{0} such that f(ai, a′i) → ∞ as i → ∞. Choose

57



some norm ∥ − ∥ on A and consider the new sequence:

(ai,a′i) = (
ai

∥ai∥ + ∥a′i∥
,

a′i
∥ai∥ + ∥a′i∥

) ∈ A ×A.

Clearly (ai,a′i) is bounded in the norm ∥−∥ and hence converges subsequentially to some (a,a′) ∈ A×A
(since A is finite-dimensional). Moreover, by construction, the sequence (ai,a′i) satisfies ∥ai∥+∥a′i∥ = 1
and thus ∥a∥ + ∥a′∥ = 1. Hence (a,a′) ∈ (A ×A)/{0} and thus f(a,a′) is well-defined and finite. By
condition (2) in Definition 3.5.1, f satisfies f(λ−, λ−) = f(−,−) for any λ ≠ 0. Therefore:

f(ai, a′i) = f (
ai

∥ai∥ + ∥a′i∥
,

a′i
∥ai∥ + ∥a′i∥

) = f(ai,a′i)
subsequentially
ÐÐÐÐÐÐÐÐ→ f(a,a′) <∞,

contradicting the fact that f(ai, a′i)→∞ as i→∞. Thus f is bounded and L is a quasinorm.

Let E be a manifold. A quasi-Finslerian structure on E shall mean a continuous map L ∶ TE → R
such that the restriction of L to any fixed tangent space is a (continuous) quasinorm. (Note that in
the case where L is smooth and a fibrewise norm, this recovers the usual definition of a Finslerian
structure.) Using this terminology, I now define the required generalisations of Riemannian metrics
to stratified orbifolds:

Definition 3.5.3. Let (E,Σ = {Ei}i) be a stratified orbifold.

• A stratified Riemannian metric ĝ = {gi}i on E is the data of a Riemannian metric gi on each
stratum Ei satisfying the extendibility condition that for each i, there exists a continuous
orbifold Riemannian metric gi on E whose tangential component along Ei is gi.

• A stratified Riemannian semi-metric ĝ = {gi}i on E is the data of a Riemannian semi-metric gi
on each stratum Ei satisfying the analogous condition that for each i, there exists a continuous
orbifold Riemannian semi-metric gi on TE whose tangential component along Ei is gi. If, in
addition, D is a stratified distribution on E, then ĝ is regular with respect to D if for each
i = 0, ..., n, the kernel of the Riemannian semi-metric gi is precisely the distribution D. In
particular, this implies that the kernel of the Riemannian semi-metric gi on Ei is precisely
Di = D ∩TEi.

• A stratified quasi-Finslerian structure on E is the data of a quasi-Finslerian structure Li on
each Ei satisfying the property that for every continuous orbifold Riemannian metric h on TE

and each index i, there exists a continuous function C ∶ Ei → (0,∞) such that

1

C
∥ − ∥h ⩽ Li ⩽ C∥ − ∥h on Ei. (3.5.4)

Remarks 3.5.5.

• Any two continuous quasinorms L and L′ on a finite-dimensional vector space A are Lipschitz
equivalent. Indeed, let S ⊂ A be the unit sphere with respect to some norm on A; then
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L
L′ ∶ S → (0,∞) is well-defined and continuous, and hence has compact image (as S is compact).
In light of this, the function C in eqn. (3.5.4) automatically exists on Ei. The significance of
eqn. (3.5.4) is that C can be extended continuously over the boundary of Ei, i.e. over the set
Ei/Ei .

• The extendibility condition for stratified Riemannian metrics can alternatively be stated as
follows: for every subset K ⊆ Ei which is relatively compact in E:

1. gi∣K is uniformly continuous;

2. gi is uniformly Lipschitz equivalent to g∣Ei for any continuous Riemannian metric g on
E.

The reader will note, by contrast, that condition (1) is not imposed on stratified quasi-Finlserian
structures. This extra condition is required for stratified Riemannian metrics to facilitate some
technical steps in Chapter 4.

The stratified structures defined in Definition 3.5.3 naturally induce (semi-)metrics on the under-
lying orbifold E, in the following way:

Definition 3.5.6. Let (E,Σ = {Ei}i) be a stratified orbifold and recall the set A of piecewise-C1

curves in E. Let ĝ = (gi)i be a stratified Riemannian (semi-)metric on E and let (γ ∶ [a, b]→ E) ∈ A.
Since each stratum Ei ⊆ E is locally-closed, Ii = γ−1(Ei) ⊆ [a, b] is also locally closed and hence
measurable. Moreover, since γ is piecewise-C1 on the compact interval [a, b], it is Lipschitz continuous
on [a, b] and hence on each Ii (with respect to any Riemannian metric on E). It follows from [45,
Lem. 3.1.7] that γ̇ lies in the subspace TEi ⊆ TE, and hence gi (γ̇) is well-defined, almost everywhere
on Ii. Now define ĝ (γ̇) ∶ I → [0,∞) by:

ĝ (γ̇) = gi (γ̇) on Ii.

Since each gi can be extended to a continuous (semi-)metric gi on all of E, one has:

∣ĝ (γ̇)∣ ⩽max
i

sup
t∈I
∣gi (γ̇(t))∣ almost everywhere

and thus ĝ (γ̇) defines a non-negative element of L∞(I). One then defines:

ℓĝ(γ) =∫
I

ĝ (γ̇)
1
2 dL

where L denotes the Lebesgue measure on I. (A, ℓĝ) defines a (weak) length structure on E; denote
the corresponding (semi-)metric by dĝ. A similar construction applies to stratified quasi-Finslerian
structures L̂, resulting in a metric dL̂.

Note that any two stratified Riemannian metrics ĝ and ĥ on E are locally uniformly Lipschitz
equivalent on E, in the sense that for all K ⋐ E compact, there exists a constant C(K) > 0 such that
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for all Ei:
1

C(K)
gi ⩽ hi ⩽ C(K)gi on Ei ∩K.

(Indeed, by compactness of K, for each Ei, there exists Ci(K) > 0 such that 1
Ci(K)gi ⩽ hi ⩽ Ci(K)gi

on K; hence the result follows by setting C(K) = maxiCi(K).) In particular, the metric dĝ induces
the usual topology on E. The analogous result holds for stratified quasi-Finslerian structures.

By contrast, two stratified Riemannian semi-metrics are not, in general, even pointwise Lipschitz
equivalent. However if one fixes a stratified distribution D on E, then any two stratified Riemannian
semi-metrics ĝ and ĥ on E which are regular with respect to D are locally uniformly Lipschitz
equivalent.
Remark 3.5.7 (Refinement of stratification). Every orbifold Riemannian (semi-) metric g on a strati-
fied orbifold (E,Σ = {Ei}i) defines a stratified Riemannian (semi-) metric ĝ on E in the obvious way,
by setting gi = g∣Ei (where g∣Ei denotes the tangential component of g along Ei). Then ℓĝ(γ) = ℓg(γ)
for all piecewise-C1 paths in E and hence dg = dĝ, i.e. the (semi-) metrics induced by g and ĝ are the
same.

More generally, given a stratified orbifold (E,Σ = {Ei}i) and a refinement Σ′ of Σ (see Definition
2.1.7), every stratified Riemannian (semi-) metric ĝ = {gi}i on E with respect to the stratification Σ

also defines a stratified Riemannian (semi-) metric ĝ′ = {g′j}j with respect to Σ′ via g′j = gi(j)∣E′j . It is
again clear that dĝ = dĝ′ . The corresponding results for stratified quasi-Finslerian structures are also
valid.
Aside. Let E be a stratified orbifold and let L̂ be a stratified quasi-Finslerian structure on E. Then the
length-structure ℓL̂ has the surprising property that the quantity ℓL̂(γ) does not depend continuously
on the piecewise-C1 curve γ. This phenomenon can be observed even on an unstratified manifold;
see [25, Example 2.4.4]. This observation will not, however, be significant to this thesis.

3.5.2 A collapsing result for (M̆, ϕ̆)
Recall that there is a natural fibration [48, §9]:

q ∶M T3

Γ ⋅ (x1, ..., x7) (x
1

2 +Z, x
2 +Z, x3 +Z)

with (non-calibrated coassociative) fibres diffeomorphic to T4. Let I denote the involution of M

defined in eqn. (3.4.5) and define a non-free involution I of T3 by acting on the first two factors of
T3 by − Id and on the final factor by Id. Then q ○ I = I ○ q and so q descends to define a singular
fibration:

q̂ ∶ M̂→ I/T
3 = {±1}/T

2 × S1 = B,

with {±1}/T
2 being homeomorphic (although obviously not diffeomorphic) to CP1. The fibres of q̂

are all path-connected, the generic fibres being 4-tori and the fibres over the singular locus of B being
diffeomorphic to {±1}/T

2 ×T2. Combining q̂ with the natural ‘blow-down’ map ρ ∶ M̆→ M̂ similarly
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yields a fibration π of M̆ over B:

M̆ M̂

{±1}/T
2 × S1.

ρ

π
q̂

Away from the exceptional locus of M̆ the map π is a smooth surjection, with fibre T4. Near the
exceptional locus, the map π is modelled on:

X̃ ×T3 → ({±1}/C
2 ) ×T3 proj1×proj1ÐÐÐÐÐÐ→ ({±1}/C) × S

1,

where X̃ is the blow-up of {±1}/C
2 at the origin as in §3.4.1. The fibre of X̃ → {±1}/C

2 → {±1}/C

over 0 is the union of the proper transform of {±1}/({0} ×C) – denoted {±1}/({0} ×C)PT – and
the exceptional divisor CP1 intersecting transversally at a single point; hence for each y3 ∈ S1, the
fibre of π over {0}×{y3} is the union of {±1}/({0} ×C)PT ×{y

3}×T2 and CP1×{y3}×T2, intersecting
transversally along a single T2. It follows that the singular fibres of π are homeomorphic to four copies
of CP1 ×T2 intersecting a fifth copy of CP1 ×T2 transversally along four distinct copies of T2.3

Since q̂ is induced by the submersive map q ∶ M → T3, q̂ induces a natural stratification Σ on
M̂ by ‘pulling back’ the canonical stratification on B (see Corollary 4.1.6 for a proof of this fact):
explicitly, the strata of Σ consist firstly of the pre-image under q̂ of the smooth locus of B, i.e. the
collection of all smooth fibres of the map q̂. Secondly, they consist of the smooth locus of the four
singular fibres of q̂. Finally, they consist of the 16 components of the singular locus of M̂. By pulling
Σ back along the blow-down map ρ ∶ M̆→ M̂, one obtains a stratification of M̆, say Σ′. Explicitly, the
stratification Σ′ consists of firstly the collection of all smooth fibres of q̆, secondly the four singular
fibres of q̆ with their exceptional loci removed, and thirdly the 16 exceptional loci of M̆.

Theorem 3.5.8. Let (M̆, ϕ̆µ)
µ∈[1,∞) be the family constructed in the proof of Theorem 3.4.12. Then

the large volume limit of (M̆, ϕ̆µ) corresponds to an adiabatic limit of the fibration π. Specifically:

(M̆, µ−6ϕ̆µ)→ (B, L̂) as µ→∞

in the Gromov–Hausdorff sense, where L̂ is a stratified quasi-Finslerian structure on B (with respect
to the canonical stratification of B) defined explicitly as follows: fix a stratum Bi in the canonical
stratification of B and write π−1(Bi) = ⋃kj=0 Sj, where each Sj is a stratum in the stratification Σ of
M̂. Then given p ∈ Bi and u ∈ TpBi, define

Li(u) =
k

min
j=0

inf {∥u′∥g∞j ∣ u
′ ∈ TxSj such that dq̂(u′) = u (and in particular q̂(x) = p)} . (3.5.9)

3Note that [48, p. 35] contains an error in its description of the singular fibres of π, of which the authors of [48]
have been informed.
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Moreover, outside a neighbourhood of the singular locus of B, L̂ is simply given by the Euclidean
norm.

Consider the map f ∶M→ S1 given by:

Γ ⋅ (x1, ..., x7)↦ x3 +Z.

Then f descends to a map f̂ ∶ M̂→ S1. Define f̆ = f̂ ○ ρ ∶ M̆→ S1 and, for each a ∈ A, define:

f̆a = f̆∣W̆a,1
and f̂a = f̂∣Ŵa,1

. (3.5.10)

Explicitly, the maps f̆a and f̂a may be described as follows: writing W̆a,1 ≅ Ty3,y4,y7 × {±1}/B
4(ε) ,

one finds:
f̆a ∶ W̆a,1 → S1

(yi)↦ y3

and similarly for f̂a.
Now let gµ be the Riemannian metric on M̆ induced by the G2 3-form µ−6ϕ̆ and write ĝµ for

the induced stratified Riemannian metric on M̆ as in Example 3.5.7. Write dµ for the metric on M̆

induced by ĝµ. For all k ∈ [1,∞), consider the space:

M̆(k) = M̆/∐
a∈A

W̆a,k

where W̆a,k was defined in §3.4.2 and write Ŵa,k = ρ (W̆a,k). The proof of Theorem 3.5.8 starts from
the following result, which should be regarded as a stratified generalisation of Theorem 3.3.2:

Theorem 3.5.11. Suppose that there exists a stratified Riemannian semi-metric ĝ∞ on M̂ such that
the following five conditions hold:

Conditions 3.5.12.

1. Write D for the distribution over M̂ given by kerdq̂ and note that D is stratified with respect
to Σ. Then ĝ∞ is regular with respect to D;

2. On each M̆(k), k ∈ [1,∞):
ĝµ → ĝ∞ uniformly as µ→∞,

and there exist constants Λµ(k) ⩾ 0 such that:

lim
µ→∞

Λµ(k) = 1 and ĝµ ⩾ Λµ(k)2ĝ∞ for all µ ∈ [1,∞), (3.5.13)

where ĝ∞ is regarded as a stratified Riemannian semi-metric on M̆(k) using the blow-up map
ρ;

3.
lim
k→∞

lim sup
µ→∞

max
a∈A

sup
p∈S1

diamdµ [̆f−1a ({p}) ∩ W̆a,k] = 0;
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4.
lim
k→∞

max
a∈A

sup
p∈S1

diamd∞ [̂f−1a ({p}) ∩ Ŵa,k] = 0;

5.
lim
k→∞

lim sup
µ→∞

max
a∈A

sup
∂a,k

∣dµ − d∞∣ = 0,

where d∞ is the semi-metric on M̂ induced by ĝ∞ (regarded as a semi-metric on ∂a,k using the
identification ρ) and, for simplicity of notation, I write ∂a,k for the subset ∂W̆a,k

ρ
≅ ∂Ŵa,k.

Then the manifolds (M̆, µ−6ϕ̆µ) converge to (B,L), as claimed in Theorem 3.5.8.

(As for Theorem 3.3.2, since Theorem 3.5.11 is a result in metric geometry, rather than G2

geometry, the proof is postponed until Chapter 4 of this thesis (see Theorem 4.2.5), so as not to
detract from the main thrust of the current chapter. For comparative purposes, the reader may wish
to note that M̆ , M̂ and ρ above correspond to E1, E2 and Φ in Chapter 4 respectively, and that W̆a,k,
Ŵa,k above correspond respectively to U

(k−1)
1 (j), U (k

−1)
2 (j) in Chapter 4, the rest of the notation

being obviously equivalent.)
Thus, to prove Theorem 3.5.8, it suffices to establishing the five conditions in Conditions 3.5.12.

The remainder of this chapter will be devoted to this task.

3.5.3 Bounding the volume form induced by ω̆t

Recall the Kähler forms ω̆t interpolating between ω̂ and the Eguchi–Hanson metric ω̃t on X̃ used in
the construction of ϕ̆. For the purpose of proving Conditions 3.5.12, I require a lower bound on the
volume forms induced by ω̆t which is both sharp and t-independent. The purpose of this subsection
is to derive this bound.

I begin by providing an alternative perspective on the Eguchi–Hanson forms ω̃t. Consider the
problem of trying to construct Ricci-flat Kähler metrics on ({±1}/C

2 ) /{0}. One possible approach

is as follows: suppose one is given a closed, positive, real (1,1)-form ω̃ on ({±1}/C
2 )/{0} with the

following property:
ω̃2 = (ReΩ̂)

2
= (ImΩ̂)

2
= 2vol0. (3.5.14)

(Here Ω̂ = dw1 ∧ dw2 as usual and vol0 denotes the Euclidean volume form on {±1}/C
2 given by

dx1 ∧ dy1 ∧ dx2 ∧ dy2, where w1 = x1 + iy1 and w2 = x2 + iy2.) Then the triple (ω̃,ReΩ̂,ImΩ̂)
defines an Sp(1)-structure on ({±1}/C

2 )/{0} and the condition dω̃ = dReΩ̂ = dImΩ̂ = 0 implies
the vanishing of the torsion of this Sp(1)-structure [73, Lem. 6.8, p. 91], i.e. the triple defines a hyper-
Kähler structure. This implies that the holonomy of the Kähler metric induced by ω̃ is contained in
Sp(1) = SU(2) which is a Ricci-flat holonomy group [79, p. 55].

To ensure that ω̃ is closed and a (1,1)-form, apply the ansatz:

ω̃ = 1

4
ddc [a(λ)] = a′(λ)ω̂ + 1

4
a′′(λ)d(λ) ∧ dc(λ), (3.5.15)
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where λ = r2 = ∣w1∣2 + ∣w2∣2 is the radial distance squared from 0 ∈ {±1}/C
2 , a ∶ (0,∞) → R is a

smooth, real-valued function and ω̂ = i
2
(dw1 ∧ dw1 + dw2 ∧ dw2) is the standard Euclidean Kähler

form on {±1}/C
2 (in particular, note that ω̃ only depends on a′). A long but elementary calculation

yields:

ω̃2 =
d
dλ
[λ2a′(λ)2]

λ
vol0. (3.5.16)

Thus eqn. (3.5.14) is reduced to the second-order ODE:

d

dλ
[λ2a′(λ)2] = 2λ.

Integrating this equation gives:

a′t(λ) =
√

1 + t
4

λ2
(3.5.17)

for some t ⩾ 0 (the positive square root is needed to ensure that ω̃ is a positive (1,1)-form). In the
case where t = 0, ω̃0 = 1

4dd
ca0(λ) is simply the Euclidean form ω̂, however in the case t > 0, one

recovers the Eguchi–Hanson metrics ω̃t defined in §3.4.1, eqn. (3.4.9).

Remark 3.5.18. The fact that the 1-parameter family ω̃t of Eguchi–Hanson metrics can naturally be
extended to include the metric ω̂ (corresponding to the case t = 0) may appear initially surprising,
since the metrics ω̃t for t > 0 are defined on the manifold X̃ whereas the metric ω̂ is defined on the
orbifold {±1}/C

2 . However as t→ 0, the diameter of the exceptional divisor E tends to zero and so

the manifolds (X̃, ω̃t) converge in the Gromov–Hausdorff sense to the orbifold ({±1}/C
2
, ω̂), and

hence the result is not as surprising as it first appears. See also [5, p. 21].

Using this perspective, I now prove the required bound on the volume form of ω̆t:

Proposition 3.5.19. There exist R > 0, υ ∈ (0,1), independent of t > 0, such that the following is
true:

For every t > 0, there exists a closed, real, positive (1,1)-form ω̆t on X̃ satisfying the following
three properties:

1. ω̆t = ω̃t on the region {p ∈ X̃ ∣ r(p) ⩽ tR
2
};

2. ω̆t = ω̂ on a neighbourhood of the region {p ∈ X̃ ∣ r(p) ⩾ tR};

3. ω̆2
t ⩾ 2υ2vol0 on all of X̃, with equality holding at least on {p ∈ X̃ ∣ r(p) = rt}, where rt ∈
( tR

2 , tR).

Remark 3.5.20. It is not difficult to show that any ω̆t of the form considered in eqn. (3.5.15) which
satisfies points (1) and (2) cannot also satisfy ω̆2

t ⩾ 2vol0 on all of X̃, and thus there is some υ =
υ(t) ∈ (0,1) such that ω̆2

t ⩾ 2υ(t)2vol0, with equality realised at some point. The significance of the
above result is that υ can be taken to be independent of t.

Proof. Let υ ∈ (0,1) be a chosen later and write c = 2 − 2υ2. I begin with the following auxiliary
claim:
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Claim 3.5.21. There exists R0 = R0(c) > 0 (i.e. depending on c but independent of t) such that the
following is true:

For all R ⩾ R0 and all t > 0, there exists a smooth function kt ∶ [0, t2R2]→ (−∞,0] satisfying the
following three properties:

(i) kt ≡ 0 on [0, t
2R2

4 ] and on a neighbourhood of t2R2 in [0, t2R2];

(ii) ∫
t2R2

0 kt(λ)dλ = −t4;

(iii) kt(λ) ⩾ −cλ for all λ ∈ [0, t2R2], with equality holding at some point r2t ∈ [0, t2R2].

Proof of Claim. For such a function kt to exist, it is necessary and sufficient that:

∫
t2R2

t2R2

4

cλ dλ > t4.

(Given this, one constructs kt by smoothing out the piecewise constant function:

k̂t(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 on [0, t
2R2

4 )

−cλ on [ t
2R2

4 , t2R2)

0 at λ = t2R2

whilst ensuring that ∫
t2R2

0 kt(λ)dλ = −t4 and that kt(r2t ) = −cr2t still holds at some point r2t ∈ [0, t2R2].
The converse is clear.) However:

∫
t2R2

t2R2

4

cλ dλ = 15ct4R4

32
> t4

whenever R0(c) > 4

√
32
15c , completing the proof.

The proof of Proposition 3.5.19 now proceeds as follows. Define:

ht(λ) = ∫
λ

0
kt(s)ds ⩾ −t4

and define:
ω̆t =

1

4
ddc [αt(r2)] ,

where αt ∶ (0, t2R2]→ R satisfies:

α′t(λ) =
√

1 + t
4

λ2
+ ht(λ)

λ2
. (3.5.22)

For λ ∈ (0, t
2R2

4 ], ht ≡ 0 by Claim 3.5.21(i), hence α′t = a′t (see eqn. (3.5.17)) and whence ω̆t = ω̃t for
r ∈ (0, tR2 ). It follows that ω̆t extends over the exceptional divisor in X̃ and satisfies property (1)
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in Proposition 3.5.19. Similarly, for λ in a neighbourhood of t2R2 in (0, t2R2], ht ≡ −t4 by Claim
3.5.21(i)–(ii), hence α′t = a0 and whence ω̆t = ω̂ for r in a neighbourhood of tR in (0, tR]. Thus ω̆t
extends over the whole of X̃ and satisfies property (2) in Proposition 3.5.19. Thus to complete the
proof of Proposition 3.5.19, it suffices to prove that ω̆t is positive and satisfies property (3).

To prove positivity, I use the following well-known fact: if ω is a real, positive (1,1)-form on
an almost complex manifold M and ω′ is a real (1,1)-form on M with ∣ω′ − ω∣ω < 1, then ω′ is also
positive (this can easily be verified by working in local coordinates). To apply this to ω̆t, firstly note
that since ω̃t and ω̂ are both positive, one can restrict attention to the region r ∈ ( tR2 , tR). Thus it
suffices to prove that:

∣ω̂ − (α′t(r2)ω̂ +
1

4
α′′t (r2)d(r2) ∧ dc(r2))∣

ω̂
< 1 for r ∈ ( tR

2
, tR) .

Using the triangle inequality:

∣ω̂ − (α′t(r2)ω̂ +
1

4
α′′t (r2)d(r2) ∧ dc(r2))∣

ω̂
⩽ ∣α′t(r2) − 1∣ ⋅ ∣ω̂∣ω̂ +

1

4
∣α′′t (r2)∣ ⋅ ∣d(r2) ∧ dc(r2)∣ω̂ .

(3.5.23)
Using eqn. (3.5.22), it follows that:

∣α′t(r2) − 1∣ ⩽
√
t4 + ht(r2)

r2
⩽ 4

R2
for r ∈ ( tR

2
, tR) , (3.5.24)

since ht ⩽ 0. Using eqn. (3.5.22) once more, one sees:

α′′t (r2) =
− t

4+ht(r2)
r6 + h′t(r

2)
2r4√

1 + t4

r4 +
ht(r2)
r4

and hence:

r2 ∣α′′t (r2)∣ ⩽
∣t4 + ht(r2)∣

r4
+ ∣h

′
t(r2)∣
2r2

.

Since −t4 ⩽ ht(r2) ⩽ 0, −cr2 ⩽ h′t(r2) ⩽ 0 and tR
2 ⩽ r ⩽ tR, it follows that:

r2 ∣α′′t (r2)∣ ⩽
16

R4
+ c
2
. (3.5.25)

A simple calculation shows that ∣ω̂∣ω̂ =
√
2 and ∣d(r2) ∧ dc(r2)∣

ω̂
⩽ 4Cr2 for some C > 0 independent

of r2, R and t. Thus, by combining eqns. (3.5.23), (3.5.24) and (3.5.25):

∣ω̂ − ω̆t∣ω̂ ⩽
4
√
2

R2
+ 16C

R4
+ Cc

2
.

Define c = C−1 (note that C is independent of R and t) and choose R > R0(c) such that:

4
√
2

R2
+ 16C

R4
< 1

2
.
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Then ∣ω̂ − ω̆t∣ω̂ < 1 for r ∈ ( tR2 , tR) and thus the positivity of ω̆t has been verified.

Finally, let me establish property (3) of Proposition 3.5.19. Clearly for r ∉ ( tR2 , tR), one has
ω̆2
t = 2vol0, since both ω̂ and ω̃t have this property. For r ∈ ( tR2 , tR), by combining eqn. (3.5.16) and

(3.5.22), one computes:

ω̃2
t = (2 +

h′t(r2)
r2
) vol0.

Now by property (iii) in Claim 3.5.21, h′t(r
2)

r2 ⩾ −c = 2υ2 − 2 with equality holding at r = rt ∈ [0, tR],
as required. This completes the proof.

3.5.4 Defining a suitable ĝ∞

For simplicity of notation, write ϕ̆µ = µ−6ϕ̆µ so that gµ = g
ϕ̆µ

. The next task is to understand the
limit of the Riemannian metrics gµ away from the exceptional locus S̆.

Define:
W̆a = ⋂

k⩾1
W̆a,k ⊃ S̆,

so that in local coordinates:

W̆a = {y1, y2 = 0, (y5)
2 + (y6)2 ⩽ 1

2
ε} ,

and write:
M̆/∐

a∈A
W̆a = (M̆/∐

a∈A
Ŭa)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
○
M

⋃(∐
a∈A

Ŭa/W̆a)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M̆int

⋃(∐
a∈A

W̆a/W̆a) .

I shall consider the behaviour of gµ on each of these three regions in turn.

The region
○
M

Recall that on
○
M:

φ̆µ = θ123 + µ−6 (θ145 + θ167 − θ246 + θ257 + θ347 + θ356) .

Using the G2-basis (θ1, θ2, θ3, µ−3θ4, µ−3θ5, µ−3θ6, µ−3θ7), it follows that

gµ = ((θ1)⊗2 + (θ2)⊗2 + (θ3)⊗2) + µ−6 ((θ4)⊗2 + (θ5)⊗2 + (θ6)⊗2 + (θ7)⊗2)

→ (θ1)⊗2 + (θ2)⊗2 + (θ3)⊗2 uniformly on
○
M as µ→∞.

Thus define:
g∞ = (θ1)⊗2 + (θ2)⊗2 + (θ3)⊗2 on

○
M. (3.5.26)
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Then gµ − g∞ is non-negative definite for all µ ∈ [1,∞) and thus eqn. (4.2.7) holds with Λµ = 1 for all
µ. Moreover (see [48, §9]) it can be shown that kerdq̂ = ⟨e4, e5, e6, e7⟩, where (ei) denotes the basis of
left-invariant vector fields on M dual to the basis of left-invariant 1-forms (θi). (Note that whilst the
forms ei do not themselves descend to the orbifold M̂, the distribution ⟨e4, ..., e7⟩ is invariant under
the involution I defined in eqn. (3.4.5) and thus does descend to M̂.) Thus from eqn. (3.5.26), one
sees that g∞ is positive definite transverse to kerdq̂ on

○
M.

The region ∐a∈A W̆a/W̆a

For simplicity, fix some choice of a ∈ A. Recall from eqn. (3.4.31) that on the region W̆a/W̆a,µ :

ϕ̆µ = dy123 + µ−6 {dy145 + dy167 − dy246 + dy257 + dy347 + dy356 + y1dy147} .

In particular, for any given k ∈ [1,∞) and all µ ⩾ k, since W̆a/W̆a,k ⊆ W̆a/W̆a,µ one may calculate
that on W̆a/W̆a,k :

g
ϕ̆µ
=
⎛
⎜
⎝
1 −
(y1)2

4

⎞
⎟
⎠

−1
3

{[(dy1)2 + (dy2)2 + (dy3)2 + y1dy1 ⊙ dy3]

+ µ−6 [(dy4)2 + (dy5)2 + (dy6)2 + (dy7)2 + y1dy4 ⊙ dy6 + y1dy5 ⊙ dy7]}.

Define:

g∞ =
⎛
⎜
⎝
1 −
(y1)2

4

⎞
⎟
⎠

−1
3

{(dy1)2 + (dy2)2 + (dy3)2 + y1dy1 ⊙ dy3} on W̆a/W̆a . (3.5.27)

Then gµ → g∞ uniformly on W̆a/W̆a,k as µ → ∞. Moreover when µ ⩾ k, gµ − g∞ is non-negative
definite for ε > 0 sufficiently small, independent of µ (where ε is the size of the surgery region used
in the construction of M̆). Thus eqn. (4.2.7) holds once again by setting Λµ(k) = 1 for all µ ∈ [k,∞).
Moreover, using eqns. (3.4.6) and (3.4.7), one can show that on the region Ûa for a ∈ A:

kerdq̂ = ⟨ ∂
∂y4

,
∂

∂y5
,
∂

∂y6
,
∂

∂y7
⟩. (3.5.28)

Thus by eqn. (3.5.27), g∞ is positive definite transverse to kerdq̂ on W̆a/W̆a,k for all ε > 0 sufficiently
small, independent of µ.

The region M̆int

By analogy with the notation ϕ̆µ = µ−6ϕ̆µ, define ξ̂µ on M̆int by:

ξ̂µ = µ−6ξ̂µ = dy123 + µ−6 {dy145 + dy167 − dy246 + dy257 + dy347 + dy356} .
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Recall also that, by Proposition 3.4.21, on the region M̆int:

ϕ̆µ = ξ̂µ + µ−6 {y1dy147 + d [f (r
ε
)αa]} (3.5.29)

where αa (defined in Lemma 3.4.16) is independent of µ and at least quadratic in (y1, y2, y5, y6).
To analyse the behaviour of gµ on M̆int as µ →∞, it is useful to introduce a third G2 3-form Ξµ

on M̆int. To define Ξµ, firstly write ϕ̆µ = ξ̂µ +∑1⩽i<j<k⩽7 µ
−6σijkdy

ijk, where each coefficient σijk is a
smooth function on M̆int independent of µ and satisfying:

∣σijk∣ ⩽ Cr (3.5.30)

for some fixed C > 0, independent of µ, ε and r. Then define:

Ξµ = ξ̂µ + µ−6 ∑
1⩽i⩽3

4⩽j<k⩽7

σijkdy
ijk. (3.5.31)

Lemma 3.5.32. There exist constants C1,C2 independent of µ and r such that:

1. ∥ξ̂µ −Ξµ∥
ξ̂µ
⩽ C1r;

2. ∥ϕ̆µ −Ξµ∥
ξ̂µ
⩽ C2µ

−3r.

Proof. Observe that ξ̂µ has the G2-basis (ϑ1, ..., ϑ7) = (dy1,dy2,dy3, µ−3dy4, µ−3dy5, µ−3dy6, µ−3dy7).
With respect to this basis one can write:

Ξµ = ϑ123 + ϑ145 + ϑ167 − ϑ246 + ϑ257 + ϑ347 + ϑ356
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ξ̂µ

+ ∑
1⩽i⩽3

4⩽j<k⩽7

σijkϑ
ijk.

(3.5.33)

(1) then immediately follows from eqn. (3.5.30).
For (2), note that from eqn. (3.5.31):

ϕ̆µ −Ξµ = µ−6
⎛
⎜⎜
⎝
σ123dy

123 + ∑
1⩽i<j⩽3
4⩽k⩽7

σijkdy
ijk
⎞
⎟⎟
⎠
.

(The fact that there are no terms of the form dyijk with 4 ⩽ i < j < k ⩽ 7 follows from eqn. (3.5.29)
and the precise expression for αa given in Lemma 3.4.16.) Writing this in terms of the G2-basis (ϑi)
gives:

ϕ̆µ −Ξµ = µ−3
⎛
⎜⎜
⎝
µ−3σ123ϑ

123 + ∑
1⩽i<j⩽3
4⩽k⩽7

σijkϑ
ijk
⎞
⎟⎟
⎠
,

from which, together with eqn. (3.5.30), (2) is immediately clear.
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Informally, this result says that (a) Ξµ is of G2-type and ‘close’ to ξ̂µ if ε > 0 is sufficiently small
uniformly in µ and (b) the difference between Ξµ and ϕ̆µ is negligible as µ→∞. Thus to understand
the behaviour of ϕ̆µ as µ→∞, I begin by studying Ξµ as µ→∞.

Lemma 3.5.34. One can write:

gΞµ = ∑
1⩽i,j⩽3

(δij + gij)dyi ⊙ dyj + µ−6 ∑
4⩽i,j⩽7

(δij + gij)dyi ⊙ dyj

for some smooth functions gij on M̆int independent of µ and satisfying:

∣gij ∣ ⩽ C3r (3.5.35)

for some constant C3 > 0 independent of µ, ε and r.

Proof. Recall eqn. (3.5.33):

Ξµ = ϑ123 + ϑ145 + ϑ167 − ϑ246 + ϑ257 + ϑ347 + ϑ356
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ξ̂µ

+ ∑
1⩽i⩽3

4⩽j<k⩽7

σijkϑ
ijk.

Then one can automatically write:

gΞµ = ∑
1⩽i,j⩽7

(δij + gij)ϑi ⊙ ϑj

for some gij independent of µ and satisfying eqn. (3.5.35). Recalling the definition of the ϑi, to
complete the proof, it suffices to prove that gij = 0 if 1 ⩽ i ⩽ 3 and 4 ⩽ j ⩽ 7.

To this end, recall from [21, §2, Thm. 1] that:

gΞµvolΞµ = [(−) ⌟Ξµ] ∧ [(−) ⌟Ξµ] ∧Ξµ.

Thus, it suffices to prove that for all 1 ⩽ i ⩽ 3 and 4 ⩽ j ⩽ 7:

[ϑi ⌟Ξµ] ∧ [ϑj ⌟Ξµ] ∧Ξµ = 0,

where (ϑ1, ..., ϑ7) is the basis of vectors dual to (ϑ1, ..., ϑ7). Define:

D = ⟨ϑ1, ϑ2, ϑ3⟩ and T = ⟨ϑ4, ..., ϑ7⟩

so that TM̆int = D ⊕ T . By examining eqn. (3.5.33), one can verify that:

Ξµ ∈⋀3D∗ +D∗ ⊗⋀2T ∗.

It follows that for 1 ⩽ i ⩽ 3:
ϑi ⌟Ξµ ∈⋀2D∗ +⋀2T ∗ ⊂⋀2T∗M̆int
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and that for 4 ⩽ j ⩽ 7:
ϑj ⌟Ξµ ∈ D∗ ⊗ T ∗ ⊂⋀2T∗M̆int.

Thus:
[ϑi ⌟Ξµ] ∧ [ϑj ⌟Ξµ] ∧Ξµ ∈⋀6D∗ ⊗ T ∗ +⋀4D∗ ⊗⋀3T ∗ +⋀2D∗ ⊗⋀5T ∗,

with all three summands vanishing since rankD = 3 and rankT = 4. This completes the proof.

It follows at once that gΞµ converges uniformly to:

g∞ = ∑
1⩽i,j⩽3

(δij + gij)dyi ⊙ dyj (3.5.36)

on M̆int as µ→∞, and moreover that gΞµ−g∞ is non-negative definite for all µ. Once again, recalling
that:

kerdq̂ = ⟨ ∂
∂y4

,
∂

∂y5
,
∂

∂y6
,
∂

∂y7
⟩.

(see eqn. (3.5.28)) one sees that g∞ is positive definite transverse to kerdq̂ on M̆int.
I now return to the metrics gµ = g

ϕ̆µ
:

Proposition 3.5.37. The metrics gµ converge uniformly on M̆int to g∞ (as defined above), and
moreover there exist constants Λ′µ → 1 as µ→∞ such that gµ ⩾ (Λ′µ)

2
g∞ for all µ ∈ [1,∞).

Proof. Recall the ‘standard’ G2 3-formφ0 on R7 defined in §2.2. Since the assignmentφ ∈ ⋀3+ (R7)∗ ↦
gφ ∈⊙2

+ (R7)∗ is smooth, there exist constants δ1,∆0 > 0 such that if ∣φ −φ0∣Eucl < δ1, then:

∣gφ − gEucl∣Eucl ⩽∆0 ∣φ −φ0∣Eucl . (3.5.38)

Since every G2 3-form on a 7-manifold is pointwise isomorphic to φ0, it follows that eqn. (3.5.38)
holds for general G2 3-forms on manifolds, with the same values of δ1 and ∆0.

The proof now proceeds via repeated application of eqn. (3.5.38), together with the following
result:

Lemma 3.5.39. Let (A, g) be a finite-dimensional inner product space and write ∥− ∥g for the norm
on ⊙2A∗ induced by g. Then for any symmetric bilinear form h on A:

h ⩽ ∥h∥g ⋅ g. (3.5.40)

Proof. Firstly, recall the definition of ∥h∥g. Pick any g-orthonormal basis (a1, ..., an) of A. Then:

∥h∥g =
¿
ÁÁÀ

n

∑
i,j=1

h(ai, aj)2.

Now fix any vector a ∈ A. By scale invariance of eqn. (3.5.40), one may assume without loss of
generality that g(a) = 1. One can then extend a to a g-orthonormal basis (a1 = a, ..., an) of A and
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compute:
h(a) ⩽ ∣h(a)∣

=
√
h(a)2

⩽
¿
ÁÁÀ

n

∑
i,j=1

h(ai, aj)2 = ∥h∥g,

as required.

By combining point 1 from Lemma 3.5.32 with eqn. (3.5.38), for all ε ⩽ δ1
C1

(a condition which is
independent of µ), one obtains:

∥gΞµ − gξ̂µ∥gξ̂µ
⩽∆0 ∥Ξµ − ξ̂µ∥gξ̂µ

⩽∆0C1ε.

Applying Lemma 3.5.39, it follows that:

gΞµ − gξ̂µ ⩽∆0C1εgξ̂µ and gξ̂µ − gΞµ ⩽∆0C1εgξ̂µ

and hence:
(1 −∆0C1ε)gξ̂µ ⩽ gΞµ ⩽ (1 +∆0C1ε)gξ̂µ .

In particular, for ε < 1
∆0C1

(a condition which is independent of µ) gξ̂µ and gΞµ are Lipschitz equivalent
on M̆int, uniformly in µ. Now by Lemma 3.5.32, point 2: ∥ϕ̆µ −Ξµ∥gξ̂µ

→ 0 as µ → ∞ and hence

by the Lipschitz equivalence just established ∥ϕ̆µ −Ξµ∥gΞµ → 0 as µ→∞. Using eqn. (3.5.38) again,
one sees that for all µ sufficiently large:

∥gµ − gΞµ∥gΞµ ⩽∆0 ∥ϕ̆µ −Ξµ∥gΞµ

and hence by using Lemma 3.5.39 again:

gµ ⩾ (1 −∆0 ∥ϕ̆µ −Ξµ∥gΞµ) gΞµ ⩾ (1 −∆0 ∥ϕ̆µ −Ξµ∥gΞµ) g
∞,

where in the final line I have used that gΞµ ⩾ g∞ for all µ as above. Thus, setting Λ′µ =
√

1 −∆0 ∥ϕ̆µ −Ξµ∥gΞµ
for all µ sufficiently large, one has Λ′µ → 1 as required. Therefore to conclude the proof, it suffices to
prove that gµ → g∞ uniformly on M̆int as µ→∞.

To this end, fix a reference metric g on M̆int. Since gΞµ → g∞ uniformly, it follows that ∥gΞµ∥g ⩽
2 ∥g∞∥g =D for all µ sufficiently large. Thus by applying Lemma 3.5.39 one final time it follows that:

gΞµ ⩽Dg
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for all µ sufficiently large. Thus gΞµ ⩾D−3g when acting on 3-forms. In particular:

∥gµ − gΞµ∥g ⩽D
3 ∥gµ − gΞµ∥gΞµ

⩽D3∆0 ∥ϕ̆µ −Ξµ∥gΞµ → 0 as µ→∞.

Thus since gΞµ tends to g∞ uniformly, it follows that gµ also tends to g∞ uniformly. This completes
the proof.

In summary, it has been shown that one may define a Riemannian semi-metric g∞ on M̆/∐a∈A W̆a

with kernel precisely kerdq̂ such that on each M̆(k), gµ → g∞ uniformly and there exist constants
Λµ(k) ⩾ 0 such that:

lim
µ→∞

Λµ(k) = 1 and gµ ⩾ Λµ(k)2g∞ for all µ ∈ [1,∞).

I now explain how to define the limiting stratified Riemannian semi-metric ĝ∞ on all of M̂. Using
ρ, one may identify M̆/∐a∈A W̆a with a subset of M̂. By examining eqn. (3.5.27), one may verify
that g∞ can be smoothly extended to a semi-metric on all of M̂.

Recall that the strata of Σ (the stratification of M̂ induced by q̂) consist firstly of the preimage
under q̂ of the smooth locus of B, secondly of the smooth loci of the singular fibres of q̂ and thirdly
of the components of the singular locus Ŝ ⊂ M̂. On the first two types of strata of Σ, simply define
ĝ∞ to be the restriction of the semi-metric g∞ to the stratum. On the strata Ŝa, define ĝ∞ to be the
semi-metric:

g∞a = υ
4
3 (dy3)⊗2 , (3.5.41)

where υ is defined in Proposition 3.5.19. (The motivation for this definition will become apparent
in the next section.) Again, this can be extended to a semi-metric on all of M̂; indeed, it is easy to
verify that:

υ
4
3 g∞∣Ŝa

= g∞a . (3.5.42)

Thus ĝ∞ defines a stratified Riemannian semi-metric on M̂. Moreover, since:

kerdq̂ ∩TŜa = ⟨
d

dy4
,

d

dy7
⟩ ⊂ ⟨ d

dy3
,

d

dy4
,

d

dy7
⟩ = TŜa

(cf. eqn. (3.5.28)) it follows that g∞a is positive definite transverse to kerdq̂∩TŜa. Thus ĝ∞ is regular
with respect to the stratified distribution D.

Thus in summary, I have defined the stratified Riemannian semi-metric on all of M̂, and have
shown that with this definition, points 1 and 2 of Conditions 3.5.12 hold.

3.5.5 Estimates on ĝ∞

The purpose of this subsection is to verify points 3, 4 and 5 of Conditions 3.5.12. Specifically:
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Proposition 3.5.43.

3.
lim
k→∞

lim sup
µ→∞

max
a∈A

sup
p∈S1

diamdµ [̆f−1a ({p}) ∩ W̆a,k] = 0;

4.
lim
k→∞

max
a∈A

sup
p∈S1

diamd∞ [̂f−1a ({p}) ∩ Ŵa,k] = 0;

5.
lim
k→∞

lim sup
µ→∞

max
a∈A

sup
∂a,k

∣dµ − d∞∣ = 0,

where d∞ is the metric on M̂ induced by ĝ∞ (regarded as a metric on ∂a,k using the identification
ρ) and, for simplicity of notation, I write ∂a,k for the subset ∂W̆a,k

ρ
≅ ∂Ŵa,k.

Proof.
(3) For each p ∈ S1, write:

diam [̆f−1a ({p}) ∩ W̆a,k, g
µ]

for the diameter of the space f̆−1a ({p}) ∩ W̆a,k with respect to the intrinsic metric induced by the
Riemannian metric gµ, i.e. the metric defined using paths contained entirely within f̆−1a ({p}) ∩ W̆a,k.
Then clearly:

diamdµ [̆f−1a ({p}) ∩ W̆a,k] ⩽ diam [̆f−1a ({p}) ∩ W̆a,k, g
µ]

and so it suffices to prove that:

lim
k→∞

lim sup
µ→∞

max
a∈A

sup
p∈S1

diam [̆f−1a ({p}) ∩ W̆a,k, g
µ] = 0.

Initially, fix k ∈ [1,∞), a ∈ A and consider µ ⩾ k. Recall from eqn. (3.4.29) that there is a
homothety:

Hµ ∶ W̆a ≅ (T )y3,y4,y7 × X̃ (
1
2ε)y1,y2,y5,y6 → (Tµ)y3,y4,y7 × X̃ (

1
2ε, µ

−1)
y1,y2,y5,y6

(given by rescaling the y1, y2 and y3 directions by µ3) which identifies the G2 3-form ϕ̆µ on the
left-hand side with the G2 3-form µ−3ζµ = µ−3 (ζ + µ−3σ) on the right-hand side, where ζ and σ are
defined in eqns. (3.4.27) and (3.4.26) respectively. In particular, the homothety identifies ϕ̆µ = µ−6ϕ̆µ

on the left-hand side with the G2 3-form µ−9ζµ on the right-hand side.
Note also that there is a natural map f ∶ Tµ → µ3S1 given by projecting onto the first coordinate

(i.e. y3). Given p ∈ S1, write Tµ,p for the fibre of this map over the point µ3p ∈ µ3S1, which can
naturally be identified with the torus T2, irrespective of whether Tµ = T3

µ or T̃3
µ. Then, using the

diffeomorphism invariance of intrinsic diameter, one may compute that:

diam [̆f−1a ({p}) ∩ W̆a,k, g
µ] = diam [X̃ (1

2
ε,
k

µ
) × Tµ,p, µ−9ζµ]

= µ−3 diam [X̃ (1
2
ε,
k

µ
) × Tµ,p, ζµ] .

(3.5.44)
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Now as seen in Lemma 3.4.28, ∥µ−3σ∥
ζ

is bounded on X̃ (12ε, µ
−1) × Tµ by some absolute constant

C ′ > 0 independent of µ, which may be made arbitrarily small by choosing ε sufficiently small
(independent of µ) and µ sufficiently large. So without loss of generality one may assume that
C ′ < δ1 for δ1 as in eqn. (3.5.38) and thus:

∥gζµ − gζ∥ζ ⩽∆0C
′ on X̃ (12ε, µ

−1) × Tµ.

Since X̃ (12ε,
k
µ) × Tµ,p ⊂ X̃ (

1
2ε, µ

−1) × Tµ it follows by Lemma 3.5.39 that:

gζµ ⩽ (1 +∆0C
′)gζ on X̃ (1

2
ε,
k

µ
) × Tµ,p.

Therefore:
diam [X̃ (1

2
ε,
k

µ
) × Tµ,p, ζµ] ⩽

√
1 +∆0C ′ diam [X̃ (

1

2
ε,
k

µ
) × Tµ,p, ζ] . (3.5.45)

Now outside the region X̃ (12ε) = X̃ (
1
2ε,1), the metric induced by ζ is just Euclidean. It follows that:

diam [X̃ (1
2
ε,
k

µ
) × Tµ,p, ζ] ⩽ C ′′ (

µ

k
)
3

(3.5.46)

for some C ′′ > 0 independent of k, µ and p. Combining eqns. (3.5.44), (3.5.45) and (3.5.46) gives:

diam [̆f−1a ({p}) ∩ W̆a,k, g
µ] ⩽ µ−3

√
1 +C ′∆0C

′′ (µ
k
)
3

= C ′′
√
1 +C ′∆0k

−3.

Taking supremum over p ∈ S1, maximum over a ∈ A, limit superior over µ → ∞ and then the limit
over k →∞ then gives the required result.

(4) Since every point of Ŝa is a limit point of Ŵa,k/Ŝa, one clearly has:

lim
k→∞

max
a∈A

sup
p∈S1

diamd∞ [̂f−1a ({p}) ∩ Ŵa,k] = lim
k→∞

max
a∈A

sup
p∈S1

diamd∞ [̂f−1a ({p}) ∩ Ŵa,k/Ŝa ] .

Now ĝ∞ is simply given by g∞ on M̂/Ŝ . Thus, one has:

lim
k→∞

max
a∈A

sup
p∈S1

diamd∞ [̂f−1a ({p}) ∩ Ŵa,k/Ŝa ] ⩽ lim
k→∞

max
a∈A

sup
p∈S1

diam [̂f−1a ({p}) ∩ Ŵa,k/Ŝa , g∞]

where again diam [̂f−1a ({p}) ∩ Ŵa,k/Ŝa , g∞] denotes the diameter of f̂−1a ({p})∩ Ŵa,k/Ŝa with respect
to the intrinsic semi-metric defined by g∞, i.e. the semi-metric defined using paths contained entirely
within f̂−1a ({p}) ∩ Ŵa,k/Ŝa .

Now fix a ∈ A and recall that:

f̂−1a ({p}) ∩ Ŵa,k/Ŝa = [({±1}/B
4 (1

2ε, k))/{0}] × Tp,
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where Tp is the fibre over p ∈ S1 of the projection T → S1 onto the first coordinate, and:

g∞ =
⎛
⎜
⎝
1 −
(y1)2

4

⎞
⎟
⎠

−1
3

{(dy1)2 + (dy2)2 + (dy3)2 + y1dy1 ⊙ dy3} .

Write g∞ = gsEucl +ϖ where:

gsEucl = (dy1)
2 + (dy2)2 + (dy3)2 and ϖ = g∞ − gsEucl.

Note that g∞ and gsEucl are not Riemannian metrics on Ŵa,k/Ŝa and so a priori it is not clear that
Lemma 3.5.39 applies. However, if one restricts attention to the distribution ⟨ ∂∂y1 ,

∂
∂y2 ,

∂
∂y3 ⟩, then

both g∞ and gsEucl are non-degenerate (i.e. inner-products) and hence Lemma 3.5.39 applies. One
may compute that on this distribution, over the region Ŵa,k/Ŝa :

∥ϖ∥gsEucl
⩽Dk−3

for some D > 0 independent of k. Thus by Lemma 3.5.39:

g∞ ⩽ (1 +Dk−3) gsEucl. (3.5.47)

Hence:

diam [̂f−1a ({p}) ∩ Ŵa,k/Ŝa , g∞] ⩽
√
1 +Dk−3 diam [̂f−1a ({p}) ∩ Ŵa,k/Ŝa , gsEucl]

Clearly diam [̂f−1a ({p}) ∩ Ŵa,k/Ŝa , gsEucl] is bounded by D′k−3 for some D′ > 0 independent of k and
p. Thus one has:

diam [̂f−1a ({p}) ∩ Ŵa,k/Ŝa , g∞] ⩽D′k−3
√
1 +Dk−3.

Taking supremum over p ∈ S1
y3 , maximum over a ∈ A and the limit as k →∞ gives the required result.

(5) To prove this result, it is useful to introduce a third semi-metric on the region ∂a,k as follows.
Equip S1 with the metric υ 2

3dEucl, where υ is as defined in Proposition 3.5.19. Pulling this metric
back along the restriction f̆a ≅ f̂a ∶ ∂a,k → S1 defines a (µ-independent) semi-metric on ∂a,k, which I
shall denote dk. Explicitly:

dk(x, y) = υ
2
3dEucl (̆fa(x), f̆a(y)) .

Then to prove (5) in Proposition 3.5.43, I shall prove the following two statements:

5i.
lim
k→∞

lim sup
µ→∞

max
a∈A

sup
∂a,k

∣dµ − dk∣ = 0;

5ii.
lim
k→∞

lim sup
µ→∞

max
a∈A

sup
∂a,k

∣dk − d∞∣ = 0.
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Clearly, these collectively imply (5).

To prove (5i), I employ the following strategy: it is necessary to bound both dk − dµ and dµ − dk
from above. For the first of these two quantities, I show that on all of M̆: ‘gµ ⩾ υ 4

3 f̆∗gEucl’ in the limit
as µ →∞. Thus ‘dµ ⩾ dk’ (again, in a limiting sense) and hence dk − dµ can be bounded above. For
the second, for any two points x, y ∈ ∂k I write down an explicit path γ ∶ x → y whose length with
respect to gµ is approximately dk(x, y), with this approximation becoming exact in the limit as first
µ→∞ and then k →∞. The strategy for (5ii) is similar.

(5i) Recall the following decomposition of M̆:

M̆ =
○
M⋃ M̆int⋃(∐

a∈A
W̆a) .

As in §3.5.4, I shall consider each region in turn.

○
M: Here:

gµ = ((θ1)⊗2 + (θ2)⊗2 + (θ3)⊗2) + µ−6 ((θ4)⊗2 + (θ5)⊗2 + (θ6)⊗2 + (θ7)⊗2)

and thus evidently:
gµ ⩾ (θ3)⊗2 = (dx3)⊗2 = f̆∗gEucl ⩾ υ

4
3 f̆∗gEucl (3.5.48)

on
○
M (recall that υ < 1).

M̆int: On this region, recall that ϕ̆µ = µ−6ϕ̂µ, where ϕ̂µ was defined in Proposition 3.4.21. Moreover,
recall from the proof of the same proposition that:

∣ϕ̂µ − ξ̂µ∣
ξ̂µ
⩽ (4C + 1)ε

for some constant C > 0 independent of µ, where ξ̂µ is given by:

ξ̂µ = µ6dy123 + dy145 + dy167 − dy246 + dy257 + dy347 + dy356.

Hence, by applying a simple rescaling:

∣ϕ̆µ − ξ̂µ∣
ξ̂µ
⩽ (4C + 1)ε,

where ξ̂µ = µ−6ξ̂µ as in §3.5.4. It follows from eqn. (3.5.38) that for all ε > 0 sufficiently small
(independent of µ) the metric gµ induced by ϕ̆µ satisfies:

∣gµ − gξ̂µ ∣gξ̂µ
⩽ C ′ε
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for some constant C ′ > 0 independent of µ. By applying Lemma 3.5.39, it follows that on M̆int:

gµ ⩾ (1 −C ′ε) g
ξ̂µ
.

However an explicit calculation shows that:

gξ̂µ = ((dy
1)⊗2 + (dy2)⊗2 + (dy3)⊗2) + µ−6 ((dy4)⊗2 + (dy5)⊗2 + (dy6)⊗2 + (dy7)⊗2)

and thus:
gξ̂µ ⩾ (dy

3)⊗2 = (dx3)⊗2 = f̆∗gEucl.

Thus on M̆int:
gµ ⩾ (1 −C ′ε) f̆∗gEucl.

Now recall that υ < 1 is independent of µ and t and hence also independent of ε. Thus for ε sufficiently
small independent of µ, one has that:

1 −C ′ε ⩾ υ
4
3 .

Thus, reducing ε equally for all µ if necessary, one has that on M̆int:

gµ ⩾ υ
4
3 f̆∗gEucl. (3.5.49)

∐a∈A W̆a: Fix some W̆a, a ∈ A, and as for point 3 begin by considering the homothetic region
Tµ × X̃ (12ε, µ

−1) equipped with the G2 3-form ζµ = ζ + µ−3σ (cf. Lemma 3.4.28).

Initially, consider the region outside Tµ × X̃ (12ε), i.e. the region {r ⩾ 1
2ε}. On this region ζ = ξ̂ is

just the standard (Euclidean) G2 3-form in the coordinates (yi) and so:

gζ ⩾ (dy3)
⊗2 = f∗gEucl,

where f denotes the composite:

Tµ × X̃ (12ε, µ
−1) proj1ÐÐÐ→ Tµ

(y3,y4,y7)↦y3
ÐÐÐÐÐÐÐ→ µ3S1,

as above. Moreover, recall from Lemma 3.4.28 that outside Tµ × X̃ (12ε):

∥ζµ − ζ∥ζ ⩽
1

2
ε.

and thus by eqn. (3.5.38), for all ε > 0 sufficiently small (independent of µ):

∥gζµ − gζ∥ζ ⩽
∆0ε

2
.
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Hence by applying Lemma 3.5.39:

gζµ ⩾ (1 −
∆0ε

2
) gζ ⩾ (1 −

∆0ε

2
) f∗gEucl.

As before, reducing ε equally for all µ if necessary, of may assume that 1 − ∆0ε
2 ⩾ υ

4
3 and thus that:

gζµ ⩾ υ
4
3 f∗gEucl (3.5.50)

outside Tµ × X̃ (12ε).

Now consider the region Tµ × X̃ (12ε). By Lemma 3.1.1, on this region one can write:

gζ = ν
4
3 (dy3)⊗2 + ν−

2
3 [(dy4)⊗2 + (dy7)⊗2] + ν−

2
3 gω̆t

where ν is defined by the equation:

ν2ω̆2
t =ReΩ̃2 = ImΩ̃2.

Then clearly:
gζ ⩾ ν

4
3 (dy3)⊗2 ⩾ υ

4
3 (dy3)⊗2 , (3.5.51)

where the final equality follows from the fact that υ was defined precisely as the minimum value of
ν. Now recall that on the region Tµ × X̃ (12ε) one has:

∥ 1

µ3
σ∥

ζ

⩽ C
µ3

for some C > 0 independent of µ. Thus, by eqn. (3.5.38), for all µ sufficiently large one can write:

∥gζµ − gζ∥gζ ⩽
C∆0

µ3
. (3.5.52)

Applying Lemma 3.5.39 yields:

gζµ ⩾ (1 −
C∆0

µ3
) gζ ⩾ (1 −

C∆0

µ3
)υ

4
3 f∗gEucl (3.5.53)

on the region Tµ × X̃ (12ε). Combining eqns. (3.5.50) and (3.5.53) then yields the estimate:

gζµ ⩾ (1 −
C∆0

µ3
)υ

4
3 f∗gEucl (3.5.54)

on all of Tµ × X̃ (12ε, µ
−1).

Now recall the homothety W̆a ≅ T ×X̃ (12ε)
HµÐ→ Tµ×X̃ (12ε, µ

−1) and recall from eqn. (3.4.30) that
the 3-form ϕ̆µ on W̆a is defined by:

ϕ̆µ = µ−9 (Hµ)∗ ζµ.
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Note also that the diagram:

W̆a ≅ T × X̃ (12ε) Tµ × X̃ (12ε, µ
−1)

S1 µ3S1

Hµ

f̆ f

×µ3

commutes. Applying the homothety Hµ to eqn. (3.5.54) yields:

gµ = g
ϕ̆µ
⩾ (1 − C∆0

µ3
)υ

4
3 f̆∗gEucl

on the region W̆a.

Combining this with eqn. (3.5.48) and (3.5.49) yields:

gµ ⩾ (1 − C∆0

µ3
)υ

4
3 f̆∗gEucl (3.5.55)

on all of M̆, hence:

dµ ⩾
√

1 − C∆0

µ3
dk

and whence:
dk − dµ ⩽

C∆0

µ3
, (3.5.56)

since manifestly dk(x, y) ⩽ υ
4
3 < 1 for all x, y ∈ M̆. Thus, the quantity dk−dµ has been bounded above

uniformly on all of M̆.

Now fix a ∈ A and turn attention to bounding the quantity dµ −dk from above on the subset ∂a,k.
Recall the distance r defined in Proposition 3.5.19. For each p ∈ S1, define a point p̆ ∈ W̆a,k using the
local coordinates (y1, ..., y7) on W̆a,k as:

p̆ = ( r

µ3
,0, p,0,0,0,0) ∈ f̆−1a ({p}) ∩ W̆a,µ ⊆ f̆−1a ({p}) ∩ W̆a,k,

where the final membership holds when µ ⩾ k. The first task is to understand the distance between
points of the form p̆ with respect to the metric dµ.

Given p, q ∈ S1, pick the shorter segment γ connecting p → q in S1 and use it to define a path γ̆

in W̆a,µ connecting p̆→ q̆ via:
γ̆ = ( r

µ3
,0, γ,0,0,0,0) .

Then clearly:
dµ (p̆, q̆) ⩽ ℓgµ(γ̆).

To compute ℓgµ(γ̆), consider the homothety W̆a,µ ≅ T × X̃ (12ε, µ)
HµÐ→ Tµ × X̃ (12ε) and recall that
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ϕ̆µ = µ−9 (Hµ)∗ ζµ. Under Hµ, γ̆ becomes the path:

γ̆′ = (r,0, µ3γ,0,0,0,0) .

Begin by considering the G2 3-form ζ. This induces the metric:

gζ = ν
4
3 (dy3)⊗2 + ν−

2
3 [(dy4)⊗2 + (dy7)⊗2] + ν−

2
3 gω̃t

where ν∣r = r = υ. The length of γ̆′ with respect to the metric induced by ζ is then clearly υ 2
3µ3dEucl(p, q).

Applying Lemma 3.5.39 to eqn. (3.5.52) once again yields:

gζµ ⩽ (1 +
C∆0

µ3
) gζ . (3.5.57)

and so:

ℓgζµ (γ̆
′) ⩽
√

1 + C∆0

µ3
υ

2
3µ3dEucl(p, q).

Pulling this equation back along the homothety Hµ (and rescaling by µ−3) gives:

dµ (p̆, q̆) ⩽ ℓgµ(γ̆)

⩽
√

1 + C∆0

µ3
υ

2
3dEucl(p, q)

⩽ dk (p̆, q̆) +
C∆0

µ3
,

(3.5.58)

where again, I have used υ 2
3dEucl(p, q) ⩽ 1 for all p, q ∈ S1.

Now pick two arbitrary points x, y ∈ ∂k. Define p = f̆(x) and q = f̆(y). Then clearly:

dµ(x, y) ⩽ dµ (x, p̆)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽ diamdµ [̆f−1a ({p}) ∩ W̆a,k]

+dµ (p̆, q̆) + dµ (q̆, y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽ diamdµ [̆f−1a ({q}) ∩ W̆a,k]

⩽ dµ (p̆, q̆) + 2 sup
s∈S1

diamdµ [̆f−1a ({s}) ∩ W̆a,k]

⩽ dk(x, y) +
C∆0

µ3
+ 2 sup

s∈S1

diamdµ [̆f−1a ({s}) ∩ W̆a,k] ,

(3.5.59)

where eqn. (3.5.58) was used in passing to the final line. Combining eqns. (3.5.56) and (3.5.59) gives:

∣dµ(x, y) − dk(x, y)∣ ⩽
C∆0

µ3
+ 2 sup

s∈S1

diamdµ [̆f−1a ({s}) ∩ W̆a,k]

uniformly in x and y. Taking max over a ∈ A, lim sup over µ → ∞ and subsequently the limit over
k →∞, together with point 2 from Proposition 3.5.43 gives the required result.

(5ii) The argument in this case is similar but easier. Firstly, by taking the (pointwise) limit of eqn.
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(3.5.55) as µ→∞, one obtains that on M̂/∐a∈A Ŵa :

g∞ ⩾ υ
4
3 f̂∗gEucl

and hence by continuity this inequality holds on all of M̂/Ŝ . Moreover, for each a ∈ A:

g∞a = υ
4
3 f̂∗gEucl.

It follows that:
d∞ ⩾ dk (3.5.60)

on all of M̂.
For the converse bound, given x, y ∈ ∂k, define p = f̂(x), q = f̂(y) and consider the points:

p̂ = (0,0, p,0,0,0,0) and q̂ = (0,0, q,0,0,0,0) ∈ Ŵa,k.

Then clearly:

d∞(x, y) ⩽ d∞ (x, p̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽ diamd∞ [̂f−1a ({p}) ∩ Ŵa,k]

+d∞ (p̂, q̂) + d∞ (q̂, y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽ diamd∞ [̂f−1a ({q}) ∩ Ŵa,k]

⩽ d∞ (p̂, q̂) + 2 sup
s∈S1

diamd∞ [̂f−1a ({s}) ∩ Ŵa,k] .

However d∞ (p̂, q̂) can easily be bounded as follows: choose the shorter segment γ ∶ p→ q in S1. This
defines a path γ̂ from p̂ to q̂ in Ŵa,k via (0,0, γ,0,0,0,0) which has length υ

2
3dEucl(p, q) = dk(x, y)

with respect to the g∞a . Thus:

d∞(x, y) ⩽ dk(x, y) + 2 sup
s∈S1

diamd∞ [̂f−1a ({s}) ∩ Ŵa,k] . (3.5.61)

Finally, combining eqns. (3.5.60) and (3.5.61) gives:

∣d∞(x, y) − dk(x, y)∣ ⩽ 2 sup
s∈S1

diamd∞ [̂f−1a ({s}) ∩ Ŵa,k]

uniformly in x, y ∈ ∂a,k. Taking max over a ∈ A, lim sup over µ→∞ and subsequently the limit over
k →∞, together with point 4 of Proposition 3.5.43 gives the required result.
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Chapter 4

Convergence and collapsing result for orbifolds

This chapter proves a general collapsing result (Theorem 4.2.5) for families of stratified Riemannian
metrics ĝµ on a compact orbifold E, subject to suitable limiting conditions on the metrics ĝµ as µ→∞,
which subsumes Theorems 3.3.2 and Theorem 3.5.11. The result is distinct from similar theorems
in the literature since it does not require bounds on curvature or injectivity radius of (E, ĝµ) and
thus allows for Gromov–Hausdorff limits of (E, ĝµ) which have strictly lower dimension than E. The
chapter also introduces and studies a new class of stratified fibrations between orbifolds, termed weak
submersions, which play a key role in the proof of the main theorem.

4.1 Stratified fibrations between orbifolds
Following [27, §3.2], I call a smooth map f ∶ E → B a submersion if for all e ∈ E, there exists a chart
Ξe centred at e, a chart Ξf(e) centred at f(e), and a local representation (f̃ , κf) in these charts such
that f̃ is submersive and κf is surjective. The following result may not, to the author’s knowledge,
be found in the literature. It is the analogue of Ehresmann’s Theorem for orbifolds (see e.g. [122,
Thm. 9.3] for the classical statement):

Proposition 4.1.1. Let E, B be orbifolds and let π ∶ E → B a proper, surjective submersion. Let
kerdπ be the vertical distribution of π, pick a Riemannian metric g on E and let C = kerdπ� be the
corresponding horizontal distribution.

1. Let γ ∶ (−1,1) → B be an embedded curve. Then π−1(γ(−1,1)) ⊆ E is a suborbifold, denoted
Eγ. Write E0 = π−1(γ(0)). Then there is an orbifold diffeomorphism:

Eγ ≅ E0 × γ(−1,1)

identifying π with projection onto the second factor and C with the product connection;

2. Let U ⊆ B be an open ball and write EU = π−1(U) ⊆ E. Write b for the centre of the ball U and
write Eb = π−1(b). Then EU is an a suborbifold of E and there is an orbifold diffeomorphism:

EU ≅ Eb ×U
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identifying π with projection onto the second factor (although the identification does not identify
C with the product distribution, in general).

To prove Proposition 4.1.1, I begin by recording the following equivariant version of the Implicit
Function Theorem:

Proposition 4.1.2. Let Γi ⊂ GL(ni;R) be finite subgroups, i = 1,2, and let Ũ ⊆ Rn1 be a Γ1-invariant
open neighbourhood of 0. Suppose one is given a group homomorphism ι ∶ Γ1 → Γ2 and a smooth
map f ∶ Ũ → Rn2 which is ι-equivariant, which maps 0 ∈ Rn1 ↦ 0 ∈ Rn2 and has surjective derivative
at 0. Write K = ker(df ∣0), a Γ1-invariant subspace of Rn1 of dimension n1 − n2 and let T be any
Γ1-invariant complementary subspace to K in Rn1 .

Then (shrinking Ũ if necessary) there is a Γ1-equivariant diffeomorphism:

F ∶ Ũ ⊆ K ×T→ F (Ũ) ⊆ K ×Rn2

(where Γ1 acts on Rn2 via the map ι ∶ Γ1 → Γ2) such that dF ∣0 identifies T with Rn2 and such that
the diagram:

Ũ ⊆ Rn1 F (Ũ) ⊆ K ×Rn2

Rn2

F

f π2

commutes and is equivariant. In particular, if ι is surjective, then the bottom arrow in the following
diagram is an isomorphism:

0 ×T Rn2

Γ1
/(0 ×T) Γ2

/Rn2

df ∣0

proj proj

The proof is a simple application of the Inverse Function Theorem, and so it is omitted here.

Proof of Proposition 4.1.1. That Eγ and EU are suborbifolds of E follows at once from the local
description of π afforded by Proposition 4.1.2. Moreover, Proposition 4.1.2 shows that for each e ∈ E,
dπ∣e defines an isomorphism Ce → Tπ(e)B.

Now consider (1). Choose a point e ∈ E0. The derivative of γ defines a natural map γ̇ ∶ (−1,1)→
TB∣γ . Using dπ, one may lift this uniquely to a map (−1,1) → C; integrating this vector field along
(−1,1) defines the horizontal lift of γ starting from e, denoted γe. Now define a map:

E0 × (−1,1)→ Eγ

(e, t)↦ γe(t).

One may verify that this is the required diffeomorphism. Given (1), (2) follows as for manifolds, by
trivialising π along radial paths emanating from b.
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In general, the requirement that the homomorphisms κf be surjective can be rather strict. The
following definition relaxes this condition:

Definition 4.1.3. A smooth map of orbifolds f ∶ E → B is a weak submersion if for all e ∈ E, there
exists a chart Ξe centred at e, a chart Ξf(e) centred at f(e), and a local representation (f̃ , κf) in
these charts such that f̃ is submersive. (In particular, κf is not assumed to be surjective.)

Clearly Proposition 4.1.1 does not apply to weak submersions in general, as the following example
illustrates:

Example 4.1.4. Let E = {±1}/T
2 , B = {±1}/[T

1 × {0}] and let π ∶ E → B denote the canonical
projection. Then E is the ‘pillowcase’, homeomorphic to a 2-sphere, with singular points precisely the
four corners of the ‘pillowcase’ and B is a closed interval, with singular points precisely the endpoints
of the interval.

↓
b

e

(4.1.5)

π is a surjective, proper, weak submersion, however whilst the preimage of a smooth point in B is
topologically a circle, the preimage of a singular point is topologically a closed interval. Thus π is
not a locally-trivially fibration (or even a Serre fibration, since the homotopy groups of its fibres are
not constant over the connected base space). Note also that the points e and b satisfy Γe = 1 and
Γb = Z/2 . Thus dπe ∶ Ce → TbB is not an isomorphism (in fact, it is a 2:1 quotient).

Nevertheless, a stratified version of Proposition 4.1.1 still holds for weak submersions:

Corollary 4.1.6. Let E and B be orbifolds and let π ∶ E → B be a proper, surjective, weak submersion
and let Σ(B) = {Bi} be a stratification of B. For each Bi, the subset π−1 (Bi) ⊆ E is a suborbifold
and the restriction of π to π−1 (Bi) ⊆ E defines a submersion onto the submanifold Bi ⊆ B in
the usual orbifold sense. Let {Eji }j denote the strata in the canonical stratification of π−1 (Bi).

Then π ∶ Eji → Bi is a surjective submersion for all i, j. Moreover, the collection {Eji }i,j define
a stratification of E, denoted Σ(π,E,B) with respect to which the distribution D = ker(dπ) is a
stratified distribution. In particular, the orthocomplement of the vertical distribution (with respect to
any Riemannian metric) is also stratified.

Proof. Firstly, note that any weak submersion from an orbifold to a manifold is (trivially) a submer-
sion, since any group homomorphism to the trivial group is surjective. The rest of the corollary follow
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simply by working in appropriate local charts as in the proof of Proposition 4.1.1. For example, to see
that the distribution D is stratified with respect to the induced stratification Σ(π,E,B), one notes
that by Proposition 4.1.1, if one picks a stratum Bi in B and a point b ∈ Bi, then each canonical
stratum of the orbifold π−1 (Bi) is locally given by the product of a union of canonical strata in
π−1(b) with open discs in the base space Bi; from this, the result is clear.

Remark 4.1.7. Note that in the proof above, each canonical stratum of π−1 (Bi) need not be given
locally as the product of a single canonical stratum of π−1(b) with an open disc in the base: indeed,
consider the Möbius band M (viewed as an orbifold with singular set precisely its boundary) and let
π ∶M→ S1 be the usual projection. Then the stratification of M induced by π is simply its canonical
stratification (which has two strata), whereas the canonical stratification of the preimage of any point
in the base has 3 strata, the two endpoints being different strata of the preimage, but belonging to
the same stratum of M.

More generally, in Proposition 4.1.1, if one writes {Fj}j for the canonical stratification of F = Eb
and {Ei}i for the stratification of E induced by π, then the stratification of EU given by {Fj ×Ub}j
is a refinement of the stratification {Ei ∩ EU}i. Phrased differently, the stratification of E induced
by π is stable under ‘horizontal transport maps’ used in the proof of Proposition 4.1.1.

Example 4.1.8. Return to eqn. (4.1.5). The stratification Σ(π,E,B) is depicted below:

↓

B0B1 B2

E0
0E0

1

E1
1

E2
1

E0
2

E1
2

E2
2

4.2 Statement of main result

The purpose of this section is to present a precise statement of the main theorem of this chapter. I
begin by introducing the necessary notation:

Notation 4.2.1.
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1. Let E2 be a compact orbifold, let (B,ΣB = {Bi}i) be a stratified orbifold, let π ∶ E2 → B be
a surjective, weak submersion with path-connected fibres and let Σ2 = {(E2)j}j be the induced
stratification on E2 (see Corollary 4.1.6). Let ĝ∞ be a stratified Riemannian semi-metric on E2

which is regular with respect to the stratified distribution kerdπ and write d∞ for the semi-metric
on E2 induced by ĝ∞.

2. Let (E1,Σ1) be a second compact, stratified orbifold and, for i = 1,2, let Si(j) ⊆ Ei (j = 1, ...,N)
be disjoint, closed, subsets. Write:

Si =
N

∐
j=1

Si(j)

and suppose there is a stratified orbifold diffeomorphism Φ ∶ E1/S1 → E2/S2.

3. For each j = 1, ...,N , let (U (r)1 (j))r∈(0,1] be a family of open neighbourhoods of S1(j) ⊆ E1 such

that U (r)1 ⊆ U (s)1 for r < s. Suppose moreover that for all j ≠ j′ ∈ {1, ...,N}:

U
(1)
1 (j) ∩U

(1)
1 (j′) = ∅. (4.2.2)

Write U (r)2 (j) = E2/Φ (E1/U (r)1 (j)) for the corresponding nested open neighbourhoods of S2(j) ⊆

E2, where U (1)2 (j) and U (1)2 (j′) are, again, disjoint for distinct j and j′. Write:

U
(r)
i =

N

∐
j=1

U
(r)
i (j), i = 1,2.

4. For each j = 1, ...,N , let S(j) be a set and let fi,j ∶ U (1)i (j) → S(j) be surjective maps such that
the following diagram commutes:

U
(1)
1 (j)/S1(j) U

(1)
2 (j)/S2(j)

S(j)

Φ

f1,j f2,j

(4.2.3)

Intuitively, one should think of S1 and S2 as representing ‘singular’ regions in E1 and E2 respec-
tively. The existence of Φ then asserts that the orbifolds E1 and E2 are diffeomorphic ‘away from
their singular regions’ and condition 4 states that, for each j, the singular regions S1(j) and S2(j)
are ‘fibred’ over a common base space S(j). Using Φ, I shall henceforth identify E1/S1 with E2/S2
and write E(r) = E1/U (r)1 ≅ E2/U (r)2 . Similarly, I shall write ∂(r)(j) = ∂U (r)1 (j) ≅ ∂U

(r)
2 (j).

Remark 4.2.4. In the case of the manifold M̆ considered in Chapter 3, the above definition takes the
following concrete form:

1. E1 = M̆ (a manifold), E2 = M̂, Σ2 is the stratification Σ = Σ (q̂, M̂,B) induced by the submersion
q̂ ∶ M̂→ B, and Σ1 is Σ′, the pullback of Σ along ρ.

2. Φ is the restriction of ρ ∶ M̆→ M̂ to M̆/S̆.
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3. The index j ∈ {1, ...,N} is simply a ∈ A and for r ∈ (0,1]:

U
(r)
1 (a) = W̆a, 1

r
.

Likewise:
U
(r)
2 (a) = Ŵa, 1

r
.

4. S(a) = S1 for all a and:
f1,a = f̆a and f2,a = f̂a,

where f̆a and f̂a are defined in eqn. (3.5.10).

5. For each µ ∈ [1,∞), take ĝµ to be the stratified Riemannian metric obtained from gµ−6ϕ̆µ by
the refinement procedure detailed in Remark 3.5.7.

Theorem 4.2.5.

1. Fix a stratum Bi in B, write π−1(Bi) = ⋃kl=0(E2)j(l) and write gj(l) for the component of ĝ∞ on
the stratum (E2)j(l). Define a map Li ∶ TBi → R as follows: given p ∈ Bi and u ∈ TpBi, define

Li(u) =
k

min
l=0

inf
x ∈ (E2)j(l) ∩ π−1(p)

{∥u′∥gj(l) ∣ u
′ ∈ Tx(E2)j(l) such that dπ(u′) = u} . (4.2.6)

Then L̂ = {Li}i defines a stratified quasi-Finslerian structure on B (see Definition 3.5.3) and (B, L̂)
is the free metric space on (E2, ĝ

∞).

2. Now suppose further that (ĝµ)µ∈[1,∞) are stratified Riemannian metrics on E1 inducing metrics
dµ, such that the following 4 conditions are satisfied:
(i) For all r ∈ (0,1]:

ĝµ → ĝ∞ uniformly as µ→∞ on the space E(r)

and there exist constants Λµ(r) ⩾ 0 such that:

lim
µ→∞

Λµ(r) = 1 and ĝµ ⩾ Λµ(r)2ĝ∞ on E(r) for all µ ∈ [1,∞); (4.2.7)

(ii)
lim sup
r→0

lim sup
µ→∞

max
j∈{1,...,N}

sup
p∈S(j)

diamdµ [f−11,j({p}) ∩U
(r)
1 (j)] = 0;

(iii)
lim sup
r→0

max
j∈{1,...,N}

sup
p∈S

diamd∞ [f−12,j({p}) ∩U
(r)
2 (j)] = 0;
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(iv)
lim sup
r→0

lim sup
µ→∞

max
j∈{1,...,N}

sup
∂(r)(j)

∣dµ − d∞∣ = 0.

Then:
(E1, d

µ)→ (B, L̂) as µ→∞,

in the Gromov–Hausdorff sense.

(By ‘ĝµ → ĝ∞ uniformly on E(r)’, I mean that for each fixed reference stratified Riemannian metric
ĥ on E1, one has:

∥gµi − g
∞
i ∥hi → 0 as µ→∞ on (E1)i ∩E

(r).

Since any two stratified Riemannian metrics on a compact orbifold are uniformly Lipschitz equivalent,
this definition is independent of the choice of ĥ.)

Remark 4.2.8. Note that if the bilinear form ĝ∞ is given on each stratum (E2)j lying over Bi as π∗hi,
where ĥ = {hi}i is a stratified Riemannian metric on B (write ĝ∞ = π∗ĥ), then L̂ = ĥ and (B,dĥ) is
clearly the free metric space on (E2, d

∞). More generally, if ĝ∞ = π∗ĥ on some proper subset U of
E, then once again it is clear that L̂ = ĥ over U , since the value of L̂ at a point b ∈ B only depends
on the values of ĝ∞ on the fibre over b. However due to the global definition of the metrics dB and
dL̂, the assumption ĝ∞ = π∗ĥ on U provides no simplification and the proof that dB = dL̂ – far from
being trivial – assumes its general form in this case.

Note also that Theorem 4.2.5 clearly subsumes Theorems 3.3.2 and 3.5.11, as stated in Chapter
3.

Intuitively, condition (i) states that the metrics ĝµ on E1 converge locally uniformly away from
the singular region S1 to a stratified Riemannian semi-metric ĝ∞, which extends to some given
compactification E2 of E1/S1; conditions (ii) and (iii) state that the fibres of the maps fi,j ∶ U (r)i (j)→
S(j) are ‘small’ with respect to ĝµ and ĝ∞ respectively, provided that µ is sufficiently large and r

is sufficiently small and, finally, condition (iv) states that the two metrics dµ and d∞ approximately
agree near the singular regions S1 and S2. Further intuition can be gained by considering the case
where the map Φ ∶ E1/S1 → E2/S2 admits a non-smooth extension to a map Φ ∶ E1 → E2. In this
case, by considering the composite π ○ Φ ∶ E1 → B, one can regard E1 as fibred over the space B
and Theorem 4.2.5 can then be regarded as a ‘collapsing’ theorem for this fibration which states,
informally, that if the diameter of the fibres of E1 → B (with respect to the metrics ĝµ) tends to zero
away from some singular set S1 and if the limiting size of the region S1 is ‘not too large’, then the
orbifold E1 collapses to the orbifold B in the limit as µ →∞. The use of Theorem 4.2.5 in Chapter
3 is an example of such an application.

The proof of Theorem 4.2.5 occupies the rest of this chapter. I begin by explaining why the
hypotheses of Theorem 4.2.5 are necessary.

Firstly, let me explain why it is necessary to use quasi-Finslerian structures, rather than the more
usual Finslerian or Riemannian structures, to describe the free metric space on (E2, ĝ

∞). Consider
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the following simple (unstratified) example, where λ > 2 is a constant:

π ∶ E = T2
θ1,θ2 ×T

1
α

proj
ÐÐ→ T2

θ1,θ2 = B

g = (1 + λ cos2 α) (dθ1)⊗2 + (1 + λ sin2 α) (dθ2)⊗2

Write ∂i = ∂
∂θi (i = 1,2), let p = (θ1, θ2, α) ∈ E and for each a, b ∈ R, let u(a, b) be any vector in TpT3

such that dπ∣p(u(a, b)) = a∂1 + b∂2. Then:

∥u(a, b)∥g =
√
a2 + (λ + 1)b2 + λ (a2 − b2) cos2 α =

√
(λ + 1)a2 + b2 + λ (b2 − a2) sin2 α

and thus:

L(a∂1 + b∂2) =
⎧⎪⎪⎨⎪⎪⎩

√
a2 + (λ + 1)b2 if ∣a∣ ⩾ ∣b∣
√
(λ + 1)a2 + b2 if ∣a∣ ⩽ ∣b∣.

Whilst this function is continuous, it is not differentiable along a = b. Moreover:

L(∂1 + ∂2) =
√
λ + 2 > 2 = L(∂1) +L(∂2)

and thus L does not satisfy the triangle inequality. This is the motivation behind the definition of
stratified quasi-Finslerian structures in §3.5.1.

Secondly, let me explain why the existence of Λµ(r) → 1 in condition (i) is necessary for the
second conclusion of Theorem 4.2.5 to be valid. Take E1 = E2 = T2

θ1,θ2 with the trivial (1-stratum)
stratifications, let U (r)i = Si = ∅ for i = 1,2, let ĝ∞ = (dθ1)⊗2 and let:

ĝµ = (1 + µ−1) (dθ1)⊗2 − 2µ−1dθ1 ⊙ dθ2 + µ−2 (dθ2)⊗2 .

Since U (r)i = Si = ∅, conditions (ii)–(iv) in Theorem 4.2.5 are automatically satisfied. Moreover, since
ĝµ → ĝ∞ uniformly as µ →∞, condition (i) is also satisfied, expect for the existence of suitable Λµ.
However dµ → 0 uniformly as µ→∞. Indeed, for each a ∈ [0,1], consider the path:

γ ∶ [0, a]→ T2

s↦ (s, µ ⋅ s) .

Then one may calculate that gµ (γ̇) = µ−1 and thus:

dµ [(0,0), (a,µ ⋅ a)] ⩽ aµ−
1
2 ⩽ µ−

1
2 .

Likewise, by considering a vertical path between (a, b) and (a,µ⋅b) one sees that dµ [(a, b), (a,µ ⋅ a)] ⩽
µ−1 for any b ∈ [0,1] and thus for all (a, b) ∈ T2:

dµ [(0,0), (a, b)] ⩽ µ−1 + µ−
1
2 → 0 as µ→∞.

By [25, Example 7.4.4] it follows that (T2, ĝµ) converges to the one-point space as µ→∞. However,

90



the free metric space on (T2, ĝ∞) is (T1
θ1 , (dθ

1)⊗2). This shows the necessity of the existence of the
Λµ → 1. An analogous phenomenon was observed (albeit from a very different perspective) in [89].

(To see why no such Λµ → 1 can exist, suppose that the inequalities gµ ⩾ Λ2
µg
∞ held for all

µ ∈ [1,∞). Then the bilinear form gµ −Λ2
µg
∞ would be non-negative definite and hence would have

non-negative determinant, i.e.:
µ−2 (1 + µ−1 −Λ2

µ) − µ−2 ⩾ 0.

This rearranges to Λ2
µ ⩽ µ−1 and hence would force Λµ → 0 as µ→∞.)

4.3 Proof of Theorem 4.2.5: Part 1

The purpose of this section is to prove the first part of Theorem 4.2.5. The reader should note that
the orbifold E1 (and also the sets Si(j), U (r)i (j) and their associated data) plays no role in this
section. Thus in this section, for simplicity of notation, I denote E2 by E, Σ2 by Σ and ĝ∞ by ĝ. The
reader should also note that the results of this section remain valid when E is non-compact, provided
that the map π is proper.

The first task is to verify that L̂ is a well-defined stratified quasi-Finslerian structure on B:

Proposition 4.3.1. For each stratum Bi in B, recall the definition:

Li(u) =
k

min
l=0

inf
x ∈ Ej(l) ∩ π−1(p)

{∥u′∥gj(l) ∣ u
′ ∈ TxEj(l) such that dπ(u′) = u} , (4.3.2)

for u ∈ TpBi, where π−1(Bi) = ⋃kl=0Ej(l) and gj(l) is the component of ĝ on the stratum Ej(l). Then
L̂ = {Li}i defines a stratified quasi-Finslerian structure on B.

Proof. Firstly, note that Li is well-defined. Indeed π∣Ej(l) ∶ Ej(l) → Bi is a surjective submersion
for each l ∈ {0, ..., k} and so for each x ∈ Ej(l) ∩ π−1(p) there exist vectors u′ ∈ TxEj(l) satisfying
dπ(u′) = u. Moreover ∥u′∥gj(l) is independent of the choice of u′, since any two such choices of u′

differ by an element of ker(dπ)∣x ∩ TxEj(l) which is in turn precisely the kernel of gj(l), since ĝ is
regular with respect to kerdπ.

The proof now breaks into two cases of increasing generality:

Case 1: B is a manifold. Let p ∈ B and u ∈ TpB. It is beneficial to have a preferred choice
of preimage u′ of u under dπ ∶ TxE → TpB for each x ∈ π−1(p). To this end, choose a stratified
‘horizontal distribution’ C, complementary to D. Then (cf. Proposition 4.1.1):

dπx ∶ Cx → TpB

is an isomorphism for all x ∈ Ei; let ux denote the preimage of u under this isomorphism. Then since
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C ⊆ TEi over the stratum Ei for all i, one has

L(u) =min
i

inf {∥ux∥gi ∣ x ∈ π−1(p) ∩Ei}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= Li

.
(4.3.3)

Next, note that given quasi-Finlserian structures L1, L2 on B, their pointwise minimum L =
min(L1,L2) is also a quasi-Finslerian structure. Thus, it suffices to prove that each Li defines a
quasi-Finlserian structure on B.

It is clear from eqn. (4.3.3) that Li is non-negative and satisfies:

Li(λ ⋅ u) = ∣λ∣Li(u)

for all u ∈ TB and λ ∈ R. To see that Li is positive definite, let u ∈ TpB satisfy Li(u) = 0. Choose
a sequence xn ∈ π−1(p) ∩Ei such that ∥uxn∥gi → 0 as n → ∞. Since π is proper, π−1(p) is compact
and thus xn converges subsequentially to some x ∈ π−1(p); passing to a subsequence, one may assume
without loss of generality that xn → x. Since gi may be extended to a continuous Riemannian metric
gi on all of E, one has:

∥uxn∥gi = ∥uxn∥gi → ∥ux∥gi as n→∞.

Thus ∥ux∥gi = 0 and hence ux = 0, since gi is non-degenerate on C, which in turn follows from the
regularity of ĝ with respect to D. Thus:

u = dπ(ux) = 0,

as required. Thus to prove that Li is a quasi-Finlserian structure, it suffices to prove continuity.

To this end, choose b ∈ B, u ∈ TbB and pick a sequence un ∈ TbnB tending to u as n → ∞ (in
particular, bn → b as n→∞). Pick a sequence xm ∈ π−1(b) ∩Ei such that:

Li(u) = lim
m→∞

∥uxm∥gi .

Then, by properness of π, π−1(b) is compact and so xm converges subsequentially to some x ∈ π−1(b);
by passing to a subsequence, without loss of generality xm → x as m→∞.

By Proposition 4.1.1, one may choose a neighbourhood Ub of b satisfying π−1(Ub) ≅ Ub × π−1(b).
Without loss of generality assume that all bn lie in Ub. Note that both (un)(bn,xn) and u(b,xn) converge
to u(b,x) ∈ C as n→∞. Thus:

∥(un)(bn,xn)∥gi , ∥u(b,xn)∥gi → ∥u(b,x)∥gi as n→∞ (4.3.4)

(note that (b, xn) ∈ Ei implies that (bn, xn) ∈ Ei; see Remark 4.1.7). Now clearly:

∥(un)(bn,xn)∥gi ⩾ Li(un)
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for each n. Thus eqn. (4.3.4) implies that:

lim sup
n→∞

Li(un) ⩽ lim
n→∞
∥u(b,xn)∥gi = Li(u).

Thus suppose, for the sake of contradiction, that lim infn→∞Li(un) ⩽ Li(u) − η for some η > 0.
Then Li(un) ⩽ Li(u) − η for infinitely many n, and without loss of generality for all n by passing to
a subsequence if necessary. For each n, choose yn ∈ π−1(b) ∩Ei such that:

∥(un)bn,yn∥gi ⩽ Li(un) +
η

3
. (4.3.5)

Using compactness of π−1(b) again, by passing to a subsequence if necessary yn → y ∈ π−1(b). Thus
as above:

∥(un)(bn,yn)∥gi , ∥u(b,yn)∥gi → ∥u(b,y)∥gi as n→∞. (4.3.6)

Choose n sufficiently large so that ∣∥(un)(bn,yn)∥gi − ∥u(b,yn)∥gi ∣ ⩽
η
3 . Then:

Li(u) ⩽ ∥u(b,yn)∥gi
⩽ ∥(un)(bn,yn)∥gi +

η

3

⩽ Li(un) +
2η

3
(by eqn. (4.3.5)).

However by assumption Li(un) ⩽ Li(u) − η and thus Li(u) ⩽ Li(u) − η
3 , a contradiction. Thus

lim infn→∞Li(un) ⩾ Li(u) and so Li(un) → Li(u) as n → ∞, proving that Li is continuous, as
required.

Case 2: General Case. Using case 1, for each stratum Bi of B, the function Li is a quasi-Finslerian
structure on Bi. Thus, to prove that L̂ = {Li}i is a stratified quasi-Finslerian structure on B – and
hence to complete the proof of Proposition 4.3.1 – it suffices to prove that given a Riemannian metric
h on B, each Li is Lipschitz equivalent to h up to the boundary of Bi. However this is clear: fix a
stratum Ej of E and recall the extension gj of gj to all of E. Since both the Riemannian semi-metrics
π∗h and gj vanish on D = kerdπ and are positive definite on C, it follows that there is a continuous
map D ∶ E → (0,∞) such that:

1

D
π∗h ⩽ gj ⩽Dπ∗h on all of E.

Since π is proper, one may define a continuous map C ∶ B → (0,∞) such that for all e ∈ E:

D(e) ⩽ C(π(e)).

Then it follows immediately from eqn. (4.3.3) that:

1

C
∥ − ∥h ⩽ Li ⩽ C∥ − ∥h on Bi.

93



This completes the proof.

I now prove the first part of Theorem 4.2.5:

Proposition 4.3.7. Let L̂ be as in Proposition 4.3.1. Then (B,dL̂) is the free metric space on
(E,dĝ).

The proof proceeds by a series of lemmas.

Lemma 4.3.8 (‘A Priori Bound’). Let π ∶ E → B be as above and let γ be a piecewise-C1 path in B.
There exists a constant C > 0 depending only on γ such that for all piecewise-C1 lifts γ̃ of γ along π:

ĝ ( ˙̃γ) ⩽ C almost everywhere.

Proof. The argument is similar to the proof of the general case in Proposition 4.3.1. By considering
each C1 portion of γ separately, without loss of generality assume that γ is C1. Let h be a Riemannian
metric on B and recall that there is a continuous map c ∶ B → (0,∞) such that, for each stratum Ej

of E, writing gj for the extension of gj to all of E:

gj ∣e ⩽ c(π(e))π∗h∣e for all e ∈ E.

Thus for all t in the domain of definition of γ:

gj ( ˙̃γ) ∣γ̃(t) ⩽ c(γ(t))h (γ̇) ∣γ(t).

Since the domain of definition of γ is compact, the right-hand side may be bounded uniformly above
by some C > 0. The result follows.

Lemma 4.3.9 (‘Piecewise-C1 Lifts with Specified Endpoints’). Let γ ∶ [0,1]→ B be a C1 path in B,
let bi = γ(i) and let ei ∈ π−1(bi) for i = 0,1 respectively. Then there exists a piecewise-C1 γ̃ ∶ [0,1]→ E

such that π (γ̃) = γ and γ̃(i) = ei for i = 0,1 respectively.

Remark 4.3.10. Note that the ability to lift paths along π is a non-trivial result since, as explained
in Example 4.1.5, π need not even be a Serre fibration. In particular, Lemma 4.3.9 does not appear
to follow from any known result in the literature.

Proof. Firstly, I claim that there exists a piecewise-C1 lift γ̂ of γ along π satisfying γ̂(0) = e0. Indeed,
by applying Proposition 4.1.2, one can choose a chart Ξe0 = (Ue0 ,Γe0 ,A1 ×A2, χe0) about e0 in E, a
chart Ξb0 = (Ub0 ,Γb0 ,A2, χb0) about b0 in B and a homomorphism κπ ∶ Γe0 → Γb0 such that π may be
locally lifted as:

A1 ×A2
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
↺

A2
¯
↺

Γe0 Γb0

π̃=proj

κπ
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and where Γe0 acts on A2 via κπ. Let γ ∶ [0, ε) → A2 for some ε > 0 be a local representation of
γ in the chart Ξb0 (note that the equivariance of this local representation is trivial, since [0, ε) is a
manifold and so its orbifold group about each point vanishes). Lift γ to a map [0, ε)→ A1 ×A2 as:

0 × γ ∶ [0, ε)→ A1 ×A2.

Under the projection A1 × A2
proj
ÐÐ→ Γe0

/A1 ×A2 , the map 0 × γ defines a C1 lift γ̂ of γ along π on
the interval [0, ε). To obtain a piecewise-C1 lift of the path γ over the whole interval [0,1], one then
proceeds inductively, repeating the above process starting from some point ε′ ∈ [0, ε); the inductive
process can be made to terminate in finite-time by compactness of [0,1] and properness of the map
π.

Next, I claim that one may ‘improve’ the lift from γ̂ to a lift γ̃ such that γ̃(bi) = ei for both
i = 0 and i = 1. To this end, define e′1 = γ̂(1). Since π has path-connected fibres, one may choose a
piecewise-C1 path σ ∶ [0,1] → π−1(b1) such that σ(0) = e′1 and σ(1) = e1. The task is to deform the
endpoint of γ̂ along the path σ.

The argument is very similar to the construction of γ̂. Initially, one chooses charts Ξe′1 =
(Ue′i ,Γe′i ,B1 × B2, χe′1) about e′1 in E and Ξb1 = (Ub1 ,Γb1 ,B2, χb1) about b1 in B and a homomor-
phism κπ ∶ Γe′i → Γb1 such that π can be written in the local form:

B1 ×B2
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
↺

B2
¯
↺

Γe′1 Γb1

π̃=proj

κπ

Since γ̂ is continuous, there exists ε ∈ (0,1) such that γ̂((ε,1]) ⊂ Ue′1 . Then choose a local represen-
tation γ̂ = (γ̂1, γ̂2) ∶ (ε,1] → B1 × B2 (so that γ̂1(1) = 0). Now choose t > 0 such that σ(t) ∈ Ue′1 and
lift the point σ(t) to some preimage (σ(t),0) under the projection map B1 × B2

proj
ÐÐ→ Γe′1

/B1 ×B2 .
By altering the function γ̂1 ∶ (ε,1] → B1 on some compact subset of (ε,1], one can ensure that
γ̂1(1) = σ(t). Denote the new local representation (γ̂1, γ̂2) by γ̂′. Projecting γ̂′ under the map:

B1 ×B2
proj
ÐÐ→ Γe′1

/B1 ×B2

yields a new lift γ̂′ covering γ with the property that γ̂′(1) = σ(t). Now iterate this argument, noting
again that the process can be made to terminate in finite time by compactness of the domain of
definition of σ.

Lemma 4.3.11 (‘Convergence in Measure’). Let γ ∶ [0,1] → B be a piecewise-C1 path. Then there
exists a sequence of piecewise-C1 lifts γ̃n of γ along π such that:

ĝ ( ˙̃γn)
1
2 → L̂ (γ̇)

1
2 in measure as n→∞.

Moreover, the endpoints of the lift, viz. γ̃n(0) and γ̃n(1), may be chosen to be any points in π−1(γ(0))
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and π−1(γ(1)) respectively.

Proof. Firstly, note that it suffices to lift each C1 portion of γ separately to a piecewise-C1 curve
in E and then use the freedom in specifying the endpoints of these separate lifts to ensure that the
combined lift of γ is continuous over the non-differentiable points of γ. Thus without loss of generality
one may assume that γ is everywhere C1.

Write I = [0,1]. For each stratum Bi of B, recall the measurable subset:

Ii = γ−1(Bi) ⊆ I.

Write L for the Lebesgue measure on I and define:

İi = {x ∈ Ii ∩ (0,1) ∣ lim
r→0

L [Ii ∩ (x − r, x + r)]
L [(x − r, x + r)]

= 1} ⊆ Ii ∩ (0,1).

By [108, Cor. 2.9, p. 20], L (Ii/İi) = 0. Define:

Ĩi = {x ∈ İi ∣ γ̇ ∈ TBi} .

Then by [45, Lem. 3.1.7, p. 217], L (Ii/Ĩi) = 0. For notational convenience later in the proof, define
Ĩ = ⋃i Ĩi.

Fix n ⩾ 1. For each i and each x ∈ Ĩi, choose j = j(x,n) and y = y(x,n) ∈ Ej ⊆ π−1(Bi) such that
for all lifts u of γ̇(x) to TyEj along dπ:

gj(u)
1
2 −Li (γ̇(x))

1
2 < 1

n
.

(Note that the left-hand side is automatically non-negative, by definition of Li.) Choose a chart
Ξx = (Ux,Γx, Ũx, χx) about γ(x) ∈ B which is regular for the submanifold Bi, with regular subspace
I (see Definition 2.1.4):

Ũx = A1 × I→ Γx/A1 × I ≅
®
χx

Ux.

(Here, A1 and I are finite-dimensional real vector spaces and Γx acts on A1.) By Proposition 4.1.2,
shrinking Ux if necessary one can choose a chart Ξy = (Uy,Γy,A2 ×A1 × I, χy) and a homomorphism
κπ ∶ Γy → Γx such that π may be expressed in the charts Ξy and Ξx as the projection map:

A2 ×A1
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
↺

×I A1
¯
↺

×I

Γy Γx

π̃=proj

κπ

(4.3.12)

Since x ∈ Ĩi ⊆ (0,1) and γ is continuous, one can choose η(x,n) > 0 such that (x − η(x,n), x +
η(x,n)) ⊆ (0,1) and:

γ [(x − η(x,n), x + η(x,n))] ⊂ Ux ≅ (Γx/A1 ) × I.
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Since x ∈ Ĩi ⊆ İi, one has:

lim
r→0

L [Ii ∩ (x − r, x + r)]
L [(x − r, x + r)]

= lim
r→0

L [Ĩi ∩ (x − r, x + r)]
L [(x − r, x + r)]

= 1

(where the first equality follows from the fact that L (Ii/Ĩi) = 0) and so by reducing η(x,n) > 0 if
necessary, one may assume that for all 0 < r ⩽ η(x,n):

L [Ĩi ∩ (x − r, x + r)] ⩾
n − 1
n

L [(x − r, x + r)] = 2rn − 1
n

. (4.3.13)

Since γ defines a smooth map from the manifold I to the orbifold B, by reducing η(x,n) > 0 still
further if necessary, one may assume that γ has a local lift γ with respect to the coordinate charts
(x − η(x,n), x + η(x,n)) and Ξx:

A1 × I

(x − η(x,n), x + η(x,n)) Γx/A1 × I ≅ Ux

γ

γ

(Note that the equivariance of the lift γ is vacuous, since I is a manifold and so has trivial orbifold
groups about every point.) Using the local representation of π given in eqn. (4.3.12), one can lift γ
to the map 0 × γ as below:

A2 ×A1 × I

A1 × I

(x − η(x,n), x + η(x,n)) Γx/A1 × I ≅ Ux

π̃=proj

γ

0×γ

γ

Projecting 0 × γ via A2 × A1 × I → (Γy/A2 ×A1 ) × I defines a local lift (C1) of γ along π over the
region (x − η(x,n), x + η(x,n)); denote this lift by γ̃(x,n).

Note that on the region Ii ∩ (x − η(x,n), x + η(x,n)) (where γ ∈ Bi) the curve γ̃(x,n) lies in Ej .
Indeed:

γ̃(x,n)∣Ii ∩ (x − η(x,n), x + η(x,n)) ⊂ [0] × I ⊆ (Γy/
A2 ×A1 ) × I

and one may verify that [0]× I lies in the stratum Ej . Hence by [45, Lem. 3.1.7, p. 217], gj ( ˙̃γ(x,n)t)
is well-defined for almost every t ∈ Ii ∩ (x− η(x,n), x+ η(x,n)) and thus for almost every t ∈ Ĩi ∩ (x−
η(x,n), x + η(x,n)). Now consider the function:

gj ( ˙̃γ(x,n))
1
2 −Li (γ̇)

1
2 where defined on Ĩi ∩ (x − η(x,n), x + η(x,n)).

This is a continuous, non-negative map which is less than 1
n at the point x. Therefore, by reducing
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η(x,n) > 0 if necessary, one may ensure that:

gj ( ˙̃γ(x,n))
1
2 −Li (γ̇)

1
2 < 2

n
almost everywhere on Ĩi ∩ (x − η(x,n), x + η(x,n)). (4.3.14)

Now consider the collection of subsets of I given by:

Sn = {(x − r, x + r) ∣ x ∈ Ĩ , r ∈ (0, η(x,n))} .

By applying the Vitali Covering Theorem [102, Thm. 2.2, p. 26], there exist xp ∈ Ĩ and rp ∈
(0, η(xp, n)), for p ∈ N, such that:

• The sets {(xp − rp, xp + rp)}p∈N are disjoint;

• L [I/⋃p∈N(xp − rp, xp + rp)] =L [Ĩ/⋃p∈N(xp − rp, xp + rp)] = 0.

Choose N = N(n) sufficiently large such that:

L
⎡⎢⎢⎢⎣
I/

N(n)
⋃
p=0
(xp − rp, xp + rp)

⎤⎥⎥⎥⎦
< 1

n
. (4.3.15)

Now construct the lift γ̃n as follows:

• On each set (xp − n−1
n rp, xp + n−1

n rp), p = 0, ...,N(n), define:

γ̃n = γ̃(xp, n)∣(xp − n−1
n rp, xp + n−1

n rp)
.

• Since the open sets {(xp − rp, xp + rp)}p∈{0,...,N(n)} are disjoint, the complement of the union
of the smaller open sets {(xp − n−1

n rp, xp + n−1
n rp)}p∈{0,...,N(n)} is a finite collection of closed

intervals, including two intervals of the form [0, α] and [β,1]. On each of these closed intervals,
use Lemma 4.3.9 to choose some piecewise-C1 lift of γ along π, with endpoints chosen so that the
resulting lift γ̃n is piecewise-C1 and so that γ̃n(0), γ̃n(1) take the required values in π−1(γ(0))
and π−1(γ(1)) respectively.

I now claim that:
L [{x ∈ I ∣ ĝ ( ˙̃γn)

1
2 ∣x − L̂ (γ̇)

1
2 ∣x ⩾

2

n
}] < 3

n
, (4.3.16)

a result which would imply the convergence of the functions ĝ ( ˙̃γn)
1
2 → L̂ (γ̇)

1
2 in measure. To verify

eqn. (4.3.16), for each xp choose i(p) such that xp ∈ Ĩi(p) and recall from eqn. (4.3.14) that:

ĝ ( ˙̃γn)
1
2 − L̂ (γ̇)

1
2 < 2

n
almost everywhere on Ĩi(p) ∩ (xp −

n − 1
n

rp, xp +
n − 1
n

rp) .
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Therefore:

L [{x ∈ I ∣ ĝ ( ˙̃γn)
1
2 ∣x − L̂ (γ̇)

1
2 ∣x ⩾

2

n
}] ⩽ 1 −L

⎡⎢⎢⎢⎣

N(n)
⋃
p=0
{Ĩi(p) ∩ (xp −

n − 1
n

rp, xp +
n − 1
n

rp)}
⎤⎥⎥⎥⎦

= 1 −
N(n)

∑
p=0

L [Ĩi(p) ∩ (xp −
n − 1
n

rp, xp +
n − 1
n

rp)] ,

where the final equality follows from the fact that the union is disjoint. Now from eqn. (4.3.13), for
each p:

L [Ĩi(p) ∩ (xp −
n − 1
n

rp, xp +
n − 1
n

rp)] ⩾
n − 1
n

L [(xp −
n − 1
n

rp, xp +
n − 1
n

rp)]

= (n − 1
n
)
2

L [(xp − rp, xp + rp)] ,

and therefore:

N(n)

∑
p=0

L [Ĩi(p) ∩ (xp −
n − 1
n

rp, xp +
n − 1
n

rp)] ⩾ (
n − 1
n
)
2 N(n)

∑
p=0

L [(xp − rp, xp + rp)]

= (n − 1
n
)
2

L
⎡⎢⎢⎢⎣

N(n)
⋃
p=0
(xp − rp, xp + rp)

⎤⎥⎥⎥⎦
.

By eqn. (4.3.15):

L
⎡⎢⎢⎢⎣

N(n)
⋃
p=0
(xp − rp, xp + rp)

⎤⎥⎥⎥⎦
> n − 1

n

and hence:
N(n)

∑
p=0

L [Ĩi(p) ∩ (xp −
n − 1
n

rp, xp +
n − 1
n

rp)] > (
n − 1
n
)
3

and whence:
L [{x ∈ I ∣ ĝ ( ˙̃γn)

1
2 ∣x − L̂ (γ̇)

1
2 ∣x ⩾

2

n
}] < 1 − (n − 1

n
)
3

⩽ 3

n
.

This completes the proof of Lemma 4.3.11.

Using Lemmas 4.3.8, 4.3.9 and 4.3.11, I now prove Proposition 4.3.7:

Proof of Proposition 4.3.7. By the definition of L̂, for all e, e′ ∈ E and all piecewise-C1 paths γ ∶ e→
e′:

ĝ (γ̇) ⩾ L̂ ( ˙π(γ)) almost everywhere,

and hence:
ℓĝ(γ) ⩾ ℓL̂(π(γ)) ⩾ d

L̂(π(e), π(e′)).
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Taking the infimum over all such γ shows that:

dĝ(e, e′) ⩾ dL̂(π(e), π(e′)).

Conversely, let γ ∶ [0,1]→ B be a piecewise-C1 path π(e)→ π(e′). By Lemma 4.3.11, there exists
a sequence of piecewise-C1 lifts γ̃n ∶ e→ e′ of γ along π such that:

ĝ ( ˙̃γn)
1
2 → L̂ (γ̇)

1
2 in measure as n→∞.

By the a priori bound in Lemma 4.3.8 the Dominated Convergence Theorem (DCT) applies, and so:

dĝ(e, e′) ⩽ lim
n→∞

ℓĝ (γ̃n) = lim
n→∞∫[0,1]

ĝ ( ˙̃γn)
1
2 dL =

®
DCT

∫
[0,1]
L̂ (γ̇)dL

1
2 = ℓL̂(γ).

Taking the infimum over γ completes the proof.

4.4 Proof of Theorem 4.2.5: Part 2
The purpose of this section is to complete the proof of Theorem 4.2.5. By applying Proposition 2.4.3
and the results of §4.3, it suffices to prove the following result:

Proposition 4.4.1. Let notation be as in Notation 4.2.1 and assume that conditions (i)–(iv) in
Theorem 4.2.5 holds. Then:

D [(E1, d
µ)→ (E2, d

∞)]→ 0 as µ→∞.

The proof proceeds via a series of lemmas.

4.4.1 Convergence on the regions E(r)

Consider the region E(r) ⊂ E1/S1 ≅ E2/S2. The restriction of each stratified Riemannian metric ĝµ to
E(r) induces a metric on E(r), denoted dµ,r. (Note that, in general, dµ,r ≠ dµ∣E(r) since the metric on
the left-hand side is intrinsic, defined by optimising over the length of paths contained only in E(r),
while the metric on the right-hand side is extrinsic, defined by optimising over the length of paths
in E1.) Analogously, the restriction of the stratified Riemannian semi-metric ĝ∞ to E(r) induces a
semi-metric on E(r) denoted d∞,r (where again d∞,r ≠ d∞∣E(r) in general).

Lemma 4.4.2. Assuming condition (i) from Theorem 4.2.5, for all fixed r ∈ (0,1]:

dµ,r → d∞,r uniformly as µ→∞.

Proof. Fix x, y ∈ E(r) and let γ be any piecewise-C1 path from x to y inE(r). Since ĝµ → ĝ∞ uniformly
on E(r), it follows that ℓĝµ(γ) → ℓĝ∞(γ) as µ → ∞. Moreover, one clearly has dµ,r(x, y) ⩽ ℓĝµ(γ)
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for each µ. Taking first the limit superior over µ and then the infimum over all γ in this inequality,
therefore, yields:

lim sup
µ

dµ,r(x, y) ⩽ d∞,r(x, y). (4.4.3)

Conversely, for any γ as above, by eqn. (4.2.7) in condition (i), one has:

ℓĝµ(γ) ⩾ Λµℓĝ∞(γ) ⩾ Λµd∞,r(x, y).

Since Λµ → 1 as µ → ∞, taking firstly the infimum over all γ and then the limit inferior over all µ
yields:

lim inf
µ

dµ,r(x, y) ⩾ d∞,r(x, y). (4.4.4)

Combining eqns. (4.4.3) and (4.4.4) gives:

d∞,r(x, y) ⩽ lim inf
µ

dµ,r(x, y) ⩽ lim sup
µ

dµ,r(x, y) ⩽ d∞,r(x, y)

for all x, y ∈ E(r) and hence dµ,r → d∞,r pointwise on E(r).
Now fix some reference stratified Riemannian metric ĥ on E1 and write dr for the (intrinsic)

metric on E(r) induced by ĥ∣E(r) . By assumption, for each stratum Ei of E1/S1:

∥gµi − g
∞
i ∥hi → 0 uniformly on Ei ∩E(r) as µ→∞,

where ∥ − ∥hi denotes the pointwise norm on symmetric bilinear forms induced by hi, as in Lemma
3.5.39. Next, note that since g∞i may be continuously extended to a semi-metric g∞i on all of E2 (and
likewise for hi), then by compactness of E2 there exists some constant Ci > 0 such that ∥g∞i ∥hi ⩽

Ci
2

on all of Ei ∩E(r). It follows that for all sufficiently large µ:

∥gµi ∥hi ⩽ Ci on Ei ∩E(r).

Taking C = maxiCi, it follows from Lemma 3.5.39 that for all sufficiently large µ: ĝµ ⩽ Cĥ and in
particular:

dµ,r ⩽ C
1
2dr.

By applying the triangle inequality, it follows that for all pairs (x, y), (x′, y′) ∈ E(r) × E(r) and all
sufficiently large µ (including µ =∞):

∣dµ,r(x, y) − dµ,r(x′, y′)∣ ⩽ C
1
2 (dr(x,x′) + dr(y, y′))

and thus the family of functions dµ,r ∶ E(r)×E(r) → R is uniformly Lipschitz (at least for all sufficiently
large µ) and hence equicontinuous. By combining this equicontinuity with the pointwise convergence
dµ,r → d∞,r, the proof of Proposition 4.4.2 is now completed by the following variant of the well-known
Ascoli–Arzelà theorem:

Theorem 4.4.5. Let (X,d) be a compact metric space and let fn ∶X → R be equicontinuous functions
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converging pointwise to a continuous function f . Then fn → f uniformly.

The proof is simple, and I omit it. This completes the proof of Lemma 4.4.2.

4.4.2 Combinatorial preliminaries
Recall that the ‘singular’ regions S1(j) are indexed by j ∈ {1, ...,N} and likewise for E2. Recall also
the sets ∂(r)(j) = ∂U (r)1 (j) ≅ ∂U

(r)
2 (j). Write [N] = {1, ...,N} and given any 1 ⩽ k ⩽ N , let [N](k)

denote the set of ordered tuples of k distinct elements of [N], which will be denoted (j1, ..., jk). For
notational convenience, use ∧ to denote the binary minimum of two numbers, i.e.: a ∧ b =min(a, b).

Lemma 4.4.6. Fix r ∈ (0,1] and let x, y ∈ E(r). Then for all µ ⩾ 1 (including µ =∞):

dµ(x, y) = dµ,r(x, y)∧

min
1⩽k⩽N

⎡⎢⎢⎢⎢⎢⎢⎣

min
(j1,...,jk)∈[N](k)

⎛
⎜⎜
⎝

inf
xi,yi∈∂(r)(ji)

i=1,...,k

dµ,r(x,x1) + dµ,r(yn, y) +
k

∑
i=1
dµ(xi, yi) + dµ,r(yi, xi)

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦

.

(4.4.7)
In particular:

sup
x,y∈E(r)

∣dµ(x, y) − d∞(x, y)∣ ⩽(N + 2) sup
x′,y′∈E(r)

∣dµ,r(x′, y′) − d∞,r(x′, y′)∣

+N max
j∈[N]

sup
x′′,y′′∈∂(r)(j)

∣dµ(x′′, y′′) − d∞(x′′, y′′)∣ .

Proof. It suffices to prove eqn. (4.4.7), the final claim being a direct consequence of this. I prove eqn.
(4.4.7) in the case µ <∞, the case µ =∞ being identical.

Write Ω(x, y) for the set of all piecewise-C1 paths γ from x to y in E1 and Ω0(x, y) ⊆ Ω(x, y) for
the set of all piecewise-C1 paths γ from x to y which lie entirely within E(r). Let γ ∈ Ω(x, y)/Ω0(x, y)
and write [a, b] ⊂ R for the domain of γ. Assign to γ an index j1(γ) ∈ [N] and a number t1(γ) ∈ [a, b]
as follows:

Define:
t0(γ) = inf {t ∈ [a, b] ∣ γ(t) ∈ U (r)1 (j) for some j ∈ [N]} ,

the right-hand side being non-empty, precisely because γ ∉ Ω0(x, y). The by eqn. (4.2.2) in condition
3 of Notation 4.2.1, there is a unique j ∈ [N] such that γ(t0(γ)) ∈ U (r)1 (j); denote this unique j by
j1(γ). Now define:

t1(γ) = sup{t ∈ [a, b] ∣ γ(t) ∈ U (r)1 (j1(γ))} .

Now suppose that t1(γ) < b and that the path γ∣[t1(γ),b] ∉ Ω0(γ(t1(γ)), b). Then one may define:

j2(γ) = j1(γ∣[t1(γ),b]) and t2(γ) = t1(γ∣[t1(γ),b]).

(Observe that j2(γ) ≠ j1(γ), since γ never lies in U
(r)
1 (j1(γ)) after time t1(γ).) One may continue
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in this vein, defining:

jk+1(γ) = j1(γ∣[tk(γ),b]) and tk+1(γ) = t1(γ∣[tk(γ),b]).

until either tk(γ) = b for some k or γ∣[tk(γ),b] ∈ Ω0(γ(tk(γ)), b), one of these two conditions necessarily
being reached for some k ∈ [N] due to the fact that the j1(γ), j2(γ), j3(γ), ... are all distinct elements
of the finite set [N]. Call:

(j1(γ), ..., jk(γ)) ∈ [N](k)

the characteristic tuple of γ.
Now for each k ∈ [N] and each tuple i ∈ [N](k), define Ωi(x, y) to be the set of all γ ∈ Ω(x, y)

with characteristic tuple i. The above discussion shows that there is a disjoint union:

Ω(x, y) = Ω0(x, y)∐

⎛
⎜⎜⎜⎜
⎝

∐
k∈[N]

i∈[N](k)

Ωi(x, y)

⎞
⎟⎟⎟⎟
⎠

.

However, by definition:
inf

γ∈Ω0(x,y)
ℓĝµ(γ) = dµ,r(x, y).

Similarly, for each k ∈ [N] and i ∈ [N](k), one may verify that:

inf
γ∈Ωi(x,y)

ℓĝµ(x, y) = inf
xi,yi∈∂(r)(ji)

i=1,...,k

dµ,r(x,x1) + dµ,r(yn, y) +
k

∑
i=1
dµ(xi, yi) + dµ,r(yi, xi).

The result now follows.

4.4.3 Completing the proof of Theorem 4.4.1

Let Φ̃ be some fixed, possibly discontinuous, extension of the map Φ ∶ E1/S1 → E2/S2 such that
Φ̃(S1) ⊆ S2 and the following diagram:

U
(1)
1 (j) U

(1)
2 (j)

S(j)

Φ̃

f1,j f2,j

commutes for each j ∈ {1, ...,N}. Explicitly, for each j ∈ {1, ...,N} and each x ∈ S1(j), choose some
point y ∈ f−12,j({f1,j(x)})∩S2(j) and define Φ̃(x) = y. Recalling the definition of forwards discrepancy
from §2.4.1, to prove Theorem 4.4.1 it suffices to prove that, given any η > 0, Φ̃ is an η-isometry
(E1, d

µ) → (E2, d
∞) whenever µ is sufficiently large (depending on η). This is equivalent to the

following two lemmas:
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Lemma 4.4.8. Φ̃(E1) ⊆ E2 is dense with respect to the semi-metric d∞.

Lemma 4.4.9.
lim
µ→∞

sup
x,y∈E1

∣dµ(x, y) − d∞ (Φ̃(x), Φ̃(y))∣ = 0.

Proof of Lemma 4.4.8. Clearly Φ̃(E1) ⊇ Φ(E1/S1) = E2/S2. Thus, to prove that Φ̃(E1) is dense, it
suffices to prove that for all j ∈ {1, ...,N}, all w ∈ S2(j) and all η > 0, there exists x ∈ E1 such that:

d∞ (w, Φ̃(x)) ⩽ η.

To this end, given w ∈ S2(j), choose x to be any point of f−11,j({f2,j(w)}) ∩ S1(j). Then by definition
of Φ̃:

Φ̃(x) ∈ f−12,j({f2,j(w)}) ∩ S2(j)

⊆ f−12,j({f2,j(w)}) ∩U
(r)
2 (j) for any r ∈ (0,1].

Hence for all r ∈ (0,1]:

d∞ (w, Φ̃(x)) ⩽ diamd∞ [f−12,j({f2,j(w)}) ∩U
(r)
2 (j)]

⩽ max
j∈{1,...,N}

sup
p∈S(j)

diamd∞ [f−12,j(p) ∩U
(r)
2 (j)]

and thus:
d∞ (w, Φ̃(x)) ⩽ lim sup

r→0
max

j∈{1,...,N}
sup
p∈S(j)

diamd∞ [f−12,j(p) ∩U
(r)
2 (j)] = 0,

the final equality being condition (iii) in Theorem 4.2.5. The result follows.

Proof of Lemma 4.4.9. Pick x, y ∈ E1 and let r ∈ (0,1]. Define (potentially) new points x′ = x′(r)
and y′ = y′(r) in E(r) via:

x′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x if x ∈ E(r);

some point in E(r) ∩ f−11,j({f1,j(x)}) ∩U
(r)
1 (j) ⊆ ∂

(r)(j) if x ∈ U (r)1 (j)

and analogously for y′. Note that:

dµ(x,x′), dµ(y, y′) ⩽ max
j∈[N]

sup
p∈S(j)

diamdµ [f−11,j({p}) ∩U
(r)
1 (j)] . (4.4.10)

Now let me bound d∞ (Φ̃(x), x′) and d∞ (Φ̃(y), y′), where x′ and y′ are identified with Φ̃(x′) =
Φ(x′) and Φ̃(y′) = Φ(y′) in the usual way. Clearly if x ∈ E(r), then Φ̃(x) = x = x′ and d∞ (Φ̃(x), x′) =
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0. Thus suppose x ∈ U (r)1 (j) for some j. The commutative diagram:

U
(1)
1 (j)/S1(j) U

(1)
2 (j)/S2(j)

S(j)

Φ

f1,j f2,j

shows that:

x′ ∈ E(r) ∩ f−11,j({f1,j(x)}) ∩U
(r)
1 (j) ≅ E

(r) ∩ f−12,j({f1,j(x)}) ∩U
(r)
2 (j) ⊆ ∂

(r)(j),

using the identification Φ in the usual way. Moreover, from the definition of Φ̃ one may verify that
Φ̃(x) ∈ f−12,j({f1,j(x)}) ∩U

(r)
2 (j). Thus:

d∞ (Φ̃(x), x′) ⩽ max
j∈[N]

sup
p∈S(j)

diamd∞ [f−12,j({p}) ∩U
(r)
2 (j)] . (4.4.11)

The same bound holds for d∞ (Φ̃(y), y′). Thus by the triangle inequality:

∣dµ(x, y) − d∞ (Φ̃(x), Φ̃(y))∣ ⩽ ∣dµ(x′, y′) − d∞(x′, y′)∣

+ dµ(x,x′) + dµ(y, y′)

+ d∞ (Φ̃(x), x′) + d∞ (y′, Φ̃(y))

⩽ ∣dµ(x′, y′) − d∞(x′, y′)∣

+ 2 max
j∈[N]

sup
p∈S(j)

diamdµ [f−11,j({p}) ∩U
(r)
1 (j)]

+ 2 max
j∈[N]

sup
p∈S(j)

diamd∞ [f−12,j({p}) ∩U
(r)
2 (j)] ,

where eqns. (4.4.10) and (4.4.11) have been used in passing to the final inequality. Taking supremum
over x and y and applying Lemma 4.4.6 yields:

sup
x,y∈E1

∣dµ(x, y) − d∞ (Φ̃(x), Φ̃(y))∣ ⩽ (N + 2) sup
x′,y′∈E(r)

∣dµ,r(x′, y′) − d∞,r(x′, y′)∣

+N max
j∈[N]

sup
x′′,y′′∈∂(r)(j)

∣dµ(x′′, y′′) − d∞(x′′, y′′)∣

+ 2 max
j∈[N]

sup
p∈S(j)

diamdµ [f−11,j({p}) ∩U
(r)
1 (j)]

+ 2 max
j∈[N]

sup
p∈S(j)

diamd∞ [f−12,j({p}) ∩U
(r)
2 (j)] .
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By Proposition 4.4.2, taking the limit superior as µ→∞ yields:

lim sup
µ→∞

sup
x,y∈E1

∣dµ(x, y) − d∞ (Φ̃(x), Φ̃(y))∣ ⩽ N lim sup
µ→∞

max
j∈[N]

sup
x′′,y′′∈∂(r)(j)

∣dµ(x′′, y′′) − d∞(x′′, y′′)∣

+ 2 lim sup
µ→∞

max
j∈[N]

sup
p∈S(j)

diamdµ [f−11,j({p}) ∩U
(r)
1 (j)]

+ 2 max
j∈[N]

sup
p∈S(j)

diamd∞ [f−12,j({p}) ∩U
(r)
2 (j)] .

Moreover, by conditions (ii), (iii) and (iv) in Theorem 4.2.5, taking the limit as r → 0 yields:

lim sup
µ→∞

sup
x,y∈E1

∣dµ(x, y) − d∞ (Φ̃(x), Φ̃(y))∣ = 0,

and hence the limit at µ→∞ also equals zero, as required.

Combining Lemmas 4.4.8 and 4.4.9 shows that D [(E1, d
µ)→ (E2, d

∞)]→ 0 as µ→∞, completing
the proof of Proposition 4.4.1. The proof of Theorem 4.2.5 is now completed by combining Proposition
4.3.7 and Proposition 4.4.1, together with Theorem 2.4.3.
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Chapter 5

The unboundedness above and below of H4, H̃3, H̃4

and the unboundedness below of H3

This chapter combines direct local calculations with the Vitali Covering Theorem to prove the un-
boundedness above and below (in a logarithmic sense) of the Hitchin functionals on G2 4-forms, G̃2

3-forms and G̃2 4-forms, and the unboundedness below of the Hitchin functional on G2 3-forms. As
scholia, initial conditions of the Laplacian coflow which lead to non-convergent solutions are shown to
be dense and the critical points of the Hitchin functionals on G2 4-forms, G̃2 3-forms and G̃2 4-forms
are shown to be saddles.

5.1 Local volume-altering perturbations of closed G2 4-forms
View R7 as a manifold with canonical coordinates (x1, ..., x7) and let Bη denote the ball of Euclidean
radius η > 0 about 0. Given ψ ∈ Ω4

+(R7), write H4,B1
(ψ) = ∫B1

volψ. Initially consider the G2 4-form
on R7 defined by:

ψ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247. (5.1.1)

The key result upon which this chapter’s investigation of H4 is founded is:

Lemma 5.1.2.

1. There exist α± ∈ Ω3(R7) with supp(α±) ⋐ B1 such that

D2H4,B1
∣ψ0
(dα±,dα±)><0.

2. There exist β± ∈ Ω3(R7) with supp(β±) ⋐ B1 such that:

ψ± = ψ0 + dβ± is a G2 4-form (5.1.3)

and
H4,B1

(ψ±)><H4,B1
(ψ0). (5.1.4)
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Proof. Using Proposition 2.2.17, the Hessian of H4,B1
is given by:

D2H4,B1
∣ψ0
(γ1, γ2) =∫

B1

1

4
(3
4
gψ0
(π1γ1, π1γ2) + gψ0

(π7γ1, π7γ2) − gψ0
(π27γ1, π27γ2)) volψ0

,

(5.1.5)
where π● denotes the type decomposition with respect to ψ0. For (1), consider the choices:

α+ = f(r) ⋅☀ψ0
ψ0 and α− = f(r) ⋅ dx123,

where r =
√
(x1)2 + ... + (x7)2 and f ∶ [0,1] → [0,1] is a smooth function such that f ≡ 1 on

a neighbourhood of 0 and f ≡ 0 on a neighbourhood of 1. Then since d☀ψ0
ψ0 = 0, one finds

dα+ = df ∧☀ψ0
ψ0 ∈ Ω4

7(B1) (cf. eqn. (2.2.10)). Hence using eqn. (5.1.5):

D2H4,B1
∣ψ0
(dα+,dα+) =∫

B1

1

4
∥dα+∥2ψ0

volψ0
> 0,

as required. For α−, one computes that:

dα− = d(f(r) ⋅ dx123) = df

dr

1

r
(x1dx1 + ... + x7dx7) ∧ dx123 = df

dr

1

r
⋅ ν,

where ν = (x1dx1 + ... + x7dx7) ∧ dx123. One can verify directly that:

∥π1(ν)∥2ψ0
= 0, ∥π7(ν)∥2ψ0

= 1

4
((x4)2 + (x5)2 + (x6)2 + (x7)2)

∥π27(ν)∥2ψ0
= 3

4
((x4)2 + (x5)2 + (x6)2 + (x7)2) .

Thus, for this choice of α−, one computes using eqn. (5.1.5) that:

D2H4,B1
∣ψ0
(dα−,dα−) = −∫

B1

1

8
(df
dr

1

r
)
2

((x4)2 + (x5)2 + (x6)2 + (x7)2) vol0 < 0.

For (2), take β± = tα± for some t > 0 to be determined later. Then ψ±(t) satisfies eqn. (5.1.3) for
all t sufficiently small, since G2 4-forms are stable. Using Proposition 2.2.17, one may Taylor expand:

H4,B1
(ψ±) =H4,B1

(ψ0) +
t

4∫B1

dα± ∧☀ψ0
ψ0 +

t2

2
D2H4,B1

∣ψ0
(dα±,dα±) +O(t3).

Since supp(α±) ⋐ B1 and d☀ψ0
ψ0 = 0, by Stokes’ Theorem one finds ∫B1

dα± ∧☀ψ0
ψ0 = 0. Thus:

H4,B1
(ψ±) =H4,B1

(ψ0) +
t2

2
D2H4,B1

∣ψ0
(dα±,dα±) +O(t3).

Part (2) of the lemma now follows by taking t > 0 sufficiently small.
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Next, I generalise the results of Lemma 5.1.2 to arbitrary closed G2 4-forms. Let ψ be a closed
G2 4-form on R7 such that ψ∣0 = ψ0∣0. (Note that this condition always holds in suitable coordinates
on R7.) Let Bη(ψ) denote the geodesic ball of radius η centred at 0, defined by the metric gψ.

Proposition 5.1.6. There exist η0 > 0 (depending on ψ) and ε > 0 (independent of ψ) such that for
all η ∈ (0, η0]:

1. There exist α±η ∈ Ω3(R7) with supp(α±η) ⋐ Bη(ψ) such that

D2H4,Bη(ψ)∣ψ(dα
±
η ,dα

±
η)><0.

2. There exist β±η ∈ Ω3(R7) with supp(β±η ) ⋐ Bη(ψ) such that ψ±η = ψ + dβ±η is a G2 4-form and:

H4,Bη(ψ)(ψ
±
η )⩾⩽(1 ± ε)H4,Bη(ψ)(ψ).

Proof. The proof is a simple scaling argument. Firstly, note that the statements in (1) and (2) are
diffeomorphism invariant and invariant under rescaling:

η ↦ λ
1
4 η, ψ ↦ λψ, α±η ↦ λα±η and β±η ↦ λβ±η

for any λ > 0 (in particular, note that B
λ

1
4 η
(λψ) = Bη(ψ)). For each η > 0, consider the diffeomor-

phism µη ∶ x ∈ R7 ↦ ηx ∈ R7 and define ψη = η−4µ∗ηψ. Then by scale and diffeomorphism invariance,
to prove the proposition it suffices to prove that for all η > 0 sufficiently small (depending on ψ) there
exist α±, β± satisfying:

supp(α±), supp(β±) ⋐ B1 (ψη) (5.1.7)

such that:
D2H4,B1(ψη)∣ψη(dα

±,dα±)><0; (5.1.8)

ψη + dβ± is a G2 4-form (5.1.9)

and:
H4,B1(ψη)(ψη + dβ

±)><(1 ± ε)H4,B1(ψη)(ψη). (5.1.10)

Fix α±, β± to be as in Lemma 5.1.2 and choose ε > 0 such that:

H4,B1
(ψ±)><(1 ± ε)H4,B1

(ψ0).

Then by Lemma 5.1.2 each of eqns. (5.1.7), (5.1.8), (5.1.9) and (5.1.10) hold with ψ0 in place of
ψη (note in particular that B1(ψ0) = B1). Now as η → 0, ψη → ψ0 locally uniformly on R7 in all
derivatives. As each of eqns. (5.1.7), (5.1.8), (5.1.9) and (5.1.10) are open conditions on the underlying
G2 4-form ψη, it follows that the equations are satisfied for all η > 0 sufficiently small. This completes
the proof.
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As an initial application of Proposition 5.1.6, I prove the first part of Theorem 1.0.5:

Theorem 5.1.11. The critical points of H4 are always saddles. Specifically, let M be a closed,
oriented 7-manifold (or, more generally, 7-orbifold) let ψ be a torsion-free G2 4-form on M and
consider the Hitchin functional H4 ∶ [ψ]+ → (0,∞). Then there exist infinite-dimensional subspaces
S±4 (ψ) ⊂ Tψ[ψ]+ ≅ dΩ3(M) along which D2H4∣ψ is positive definite and negative definite respectively.

Proof. Let {Bi}i∈N be a countable disjoint collection of open balls in M (in the case that M is an
orbifold, require the balls to lie in the smooth locus of M). By Proposition 5.1.6, for each i ∈ N
there exist 3-forms α±i on M with supp(α±i ) ⋐ Bi such that D2H4∣ψ is positive definite (respectively
negative definite) along dα±i . Now take S±4 (ψ) to be the infinite-dimensional subspace of dΩ3(M)
given by all finite linear combinations of the dα±i . It is simple to verify that D2H4∣ψ is positive and
negative definite along S±4 (ψ) respectively, as required.

5.2 Laplacian coflow: density of initial conditions leading to
non-convergent solutions

Let M be an oriented 7-manifold (not necessarily closed), let ψ ∈ Ω4
+(M) be a closed G2 4-form and

recall the set [ψ]+ ⊂ Ω4(M). Given a Riemannian metric g on M and a countable exhaustion of M
by compact subsets K0 ⊆ K1 ⊆ ... ⊆ M, the countable family of seminorms ∥ − ∥C0

g(Kn) on Ω4(M) is
separating and induces the C0 topology on Ω4(M) (and hence on [ψ]+); this topology is independent
of the choice of g and Kn.

Now recall that the Laplacian coflow of ψ is the solution of the evolution PDE:

∂ψ(t)
∂t

=∆ψ(t)ψ(t) = dd∗ψ(t)ψ(t) and ψ(0) = ψ. (5.2.1)

Using this terminology, I now prove:

Theorem 5.2.2. Let M be an oriented 7-manifold (not necessarily closed) and let ψ ∈ Ω4
+(M) be a

closed G2 4-form. Consider the space:

O[ψ]+ = {ψ
′ ∈ [ψ]+ ∣

no solution to the Laplacian coflow started
at ψ′ converges to a torsion-free G2 4-form

}.

Then O[ψ]+ ⊂ [ψ]+ is dense in the C0 topology.

Proof. Begin by considering the open ball Bη ⊂ R7 equipped with the standard flat G2 4-form ψ0 and
choose α+η ∈ Ω3 (Bη) compactly supported such that:

D2H4,Bη ∣ψ0
(dα+η ,dα+η) > 0 (5.2.3)
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according to Proposition 5.1.6. I begin by proving that for all s > 0 sufficiently small, the Laplacian
coflow on Bη starting from ψ0 + sdα+η cannot converge to a torsion-free G2 4-form.

Indeed, let ψ̂ be a torsion-free G2 4-form on R7 such that:

supp (ψ̂ − ψ0) ⋐ Bη. (5.2.4)

Since ψ̂ is torsion-free, gψ̂ is Ricci-flat [114, Prop. 11.8]. Moreover, the mean curvature of ∂Bη = S6
η

as a submanifold of (R7, gψ̂) with respect to the inwards pointing normal is 1
η , since gψ̂ is simply the

Euclidean metric in a neighbourhood of S6
η by eqn. (5.2.4). Thus, using [67, Thm. 2.1], it follows that:

H4,Bη (ψ̂) ⩽∫
η

0

(1 − r
η
)
7

dr ⋅VolS6
η
(ψ̂)

= η
7

VolS6
η
(ψ0),

(5.2.5)

where VolS6
η
(ψ̂) is the volume of S6

η with respect to the metric induced by ψ̂, which is the same as
the metric induced by ψ0 using eqn. (5.2.4). A direct calculation shows that eqn. (5.2.5) is saturated
when ψ̂ = ψ0. Hence for all torsion-free ψ̂ as above:

H4,Bη(ψ̂) ⩽H4,Bη(ψ0). (5.2.6)

Now let ψs(t) denote a solution to the Laplacian coflow started at ψ0 + sdα+η and suppose that
ψs(t) existed for all t and converged to a torsion-free G2 4-form ψ̂ as t→∞. Since Laplacian coflow
preserves ψ0, ψs(t) is fixed on the region where ψs(0) = ψ0 and hence:

supp (ψ̂ − ψ0) ⊆ supp(ψs(0) − ψ0) ⋐ Bη.

Thus, using eqn. (5.2.6), one has H4,Bη (ψ̂) ⩽ H4,Bη(ψ0). However, the Laplacian coflow increases
volume pointwise [59, eqn. (4.32)]. Hence:

H4,Bη (ψ̂) ⩾H4,Bη(ψs(0)) =H4,Bη(ψ0 + sdα+η)

>H4,Bη(ψ0)

where the last line follows from eqn. (5.2.3) for all s > 0 sufficiently small (cf. the proof of Lemma
5.1.2) contradicting eqn. (5.2.6).

Thus there are (uniformly) arbitrarily small compactly-supported perturbations ψs(0) = ψ0+sdα+η
of ψ0 such that the Laplacian coflow started from ψs(0) cannot converge to a torsion-free G2 4-form.
To complete the proof therefore, it suffices to prove that given any M, ψ as in the statement of the
theorem and any ψ′ ∈ [ψ]+, there exists a closed G2 4-form ψ′′ ∈ [ψ]+, arbitrarily close to ψ′ in the
C0 topology, such that ψ′′ is diffeomorphic to ψ0 in some small neighbourhood of M. This follows
from the subsequent local result:

Claim 5.2.7. Let ψ′ be a closed G2 4-form on R7 such that ψ∣0 = ψ0∣0. Then for all δ > 0, there
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exists η > 0 and α ∈ Ω3(R7) with supp(α) ⋐ B2η such that:

ψ′ + dα = ψ0 on Bη and ∥dα∥C0

ψ′
< δ.

(Note that ψ′ + dα is automatically of G2-type for δ > 0 sufficiently small, by the stability of G2

4-forms.)

Proof of Claim. Consider the 4-form ψ0 − ψ′. Since ψ0 − ψ′ vanishes at 0, there is some constant
C1 > 0 such that for all η:

∥ψ0 − ψ′∥C0

ψ′(B2η) ⩽ C1η. (5.2.8)

Similarly, since d(ψ0 −ψ′) = 0, one can choose a primitive ϖ ∈ Ω3 (R7) for ψ0 −ψ′ such that for some
constant C2 > 0 and all η:

∥ϖ∥C0

ψ′(B2η) ⩽ C2η
2. (5.2.9)

Indeed (cf. [48, p. 16]) identify R7/{0} ≅ (0,∞) × S6 and write ψ0 − ψ′ = σ1 + dt ∧ σ2, where t is the
parameter along (0,∞), σi depends parametrically on t (i = 1,2) and dσ1 = 0 and ∂σ1

∂t = dσ2 (since
d(ψ0 − ψ′) = 0). Set ϖ = ∫

t
0 σ2dt. Then:

dϖ = ∫
t

0

∂σ1
∂t

dt + dt ∧ σ2 = σ1 + dt ∧ σ2 = ψ0 − ψ′

and ϖ clearly satisfies eqn. (5.2.9), as required.
Next, fix a smooth function f ∶ [0,1] → [0,1] such that f ≡ 1 on a neighbourhood of 0 and f ≡ 0

on a neighbourhood of 1. Given any η, define:

fη =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 r ∈ [0, η],

f (r − η
η
) r ∈ [η,2η]

and set α = fη(r)ϖ. Then ψ′ + dα = ψ′ + dϖ = ψ0 on Bη, as required. Moreover:

∥dα∥C0

ψ′
= ∥

dfη

dr
dr ∧ϖ + fηdϖ∥

C0

ψ′

⩽ sup ∣f ′∣
η
∥dr ∧ϖ∥C0

ψ′(B2η) + ∥ψ0 − ψ′∥C0

ψ′(B2η)

⩽ C3η,

where the first inequality follows from the fact that supp(fη) ⋐ B2η and the second inequality follows
from eqns. (5.2.8) and (5.2.9). The claim now follows by taking η > 0 sufficiently small. This in turn
completes the proof of Theorem 1.0.7.
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5.3 The unboundedness above and below of H4

The aim of this section is to prove the following result:

Theorem 5.3.1. The functional H4 is always unbounded above and below. Specifically, let M be a
closed 7-manifold (or, more generally, a closed orbifold) and let ψ be a closed G2 4-form on M. Then:

inf
ψ′ ∈ [ψ]+

H4 (ψ′) = 0 and sup
ψ′ ∈ [ψ]+

H4(ψ′) =∞.

Let (X,d) be a metric space and µ a Borel measure on X. Write Br(x) for the closed metric ball
of radius r > 0 centred at x ∈ X. (X,d,µ) is termed a doubling metric measure space if there exist
constants C,R > 0 such that for all x ∈X and r ∈ (0,R]:

µ (B2r(x)) ⩽ Cµ (Br(x)) . (5.3.2)

Doubling metric measure spaces satisfy the following important property [66, Thm. 1.6] (N.B. whilst
the statement loc. cit. requires that eqn. (5.3.2) hold for balls of arbitrarily large radius, the proof
only uses the weaker condition stated above):

Theorem 5.3.3 (Vitali Covering Theorem). Let (X,d,µ) be a doubling metric measure space, let
A ⊆X be Borel measurable and suppose that F is a family of closed balls in X centred at points of A
such that inf {r ∣ Br(a) ∈F} = 0 for every a ∈ A. Then there exist disjoint balls {Bri(ai)}

∞

i=0
∈ FN

such that:
µ(A/

∞
⋃
i=0

Bri(ai)) = 0.

Now let (M, ψ) be an oriented 7-manifold equipped with a closed G2 4-form and for each p ∈M,
let Br(p) denote the geodesic ball of radius r centred at p defined by the metric gψ. By applying
Proposition 5.1.6 about each point p ∈M, one immediately obtains the following result:

Lemma 5.3.4. Let ε > 0 be as in Proposition 5.1.6. Then for each p ∈ M, there exists ηp > 0

(depending on ψ) such that for all η ∈ (0, ηp], there exist ᾰp/±η ∈ Ω3 (M) with supp(ᾰp/±η ) ⋐ Bη(p)
satisfying:

ψ̆p/±η = ψ + dᾰp/±η is a G2 4-form

and:
H4,Bη(p) (ψ̆

p/±
η ) ⩾⩽(1 ± ε)H4,Bη(p)(ψ).

I now prove Theorem 5.3.1:

Proof. Firstly, choose ν > 0 sufficiently small that:

(1 + ε)(1 − ν) ⩾ (1 + ε
2
) and 1 − ε + νε ⩽ (1 − ε

2
) , (5.3.5)

where ε > 0 was defined in Proposition 5.3.4.
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Initially, let M be a closed, oriented 7-manifold and ψ a closed G2 4-form on M. The Riemannian
metric gψ and the volume form volψ define a natural metric dψ and measure µψ on M and, since M

is compact, (M, dψ, µψ) is a doubling metric measure space. Now take:

F = {Bη(p) ∣ p ∈M, η ∈ (0, ηp]}

for ηp as in Lemma 5.3.4, and choose {Bηi(pi)}
∞

i=0
disjoint and measure-theoretically covering M, as

in Theorem 5.3.3. Since:
µψ (Bηi(pi)/Bηi(pi)) = 0

for all i, it follows that the open balls {Bηi(pi)}
∞
i=0 also measure-theoretically cover M. Hence:

H4(ψ) =
∞
∑
i=0
H4,Bηi(pi)(ψ).

In particular, the right-hand sum is convergent and so there is N ⩾ 0 such that:

∞
∑

i=N+1
H4,Bηi(pi)(ψ) < νH4(ψ). (5.3.6)

Now let:
ψ±1 = ψ +

N

∑
i=0

dᾰpi/±ηi ,

where ᾰpi/±ηi are defined according to Lemma 5.3.4. Then ψ±1 ∈ [ψ]+. Moreover, by the estimates
obtained in Lemma 5.3.4 and eqn. (5.3.5):

H4(ψ−1 ) =
N

∑
i=0
H4,Bηi(pi)(ψ

−
1 ) +

∞
∑

i=N+1
H4,Bηi(pi)(ψ

−
1 )

⩽ (1 − ε)
N

∑
i=0
H4,Bηi(pi)(ψ) +

∞
∑

i=N+1
H4,Bηi(pi)(ψ)

⩽ (1 − ε)H4(ψ) + ε
∞
∑

i=N+1
H4,Bηi(pi)(ψ)

⩽ (1 − ε + νε)H4(ψ) ⩽ (1 −
ε

2
)H4(ψ)

and
H4(ψ+1 ) ⩾

N

∑
i=0
H4,Bηi(pi)(ψ

+
1 ) ⩾ (1 + ε)(1 − ν)H4(ψ) ⩾ (1 +

ε

2
)H4(ψ).

Now recursively define ψ±n by applying the above argument to ψ±n−1 respectively for n ⩾ 2. Then since
the value of ε in Proposition 5.3.4 is independent of the choice of closed G2 4-form, it follows that
for all n ⩾ 0:

H4(ψ−n) ⩽ (1 −
ε

2
)
n

H4(ψ)→ 0 as n→∞
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and
H4(ψ+n) ⩾ (1 +

ε

2
)
n

H4(ψ)→ +∞ as n→∞,

as required.
In the case where M is a closed orbifold, consider the smooth locus Msmooth (note that the

singular locus has positive codimension and thus measure zero). For each component M′ of Msmooth,
the Riemannian metric gψ and volume form volψ again define a metric dψ and measure µψ on M′,
and (M′, dψ, µψ) is a doubling metric measure space by compactness of the original orbifold M. The
rest of the argument now proceeds as before.

Remark 5.3.7. In [36, 37, 35], Donaldson explained how to extend the Hitchin functional H3 from
closed 7-manifolds to compact 7-manifolds with boundary, by considering the data of SL(3;C) 3-
forms on the boundary of M. In the same way one can also extend the functional H4 to compact
manifolds with boundary by considering suitable geometric data on the boundary. Theorem 5.3.1
is then also valid on compact manifolds with boundary; the argument is essentially the same as the
orbifold case, with Msmooth replaced by M/∂M.

Likewise, the unboundedness of the functionals H̃3 and H̃4 proved in this chapter also holds
equally on compact manifolds with boundary.

5.4 The unboundedness below of H3

The deduction of Lemma 5.1.2(2) from Lemma 5.1.2(1), the proof of Proposition 5.1.6 and the
arguments of §5.3 all apply equally to either H3 or H4. However Lemma 5.1.2(1) has no complete
analogue for H3. Indeed, let B1 ⊂ R7 denote the open unit ball in R7 and let:

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx247 − dx347 − dx356,

be the ‘standard’ flat G2 3-form on R7. Suppose there were α+ such that D2H3,B1
∣ψ0
(dα+,dα+) > 0.

Then embedding B1 ↪ R7/3Z7 ≅ T7 and extending α by zero over all of T7, one would find:

DH3,T7 ∣ϕ(dα+,dα+) > 0.

However, in [71] Hitchin proved that on any closed manifold M with torsion-free G2 3-form ϕ, the
Hessian D2H3∣ϕ is negative definite (modulo diffeomorphisms), and thus a contradiction has been
reached. In particular, the arguments presented in this chapter cannot be applied to prove that H3

is unbounded above. There is, however, a partial analogue of Lemma 5.1.2 for H3:

Lemma 5.4.1. There exists α− ∈ Ω2(R7) with supp(α−) ⋐ B1 such that:

D2H3,B1
∣ψ0
(dα−,dα−) < 0.
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Proof. From Proposition 2.2.17 it suffices to construct α− ∈ Ω2(R7) with suppα− ⋐ B1 such that:

J =∫
B1

(4
3
∥π1(dα−)∥2ϕ0

+ ∥π7(dα−)∥2ϕ0
− ∥π27(dα−)∥2ϕ0

) volϕ0
< 0.

Consider α− = f(r) ⋅ dx12, where f ∶ [0,1] → [0,1] is a smooth function such that f ≡ 1 on a
neighbourhood of 0 and f ≡ 0 on a neighbourhood of 1 (and r =

√
(x1)2 + ... + (x7)2). Then:

dα− = d (f(r) ⋅ x12) = df

dr

1

r
(x1dx1 + ... + x7dx7) ∧ dx12 = df

dr

1

r
⋅ ν,

where ν = (x1dx1 + ... + x7dx7) ∧ dx12. A direct calculation yields:

∥ν∥2ϕ0
= (x3)2 + (x4)2 + (x5)2 + (x6)2 + (x7)2, ∥π1(ν)∥2ϕ0

= 1

7
(x3)2,

∥π7(ν)∥2ϕ0
= 1

4
((x4)2 + (x5)2 + (x6)2 + (x7)2) .

Thus, for this choice of α−

J = −∫
B
(df
dr

1

r
)
2

(2
3
(x3)2 + 1

2
((x4)2 + (x5)2 + (x6)2 + (x7)2)) vol < 0

as required.

I thus obtain:

Theorem 5.4.2. For any closed, oriented 7-manifold (or, more generally, 7-orbifold) M and any
closed G2 3-form ϕ on M:

inf
ϕ′ ∈ [ϕ]+

H3(ϕ′) = 0.

5.5 The unboundedness above and below of H̃3 and H̃4

The aim of this section is to prove the following result:

Theorem 5.5.1. Let M be a closed 7-manifold (or, more generally, a closed orbifold) and let ϕ̃ and
ψ̃ be closed G̃2 3-forms and G̃2 4-forms on M respectively. Then:

• inf
ϕ̃′ ∈ [ϕ̃]∼

H̃3 (ϕ̃′) = 0 and sup
ϕ̃′ ∈ [ϕ̃]∼

H̃3 (ϕ̃′) =∞;

• inf
ψ̃′ ∈ [ψ̃]∼

H̃4 (ψ̃′) = 0 and sup
ψ̃′ ∈ [ψ̃]∼

H̃4 (ψ̃′) =∞.

As in §5.4, by repeating the arguments of §§5.1 & 5.3, it suffices to prove the following result:

Lemma 5.5.2. Let B1 ⊂ R7 denote the open unit ball in R7 and let:

ϕ̃0 = dx123 − dx145 − dx167 + dx246 − dx247 − dx347 − dx356

ψ̃0 = dx4567 − dx2367 − dx2345 + dx1357 − dx1346 − dx1256 − dx1247
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be the ‘standard’ flat G̃2 3-form and G̃2 4-form on R7 respectively. Then:

1. There exists β± ∈ Ω2(R7) with supp(β±) ⋐ B1 such that:

I ± =∫
B1

(4
3
∥π1(dβ±)∥2ϕ̃0

+ ∥π7(dβ±)∥2ϕ̃0
− ∥π27(dβ±)∥2ϕ̃0

)vol0 ><0. (5.5.3)

2. There exists β± ∈ Ω3(R7) with supp(β±) ⋐ B1 such that:

J ± =∫
B1

(3
4
∥π1(dβ±)∥2ϕ̃0

+ ∥π7(dβ±)∥2ϕ̃0
− ∥π27(dβ±)∥2ϕ̃0

)vol0 ><0. (5.5.4)

Proof. (1) Again let r =
√
(x1)2 + ... + (x7)2 and f ∶ [0,1] → [0,1] be a smooth function such that

f ≡ 1 on a neighbourhood of 0 and f ≡ 0 on a neighbourhood of 1. I claim that:

β+ = f(r)dx12 and β− = f(r)dx14

satisfy eqn. (5.5.3). A direct calculation yields:

I + =∫
B1

(df
dr

1

r
)
2 ⎛
⎜
⎝
−
2 (x3)2

3
+
(x4)2

2
+
(x5)2

2
+
(x6)2

2
+
(x7)2

2

⎞
⎟
⎠
vol0

and

I − =∫
B1

(df
dr

1

r
)
2 ⎛
⎜
⎝

(x2)2

2
+
(x3)2

2
−
2 (x5)2

3
−
(x6)2

2
−
(x7)2

2

⎞
⎟
⎠
vol0.

Observe also that, by symmetry, for any distinct i, j ∈ {1, ...,7}:

∫
B1

(df
dr

1

r
)
2

((xi)2 − (xj)2) vol0 = 0.

Thus, for β+, one sees that:

I + =∫
B1

(df
dr

1

r
)
2 ⎛
⎜
⎝

(x5)2

3
+
(x6)2

2
+
(x7)2

2

⎞
⎟
⎠
vol0 > 0.

Similarly, for β−, one sees that:

I − = −∫
B1

(df
dr

1

r
)
2 2 (x5)2

3
vol0 < 0.

(2) Now take:
β+ = f(r)dx123 and β− = f(r)dx124.
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By direct calculation:

J + =∫
B1

(df
dr

1

r
)
2 ⎛
⎜
⎝

(x4)2

2
+
(x5)2

2
+
(x6)2

2
+
(x7)2

2

⎞
⎟
⎠
vol0 > 0

and:

J − =∫
B1

(df
dr

1

r
)
2 ⎛
⎜
⎝

(x3)2

2
−
(x5)2

2
−
(x6)2

2
−
3 (x7)2

4

⎞
⎟
⎠
vol0 = −∫

B1

(df
dr

1

r
)
2 ⎛
⎜
⎝

(x6)2

2
+
3 (x7)2

4

⎞
⎟
⎠
vol0 < 0,

using symmetry as above.

As in §5.1, as a corollary, one obtains:

Theorem 5.5.5. Let M be a closed, oriented 7-manifold (or, more generally, 7-orbifold) and let ϕ̃ be
a torsion-free G̃2 3-form on M. Then there exist infinite-dimensional subspaces S±3 (ϕ̃) along which
D2H̃3∣ϕ̃ is positive definite and negative definite respectively. Similarly, let ψ̃ be a torsion-free G̃2

4-form on M. Then there exist infinite-dimensional subspaces S±4 (ψ̃) along which D2H̃4∣ψ̃ is positive
definite and negative definite respectively. In particular, the critical points of both H̃3 and H̃4 are
always saddles.
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Chapter 6

Concluding remarks and open questions

Here, I briefly describe two implications of the results from Part I with impact beyond the research
area of Hitchin functionals.

6.1 Gromov–Hausdorff convergence without assumptions on
curvature or injectivity radius

It is well-known that for all n ∈ N, r > 0, V > 0, D > 0, κ ∈ R, the following two sets of manifolds are
precompact in the Gromov–Hausdorff metric [25, p. 265]:

1. the set of all n-manifolds with volume at most V and injectivity radius at least r;

2. the set of all n-manifolds with diameter at most D and sectional (or Ricci) curvature at least
κ.

As a consequence, theorems which prove Gromov–Hausdorff convergence typically require either a
lower bound on either injectivity radius or sectional/Ricci curvature.

By contrast, Theorem 4.4.1 assumes no lower bound on curvature or injectivity radius, and there-
fore (combined with Theorem 4.3.7) can be used to prove Gromov–Hausdorff convergence even in the
absence of such bounds.

It is therefore possible that Theorems 4.4.1 and 4.3.7 could provide useful tools for proving
Gromov–Hausdorff convergence in other situations where lower bounds on curvature/injectivity ra-
dius are not available.

6.2 The structure of Laplacian coflow in a neighbourhood of
a torsion-free G2-structure

Lotay–Wei recently proved the following result on the structure of Laplacian flow near a torsion-free
G2 3-form:
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Theorem ([96, Thm. 1.3]). Let ϕ be a torsion-free G2 3-form on a closed 7-manifold M. Then there
exists a neighbourhood U of ϕ in [ϕ]+ such that for any ϕ′ ∈ U , the Laplacian flow:

∂ϕ(t)
∂t

=∆ϕ(t)ϕ(t), ϕ(0) = ϕ′

exists for all time and converges smoothly to some ϕ∞ ∈ Diff0(M) ⋅ ϕ as t→∞.

In contrast, currently nothing is known about the behaviour of the Laplacian coflow in a neigh-
bourhood of a torsion-free G2 4-form ψ.

Theorem 5.1.11 provides some potential insight into this problem. In Chapter 11 (specifically
Proposition 11.4.1) it is proven that the saddle-like critical points of the functional H4 are non-
degenerate modulo the action of diffeomorphisms, giving explicit formulae for subspaces S±4 (ψ) along
which D2H4 is positive and negative definite respectively. Thus, one can write:

Tψ[ψ]+ = T (Diff0(M) ⋅ ψ)⊕ S+4 (ψ)⊕ S−4 (ψ).

Motivated by this, it is natural to ask the following question:

Question 6.2.1. Let M be a closed, oriented 7-manifold and let ψ be a torsion-free G2 4-form on
M. Does there exist an infinite-dimensional stable manifold S −

4 (ψ) ⊂ [ψ]+, tangent to S−4 (ψ) at ψ,
and an infinite-dimensional unstable manifold S +

4 (ψ) ⊂ [ψ]+, tangent to S+4 (ψ) at ψ, such that for
any sufficiently small neighbourhood U of ψ in [ψ]+, the following is true:

• For all ψ′ ∈ U ∩S −
4 (ψ), the Laplacian coflow:

∂ψ(t)
∂t

=∆ψ(t)ψ(t), ψ(0) = ψ′

exists for all time and converges smoothly to some ψ∞ ∈ Diff0(M) ⋅ ψ as t→∞.

• For all ψ′ ∈ U ∩S +
4 (ψ), the time reversed Laplacian coflow:

∂ψ(t)
∂t

= −∆ψ(t)ψ(t), ψ(0) = ψ′

exists for all time and converges smoothly to some ψ∞ ∈ Diff0(M) ⋅ ψ as t→∞.

• No other trajectories of either the Laplacian coflow or the time-reversed Laplacian coflow in U
converge to any ψ∞ ∈ Diff0(M) ⋅ ψ ∩U . (Here, U denotes the closure of U .)

Further evidence to support the third point above is Theorem 5.2.2, which states that, at least in
the C0-topology, most trajectories of the Laplacian coflow in any neighbourhood of ψ fail to converge
to any torsion-free G2 4-form.

Question 6.2.1 seems to be far more challenging than Lotay–Wei’s theorem, since it is known
from Grigorian [59] that, unlike Laplacian flow, neither Laplacian coflow nor time-reversed Laplacian
coflow is parabolic modulo diffeomorphisms, even when restricted to the direction of closed forms.
This lack of parabolicity poses a significant technical hurdle to the study of Laplacian coflow.
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Part II

h-principles for stable forms
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Chapter 7

Relative h-principles for closed stable forms

This chapter uses convex integration to prove four new relative h-principles for closed, stable, exterior
forms on manifolds, viz. the relative h-principle for co-symplectic forms, co-pseudoplectic forms and
G̃2 3- and 4-forms. New proofs of the three previously known relative h-principles are also provided.
The implication of these results for the unboundedness of Hitchin functionals is discussed.

7.1 Algebraic preliminaries: co-symplectic, pseudoplectic and
co-pseudoplectic forms

The aim of this section is to establish the fundamental properties of stable 2-forms and (n−2)-forms
which will be needed in this chapter. I begin with some general results on stable forms. Fix a volume
form vol on Rn; the following result is easily verified by direct calculation:

Lemma 7.1.1. Consider the anti-isomorphism:

Φ ∶ GL+(n;R)→ GL+(n;R)

F ↦ det(F )
1
n−p ⋅ F −1,

(7.1.2)

with inverse given by Ψ ∶ F ↦ det(F )
1
p ⋅ F −1. Then the following GL+(n;R)-equivariant diagram

commutes:

⋀pRn GL+(n;R)

⋀n−p (Rn)∗ GL+(n;R)

σ↦σ⌟vol Φ (7.1.3)

where the left-hand vertical arrow is an isomorphism, the top action is a left action and the bottom
action is a right action.

123



Next, given a p-form σ0 on Rn define linear maps ισ0
and εσ0

by:

ισ0
∶ Rn →⋀p−1 (Rn)∗ εσ0

∶ (Rn)∗ →⋀p+1 (Rn)∗

u↦ u ⌟ σ0 β ↦ β ∧ σ0.
(7.1.4)

Recall from [93, §2] that a p-form σ0 on Rn is termed multi-symplectic if ισ0
is injective.1 Analogously,

I term σ0 multi-co-symplectic if εσ0
is injective. Write GL−(n;R) for the set of orientation-reversing

automorphisms of Rn and StabGL−(n;R)(σ0) for the set of orientation-reversing automorphisms fixing
a given p-form σ0.

Lemma 7.1.5.
1. Let α ∈ ⋀p (Rn)∗ be a multi-symplectic form, embed Rn ↪ Rk ⊕ Rn ≅ Rn+k for some k > 0 and
embed ⋀p (Rn)∗ ↪ ⋀p (Rn+k)

∗ in the canonical way. Then:

StabGL+(n+k;R)(α) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
Ak×k Bk×n

0n×k Cn×n

⎞
⎠

RRRRRRRRRRR

A ∈ GL+(k;R), B ∈ End(Rn,Rk),
C ∈ StabGL+(n;R)(α)

⎫⎪⎪⎬⎪⎪⎭

∐
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
Ak×k Bk×n

0n×k Cn×n

⎞
⎠

RRRRRRRRRRR

A ∈ GL−(k;R), B ∈ End(Rn,Rk),
C ∈ StabGL−(n;R)(α)

⎫⎪⎪⎬⎪⎪⎭
.

Thus if StabGL(n;R)(α) is connected, then StabGL+(n+k;R)(α) is also connected.
2. Now let α ∈ ⋀p (Rn)∗ be a multi-co-symplectic form. Then:

StabGL+(n+k;R)(θ
12..k ∧ α) =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
Ak×k 0k×n

Bn×k det(A)−
1
pCn×n

⎞
⎠

RRRRRRRRRRR

A ∈ GL+(k;R), B ∈ End(Rk,Rn),
C ∈ StabGL+(n;R)(α)

⎫⎪⎪⎬⎪⎪⎭

∐
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
Ak×k 0k×n

Bn×k ∣det(A)∣−
1
pCn×n

⎞
⎠

RRRRRRRRRRR

A ∈ GL−(k;R), B ∈ End(Rk,Rn),
C ∈ J ⋅ StabGL− signJ(n;R)(α)

⎫⎪⎪⎬⎪⎪⎭
,

(7.1.6)
where J ∈ GL(n;R) is any map such that J∗α = −α. If either:

• α and −α lie in separate GL(n;R)-orbits, or

• α and −α lie in the same GL+(n;R)-orbit and StabGL(n;R)(α) = StabGL+(n;R)(α),

then the second set on the right-hand side of eqn. (7.1.6) is empty. In particular, if either of these
conditions holds and additionally StabGL+(n;R)(α) is connected, then StabGL+(n+k;R)(θ12...k ∧ α) is
also connected.

Proof. (1) Since α ∈ ⋀p (Rn)∗ is multi-symplectic, the kernel of the linear map:

Rn+k →⋀p−1 (Rn+k)
∗

u↦ u ⌟ α

1Caveat: not every stable form is multi-symplectic, despite the claim to the contrary in [93, Cor. 2.3]. A
counterexample is provided by pseudoplectic forms; see Proposition 7.1.14.
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is precisely Rk ⊕ 0 and hence this subspace is invariant under StabGL+(n+k;R)(α). Thus any element

of StabGL+(n+k;R)(α) has the form F =
⎛
⎝
Ak×k Bk×n

0n×k Cn×n

⎞
⎠

for some A ∈ GL(k;R), B ∈ End(Rn,Rk) and

C ∈ GL(n;R). Therefore F ∗α = C∗α = α and the result follows.
(2) Since α ∈ ⋀p (Rn)∗ is multi-co-symplectic, the kernel of the linear map:

(Rn+k)
∗
→⋀p+1 (Rn+k)

∗

β ↦ β ∧ (θ12...k ∧ α)

is precisely (Rk)∗ ⊕ 0 and hence this subspace is invariant under StabGL+(n+k;R)(θ12...k ∧ α). Thus

any element of StabGL+(n+k;R)(θ12...k ∧ α) has the form F =
⎛
⎝
Ak×k 0k×n

Bn×k Dn×n

⎞
⎠

for some A ∈ GL(k;R),

B ∈ End(Rk,Rn) and D ∈ GL(n;R), hence F ∗ (θ12...k ∧ α) = det(A)θ12...k ∧D∗α = θ12...k ∧ α and
whence:

det(A) ⋅D∗α = α. (7.1.7)

If det(A) > 0, one can rewrite eqn. (7.1.7) as (det(A)
1
p ⋅D)

∗
α = α. Since det(F ) = det(A)det(D) >

0, it follows that det (det(A)
1
p ⋅D) > 0 and thus C = det(A)

1
p ⋅D ∈ StabGL+(n;R)(α) as claimed.

Now suppose det(A) < 0 and rewrite eqn. (7.1.7) as (∣det(A)∣
1
p ⋅D)

∗
α = −α, where now C =

∣det(A)∣
1
p ⋅ D has negative determinant. Then clearly α and −α lie in the same GL(n;R)-orbit;

let J be some fixed element of GL(n;R) (not necessarily equal to C) such that J∗α = −α. If
α and −α lie in different GL+(n;R)-orbits, then J is automatically orientation-reversing and so
C ∈ J ⋅ StabGL+(n;R)(α) as required. Else, J may be chosen to be orientation-preserving and hence
C ⋅J is an orientation-reversing automorphism of α, implying that StabGL(n;R)(α) ≠ StabGL+(n;R)(α)
and C ∈ J ⋅ StabGL−(n;R)(α), again as required. This completes the proof.

7.1.1 (2k − 2)-forms in 2k-dimensions, k ⩾ 3

I begin by recalling the following well-known result:

Proposition 7.1.8. Let k ⩾ 2. The action of GL+(2k;R) on ⋀2 (R2k)∗ has exactly two open orbits,
given by:

⋀2
+ (R2k)

∗
= {ω ∈⋀2 (R2k)

∗
∣ ωk > 0} and ⋀2

− (R2k)
∗
= {ω ∈⋀2 (R2k)

∗
∣ ωk < 0} (7.1.9)

which form a single orbit under GL(2k;R). The stabiliser in GL+(2k;R) (equivalently GL(2k;R)) of
forms in either orbit is isomorphic to the real symplectic group Sp(2k;R). ‘Standard’ representatives
of the two orbits are given by:

ω+(k) = θ12 + θ34 + ... + θ2k−1,2k and ω−(k) = −θ12 + θ34 + ... + θ2k−1,2k (7.1.10)
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respectively.

Forms in ⋀2+ (R2k)∗ are here termed emproplectic and forms in ⋀2− (R2k)∗ termed pisoplectic.2

The GL(2k;R)-orbit comprising of both emroplectic and pisoplectic forms is termed the orbit of
symplectic forms ω and can be characterised by the property that the linear map ιω is an isomorphism
(see eqn. (7.1.4)).

Using Proposition 7.1.8, I prove the following result (some aspects of which appear to be known;
see, e.g. [72]):

Proposition 7.1.11. Let k ⩾ 3. The action of GL+(2k;R) on ⋀2k−2 (R2k)∗ has exactly two open
orbits, given by:

⋀2k−2
+ (R2k)

∗
= {ωk−1 ∣ ω is emproplectic} and ⋀2k−2

− (R2k)
∗
= {−ωk−1 ∣ ω is pisoplectic} .

Call forms in ⋀2k−2+ (R2k)∗ co-emproplectic and forms in ⋀2k−2− (R2k)∗ co-pisoplectic. Standard ex-
amples of co-emproplectic and co-pisoplectic forms are given by:

ϖ+(k) = (
k

∑
i=2
θ12...2̂i−1,2i...2k−1,2k) + θ34...2k = ω+(k)

k−1

(k − 1)!
(7.1.12)

and:
ϖ−(k) = (

k

∑
i=2
θ12...2̂i−1,2i...2k−1,2k) − θ34...2k = −ω−(k)

k−1

(k − 1)!
, (7.1.13)

where ̂ denotes that the corresponding indices should be omitted. The stabiliser in GL+(2k;R) of a
co-emproplectic or co-pisoplectic form is isomorphic to Sp(2k;R). If k is odd, then ⋀2k−2+ (R2k)∗ and
⋀2k−2− (R2k)∗ are both individually invariant under GL(n;R), while if k is even, the two GL+(n;R)-
orbits form a single GL(n;R)-orbit. I shall say that ϖ is co-symplectic if it lies in ⋀2k−2+ (R2k)∗ ∪
⋀2k−2− (R2k)∗. This is equivalent to the condition that εϖ is an isomorphism.

Proof. Recall diagram (7.1.3) and let n = 2k and p = 2. Let w denote an emproplectic (resp. piso-
plectic) element of ⋀2R2k and let ϖ = w ⌟ vol. Then one obtains the following diagram:

GL+(2k;R) ⋅w GL+(2k;R)

GL+(2k;R) ⋅ϖ GL+(2k;R)

σ↦σ⌟vol Φ

Since the left-hand vertical arrow is an isomorphism, it follows that StabGL+(2k;R)(ϖ) = Φ (StabGL+(2k;R)(w)).

2I have created these non-standard terms, in keeping with the term ‘symplectic’ (literally, ‘braided together’).
‘Emproplectic’ (literally, ‘braided forwards’) denotes that forms in the first orbit induce the ‘correct’ orientation
on the underlying space, whilst ‘pisoplectic’ (literally, ‘braided backwards’) denotes that forms in the second orbit
induce the ‘opposite’ orientation.
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As StabGL+(2k;R)(w) ≅ Sp(2k;R) ⊆ SL(2k;R), Φ(F ) = F −1 on StabGL+(2k;R)(w) (see eqn. (7.1.2)) and
hence StabGL+(2k;R)(ϖ) = StabGL+(2k;R)(w) ≅ Sp(2k;R), as required.

Now take w = e12 + e34 + ... + e2k−1,2k and recall ω+(k) = θ12 + θ34 + ... + θ2k−1,2k defined in eqn.
(7.1.10). Taking vol = ω+(k)k

k! , one finds that:

w ⌟ vol = ω+(k)
k−1

(k − 1)!
=ϖ+(k) ∈⋀2k−2

+ (R2k)
∗
.

Likewise, if one takes w = −e12 + e34 + ... + e2k−1,2k and vol = ω+(k)k
k! = −ω−(k)

k

k! , one finds:

w ⌟ vol = −ω−(k)
k−1

(k − 1)!
=ϖ−(k) ∈⋀2k−2

− (R2k)
∗

as required. To prove the statement regarding GL(2k;R)-orbits, let ω be an emproplectic form, let
F ∈ GL−(2k;R) and consider −F ∗ω. If k is odd, (−F ∗ω)k = (−1)kF ∗ (ωk) = −F ∗ (ωk) > 0 and so
−F ∗ω is emproplectic. Thus F ∗ (ωk−1) = (−F ∗ω)k−1 is co-emproplectic as claimed. Alternatively, if
k is even, then (−F ∗ω)k < 0, hence so −F ∗ω is pisoplectic and whence F ∗ (ωk−1) = − (−F ∗ω)k−1 is
pisoplectic, as claimed. The final statement regarding the characterisation of co-symplectic forms is
clear.

I remark that the notions of co-emproplectic and co-pisoplectic forms are still valid in dimension 4,
however in this case they coincide with emproplectic and pisoplectic forms respectively. Accordingly,
I reserve the terms co-emproplectic and co-pisoplectic for dimension 2k, k ⩾ 3. Also note that given
a co-emproplectic form ϖ on an oriented 2k-manifold, the form −ϖ is a co-pisoplectic form on M,
where the overline denotes orientation-reversal.

7.1.2 2- and (2k − 1)-forms in 2k + 1-dimensions, k ⩾ 2
Although some aspects of the following result are known, to the author’s knowledge, the complete
statement does not appear in the literature:

Proposition 7.1.14. Let k ⩾ 2. The action of GL+(2k + 1;R) on ⋀2 (R2k+1)∗ has a unique open
orbit:

⋀2
P (R2k+1)

∗
= {µ ∈⋀2 (R2k+1)

∗
∣ µk ≠ 0} (7.1.15)

which is also an orbit of GL(2k + 1;R). Equivalently, a 2-form µ lies in ⋀2P (R2k+1)∗ if and only if
ιµ has rank 2k (see eqn. (7.1.4)). Call forms in this orbit pseudoplectic; a standard representative of
this orbit may be taken to be:

µ0(k) = θ23 + θ45 + ... + θ2k,2k+1. (7.1.16)

The stabiliser of any pseudoplectic form is connected and is isomorphic to the group:

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
A1×1 B1×2k

02k×1 C2k×2k

⎞
⎠

RRRRRRRRRRR
A ∈ R>0,B ∈ (R2k)

∗ and C ∈ Sp(2k;R)
⎫⎪⎪⎬⎪⎪⎭
. (7.1.17)
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Likewise, the action of GL+(2k + 1;R) on ⋀2k−1 (R2k+1)∗ has a unique open orbit:

⋀2k−1
Co−P (R2k+1)

∗
= {ξ ∈⋀2k−1 (R2k+1)

∗
∣ the linear map εξ has rank 2k} (7.1.18)

which is also an orbit of GL(2k + 1;R). Term forms in this orbit co-pseudoplectic. A standard
representative of this orbit may be taken to be:

ξ0(k) =
k

∑
i=1
θ123...2̂i,2i+1...2k,2k+1 = θ1 ∧ϖ+(k), (7.1.19)

where ϖ+(k) is viewed as a form on R2k+1 via R2k ≅ ⟨e2, ..., e2k+1⟩ ⊂ R2k+1 (and formally ϖ+(k) =
ω+(k) when k = 2). The stabiliser of any co-pseduoplectic form is isomorphic to the group:

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
A1×1 01×2k

B2k×1 A−
1

2k−2 ⋅C2k×2k

⎞
⎠

RRRRRRRRRRR
A ∈ R>0,B ∈ R2k and C ∈ Sp(2k;R)

⎫⎪⎪⎬⎪⎪⎭
. (7.1.20)

In particular, the stabiliser is connected.

Proof. The set {µ ∈ ⋀2 (R2k+1)∗ ∣ µk = 0} is an affine subvariety of ⋀2 (R2k+1)∗, so if it is a proper
subset of ⋀2 (R2k+1)∗ it must have positive codimension, and hence can contain no open orbits of
GL+(2k+1;R). Thus to prove eqn. (7.1.15) it suffices to prove that⋀2P (R2k+1)∗ = {µ ∈ ⋀2 (R2k+1)∗ ∣ µk ≠ 0}
is non-empty and a single orbit.

Firstly, let me show that ⋀2P (R2k+1)∗ is a single orbit of GL+(2k+1;R). Given µ ∈ ⋀2P (R2k+1)∗,
since the rank of an anti-symmetric bilinear form is always even (and the dimension of R2k+1 is odd)
it follows that ιµ has a non-trivial kernel. Pick a 1-dimensional subspace L of the kernel and let
B ⊂ R2k+1 be a 2k-dimensional complement to L in R2k+1. Since µk ≠ 0, one may regard µ as an
emproplectic 2-form on B for some suitable choice of orientation on B. Thus one can pick a correctly-
oriented basis (f2, ..., f2k+1) of B with dual basis (f2, ..., f2k+1) such that µ = f23 + ...+f2k,2k+1. Now
define f1 to be a non-zero vector in L such that (f1, ..., f2k+1) is a correctly oriented basis of R2k+1.
Then with respect to this basis:

µ = f23 + ... + f2k,2k+1.

Thus ⋀2P (R2k+1)∗ is a single orbit under GL+(2k + 1;R). This also shows that ⋀2P (R2k+1)∗ ≠ ∅
(since (f23 + ... + f2k,2k+1)k ≠ 0 in the above basis) and:

⋀2
P (R2k+1)

∗
= {µ ∈⋀2 (R2k+1)

∗
∣ ιµ has rank 2k} .

Moreover, since this is the only open orbit of GL+(2k + 1;R), it follows that ⋀2P (R2k+1)∗ must also
form a single GL(2k + 1;R)-orbit.

Now fix a (positive) volume element vol on R2k+1, let µ ∈ ⋀2R2k+1 and write ξ = µ ⌟ vol. Recall
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that εξ and ιµ denote the linear maps:

εξ ∶ (R2k+1)
∗
→⋀2k (R2k+1)

∗
ιµ ∶ (R2k+1)

∗
→ R2k+1

α ↦ α ∧ ξ α ↦ α ⌟ µ

respectively. The first step is to understand how the maps εξ and ιµ are related:

Claim 7.1.21. The maps εξ and ιµ satisfy the relation:

εξ = −ιµ ⌟ vol.

Proof of Claim. Firstly, given α ∈ (Rn)∗, β ∈ ⋀2Rn and γ ∈ ⋀n (Rn)∗, a direct calculation verifies the
following identity:

α ∧ (β ⌟ γ) = −(α ⌟ β) ⌟ γ. (7.1.22)

Thus given α ∈ (R2k+1)∗, one computes that:

εξ(α) = α ∧ ξ

= α ∧ (µ ⌟ vol)

= −(α ⌟ µ) ⌟ vol = −ιµ(α) ⌟ vol,

where eqn. (7.1.22) has been used in passing to the final line.

Thus ιµ has the same rank as εξ and so ιµ has rank 2k if and only if εξ has rank 2k. It follows at
once from Lemma 7.1.1 that the action of GL+(2k + 1;R) on ⋀2k−1 (R2k+1)∗ has a single open orbit
(which is also an orbit of GL(2k + 1;R)) given by:

⋀2k−1
Co−P (R2k+1)

∗
= {ξ ∈⋀2k−1 (R2k+1)

∗
∣ εξ has rank 2k} .

Likewise, the explicit formula for ξ0 also follows at once.
The formula for the stabiliser of pseudoplectic forms is a simple application of Lemma 7.1.5(1).

For the stabiliser of co-pseudoplectic forms, one uses Lemma 7.1.5(2), together with the observations
that:

• If k is odd, then −ϖ+(k) = − (−ω+(k))
k−1

(k−1)! is co-pisoplectic (since −ω+(k) is pisoplectic when k

is odd) and since (when k is odd) the orbit of co-emproplectic and co-pisoplectic forms are
each closed under the action of GL(2k;R) (and not just GL+(2k;R)) it follows that ϖ+(k)
and −ϖ+(k) lie in separate GL+(2k;R)-orbits. This forces the second bracket in eqn. (7.1.6)
to vanish, as claimed.

• If k is even then −ϖ+(k) = (−ω+(k))
k−1

(k−1)! is co-emproplectic (since −ω+(k) is emproplectic when
k is even) and thus ϖ+(k) and −ϖ+(k) lie in the same GL+(2k;R)-orbit. On the other hand,
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since k is even:
StabGL(2k;R) (ϖ+(k)) = StabGL+(2k;R) (ϖ+(k))

and thus once again the second bracket on the right-hand side of eqn. (7.1.6) vanishes. This
completes the proof.

In particular, note from eqns. (7.1.17) and (7.1.20) that neither pseudoplectic forms nor co-
pseudoplectic forms are Hitchin forms.

Remark 7.1.23. Let µ ∈ ⋀2P (R2k+1)∗. The kernel of the linear map ιµ defines a 1-dimensional subspace
of R2k+1 which I denote ℓµ. Moreover, the orientation on R2k+1 induces a natural orientation on ℓµ

defined as follows: given a 1-form θ on R2k+1 which does not vanish on ℓµ, say that θ is positive on
ℓµ if θ ∧ µk > 0. Likewise, let ξ ∈ ⋀2k−1Co−P (R2k+1)∗ be co-pseudoplectic. Then the annihilator of the
1-dimensional subspace Ker(εξ) ⊂ (R2k+1)∗ defines a hyperplane in R2k+1 associated to ξ; denote this
hyperplane by Πξ. By eqn. (7.1.20), every element F of StabGL+(2k+1;R)(ξ) restricts to an orientation
preserving automorphism of Πξ; thus, it is again possible to orient the planes Πξ consistently for all ξ.
Specifically, there is a unique orientation on Πξ such that ξ = θ∧ϖ = θ∧ωk−1, where θ is a compatibly
oriented generator of Ann(Π∣ξ) = Ker(εξ) and ϖ is a co-emproplectic form on Πξ with respect to the
given orientation (equivalently, ω is a emproplectic form on Πξ). Moreover, as θ varies, ω defines a
conformal class of emproplectic forms on Πξ; thus ξ determines a co-oriented almost contact structure
on R2k+1 (in an algebraic sense) [42, §10.1.B]. E.g. in the case of the standard co-pseudoplectic form
ξ0(k) = θ1 ∧ ϖ+(k), Πξ0(k) = ⟨e2, ..., e2k+1⟩ and the corresponding conformal class of emproplectic
forms on Πξ is just λ ⋅ (θ23 + ... + θ2k,2k+1) for λ > 0.

7.1.3 Classification of stable forms

For the sake of completeness, I briefly recount the classification of stable forms; see [93] for further
details of the 8-dimensional case (although note that the formulae for ζc,s,n differ from those op. cit.,
and were computed by the author of this thesis in order to ensure that the corresponding metrics
gζc, s, n assumed standard forms; likewise, the formulae for ηc,s,n were also computed by the author
of this thesis):

Theorem 7.1.24. The action of GL+(n;R) on ⋀p (Rn)∗ has precisely the following open orbits for
2 ⩽ p ⩽ n − 2:

n = 2k, k ⩾ 2: ⋀2± (R2k)∗ and ⋀2k−2± (R2k)∗;
n = 2k+1, k ⩾ 2: ⋀2P (R2k+1)∗ and ⋀2k−1Co−P (R2k+1)∗;
n = 6: ⋀3+ (R6)∗ and ⋀3+ (R6)∗;
n = 7: ±⋀3+ (R7)∗, ±⋀3∼ (R7)∗, ±⋀4+ (R7)∗ and ±⋀4∼ (R7)∗;
n = 8: The action of GL+(8;R) on ⋀3 (R8)∗ has precisely three open orbits, represented by the
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3-forms:

ζc = θ123 +
1

2
θ147 − 1

2
θ156 + 1

2
θ246 + 1

2
θ257 + 1

2
θ345 − 1

2
θ367 +

√
3

2
θ458 +

√
3

2
θ678;

ζs =
√
3

2
θ147 −

√
3

2
θ156 + θ238 + 1

2
θ246 − 1

2
θ257 + 1

2
θ347 + 1

2
θ356 + 1

2
θ458 − 1

2
θ678;

ζn = −θ123 −
1

2
θ156 − 1

2
θ178 + 1

2
θ257 − 1

2
θ268 − 1

2
θ358 − 1

2
θ367 −

√
3

2
θ458 +

√
3

2
θ467,

with stabilisers PSU(3), SL(3;R) and PSU(1,2) respectively. Here, PSU(3) acts on R8 ≅ su(3) via
the diagram:

SU(3)

PSU(3) GL+(su(3))

Ad
quot

and preserves the inner-product gζc = ∑
8
i=1 (θi)

⊗2, SL(3;R) acts on R8 ≅ sl(3;R) (faithfully) via its
adjoint representation and preserves the indefinite inner-product gζs = ∑

5
i=1 (θi)

⊗2 −∑8
i=6 (θi)

⊗2, and
PSU(1,2) acts on R8 ≅ su(1,2) via the diagram:

SU(1,2)

PSU(1,2) GL+(su(1,2))

Ad
quot

and preserves the indefinite inner-product gζn = ∑
4
i=1 (θi)

⊗2 − ∑8
i=5 (θi)

⊗2. Likewise, the action of
GL+(8;R) on ⋀5 (R8)∗ has precisely three open orbits, represented by the 5-forms:

ηc = −
√
3

2
θ12345 −

√
3

2
θ12367 − 1

2
θ12458 + 1

2
θ12678 + 1

2
θ13468 + 1

2
θ13578 − 1

2
θ23478 + 1

2
θ23568 + θ45678;

ηs =
1

2
θ12345 − 1

2
θ12367 + 1

2
θ12478 + 1

2
θ12568 − 1

2
θ13468 + 1

2
θ13578 − θ14567 −

√
3

2
θ23478 +

√
3

2
θ23568;

ηn = −
√
3

2
θ12358 +

√
3

2
θ12367 − 1

2
θ12458 − 1

2
θ12467 − 1

2
θ13457 + 1

2
θ13468 − 1

2
θ23456 − 1

2
θ23478 − θ45678,

with stabilisers again given by PSU(3), SL(3;R) and PSU(1,2), preserving the inner products gηc =
∑8
i=1 (θi)

⊗2, gηs = ∑5
i=1 (θi)

⊗2 − ∑8
i=6 (θi)

⊗2 and gηn = ∑
4
i=1 (θi)

⊗2 − ∑8
i=5 (θi)

⊗2 respectively. In
particular, note that for any stable form σ0 ∈ ⋀p (Rn)∗ with 2 ⩽ p ⩽ n − 2, StabGL+(n;R) is connected.

The results of Theorem 7.1.24 are summarised in Table 7.1, which also provides explicit formulae
for the Hitchin duality maps Ξ (when defined).
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Dim. Stable Forms and Hitchin dualities

2k
k ⩾ 2
(resp.
k ⩾
3)

{ emproplectic
forms } { co-emproplectic

forms }

ω ωk−1

ω ωk−1
Ξ

Ξ

{ pisoplectic
forms } { co-pisoplectic

forms }

ω −ωk−1
ω −ωk−1

Ξ

Ξ

2k + 1
k ⩾ 2

{pseudoplectic forms} {co-pseudoplectic forms}
(Ξ undefined) (Ξ undefined)

6
{SL(3;R)2-structures}

ρ
Ξz→ −I∗ρ ρ

{SL(3;C)-structures}
ρ

Ξz→ J∗ρ ρ

{G2 3-forms} {G2 4-forms}
ϕ Θ(ϕ)

Σ(ψ) ψ

Ξ

Ξ

−{G2 3-forms} −{G2 4-forms}
−ϕ −Θ(ϕ)

−Σ(ψ) −ψ

Ξ

Ξ

7

{G̃2 3-forms} {G̃2 4-forms}

ϕ̃ Θ (ϕ̃)

Σ (ψ̃) ψ̃

Ξ

Ξ

−{G̃2 3-forms} −{G̃2 4-forms}

−ϕ̃ −Θ (ϕ̃)

−Σ (ψ̃) −ψ̃

Ξ

Ξ

{PSU(3) 3-forms} {PSU(3) 5-forms}
ζ ☀ζζ

☀ηη η

Ξ

Ξ

{SL(3;R) 3-forms} {SL(3;R) 5-forms}
ζ −☀ζζ

☀ηη η

Ξ

Ξ

8

{PSU(1,2) 3-forms} {PSU(1,2) 5-forms}
ζ ☀ζζ

☀ηη η

Ξ

Ξ

Table 7.1: Classification of Stable Forms and Hitchin Dualities

132



7.2 Relative h-principles for stable forms: precise formula-
tion and corollaries

Let σ0 ∈ ⋀p (Rn)∗ and let M be an oriented n-manifold. Recall that a p-form σ ∈ Ωp(M) is a σ0-
form if, for each x ∈M, there exists an orientation-preserving isomorphism α ∶ TxM → Rn satisfying
α∗σ0 = σ. Write ⋀pσ0

T∗M for the bundle of σ0-forms over M and Ωpσ0
for the corresponding sheaf of

sections.
Let A ⊂ M be a polyhedron, let Dq denote the q-dimensional disc (q ⩾ 0), let α ∶ Dq → Hp

dR(M)
be a continuous map and let F0 ∶Dq → Ωpσ0

(M) be a continuous map such that:

1. For all s ∈ ∂Dq: dF0(s) = 0 and [F0(s)] = α(s) ∈Hp
dR(M);

2. For all s ∈Dq: d (F0(s)∣OpA) = 0 and [F0(s)∣Op(A)] = α(s)∣Op(A) ∈Hp
dR(Op(A)).

(Recall that, from §2.5, one can always assume that Op(A) deformation retracts onto A and hence
Op(A) and A have identical cohomology rings. Thus condition (2) is independent of the choice of
Op(A).) The following definition combines the h-principles defined in [42, §6.2.C] and [32, Thm. 5.3].

Definition 7.2.1. σ0-forms shall be said to satisfy the relative h-principle if for every M, A, q, α
and F0 as above, there exists a homotopy F● ∶ [0,1] ×Dq → Ωpσ0

(M), constant over ∂Dq, satisfying:

3. For all s ∈Dq and t ∈ [0,1]: Ft(s)∣Op(A) = F0(s)∣Op(A);

4. For all s ∈Dq: dF1(s) = 0 and [F1(s)] = α(s) ∈Hp
dR(M).

Definition 7.2.1 has two notable consequences. Firstly, given σ0 ∈ ⋀p (Rn)∗, an oriented n-manifold
M and a fixed cohomology class α ∈Hp

dR(M), write Clpσ0
(M) for the set of closed σ0-forms on M and

Clpσ0
(α) for the set of closed σ0-forms representing the cohomology class α. More generally, given a

polyhedron A ⊂M, let σr be a closed σ0-form on Op(A) such that [σr] = α∣Op(A) ∈Hp
dR(Op(A)) and

write:
Ωpσ0
(M;σr) = {σ ∈ Ωpσ0

(M) ∣ σ∣Op(A) = σr}

Clpσ0
(M;σr) = {σ ∈ Ωpσ0

(M;σr) ∣ dσ = 0}

Clpσ0
(α;σr) = {σ ∈ Clpσ0

(M;σr) ∣ [σ] = α ∈Hp
dR(M)} .

Standard homotopy-theoretic arguments (see [42, §6.2.A]) then yield:

Theorem 7.2.2. Suppose that σ0-forms satisfy the relative h-principle. Then for every M, A, α and
σr, the inclusions:

Clpσ0
(α;σr)↪ Clpσ0

(M;σr)↪ Ωpσ0
(M;σr)

are homotopy equivalences (where p = 3,4,2k − 2,2k − 1 as appropriate). In particular, taking A = ∅,
the inclusions:

Clpσ0
(α)↪ Clpσ0

(M)↪ Ωpσ0
(M)

are also homotopy equivalences. Thus if M admits any σ0-form, then every degree p cohomology class
on M can be represented by a (closed) σ0-form.
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Secondly, let σ0 be as above and suppose additionally that σ0 is a Hitchin form.

Theorem 7.2.3. For any closed, oriented n-manifold M admitting σ0-forms and any α ∈ Hp
dR(M),

the Hitchin functional:
H ∶ Clpσ0

(α)→ (0,∞)

is unbounded above. More generally, if M is a closed, oriented n-orbifold and Clpσ0
(α) ≠ ∅, then the

same conclusion applies.

Proof. Begin with the case where M is a manifold. Since Ωpσ0
(M) ≠ ∅ and Clpσ0

(α) ↪ Ωpσ0
(M) is a

homotopy equivalence, Clpσ0
(α) ≠ ∅. Thus pick σ ∈ Clpσ0

(α). Let f ∶ Bn1(0) ↪ M be an embedding,
write W = f (Bn1(0)) and U = f(Bn1

2

(0)) and consider the polyhedron A ⊂M given by A = U ∪M/W .
Let χ ∶M→ [0,1] be a smooth function on M such that χ∣Op(U) ≡ 1 and χ∣Op(M/W ) ≡ 0, and for each
λ ∈ (0,∞) define σλ ∈ Ωpσ0

(M) by:
σλ = (1 + λ ⋅ χ)σ.

Then dσλ = 0 on Op(A) since dσ = 0 and χ is locally constant on Op(A), and hence σλ ∈
Ωσ0
(M;σλ∣Op(A)) for all λ > 0. Moreover, the restrictions σ∣Op(A) and σλ∣Op(A) both lie in α∣Op(A) ∈

Hp
dR(Op(A)) (for this point, it is useful to recall that U is contractible), so by the relative h-principle,
Clpσ0
(α;σλ∣Op(A)) ↪ Ωσ0

(M;σλ∣Op(A)) is a homotopy equivalence and thus one can continuously de-
form σλ relative to Op(A) into σ′λ ∈ Cl

p
σ0
(α) such that:

σ′λ = (1 + λ)σ on U and σ′λ = σ on M/W.

One now computes that:

H(σ′λ) ⩾∫
U

volσ′
λ
=∫

U

vol(1+λ)σ = (1 + λ)
n
p ∫

U

volσ →∞ as λ→∞,

as required. In the case where M is an orbifold, provided Clpσ0
(α) ≠ ∅, one can apply the above

argument to the smooth locus of M, leading to the same conclusion.

As a simple application, note that Theorem 7.2.3 can be used to prove that emproplectic forms
do not satisfy the relative h-principle. Indeed, let M be a 2k-dimensional closed manifold and let ω
be an emproplectic form on M. For every emproplectic form ω′ ∈ Cl2ω+(k)([ω]):

H(ω′) =∫
M

(ω′)k = ⟨[ω′]∪k, [M]⟩ = ⟨[ω]∪k, [M]⟩,

independently of ω′, where [M] ∈ H2k (M;R) denotes the fundamental class of M and ⟨, ⟩ de-
notes the usual pairing between cohomology and homology. In particular, the Hitchin functional
on Cl2ω+(k)([ω]) is constant, and thus not unbounded above (see §10.2 for further discussion of this).
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Remark 7.2.4. Recall from the discussion at the end of §7.1.1 that given a co-emproplectic form ϖ on
an oriented 2k-manifold M, the form −ϖ is a co-pisoplectic form on M. It follows that co-emproplectic
forms satisfy the relative h-principle if and only if co-pisoplectic forms satisfy the relative h-principle.
Analogous remarks apply to five other pairs of orbits of stable forms, viz. ⋀2± (R2k)∗, ±⋀3+ (R7)∗,
±⋀3∼ (R7)∗, ±⋀4+ (R7)∗ and ±⋀4∼ (R7)∗. Thus, for the purpose of considering which stable forms
satisfy the relative h-principle, the 22 types of stable forms described in Theorem 7.1.24 can be further
grouped into 16 classes (as claimed in the introduction to this thesis) where each of ⋀2± (R2k)∗,
⋀2k−2± (R2k)∗, ±⋀3+ (R7)∗, ±⋀3∼ (R7)∗, ±⋀4+ (R7)∗ and ±⋀4∼ (R7)∗ is considered a single class.

7.3 Relative h-principle for stable, ample forms

The aim of this section is to prove the following theorem:

Theorem 7.3.1. Let σ0 ∈ ⋀p (Rn)∗ be stable. Given an arbitrary p form τ on Rn−1, define:

Nσ0
(τ) = {ν ∈⋀p−1 (Rn−1)

∗ ∣ θ ∧ ν + τ ∈⋀pσ0
(R⊕Rn−1)∗} ⊂⋀p−1 (Rn−1)

∗

where θ is the standard annihilator of Rn−1 ⊂ R⊕Rn−1. Suppose that, for every τ , the set Nσ0
(τ) is

ample in the sense of affine geometry, i.e. Nσ0
(τ) is either empty, or the convex hull of every path

component of Nσ0
(τ) equals ⋀p−1 (Rn−1)

∗ (in such cases, say that σ0 itself is ample). Then σ0-forms
satisfy the relative h-principle.

Let M be an oriented n-manifold. Recall that the symbol of the exterior derivative on (p − 1)-
forms is the unique vector-bundle homomorphism D ∶ ⋀p−1T∗M(1) → ⋀pT∗M such that the following
diagram commutes:

Γ (M,⋀p−1T∗M(1)) Ωp(M)

Ωp−1(M)

D

dj1

Explicitly, identifying ⋀p−1T∗M(1) ≅ ⋀p−1T∗M ⊕ (T∗M⊗⋀p−1T∗M) as usual, D is simply the com-
posite map:

⋀p−1T∗M⊕ (T∗M⊗⋀p−1T∗M)
proj2ÐÐÐÐ→ T∗M⊗⋀p−1T∗M

∧Ð→⋀pT∗M.

It follows that D ∶ ⋀p−1T∗M(1) → ⋀pT∗M is a fibrewise surjective linear map.

Definition 7.3.2. Let a ∶ Dq → Ωp(M) be a continuous map. Define fibred differential relation
Rσ0
(a) ⊂ ⋀p−1T∗M(1)Dq via:

Rσ0
(a) = {(s, T ) ∈⋀p−1T∗M(1)Dq ∣ D(T ) + a(s) ∈⋀pσ0

T∗M} .
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Equivalently, Rσ0
(a) is the preimage of ⋀pσ0

T∗MDq under the fibred map:

⋀p−1T∗M(1)Dq

D+aÐÐ→⋀pT∗MDq .

Lemma 7.3.3. Suppose that, for every q ⩾ 0 and every continuous a ∶ Dq → Ωp(M), the relation
Rσ0
(a) satisfies the relative h-principle. Then σ0-forms satisfy the relative h-principle.

Proof. Let A ⊂M be a (possibly empty) polyhedron, let α ∶Dq →Hp
dR(M) be a continuous map and

let F0 ∶Dq → Ωpσ0
(M) be a continuous map such that:

1. For all s ∈ ∂Dq: dF0(s) = 0 and [F0(s)] = α(s) ∈Hp
dR(M);

2. For all s ∈Dq: d (F0(s)∣OpA) = 0 and [F0(s)∣Op(A)] = α(s)∣Op(A) ∈Hp
dR(Op(A)).

Then F0 is a Dq-indexed family of p-forms on M, and thus one may regard F0 as a section of
the bundle (⋀pT∗M)Dq . Let a ∶ Dq → Ωp(M) be a continuous map such that a(s) represents the
cohomology class α(s) for each s ∈Dq and consider the diagram:

(⋀p−1T∗M)
(1)
Dq

(⋀pT∗M)Dq

Dq ×M

D+a

F0

(7.3.4)

The task is to lift the section F0 along the map D + a to a section F0 of (⋀p−1T∗M)
(1)
Dq

which is
holonomic over the region (∂Dq ×M)∪ [Dq ×Op(A)], and then apply the relative h-principle for the
fibred relation Rσ0

(a).
Firstly, note that the map (⋀p−1T∗M)

(1)
Dq

D+aÐÐ→ (⋀pT∗M)Dq is an affine linear and surjective map
of vector bundles; thus the preimage of the section F0 under D + a defines an affine bundle over
Dq ×M denoted A. For each s ∈ Dq, F0(s)∣Op(A) − a(s)∣Op(A) is exact, since F0(s) and a(s) both
represent the cohomology class α(s) when restricted to Op(A). Pick η ∶Dq → Ωp−1(Op(A)) such that
dη(s) = F0(s)∣Op(A) − a(s)∣Op(A) for all s ∈ Dq, view η as a section of ⋀p−1T∗MDq over Dq ×Op(A)
and write G0(s) = j1η(s) for the corresponding 1-jet. Then G0 defines a section of the bundle A
over the region Dq ×Op(A); choose some extension of G0 to the whole of Dq ×M (which is possible
since the extension problem for sections of affine bundles is trivial). Next, note that for each s ∈ ∂Dq,
F0(s)− a(s) is exact and thus one can choose ζ ∶ ∂Dq → Ωp(M) such that dζ(x) = F0(x)− a for each
s ∈ ∂Dq. Write H0 = j1ζ as above and extend H0 to a section of A over all of Dq ×M. Now let
χ ∶Dq → [0,1] be a continuous function such that χ∣∂Dq ≅ 0 and consider the section:

F0 = χG0 + (1 − χ)H0

of A. I claim that F0 is holonomic over (∂Dq ×M) ∪ [Dq ×Op(A)]. Indeed, on Dq ×Op(A):

F0 = χ ⋅ j1η + (1 − χ) ⋅ j1ζ = j1(χη + (1 − χ)ζ),
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while on ∂Dq ×M:
F0 = (1 − χ)H0 = (1 − χ)j1ζ = j1((1 − χ)ζ).

Since A ⊂Rσ0
(a), one can apply the relative h-principle for the relation Rσ0

(a) to obtain a homotopy
of sections Ft of Rσ0

(a), constant over (∂Dq ×M)∪ [Dq ×Op(A)], such that F1 is holonomic. Then
Ft = DFt + a defines the required homotopy of F0, showing that σ0-forms satisfy the h-principle.

Note that the homotopy of sections Ft ∶ [0,1] × Dq × M → (⋀pT∗M)Dq cannot be taken to
be arbitrarily C0-small, due to the well-known consequence of Stokes’ Theorem that Ωpclosed(M) ⊂
Ωp(M) is closed in the C0-topology and not just the C1-topology. Nevertheless, for the choices of σ0
considered in this paper, the relation Rσ0

(a) satisfies the C0-dense relative h-principle and thus the
homotopy p1Ft of sections of ⋀p−1T∗MDq arising in the above proof can be taken to be arbitrarily
C0-small. This is not a contradiction, however, since Ft depends on the full 1-jet Ft, and not just on
the underlying section p1Ft.

In view of Lemma 7.3.3, to prove Theorem 7.3.1, it suffices to prove that if σ0 is stable and ample,
then Rσ0

(a) satisfies the relative h-principle for any a ∶Dq → Ωp(M). This follows by combining the
Convex Integration Theorem 2.5.8 with the following result:

Proposition 7.3.5. Fix q ⩾ 0 and a ∶Dq → Ωp(M).
1. Rσ0

(a) is an open subset of ⋀p−1T∗M(1) if and only if σ0 is stable.
2. Rσ0

(a) is an ample fibred differential relation if and only if σ0 is ample.

Proof. 1 is clear, since ⋀pT∗MDq

+aÐÐ→ ⋀pT∗MDq is a homeomorphism and ⋀p−1T∗M(1)Dq

DÐ→ ⋀pT∗MDq

is continuous and open (being a fibrewise linear surjection). For 2, note that, as in the discussion
after Definition 2.5.7:

Rσ0
(a) =⋀p−1T∗MDq ×(Dq×M)R

′
σ0
(a) ⊂⋀p−1T∗MDq ×(Dq×M) (T∗M⊗⋀p−1T∗M)Dq

where:
R′σ0
(a) = {(s, T ) ∈ (T∗M⊗⋀p−1T∗M)Dq

∣ ∧ (T ) + a(s) ∈⋀pσ0
T∗M} .

Then, in the notation introduced after Definition 2.5.7, for each s ∈Dq:

R′σ0
(a)s = {T ∈ T∗M⊗⋀p−1T∗M ∣ ∧ (T ) + a(s) ∈⋀pσ0

T∗M} .

As explained after Definition 2.5.7, Rσ0
(a) is ample if and only if for all x ∈M, B ⊂ TxM a hyperplane

and λ ∈ B∗ ⊗⋀p−1T∗xM: R′σ0
(a)s ∩Π(B, λ) ⊆ Π(B, λ) is ample.

Choose a splitting TxM = L⊕B and pick an orientation on B. This choice canonically orients L;
choose a correctly oriented generator θ of L∗. Using this data, one may write:

T∗xM = R ⋅ θ ⊕B∗ and ⋀p−1T∗xM = θ ∧⋀p−2B∗ ⊕⋀p−1B∗.
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Hence there is an isomorphism:

⋀p−2B∗ ⊕⋀p−1B∗ ⊕ (B∗ ⊗⋀p−1T∗xM) T∗xM⊗⋀p−1T∗xM

α⊕ ν ⊕ λ θ ⊗ (θ ∧ α + ν) + λ.

≅

(For completeness, in the case p = 1 one simply treats the space ⋀p−2B∗ as 0, although I shall only
be concerned with the case p ⩾ 2.) Using this isomorphism, one obtains the explicit description:

Π(B, λ) ≅⋀p−2B∗ ×⋀p−1B∗ × {λ}.

Now define ν0 ∈ ⋀p−1B∗ and τ0 ∈ ⋀pB∗ by the equation:

∧(λ) + a(s) = θ ∧ ν0 + τ0. (7.3.6)

Then given (α, ν) ∈ ⋀p−2B∗ ⊕⋀p−1B∗, one can compute that:

∧ [θ ⊗ (θ ∧ α + ν) + λ] + a(s) = θ ∧ (ν + ν0) + τ0,

which is a σ0-form if and only if ν + ν0 ∈ Nσ0
(τ0). Thus:

R′σ0
(a)s ∩Π(B, λ) ≅⋀p−2B∗ × (Nσ0

(τ0) − ν0) × {λ} ⊆⋀p−2B∗ ×⋀p−1B∗ × {λ} ≅ Π(B, λ).

Thus R′σ0
(a)s ∩Π(B, λ) ⊆ Π(B, λ) is ample if and only if Nσ0

(τ0) − ν0 ⊆ ⋀p−1B∗ is ample, which in
turn is equivalent to Nσ0

(τ0) ⊆ ⋀p−1B∗ being ample.
Finally, note that, for fixed a(s), the assignment λ↦ (ν0, τ0) described in eqn. (7.3.6) is surjective,

and thus as λ varies, τ0 realises all possible values in ⋀pB∗. Hence Rσ0
(a) is ample if and only if σ0

is ample, as claimed.

7.4 Faithful, connected and abundant p-forms

The aim of this section is to develop theoretical tools for effectively verifying whether a given stable
form is ample. Let Emb (Rn−1,Rn) denote the space of linear embeddings ι ∶ Rn−1 → Rn. Given
σ0 ∈ ⋀p (Rn)∗, there is a natural map:

Emb (Rn−1,Rn) ⋀p (Rn−1)
∗

ι ι∗σ0.

Tσ0

GL+(n−1;R) acts onEmb (Rn−1,Rn) via precomposition, and the quotient Emb (Rn−1,Rn)/GL+(n − 1;R)
can naturally be identified with the oriented Grassmannian G̃rn−1 (Rn). Given f ∈ GL+(n − 1;R), a
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direct computation shows:
Tσ0
(ι ○ f) = f∗ι∗ (σ0) = f∗Tσ0

(ι).

Thus Tσ0
descends to a map:

G̃rn−1 (Rn) ⋀p (Rn−1)
∗
/GL+(n − 1;R) .

Write S(σ0) for the stabiliser of σ0 in GL+(n;R) and note that S(σ0) acts on Emb (Rn−1,Rn) (and
hence on G̃rn−1 (Rn)) on the left via post-composition. Clearly Tσ0

is invariant under this action and
thus Tσ0

descends further to a map:

Tσ0
∶ S(σ0)/G̃rn−1 (Rn) ⋀p (Rn−1)

∗
/GL+(n − 1,R) .

Using this notation, I make the following definition:

Definition 7.4.1. Let σ0 ∈ ⋀p(Rn)∗.

1. σ0 is termed faithful if Tσ0
is injective.

2. σ0 is termed connected if for each orbit O ∈ S(σ0)/G̃rn−1 (Rn) the stabiliser of some (equiv-
alently any) τ ∈ Tσ0

(O) is path-connected.

3. σ0 is termed abundant if for allO ∈ S(σ0)/G̃rn−1 (Rn) and some (equivalently any) τ ∈ Tσ0
(O):

0 ∈ Conv Nσ0
(τ) ⊆⋀p−1 (Rn−1)

∗
.

In words, σ0 is faithful if for all oriented hyperplanes B, B′ ⊂ Rn, the restrictions σ0∣B and σ0∣B′
are isomorphic if and only if B and B′ lie in the same orbit of S(σ0), σ0 is connected if for every
oriented hyperplane B ⊂ Rn, the stabiliser of σ0∣B in GL+(B) is connected, and σ0 is abundant if for
every τ ∈ ⋀p (Rn−1)

∗, either Nσ0
(τ) is empty, or the convex hull of Nσ0

(τ) contains 0.

Verifying the above three properties in practice is greatly helped by the following three results:

Proposition 7.4.2. Let σ0 ∈ ⋀p (Rn)∗ be stable and equip the spaces S(σ0)/G̃rn−1 (Rn) and

⋀p (Rn−1)
∗
/GL+(n − 1,R) with their natural quotient topologies. Then the map Tσ0

is an open

map. In particular, if O ∈ S(σ0)/G̃rn−1 (Rn) is an open orbit, then Tσ0
(O) is also an open orbit,

i.e. the orbit of a stable p-form on Rn−1.
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Proof. Consider the commutative diagram:

Emb (Rn−1,Rn) ⋀p (Rn−1)
∗

S(σ0)/G̃rn−1 (Rn) ⋀p (Rn−1)
∗
/GL+(n − 1,R) .

Tσ0

quot quot

Tσ0

Since the left hand map is a continuous surjection and the right hand map is open, to prove Tσ0
is

open it suffices to prove that Tσ0
is open. To this end, let ι ∶ Rn−1 → Rn be an embedding and fix a

splitting β of the exact sequence:

⋀p (Rn)∗ ⋀p (Rn−1)
∗

0.
ι∗

β

Consider τ ∈ ⋀p (Rn−1)
∗. Since σ0 is stable, for all τ sufficiently small there is F ∈ GL+(n;R) (close

to Id) such that:
F ∗σ0 = σ0 + β(τ).

Set ι′ = F ○ ι ∈ Emb (Rn−1,Rn). For τ small enough, ι′ can be taken arbitrarily close to ι. Moreover:

ι′∗σ0 = ι∗F ∗σ0 = ι∗(σ0 + β(τ)) = ι∗σ0 + τ,

since ι∗ ○ β = Id. Thus Tσ0
is an open map and the result follows.

Proposition 7.4.3. Let σ0 be a stable p-form on Rn and suppose that S(σ0) acts transitively on
G̃rn−1 (Rn). Then σ0 is faithful and connected. In particular, if S(σ0) contains a subgroup which
preserves an inner-product and acts transitively on the corresponding unit sphere in Rn (equivalently
in (Rn)∗) then σ0 is faithful and connected.

Proof. Faithfulness is clear. Since S(σ0) acts transitively on G̃rn−1 (Rn), the unique orbit must be
open and hence by Proposition 7.4.2, it must map under Tσ0

to the orbit of a stable form. However,
using the results of Theorem 7.1.24, the stabiliser in GL+(n − 1;R) of every stable form on Rn−1 is
connected. The final statement follows since G̃rn−1 (Rn) is isomorphic to the unit sphere in (Rn)∗.

Proposition 7.4.4. If there exists an orientation-reversing automorphism of Rn which preserves σ0,
then σ0 is abundant. In particular, if n = 2k + 1 is odd and 2 ⩽ p ⩽ 2k is even, then any σ0 ∈ ⋀p (Rn)∗

is abundant.

Proof. Fix τ ∈ ⋀p (Rn−1)
∗ and suppose Nσ0

(τ) ≠ ∅. Choose some ν ∈ Nσ0
(τ). I claim that −ν also

lies in Nσ0
(τ). Indeed since θ ∧ ν + τ ∈ ⋀p (R⊕Rn−1) is a σ0-form, by assumption there exists an
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orientation reversing map F ∈ GL(R⊕Rn−1) preserving θ ∧ ν + τ . Now consider the map:

I ∶ R⊕Rn−1 R⊕ Rn−1

v ⊕w −v ⊕w.

Since I is also orientation-reversing, the composite F ○ I is orientation preserving and thus (F ○
I)∗(τ + θ ∧ ν) is a σ0-form. On the other hand:

(F ○ I)∗(τ + θ ∧ ν) = I∗(F )∗(τ + θ ∧ ν)

= I∗(τ + θ ∧ ν)

= τ − θ ∧ ν

and thus −ν ∈ Nσ0
(τ) as claimed. The proof is completed by noting that if n = 2k + 1 and 2 ⩽ p ⩽ 2k

is even, then − Id is an orientation-reversing automorphism preserving σ0.

The significance of the notions of faithfulness, connectedness and abundance lies in the following
result:

Theorem 7.4.5. Let σ0 ∈ ⋀p (Rn)∗ be stable, faithful, abundant and connected. Then σ0 is ample;
in particular, σ0-forms satisfy the h-principle.

Remark 7.4.6. The converse need not hold: see §7.6.

The proof proceeds by a series of lemmas.

Lemma 7.4.7. Let A be a (real) finite-dimensional vector space and let A ⊆ A be a path-connected,
open subset such that:

• 0 ∈ Conv(A);

• A is scale-invariant, i.e. for all λ ∈ (0,∞), λ ⋅A = A.

Then Conv(A) = A, i.e. A is ample.

Proof. Since A is open and scale-invariant, so too is Conv(A). However by assumption Conv(A)
contains 0, and thus by openness it contains a small open ball about 0 in A. The scale-invariance of
ConvA then implies that Conv(A) = A.

Lemma 7.4.8. Let σ0 ∈ ⋀p (Rn), τ ∈ ⋀p(Rn−1) and suppose Nσ0
(τ) ≠ ∅. Then Nσ0

(τ) is scale-
invariant, i.e. for all λ ∈ (0,∞): λ ⋅Nσ0

(τ) = Nσ0
(τ).

Proof. Suppose ν ∈ Nσ0
(τ), i.e. θ ∧ ν + τ ∈ ⋀p (R⊕Rn−1)∗ is a σ0-form. Consider the orientation-

preserving isomorphism:
F ∶ R⊕Rn−1 R ⊕Rn−1

v ⊕w λv ⊕w.
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Then F ∗σ = θ ∧ (λν) + τ is a σ0-form, as required.

Lemma 7.4.9. Let σ0 ∈ ⋀p (Rn)∗ and suppose that O ∈ S(σ0)/G̃rn−1(Rn) satisfies T −1σ0
(Tσ0
(O)) =

{O}. Suppose moreover that some (equivalently every) τ ∈ Tσ0
(O) has path-connected stabiliser in

GL+(n − 1;R). Then for all τ ∈ Tσ0
(O), the space Nσ0

(τ) ⊂ ⋀p−1 (Rn−1)
∗ is path-connected. In

particular, if σ0 is faithful and connected, then for every τ ∈ ⋀p (Rn−1)
∗, either Nσ0

(τ) = ∅ or Nσ0
(τ)

is path-connected.

Proof. Let O be as in the statement of the lemma, let τ ∈ Tσ0
(O) and let ν1, ν2 ∈ Nσ0

(τ). Then by
definition, the two p-forms:

σi = θ ∧ νi + τ ∈⋀p (R⊕Rn−1)∗ , i = 1,2

are both σ0-forms on R⊕Rn−1. Thus, there is F ∈ GL+ (R⊕Rn−1) such that F ∗σ2 = σ1.

Claim 7.4.10. The oriented hyperplanes Rn−1 and F (Rn−1) in R⊕Rn−1 lie in the same orbit of the
stabiliser of σ2.

Proof of Claim. Since σ2 is a σ0-form, there is an oriented isomorphism I ∶ R⊕Rn−1 → Rn such that
I ∗σ0 = σ2. Hence it is equivalent prove that the oriented hyperplanes I (Rn−1) and I ○ F (Rn−1)
in Rn lie in the same S(σ0)-orbit.

Consider the commutative diagram:

Emb (Rn−1,Rn) ⋀p (Rn−1)
∗

S(σ0)/G̃rn−1 (Rn) ⋀p (Rn−1)
∗
/GL+(n − 1,R) .

Tσ0

quot quot

Tσ0

Since T −1σ0
(Tσ0
(O)) = {O}, it suffices to prove that both Tσ0

(I ∣Rn−1) and Tσ0
((I ○ F )∣Rn−1) lie in

the orbit Tσ0
(O) ∈ ⋀p (Rn−1)

∗
/GL+(n − 1,R) . But this result is clear, since:

(I ∣Rn−1)∗ σ0 = σ2∣Rn−1 = τ ∈ Tσ0
(O)

and
((I ○ F )∣Rn−1)∗ σ0 = (F ∗σ2)∣Rn−1 = σ1∣Rn−1 = τ ∈ Tσ0

(O).

Thus choose G ∈ GL+ (R⊕Rn−1) stabilising σ2 such that G○F (Rn−1) = Rn−1 (and G○F identifies
the orientations). By replacing F with G ○F , one may assume without loss of generality that F fixes
the space Rn−1. Then:

τ = σ1∣Rn−1 = (F
∗σ2)∣Rn−1 = (F ∣Rn−1)

∗
σ2∣Rn−1 = (F ∣Rn−1)

∗
τ.
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Thus F lies in the space:

K = {F ′ ∈ GL+ (R⊕Rn−1) ∣ F ′ (Rn−1) = Rn−1 and F ′∣Rn−1 ∈ Stab(τ) ⊆ GL+(n − 1,R)} .

Since Stab(τ) ⊆ GL+(n − 1,R) is path-connected, so too is K ⊂ GL+ (R⊕Rn−1), so one can choose
a smooth 1-parameter family (Ft)t∈[0,1] ∈K such that F0 = Id, F1 = F . Then for each t:

F ∗t σ2 = θ ∧ ν(t) + τ

for some ν(t) ∈ Nσ0
(τ) (note that F ∗t σ2 is evidently a σ0-form for each t) such that ν(1) = ν1 and

ν(0) = ν2. Thus Nσ0
(τ) is path-connected.

I now prove Theorem 7.4.5:

Proof of Theorem 7.4.5. Let σ0 ∈ ⋀p (Rn)∗ be stable, faithful, connected and abundant, let τ ∈
⋀p (Rn−1)

∗ and suppose Nσ0
(τ) ≠ ∅. Since σ0 is stable, Nσ0

(τ) ⊆ ⋀p−1 (Rn−1)
∗ is open. Moreover

Nσ0
(τ) is scale invariant by Lemma 7.4.8, path-connected by Lemma 7.4.9 and 0 ∈ Conv (Nσ0

(τ))
since τ is abundant. Hence Nσ0

(τ) is ample by Lemma 7.4.7.

7.5 Initial applications: G2 4-forms, SL(3;C) 3-forms and
pseudoplectic forms

This section illustrates the results of §§7.3 and 7.4, by providing new, unified proofs of the three
previously established relative h-principles, viz. the relative h-principles for G2 4-forms [32], SL(3;C)
3-forms [37] and pseudoplectic forms [104].

7.5.1 G2 4-forms

Theorem 7.5.1 ([32, Thm. 5.3]). G2 4-forms satisfy the relative h-principle.

Remark 7.5.2. In [32], Crowley–Nordström only state the non-relative version of the h-principle for
G2 4-forms (corresponding to A = ∅, in the notation of the introduction), however their proof can
easily be generalised to the case A ≠ ∅.

Proof. Let σ0 = ψ0 ∈ ⋀4(R7)∗ be the standard G2 4-form (see eqn. (2.2.3)) and write g0 for the
corresponding metric. Since G2 preserves an inner-product and acts transitively on S6, by Proposition
7.4.3 ψ0 is faithful and connected. Moreover, since ψ0 has even degree on an odd-dimensional space,
ψ0 is abundant by Proposition 7.4.4. Thus the result follows by Theorem 7.4.5.
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7.5.2 SL(3;C) 3-forms

Theorem 7.5.3 ([37, §4]). SL(3;C) 3-forms satisfy the relative h-principle.

Proof. Let σ0 = ρ− ∈ ⋀3 (R6)∗ be the standard SL(3;C) 3-form (see eqn. (2.3.5)). The stabiliser
SL(3;C) of ρ− contains the subgroup SU(3) which preserves an inner-product and acts transitively
on S5; thus ρ− is faithful and connected by Proposition 7.4.3. Moreover, by Proposition 2.3.4, ρ−
is fixed by an orientation-reversing automorphism of R6 and thus ρ− is abundant by Lemma 7.4.4.
Thus the result follows by Theorem 7.4.5.

7.5.3 Pseudoplectic forms

Theorem 7.5.4 ([104, Thm. 2.5]). Pseudoplectic forms satisfy the relative h-principle.

The proof in this case is slightly more involved.

Proof of Theorem 7.5.4. Let µ0(k) = θ23 + θ45 + ...θ2k,2k+1 be the standard pseudoplectic form on
R2k+1 (see eqn. (7.1.16)), write S for the stabiliser of µ0(k) in GL+(2k + 1;R) and recall the 1-
dimensional subspace ℓµ0(k) = ⟨e1⟩ defined in Remark 7.1.23. Given an oriented hyperplane B ⊂ R2k+1,
on dimensional grounds, either dim(B∩ℓµ0(k)) = 1, in which case ℓµ0(k) ⊂ B and µ0(k)∣B is a degenerate
bilinear form, or dim(B ∩ ℓµ0(k)) = 0 and B is transverse to ℓµ0(k), in which case µ0(k)∣B is either
emproplectic or pisoplectic on B. Thus the image of the map:

Tµ0(k) ∶ S/G̃r2k (R2k+1) ⋀2 (R2k)∗/GL+(2k,R)

contains at least three distinct orbits and thus the action of S on G̃r2k (R2k+1) has at least 3 orbits.
Therefore, to prove that µ0(k) is faithful, it suffices to prove that the action of S on G̃r2k (R2k+1)

has exactly three orbits. Recall from Proposition 7.1.14 that, with respect to the splitting R2k+1 =
ℓµ0(k) ⊕ ⟨e2, ..., e2k+1⟩, the stabiliser S consists precisely of those (2k + 1) × (2k + 1)-matrices of the
form:

⎛
⎝

λ G2k×1

01×2k F2k×2k

⎞
⎠

where F ∈ Sp(2k;R) and λ > 0. Next, note that oriented hyperplanes in R2k+1 containing ℓµ0(k) are
in 1-1 correspondence with oriented hyperplanes in ⟨e2, ..., e2k+1⟩ and since SU(k) ⊂ Sp(2k;R) acts
transitively on oriented hyperplanes in ⟨e2, ..., e2k+1⟩ (see Proposition 7.4.3) it follows that S acts
transitively on the set of oriented hyperplanes in R2k+1 containing ℓµ0(k). Similarly, the (unoriented)
hyperplanes in R2k+1 transverse to ℓµ0(k) are in 1-1 correspondence with linear maps ⟨e2, ..., e2k+1⟩→
ℓµ0(k) and S acts transitively on this space. Thus the action of S on oriented hyperplanes in R2k+1

transverse to ℓµ0(k) has at most 2 orbits. It follows that the action of S on G̃r2k (R2k+1) has exactly
three orbits and µ0(k) is faithful. To see that µ0(k) is also connected, firstly note that the stabiliser
of both emproplectic and pisoplectic forms on R2k is connected, being isomorphic to Sp(2k;R). For
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the remaining case, suppose ℓµ0(k) ⊂ B; then the restriction µ0(k)∣B may be written in some basis
(f1, ..., f2k) as:

µ0(k)∣B = f12 + ... + f2k−3,2k−2.

This is an emproplectic form on ⟨f1, ..., f2k−2⟩. Splitting B ≅ ⟨f1, ..., f2k−2⟩⊕ ⟨f2k−1, f2k⟩ and applying
Lemma 7.1.5, it follows that the stabiliser of µ0(k)∣B in GL+(B) is connected. Thus µ0(k) is connected.

Finally, since pseudoplectic forms constitute a single GL(2k + 1;R)-orbit, it follows from Lemma
7.4.4 that pseudoplectic forms are abundant. Thus the result follows by Theorem 7.4.5.

Remark 7.5.5. Crowley–Nordström and Donaldson used a technique known as ‘Hirsch’s microexten-
sion trick’ (after its use by Hirsch in [69]) to prove the h-principles for G2 4-forms and SL(3;C) 3-forms
respectively. E.g. for G2 4-forms, the argument may be sketched as follows: given any 8-manifold N,
define a subset S(N) ⊂ ⋀4T∗N by declaring α ∈ ⋀4T∗pN to lie in S(N) if and only if the restriction of
α to every hyperplane in TpN is a G2 4-form. Then S(N) is an open, Diff0(N)-invariant subbundle of
⋀4T∗N. Given an oriented 7-manifold M, it can be shown that every G2 4-form ψ on M extends to a
4-form Ψ on the open (i.e. non-closed) manifold (−ε, ε)×M such that Ψ ∈ S((−ε, ε)×M) for some ε > 0
sufficiently small. The h-principle for coclosed G2-structures then follows from Gromov’s h-principle
for open, diffeomorphism-invariant relations on open manifolds; cf. [42, Thm. 10.2.1]. This method is
limited in scope, however, since for a general stable p-form σ0 on Rn, there are no p-forms σ on Rn+1

such that the restriction σ∣A is a σ0-form for every hyperplane A ⊂ Rn+1. As a simple example of this
phenomenon, suppose that StabGL+(n;R)(σ0) = StabGL(n;R)(σ0), i.e. σ0 has no orientation-reversing
automorphisms. If there were some σ ∈ ⋀p (Rn+1)

∗ such that for all A ∈ Grn (Rn+1) the restriction
σ∣A was a σ0-form for some choice of orientation on A, then this choice of orientation would be unique
(since the stabilisers of σ0 in GL+(n;R) and GL(n;R) coincide) and would thus define a section of
the ‘forgetful’ degree 2 covering map G̃rn (Rn+1)→ Grn (Rn+1), yielding a contradiction, as claimed.

By contrast, the techniques introduced in this thesis can be used to prove h-principles for stable
forms σ0 satisfying StabGL+(n;R)(σ0) = StabGL(n;R)(σ0); indeed, this property is satisfied by both
G̃2 3-forms and co-emproplectic forms in dimension 2k, where k is odd, both of which are shown to
satisfy the h-principle in this thesis.

7.6 Co-emproplectic and co-pseudoplectic forms
The aim of this section is to prove the relative h-principles for co-emproplectic and co-pseudoplectic
forms. The proofs proceed via a series of lemmas:

Lemma 7.6.1. Let k ⩾ 2 and let ω+(k) ∈ ⋀2+ (R2k)∗ be the standard emproplectic form on R2k

defined in eqn. (7.1.10). Identify R2k ≅ R ⊕ R2k−1 in the usual way and fix τ ∈ ⋀2 (R2k−1)∗. Then
Nω+(k)(τ) ≠ ∅ if and only if τ is pseudoplectic. Moreover in this case:

Nω+(k)(τ) = {ν ∈⋀
1 (R2k−1)

∗
∣ ν∣ℓτ > 0}

(see Remark 7.1.23 for the definition of ℓτ ).
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Proof. Write θ for the standard annihilator of R2k−1 in R2k and define ω = θ ∧ ν + τ . Then:

ωk = θ ∧ ν ∧ τk−1.

Thus ω is emproplectic if and only if τk−1 ≠ 0 (i.e. τ is pseudoplectic) and ν∣ℓτ > 0 (by definition of
the choice of orientation on ℓτ ).

Corollary 7.6.2. Let k ⩾ 3, let ϖ+(k) ∈ ⋀2k−2+ (R2k)∗ be the standard co-emproplectic form on R2k

defined in eqn. (7.1.12), identify R2k ≅ R⊕R2k−1 and fix τ ∈ ⋀2k−2 (R2k−1)∗. Then:

Nϖ+(k)(τ) = {ν ∈⋀
2k−3 (R2k−1)

∗
∣ ν is co-pseudoplectic and τ ∣Πν > 0}

(see Remark 7.1.23 for the definition of the hyperplane Πν). In particular, if τ = 0 then Nϖ+(k)(τ) = ∅.

Proof. The proof uses the duality described in Lemma 7.1.1. Write e = 1 ⊕ 0 ∈ R ⊕ R2k−1, choose
σ > 0 ∈ ⋀2k−1R2k−1 and set υ = e∧σ > 0 ∈ ⋀2kR2k. Then as in Lemma 7.1.1, θ∧ν+τ is co-emproplectic
if and only if:

(θ ∧ ν + τ) ⌟ υ = ν ⌟ σ + e ∧ (τ ⌟ σ)

is emproplectic on (R2k)∗, which by Lemma 7.6.1 is equivalent to ν⌟σ being pseudoplectic on (R2k−1)∗

and (τ ⌟ σ)∣ℓν⌟σ > 0. However using the duality as in Lemma 7.1.1 again, ν ⌟ σ is pseudoplectic on
(R2k−1)∗ if and only if ν is co-pseudoplectic on R2k−1. Moreover, one may verify that:

ℓν⌟σ = Ann(Πν)

compatibly with orientations, and thus (τ ⌟ σ)∣ℓν⌟σ > 0 if and only if τ ∣Πν > 0.

Lemma 7.6.3. Let k ⩾ 2. Then:

Conv (⋀2k−2
+ (R2k)

∗
) =⋀2k−2 (R2k)

∗
.

(Note that when k = 2, ⋀2k−2+ (R2k)∗ is simply the orbit of emproplectic 2-forms.)

Proof. Since ⋀2k−2+ (R2k)∗ ⊂ ⋀2k−2 (R2k)∗ is open, path-connected and scale-invariant, by Lemma
7.4.7, it suffices to prove that:

0 ∈ Conv (⋀2k−2
+ (R2k)

∗
) =⋀2k−2 (R2k)

∗
.

Write (θ1, ..., θ2k) for the canonical basis of (R2k)∗ and recall:

ϖ+(k) =
k

∑
i=1
θ12...2̂i−1,2i...2k−1,2k.
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(Recall also that formally ϖ+(2) = ω+(2).) Choose r ⩾ 1 such that r + 1
r = k ⩾ 2. For each ordered

pair of distinct p, q ∈ {1, ..., k}, let F (p, q) denote the orientation-preserving automorphism of R2k

given by:

F (p, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

⋱
−r
⋱
−1
r

⋱
⋱ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

← 2pth row

← 2qth row

↑ ↑
2pth col. 2qth col.

Then for all p, q and r:
F (p, q)∗ϖ+(k) ∈⋀2k−2

+ (R2k)
∗

and thus:
2(k − 1)ϖ+(k) + ∑

p≠q∈{1,...,k}
F (p, q)∗ϖ+(k) ∈ Conv (⋀2k−2

+ (R2k)
∗
) .

(N.B. The coefficients in the linear-combination on the left-hand side of the above expression are all
positive and thus, even though they do not sum to 1, the above expression is valid since ⋀2k−2+ (R2k)∗

is scale-invariant.) A direct calculation shows that:

2(k − 1)ϖ+(k) + ∑
p≠q∈{1,...,k}

F (p, q)∗ϖ+(k) = (k − 1) (k − r −
1

r
)ϖ+(k) = 0,

as required.

Theorem 7.6.4. Co-symplectic forms satisfy the relative h-principle.

Proof. Recall that the stabiliser of ϖ+(k) in GL+(2k;R) is isomorphic to Sp(2k;R). Since SU(k) ⊂
Sp(2k;R), it follows by Proposition 7.4.3 that ϖ+(k) is faithful and connected. Thus, it suffices to
prove that ϖ+(k) is abundant. When k is even, this follows from Lemma 7.4.4 since ϖ+(k) admits
an orientation-reversing automorphism (see Proposition 7.1.11). However, in general, by Corollary
7.6.2 one must prove directly that 0 lies in the convex hull of the set:

Nϖ+(k)(τ) = {ν ∈⋀
2k−3 (R2k−1)

∗
∣ ν is co-pseudoplectic and τ ∣Πν > 0} .

Choose a correctly-oriented basis (e2, ..., e2k) of R2k−1 with dual basis (θ2, ..., θ2k) such that τ =
θ34...2k. Then for all ϖ ∈ ⋀2k−4+ (R2k−2), observe that ν = θ2 ∧ϖ ∈ Nϖ+(k)(τ) and thus:

θ2 ∧⋀2k−4
+ (R2k−2)

∗
⊆ Nϖ+(k)(τ).
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But by Lemma 7.6.3, 0 ∈ Conv (⋀2k−4+ (R2k−2)∗), completing the proof.

Now fix k ⩾ 2 and consider the standard co-pseudoplectic form ξ0(k) = θ1∧∑ki=1 θ23...2̂i,2i+1...2k,2k+1 ∈
⋀2k−1Co−P (R2k+1)∗. Theorem 7.4.5 does not apply to co-pseudoplectic forms, since ξ0(k) is not faithful.
Indeed, recall from Remark 7.1.23 that ξ0(k) canonically defines an oriented hyperplane Πξ0(k) =
⟨e2, ..., e2k⟩. Then both {Πξ0(k)} and {Πξ0(k)} (where the overline denotes orientation-reversal) form
singleton orbits for the action of S(ξ0(k)) on G̃r2k (R2k+1), however:

ξ0(k)∣Πξ0(k) = ξ0(k)∣Πξ0(k) = 0.

Despite this observation, Theorem 7.3.1 does apply to co-pseudoplectic forms:

Theorem 7.6.5. ξ0(k) is ample; hence co-pseudoplectic forms satisfy the relative h-principle.

Proof. Write G̃r2k (R2k+1)
gen
= G̃r2k (R2k+1) / {Πξ0(k),Πξ0(k)}. Then S(ξ0(k)) acts transitively on

G̃r2k (R2k+1)
gen

: indeed, let Π ∈ G̃r2k (R2k+1)
gen

. Π intersects Πξ0(k) transversely and thus Π∩Πξ0(k)
has dimension 2k − 1. Moreover Π ∩Πξ0(k) can be canonically oriented as follows: choose any u ∈ Π
such that θ1(u) > 0. Then the chosen orientation on Π together with the decomposition:

Π = ⟨u⟩⊕ (Π ∩Πξ0(k))

orients Π∩Πξ0(k) and thus Π∩Πξ0(k) defines an element of G̃r2k−1 (Πξ0(k)). Since Sp(2k;R) acts tran-
sitively on G̃r2k−1 (R2k), by eqn. (7.1.20) it follows that S(ξ0(k)) acts transitively on G̃r2k−1 (Πξ0(k))
and thus without loss of generality one may assume that:

Π ∩Πξ0(k) = ⟨e3, ..., e2k+1⟩,

compatibly with its orientation. Thus:

Π = ⟨e1 + te2, e3, ..., e2k+1⟩

for some t ∈ R. Now consider the automorphism of R2k+1 given by:

F =

⎛
⎜⎜⎜⎜⎜
⎝

1

−t 1

⋱
1

⎞
⎟⎟⎟⎟⎟
⎠

By examining eqn. (7.1.20), F ∈ S(ξ0(k)) and clearly F (Π) = ⟨e1, e3, ..., e2k+1⟩; thus G̃r2k (R2k+1)
gen

forms a single orbit, as claimed. Moreover, Tξ0(k) (G̃r2k (R2k+1)
gen
) is precisely the orbit of non-zero

(2k − 1)-forms on R2k.
Now let τ ∈ Tξ0(k) (G̃r2k (R2k+1)

gen
). Clearly the stabiliser of τ in GL+(2k;R) is connected. Also,
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since:
T −1ξ0(k) (Tξ0(k) [G̃r2k(R2k+1)gen]) = G̃r2k(R2k+1)gen

the setNξ0(k)(τ) is path-connected for any τ ≠ 0 by Lemma 7.4.9. Moreover, since the GL+(2k+1;R)-
orbit of co-pseudoplectic forms is closed under the action of GL(2k+1;R), by Lemma 7.4.4 it follows
that ξ0(k) is abundant. Thus by Lemma 7.4.7, Nξ0(k)(τ) is ample for all τ ≠ 0.

Now consider τ = 0. Note that θ1∧ν is co-pseudoplectic if and only if ν is co-symplectic and thus:

Nξ0(k)(0) =⋀
2k−2
+ (R2k)

∗
∪⋀2k−2

− (R2k)
∗
.

This space has two path components, and thus abundance alone is not sufficient to deduce that
Nξ0(k)(0) is ample. However by Lemma 7.6.3, the convex hull of each path component of Nξ0(k)(0)
equals ⋀2k−2 (R2k)∗ and thus ξ0(k) is ample, as claimed.

7.7 G̃2 3- and 4-forms

The aim of this section is to prove the relative h-principles for G̃2 3- and 4-forms. Let R7 have basis
(e1, ..., e7) and dual basis (θ1, ..., θ7) as usual. Recall the standard G̃2 3- and 4-forms defined in eqns.
(2.2.5) and (2.2.3) respectively by:

φ̃0 = θ123 − θ145 − θ167 + θ246 − θ257 − θ347 − θ356

ψ̃0 = θ4567 − θ2367 − θ2345 + θ1357 − θ1346 − θ1256 − θ1247

inducing the metric g̃0 = ∑3
i=1(θi)⊗2 −∑

7
i=4(θi)⊗2 and volume form θ12...7. For the purposes of calcu-

lations, it is advantageous to have a second ‘standard representative’ of G̃2 3- and 4-forms:

Proposition 7.7.1. The 3-form:

φ̃1 =
1

2
(θ147 + θ156 − θ237 + θ246 − θ345) (7.7.2)

is of G̃2-type. It induces the metric and volume-form:

g̃1 = −θ1 ⊙ θ7 + θ2 ⊙ θ6 − θ3 ⊙ θ5 − θ4 ⊙ θ4 and vol1 =
1

8
θ1234567.

Moreover:
ψ̃1 = Θ(φ̃1) =

1

4
(θ2356 + 2θ2347 − 2θ1456 + θ1357 − θ1267) .

(To prove this result, one simply calculates the bilinear form Qφ̃1
= 1

6 (− ⌟ φ̃1)2 ∧ φ̃1 explicitly, from
which the metric and volume form can simply be written down.)

Now consider the space G̃2
/G̃r6(R7) . Since g̃0 is non-degenerate, taking orthocomplement with
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respect to g̃0 establishes a G̃2-equivariant isomorphism:

Gr1(R7) ≅ Gr6(R7)

L↦ L�

B� ↤ B.

(7.7.3)

Motivated by this, I term a hyperplane B ⊂ R7 spacelike, timelike or null according to whether its
orthocomplement is spacelike, timelike or null and write Gr6,+(R7), Gr6,−(R7) and Gr6,0(R7) for the
corresponding Grassmannians. (Recall that a 1-dimensional subspace ℓ is spacelike, timelike or null
according to whether g̃0(u,u) > 0, < 0 or = 0 respectively for some (equivalently all) u ∈ ℓ/{0}.)

Lemma 7.7.4.
G̃2
/G̃r6(R7) = {G̃r6,i(R7) ∣ i = +,−,0} .

Proof. If B is either spacelike or timelike, then R7 = B� ⊕ B and so eqn. (7.7.3) can be lifted to an
isomorphism G̃r1,±(R7) ≅ G̃r6,±(R7). Thus since G̃2 acts transitively on each of G̃r1,±(R7) [84, Prop.
2.2], each of G̃r6,±(R7) are orbits of G̃2.

For null planes, B� ⊂ B and so a different approach is required. Since G̃2 acts transitively on
Gr1,0(R7) [68, Prop. 5.4], G̃2 also acts transitively on Gr6,0(R7) by eqn. (7.7.3) and thus the action
of G̃2 on G̃r6,0(R7) has at most two orbits. Now recall the G̃2 4-form ψ̃0 and consider the oriented
null 6-plane B = ⟨e1, e2, e4, e5, e6, e3 + e7⟩. Consider F ∈ G̃2 given by:

(e1, e2, e3, e4, e5, e6, e7)↦ (e1,−e2,−e3, e4, e5,−e6,−e7).

Then F preserves B and F ∣B is orientation reversing. Thus G̃r6,0(R7) forms a single orbit of G̃2 as
claimed.

7.7.1 h-principle for G̃2 4-forms
Theorem 7.7.5. G̃2 4-forms satisfy the relative h-principle.

Proof. By Lemma 7.4.4, G̃2 4-forms are automatically abundant. Thus it suffices to prove that G̃2

4-forms are faithful and connected. Initially, consider the G̃2 4-form ψ̃0 and the hyperplanes:

B+ = ⟨e2, e3, e4, e5, e6, e7⟩ ∈ G̃r6,+(R7)

B− = ⟨e1, e2, e3, e4, e5, e6⟩ ∈ G̃r6,−(R7)

Then:
ψ̃0∣B+ = θ

4567 − θ2367 − θ2345 = 1

2
(θ23 − θ45 − θ67)2

is a co-emproplectic form, with connected stabiliser in GL+(B+) isomorphic to Sp(6;R), while:

ψ̃0∣B− = −θ
2345 − θ1346 − θ1256 = −1

2
(θ16 + θ25 + θ34)2
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is co-pisoplectic (also with connected stabiliser in GL+(B−)).
Now turn to the null case. Consider the G̃2 4-form 2ψ̃1 and the null-hyperplane B0 = ⟨e1, ..., e6⟩.

Then:
2ψ̃1∣B0

= 1

2
θ2356 − θ1456 = (1

2
θ23 − θ14) ∧ θ56

is a degenerate 4-form (i.e. neither co-emproplectic nor co-pisoplectic) and hence G̃2 4-forms are faith-
ful. To verify that the stabiliser of 2ψ̃1∣B0

in GL+(B0) is connected, split B0 = ⟨e5, e6⟩⊕⟨e1, e2, e3, e4⟩ ≅
R2 ⊕R4 and apply Lemma 7.1.5 to the pisoplectic (and hence multi-co-symplectic) 2-form:

α = 1

2
θ23 − θ14 ∈⋀2 (R4)∗ ,

noting that −α and α lie in the same GL+(4;R)-orbit (since (−α)2 = α2 = −1
4θ

1234) and that the
stabilisers of α in GL+(2k;R) and GL(2k;R) coincide and are connected. Thus G̃2 4-forms are also
connected.

7.7.2 Faithfulness of G̃2 3-forms

Proposition 7.7.6. φ̃0 is faithful. More specifically, the orbits Tφ̃0
(G̃r6,∓(R7)) ∈ ⋀3 (R6)/GL+(6;R)

are precisely the orbits ⋀3± (R6) of SL(3;R)2 3-forms and SL(3;C) 3-forms respectively, while the
orbit Tφ̃0

(G̃r6,0(R7)) ∈ ⋀3 (R6)/GL+(6;R) is not open, i.e. forms in this orbit are not stable.

Proof. I consider each orbit in turn. For the timelike case, it suffices to prove that for some G̃2 3-form
φ̃ on R7 and some oriented timelike subspace B ⊂ R7, the restriction φ̃∣B is an SL(3;R)2 3-form. Con-
sider 2φ̃1 (see eqn. (7.7.2)) and let B ⊂ R7 be the oriented timelike hyperplane ⟨e1, e5, e6,−e2, e3, e7⟩.
Then 2φ̃1∣B = θ156 − θ237 is an SL(3;R)2 3-form on B. For the spacelike case, consider φ̃0 and let
B ⊂ R7 be the oriented spacelike hyperplane ⟨e2, e3, e4, e5, e6, e7⟩. Then φ̃0∣B = θ246 − θ257 − θ347 − θ356

is an SL(3;C) 3-form on B.
Finally, for the null case, consider 2φ̃1 and let B ⊂ R7 be the oriented null hyperplane ⟨e2, e3, e4, e5, e6, e7⟩.

Define:
ρ0 = 2φ̃1∣B = −θ237 + θ246 − θ345. (7.7.7)

The ‘Hitchin map’ Kρ0 ∶ B→ B⊗⋀6 (R6)∗ defined in §2.3.1 is given by:

Kρ0(ei) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e5 ⊗ θ234567 if i = 2;
e6 ⊗ θ234567 if i = 3;
e7 ⊗ θ234567 if i = 4;
0 otherwise.

(7.7.8)

In particular, K2
ρ0 = 0, and so by the results of §2.3.1, ρ0 is not stable.
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The space Tφ̃0
(G̃r6,0(R7)) shall be termed the orbit of parabolic 3-forms, and denoted ⋀30 (R6)∗.

(The motivation for this name derives from the fact that the stabiliser in G̃2 of a non-zero null
vector is a maximal parabolic subgroup of G̃2: see [68, §5].) In Djoković’s classification of 3-forms in
dimensions n ⩽ 8, parabolic 3-forms correspond to the real form of the complex orbit ‘IV’; see [34,
§9].

I remark that Proposition 7.7.6 also shows, for all ρ ∈ Tφ̃0
(G̃r6,± (R7)), that the stabiliser of ρ in

GL+(6;R) is connected, being isomorphic to SL(3;C) and SL(3;R)2 respectively. By Theorem 7.4.5,
proving the relative h-principle for G̃2 3-forms, is thus reduced to the following three lemmas:

Lemma 7.7.9. For each (equivalently any) ρ ∈ ⋀3+ (R6)∗: 0 ∈ Conv (Nφ̃0
(ρ)).

Lemma 7.7.10. For each (equivalently any) ρ ∈ ⋀3− (R6)∗: 0 ∈ Conv (Nφ̃0
(ρ)).

Lemma 7.7.11. For each (equivalently any) ρ ∈ ⋀30 (R6)∗, StabGL+(6;R)(ρ) is connected and 0 ∈
Conv (Nφ̃0

(ρ)).

The rest of this chapter is devoted to proving each lemma in turn.

7.7.3 Timelike case: Lemma 7.7.9

Let ρ ∈ ⋀3+ (R6)∗ be an SL(3;R)2 3-form. The decomposition R6 = E+ ⊕E− gives rise to a decompo-
sition (R6)∗ ≅ E∗+ ⊕E∗− and hence:

⋀p (R6)∗ ≅ ⊕
r+s=p

⋀rE∗+ ⊗⋀sE∗− = ⊕
r+s=p

⋀r,s (R6)∗ . (7.7.12)

ρ defines an element of ⋀3,0 (R6)∗ ⊕⋀0,3 (R6)∗; thus the map:

R6 ⋀2,0 (R6)∗ ⊕⋀0,2 (R6)∗

u u ⌟ ρ
(7.7.13)

is an SL(3;R)2-equivariant isomorphism. Moreover, Iρ defines a map:

Iρ ∶ ⋀2 (R6)∗ ⊙2 (R6)∗

ω {(a, b)↦ 1
2 [ω(Iρa, b) + ω(Iρb, a)] }

(7.7.14)

(where ⊙2 denotes the symmetric square) which vanishes on the subspace ⋀2,0 (R6)∗ ⊕ ⋀0,2 (R6)∗

and satisfies Iρω(u1, u2) = ω(Iρu1, u2) for ω ∈ ⋀1,1 (R6)∗. In particular, Iρ defines an injection
⋀1,1 (R6)∗ ↪⊙2 (R6)∗.

Proposition 7.7.15. Let ρ be an SL(3;R)2 3-form on R6. Then:

Nφ̃0
(ρ) = {ω ∈⋀2 (R6)∗ ∣ Iρω has signature (3,3) and ω3 < 0} . (7.7.16)
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Proof. Firstly, I claim:

Nφ̃0
(ρ) = [Nφ̃0

(ρ) ∩⋀1,1 (R6)∗]⊕⋀2,0 (R6)∗ ⊕⋀0,2 (R6)∗ . (7.7.17)

Indeed, let ω ∈ ⋀2 (R6)∗ and define a 3-form on R7 ≅ R⊕R6 via:

ϕ̃ = θ ∧ ω + ρ. (7.7.18)

Let u ∈ R6 and consider the orientation-preserving automorphism of R7 given by:

F =
⎛
⎝
11×1 01×6

u6×1 Id6×6

⎞
⎠

Then F ∗ϕ̃ = θ ∧ (ω + u ⌟ ρ) + ρ. Thus ω ∈ Nφ̃0
(ρ) if and only if ω + u ⌟ ρ ∈ Nφ̃0

(ρ) for all u ∈ R6 and
eqn. (7.7.17) follows by eqn. (7.7.13). Moreover, given ω ∈ ⋀2 (R6)∗, Iρω and ω3 only depend on the
(1,1)-part of ω. Thus, to prove Proposition 7.7.15, it suffices to prove:

Nφ̃0
(ρ) ∩⋀1,1 (R6)∗ = {ω ∈⋀1,1 (R6)∗ ∣ Iρω has signature (3,3) and ω3 < 0} . (7.7.19)

Recall the invariant quadratic form Qϕ̃ defined in Proposition 2.3.6. Using eqn. (7.7.18), for a ∈ R
and u ∈ R6 one may compute:

(ae1 + u) ⌟ ϕ̃ = aω − θ ∧ (u ⌟ ω) + u ⌟ ρ

and hence:

6Qϕ̃(ae1 + u) = [(ae1 + u) ⌟ ϕ̃]
2
∧ ϕ̃

= a2θ ∧ ω3 + θ ∧ ω ∧ (u ⌟ ρ)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1)

−2aθ ∧ (u ⌟ ω) ∧ ω ∧ ρ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2)

+2aθ ∧ ω2 ∧ (u ⌟ ρ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(3)

− 2θ ∧ (u ⌟ ω) ∧ (u ⌟ ρ) ∧ ρ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(4)

.

(7.7.20)

Term (2) vanishes since ω ∈ ⋀1,1 (R6)∗ and ρ ∈ ⋀3,0 (R6)∗ ⊕⋀0,3 (R6)∗ and hence ω ∧ ρ = 0. To
simplify the remaining terms, I utilise the following lemma:

Lemma 7.7.21. For α ∈ ⋀p(Rn)∗, β ∈ ⋀q(Rn)∗ with p + q = n + 1:

∀u ∈ Rn ∶ (u ⌟ α) ∧ β = (−1)p−1α ∧ (u ⌟ β).

(To prove this lemma, by linearity, it suffices to consider u = e1, α = θi1...ip , β = θj1...jq with
1 ⩽ i1 < ... < ip ⩽ n and 1 ⩽ j1 < ... < jq ⩽ n. The result then follows by direct calculation.)

Returning to eqn. (7.7.20), firstly consider term (3). Applying Lemma 7.7.21 on R6 yields ω2 ∧
(u ⌟ ρ) = −(u ⌟ ω2) ∧ ρ = −2(u ⌟ ω) ∧ ω ∧ ρ, which vanishes as above. Similarly, for term (1), since
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ω ∧ (u ⌟ ρ)2 = ω ∧ [u ⌟ ((u ⌟ ρ) ∧ ρ)], Lemma 7.7.21 yields:

ω ∧ (u ⌟ ρ)2 = −(u ⌟ ω) ∧ (u ⌟ ρ) ∧ ρ

and hence terms (1) and (4) may be combined to give −3θ∧(u⌟ω)∧(u⌟ρ)∧ρ. However (u⌟ρ)∧ρ =
Iρ(u) ⌟ volρ, by definition of Iρ, and thus by Lemma 7.7.21 again:

−(u ⌟ ω) ∧ (u ⌟ ρ) ∧ ρ = Iρω(u,u) ⋅ volρ.

Hence terms (1) and (4) may collectively be written as 3Iρω(u,u) ⋅ θ ∧ volρ and whence:

6Qϕ̃(ae1 + u) = a
2θ ∧ ω3 + 3Iρω(u,u)θ ∧ volρ. (7.7.22)

In particular, L = R⊕ 0 and B = 0⊕R6 are orthogonal with respect to Qϕ̃.
Recall that ϕ̃ is a G̃2 3-form if and only if Qϕ̃ has signature (3,4). Moreover, since ϕ̃∣B = ρ is an

SL(3;R)2 3-form, by Proposition 7.7.6 whenever ϕ̃ is a G̃2 3-form, the hyperplane B ⊂ R7 is timelike.
Since L and B are orthogonal, it follows that ϕ̃ is a G̃2 3-form if and only if Qϕ̃ has signature (3,3)
on B and signature (0,1) on L. But by eqn. (7.7.22), this is precisely the statement that Iρω has
signature (3,3) and ω3 < 0, as required.

I now prove Lemma 7.7.9:

Proof of Lemma 7.7.9. Without loss of generality take ρ = ρ+ (see eqn. (2.3.5)) and consider the
2-forms:

ω1 = 2θ14 − θ25 − θ36, ω2 = −θ14 + 2θ25 − θ36 and ω3 = −θ14 − θ25 + 2θ36.

Then:

Iρ+ω1 = 4θ1 ⊙ θ4 − 2θ2 ⊙ θ5 − 2θ3 ⊙ θ6, Iρ+ω2 = −2θ1 ⊙ θ4 + 4θ2 ⊙ θ5 − 2θ3 ⊙ θ6

and Iρ+ω3 = −2θ1 ⊙ θ4 − 2θ2 ⊙ θ5 + 4θ3 ⊙ θ6

which all have signature (3,3). Moreover ω3
i = −12θ12...6 for i = 1,2,3. Thus by Proposition 7.7.15

ωi ∈ Nφ̃0
(ρ+) for all i = 1,2,3. Therefore:

Conv (Nφ̃0
(ρ+)) ∋

1

3
(ω1 + ω2 + ω3) = 0,

as required.

7.7.4 Spacelike case: Lemma 7.7.10
The spacelike case is closely analogous to the timelike case; accordingly, the exposition in this
subsection will be brief. Let ρ ∈ ⋀3− (R6)∗ be an SL(3;C) 3-form. The complex structure Jρ in-
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duces a type-decomposition ⋀p (R6)∗ ⊗R C = ⊕r+s=p⋀r,s (R6)∗. As in [114, p. 32], for r ≠ s, write
⟦⋀r,s (R6)∗⟧ = (⋀r,s (R6)∗ ⊕⋀s,r (R6)∗) ∩⋀r+s (R6)∗ for the set of real forms of type (r, s) + (s, r);
likewise, write [⋀r,r (R6)∗] = ⋀r,r (R6)∗ ∩⋀2r (R6)∗ for the set of real forms of type (r, r). Then for
all p:

⋀2p (R6)∗ =
⎛
⎜
⎝
⊕

r+s=2p
r<s

⟦⋀r,s (R6)∗⟧
⎞
⎟
⎠
⊕ [⋀p,p (R6)∗] and ⋀2p+1 (R6)∗ = ⊕

r+s=2p
r<s

⟦⋀r,s (R6)∗⟧ .

As in the timelike case, ρ defines an element of ⟦⋀3,0 (R6)∗⟧ and u ∈ R6 ↦ u⌟ρ ∈ ⟦⋀2,0 (R6)∗⟧ defines
an SL(3;C)-equivariant isomorphism. Moreover, Jρ defines a map:

Jρ ∶ ⋀2 (R6)∗ ⊙2 (R6)∗

ω {(a, b)↦ −1
2 [ω(Jρa, b) + ω(Jρb, a)] }

(7.7.23)

(note the difference in sign convention from the timelike case) which vanishes on the subspace
⟦⋀2,0 (R6)∗⟧ and satisfies Jρω(u1, u2) = −ω(Jρu1, u2) for ω ∈ [⋀1,1 (R6)∗]. In particular, Jρ defines
an injection [⋀1,1 (R6)∗]↪⊙2 (R6)∗.

Proposition 7.7.24. Let ρ be an SL(3;C) 3-form on R6. Then:

Nφ̃0
(ρ) = {ω ∈⋀2 (R6)∗ ∣ Jρω has signature (2,4)} . (7.7.25)

Proof. As in the proof of Proposition 7.7.15, it suffices to prove that:

Nφ̃0
(ρ) ∩ [⋀1,1 (R6)∗] = {ω ∈ [⋀1,1 (R6)∗] ∣ Jρω has signature (2,4)} . (7.7.26)

Given ω ∈ [⋀1,1 (R6)∗], writing ϕ̃ = θ ∧ ω + ρ ∈ ⋀3 (R⊕R6)∗, the calculations from the proof of
Proposition 7.7.15 yield:

6Qϕ̃(ae1 + u) = a
2θ ∧ ω3 + 6Jρω(u,u)θ ∧ volρ, (7.7.27)

where the final term has a factor of 6 now (rather than a factor of 3) since:

(u ⌟ ρ) ∧ ρ = −2Jρ(u) ⌟ volρ and Jρω(u1, u2) = −
1

2
[ω(Jρu1, u2) + ω(Jρu2, u1)]

when ρ is an SL(3;C) 3-form, as opposed to:

(u ⌟ ρ) ∧ ρ = Iρ(u) ⌟ volρ and Iρω(u1, u2) = +
1

2
[ω(Iρu1, u2) + ω(Iρu2, u1)]

when ρ is an SL(3;R)2 3-form. In particular, L = R ⊕ 0 and B = 0 ⊕ R6 are again orthogonal with
respect to Qϕ̃.
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Since ϕ̃∣B = ρ is an SL(3;C) 3-form, by Proposition 7.7.6 whenever ϕ̃ is a G̃2 3-form, the hyperplane
B ⊂ R7 is spacelike and thus Qϕ̃ must have signature (2,4) upon restriction to B and (1,0) upon
restriction to L. Thus by eqn. (7.7.27), one sees that ϕ̃ is a G̃2 3-form if and only if Jρω has signature
(2,4) and ω3 > 0. However now (unlike the timelike case), the condition that Jρω has signature
(2,4) automatically forces ω3 > 0. Thus:

Nφ̃0
(ρ) = {ω ∈⋀2 (R6)∗ ∣ Jρω has signature (2,4)}

as required.

I now prove Lemma 7.7.10:

Proof of Lemma 7.7.10. Without loss of generality take ρ = ρ− (see eqn. (2.3.5)) and consider the
2-forms:

ω1 = 2θ12 − θ34 − θ56, ω2 = −θ12 + 2θ34 − θ56 and ω3 = −θ12 − θ34 + 2θ56.

Then:
Jρ−ω1 = 2 (θ1)

⊗2 + 2 (θ2)⊗2 − (θ3)⊗2 − (θ4)⊗2 − (θ5)⊗2 − (θ6)⊗2

Jρ−ω2 = − (θ1)
⊗2 − (θ2)⊗2 + 2 (θ3)⊗2 + 2 (θ4)⊗2 − (θ5)⊗2 − (θ6)⊗2

Jρ−ω3 = − (θ1)
⊗2 − (θ2)⊗2 − (θ3)⊗2 − (θ4)⊗2 + 2 (θ5)⊗2 + 2 (θ6)⊗2

which all have signature (2,4). Thus by Proposition 7.7.15 ωi ∈ Nφ̃0
(ρ−) for all i = 1,2,3. Therefore:

Conv (Nφ̃0
(ρ+)) ∋

1

3
(ω1 + ω2 + ω3) = 0,

as required.

7.7.5 Null case: Lemma 7.7.11 – connectedness of StabGL+(6;R)(ρ)

As usual, without loss of generality assume that ρ = ρ0 (see eqn. (7.7.7)). To prove Lemma 7.7.11 –
which is manifestly invariant under the natural GL+(6;R) action on ρ0 – it is beneficial to reduce
this ‘gauge freedom’ to SL(6;R); the ‘gauge’ is (partially) fixed by defining volρ0 = θ234567. One can
then define a linear map Hρ0 ∶ R6 → R6 via:

Kρ0 =Hρ0 ⊗ volρ0 . (7.7.28)

(The need to arbitrarily fix a volume form arises since Kρ0 , being nilpotent, has no non-trivial
(⋀6 (R6)∗)

n
-valued invariants for any n and thus parabolic 3-forms do not canonically define volume

forms as SL(3;C) and SL(3;R)2 3-forms do.)
To compute StabGL+(6;R)(ρ0), I begin by identifying a convenient subgroup:
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Proposition 7.7.29. Identify R6 = ⟨e2, e3, e4⟩ ⊕ ⟨e5, e6, e7⟩ ≅ R3 ⊕ R3 and let SL(3;R) act diago-
nally on R6 according to this splitting. Write ξ ∶ SL(3;R) → SL(6;R) for the corresponding group
homomorphism. Then ξ(SL(3;R)) preserves ρ0, volρ0 and Hρ0 .

Proof. Clearly ξ(SL(3;R)) preserves volρ0 . Moreover, with respect to the basis ⟨e2, ..., e7⟩:

Hρ0 =
⎛
⎝
0 0

Id 0

⎞
⎠

and thus for A ∈ SL(3;R):

ξ(A) ○Hρ0 =
⎛
⎝
0 0

A 0

⎞
⎠
=Hρ0 ○ ξ(A),

as required. Now consider the map:

j ∶ ⋀3 (R6)∗ ⋀3 (R6)∗

θqrs H∗ρ0(θ
qr) ∧ θs +H∗ρ0(θ

q) ∧ θr ∧H∗ρ0(θ
s) + θq ∧H∗ρ0(θ

rs).

Since ξ(SL(3;R)) preserves Hρ0 , it also preserves j. However −j(θ567) = −θ237 + θ246 − θ345 = ρ0 and
thus ξ(SL(3;R)) also preserves ρ0.

Note that the subspace ⟨e5, e6, e7⟩ can be invariantly defined as the kernel of the map Kρ0 . By
applying Proposition 7.7.29, one obtains:

Corollary 7.7.30. Every F ∈ StabGL+(6;R)(ρ0) preserves the subspace ⟨e5, e6, e7⟩. Moreover StabGL+(6;R)(ρ0)
acts transitively on non-zero vectors and on ordered pairs of linearly independent vectors in ⟨e5, e6, e7⟩.

I now prove the first half of Lemma 7.7.11. Specifically:

Lemma 7.7.31. StabGL+(6;R)(ρ0) is connected. Explicitly:

StabGL+(6;R)(ρ0) = ξ (SL(3;R)) ⋅ G

where ξ was defined in Proposition 7.7.29, G is the contractible subgroup of StabGL+(6;R)(ρ0) defined
by:

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d

e d−1

f d−1

k l m d2

n o p de 1

q r s df 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

d > 0 and d−1el + d−1fm − d−2k − s − o = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.7.32)
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and ξ (SL(3;R)) ∩ G = ξ(G), where G ⊂ SL(3;R) consists of the set of 3 × 3-matrices of the form:

⎛
⎜⎜
⎝

1

λ 1

µ 1

⎞
⎟⎟
⎠

for λ,µ ∈ R.

Proof. Define:
G = {F ∈ StabGL+(6;R)(ρ0) ∣ F (e6) = e6 and F (e7) = e7} .

Then since (by Corollary 7.7.30) StabGL+(6;R)(ρ0) preserves ⟨e5, e6, e7⟩ and ξ(SL(3;R)) acts transi-
tively on ordered pairs of linearly independent vectors in ⟨e5, e6, e7⟩, it follows that:

StabGL+(6;R)(ρ0) = ξ(SL(3;R)) ⋅ G .

The next task is to verify eqn. (7.7.32). Let F ∈ G . Since θ23 = −e7 ⌟ ρ0, and F preserves ρ0 and
e7, it follows that F ∗θ23 = θ23 and similarly F ∗θ24 = θ24, since θ24 = e6 ⌟ ρ0. Since F also preserves
⟨e5, e6, e7⟩, with respect to the decomposition R6 = ⟨e2, e3, e4⟩⊕ ⟨e5, e6, e7⟩ one can write:

F =

⎛
⎜⎜⎜⎜⎜
⎝

F1

a

F2 b 1

c 1

⎞
⎟⎟⎟⎟⎟
⎠

,

where a, b, c ∈ R with a ≠ 0, F2 ∈ End(R3,R3), F1 ∈ GL(3;R) is such that F ∗1 θ23 = θ23 and F ∗1 θ24 = θ24,
and a ⋅ det(F1) > 0.

To better understand the map F1, let B = ⟨e2, e3, e4⟩ and temporarily restrict attention to B.
Since ⟨e4⟩ ⊂ B is the kernel of the linear map u ∈ B ↦ u ⌟ θ23 ∈ B∗, the space ⟨e4⟩ must be preserved
by F1. Likewise ⟨e3⟩ must also be preserved by F1 since F1 preserves θ24. Thus:

F1 =
⎛
⎜⎜
⎝

d

e λ

f µ

⎞
⎟⎟
⎠

for some d,µ, λ ∈ R/{0} and e, f ∈ R. The conditions F ∗1 θ23 = θ23 and F ∗1 θ24 = θ24 then force λ = d−1

and µ = d−1.
Returning now to R6, it has been shown that:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d

e d−1

f d−1

k l m a

n o p b 1

q r s c 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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for k, l,m,n, o, p, q, r, s ∈ R. One may then compute that F ∗ρ0 = ρ0 is equivalent to a = d2, c = df ,
b = de, together with the condition:

d−1el + d−1fm − d−2k − s − o = 0.

Moreover, given a = d2 one has det(F ) = d > 0. Thus, it has been established that:

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d

e d−1

f d−1

k l m d2

n o p de 1

q r s df 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

d > 0 and d−1el + d−1fm − d−2k − s − o = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

as claimed.
The expression for ξ(SL(3;R)) ∩ G is now manifest. To see that G is contractible, consider the

projection:
G (0,∞) ×R6

(d, e, f, k, l,m,n, o, p, q, r, s) (d, e, f, n, p, q, r).

π

Then π is surjective, with fibre over (d, e, f, n, p, q, r) given by:

{(k,m, l, o, s) ∈ R5 ∣ d−2k − d−1fm − d−1el + o + s = 0} .

Thus G is topologically a rank-4 vector bundle over the contractible space (0,∞) × R6, hence con-
tractible. This completes the proof.

7.7.6 Null case: Lemma 7.7.11 – 0 ∈ ConvConv (Nφ̃0(ρ))

By analogy with eqns. (7.7.14) and (7.7.23), define:

Hρ0 ∶ ⋀2 (R6)∗ ⊙2 (R6)∗

ω {(a, b)↦ 1
2 [ω(Hρ0a, b) + ω(Hρ0b, a)] }.

Proposition 7.7.33.

Nφ̃0
(ρ0) = {ω ∈⋀2 (R6)∗ ∣ Hρ0ω has signature (2,1,3)} . (7.7.34)

(Here signature (2,1,3) means that Hρ0 has a maximal positive definite subspace of dimension 2, a
maximal negative definite subspace of dimension 3 and a 1-dimensional kernel.)

The proof proceeds via a series of lemmas:
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Lemma 7.7.35. For n ⩾ 1, x1, ..., xn ∈ R/{0} and y ∈ R, any symmetric, ‘forward-triangular’
(2n + 1) × (2n + 1) bilinear form:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ⋯ ∗ ⋯ ∗ x1

∗ ∗ ⋯ ∗ ⋯ x2

⋮ ⋮ . .
.

∗ ∗ y

⋮ ⋮ . .
.

∗ x2

x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is non-degenerate if and only if y ≠ 0, having signature (n + 1, n) if y > 0 and signature (n,n + 1) if
y < 0. Moreover, the 2n × 2n bilinear form:

M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ⋯ ∗ x1

∗ ∗ ⋯ x2

⋮ ⋮ . .
.

∗ x2

x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

has signature (n,n).

Proof. Start with the matrix M , call the diagonal running from the (2n+1,1)-entry to the (1,2n+1)-
entry the counter diagonal and call the elements in front of the counter diagonal the strictly forward
entries. Clearly the bilinear form is degenerate when y = 0. Moreover, when y ≠ 0, M is non-singular
for any values of the strictly forward entries and thus it suffices to compute the signature of M when
all of the strictly forward entries vanish. However, in this case, M has eigenvalues y, ±x1, ±x2,...,±xn,
with corresponding eigenvectors:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

⋮
1

⋮
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

⋮
0

⋮
0

±1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

1

⋮
0

⋮
±1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, ...,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

⋮
1

0

±1
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The case of M ′ is similar.

Lemma 7.7.36.
Ker(Hρ0) = R6 ⌟ ρ0.
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Proof. Take a basis of R6 ⌟ ρ0 as follows:

(e2 ⌟ ρ0, e3 ⌟ ρ0, ..., e7 ⌟ ρ0) = (−θ37 + θ46, θ27 − θ45,−θ26 + θ35,−θ34, θ24,−θ23) .

Extend this to a basis of ⋀2 (R6)∗ via:

(θ25, θ36, θ47, θ56, θ57, θ67, θ26 + θ35, θ27 + θ45, θ37 + θ46) .

(By analogy with the spacelike and timelike cases, denote the span of this latter set of vectors by
⋀1,1 (R6)∗.) Then:

⋀2 (R6)∗ =⋀1,1 (R6)∗ ⊕R6 ⌟ ρ0, (7.7.37)

although the reader should note that I only define this splitting for ρ0; no attempt is made to define
⋀1,1 (R6)∗ for an arbitrary parabolic 3-form. Then Hρ0 vanishes identically on R6 ⌟ ρ0: indeed:

−θ37 + θ46 θ3 ⊙ θ4 − θ3 ⊙ θ4 = 0
θ27 − θ45 −θ2 ⊙ θ4 + θ2 ⊙ θ4 = 0

Hρ0

Hρ0

and similarly for the other basis vectors. Moreover, one may verify that:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

θ25

θ36

θ47

θ56

θ57

θ67

θ26 + θ35

θ27 + θ45

θ37 + θ46

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−θ2 ⊙ θ2

−θ3 ⊙ θ3

−θ4 ⊙ θ4

θ2 ⊙ θ6 − θ3 ⊙ θ5

θ2 ⊙ θ7 − θ4 ⊙ θ5

θ3 ⊙ θ7 − θ4 ⊙ θ6

−2θ2 ⊙ θ3

−2θ2 ⊙ θ4

−2θ3 ⊙ θ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
Hρ0 (7.7.38)

Since these images are linearly independent, the map Hρ0 is injective when restricted to ⋀1,1 (R6)∗.
This completes the proof.

Lemma 7.7.39. For all ω ∈ ⋀2 (R6)∗:

Ker(Hρ0ω) ∩ ⟨e5, e6, e7⟩ ≠ 0.

Here Ker(Hρ0ω) denotes the kernel of the map:

♭ ∶ R6 → (R6)∗

u↦Hρ0ω(u,−).
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Proof. It is equivalent to show that ♭ ∣⟨e5,e6,e7⟩ is not injective. Thus fix ω ∈ ⋀2 (R6)∗. Recalling that
Hρ0 vanishes on R6 ⌟ ρ0 and inspecting eqn. (7.7.38), one sees that ♭ ∣⟨e5,e6,e7⟩ only depends on the
component of ω in the subspace ⟨θ56, θ57, θ67⟩ ⊂ ⋀1,1 (R6)∗, so without loss of generality assume that:

ω = λ1θ56 + λ2θ57 + λ3θ67.

Thus:
Hρ0ω = λ1 (θ2 ⊙ θ6 − θ3 ⊙ θ5) + λ2 (θ2 ⊙ θ7 − θ4 ⊙ θ5) + λ3 (θ3 ⊙ θ7 − θ4 ⊙ θ6) .

Hence ♭ ∣⟨e5,e6,e7⟩ maps ⟨e5, e6, e7⟩ into ⟨e2, e3, e4⟩ and is represented by the matrix:

1

2

⎛
⎜⎜
⎝

0 λ1 λ2

−λ1 0 λ3

−λ2 −λ3 0

⎞
⎟⎟
⎠

(7.7.40)

which has determinant 0, as required.

I now prove Proposition 7.7.33:

Proof of Proposition 7.7.33. As in the proof of Proposition 7.7.15:

Nφ̃0
(ρ0) = [Nφ̃0

(ρ0) ∩⋀1,1 (R6)∗]⊕R6 ⌟ ρ0

and therefore, since Hρ0 vanishes on R6 ⌟ ρ0, it suffices to prove that:

Nφ̃0
(ρ0) ∩⋀1,1 (R6)∗ = {ω ∈⋀1,1 (R6)∗ ∣ Hρ0ω has signature (2,1,3)} . (7.7.41)

Let ω ∈ ⋀1,1 (R6)∗ and define ϕ̃ = θ ∧ω + ρ0. Proceeding as in the proof of Proposition 7.7.15, one
obtains:

6Qϕ̃(ae1 + u) = a
2θ1 ∧ ω3 − 6aθ1 ∧ (u ⌟ ω) ∧ ω ∧ ρ0 + 3Hρ0ω(u,u)θ1 ∧ volρ0 (7.7.42)

where now, unlike for SL(3;R)2 and SL(3;C) 3-forms, ω∧ρ0 need not vanish. Initially suppose that ϕ̃
is of G̃2-type and write B = 0⊕R6 ⊂ R7. Since ϕ̃∣B = ρ0 is parabolic, it follows that B is null, hence Qϕ̃
has signature (2,1,3) upon restriction to B and whence by eqn. (7.7.42) Hρ0ω has signature (2,1,3),
as required.

Conversely, suppose that Hρ0ω has signature (2,1,3). Then Hρ0ω has a 1-dimensional kernel
which by Lemma 7.7.39 must be contained in ⟨e5, e6, e7⟩. By applying a suitable SL(3;R)-symmetry
(see Proposition 7.7.29), without loss of generality one can assume that:

Ker(Hρ0ω) = ⟨e7⟩.

Since ω ∈ ⋀1,1 (R6)∗, by examining the matrix for ♭ ∣⟨e5,e6,e7⟩ in eqn. (7.7.40), it follows that ω has the
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form:
ω = Aθ25 +Bθ36 +Cθ47 +Dθ56 +E (θ26 + θ35) + F (θ27 + θ45) +G (θ37 + θ46) ,

for some constants A,B,C,D,E,F,G ∈ R with D ≠ 0. Upon restriction to ⟨e2, ..., e6⟩ the bilinear
form Hρ0ω is represented by the matrix:

e2 e3 e4 e5 e6

e2

e3

e4

e5

e6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−A −E −F 0 D
2

−E −B −G −D2
−F −G −C
0 −D2
D
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

By assumption, this bilinear form is non-degenerate with signature (2,3), and thus it follows from
Lemma 7.7.35 that C > 0.

Next, observing ω ∧ ρ0 = −Dθ23567 yields:

((−) ⌟ ω) ∧ ω ∧ ρ0 =D (Cθ7 + Fθ5 +Gθ6)⊗ volρ0 .

Substituting this result into eqn. (7.7.42) and polarising shows that 2Qϕ̃ is represented by the sym-
metric 7 × 7-matrix:

e1 e7 e2 e3 e4 e5 e6

e1

e7

e2

e3

e4

e5

e6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

H
3 −DC −DF −DG
−DC

−A −E −F 0 D
2

−E −B −G −D2
−F −G −C

−DF 0 −D2
−DG D

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

where H ∈ R is such that θ1 ∧ ω3 =Hθ1 ∧ volρ0 . Thus to complete the proof, it suffices to prove that
this matrix has signature (3,4). In fact, I show that for any h, r, s, t ∈ R, r ≠ 0, the matrix:

e1 e7 e2 e3 e4 e5 e6

Mh,r,s,t =

e1

e7

e2

e3

e4

e5

e6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h r s t

r

−A −E −F 0 D
2

−E −B −G −D2
−F −G −C

s 0 −D2
t D

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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has signature (3,4) (which completes the proof, as −DC ≠ 0). Since detMh,r,s,t = −Cr2 (D2 )
4 ≠ 0,

Mh,r,s,t is non-singular for all values of h, s, t and thus it suffices to consider M0,r,0,0. However M0,r,0,0

is block diagonal with blocks:

⎛
⎝
0 r

r 0

⎞
⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−A −E −F 0 D
2

−E −B −G −D2
−F −G −C
0 −D2
D
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

By Lemma 7.7.35 the former block has signature (1,1) and the latter block has signature (2,3), and
thus M0,r,0,0 has signature (3,4), as claimed.

I now prove the second part of Lemma 7.7.11. Specifically:

Lemma 7.7.43. For each (equivalently any) ρ ∈ ⋀30 (R6)∗, 0 ∈ Conv (Nφ̃0
(ρ)).

Proof. As usual, without loss of generality let ρ = ρ0. Consider the 2-form ω0 = −2θ47 + 2ε(θ67 + θ25 −
θ36) for some ε ∈ R/{0} to be specified later. One may compute using eqn. (7.7.38) that:

Hρ0ω0 = 2θ4 ⊗ θ4 + 2ε(θ3 ⊙ θ7 − θ4 ⊙ θ6 − θ2 ⊗ θ2 + θ3 ⊗ θ3).

This may be represented by the 6 × 6-matrix:

e2 e3 e7 e4 e6 e5

e2

e3

e7

e4

e6

e5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2ε
2ε ε

ε

2 −ε
−ε

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

which has signature (2,1,3), by applying Lemma 7.7.35 to each matrix along the (block) diagonal.
Thus ω0 ∈ Nφ̃0

(ρ0).
Now consider ω± = θ47 ± θ56. Then one may verify again using eqn. (7.7.38) that:

Hρ0ω± = −θ4 ⊗ θ4 ± (θ2 ⊙ θ6 − θ3 ⊙ θ5)

both of which have signature (2,1,3). Thus ω± ∈ Nφ̃0
(ρ0). However Nφ̃0

(ρ0) ⊂ ⋀2 (R6)∗ is open, so
it follows that for all ε ∈ R/{0} with ∣ε∣ sufficiently small, the 3-forms:

ω′± = ω± − ε(θ67 + θ25 − θ36)
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also lie in Nφ̃0
(ρ0). Fix some suitable choice of ε; then the three 2-forms ω0, ω

′
± all lie in Nφ̃0

(ρ0).
Moreover, one may compute that:

1

3
(ω0 + ω′+ + ω′−) =

1

3
(−2θ47 + 2ε(θ67 + θ25 − θ36)

+ θ47 + θ56 − ε(θ67 + θ25 − θ36)

+ θ47 − θ56 − ε(θ67 + θ25 − θ36))

=0,

completing the proof.

Thus, by Theorem 7.4.5, it has been proven:

Theorem 7.7.44. G̃2 3-forms satisfy the relative h-principle.
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Chapter 8

h-principle for SL(3;R)2 3-forms

This chapter uses convex integration with avoidance, together with careful analysis of the rank 3
distributions induced by SL(3;R)2 3-forms, to prove the relative h-principle for SL(3;R)2 3-forms on
oriented 6-manifolds.

8.1 Lack of ampleness of SL(3;R)2 3-form
Consider the standard SL(3;R)2 3-form ρ+ = e123 + e456 on R6 and recall the ±1-eigenspaces of the
para-complex structure Iρ+ :

E+ = ⟨e1, e2, e3⟩ and E− = ⟨e4, e5, e6⟩.

Given a hyperplane B ⊂ R6, on dimensional grounds one of the following statements holds:

1. dim(B ∩E±) = 2;

2. dim(B ∩E+) = 2 but dim(B ∩E−) = 3 (equivalently E− ⊂ B);

3. dim(B ∩E−) = 2 but dim(B ∩E+) = 3 (equivalently E+ ⊂ B).

Denote the sets of oriented hyperplances corresponding to conditions 1, 2 and 3 above by G̃r5,gen(R6),
G̃r5,−(R6) and G̃r5,+(R6) respectively.

Proposition 8.1.1.

SL(3;R)2/G̃r5(R6) = {G̃r5,gen(R6), G̃r5,−(R6), G̃r5,+(R6)} .

Proof. Firstly note that there is an isomorphism:

G̃r5,+ (R6) G̃r2 (E−)

Π Π ∩E−

where Π ∩ E− is oriented via the decomposition Π = E+ ⊕ (Π ∩E−). Recalling that SL(3;R)2 acts
on R6 diagonally via the decomposition R6 = E+ ⊕ E−, and that 1 × SL(3;R) acts transitively on
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G̃r2 (E−), it follows that G̃r5,+ (R6) is a single orbit for the action of SL(3;R)2. Likewise G̃r5,− (R6)
is a single orbit.

In the remaining case, firstly note that Gr5,gen (R6) forms a single orbit for SL(3;R)2. Indeed,
there is a natural line bundle L+ over Gr2(E+) with fibre over π+ ∈ Gr2(E+) given by:

L+∣π+ = E+/π+ .

The action of SL(3;R)×1 on Gr2(E+) lifts naturally to define an action on L+ which one may verify
acts transitively on L+/Gr2(E+), the complement of the zero section. The analogous statement holds
for L−/Gr2(E−). Now note that there is a surjective map:

L+/Gr2(E+) ×L−/Gr2(E−) Gr5,gen (R6)

(u+ + π+ ∈ E+/π+ , u− + π− ∈ E−/π− ) π+ ⊕ π− ⊕ ⟨u+ + u−⟩.

Since SL(3;R)2 acts transitively on L+/Gr2(E+) ×L−/Gr2(E−), it follows that Gr5,gen (R6) forms a
single SL(3;R)2-orbit as claimed. To verify that moreover G̃r5,gen (R6) forms a single orbit, it suffices
to consider B ∈ G̃r5,gen (R6) with oriented basis ⟨e1, e2, e4, e5, e3 + e6⟩ and note that:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1
1

−1
−1

1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ SL(3;R)2

preserves B and F ∣B is orientation-reversing.

Clearly G̃r5,gen (R6) ⊂ G̃r5 (R6) is open and dense. By Proposition 7.4.2, it follows that Tρ+ (G̃r5,gen(R6))
must be the (unique) open orbit of 3-forms on R5, i.e. ⋀3Co−P (R5). Now consider the orbit G̃r5,+(R6).
Taking B = ⟨e1, ..., e5⟩ ∈ G̃r5,+(R6) yields:

ρ+∣B = θ123.

It follows that Tρ+ (G̃r5,+(R6)) is the orbit of non-zero, decomposable 3-forms on R5. By considering
B = ⟨e2, ..., e6⟩ ∈ G̃r5,− (R6), one sees that Tρ+ (G̃r5,−(R6)) is precisely the same orbit.

Proposition 8.1.2. Let τ ∈ ⋀3Co−P (R5). Then Nρ+(τ) is ample. In contrast, now let τ be a non-
zero decomposable 3-form on R5. Then Nρ+(τ) consists of two convex, connected components; in
particular, it is not ample.
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Proof. Let τ ∈ ⋀3Co−P (R5)∗. Then StabGL+(5;R)(τ) is connected by Proposition 7.1.14 and:

T −1ρ+ (Tρ+ [G̃r5,gen(R6)]) = {G̃r5,gen (R6)}

by the above discussion. Since ρ+ admits the orientation-reversing automorphism:

e1 ↔ e4, e2 ↔ e5, e3 ↔ e6

it follows from Proposition 7.4.4 that Nρ+(τ) is ample.
Now let τ be a non-zero, decomposable 3-form. Identify R5 with the subspace ⟨e2, ..., e6⟩ of R6

and take τ = θ456. Then:

Nρ+(τ) = {ω ∈⋀2⟨θ2, ..., θ6⟩ ∣ θ1 ∧ ω + θ456 ∈⋀3
+ (R6)∗} .

Recall that a 3-form ρ ∈ ⋀3 (R6)∗ is of SL(3;R)2-type if and only if the quadratic invariant Λ defined
in §2.3.1 is positive. A direct calculation shows that:

Λ(θ1 ∧ ω + θ456) = ω(e2, e3)2 ⋅ (θ123456)⊗2.

Thus:
Nρ+(τ) = {ω ∈⋀2⟨θ2, ..., θ6⟩ ∣ ω(e2, e3) ≠ 0} ,

which has the form claimed.

8.2 Defining an avoidance template for Rρ+(a)
The remainder of this chapter is devoted to proving:

Theorem 8.2.1. SL(3;R)2 3-forms satisfy the relative h-principle.

Recall from Lemma 7.3.3 that in order to prove Theorem 8.2.1, it suffices to show that for all
oriented 6-manifolds M, q ⩾ 0 and continuous maps a ∶ Dq → Ω3(M), the fibred differential relation
Rρ+(a) over M satisfies the relative h-principle. Since ρ+ is not ample, by Proposition 7.3.5 the
relation Rρ+(a) is not ample, and thus convex integration cannot be used to establish the h-principle
for Rρ+(a). Instead, I employ Theorem 2.5.10. Therefore, to prove Theorem 8.2.1, it suffices to show
the existence of an avoidance template for Rρ+(a). The aim of this section, therefore, is to define an
avoidance template A for Rρ+(a) and prove that it satisfies conditions (1)–(3) in Definition 2.5.9.

Definition 8.2.2. Let ρ ∈ ⋀3+ (R6)∗ be an SL(3;R)2 3-form and let {B1, ...,Bk} ∈ Gr
(k)
5 (R

6) be
a configuration of hyperplanes in R6. Say that {B1, ...,Bk} is generic with respect to ρ if for all
i ∈ {1, ..., k}: Bi ∈ Gr5,gen(R6) and if for all distinct i, j ∈ {1, ..., k}, at least one of the conditions:

Bi ∩E+,ρ ≠ Bj ∩E+,ρ or Bi ∩E−,ρ ≠ Bj ∩E−,ρ holds.
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Write Gr
(∞)
5,gen(R

6)ρ for the collection of all generic configurations of hyperplanes in R6 with respect
to ρ, or simply Gr

(∞)
5,gen(R

6), when ρ is clear from context. (Note that formally Gr
(1)
5,gen (R

6) =
Gr5,gen (R6).)

The appellation ‘generic’ is justified by the following proposition:

Proposition 8.2.3. Let ρ ∈ ⋀3+ (R6)∗ be an SL(3;R)2 3-form. Then:

Gr
(∞)
5,gen(R

6) ⊂ Gr
(∞)
5 (R6)

is an open and dense subset.

Proof. Recall from above that Gr5,gen (R6) ⊂ Gr5 (R6) is open and dense. Thus it is equivalent to
prove that Gr

(k)
5,gen(R

6) ⊂ Gr
(k)
5 (R

6) is open and dense for every k ⩾ 2.
Fix k ⩾ 2 and recall the open, dense subset:

̃k

∏
1

Gr5(R6) = {(B1, ...,Bk) ∈
k

∏
1

Gr5(R6) ∣ for all i ≠ j: Bi ≠ Bj} ⊂
k

∏
1

Gr5(R6),

whose complement (∏k1 Gr5(R6))
sing

is a stratified submanifold of codimension 5 in the space∏k1 Gr5(R6).

Define G ⊂ ̃∏k1 Gr5(R6) ⊂∏k1 Gr5(R6) by:

G = {(B1, ...,Bk) ∈
k

∏
1

Gr5,gen(R6) ∣ for all i ≠ j: Bi ∩E+ ≠ Bj ∩E+ or Bi ∩E− ≠ Bj ∩E−} .

Then G is precisely the preimage of Gr
(k)
5,gen (R

6) under the quotient map:

̃k

∏
1

Gr5 (R6)→
̃∏k1 Gr5 (R6)/Symk

≅ Gr
(k)
5 (R

6) .

Since the quotient is open and surjective, to prove Proposition 8.2.3 it suffices to prove that G ⊂
∏k1 Gr5(R6) is open and dense, or equivalently that G ⊂ ∏k1 Gr5,gen(R6) is open and dense (since
∏k1 Gr5,gen(R6) ⊂∏k1 Gr5(R6) is also open and dense).

To this end, note that there is an inclusion:

k

∏
1

Gr5,gen(R6)/G ⊂ {(B1, ...,Bk) ∈
k

∏
1

Gr5,gen(R6) ∣ for some i ≠ j: Bi ∩E+ = Bj ∩E+} = S.

(8.2.4)
However S is a stratified submanifold of ∏k1 Gr5,gen(R6) of codimension 2. Indeed, there is a

SL(3;R)2-equivariant map:
∩+ ∶ Gr5,gen(R6) Gr2(E+)

B B ∩E+

which is submersive since SL(3;R)2 acts transitively on Gr2(E+). Taking the Cartesian product
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yields a submersion:
k

∏
1

∩+ ∶
k

∏
1

Gr5,gen(R6)→
k

∏
1

Gr2(E+).

By definition:

S = (
k

∏
1

∩+)
−1

(
k

∏
1

Gr2(E+))
sing

.

From §2.5.2, the set (∏k1 Gr2(E+))sing ⊂ ∏
k
1 Gr2(E+) is a stratified submanifold of codimension

dimGr2(E+) = 2. Using the Preimage Theorem (which applies equally well to stratified submanifolds;
see e.g. [42, p. 17]) it follows that S is a stratified submanifold of codimension 2. The openness and
density of G in ∏k1 Gr5,gen(R6) now follows from eqn. (8.2.4), completing the proof.

Definition 8.2.5. Let M be an oriented 6-manifold, fix q ⩾ 0 and let a ∶Dq → Ω3(M) be a continuous
map. Define:

A = {[(s, T ), (s,Ξ)] ∈Rρ+(a) ×(Dq×M) Gr
(∞)
5 (TMDq) ∣ Ξ ∈ Gr

(∞)
5,gen(TM)D(T )+a(s)} .

Proposition 8.2.6. A is a pre-template for Rρ+(a). Moreover, for each s ∈ Dq, x ∈ M and
(s, T ) ∈Rρ+(a)(s,x):

A (s, T ) ⊂ Gr
(∞)
5 (TxM)

is a(n open and) dense subset.

Proof. It is clear that A ⊂ Rρ+(a) ×(Dq×M) Gr
(∞)
5 (TMDq) is open, since for ρ ∈ ⋀3+ (R6)∗ and

Ξ ∈ Gr
(∞)
5 (R6), the condition Ξ ∈ Gr

(∞)
5,gen(R

6)ρ is open in both ρ and Ξ. Now fix s ∈ Dq and
x ∈ M, consider Ξ′ ⊆ Ξ ∈ Gr

(∞)
5 (TxM) and suppose T ∈ A (s,Ξ) ⊆ E(1)x . Write ρ = D(T ) + a(s).

Then Ξ ∈ Gr
(∞)
5 (TxM)ρ,gen and so since Ξ′ ⊆ Ξ, it follows that Ξ′ ∈ Gr

(∞)
5,gen(TxM)ρ and hence that

T ∈ A (s,Ξ′). Thus A (s,Ξ) ⊆ A (s,Ξ′) and hence A is a pre-template for Rρ+(a), as claimed. The
final claim follows immediately from Proposition 8.2.3.

Note that the pre-template A has the form described in the discussion after Definition 2.5.9. Thus
to prove that A is an avoidance template for Rρ+(a), and hence complete the proof of Theorem 8.2.1,
it suffices to prove that for all s ∈ Dq, x ∈ M, Ξ ∈ Gr

(∞)
5 (TxM), B ∈ Ξ, λ ∈ Hom(B,⋀2T∗xM) and

e ∈ ⋀2T∗xM, the subset:
A ′(s,Ξ) ∩Π(B, λ) ⊆ Π(B, λ)

is ample. Fix B ∈ Ξ, choose an orientation on B, fix an oriented splitting TxM = L ⊕ B and choose
an oriented generator θ of the 1-dimensional oriented vector space Ann(B) ⊂ T∗xM. Then there is an
isomorphism:

B∗ ⊕⋀2B∗ ⊕ (B∗ ⊗⋀2T∗xM) T∗xM⊗⋀2T∗xM

α⊕ ν ⊕ λ θ ⊗ (θ ∧ α + ν) + λ.
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Using this identification:
Π(B, λ) ≅ B∗ ×⋀2B∗ × {λ}

and thus:

A ′(s,Ξ) ∩Π(B, λ) ≅ B∗ × {ν ∈⋀2B∗ ∣ θ ∧ ν + ∧(λ) + a(s)∣x ∈ ⋀
3
+T
∗
xM and

Ξ is generic for θ ∧ ν + ∧(λ) + a(s)∣x
} × {λ}.

In particular, the amplitude of A ′(s,Ξ)∩Π(B, λ) depends only on ∧(λ) (for a fixed choice of a).
Thus, writing τ = ∧(λ) + a(s)∣x, the task is to prove that for each τ ∈ ⋀3B∗, the subset:

N (τ ; Ξ,B) = {ν ∈⋀2B∗ ∣ θ ∧ ν + τ ∈⋀3
+T
∗
pM and Ξ is generic for θ ∧ ν + τ} ⊂⋀2B∗

is ample. If this set is empty, the result is trivial, so without loss of generality one may assume that
there exists ν0 ∈ ⋀2B∗ such that ρ = θ ∧ ν0 + τ is an SL(3;R)2 3-form on TpM with respect to which
Ξ is generic. Since N (τ ; Ξ,B) = N (ρ; Ξ,B) + ν0, one sees that to prove Theorem 8.2.1, it suffices to
prove:

Proposition 8.2.7. Let ρ ∈ ⋀3+ (R6) be an SL(3;R)2 3-form, let Ξ ∈ Gr
(∞)
5 (R6) be a generic

configuration of hyperplanes with respect to ρ, let B ∈ Ξ, choose an orientation on B, fix an oriented
splitting R6 = L ⊕ B and choose an oriented generator θ of the 1-dimensional oriented vector space
Ann(B) ⊂ (R6)∗. Define:

N (ρ; Ξ,B) = {ν ∈⋀2B∗ ∣ θ ∧ ν + ρ ∈⋀3
+ (R6)∗ and Ξ is generic for θ ∧ ν + ρ} .

Then N (ρ; Ξ,B) ⊂ ⋀2B∗ is ample.

I begin with an elementary lemma:

Lemma 8.2.8. Let X be a connected topological space and let Y ⊂ X have empty interior. Suppose
that for every y ∈ Y , there exists an open neighbourhood Uy of y in X such that Uy/Y is connected.
Then X/Y is connected.

Proof. The proof is a simple exercise in point-set topology. Suppose that A,B ⊆ X/Y are open,
disjoint subsets such that X/Y = A ∪ B. For each y ∈ Y , since Uy/Y is connected, it follows that
either:

Uy/Y ⊆ A or Uy/Y ⊆ B. (8.2.9)

Thus define:
A′ = A ∪ {y ∈ Y ∣

there exists some open neighbourhood
Wy of y in X such that Wy/Y ⊆ A

} (8.2.10)

and let B′ be defined analogously. Then by eqn. (8.2.9), clearly A′ ∪B′ = A ∪B ∪ Y =X. Next, note
that A′ ⊆ X is open. Indeed, since A ⊆ X/Y is open, there exists an open subset O ⊆ X such that
A = O ∩ (X/Y ). Then clearly every y ∈ O ∩ Y also lies in A′ (just take Wy = O) so A ⊆ O ⊆ A′. Now
let y ∈ Y ∩ A′ and let Wy be as in eqn. (8.2.10). Then every y′ ∈ Wy ∩ Y also lies in A′ (just take
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Wy′ =Wy) and so y ∈Wy ⊆ A′. Thus:

A′ ⊆ O ∪ ⋃
y∈Y ∩A′

Wy ⊆ A′,

hence equality holds, and whence A′ is open. Similarly B′ ⊆X is also open.
Now suppose there exists y ∈ A′ ∩B′. Then clearly y ∈ Y (since A′ ∩B′ ∩ (X/Y ) = A ∩B = ∅).

By definition, there exist neighbourhoods Wy and W ′
y of y in X such that Wy/Y ⊆ A and W ′

y/Y ⊆ B.
Then:

(Wy ∩W ′
y) ∩ (X/Y ) ⊆ A ∩B = ∅,

which contradicts the density of X/Y (since Wy ∩W ′
y is an open neighbourhood of y in X). Thus

A′ ∩ B′ = ∅. Since X is connected, it follows that one of A′ and B′ must be empty, and hence so
must one of A and B.

Now let A be an affine space and X ⊆ A an open subset. I term a subset Y ⊂ X macilent if
it is closed and if, for every point y ∈ Y , there exists an open neighbourhood Uy of y in X and a
submanifold Sy ⊂ Uy of codimension at least 2 such that:

Y ∩Uy ⊆ Sy. (8.2.11)

Say that a subset Y ⊂X is scarce if it is a finite union of macilent subspaces.

Lemma 8.2.12. Let X ⊆ A be open and path-connected, and suppose that Conv(X) = A. Let Y ⊂X
be scarce. Then X/Y is path-connected and Conv(X/Y ) = A. In particular, if X ′ ⊆ A is open and
ample and Y ′ ⊂X ′ is scarce, then X ′/Y ′ is open and ample.

Remark 8.2.13. A related result concerning so-called ‘thin’ sets was stated without proof in [42,
§18.1], however to the author’s knowledge, the formulation used in this paper cannot be found in the
literature.

Proof. Begin with the first statement. By writing Y as the union of n macilent subsets and inducting
on n, without loss of generality assume that Y is macilent. Since Sy has codimension at least 2 in
Uy, it follows that Y has empty interior in X and that Uy/Sy is connected for all y ∈ Y . But Uy/Sy
is dense in Uy, hence certainly dense in Uy/Y and whence Uy/Y is also connected for all y ∈ Y . It
follows from Lemma 8.2.8 that X/Y is connected. Since X/Y is open in X and X is open in A, it
follows that X/Y is also locally path-connected and hence it is path-connected, as claimed. To see
that Conv(X/Y ) = A, note that for each y ∈ Y , by eqn. (8.2.11):

y ∈ Conv(Uy/Y ) ⊆ Conv(X/Y )

and hence:
Conv(X/Y ) = Conv(X) = A,
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as required. The final claim now follows by applying the above result to each path-component of X ′.

Now return to Proposition 8.2.7. The proof of this result is broken into two stages. Firstly, define
the larger set:

N (ρ; Ξ,B)1 = {ν ∈⋀2B∗ ∣ θ ∧ ν + ρ ∈⋀3
+ (R6)∗} ⊂⋀2B∗.

Since Ξ is generic for ρ and B ∈ Ξ, it follows that τ = ρ∣B is a co-pseudoplectic form on B. Noting that
N (ρ; Ξ,B)1 is just a translated copy ofNρ+(τ), by Proposition 8.1.2 it follows thatN (ρ; Ξ,B)1 ⊂ ⋀2B∗

is ample.
Next, for each B′ ∈ Ξ, define a closed subset ΣB′ ⊂ N (ρ; Ξ,B)1 by:

ΣB′ = {ν ∈ N (ρ; Ξ,B)1 ∣ B
′ is not generic for θ ∧ ν + ρ}

and define:
N (ρ; Ξ,B)2 = N (ρ; Ξ,B)1/ ⋃

B′ ∈ Ξ
ΣB′ .

Explicitly:

N (ρ; Ξ,B)2 = {ν ∈⋀2B∗ ∣ θ ∧ ν + ρ ∈⋀3
+ (R6)∗ and every B′ ∈ Ξ is generic for θ ∧ ν + ρ} .

Finally, for each pair {B′,B′′} ⊆ Ξ define a closed subset Σ{B′,B′′} ⊂ N (ρ; Ξ,B)2 by:

Σ{B′,B′′} = {ν ∈ N (ρ; Ξ,B)2 ∣ B
′ ∩E±,θ∧ν+ρ = B′′ ∩E±,θ∧ν+ρ} .

Then:
N (ρ; Ξ,B) = N (ρ; Ξ,B)2/ ⋃

{B′,B′′} ⊆ Ξ
Σ{B′,B′′} .

By applying Lemma 8.2.12 twice, to prove Proposition 8.2.7, it suffices to prove the following two
lemmas:

Lemma 8.2.14. For all B′ ∈ Ξ, the subset ΣB′ ⊂ N (ρ; Ξ,B)1 is scarce.

Lemma 8.2.15. For all {B′,B′′} ⊆ Ξ, the subset Σ{B′,B′′} ⊂ N (ρ; Ξ,B)2 is scarce.

8.3 A preparatory result: computing the derivatives of the
maps E±

Given ρ ∈ ⋀3+ (R6)∗, recall that there is a decomposition R6 = E+,ρ ⊕ E−,ρ. Thus, there is also a
decomposition:

⋀p (R6)∗ ≅ ⊕
r+s=p

⋀rE∗+,ρ ⊗⋀sE∗−,ρ = ⊕
r+s=p

⋀r,s (R6)∗ .
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Define SL(3;R)2-equivariant isomorphisms κ+ρ ∶ ⋀2,0 (R6)∗ → E+,ρ and κ−ρ ∶ ⋀0,2 (R6)∗ → E−,ρ as the
inverses to the maps:

E+,ρ ⋀2,0 (R6)∗ and E−,ρ ⋀0,2 (R6)∗ respectively.
w w ⌟ (ρ∣E+,ρ) w w ⌟ (ρ∣E−,ρ)

Proposition 8.3.1. Consider the smooth maps:

E± ∶ ⋀3+ (R6)∗ Gr3 (R6)

ρ E±,ρ.

Fix ρ ∈ ⋀3+ (R6)∗. Then:

DE+∣ρ ∶ ⋀3 (R6)∗ (E+,ρ)∗ ⊗E−,ρ ≅ Hom(E+,ρ,E−,ρ)

α −(Id⊗κ−ρ)(π1,2(α))

and
DE−∣ρ ∶ ⋀3 (R6)∗ E+,ρ ⊗ (E−,ρ)∗ ≅ Hom(E−,ρ,E+,ρ)

α (κ+ρ ⊗ Id)(π2,1(α))

respectively, where πr,s denotes the projection onto forms of type (r, s).

Proof. Start with the first statement. Since ⋀3+ (R6)∗ ⊂ ⋀3 (R6)∗ is open, one has Tρ⋀3+ (R6)∗ =
⋀3 (R6)∗. Likewise, the decomposition R6 = E+,ρ ⊕ E−,ρ yields TE+,ρGr3 (R6) ≅ Hom(E+,ρ,E−,ρ).
Since the only simple SL(3;R)2-submodule of ⋀3 (R6)∗ which is isomorphic to Hom(E+,ρ,E−,ρ) ≅
(E+,ρ)∗ ⊗E−,ρ is ⋀1,2 (R6)∗, it follows that:

DE+∣ρ(α) = C Id⊗κ−ρ(π1,2(α))

for some constant C.
The value of C may be computed directly. Consider ρ = ρ+ = θ123 + θ456 and write:

ρt = ρ+ + tθ145.

A direct calculation shows that:
E+,ρt = ⟨e1 − te6, e2, e3⟩

so that:
d

dt
E+,ρt ∣

t=0
= −θ1 ⊗ e6.

By comparison:
(Id⊗κ−ρ+)(π1,2(θ

145)) = θ1 ⊗ e6,
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forcing C = −1, as claimed. The calculation of DE−∣ρ is similar.

8.4 Lemma 8.2.14: the scarcity of ΣB′

Recall the subsets:

N (ρ; Ξ,B)1 = {ν ∈⋀2B∗ ∣ θ ∧ ν + ρ ∈⋀3
+ (R6)∗} ⊂⋀2B∗

and:
ΣB′ = {ν ∈ N (ρ; Ξ,B)1 ∣ B

′ is not generic for θ ∧ ν + ρ} .

Lemma 8.4.1.
ΣB = ∅.

Proof. Indeed, let ν ∈ N (ρ; Ξ,B)1, i.e. suppose that θ ∧ ν + ρ is an SL(3;R)2 3-form. Then:

(θ ∧ ν + ρ)∣B = ρ∣B.

Since B is generic for ρ, ρ∣B is a co-pseudoplectic 3-form and thus B must also be generic for θ ∧ ν + ρ
(else (θ ∧ ν + ρ)∣B would be decomposable).

Remark 8.4.2. The above proof also shows that if B is non-generic for ρ (equivalently if ρ∣B is decom-
posable) then it is also non-generic for all θ∧ν+ρ. At first sight, this result seems surprising, since one
expects non-genericity to be destroyed by pertubations. On closer examination, however, the result
is less surprising, since the space of perturbations of ρ of the form θ ∧ ν + ρ is (52) = 10-dimensional,
whereas the space of all perturbations of ρ is instead (63) = 20-dimensional.

Lemma 8.4.3. Let ν ∈ N (ρ; Ξ,B)1 and write:

ρ′ = θ ∧ ν + ρ ∈⋀3
+ (R6)∗ .

Then:
(B ∩E+,ρ)⊕ (B ∩E−,ρ) = (B ∩E+,ρ′)⊕ (B ∩E−,ρ′).

Proof. By applying a suitable orientation-preserving automorphism of R6 one can always assume
that:

ρ = θ123 + θ456 and B = ⟨e1, e2, e4, e5, e3 + e6⟩.

Hence:
(B ∩E+,ρ)⊕ (B ∩E−,ρ) = ⟨e1, e2⟩⊕ ⟨e4, e5⟩ = ⟨e1, e2, e4, e5⟩. (8.4.4)

Now take L = ⟨e3 − e6⟩, θ = θ3 − θ6 and write:

ρ′ = θ123 + θ456 + (θ3 − θ6) ∧ ν.
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Write Iρ′ for the para-complex structure induced by ρ′.

Claim 8.4.5.
Iρ′ (⟨e1, e2, e4, e5⟩) ⊆ ⟨e1, e2, e4, e5⟩.

Proof of Claim. Recall the map:

iρ′ ∶ R6 ⋀5 (R6)∗

v (v ⌟ ρ′) ∧ ρ′.

Then, by the definition of Iρ′ , it is equivalent to prove that:

iρ′ (⟨e1, e2, e4, e5⟩) ⊆ θ36 ∧⋀3 (R6)∗ .

Consider the subgroup SL(2;R)2 ⊂ SL(3;R)2 acting block diagonally on ⟨e1, e2⟩⊕⟨e4, e5⟩ and trivially
on ⟨e3, e6⟩. Clearly SL(2;R)2 preserves ρ, B, L and θ as described above, and acts transitively on the
set of non-zero vectors in both ⟨e1, e2⟩ and ⟨e4, e5⟩. By exploiting this freedom, it suffices to prove:

iρ′(e1), iρ′(e4) ∈ θ36 ∧⋀3 (R6)∗ .

However, a direct calculation shows that:

(e1 ⌟ ρ′) ∧ ρ′ = (θ23 − θ3 ∧ (e1 ⌟ ν) + θ6 ∧ (e1 ⌟ ν)) ∧ (θ123 + θ456 + (θ3 − θ6) ∧ ν)

= (θ245 − θ2 ∧ ν + θ12 ∧ (e1 ⌟ ν) + θ45 ∧ (e1 ⌟ ν)) ∧ θ36

while:
(e4 ⌟ ρ′) ∧ ρ′ = (θ56 − θ3 ∧ (e4 ⌟ ν) + θ6 ∧ (e4 ⌟ ν)) ∧ (θ123 + θ456 + (θ3 − θ6) ∧ ν)

= (−θ125 − θ5 ∧ ν + θ45 ∧ (e4 ⌟ ν) + θ12 ∧ (e4 ⌟ ν)) ∧ θ36,

as required.

Using the claim, (Iρ′ ∣⟨e1e2,e4,e5⟩)
2 = Id and thus:

⟨e1, e2, e4, e5⟩ = e+ ⊕ e−

where e± are the ±1-eigenspaces of Iρ′ ∣⟨e1,e2,e4,e5⟩. Since ⟨e1, e2, e4, e5⟩ ⊂ B, it follows that e± ⊆ B∩E±,ρ′
and hence:

⟨e1, e2, e4, e5⟩ = e+ ⊕ e− ⊆ (B ∩E+,ρ′)⊕ (B ∩E−,ρ′) .

However B is generic for ρ′ by Lemma 8.4.1 and hence:

dim [(B ∩E+,ρ′)⊕ (B ∩E−,ρ′)] = 4.
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Therefore (see eqn. (8.4.4)):

(B ∩E+,ρ′)⊕ (B ∩E−,ρ′) = ⟨e1, e2, e4, e5⟩ = (B ∩E+,ρ)⊕ (B ∩E−,ρ),

as required.

Lemma 8.4.6. Let ν ∈ N (ρ; Ξ,B)1 and write ρ′ = θ ∧ ν + ρ ∈ ⋀3+ (R6)∗. Suppose a hyperplane B′ ≠ B
satisfies:

B ∩E+,ρ′ ⊆ B′ ∩E+,ρ′ and B ∩E−,ρ′ ⊆ B′ ∩E−,ρ′ . (8.4.7)

Then eqn. (8.4.7) also holds with respect to ρ, i.e.:

B ∩E+,ρ ⊆ B′ ∩E+,ρ and B ∩E−,ρ ⊆ B′ ∩E−,ρ. (8.4.8)

In particular, {B,B′} is non-generic for ρ.

Proof. Firstly, note that:

B ∩E±,ρ = [(B ∩E+,ρ)⊕ (B ∩E−,ρ)] ∩E±,ρ
= [(B ∩E+,ρ′)⊕ (B ∩E−,ρ′)] ∩E±,ρ by Lemma 8.4.3
⊆ [(B′ ∩E+,ρ′)⊕ (B′ ∩E−,ρ′)] ∩E±,ρ by eqn. (8.4.7)
⊆ B′ ∩E±,ρ,

as required. For the final statement, note that either B′ is non-generic for ρ, or else dim(B′ ∩E+,ρ) =
dim(B′ ∩E−,ρ) = 2 together with eqn. (8.4.8) forces:

B ∩E+,ρ = B′ ∩E+,ρ and B ∩E−,ρ = B′ ∩E−,ρ.

Remark 8.4.9. If both B and B′ are individually generic for ρ, it is clear that {B,B′} is non-generic
for ρ if and only if eqn. (8.4.8) is satisfied.

I now prove Lemma 8.2.14. Recall the statement of the lemma:

Lemma 8.2.14. For all B′ ∈ Ξ, the subset ΣB′ ⊂ N (ρ; Ξ,B)1 is scarce. More precisely, it is either
empty, or the union of two closed submanifolds, each of codimension 3.

Proof. By Lemma 8.4.1, it suffices to consider B′ ≠ B. Consider the maps:

E± ∶ N (ρ; Ξ,B)1 Gr3 (R6)

ν E±,θ∧ν+ρ.
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(Note that, unlike the maps E±, the arguments of the maps E± are 2-forms, and not SL(3;R)2 3-
forms.) Consider the submanifold Gr3(B′) ⊂ Gr3 (R6) and recall that B′ is non-generic for θ ∧ ν + ρ
if and only if either E+(ν) or E−(ν) lies in Gr3(B′). Thus:

ΣB′ = [(E+)
−1

Gr3(B′)] ∪ [(E−)−1Gr3(B′)] .

Claim 8.4.10. The maps E± are transverse to the submanifold Gr3(B′).

Proof. I consider E+, the case of E− being essentially identical. Suppose that ν ∈ N (ρ; Ξ,B)1 sat-
isfies E+(ν) ∈ Gr3(B′). Write ρ′ = θ ∧ ν + ρ and after applying a suitable orientation-preserving
automorphism of R6, one may assume that:

• ρ′ = θ123 + θ456;

• B′ = ⟨e1, e2, e3, e4, e5⟩.

(Note that there is a residual SL(3;R)×SL(2;R) freedom in choosing such an automorphism, acting
diagonally on ⟨e1, e2, e3⟩⊕ ⟨e4, e5⟩ and trivially on ⟨e6⟩, a fact which will be exploited below.) Then
one may identify TE+(ν)Gr3(B′) ≅ Hom(⟨e1, e2, e3⟩, ⟨e4, e5⟩) and moreover:

TE+(ν)Gr3 (R6)/TE+(ν)Gr3(B′) ≅ Hom(⟨e1, e2, e3⟩, ⟨e4, e5, e6⟩)/Hom(⟨e1, e2, e3⟩, ⟨e4, e5⟩)

≅ Hom(⟨e1, e2, e3⟩, ⟨e6⟩).

Next recall that Ann(B) = ⟨θ⟩ and write:

θ =
6

∑
i=1
λiθ

i =
3

∑
i=1
λiθ

i +
5

∑
i=4
λiθ

i + λ6θ6.

By exploiting the residual SL(3;R) × SL(2;R) freedom described above, without loss of generality
one can assume that:

θ = λ1θ1 + λ4θ4 + λ6θ6.

I claim that λ4 ≠ 0. Indeed suppose θ = λ1θ1 + λ6θ6. If λ6 = 0, then E−,ρ′ = ⟨e4, e5, e6⟩ ⊂ Ker(θ) = B,
hence B is non-generic for ρ′ and whence ν ∈ ΣB, contradicting Lemma 8.4.1. Thus λ6 ≠ 0 and:

B ∩E−,ρ′ = ⟨e4, e5⟩ = B′ ∩E−,ρ′ .

However, since E+,ρ′ ⊂ B′, one trivially has that B ∩E+,ρ′ ⊂ B′ ∩E+,ρ′ . Thus using Lemma 8.4.6, the
pair {B,B′} ⊆ Ξ is not generic for ρ, which contradicts the assumption that Ξ is generic for ρ. Thus
λ4 ≠ 0, as claimed.

Finally, note that TνN (ρ; Ξ,B)1 = ⋀2B∗ sinceN (ρ; Ξ,B)1 ⊂ ⋀2B∗ is open (since SL(3;R)2 3-forms
are stable). Choose νi ∈ ⋀2B∗ for i = 1,2,3 such that:

θ ∧ νi = θ ∧ θi5.
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(Such νi exists, since (θ ∧ θi5)∣B = 0.) Then:

DE+∣ρ′(νi) = − Id⊗κ−ρ′(π1,2(θ ∧ θi5))

= λ4θi ⊗ e6 − λ6θi ⊗ e4

which projects to the element λ4θi ⊗ e6 in Hom(⟨e1, e2, e3⟩, ⟨e6⟩) ≅ TE+(ν)Gr3 (R6)/TE+(ν)Gr3(B′) .
Since λ4 ≠ 0, this proves the surjectivity of the composite:

⋀2B∗ TE+(ν)Gr3 (R6) TE+(ν)Gr3 (R6)/TE+(ν)Gr3(B′) .
DE+∣ν

Thus E+ is transverse to Gr3(B′).

Resuming the main proof, since Gr3(B′) is closed and has codimension 9 − 6 = 3 in Gr3 (R6), by
Claim 8.4.10 it follows that the submanifolds (E+)−1Gr3(B′) and (E−)−1Gr3(B′) of N (ρ; Ξ,B)1 are
closed and each have codimension 3, and hence:

ΣB′ = (E+)
−1

Gr3(B′) ∪ (E−)−1Gr3(B′)

is scarce. This completes the proof.

8.5 Lemma 8.2.15: the scarcity of Σ{B′,B′′}
Recall the set:

N (ρ; Ξ,B)2 = {ν ∈⋀2B∗ ∣ θ ∧ ν + ρ ∈⋀3
+ (R6)∗ and every B′ ∈ Ξ is generic for θ ∧ ν + ρ} .

For each {B′,B′′} ⊆ Ξ, recall further the subset Σ{B′,B′′} ⊂ N (ρ; Ξ,B)2 defined by:

Σ{B′,B′′} = {ν ∈ N (ρ; Ξ,B)2 ∣ B
′ ∩E±,θ∧ν+ρ = B′′ ∩E±,θ∧ν+ρ} .

Lemma 8.5.1. For all {B,B′} ⊆ Ξ:
Σ{B,B′} = ∅.

Proof. Suppose ν ∈ Σ{B,B′} and write ρ′ = θ ∧ ν + ρ ∈ ⋀3+ (R6)∗. Then:

B ∩E±,ρ′ = B′ ∩E±,ρ′ .

Applying Lemma 8.4.6, it follows that {B,B′} ⊆ Ξ is not generic for ρ, contradicting the fact that Ξ

is generic for ρ. Thus Σ{B,B′} = ∅ for all {B,B′} ⊆ Ξ.
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Now suppose that B′ ≠ B ≠ B′′. Define three new closed subsets of Σ{B′,B′′} by:

Σ+B′ = {ν ∈ Σ{B′,B′′} ∣ B
′ ∩E+,θ∧ν+ρ = B ∩E+,θ∧ν+ρ}

Σ−B′ = {ν ∈ Σ{B′,B′′} ∣ B
′ ∩E−,θ∧ν+ρ = B ∩E−,θ∧ν+ρ}

Σ′{B′,B′′} = {ν ∈ Σ{B′,B′′} ∣ B
′ ∩E±,θ∧ν+ρ ≠ B ∩E±,θ∧ν+ρ} .

Then clearly:
Σ{B′,B′′} = Σ

+
B′ ∪Σ

−
B′ ∪Σ

′
{B′,B′′}. (8.5.2)

Lemma 8.5.3. Let {B′,B′′} ⊆ Ξ satisfy B′ ≠ B ≠ B′′. Then Σ±B′ ⊂ N (ρ; Ξ,B)2 are both macilent.

Proof. Write C = B ∩ B′, a 4-dimensional subspace of R6 (since B ≠ B′). Using C, one may stratify
the manifold Gr3 (R6) as:

Gr3 (R6) = Σ1 ∪Σ2 ∪Σ3

where:
Σi = {E ∈ Gr3 (R6) ∣ dim(C ∩E) = i}.

Explicitly, Σ1 is the open and dense subset of 3-planes intersecting C transversally, while Σ3 = Gr3(C).
To understand the submanifold structure on Σ2, it is useful to describe its tangent space as a subspace
of the tangent space of Gr3 (R6). Specifically, fix E ∈ Σ2 and write E = E ∩ C. Choose splittings:

E = E2 ⊕L1, C = E2 ⊕ F2 and R6 = E2 ⊕L1 ⊕ F2 ⊕K1, (8.5.4)

where the superscripts denote the dimension of the respective subspaces. Then, TEGr3 (R6) may be
identified with the space:

Hom(E⊕L,F⊕K) ≅ Hom(E,F)⊕Hom(E,K)⊕Hom(L,F)⊕Hom(L,K).

Using this description, TEΣ2 is given by the subspace:

TEΣ2 = Hom(E,F)⊕Hom(L,F)⊕Hom(L,K),

and hence TEGr3 (R6)/TEΣ2
may be identified with:

TEGr3 (R6)/TEΣ2
≅ Hom(E,K).

In particular, the codimension of Σ2 in Gr3 (R6) is dimHom(E,K) = 2.
Now consider the smooth maps:

E± ∶ N (ρ; Ξ,B)2 Gr3 (R6)

ν E±,θ∧ν+ρ.
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Since C = B ∩B′, one has:

E+(ν) ∩ C = (E+(ν) ∩B) ∩ (E+(ν) ∩B′) .

Since both E+(ν)∩B and E+(ν)∩B′ are 2-dimensional, it follows that dimE+(ν)∩C ⩽ 2, with equality
if and only if E+(ν) ∩B = E+(ν) ∩B′. Thus E+ (N (ρ; Ξ,B)2) ⊆ Σ1 ∪Σ2 and:

Σ+B′ ⊆ (E+)
−1 (Σ2).

Likewise Σ−B′ ⊆ (E−)
−1 (Σ2). Therefore (since Σ±B′ are both closed) to prove that Σ±B′ are macilent,

it suffices to prove that for all ν ∈ Σ±B′ , the maps E± respectively are transversal to the submanifold
Σ2 ⊂ Gr3 (R6) at ν. (Note that I do not claim E± are transverse to Σ2 at all points of (E±)−1 (Σ2)
and thus I do not claim that (E±)−1 (Σ2) themselves are submanifolds of N (ρ; Ξ,B)2. The fact
that E± are transverse to Σ2 at (and hence also near) each point of Σ±B′ shows that (E±)−1 (Σ2) are
submanifolds of codimension 2 near each point of Σ±B′ , which is sufficient to establish the macilence
of Σ±B′ .)

Firstly consider the case of Σ−B′ . Let ν ∈ Σ−B′ and define ρ′ = θ ∧ ν + ρ ∈ ⋀3+ (R6)∗. After applying
a suitable orientation-preserving automorphism of R6, one may assume that:

ρ′ = θ123 + θ456 and B = ⟨e1, e2, e4, e5, e3 + e6⟩.

Since ν ∈ Σ−B′ one has B′ ∩ E−,ρ′ = B ∩ E−,ρ′ = ⟨e4, e5⟩. If additionally B′ ∩ E+,ρ′ = B ∩ E+,ρ′ , then
ν ∈ Σ{B,B′}, contradicting Lemma 8.5.1. Thus B′∩E+,ρ′ and B∩E+,ρ′ intersect along a 1-dimensional
subspace of B ∩ E+,ρ′ = ⟨e1, e2⟩ which, by applying a suitable SL(2;R) symmetry to the subspace
⟨e1, e2⟩, can be taken to be ⟨e1⟩. Therefore B′ ∩E+,ρ′ = ⟨e1, λe2 + e3⟩ for some λ ∈ R. Now consider
F ∈ SL(3;R)2 given by:

(e1, e2, e3, e4, e5, e6)↦ (e1, e2, e3 − λe2, e4, e5, e6).

Then F preserves ρ′ and B (and hence B′ ∩E−,ρ′ = B ∩E−,ρ′) and maps:

⟨e1, λe2 + e3⟩↦ ⟨e1, e3⟩.

Thus without loss of generality one can take B′ ∩E+,ρ′ = ⟨e1, e3⟩. Therefore:

B′ = ⟨e1, e3, e4, e5, µe2 + νe6⟩

for some µ, ν ∈ R. Note that µ ≠ 0 (as else E−,ρ′ ⊂ B′ and so B′ is non-generic for ρ′, contradicting
ν ∈ N (ρ; Ξ,B)2) and similarly ν ≠ 0 (as else E+,ρ′ ⊂ B′). Thus, by rescaling µ and ν, one may assume
without loss of generality that ν = 1. Now consider G ∈ SL(3;R)2 given by:

G ∶ (e1, e2, e3, e4, e5, e6)↦ (µe1, µ−1e2, e3, e4, e5, e6).
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Then G preserves ρ′, B and preserves B′ ∩E+,ρ′ = ⟨e1, e3⟩ and maps:

⟨e1, e3, e4, e5, µe2 + e6⟩↦ ⟨µ−1e1, e3, e4, e5, e2 + e6⟩ = ⟨e1, e3, e4, e5, e2 + e6⟩.

Thus without loss of generality one can take B′ = ⟨e1, e3, e4, e5, e2 + e6⟩ and thus:

B ∩B′ = ⟨e1, e4, e5, e2 + e3 + e6⟩.

One can then choose:

E = ⟨e4, e5⟩, L = ⟨e6⟩, F = ⟨e1, e2 + e3 + e6⟩ and K = ⟨e2 − e3⟩.

Note that θ = θ3 − θ6 (up to rescaling).
The proof now proceeds by direct calculation. Choose ν1, ν2 ∈ ⋀2B∗ such that:

θ ∧ ν1 = θ ∧ θ14 and θ ∧ ν2 = θ ∧ θ15.

(Such νi exists, since (θ ∧ θ14)∣B = (θ ∧ θ15)∣B = 0.) Using the identification:

TE−,ρ′Gr3 (R6) ≅ Hom (E−,ρ′ ,E+,ρ′) = Hom (⟨e4, e5, e6⟩, ⟨e1, e2, e3⟩) (8.5.5)

and using Proposition 8.3.1, one computes that:

DE−∣ν(ν1) = κ+ρ ⊗ Id(π2,1[(θ3 − θ6) ∧ θ14])

= θ4 ⊗ e2

and:
DE−∣ν(ν2) = κ+ρ ⊗ Id(π2,1[(θ3 − θ6) ∧ θ15])

= θ5 ⊗ e2.

Replacing the identification in eqn. (8.5.5) with the identification:

TE−,ρ′Gr3 (R6) = Hom(E⊕L,F⊕K) = Hom(⟨e4, e5, e6⟩, ⟨e1, e2 − e3, e2 + e3 + e6⟩)

the above results become:

DE−∣ν(ν1) = θ4 ⊗ (e2 +
1

2
e6) and DE−∣ν(ν2) = θ5 ⊗ (e2 +

1

2
e6)

and hence:
DE− (TνN (ρ; Ξ,B)2) ⊇ Hom(⟨e4, e5⟩, ⟨e2 +

1

2
e6⟩) .

Thus:
DE− (TνN (ρ; Ξ,B)2) +TE−,ρ′Σ2 ⊇ Hom(⟨e4, e5⟩, ⟨e2 +

1

2
e6⟩) +Hom(E,F)

+Hom(L,F) +Hom(L,K).
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Substituting the formulae for Hom(E,F), Hom(L,F) and Hom(L,K), it follows that:

DE− (TνN (ρ; Ξ,B)2) +TE−,ρ′Σ2 ⊇ Hom(⟨e4, e5, e6⟩, ⟨e1, e2 − e3, e2 + e3 + e6⟩) = TE−,ρ′Gr3 (R6) .

Thus E− is transverse to Σ2 as required.

The case of Σ+B′ is analogous. In a similar fashion to above, one argues that without loss of
generality:

ρ′ = θ123 + θ456, B = ⟨e1, e2, e4, e5, e3 + e6⟩, B′ = ⟨e1, e2, e4, e6, e3 + e5⟩ and θ = θ3 − θ6,

takes:
E = ⟨e1, e2⟩, L = ⟨e3⟩, F = ⟨e4, e3 + e5 + e6⟩ and K = ⟨e5 − e6⟩

and identifies:

TE+,ρ′Gr3 (R6) = Hom(E⊕L,F⊕K) = Hom(⟨e1, e2, e3⟩, ⟨e4, e5 − e6, e3 + e5 + e6⟩).

By considering the derivative in the θ14 and θ24 directions, one verifies that:

DE+ (TνN (ρ; Ξ,B)2) ⊇ Hom(⟨e1, e2⟩, ⟨
1

2
e3 + e5⟩)

from which the result follows.

Lemma 8.5.6. Let {B′,B′′} ⊆ Ξ satisfy B′ ≠ B ≠ B′′. Then Σ′{B′,B′′} ⊂ N (ρ; Ξ,B)2 is macilent.

Proof. Since B′ ≠ B′′, defining C′ = B′ ∩ B′′ one finds that once again C′ ⊂ R6 is 4-dimensional and
induces a stratification:

Gr3 (R6) = Σ′1 ∪Σ′2 ∪Σ′3

where:
Σ′i = {E ∈ Gr3 (R6) ∣ dim(C′ ∩E) = i}.

Consider the map:
E+ ∶ N (ρ; Ξ,B)2 Gr3 (R6)

ν E+,θ∧ν+ρ.

Since C′ = B′ ∩B′′, one has:

E+(ν) ∩ C′ = (E+(ν) ∩B′) ∩ (E+(ν) ∩B′′) . (8.5.7)

Since both E+(ν) ∩ B′ and E+(ν) ∩ B′′ are 2-dimensional, it follows that dimE+(ν) ∩ C′ ⩽ 2, with
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equality if and only if E+(ν) ∩B′ = E+(ν) ∩B′′. Thus E+ (N (ρ; Ξ,B)2) ⊆ Σ1 ∪Σ2 and:

Σ′{B′,B′′} ⊆ (E+)
−1 (Σ2).

(Likewise Σ′{B′,B′′} ⊆ (E−)
−1 (Σ2), a fact which will prove useful below.) Since Σ′2 has codimension

2 in Gr3 (R6), to complete the proof of the thinness of Σ′{B′,B′′}, it suffices to prove the following
claim:

Claim 8.5.8. For all ν ∈ Σ′{B′,B′′}, the map E+ is transverse to the submanifold Σ′2 ⊂ Gr3 (R6) at ν.

(Again, it is not claimed that E+ is transverse to Σ′2 at all points of (E+)−1 (Σ′2).)

Proof of Claim. Suppose that ν ∈ Σ′{B′,B′′} and write ρ′ = θ ∧ ν + ρ. After applying a suitable
orientation-preserving automorphism of R6, one may assume that ρ′ = θ123+θ456, B = ⟨e1, e2, e4, e5, e3+
e6⟩ and θ = θ3 − θ6. Recall from eqn. (8.5.7) that:

E±,ρ′ ∩ C′ = E±,ρ′ ∩B′ = E±,ρ′ ∩B′′.

Hence by definition of Σ′{B′,B′′}, since ν ∈ Σ′{B′,B′′}, it follows that E±,ρ′ ∩ C′ ≠ B ∩ E±,ρ′ for both
‘+’ and ‘−’. Therefore E+,ρ′ ∩C′ must intersect B∩E+,ρ′ = ⟨e1, e2⟩ in a 1-dimensional subspace, which
without loss of generality may be taken to be ⟨e1⟩. Thus:

E+,ρ′ ∩ C′ = ⟨e1, λe2 + e3⟩ for some λ ∈ R.

Analogously, one can assume without loss of generality that:

E−,ρ′ ∩ C′ = ⟨e4, µe5 + e6⟩ for some µ ∈ R.

Since C′ is itself 4-dimensional, it follows that:

C′ = ⟨e1, λe2 + e3, e4, µe5 + e6⟩.

Thus, using notation analogous to eqn. (8.5.4), one has:

E′ = E+(ν) ∩ C′ = ⟨e1, λe2 + e3⟩

and one may then choose L′,F′,K′ as:

L′ = ⟨e2⟩, F′ = ⟨e4, µe5 + e6⟩ and K′ = ⟨e5⟩.

Now choose ν1, ν2 ∈ ⋀2B∗ such that:

θ ∧ ν1 = θ ∧ θ46 and θ ∧ ν2 = θ ∧ θ14.
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(Such νi exists, since (θ ∧ θ46)∣B = (θ ∧ θ14)∣B = 0.) Now compute:

DE+∣ρ′(θ ∧ ν1) = − Id⊗κ−ρ′(π1,2((θ3 − θ6) ∧ θ46))

= θ3 ⊗ e5

while:
DE+∣ρ′(θ ∧ ν) = − id⊗κ−ρ′(π1,2((θ3 − θ6) ∧ θ14))

= −θ1 ⊗ e5.

Thus:
DE+ (TνN (ρ; Ξ,B)2) ⊇ Hom(⟨e1, e3⟩, ⟨e5⟩)

and thus:

DE+ (TνN (ρ; Ξ,B)2) +TE+,ρ′Σ2 ⊇ Hom(⟨e1, e3⟩, ⟨e5⟩)⊕Hom(E′,F)

⊕Hom(L′,F′)⊕Hom(L′,K′)

= Hom(⟨e1, e2, e3⟩, ⟨e4, e5, e6⟩) = TE+,ρ′Gr3 (R6) ,

which is the required statement of transversality, completing the proof of the claim and hence of
Lemma 8.5.6.

Thus Σ{B′,B′′} is the union of three macilent subsets of N (ρ; Ξ,B)2, and hence is scarce. This
completes the proof of Lemma 8.2.15 and hence of Theorem 8.2.1.
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Chapter 9

Topological properties of closed G̃2, SL(3;C) and
SL(3;R)2 forms on manifolds

This chapter uses characteristic classes and obstruction theory, together with the h-principles for
G̃2 and SL(3;R)2 forms established in Chapters 7, 8, to prove various theorems on the topological
properties of closed G̃2, SL(3;C) and SL(3;R)2 forms on oriented 6- and 7-manifolds. Results
obtained include a criterion for an arbitrary oriented 7-manifold to admit a closed G̃2-structure (in the
process, proving a conjecture of Lê), a generalisation of Donaldson’s ‘G2-cobordisms’ to G̃2, SL(3;C)
and SL(3;R)2 forms, and a complete classification of closed SL(3;C) 3-forms up to homotopy. A
lower bound on the number of homotopy classes of closed SL(3;R)2 3-forms on a given manifold is
also obtained.

9.1 A vanishing result for natural cohomology classes

The aim of this section is to prove the following result:

Lemma 9.1.1. Suppose there is an assignment to each n-manifold M (with, possibly empty, boundary)
of a degree p cohomology class ν(M) ∈ Hp (M;G), where G is either a field or a finite Abelian group,
which is natural, in the sense that for each embedding f ∶M↪M′ of n-manifolds with boundary:

ν(M) = f∗ν(M′).

Then if ν vanishes on every closed (resp. closed, oriented) n-manifold, it vanishes on every (resp.
every oriented) n-manifold with boundary.

Examples of such classes ν are any cohomology class which is constructed only from Stiefel–
Whitney classes, or only from the reduction of the Chern, Pontryagin and Euler classes to real
coefficients. More generally, for any cohomology operation Θ ∶ Hp (−;G) → Hq (−;G′) (see [65, p.
448]), if ν(M) ∈ Hp (M;G) is natural, then Θ ○ν(M) ∈ Hq (M;G′) is also natural. Note also that only
the case G = Z/2Z will be used in this chapter, however I allow more general G in Lemma 9.1.1 since
the proof for all such G is essentially the same.
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Proof of Lemma 9.1.1. By assumption ν(M) = 0 for all closed (resp. closed, oriented) n-manifolds
M. The proof proceeds by considering three cases of increasing generality.

Case 1: M is compact with boundary. Consider the double DM =M∪∂MM formed by gluing
M to a second copy of itself M (now with the opposite orientation, if appropriate) along the boundary
∂M. Then DM is a closed (resp. closed, oriented) n-manifold and thus ν(DM) = 0, by assumption.
Writing ι ∶M↪ DM for the natural inclusion, the naturality of ν implies that:

ν(M) = ι∗ν(DM) = 0.

Case 2: M is non-compact and without boundary. Let f ∶ M → R be a proper Morse
function (see, e.g. [106, Thm. 6.6]) and choose increasing unbounded sequences ik ∈ R>0 and jk ∈
R>0 such that both ik and −jk are regular values of f for all k ∈ N. Then for each k the subset
f−1[−jk, ik] = Mk is a compact submanifold-with-boundary of M (see [63, Lem., p. 62] for a similar
result). Moreover, each Mk+1 is obtained from Mk by attaching a finite number of m-cells, for suitable
choices of m, and thus the function f gives M the structure of a CW complex such that each Mk is
a subcomplex of M. Define:

lim←ÐHp (Mk;G) = {(mk)k ∈
∞
∏
i=0

Hp (Mk;G) ∣ for all k ⩾ 0 ∶mk+1∣Mk
=mk} .

Suppose initially that G = Q, or G = Z/qZ for some prime q. Then by [65, Prop. 3F.5], the natural
map:

Hp (M;G)→ lim←ÐHp (Mk;G)

m↦ (m∣Mk
)k

(9.1.2)

is an isomorphism. Thus ν(M) = 0 if and only if ν(M)∣Mk
= 0 for each k. However by naturality

ν(M)∣Mk
= ν(Mk), which vanishes by case 1, yielding ν(M) = 0, as required.

For more general G, eqn. (9.1.2) is replaced by [105, Lem. 2] the short exact sequence:

0→ lim←Ð
1Hp−1 (Mk;G)→ Hp (M;G)→ lim←ÐHp (Mk;G)→ 0,

where lim←Ð
1 is the first right-derived functor of lim←Ð (see [105] for a more explicit definition). Thus,

to prove the lemma when G is an arbitrary field or finite Abelian group, it suffices to prove that
lim←Ð

1Hp−1 (Mk;G) = 0 in this case. However this is clear: since each Mk is a finite cell-complex,
the spaces Hp−1 (Mk;G) are finite-dimensional G vector spaces if G is a field, and are finite Abelian
groups if G is a finite Abelian group. The result now follows by [124, Exercise 3.5.2].

Case 3: M is non-compact with boundary. By considering the double DM of M and using
case 2, it follows that ν(M) = 0.
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9.2 Existence of G̃2-structures
The aim of this section is to prove the following result, conjectured by Lê in [92]:

Theorem 9.2.1. Let M be an oriented 7-manifold (not necessarily closed). Then M admits G̃2-
structures if and only if it is spin.

Combining Theorem 9.2.1 with the h-principles established in Theorems 7.7.44 and 7.7.5 yields
the following corollary:

Theorem 9.2.2. Let M be an oriented 7-manifold. If M is spin, then every degree 3 de Rham class
can be represented by a G̃2 3-form and every degree 4 de Rham class can be represented by a G̃2

4-form.

I begin by recalling the following definition, taken from [64]:

Definition 9.2.3. Let ϕ ∈ ⋀3+ (R7)∗. An oriented 3-plane C ∈ G̃r3(R7) is called calibrated with
respect to ϕ if, writing volC for the volume form on C induced by the metric gϕ∣C and the orientation
on C, one has:

ϕ∣C = volC .

Analogously, let ϕ̃ ∈ ⋀3∼ (R7)∗. I call an oriented 3-plane C ∈ G̃r3(R7) positively calibrated if gϕ̃
is positive definite on C and, writing volC for the volume form on C induced by the metric gϕ̃∣C and
the orientation on C, one has:

ϕ̃∣C = volC .

It is well-known that G2 acts transitively on the set of calibrated planes and that the stabiliser of
any calibrated plane is isomorphic to SO(4) (see [78, §10.8]). Similarly:

Proposition 9.2.4. G̃2 acts transitively on the set of positively calibrated planes and the stabiliser
of any positively calibrated plane is a maximal compact subgroup of G̃2 isomorphic to SO(4).

Proof. To prove transitivity of the action, consider the standard G̃2 3-form φ̃0 on R7 and let C be
positively calibrated with respect to φ̃0. Pick an oriented orthonormal basis (c1, c2, c3) of C with
respect to g̃0∣C (which exists since g̃0 is positive definite on C). By [84, Prop. 2.3], G̃2 acts transitively
on ordered pairs of orthonormal, spacelike vectors in R7, so without loss of generality ci = ei (i = 1,2).
Since φ̃0∣C = volC and (c1, c2, c3) is an oriented orthonormal basis of C, one has:

φ̃0(c1, c2, c3) = 1.

It follows that c3 = e3 + u for some u ∈ ⟨e4, ..., e7⟩. Since g̃0(c3, c3) = 1, u satisfies g̃0(u,u) = 0 and
hence u = 0, since g̃0 is negative definite on ⟨e4, ..., e7⟩. Thus C = ⟨e1, e2, e3⟩ up to the action of G̃2

and hence G̃2 acts transitively on positively calibrated planes. The statement regarding stabilisers is
proven in [68, Prop. 4.4].
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(Positively) calibrated planes have the following desirable property:

Lemma 9.2.5. 1. Let ϕ be a G2 3-form on R7 and let C be a calibrated plane. Then:

ϕC = 2ϕ∣C − ϕ

defines a G̃2 3-form on R7 and C is positively calibrated with respect to ϕC (here ϕ∣C is interpreted as
a 3-form on R7 using the splitting R7 = C⊕C�, where the orthocomplement is taken with respect to gϕ).

2. Let ϕ̃ be a G̃2 3-form on R7 and let C be a positively calibrated plane. Then:

ϕ̃C = 2ϕ̃∣C − ϕ̃

defines a G2 3-form on R7 and C is calibrated with respect to ϕ̃C (again ϕ̃∣C is interpreted as a 3-form
on R7 using the splitting R7 = C ⊕C�, where the orthocomplement is taken with respect to gϕ̃).

Proof. The proof is by direct calculation. For 1, since G2 acts transitively on the set of calibrated
planes, without loss of generality one may assume that ϕ = φ0 and C = ⟨e1, e2, e3⟩. Then:

ϕC = 2θ123 − (θ123 + θ145 + θ167 + θ246 − θ257 − θ347 − θ356) = θ123 − θ145 − θ167 − θ246 + θ257 + θ347 + θ356

which is easily seen to be of G̃2-type and have C as a positively calibrated plane. The converse is
similar.

Since SO(4) ⊂ G̃2 is a maximal compact subgroup, the quotient G̃2/SO(4) is contractible. Thus,

given any oriented 7-manifold M equipped with a G̃2 3-form ϕ̃, there exists a positively calibrated
rank 3 distribution C on M. The corresponding result in the G2 case is non-trivial, since G2/SO(4)
is not contractible.

Proposition 9.2.6. Let M be an oriented 7-manifold and let ϕ be a G2 3-form on M. Then M

admits a 3-plane distribution C which is calibrated with respect to ϕ.

Proof. The proof is a generalisation of Friedrich–Kath–Moroianu–Semmelmann’s proof of the exis-
tence of SU(2)-structures on closed 7-manifolds with G2-structures (see [51, Thm. 3.2]). Define a
cross-product × on M by the equation:

g(u1 × u2, u3) = ϕ(u1, u2, u3)

for all p ∈M and ui ∈ TpM, (i = 1,2,3). An easy calculation then shows that if u1 and u2 are linearly
independent, then:

Span⟨u1, u2, u1 × u2⟩

together with its natural orientation induced by the above ordering of basis vectors defines a calibrated
plane in TpM. If M is closed, M admits a pair of everywhere linearly independent vector fields by
[120].
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To prove Proposition 9.2.6 for open (i.e. non-closed) manifolds, therefore, it suffices to prove
every open orientable 7-manifold M also admits two everywhere linearly independent vector fields.
By [107, Thm. 12.1] (see also the preceding discussion op. cit.), the condition w6(M) = 0 is necessary
and sufficient to ensure the existence of two vector fields X and Y defined over the 6-skeleton of M
which are everywhere linearly independent. Moreover, since M is open, M deformation retracts onto
a subcomplex of its 6-skeleton (cf. [42, Prop. 4.3.1]) and thus M itself admits two globally defined
vector fields X and Y if and only if w6(M) = 0. By [99, Thm. III], w6 vanishes on every closed
oriented 7-manifold. Thus by Lemma 9.1.1 it follows that w6 vanishes on every oriented 7-manifold,
completing the proof.

Using Proposition 9.2.6, I now prove Theorem 9.2.1:

Proof of Theorem 9.2.1. By a well-known result of Gray ([22, Remark 3]; cf. [58]) M admits a G2-
structure ϕ if and only if M is orientable and spin. By Proposition 9.2.6, M admits a pair (ϕ,C) of
a G2 3-form ϕ together with a calibrated distribution C if and only if M admits a G2-structure. By
Lemma 9.2.5, M admits a pair (ϕ̃,C) with ϕ̃ a G̃2 3-form and C a positively calibrated distribution
if and only if M admits a pair (ϕ,C) with ϕ a G2 3-form and C a calibrated distribution. Finally
– as discussed above – since SO(4) ⊂ G̃2 is maximal compact, the quotient space G̃2/SO(4) is

contractible and thus a manifold M admits a G̃2 3-form ϕ̃ if and only if it admits a pair (ϕ̃,C) with
ϕ̃ a G̃2 3-form and C a positively calibrated distribution. The result follows by combining these four
logical equivalences.

9.3 G̃2-cobordisms
The aim of this section is to introduce a G̃2-analogue of Donaldson’s theory of G2-cobordisms between
closed SL(3;C) 3-forms. For brevity of notation, I shall use the term ‘SL form’ to refer to either a
SL(3;C) 3-form or a SL(3;R)2 3-form, as appropriate.

Definition 9.3.1. Let N be an oriented 6-manifold. Let ⋀(
2

3
)T∗N denote the pullback of the bundle

⋀2T∗N→ N along the bundle ⋀3T∗N→ N and write p ∶ ⋀(
2

3
)T∗N→ ⋀2T∗N for the natural projection:

⋀(
2

3
)T∗N ⋀2T∗N

⋀3T∗N N

p

Write ⋀3+T∗N for the bundle of SL(3;R)2 3-forms on N and define a subbundle E+ of ⋀(
2

3
)T∗N over

⋀3+T∗N by declaring the fibre over ρ ∈ ⋀3+T∗N to be:

E+∣ρ = {ω ∈⋀(
2

3
)T∗N∣ρ ∣ Iρ(pω) has signature (3,3) and (pω)3 < 0}
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(see eqn. (7.7.14) for the definition of Iρ). Likewise, define a subbundle E− of ⋀(
2

3
)T∗N over ⋀3−T∗N

by:
E−∣ρ = {ω ∈⋀(

2

3
)T∗N∣ρ ∣ Jρ(pω) has signature (2,4)}

(see eqn. (7.7.23) for the definition of Jρ).
Now let ρ be an SL form, i.e. a section of ⋀3±T∗N as appropriate. I term ρ extendible if there

exists a lift ω of the section ρ along the map E± → ⋀3±T∗N:

E±

N ⋀3±T∗M

ω

ρ

Proposition 9.3.2. Let N be an oriented 6-manifold and let ρ be a (closed) SL form on N. Then
the following are equivalent:

• There exists an oriented 7-manifold-with-boundary M together with a (closed) G̃2 3-form ϕ̃ such
that N is a connected component of ∂M and ϕ̃∣N = ρ;

• ρ is extendible.

Proof. Suppose that ρ is extendible and let ω be a lift of ρ along E± → ⋀3±T∗N. Let f ∶ N → (0,∞)
be chosen later and consider the manifold:

M = {(t, p) ∈ [0,∞) ×N ∣ 0 ⩽ t < f(p)} .

Define a 3-form ϕ̃ on M via:
ϕ̃ = dt ∧ (pω) + ρ + td(pω).

By Propositions 7.7.24 and 7.7.15, ϕ̃ is of G̃2-type along {0} × N and hence, by the stability of G̃2

3-forms, it is of G̃2-type on all of M if f(p) is sufficiently small, depending on p ∈ N. Moreover dϕ̃ = dρ
and thus if ρ is closed on N, then ϕ̃ is closed on M, as claimed.

Conversely if N is a connected component of ∂M, then by the Collar Neighbourhood Theorem ([94,
Thm. 9.25]; cf. also [19, Lem. 5]) there is an open neighbourhood of N in M which is diffeomorphic
to [0,1) ×N. One now simply applies the above argument in reverse.

I now prove the main result of this section:

Theorem 9.3.3. Let N be a 6-manifold and let ρ, ρ′ be closed, extendible SL(3;C) (resp. SL(3;R)2)
3-forms on N. Suppose that ρ and ρ′ are homotopic and lie in the same cohomology class. Then
(N, ρ) and (N, ρ′) are G̃2-cobordant.

Proof. Let ρt denote a homotopy of sections of ⋀3±T∗N over N such that ρ0 = ρ and ρ1 = ρ′, and
choose a lift ω of ρ along E± → ⋀3±T∗N. Using the covering homotopy property for fibre bundles [75,
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Ch. III, Thm. 4.1], there is a homotopy of sections ωt ∶ N → E± such that for each t ∈ [0,1], ωt is a
lift of ρt along E± → ⋀3±T∗N.

Write α for the common cohomology class defined by ρ and ρ′ and consider the space M =
[0,1]t ×N. Since M and N have identical cohomology, α also defines a cohomology class on M. Let
f1 ∶ M → [0,∞) be a smooth function which is identically 1 on an open neighbourhood of {0} ×N,
but which vanishes outside some larger neighbourhood of {0} × N. Likewise, let f2 ∶ M → [0,∞)
be identically 1 on a small open neighbourhood of {1} × N and vanish outside some larger open
neighbourhood. Define a 3-form ϕ̃ on M via:

ϕ̃ = dt ∧ (pωt) + ρt + [tf1 + (t − 1)f2]dN(pωt),

where dN denotes the exterior derivative on N. Then by Propositions 7.7.24 and 7.7.15 dt∧(pωt)+ρt
is of G̃2-type on M; hence, by the stability of G̃2 3-forms, if the supports of f1 and f2 are chosen to
be sufficiently small, then ϕ̃ too is of G̃2-type. Moreover, a direct calculation shows that dϕ̃ = 0 on
{f1 ≡ 1}∪{f2 ≡ 1} and that ϕ̃ represents the restriction of the class α to {f1 ≡ 1}∪{f2 ≡ 1}. Without
loss of generality assume Op(∂M) ⊆ {f1 ≡ 1} ∪ {f2 ≡ 1} and recall the sets:

Ω3
φ̃0
(M; ϕ̃∣Op(∂M)) = {ϕ̃′ ∈ Ω3

φ̃0
(M) ∣ ϕ̃′∣Op(A) = ϕ̃∣Op(A)}

Cl3φ̃0
(α; ϕ̃∣Op(∂M)) = {ϕ̃′ ∈ Ω3

φ̃0
(M; ϕ̃′∣Op(∂M)) ∣ dϕ̃′ = 0 and [ϕ̃′] = α ∈H3

dR(M)} .

Note that ϕ̃ defines an element of Ω3
φ̃0
(M; ϕ̃∣Op(∂M)). By Theorem 7.7.44 (see also Theorem 7.2.2),

Cl3φ̃0
(α; ϕ̃∣Op(∂M)) ↪ Ω3

φ̃0
(M; ϕ̃∣Op(∂M)) is a homotopy equivalence. Thus, one can deform ϕ̃ ∈

Ωp
φ̃0
(M; ϕ̃∣Op(∂M)) relative to Op(∂M) into a closed G̃2 3-form ϕ̃′ on M (representing the class α).

The pair (M, ϕ̃′) then gives the required cobordism from (N, ρ) to (N, ρ′).

9.4 Topological properties of SL(3;C) 3-forms

The aim of this section is to investigate when two SL(3;C) 3-forms are homotopic, and when a single
SL(3;C) 3-form is extendible.

9.4.1 Homotopic SL(3;C) 3-forms

In this subsection, I prove Theorem 1.0.16. Recall the statement of the theorem:

Theorem 1.0.16. There is a 1-1 correspondence between homotopy classes of SL(3;C) 3-forms on
N (equivalently closed SL(3;C) 3-forms, or SL(3;C) 3-forms in any fixed degree 3 de Rham class)
and spin structures on N which in turn correspond non-canonically with elements of H1 (N, Z/2Z).
(More precisely, the set of spin structures, and hence the set SLC(N) of homotopy classes of SL(3;C)
3-forms, possibly closed or in any given de Rham class, is a torsor for the group H1 (N, Z/2Z), i.e.
it admits a faithful, transitive action by the group H1 (N, Z/2Z).)
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I begin by remarking that the existence of the faithful, transitive action of H1 (N; Z/2Z) on
SLC(N) can be proven directly via classical Obstruction Theory, without any reference to spin
structures. Indeed, the fibre of the bundle ⋀3−T∗N of SL(3;C) 3-forms over N is homeomorphic
to GL+(6;R)/SL(3;C) , which deformation retracts onto the space SO(6)/SU(3) ≅ RP7. Since
πn (RP7) = 0 for n = 2, ...,6, classical Obstruction Theory (see [125, Thm. 6.13]) implies that the set
of homotopy classes of sections of ⋀3−T∗N over N is a torsor for the group H1 (N;π1 (⋀3−T∗●N)),
where π1 (⋀3−T∗●N) denotes the bundle of groups over N given by the first fundamental groups
of the fibres of ⋀3−T∗N. Since π1 (RP7) ≅ Z/2Z has no non-trivial automorphisms, the bundle
π1 (⋀3−T∗●N) itself must be trivial (or simple, in the terminology of [125]; see p. 263 op. cit.) and thus
H1 (N;π1 (⋀3−T∗●N)) is simply the usual cohomology group H1 (N; Z/2Z). Thus, the set of homotopy
classes of SL(3;C) 3-forms is a torsor for H1 (N; Z/2Z), as claimed.

The action of χ ∈ H1 (N; Z/2Z) on SLC(N) admits a very explicit description in the case that χ
lies in the image of the natural map r2 ∶ H1 (N;Z) → H1 (N; Z/2Z). Indeed, firstly note that, given
any ρ ∈ ⋀3− (R6)∗, the map:

γρ ∶ U(1) ⋀3− (R6)∗

eiθ cos(θ)ρ + sin(θ)J∗ρ ρ

generates the first fundamental group of ⋀3− (R6)∗. Next, recall that the cohomology group H1 (N;Z)
can be identified with the space of homotopy classes of maps N → U(1). Thus, let ρ be an SL(3;C)
3-form on N representing the homotopy class [ρ] ∈ SLC(N), pick some χ′ ∈ r−12 (χ) ⊆ H1 (N;Z)
and choose some f ∶ N → U(1) representing the class χ′. Then, χ ⋅ [ρ] ∈ SLC(N) can be explicitly
represented by the SL(3;C) 3-form ρ′ =Re(f)ρ + Im(f)J∗ρ ρ.

I now return to the full statement of Theorem 1.0.16. Fix a Riemannian metric g on N and
write P for the SO(6)-structure on N induced by g. Recall that a spin structure on N is a principal
Spin(6)-bundle Q together with a 2-sheeted covering map q ∶ Q→ P , such that the following diagram
commutes:

Q Spin(6)

N

P SO(6)

q

(The reader may wish to note that the bundle Q alone does not determine the map q; see, e.g. [91,
p. 84, Remark 1.14].) I now prove Theorem 1.0.16.

Proof of Theorem 1.0.16. Firstly, note that homotopy classes of SL(3;C) 3-forms (equivalently, SL(3;C)-
structures) on N correspond bijectively to homotopy classes of principal SU(3)-subbundles of P . In-
deed, writing F+N for the oriented frame bundle of N, SL(3;C)-structures on N are equivalent to
sections of the bundle F+N/SL(3;C) , and likewise principal SU(3)-subbundles P are equivalent to
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sections of the bundle P/SU(3) . The equivalence now follows from the observation that the fibres of
the natural map F+N/SL(3;C) → P/SU(3) are contractible. Thus, to complete the proof of Theo-
rem 1.0.16, it suffices to prove that there exists a map σ from homotopy classes of SU(3)-subbundles
of P to spin structures on (N, g) and that σ is bijective.

The existence of the map σ is essentially well-known (see, e.g. [78, Prop. 3.6.2] for a related
result). Indeed, let R ⊂ P be an SU(3)-subbundle. Consider the diagram:

Spin(6)

SU(3) SO(6)

π
ϱ

ι

(9.4.1)

Since SU(3) is simply connected, Covering Space Theory implies that there is a unique homomorphism
SU(3)

ϱ
Ð→ Spin(6) lifting the inclusion SU(3) ι↪ SO(6) along the homomorphism π ∶ Spin(6)→ SO(6).

Diagram (9.4.1) induces a diagram of bundles:

R ×ϱ Spin(6)

R R ×ι SO(6) ≅ P

q

and thus, settingQ =R×ϱSpin(6) (together with the natural map q induced by π ∶ Spin(6)→ SO(6)),
it has been shown that every SU(3)-subbundleR ⊂ P canonically induces a spin structure on N, which
clearly depends only on the homotopy class of R, thus defining the map σ.

Before proving that σ is bijective, it is useful to note that the spin structure induced by R
may alternatively be characterised as follows. Given any choice of spin structure (Q, q) on (N, g),
the bundle R′ = q−1(R) defines an (SU(3) × {±1})-subbundle of Q. Clearly, if (Q, q) is the spin
structure induced by R, then q ∶R′ →R is a disconnected 2-1 cover, i.e. R′ ≅R × {±1}. Conversely,
if R′ ≅R × {±1}, then:

Q ≅R′ ×(SU(3)×{±1}) Spin(6) ≅ (R × {±1}) ×(SU(3)×{±1}) Spin(6) ≅R ×SU(3) Spin(6)

with q defined accordingly, and thus (Q, q) is precisely the spin structure on N induced by R.
Using this observation, I now prove that σ is bijective. Given a choice of spin structure (Q, q)

on N, consider the bundle Q/SU(3) , where one identifies SU(3) ⊂ Spin(6) via ϱ, and observe that
sections of the bundle Q/SU(3) correspond to SU(3)-subbundles of Q. Since Spin(6) ≅ SU(4)

(see [91, Ch. I, Thm. 8.1]), Spin(6)/SU(3) ≅ SU(4)/SU(3) ≅ S7 and thus it follows from classical
Obstruction Theory (see [125, Thms. 6.11 & 6.12]) that Q admits an SU(3)-subbundle and that any
two such subbundles are homotopic. Given such a subbundle R′, the image R = q(R′) ⊂ P defines
an SU(3)-subbundle of P and since q−1(R) ≅R×{±1}, (Q, q) is precisely the spin structure induced
by R; thus the map σ is surjective. Moreover, since homotopic SU(3)-subbundles of Q give rise to
homotopic SU(3)-subbundles of P , the injectivity of σ is now clear.

195



Remarks 9.4.2.
1. The above argument provides an alternative proof that H1 (N; Z/2Z) acts faithfully and

transitively on SLC(N), by using the well known result (see [91, p. 82, Thm. 1.7]) that the space of
spin structures on a spin manifold N forms a torsor for the group H1 (N; Z/2Z).

2. Returning to the perspective of classical Obstruction Theory, recall from [125, Thm. 6.11] that
the primary (and, in this case, only) obstruction to the existence of a section of ⋀3−T∗N is determined
by an obstruction class:

γ ∈ H2 (N;π1 (⋀3
−T
∗
●N)) ≅ H

2 (N; Z/2Z) .

Theorem 1.0.16 shows that γ is simply the second Stiefel–Whitney class of N.

Note that the bundle Q/SU(3) arising in the above proof is essentially the unit sphere bundle
in the spinor bundle S(N) = Q ×Spin(6) C4 associated with (Q, q), where Spin(6) acts on C4 via
the identification Spin(6) ≅ SU(4). Using this observation, it is possible to provide a very explicit
description of the correspondence between homotopy classes of SL(3;C) 3-forms and spin structures.
Indeed, fix a choice of spin structure (Q, q) on N and recall that the rank 10 complex vector bundle
⊙2

C S(N) is isomorphic to the bundle ⋀3CSDT∗N of complex self-dual 3-forms, i.e. 3-forms α satisfying
☀α = iα, where ☀ denotes the Hodge star induced by the metric g. Given a non-zero section ς of
S(N), the section ς ⊗ ς ∈ ⊙2

C S(N) corresponds to a complex 3-form ας and thus to a real 3-form
ρς = ας + ας . Since the stabiliser of ς in Spin(6) at each point of N is isomorphic to SU(3), the
stabiliser of ρς in SO(6) at each point of N is also isomorphic to SU(3), and thus ρς is an SL(3;C)
3-form such that the metric g is Hermitian with respect to Jρ. Since all non-zero sections of S(N)
are homotopic, it is immediately clear that all SL(3;C) 3-forms obtained in this way are likewise
homotopic.

Conversely, given an SL(3;C) 3-form ρ, choose a Hermitian metric g on N (with respect to Jρ).
For each spin structure (Q, q) on (N, g), there is a unique section ς of the bundle S(N)/N/{±1} such
that ρ = ρς (note that ρς is well-defined, since ρ−s = ρs for each non-zero spinor s). It follows from
the proof of Theorem 1.0.16, that there is a unique spin structure (Q, q) such that the section ς of
S(N)/N/{±1} can be lifted to a section of S(N)/N and this is precisely the spin structure induced
by ρ.

I end this subsection by providing some explicit examples.

Examples 9.4.3.
1. Consider the torus N = T6 and let ρ− denote the ‘standard’ SL(3;C) 3-form on T6 defined by

identifying T (T6) with T6 ×R6. Since H1 (T6; Z/2Z) ≅ (Z/2Z)
6
, T6 admits 26 = 64 distinct homo-

topy classes of SL(3;C) 3-forms. Moreover, since the map H1 (T6;Z)→ H1 (T6; Z/2Z) is surjective,
one may provide an explicit description of all 64 classes as follows. Let (x1, ..., x6) denote the canon-
ical periodic coordinates on T6 ≅ R6/Z6 and, for each a = (a1, ..., a6) ∈ (Z/2Z)

6
≅ H1 (T6; Z/2Z),
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consider the map:
fa ∶ T6 U(1)

(x1, ..., x6) exp (i∑6
j=1 ajx

j) .

The map fa represents a cohomology class in H1 (T6;Z) which maps to a under r2 ∶ H1 (T6;Z) →
H1 (T6; Z/2Z). It follows that the 64 homotopy classes of SL(3;C) 3-forms on T6 can be explicitly
represented by the 3-forms:

ρa = cos
⎛
⎝

6

∑
j=1

ajx
j⎞
⎠
ρ− + sin

⎛
⎝

6

∑
j=1

ajx
j⎞
⎠
Jρ−ρ−.

2. Let (N, J, g) be a compact, Hermitian manifold. By [6, Prop. 3.2] (see also [70, Thm. 2.2]),
there is a bijective correspondence between spin structures on N and holomorphic square roots of the
canonical bundle ⋀3,0T∗N. Thus, given an SL(3;C) 3-form ρ on N such that:

Jρ = J, (9.4.4)

Theorem 9.4.1 predicts that ρ defines a holomorphic square root of ⋀3,0T∗N.

In the case where ⋀3,0T∗N ≅ O (i.e. (N, J, g) has trivial canonical bundle) this may be seen directly
as follows. Initially, let ρ be an SL(3;C) 3-form on N satisfying eqn. (9.4.4) such that dρ = dJ∗ρ = 0.
Then, Ω = ρ+iJ∗ρ defines a non-zero holomorphic (3,0)-form on N, hence a holomorphic trivialisation
of ⋀3,0T∗N and whence a natural square root of ⋀3,0T∗N, viz. O.

Now, let ρ′ be an arbitrary SL(3;C) 3-form satisfying eqn. (9.4.4). Firstly, note that ρ′ canonically
defines a class δρ′ in H1 (N; Z/2Z). Indeed, ρ′ defines a unique map fρ′ ∶ N → C/{0} via ρ′ +
iJ∗ρ′ = fΩ. Define δρ′ to be the reduction modulo 2 of the pullback of the canonical generator
1 ∈ H1 (C/{0};Z) along the map fρ′ . Next, by [70, p. 15], the space of holomophic square roots
of ⋀3,0T∗N is naturally a torsor for the group H1 (N; Z/2Z). Indeed, the short exact sequence of
sheaves:

1 Z/2Z O∗ O∗ 1

f f2

induces a sequence:

0 H1 (N; Z/2Z) H1 (N;O∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≅Pic(N)

H1 (N;O∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≅Pic(N)

L L⊗2

as claimed. The square root of ⋀3,0T∗N defined by the SL(3;C) 3-form ρ′ is then simply δρ′ ⋅O.

I end by remarking on one interesting aspect of this case. By Theorem 9.4.1, two SL(3;C) 3-
forms ρ′ and ρ′′ satisfying eqn. (9.4.4) are homotopic through arbitrary SL(3;C) 3-forms if and only
if δρ′ = δρ′′ . However, clearly ρ′ and ρ′′ are homotopic through SL(3;C) 3-forms satisfying eqn. (9.4.4)
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if and only if the induced maps fρ′ , fρ′′ ∶ N → C/{0} are homotopic, which occurs if and only if the
classes f∗ρ′1 and f∗ρ′′1 in H1 (N;Z) coincide. Thus, in general, there exist pairs of homotopic SL(3;C)
3-forms, each satisfying eqn. (9.4.4), which nevertheless cannot be connected by any path of SL(3;C)
3-forms satisfying eqn. (9.4.4).

9.4.2 Extendibility of SL(3;C) 3-forms

By Definition 9.3.1, ρ is extendible if and only if the almost complex manifold (N, Jρ) admits a
pseudo-Hermitian metric of (real) signature (2,4). In general, the existence of metrics of indefinite
signature is an open problem and thus completely classifying when ρ is extendible appears unfeasible.
Nevertheless, much insight into the extendibility of ρ can be gained by the following proposition:

Proposition 9.4.5. Let N be an oriented 6-manifold and ρ an SL(3;C) 3-form on N. Then ρ is
extendible if and only if the (complex) projectivised tangent bundle of N, PC(TN, Jρ), admits a global
section, i.e. (TN, Jρ) admits a complex line subbundle.

Proof. Initially, suppose that L ⊂ (TN, Jρ) is a complex line subbundle. Let g be any Hermitian
metric (of real signature (3,0)) on N and write:

TN =L ⊕L �, g = g∣L + g∣L � ,

where the orthocomplement is defined with respect to g. Then gL − g� is a pseudo-Hermitian metric
of (real) signature (2,4).

Conversely, let g̃ be a pseudo-Hermitian metric of real signature (2,4). Define a subbundle
Πg̃ ⊂ PC(TN, Jρ) via:

Πg̃ ∣p = {L ∈ PC(TN, Jρ)∣p ∣ g̃ is positive definite on L ⊂ TpN} .

Given L ∈ Πg̃ ∣p, every other L′ ∈ Πg̃ ∣p can be written as a graph over L . Thus Πg̃ has contractible
fibres and hence admits a global section, and whence so does PC(TN, Jρ).

I now prove the main result of this subsection:

Theorem 9.4.6. Let N be an oriented 6-manifold. If the Euler class e(N) = 0, then any SL(3;C)
3-form on N is extendible. In particular:

• If N is open, then any SL(3;C) 3-form on N is extendible.

• If N is closed and the Euler characteristic χ(N) = 0, then any SL(3;C) 3-form on N is
extendible.

Conversely, if e(N) ≠ 0 and in addition b2 = 0 (i.e. H2 (N;Z) and H4 (N;Z) are pure torsion), then
no SL(3;C) 3-form on N is extendible.
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Proof. Firstly note that if e(N) = 0, then N admits a nowhere vanishing vector field. Indeed if N is
closed this follows from [74], whereas if N is open, this follows since N deformation retracts onto a
subcomplex of its 5-skeleton and every rank 6 vector bundle over a 5-dimensional cell-complex admits
a nowhere vanishing section. Thus let X be a nowhere vanishing vector field on N and let ρ be an
SL(3;C) 3-form on N. Then the real rank 2 distribution on N generated by X and JρX defines a
complex line subbundle of (TN, Jρ) and hence ρ is extendible, by Proposition 9.4.5.

Conversely, suppose e(N) ≠ 0 (in particular, N must be closed) and let ρ be an extendible SL(3;C)
3-form on N. By Proposition 9.4.5, one can write (TN, Jρ) =L1⊕L2 with L1,2 complex subbundles
of (TN, Jρ) of (complex) ranks 1 and 2 respectively. Then:

e(N) = e(L1) ∪ e(L2) ∈ H6 (N;Z) ≅ Z,

where ∪ denotes the usual cup-product on cohomology. Since e(N) is non-zero, neither e(L1) nor
e(L2) can have finite order (since Z is torsion-free). Thus b2(N) ≠ 0, as claimed.

Using Theorem 9.4.6, it is possible to give many examples of extendible and non-extendible
SL(3;C) 3-forms:

Examples.

1. Let K be any closed, oriented (connected) spin 5-manifold and set N = S1 ×K. Then N is also
oriented and spin. Thus since χ(N) = 0 and:

H1 (S1 ×K; Z/2Z) ≅ H
1 (K; Z/2Z)⊕H0 (K; Z/2Z) ≅ H

1 (K; Z/2Z)⊕ Z/2Z ,

by Theorem 1.0.16 the manifold N admits 2
1+b1(N;Z/2) ⩾ 2 distinct homotopy classes of

SL(3;C) 3-forms, all of which are extendible by Theorem 9.4.6. As a special case, T6 ad-
mits 26 = 64 distinct homotopy classes of extendible SL(3;C) 3-forms.

2. Consider the sphere S6. Clearly S6 is orientable and spin, and H1 (S6; Z/2Z) = 0. Thus S6

admits a unique homotopy class of SL(3;C) 3-forms, which is not extendible since χ(S6) = 2.
In particular, recall that the embedding S6 ↪ R7, where R7 is equipped with its standard (flat)
G2 3-form ϕ0, induces the ‘standard’ SL(3;C) 3-form on S6; then ϕ0∣S6 is not extendible (to a
G̃2 3-form).

3. Consider the manifold Y1 = RP3 × RP3 and let Yn = Y1#...#Y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

, where # denotes connected

sum. Then Yn is spin and H1 (Yn; Z/2Z) ≅ (Z/2Z)
2n

, so Yn admits 22n distinct homotopy
classes of SL(3;C) 3-forms. However, the Betti numbers of Yn are:

(b0, b1, b2, b3, b4, b5, b6) = (1,0,0,2n,0,0,1)
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and so χ(Yn) = 2 − 2n, whilst b2(Yn) = 0. Thus for n > 1, none of the 22n homotopy classes of
SL(3;C) 3-forms on Yn are extendible.

9.5 Topological properties of SL(3;R)2 3-forms

9.5.1 Homotopic SL(3;R)2 3-forms

Let N be an oriented 6-manifold.

Proposition 9.5.1. Write SLR(N) for the set of homotopy classes of SL(3;R)2 3-forms on N and
G̃R3(N) for the set of homotopy classes of sections of G̃r3(N). Then there is a 1-1 correspondence:

E ∶ SLR(N)→ G̃R3(N)

given by [ρ] ↦ [E+,ρ]. In particular, N admits SL(3;R)2 3-forms if and only if it admits oriented
rank 3 distributions. The same conclusion applies to homotopy classes of closed SL(3;R)2 3-forms,
or to homotopy classes of closed SL(3;R)2 3-forms representing a fixed de Rham class.

Proof. Write ⋀3+T∗N for the bundle of SL(3;R)2 3-forms over N and consider the diagram:

⋀3+T∗N

G̃r3(TN) N

ρ↦E+,ρ

Then the left-hand map is a fibration, with fibre diffeomorphic to StabGL+(6;R)(E+)/SL(3;R)2 ,
where E+ = ⟨e1, e2, e3⟩ denotes the +1-eigenspace of the standard para-complex structure I0 on R6.
Explicitly:

StabGL+(6;R)(E+) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
A C

B

⎞
⎠

RRRRRRRRRRR
A,B ∈ GL+(3;R),C ∈ gl(3;R)

⎫⎪⎪⎬⎪⎪⎭
.

The result follows, since the quotient StabGL+(6;R)(E+)/SL(3;R)2 is contractible. The final remark
now follows from Theorem 8.2.1.

Explicitly, the inverse to E can be described as follows: given an oriented rank 3 distribution E

on N, choose a distribution E′ such that TN = E ⊕E′. Since E and TN are oriented, so is E′ and
thus one can pick volume elements ϖ± ∈ ⋀3E∗±. Using the inclusion:

⋀3E∗+ ⊕⋀3E∗− ↪⋀3(E+ ⊕E−)∗ ≅⋀3T∗(T6)

one may regard ρ = ϖ+ +ϖ− as a 3-form on T6. It is then simple to verify that ρ is an SL(3;R)2

3-form on T6 such that E± are the ±1-eigenbundles of the para-complex structure Iρ.
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Note that in order for N to admit an oriented rank 3 distribution, the Euler class e(N) must
vanish (cf. [93, Prop. 5.1.1]). I now prove the main result of this subsection:

Theorem 9.5.2. Let N be a closed, oriented, 6-manifold with e(N) = 0 and suppose w2(N)2 = 0.
Write ρ2 ∶ H4 (N;Z)→ H4 (N; Z/2Z) for reduction modulo 2 and define:

H4 (N;Z)�w2
= {u ∈ H4 (N;Z) ∣ ρ2u ∪w2(N) = 0} .

Then there is an injection from H4 (N;Z)�w2/2-torsion into the set of homotopy classes of SL(3;R)2

3-forms on N (equivalently closed SL(3;R)2 3-forms, or SL(3;R)2 3-forms in any fixed degree 3 de
Rham class). In particular, if N is spin and b4(N) > 0, then each of these sets is infinite.

Proof. Recall the first spin characteristic class q1 defined by Thomas in [118, Thm. 1.2], which is
related to the first Pontryagin class p1 by p1 = 2q1. Now assume e(N) = 0 and w2(N)2 = 0. By
applying [119, Cor. 1.7], for every u ∈ H4 (N;Z)�w2

, there exists an oriented, spin, rank 3 distribution
E on N with q1(E) = 2u. Given classes u,u′ ∈ H4 (N;Z)�w2

with corresponding bundles E and
E′, note that if E and E′ are homotopic as sections of G̃r3(TN), then q1(E) = q1(E′), and hence
2(u − u′) = 0. The result follows.

Corollary 1.0.19 now follows at once, by restricting attention to the case w2(N) = 0. I remark that
w2(N) = 0 is actually necessary for N to admit any extendible SL(3;R)2 3-forms; indeed, this result
follows from Proposition 9.3.2 and Theorem 9.2.1, together with the fact that the boundary of a spin
manifold is also spin. Thus the condition that N be spin is very natural from the perspective taken
in this paper.

Using the above results, one can give many examples of manifolds admitting multiple homotopy
classes of SL(3;R)2 3-forms:

Examples 9.5.3.

1. As a simple example, take N = T6. T6 is parallelisable and so trivially it is orientable, spin and
has vanishing Euler class. Since H4 (T6;Z) ≅ Z15, it follows that T6 admits infinitely many
distinct homotopy classes of SL(3;R)2 3-forms.

2. Now consider N = S6. Since χ(S6) = 2, S6 admits no SL(3;R)2 3-forms. Likewise, the
manifolds Yn (n > 1) considered in §9.4.2 admit no SL(3;R)2 3-forms.

3. Let N = S1×K where K is any closed, orientable, spin 5-manifold. Then S1×K is also spin and
has vanishing Euler class. Thus S1 ×K admits SL(3;R)2 3-forms. Moreover, if b4(N) = 0, then
the relation bn(N) = bn(K) + bn−1(K) forces b3(K) = b4(K) = 0, and hence b1(K) = b2(K) = 0
too, by Poincaré duality, i.e. K is a rational homology sphere. Thus, unless K is a rational
homology sphere, N admits infinitely many distinct homotopy classes of SL(3;R)2 3-forms.

4. Let E denote the Enriques surface – i.e. the quotient of a K3-surface by a fixed-point-free
holomorphic involution – viewed as a real 4-manifold. Then the 6-manifold N = T2×E provides
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an example of a non-spin manifold which admits SL(3;R)2 3-forms; in fact, N admits an infinite
number of distinct homotopy classes of SL(3;R)2 3-forms, none of which can be extendible, by
the above remark.

To verify this, it is necessary to recall some results on the topology of E . Recall that [13, Lem.
15.1], [33, §6.10]1:

H2 (E ;Z) ≅ Z10 ⊕ Z/2Z

where the Z/2Z -factor is generated by c1(E) and recall also that the Betti numbers of E are
b0(E) = b4(E) = 1, b1(E) = b3(E) = 0 and b2(E) = 10. The restriction of c1(E) modulo 2 is
non-zero and thus w2(E) ≠ 0 and E (and hence N) is not spin. Nevertheless χ(E) = 12 which
vanishes modulo 2 and thus w2(E)∪2 = w4(E) = 0. Hence by Theorem 9.5.2 N = T2 × E admits
SL(3;R)2 3-forms. Moreover, given a class u ∈ H4 (N;Z), identifying c1(E) with an integral
degree 2 cohomology class on N in the natural way, one finds that:

2(u ∪ c1(E)) = u ∪ 2c1(E) = 0

and hence u ∪ c1(E) = 0, since H6 (N;Z) has no 2-torsion. Since w2(N) = ρ2c1(E) it follows
that:

ρ2u ∪w2(N) = ρ2(u ∪ c1(E)) = 0,

and thus H4 (N;Z)�w2
= H4 (N;Z). Since b4(N) = 11, it follows that SLR(N) is infinite, as

claimed.

9.5.2 Examples of extendible SL(3;R)2 3-forms
The previous subsection saw examples of non-extendible SL(3;R)2 3-forms, however so far no explicit
examples of extendible SL(3;R)2 3-forms have been provided. This section aims to provide such
examples. I begin with a preparatory result:

Proposition 9.5.4. Let N be an oriented 6-manifold and let ρ be an SL(3;R)2 3-form on N. Then ρ
is extendible if and only if the bundle Iso(E+,ρ,E−,ρ) of isomorphisms from E+,ρ to E−,ρ has a global
section.

Proof. By Definition 9.3.1, ρ is extendible if and only if N admits a 2-form ω satisfying ω3 < 0 such
that Iρω is a pseudo-Riemannian metric of signature (3,3). Thus suppose ρ is extendible and define
g̃ = Iρω. One may verify that g̃(Iρ⋅, Iρ⋅) = −g̃(⋅, ⋅). Thus given u ∈ E+,ρ, for any other w ∈ E+,ρ one
has:

g̃(u,w) = g̃(Iρu, Iρw) = −g̃(u,w) = 0 (9.5.5)

and hence g̃(v, ⋅) may naturally be identified with an element of (E−,ρ)∗.
Now choose a positive definite metric h on E−,ρ and define L(v) ∈ E−,ρ to be the unique element

such that:
h(L(v), ⋅) = g̃(v, ⋅) ∈ (E−,ρ)∗ . (9.5.6)

1Note a slight error in this second reference: h2,0(E) = 0, not 1 as stated loc. cit..

202



Then L defines an isomorphism E+,ρ → E−,ρ.
Conversely, let L ∶ E+,ρ → E−,ρ be a fibrewise isomorphism. Define subbundles F± ⊂ TN by:

F± = (Id±L)(F+,ρ).

Then TN = F+ ⊕ F− and Iρ maps F+ isomorphically onto F− and vice versa.
Now choose any positive definite metric l on F+, extend it to a symmetric bilinear form on TN

by setting l(F−, ⋅) = 0 and define:
g̃(⋅, ⋅) = l(⋅, ⋅) − l(Iρ⋅, Iρ⋅).

Then ω(⋅, ⋅) = g̃(Iρ⋅, ⋅) is a 2-form and Iρω = g̃ has signature (3,3). In particular, it follows that ω3 ≠ 0
and hence, by replacing ω by −ω if necessary, one may assume that ω3 < 0. Thus ρ is extendible.

I remark that Proposition 9.5.4 has the following, curious result. Recall that if ρ is an SL(3;C)
3-form, then ρ is always homotopic to −ρ [37, §4]. By applying Proposition 9.5.4, a partial analogue
for SL(3;R)2 3-forms may be obtained:

Corollary 9.5.7. Let N be an oriented 6-manifold and let ρ be an extendible SL(3;R)2 3-form on
N. Then ρ is homotopic (through SL(3;R)2 3-forms) to −ρ.

In particular, by Theorem 8.2.1, if ρ is closed and extendible, then ρ is homotopic to −ρ through
closed SL(3;R)2 3-forms and, likewise, if ρ is exact and extendible, then ρ is homotopic to −ρ through
exact SL(3;R)2 3-forms.

Proof. By Proposition 9.5.1, it is equivalent to prove that the sections of G̃r3(N) induced by E+,ρ and
E+,ρ (the same bundle equipped with the opposite orientation) are homotopic. Since ρ is extendible,
one can choose L ∈ Iso(E+,ρ,E−,ρ). For t ∈ [0,1], define:

ιt ∶ E+,ρ TN

v cos(πt)v + sin(πt)L(v).

Then ιt(E+,ρ) defines the required homotopy from E+,ρ to E+,ρ.

The converse of Corollary 9.5.7 does not hold. Indeed, consider the manifold N = T2×E of Example
9.5.3(4). It is known [13, Lem. 15.1], [33, §6.10] that the intersection form of E is indefinite with
signature σ(E) = 8; in particular, since χ(E) = 12 the equations:

σ(E) ± χ(E) ≡ 0 mod 4

hold. Using [101, Thm. 2(A)], it follows that there exists an oriented rank 2 distribution E , which I
shall denote by π. Write ∂1, ∂2 for the standard basis of constant vector fields on T2 and define an
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oriented rank 3 distribution E on N = T2 × E via:

E = ⟨∂1⟩⊕ π

where E is oriented according to the ordering of the summands. Then E is manifestly homotopic to
E: an explicit homotopy is given by:

Et = ⟨cos(πt)∂1 + sin(πt)∂2⟩⊕ π.

However, as observed above, none of the SL(3;R)2 3-forms on N are extendible.
I now return to the task of constructing explicit examples of extendible forms. Recall the following

definition:

Definition 9.5.8 (See [11, §2]). Let M be an arbitrary manifold. A vector bundle E→M is termed
flat if it admits some connection of curvature 0. Equivalently, write M̃ for the universal covering
space of M and view M̃ → M as a principal π1(M)-bundle over M. Then a vector bundle E → M of
rank k is flat if and only if it can be written as:

E = M̃ ×Rk/π1(M)

for some representation π1(M)→ GL(k;R).

This definition can be made very explicit for T6: identify T6 ≅ R6/Z6 so that the quotient map
R6 → T6 is also the universal cover. Then for every representation ϱ ∶ Z6 → GL(k;R), one obtains
the following commutative diagram:

R6 ×Rk R6 ×Rk/(Z6, ϱ) = E

R6 R6/Z6 ≅ T6

proj1

quot

quot

where Z6 acts on R6 by translation and Rk via ϱ. Then E → T6 is the flat bundle corresponding
to the representation ϱ. Moreover, note that T(T6) is simply the flat bundle corresponding to the
trivial representation ϱ ∶ Z6 → GL(6;R).

The following result was proved in [11, Thm. 3.3]:

Theorem 9.5.9 (Auslander–Szczarba). Let E1 and E2 be flat, rank k vector bundles over T6. Then
E1 and E2 are isomorphic if and only if their first and second Stiefel–Whitney classes coincide.

I restrict attention to flat, orientable bundles; these correspond to representations ϱ whose image
lies in GL+(k,R). By Theorem 9.5.9, two flat, orientable, rank k vector bundles over T6 are isomorphic
if and only if their second Stiefel–Whitney classes coincide. Using this result, one can construct a
large number of (non-homotopic) extendible SL(3;R)2 3-forms on T6.
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Construction 9.5.10. By Proposition 9.5.1, it suffices to construct oriented rank 3 distributions
E+ ⊂ T(T6) such that one can write T(T6) = E+ ⊕E− for some E− ≅ E+. Let E be a flat, orientable,
rank 3 vector bundle over T6 and define T = E+ ⊕ E−, where E+ = E− = E are all identical and the
subscripts only serve to keep track of the summands. Then T is automatically orientable and so
w1(T) = 0. Moreover:

w2(T) = 2 ⋅w2(E) +w1(E)∪2 = 0 ∈ H2 (T6; Z/2Z) ,

where ∪ denotes the usual cup-product on cohomology; thus by Theorem 9.5.9, T is isomorphic to
T(T6). Write E± for the images of E± respectively under this isomorphism and note that the bundle
Iso(E+,E−) has a natural global section, corresponding to Id ∈ Iso(E+,E−).

Given flat, orientable, rank 3 bundles E and E′ with corresponding SL(3;R)2 3-forms ρ and ρ′,
by Proposition 9.5.1 ρ and ρ′ are homotopic if and only if E and E′ are homotopic. If E and E′

are homotopic, then clearly w2(E) = w2(E′); moreover, the converse holds by Theorem 9.5.9. The
following result classifies which classes in H2 (T6, Z/2Z) can arise as the second Stiefel–Whitney class
of a flat, orientable, rank 3 vector bundle:

Proposition 9.5.11. Let w ∈ H2 (T6, Z/2Z). Then w is the second Stiefel–Whitney class of a flat,
orientable, rank 3 vector bundle over T6 if and only if it can be written as w = a ∪ b for some classes
a, b ∈ H1 (T6, Z/2Z).

Proof. Firstly, from the Künneth formula ([65, Thm. 3.15]), one may prove by induction that for any
n:

H∗ (Tn; Z/2Z) ≅⋀
∗ (Z/2Z)

n
,

where:
⋀∗ (Z/2Z)

n
= ⊗∗ (Z/2Z)

n

/{γ ⊗ γ = 0 ∣ γ ∈ (Z/2Z)
n
}

as usual. (Here, the tensor product is taken over Z/2Z .)
Now, by [11, Thm. 3.2], every flat vector bundle over a torus is isomorphic to a Whitney sum of

flat line bundles. (The statement of Thm. 3.2 in [11] does not include the fact that the line bundles
are themselves flat, however this result follows from the proof given on p. 273 op. cit..) Thus consider
E = ℓ1⊕ ℓ2⊕ ℓ3 for ℓi flat line bundles over T6. The requirement that E be orientable is equivalent to
the requirement that w1(E) = 0, i.e. that:

w1(ℓ3) = w1(ℓ1) +w1(ℓ2).

Using this relation, one may compute that:

w2(E) = w1(ℓ1) ∪w1(ℓ2) +w1(ℓ1) ∪ [w1(ℓ1) +w1(ℓ2)] +w1(ℓ2) ∪ [w1(ℓ1) +w1(ℓ2)]

= w1(ℓ1) ∪w1(ℓ2)

since w1(ℓ1)∪2 = w1(ℓ2)∪2 = 0, and so w2(E) has the form claimed.
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Conversely, suppose given a class w ∈ H2 (T6, Z/2Z) such that w = a∪ b for a, b ∈ H1 (T6, Z/2Z).
Using the diagram:

Hom (π1(T6),O(1)) ≅ Hom (H1(T6;Z), Z/2Z)

H1 (T6, Z/2Z)

Flat bundles/isomorphism

≅

≅

w1

≅

there exist flat line bundles ℓ1, ℓ2 and ℓ3 over T6 such that w1(ℓ1) = a, w1(ℓ2) = b and w1(ℓ3) = a+ b.
Then w1(ℓ1⊕ ℓ2⊕ ℓ3) = a+ b+ (a+ b) = 0 and thus E = ℓ1⊕ ℓ2⊕ ℓ3 is orientable. Moreover, the earlier
calculation also shows that w2(E) = a ∪ b, as required.

Using Proposition 9.5.11, one can count the number of distinct homotopy classes of extendible
SL(3;R)2 3-forms produced by Construction 9.5.10. Firstly, note that there is a 1-1 correspondence
between the non-zero elements of H2 (T6, Z/2Z) and PZ/2 (H2 (T6, Z/2Z)). Since:

H2 (T6, Z/2Z) ≅⋀
2 H1 (T6, Z/2Z) ,

where the exterior-square is taken over the base field Z/2Z , it follows that the set of non-zero second
Stiefel–Whitney classes of flat orientable rank 3 bundles over T6 is precisely the image of the ‘Plücker-
type’ embedding:

Gr2 (H1 (T6, Z/2Z)) PZ/2 (⋀2 H1 (T6, Z/2Z))

Π ⋀2Π.

Since Gr2 (H1 (T6, Z/2Z)) contains 651 elements (see Appendix B) Construction 9.5.10 generates
652 = 651+1 distinct homotopy classes of extendible SL(3;R)2 3-forms over T6 (the extra case arising
from w2(E) = 0.) Moreover, by applying the h-principle for closed SL(3;R)2 3-forms (Theorem 8.2.1)
and since extendibility is a homotopy invariant, Construction 9.5.10 implies the existence of 652
distinct homotopy classes of closed, extendible SL(3;R)2 3-forms on T6.

206



Chapter 10

Concluding remarks and open questions

In this chapter, I make some brief remarks regarding the 7 classes of stable form for which the
relative h-principle is still unverified, viz. G2 3-forms, PSU(3) 3- and 5-forms, PSU(1,2) 3- and 5-
forms and SL(3;R) 3- and 5-forms. I explain that, whilst the techniques developed in Part II cannot
be straightforwardly applied to prove the relative h-principle for these 7 classes of stable forms, the
relative h-principle should reasonably be expected to hold in all remaining 7 cases. The chapter ends
with some brief comments regarding other partial differential relations on stable forms.

10.1 Limitations of convex integration
To understand why G2 3-forms cannot be investigated using convex integration, I record the following
result:

Proposition 10.1.1. G2 3-forms are not ample.

Proof. Recall from §7.5.1 that G2 acts transitively on G̃r6 (R7). The image of this single orbit under
the map Tφ0

is well-known to be the orbit of SL(3;C) 3-forms on R6; see e.g. [37]. Moreover, for
ρ ∈ ⋀3− (R6)∗, it follows from p. 106 op. cit. that:

Nφ0
(ρ) = {ν ∈⋀2 (R6)∗ ∣ Jρν is a (positive definite) Hermitian form } .

However this is a convex subset of ⋀2 (R6)∗ which does not contain 0.

Thus convex integration cannot be used to prove the h-principle for G2 3-forms. Moreover, since
G2 3-forms are not ample along any hyperplane, convex integration with avoidance cannot be used
either.

By contrast, in 8-dimensions, it is not known whether stable forms are ample or not. The difficulty
in verifying amplitude can be understood via the following result:

Proposition 10.1.2. PSU(3) 3- and 5-forms are not faithful. In particular, the action of PSU(3)
on G̃r7 (R8) has an infinite number of orbits.
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Proof. As usual, since PSU(3) ⊂ SO(7), there is a PSU(3)-equivariant isomorphism:

S7 ≅ G̃r1 (R8)→ G̃r7 (R8)

and thus it suffices to understand the orbit space PSU(3)/S
7 .

Recall that PSU(3) acts on R8 ≅ su(3) via the adjoint representation. It is well-known that
for a compact Lie group G with Lie algebra g, after choosing a Cartan subalgebra h (in this case,
equivalently a maximal Abelian subalgebra) there is an isomorphism:

Ad(G)/g ≅ WG
/h ,

where WG denotes the Weyl group of G (this result is essentially the infinitesimal version of [86, Thm.
4.44]). Thus:

Ad(G)/Sg ≅ WG
/Sh ,

where Sg denotes the unit sphere in g and Sh = Sg ∩ h. In the specific case of SU(3), dimh = 2 and
WG =D6, the dihedral group of order 6, and thus:

PSU(3)/S
7 ≅ D6

/S1

is infinite, as claimed. The final comment follows from the fact that action of GL+(8;R) on ⋀3 (R8)∗

(and hence on ⋀5 (R8)∗) has only finitely many orbits [34].

It follows that Theorem 7.4.5 does not apply to PSU(3)-forms. Moreover, since PSU(3)/G̃r7 (R8)

is infinite, explicit ‘orbit-by-orbit’ calculations as performed for G̃2 3-forms, co-pseudoplectic forms
and SL(3;R)2 3-forms do not appear feasible for PSU(3)-forms. Moreover, for PSU(1,2)-forms and
SL(3;R)-forms, the situation is further complicated by the need to distinguish between orbits of
spacelike, timelike and null hyperplanes. Thus stable forms in 8-dimensions appear to lie outside the
scope of the techniques developed in this thesis.

10.2 Biclosed forms and conjectural h-principles
Recall that emproplectic forms do not satisfy the relative h-principle [42, Ch. 11.1.C]. My first ob-
servation is that, since emproplectic forms are closed if and only if they are biclosed, this failure of
the h-principle is a special case of the following result:

Proposition 10.2.1. Biclosed stable forms never satisfy the h-principle. Specifically, given any stable
form σ0 ∈ ⋀p (Rn)∗, there exist oriented n-manifolds admitting σ0-forms but no biclosed σ0-forms.

Proof. Let M be a closed, oriented n-manifold and let σ ∈ Ωpσ0
(M) be biclosed. Then by eqn. (2.3.2):

⟨([σ] ∪ [Ξ(σ)]) , [M]⟩ =∫
M

σ ∧Ξ(σ) > 0, (10.2.2)
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where [σ] and [Ξ(σ)] denote the cohomology classes of σ and Ξ(σ) respectively, [M] denotes the
fundamental class of M and ⟨, ⟩ denotes the usual pairing between cohomology and homology. In
particular [σ] ≠ 0 and hence Hp

dR(M) ≠ 0. The proof is now completed by the following list of explicit
counterexamples:

• (co)-emproplectic forms: Consider the manifold M = (S6)n. Since S6 admits an almost
complex structure, so too does M, and hence M admits emproplectic and co-emproplectic
forms. However H2

dR(M) =H
6n−2
dR (M) = 0.

• SL(3;C)3 -forms: Consider M = S6. Then M admits SL(3;C) 3-forms since it is orientable
and spin (see Theorem 1.0.16) however H3

dR(M) = 0.

• SL(3;R)2 3-forms: Consider M = S1 × S5. Then M admits SL(3;R)2 3-forms by Example
9.5.3.2, however H3

dR(M) = 0.

• G2- and G̃2-structures: Consider M = S7. M admits both G2- and G̃2-structures since it is
orientable and spin (see [22, Remark 3] and [92] respectively), however H3

dR(M) =H
4
dR(M) = 0.

• PSU(3)-, SL(3;R)- and PSU(1,2)-structures: Consider M = S1 × S7. M admits PSU(3)-,
SL(3;R)- and PSU(1,2)-structures since it is parallelisable, however H3

dR(M) =H
5
dR(M) = 0.

(A similar topological obstruction exists for the ‘extension problem’ for biclosed forms, the simplest
form of relative h-principle; for a discussion of this in the symplectic case, I refer the reader to [42,
Ch. 11.1.C].)

Significantly, emproplectic (and pisoplectic) forms are the only classes of stable forms for which
closedness and biclosedness coincide. Thus, in the author’s opinion, the failure of the relative h-
principle for emproplectic forms should be regarded as anomalous and should not be used to predict
the validity of the h-principle for the remaining 7-classes of stable forms.

Therefore, the fact that the relative h-principle has been shown to hold for every class of stable
forms (other than emproplectic forms) for which the answer is known, together with the recent result
of Bertelson–Meigniez [17] that the h-principle for emproplectic forms does hold if the condition of
biclosedness is weakened to ‘conformal closedness’ leads me to the following conjecture:

Conjecture 10.2.3. All the remaining 7 classes of closed, stable forms satisfy all forms of the
h-principle. Specifically:

• Closed G2 3-forms;

• Closed PSU(3) 3- and 5-forms;

• Closed SL(3;R) 3- and 5-forms;

• Closed PSU(1,2) 3- and 5-forms,
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in any given cohomology class satisfy all forms of the h-principle. In particular, the Hitchin functional
on each of these 7 classes of closed, stable forms is always unbounded above.

In particular, this result (if proven) would completely answer Bryant’s 2005 question of whether
H3 is unbounded above or not [22, Remark 17].

10.3 Other partial differential relations
In the past, h-principles for stable forms have mostly been considered on an individual ad hoc basis
[104, 32, 37, 17]. This thesis has sought to provide the first systematic investigation of h-principles
for stable forms, by making a thorough study of the closed partial differential relation (PDR) on
stable forms. However, there are many other natural PDR’s which can be imposed on stable forms,
for example by demanding the vanishing of certain irreducible components of the intrinsic torsion of
the principle bundle induced by the stable form (defined in e.g. [78, §2.6]). In light of the flexibility of
the closed PDR demonstrated in this thesis, it is an interesting question to ask whether other natural
PDR’s on stable forms might also satisfy the h-principle.
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Part III

Spectral invariants of torsion-free
G2-structures
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Chapter 11

Spectral Morse indices and the definition of the
µ-invariants

This chapter introduces two new spectral invariants of torsion-free G2-structures on closed orbifolds
and computes their values on all Joyce orbifolds. The invariants may be viewed as regularisations of
the classical Morse indices of the Hitchin functionals on closed and coclosed G2-structures respectively.
In the case of Joyce orbifolds, an interesting link with twisted Epstein ζ-functions is also observed.

11.1 The moduli space of torsion-free G2 3-forms on Joyce
orbifolds

Let:
ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356

denote the standard, flat G2 3-form on R7 (viewed as a manifold) and consider the orbifold MΓ = Γ/T
7

for Γ ⊂ SL(7;Z) ⋉ T7 a finite subgroup of automorphisms of T7. If ϕ is a torsion-free G2 3-form on
MΓ, then ϕ lifts to define a Γ-invariant torsion-free G2 3-form ϕ on T7 which by Theorem 2.2.19 is
necessarily constant (with respect to the usual parallelism of T7), since b1(T7) = 7 = dim(T7). Thus
ϕ = F ∗ϕ0 for some F ∈ GL+(7;R). Conversely, given F ∈ GL+(7;R), the G2 3-form F ∗ϕ0 descends
to MΓ if and only if Γ preserves F ∗ϕ0. This is equivalent to the condition that for all A = (A, t) ∈ Γ ⊂
SL(7;Z) ⋉ T7, A∗F ∗ϕ0 = F ∗ϕ0, i.e. that FAF −1 ∈ G2. Thus, writing p1 ∶ SL(7;Z) ⋉ T7 → SL(7;Z)
for the projection homomorphism and defining:

GG2

Γ = {F ∈ GL+(n;R) ∣ Fp1(Γ)F −1 ⊂ G2}

it has been established that the map:

β ∶ GG2

Γ G TF
2 (MΓ)

F F ∗ϕ0

is surjective. Call MΓ a Joyce orbifold ifGG2

Γ ≠ ∅, equivalently if MΓ admits torsion-free G2-structures.
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Next, note that G2 acts on GG2

Γ on the left, and that the map β is invariant under this action.
Moreover, the automorphism group of MΓ is NormSL(7;Z)⋉T7(Γ), the normaliser of Γ in SL(7;Z)⋉T7,
where A ∈ NormSL(7;Z)⋉T7(Γ) ⊆ SL(7;Z) ⋉T7 acts via the diagram:

T7 T7

Γ/T
7

Γ/T
7

A

quot quot

Then p1 (NormSL(7;Z)⋉T7(Γ)) acts on GG2

Γ on the right, and the map β is invariant under this action.
It follows that the moduli space of torsion-free G2-structures on MΓ is given by:

G TF
2 (MΓ) ≅ G2

/G
G2

Γ /p1 (NormSL(7;Z)⋉T7(Γ)) . (11.1.1)

(Cf. [126, p. 314] for a similar discussion of flat metrics on tori.)

11.2 A spectral generalisation of Morse indices in infinite
dimensions

Recall the following classical definition [106, §2]:

Definition 11.2.1. Let b ∈ ⊙2A∗ be a symmetric bilinear form on a finite-dimensional real vector
space A. The index of b is the dimension of any maximal subspace B ⊆ A such that b∣B is negative
definite. Equivalently, using a choice of inner-product on A, one may regard b as a self-adjoint linear
map b♯ ∶ A→ A; then the index of b is simply the number of negative eigenvalues of b♯.

Now let N be a finite-dimensional manifold, let f ∶ N → R be a Morse function (i.e. a function
with only non-degenerate critical points) and let p ∈ N be a critical point of f . The Morse index of
f at p is the index of the symmetric bilinear form D2f ∣p ∈⊙2T∗pN.

In this section, I use the results of [85, 44] (see also [115, 8, 9, 10]) to propose an extension of this
definition to infinite dimensions, resulting in the notion of spectral Morse indices.

Let (N, h) be a closed, oriented, Riemannian orbifold of odd dimension n equipped with a real
orbifold vector bundle E with metric hE and let A be a smooth, elliptic, real, self-adjoint pseudodif-
ferential operator of positive order m acting on sections of E. (See [44, Defn. 1.2] for the definition of
pseudodifferential operators on orbifolds.) Then A defines a densely-defined, closed, self-adjoint linear
operator on L2(N,E), where the L2-norm is defined using the metrics h, hE . Define the spectral ζ-
and η- functions of A to be the partial functions:

ζA ∶ C C ηA ∶ C C

s ∑λ∈Spec(A)/{0} ∣λ∣s s ∑λ∈Spec(A)/{0} signλ∣λ∣s,
(11.2.2)

defined wherever the sums converge absolutely and locally uniformly. Using [85, 44], it follows that:
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Theorem 11.2.3. For N, h, E, hE and A as above, the spectral ζ- and η-functions ζA and ηA

converge absolutely and locally uniformly on the region:

{s ∈ C ∣ Re(s) > n
m
}

and admit meromorphic continuations to all of C which are holomorphic on a neighbourhood 0; let
ζ(A) and η(A) denote their respective values at 0. Then ζ(A), η(A) ∈ R, and for any ℓ > 0:

ζ(ℓA) = ζ(A) and η(ℓA) = η(A).

Moreover, the maps:

ζ ∶ Ψ>0inv-sa(N;E) R η ∶ Ψ>0inv-sa(N;E) R

A ζA(0) A ηA(0)

are smooth, where Ψ>0inv-sa(N;E) denotes the space of (smooth) invertible, real, self-adjoint pseudodif-
ferential operators of positive order acting on E.

Using Theorem 11.2.3, I make the following definition:

Definition 11.2.4. Let N, h, E, hE and A be as above. I define the spectral Morse index of A to
be:

Ind(A) = ζ(A) − η(A)
2

.

Then Ind(A) is real and invariant under rescalings A ↦ ℓA for ℓ > 0. Moreover, Ind defines a
smooth map:

Ind ∶ Ψ>0inv-sa(N;E)→ R.

The motivation for Definition 11.2.4 can be understood as follows: define the spectral Morse
function of A to be:

µA ∶ {s ∈ C ∣ Res > n
m
} C

s ∑λ∈Spec(A)
λ<0

∣λ∣−s.

Then by Theorem 11.2.3, µA admits an analytic continuation to all of C and µA(0) = Ind(A). If A
has only finitely many negative eigenvalues, then the sum defining µA converges on all of C and µA(0)
is simply the number of negative eigenvalues of A. Thus in general, one should think of Ind(A) as
a regularised measure of the ‘number of negative eigenvalues of A’.

11.3 µ3: Morse indices of the critical points of H3

The aim of this section is to prove that the critical points of the functional H3 have well-defined
spectral Morse indices. Let M be a closed, oriented 7-orbifold and let ϕ be a torsion-free G2 3-form
on M. Since H3 is diffeomorphism invariant, it induces a functional H′3 ∶ [ϕ]+/Diff0(M) → (0,∞).
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The following result generalises [71, Thm. 19 and Prop. 21] to the case of orbifolds, as well as
rephrasing the argument op. cit. to obtain an explicit expression for D2H′3 transverse to the action
of diffeomorphisms:

Proposition 11.3.1. The tangent space Tϕ ([ϕ]+/Diff0(M)) can formally be identified with the
space:

d∗Ω3(M) ∩Ω2
14(M).

Moreover, using the natural L2 inner-product on d∗Ω3(M)∩Ω2
14(M) induced by ϕ, the Hessian D2H′3∣ϕ

can formally be identified with the invertible, linear map E(ϕ) = −1
3d
∗d. In particular, the critical

points of H′3 are non-degenerate.

Proof. Recall that Tϕ[ϕ]+ is simply dΩ2(M), by the stability of G2 3-forms. Let X ∈ Γ(M,TM) be
a vector-field on M. The Lie derivative of ϕ along X may be computed using Cartan’s formula [123,
Prop. 2.25(d)] to be:

LXϕ =X ⌟ dϕ + d(X ⌟ ϕ) = d(X ⌟ ϕ),

since dϕ = 0. Thus, as X varies, the space of Lie derivatives LXϕ, and hence the tangent space to
the orbit of Diff0(M) through ϕ, is precisely the space dΩ2

7(M).
Next, I describe the tangent space Tϕ ([ϕ]+/Diff0(M)). Recall that the usual Hodge decompo-

sition:
Ωp(M) =H p(M)⊕ dΩp−1(M)⊕ d∗Ωp+1(M)

is valid on closed orbifolds. Using the isomorphism:

d∗Ω3(M) dΩ2(M)
d

d∗G

(where G is the Green’s operator for the Hodge Laplacian ∆ induced by ϕ) I identify Tϕ[ϕ]+ ≅
d∗Ω3(M) and:

TϕDiff0(M) ≅ d∗GdΩ2
7(M) = d∗dΩ2

7(M) ⊂ d∗Ω3(M)

where the middle equality uses that G commutes with type-decomposition, since ϕ is torsion-free
(see Theorem 2.2.22). Thus, one can identify Tϕ ([ϕ]+/Diff0(M)) with the L2-orthocomplement
of d∗dΩ2

7(M) in d∗Ω3(M). Explicitly, writing ⟨, ⟩ for the L2 inner-product on forms induced by gϕ,
given γ ∈ d∗Ω3(M) and δ ∈ Ω2

7(M), one computes that:

⟨γ,d∗dδ⟩ = ⟨d∗dγ, δ⟩ = ⟨∆γ, δ⟩ = ⟨γ,∆δ⟩

and thus γ ∈ d∗dΩ2
7(M)� if and only if γ�∆Ω2

7(M). Using the refined Hodge decomposition (see
Theorem 2.2.22):

Ω2
7(M) =H 2

7 (M)⊕∆Ω2
7(M)

and since γ ∈ d∗Ω3(M) is automatically orthogonal to H 2
7 (M), it follows that γ ∈ d∗dΩ2

7(M)� if and
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only if γ�Ω2
7(M) and thus:

d∗dΩ2
7(M)� = d∗Ω3(M) ∩Ω2

14(M).

Using this description, together with Proposition 2.2.17, the second functional derivative of H′3
at ϕ is:

D2H′3∣ϕ ∶ (d∗Ω3(M) ∩Ω2
14(M))

2 R

(γ1, γ2) 1
3 ∫M γ1 ∧☀ϕ(d∗Idγ2).

(11.3.2)

Using eqn. (A.0.3), one may compute that for γ ∈ d∗Ω3(M) ∩Ω2
14(M):

d∗Idγ = −d∗dγ.

Thus, writing ⟨, ⟩ for the L2-inner product on d∗Ω3(M) induced by ϕ, it follows that:

D2H′3∣ϕ(γ1, γ2) = −
1

3
⟨dγ1,dγ2⟩,

as claimed.

In light of Proposition 11.3.1, and motivated by Morse theory, it is natural to ask whether the
critical point ϕ has a well-defined notion of Morse index. Clearly the classical Morse index of ϕ is
infinite, since D2H′3∣ϕ is negative definite. Nevertheless, ϕ has a well-defined spectral Morse index.
In particular, consider the second-order pseudodifferential operator acting on Ω2(M) via:

E (ϕ) = πharm,ϕ +∆ + 2d∗Id,

where πharm,ϕ denotes the L2-orthogonal projection onto ϕ-harmonic forms. With respect to the
decomposition:

Ω2(M) =H 2(M)⊕ dΩ1(M)⊕ d∗dΩ2
7(M)⊕ [d∗Ω3(M) ∩Ω2

14(M)]

obtained in the proof of Proposition 11.3.1, the operator E (ϕ) acts diagonally, given explicitly by:

E (ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

id on H 2(M);

dd∗ on dΩ1(M);

d∗d on d∗dΩ2
7(M);

−d∗d on d∗Ω3(M) ∩Ω2
14(M).

(11.3.3)

In particular, the operator E (ϕ) is invertible and self-adjoint, and has the same negative spectrum
as the operator E(ϕ) defined in Proposition 11.3.1 (up to a factor of 1

3 , which is irrelevant by the
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scale-invariance of spectral Morse indices). Thus, by Definition 11.2.4, the sum:

µϕ ∶ {s ∈ C ∣ Res > 7
2
} C

s ∑λ∈Spec(E(ϕ))
λ<0

∣λ∣−s

converges absolutely and locally uniformly, and admits a meromorphic continuation to all of C which
is holomorphic at 0. Moreover, the value at 0 is simply Ind(E (ϕ)) and since E (ϕ) depends smoothly
on ϕ and Ind ∶ Ψ>0inv−sa → R is smooth, it follows that µϕ(0) depends smoothly on ϕ. Thus, I obtain:

Theorem 11.3.4. Let M be a closed, oriented 7-orbifold and let G TF
2 (M) denote the moduli space

of torsion-free G2-structures on M. Define the µ3-invariant of a torsion-free G2 3-form ϕ to be the
value of the meromorphic function µϕ at 0. Then µ3 is diffeomorphism invariant, invariant under
rescaling ϕ↦ ℓ3ϕ for ℓ > 0 and defines a smooth map:

µ3 ∶ G TF
2 (M)→ R.

Proof. The only statement which remains to be proven is that µ3(ℓ3ϕ) = µ3(ϕ). However, gℓ3ϕ = ℓ2gϕ
and thus by [7, p. 306] d∗ ↦ ℓ−2d∗. Hence, whilst it is not true that E (ℓ3ϕ) = ℓ−2E (ϕ) (due to the
presence of πharm,ϕ in the definition of E (ϕ)) it is true that the negative spectrum of E (ℓ3ϕ) coincides
with the negative spectrum of ℓ−2E (ϕ); the result now follows from the scale-invariance of Ind.

11.4 µ4: Morse indices of the critical points of H4

The aim of this section is to prove that the critical points of the functional H4 also have well-defined
spectral Morse indices. Let M be a closed oriented 7-orbifold, let ψ be a torsion-free G2 4-form on
M and write H′4 for the functional [ψ]+/Diff0(M) → (0,∞) induced by H4. The Hessian D2H′4∣ψ is
completely described via the following result:

Proposition 11.4.1. Write Ω3
1⊕27(M) as a shorthand for Ω3

1(M)⊕Ω3
27(M). Then the tangent space

Tψ ([ψ]+/Diff0(M)) can formally be identified with the space:

d∗Ω4(M) ∩Ω3
1⊕27(M).

Moreover, there is an L2-orthogonal decomposition:

d∗Ω4(M) ∩Ω3
1⊕27(M) = {ω ∈ d∗Ω4(M) ∩Ω3

1⊕27(M) ∣ π27dω = 0}⊕ (d∗Ω4(M) ∩Ω3
27(M))

= S+4 (ψ)⊕ S−4 (ψ)

and, using the L2 inner-product, D2H′4∣ψ can formally be identified with the invertible linear map
F(ψ) = d∗d⊕−d∗d on S+4 (ψ)⊕S−4 (ψ). In particular, D2H′4∣ψ is positive/negative definite on S±4 (ψ)
respectively and the critical points of H′4 are non-degenerate.
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Proof. As in the proof of Proposition 11.3.1, one can identify Tψ[ψ]+ and Tψ (Diff0(M) ⋅ ψ) with the
spaces d∗Ω4(M) and d∗dΩ3

7(M) respectively. Hence one can identify Tψ ([ψ]+/Diff0(M)) with the
L2-orthocomplement of d∗dΩ3

7(M) in d∗Ω4(M), viz.:

d∗Ω4(M) ∩Ω3
1⊕27(M).

Using this description, together with Proposition 2.2.17, the second functional derivative of H′4
at ψ is:

D2H′4∣ψ ∶ (d∗Ω4(M) ∩Ω3
1⊕27(M))

2 R

(ω1, ω2) 1
4 ∫M ω1 ∧☀ψ(d∗Jdω2)

(11.4.2)

where J = 3
4π1 + π7 − π27 was defined in eqn. (2.2.18). To further analyse D2H′4∣ψ, I prove:

Claim 11.4.3. There is an L2-orthogonal decomposition:

d∗Ω4(M) ∩Ω3
1⊕27(M) = {ω ∈ d∗Ω4(M) ∩Ω3

1⊕27(M) ∣ π27dω = 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= S+4 (ψ)

⊕{ω ∈ d∗Ω4(M) ∩Ω3
1⊕27(M) ∣ π7dω = 0}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= S−4 (ψ)

.

Moreover:
{ω ∈ d∗Ω4(M) ∩Ω3

1⊕27(M) ∣ π7dω = 0} = d∗Ω4(M) ∩Ω3
27(M).

Proof of Claim. Recall that in the statement of Theorem 2.2.25, there are no operators of the form
d11 and d271 . This implies, in particular, that:

d(Ω3
1⊕27(M)) ⊂ Ω4

7(M)⊕Ω4
27(M) (11.4.4)

and hence the spaces dS+4 (ψ) ⊂ Ω4
7(M) and dS−4 (ψ) ⊂ Ω4

27(M) are L2-orthogonal. Using Theorem
2.2.22, one can also verify that d∗dS±4 (ψ) =∆S±4 (ψ) = S±4 (ψ). Thus:

S+4 (ψ) and S−4 (ψ) are L2-orthogonal⇔ d∗dS+4 (ψ) and S−4 (ψ) are L2-orthogonal
⇔ dS+4 (ψ) and dS−4 (ψ) are L2-orthogonal,

so S+4 (ψ) and S−4 (ψ) are indeed L2-orthogonal as claimed. To prove the claim, therefore, it suffices
to prove that each ω ∈ d∗Ω4(M) ∩Ω3

1⊕27(M) can be written as ω = ω+ + ω−, for some ω± ∈ S±4 (ψ).
Given ω ∈ d∗Ω4(M) ∩ Ω3

1⊕27(M), write ω = fϕ + γ for some unique f ∈ Ω0(M) and γ ∈ Ω3
27(M).

Note that one may trivially write:

ω = (fϕ + 7

12
d727d

27
7 Gγ) + (γ −

7

12
d727d

27
7 Gγ) = ω+ + ω−, (11.4.5)

where G denotes the Green’s operator for the Hodge Laplacian defined by ψ. I claim that ω± ∈ S±4 (ψ),
i.e.:

ω± ∈ d∗Ω4(M) ∩Ω3
1⊕27(M), π27dω

+ = 0 and π7dω
− = 0.
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Begin with the first of these points. Since clearly ω± ∈ Ω3
1⊕27(M), it suffices to prove ω± ∈ d∗Ω4(M).

Since ω = fϕ + γ ∈ d∗Ω4(M) ⊂ ∆Ω3(M), it follows that fϕ ∈ ∆Ω3
1(M) by Theorem 2.2.22 and hence

it is orthogonal to H 3
1 (M); likewise γ ∈∆Ω3

27(M) is orthogonal to H 3
27(M). Moreover:

7

12
d727d

27
7 Gγ =

7

12
Gd727d

27
7 γ ∈∆Ω3

27(M)

and hence 7
12d

7
27d

27
7 Gγ is also orthogonal to H 3

27(M). It follows that ω± are each orthogonal to
H 3(M) and so to prove that ω± ∈ d∗Ω4(M), it suffices to prove that d∗ω± = 0.

In general, given f ′ ∈ Ω0(M) and γ′ ∈ Ω3
27(M), by eqns. (A.0.1) and (A.0.4) the condition d∗(f ′ϕ+

γ′) = 0 is equivalent to the pair of equations:

d277 γ
′ = 3df ′ and d2714γ

′ = 0. (11.4.6)

Since ω = fϕ + γ ∈ d∗Ω4(M), it follows that d277 γ = 3df and d2714γ = 0. Therefore:

d277 (
7

12
d727d

27
7 Gγ) = d277 (∆Gγ − (d2727)2Gγ) (using eqn. (A.0.9) and d2714γ = 0)

= d277 ∆Gγ
²= γ

− (d277 d2727)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

2d
7
7d

27
7

d2727Gγ (using γ � H 3
27(M) and eqn. (A.0.5))

= d277 γ −
1

2
d77 (d277 d2727)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= −3

2d
14
7 d2714

Gγ (using two subequations from eqn. (A.0.5))

= d277 γ (using d2714Gγ = Gd2714γ = 0).

Likewise:

d2714 (
7

12
d727d

27
7 Gγ) = d2714γ

±
= 0

− (d2714d2727)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= −1

4d
7
14d

27
7

d2727Gγ (using eqn. (A.0.5))

= 1

4
d714 (d277 d2727)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= −3

2d
14
7 d2714

Gγ (using two subequations from eqn. (A.0.5))

= 0 (using d2714Gγ = Gd2714γ = 0).

It follows from these last two calculations, together with the conditions d277 γ = 3df and d2714γ = 0,
that ω± each satisfy eqn. (11.4.6) and hence d∗ω± = 0. Thus, all that remains is to prove π27dω+ = 0
and π7dω− = 0.
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Using eqn. (A.0.4), one computes:

π27dω
+ = 7

12
☀ϕ (d2727d727)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

2
d7
27d

7
7

d277 Gγ (by eqn. (A.0.5))

= 7

24
☀ϕd

7
27 (d77d277 )
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= −3d14

7 d27
14

Gγ (by eqn. (A.0.5))

= −7
8
☀ϕd

7
27d

14
7 d2714Gγ = 0,

since d2714Gγ = Gd2714γ = 0. Similarly:

π7dω
− = 1

4
d277 [γ −

7

12
d727d

27
7 Gγ] ∧ ϕ = 0,

since d277 ( 7
12d

7
27d

27
7 Gγ) = d277 γ, as above. Thus ω± ∈ S±4 (ψ), as claimed.

Finally, to verify that S−4 (ψ) = d∗Ω4(M)∩Ω3
27(M), note that S−4 (ψ) ⊆ d∗Ω4(M)∩Ω3

27(M) follows
by eqn. (11.4.5). Conversely, if γ ∈ d∗Ω4(M) ∩Ω3

27(M), then d∗γ = 0 forces d277 γ = 0 by eqn. (11.4.6)
and hence π7dγ = 0 (see eqn. (A.0.4)). Thus γ ∈ S−4 (ψ) as claimed.

Given this claim, Theorem 11.4.1 follows swiftly. Indeed, recalling the definition of J in eqn.
(2.2.18), it follows that for ω ∈ d∗Ω4(M) ∩Ω3

1⊕27(M):

d∗Jdω =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+d∗dω ∈ S+4 (ψ) if ω ∈ S+4 (ψ);
−d∗dω ∈ S−4 (ψ) if ω ∈ S−4 (ψ).

Thus, the symmetric bilinear form D2H′4∣ψ is given by:

D2H′4∣ψ(ω1, ω2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+⟨dω1,dω2⟩ if ω1, ω2 ∈ S+4 (ψ);

−⟨dω1,dω2⟩ if ω1, ω2 ∈ S−4 (ψ).

It follows from Theorem 5.1.11 that both S± are infinite dimensional. In particular, the classical
Morse index of ψ is, as for H3, infinite. Nevertheless, it is again possible to define the regularised
Morse index of ψ. Consider the second-order pseudodifferential operator:

F (ψ) = πharm,ψ +∆ + 2d∗Jd

where πharm,ψ denotes the L2-orthogonal projection onto ψ-harmonic forms. With respect to the
decomposition:

Ω3 =H 3(M)⊕ dΩ2(M)⊕ d∗dΩ3
7(M)⊕ S+4 (ψ)⊕ S−4 (ψ)
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obtained in the proof of Proposition 11.4.1, the operator F (ψ) acts diagonally, given explicitly by:

F (ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

id on H 3(M);

dd∗ on dΩ2(M);

d∗d on d∗dΩ3
7(M);

3d∗d on S+4 (ψ);
−d∗d on S−4 (ψ).

(11.4.7)

In particular, the operator F (ψ) is invertible and self-adjoint, and has the same negative spectrum
as the operator F(ψ) defined in Proposition 11.4.1 (up to a factor of 1

4 , which is irrelevant by the
scale-invariance of spectral Morse indices). Thus, by Definition 11.2.4, the sum:

µψ ∶ {s ∈ C ∣ Res > 7
2
} C

s ∑λ∈Spec(F(ψ))
λ<0

∣λ∣−s

converges absolutely and locally uniformly, and admits a meromorphic continuation to all of C which
is holomorphic at 0. Moreover, the value at 0 is simply Ind(F (ψ)) and since F (ψ) depends
smoothly on ψ and Ind ∶ Ψ>0inv−sa → R is smooth, it follows that µψ(0) depends smoothly on ψ.
Moreover µψ(0) is scale-invariant by the same argument as for µ3. Thus, it has been shown that:

Theorem 11.4.8. Let M be a closed, oriented 7-orbifold and let G TF
2 (M) denote the moduli space

of torsion-free G2-structures on M. Define the µ4-invariant of a torsion-free G2 4-form ψ to be the
value of the meromorphic function µψ at 0. Then µ4 is diffeomorphism invariant, invariant under
rescaling ψ ↦ ℓ4ψ for ℓ > 0 and defines a smooth map:

µ4 ∶ G TF
2 (M)→ R.

11.5 Computing the eigenvalues of E(ϕ) and F(ψ) on Joyce
orbifolds

This is the first of two sections which aim to compute µ3 and µ4 on an arbitrary Joyce orbifold MΓ.
Let ϕ be a (constant) torsion-free G2 3-form on MΓ and let ψ denote the corresponding G2 4-form.
Recall from §11.3 that µ3(ϕ) is the value at 0 of the meromorphic extension of:

µϕ ∶ {s ∈ C ∣ Res > 7
2
} C

s ∑λ∈Spec(E(ϕ))
λ<0

∣λ∣−s

222



where E(ϕ) acts on d∗Ω3(MΓ) ∩ Ω2
14(MΓ) via −d∗d. Thus the task is to explicitly compute the

spectrum of E(ϕ). Since exterior forms on MΓ are equivalent to Γ-invariant exterior forms on T7 and
−d∗d is a real operator, and using elliptic regularity, this is equivalent to computing the spectrum of
−d∗d acting on the complex Hilbert space:

HΓ = (d∗H1Ω3(T7)C ∩L2Ω2
14(T7)C)

Γ
,

where (−)C = (−)⊗R C, L2 and H1 denote Lebesgue and Sobolev spaces of sections respectively and
(−)Γ denotes the Γ-invariant subspace.

To this end, identify (T0T7)C ≅ (R
7)C and recall that every ω ∈ ⋀● (R7)∗C defines a left-invariant,

complex exterior form on T7 which I also denote by ω. This defines a natural embedding ⋀● (R7)∗C ↪
Ω●(T7)C onto the space of constant (equivalently, ϕ-harmonic) complex exterior forms on T7. Given
an l ∈ Z7, define a smooth C-valued function χl ∶ T7 → C by:

χl ∶ T7 → C

x +Z7 ↦ e2πig(l,x),

where g = gϕ denotes the metric induced by ϕ. Define:

Hl = {χl ⋅ α ∣ α ∈⋀2
14 (R7)∗C satisfies l ⌟ α = 0}

and finally define:
L = {−4π2∥l∥2g ∣ l ∈ Z7} .

Proposition 11.5.1. For each λ ∈ L/{0}, define:

H(λ) = ⊕
l ∈ Z7 ∶ −4π2∥l∥2g = λ

Hl.

Then there is a decomposition:
H = ⊕

λ ∈ L/{0}
H(λ)

of H into eigenspaces of E(ϕ) = −d∗d, where E(ϕ) acts on H(λ) via λ Id.

Proof. By the Peter–Weyl theorem [113]:

L2Ω2
14(T7)C = ⊕

l ∈ Z7

{χlα ∣ α ∈⋀2
14 (R7)∗C}.

Given α = ∑l∈Z7 χlα
l ∈ L2Ω2

14(T7)C, observe that:

πharmα = α0 ∈⋀2
14 (R7)∗C .

Similarly, using the identity:
dχl = 2πiχll♭,
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where ♭ ∶ R7 → (R7)∗ denotes the musical isomorphism induced by g, one computes that for α ∈
Ω2
14(T7)C smooth:

d∗α = −2πi∑
l∈Z7

χl(l ⌟ αl).

Since the space H = d∗H1Ω3(T7)C ∩L2Ω2
14(T7)C is simply the closure of the space:

{α ∈ Ω2
14(T7)C ∣ πharmα = 0 and d∗α = 0}

in the L2-norm, it follows that:
H = ⊕

l ∈ Z7/{0}
Hl

= ⊕
λ ∈ L/{0}

H(λ).

Thus to complete the proof, it suffices to note that, for χlαl ∈ Hl:

−d∗d(χlαl) = −4π2∣∣l∣∣2gχlαl,

which follows from l ⌟ α = 0 (see [15, p. 363]). Thus H(λ) is in fact the λ-eigenspace of −d∗d, as
required.

Since Γ commutes with the action of −d∗d, it follows that:

HΓ = ⊕
λ ∈ L/{0}

H(λ)Γ.

Thus, for Re(s) > 7
2 , one finds that:

µE(ϕ)(s) = ∑
λ∈L/{0}

dimH(λ)Γ

∣λ∣s
. (11.5.2)

The calculation for µ4 is closely analogous: firstly note that the negative spectrum of F(ψ) is the
same as the spectrum of −d∗d acting on the space:

(H′)Γ = (d∗H1Ω4(T7)C ∩L2Ω3
27(T7)C)

Γ
.

For l ∈ Z7 and λ ∈ L, define:

H′l = {χl ⋅ α ∣ α ∈⋀
3
27 (R7)∗C satisfies l ⌟ α = 0}

and:
H′(λ) = ⊕

l ∈ Z7 ∶ −4π2∥l∥2g = λ
H′l.
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Then as for µ3:
(H′)Γ = ⊕

λ ∈ L/{0}
H′(λ)Γ

where −d∗d acts on each H′(λ) by λ Id. It follows that for Re(s) > 7
2 :

µF ′(ψ)(s) = ∑
λ∈L/{0}

dimH′(λ)Γ

∣λ∣s
.

Thus, the computation of µ3(ϕ) and µ4(ψ) has been reduced to the representation-theoretic problem
of computing dimH(λ)Γ and dimH′(λ)Γ for each λ ∈ L/{0}. This will occupy the next section.

11.6 Multiplicities of the eigenvalues of E(ϕ) and F(ψ)

Write ρ(λ) for the representation of Γ on H(λ) =⊕l ∈ Z7 ∶ −4π2∥l∥2g = λ
Hl. Recall that the character

χ(λ) ∶ Γ→ R of ρ(λ) is defined by:

χ(λ)(A) = TrH(λ)(ρ(λ)(A)), A ∈ Γ.

The dimension of H(λ)Γ can be computed using χ(λ) via the formula [52, eqn. (2.9)]:

dimH(λ)Γ = 1

∣Γ∣ ∑A∈Γ
χ(λ)(A). (11.6.1)

Thus, the task is to compute the character χ(λ). This is accomplished by the following proposition:

Proposition 11.6.2. Given A ∈ End(R7), define:

Tr
SU(3)
8 (A) = TrR7(A)2 −TrR7(A2)

2
− 2TrR7(A) + 1. (11.6.3)

Moreover, given λ ∈ L/{0} and A = (A, t) ∈ SL(7;Z) ⋉T7, define:

G(λ,A) = {l ∈ Z7 ∣ − 4π2∥l∥2g = λ,Al = l} .

Then:
χ(λ)(A) = ∑

l∈G(λ,A)
e2πig(l,t)Tr

SU(3)
8 (A).

In particular, by eqn. (11.6.1):

dimH(λ)Γ = 1

∣Γ∣ ∑
A=(A,t)∈Γ

∑
l∈G(λ,A)

e2πig(l,t)Tr
SU(3)
8 (A).

The proof proceeds by a series of lemmas:
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Lemma 11.6.4. For each Hl ⊂ H(λ), define a representation ρl of Γ on Hl via:

ρl(A)[u] = projHl {ρ
(λ)(A)[u]} , A ∈ Γ, u ∈ Hl,

where projHl denotes the projection H(λ) = ⊕l′ ∈ Z7 ∶ −4π2∥l′∥2g = λ
Hl′ → Hl, and write χl for the

corresponding character. Then for each A ∈ Γ:

χ(λ)(A) = ∑
l∈G(λ,A)

χl(A). (11.6.5)

Proof. For all A ∈ Γ, the linear map ρ(λ)(A) is represented by the block matrix:

⎛
⎜⎜
⎝

ρl1(A) ∗ ⋯
∗ ρl2(A)
⋮ ⋱

⎞
⎟⎟
⎠

where H(λ) = Hl1 ⊕Hl2 ⊕ .... In particular:

χ(λ) = ∑
l ∈ Z7 ∶ −4π2∥l∥2g = λ

χl. (11.6.6)

Now given A = (A, t) ∈ Γ ⊂ SL(7;Z) ×T7, for χlαl = e2πig(l,x)αl ∈ Hl:

A∗(e2πig(l,x)αl) = e2πig(l,t)e2πig(A
T l,x)A∗αl ∈ HAT l. (11.6.7)

Thus ρl(A) is non-zero if and only if AT l = l, which is equivalent to Al = l (since A preserves g). This
completes the proof.

Lemma 11.6.8. Given l ∈ G(λ,A), define:

Al = {α ∈⋀2
14 (R7) ∣ l ⌟ α = 0} .

Then the trace Tr(Al)C(A) of A = p1(A) acting on (Al)C via pullback is:

Tr(Al)C(A) = Tr
SU(3)
8 (A) = TrR7(A)2 −TrR7(A2)

2
− 2TrR7(A) + 1.

Proof. Firstly, note that since complexification does not affect the trace of a real operator, it is
equivalent to compute the trace of A acting on Al. Identify StabGL+(7;R)(ϕ) with the group G2 and
recall that StabG2

(l) ≅ SU(3) [68, Prop. 2.7]. Let B = ⟨l⟩� with its natural orientation, let θ ∈ (R7)∗

be a correctly oriented annihilator of B and using the splitting R7 = ⟨l⟩⊕B write:

ϕ = θ ∧ ω + ρ.
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Since SU(3) ⊂ GL(3;C), B inherits a natural complex structure J with respect to which ω is a
positive (1,1)-form on B [35] and there is an SU(3)-invariant decomposition:

⋀2B∗ = R ⋅ ω ⊕ [⋀1,1
8 B∗]⊕ ⟦⋀2,0B∗⟧

where [⋀1,18 B∗] is the orthocomplement to R ⋅ ω in [⋀1,1B∗] and ⟦⋀2,0B∗⟧ = {u ⌟ ρ ∣ u ∈ B} ≅ B. (In
fact, the 3-form ρ is an SL(3;C) 3-form, and the complex structure may be written explicitly in terms
of ρ; see [71]). Define an isomorphism:

χ6 ∶ B∗ Ð̃→ ⟦⋀2,0B∗⟧

v ⌟ ω ↦ v ⌟ ρ.

Then by [35, Lem. 1]:

⋀2
14 (R7)∗ = [⋀1,1

8 B∗]⊕ {2θ ∧ α + χ6(α) ∣ α ∈ B∗} .

In particular:
Al = {α ∈⋀2

14 (R7) ∣ l ⌟ α = 0} = [⋀1,1
8 B∗]

and thus TrAl(A) is simply the trace of A acting on the space [⋀1,18 B∗].
Using [52, Prop. 2.1], the trace of A acting on ⋀2 (R7)∗ is:

Tr⋀2(R7)∗(A) =
TrR7(A)2 −TrR7(A2)

2
. (11.6.9)

Hence, using ⋀2 (R7)∗ = ⋀27 (R7)∗ ⊕⋀214 (R7)∗ ≅ R7 ⊕⋀214 (R7)∗, one finds that:

Tr⋀214(R7)∗(A) =
TrR7(A)2 −TrR7(A2)

2
−TrR7(A). (11.6.10)

Next, note that TrB(A) = TrR7(A) − 1, since Al = l. Thus ⋀214 (R7)∗ ≅ B⊕ [⋀1,18 B∗], yields:

Tr[⋀1,18 B∗](A) = Tr⋀214(R7)∗(A) −TrR7(A) + 1 = TrR7(A)2 −TrR7(A2)
2

− 2TrR7(A) + 1,

as required.

Proof of Proposition 11.6.2. By eqn. (11.6.7), it follows that for A = (A, t) ∈ Γ, l ∈ G(λ,A):

χl(A) = e2πig(l,t)Tr(Al)C(A) = e
2πig(l,t)Tr

SU(3)
8 (A).

The result now follows from Lemma 11.6.4.
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Using Proposition 11.6.2, it follows that for all Re(s) > 7
2 :

µE(ϕ)(s) = ∑
λ∈L/{0}

1

∣λ∣s
⎛
⎝
1

∣Γ∣ ∑
A=(A,t)∈Γ

∑
l∈G(λ,A)

e2πig(l,t)Tr
SU(3)
8 (A)

⎞
⎠
. (11.6.11)

Write G(A) = {l ∈ Z7 ∣ Al = l}, a lattice in the 1-eigenspace of A. Note that:

• The 1-eigenspace of A is non-zero, since A is orientation-preserving and preserves the metric g
(and the dimension of R7 is odd);

• Whilst the lattice G(A) need not have rank equal to the dimension of the 1-eigenspace of A, it
must certainly be non-zero. Indeed, since A ∈ SL(7;Z), A defines a linear map on Q7 ⊂ R7 which
also has a (non-zero) eigenvector u ∈ Q7 with eigenvalue 1 and by rescaling u appropriately,
one may ensure that u ∈ Z7/{0}.

Then by rearranging eqn. (11.6.11), one finds:

µE(ϕ)(s) =
1

(2π)2s∣Γ∣ ∑
A=(A,t)∈Γ

Tr
SU(3)
8 (A)

⎛
⎝ ∑
l∈G(A)/{0}

e2πig(l,t)

∥l∥2sg

⎞
⎠
.

The sum of the form:

∑
l∈G(A)/{0}

e2πig(l,t)

∥l∥2sg

is an example of an Epstein ζ-function, and hence the value at s = 0 of its meromorphic extension to
C is always −1, independent of t or the rank of the lattice [43, p. 627]. Thus:

µ3(MΓ, ϕ) =
−1
∣Γ∣ ∑
A=(A,t)∈Γ

Tr
SU(3)
8 (A);

in particular, this formula is independent of ϕ. Thus it has been established:

Theorem 11.6.12. Let MΓ = Γ/T
7 be a Joyce orbifold. The µ3-invariant µ3 ∶ G TF

2 (MΓ) → R is
constant, taking the value:

µ3(MΓ) =
−1
∣Γ∣ ∑
A=(A,t)∈Γ

Tr
SU(3)
8 (A).

Now consider µ4. All of the above analysis is easily adapted to the case of µ4 except Lemma
11.6.8, which must be replaced by the following result:

Lemma 11.6.13. Given l ∈ G(λ,A), define:

A′l = {α ∈⋀
3
27 (R7)C ∣ l ⌟ α = 0} .

Then the trace Tr(A′
l
)C
(A) of A = p1(A) acting on (A′l)C via pullback is:

Tr(A′
l
)C(A) = Tr

SU(3)
12 (A) = TrR7(A)3 + 2TrR7(A3) − 3TrR7(A2)TrR7(A)

6
− TrR7(A)2 −TrR7(A2)

2
− 2.
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Proof. As before, note that Tr(A′
l
)C(A) = TrA′l(A). Let B, θ, ρ, ω and J be as in the proof of Lemma

11.6.8. Then there is a decomposition:

⋀3B∗ = R ⋅ ⟨ρ, J∗ρ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⟦⋀(3,0)B∗⟧

⊕ ⟦⋀2,1
6 B∗⟧⊕ ⟦⋀2,1

12B
∗⟧

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⟦⋀(2,1)B∗⟧

into simple SU(3)-modules, where ⟦⋀2,16 B∗⟧ = {ϑ ∧ ω ∣ ϑ ∈ B∗} ≅ B and ⟦⋀2,112B∗⟧ denotes the ortho-
complement to ⟦⋀2,16 B∗⟧ in ⟦⋀2,1B∗⟧. Define an isomorphism:

χ̃6 ∶ B∗ Ð̃→ ⟦⋀2,0B∗⟧

u ⌟ ω ↦ u ⌟ J∗ρ ρ.

Then one may verify that:

⋀3
27A

∗ = R ⋅ (4θ ∧ ω − 3ρ)⊕ {θ ∧ χ̃6(α) − α ∧ ω ∣ α ∈ B∗}⊕ θ ∧ [⋀1,1
8 B∗]⊕ ⟦⋀2,1

12B
∗⟧

and hence:
A′l = {α ∈⋀

2
14 (R7) ∣ l ⌟ α = 0} = ⟦⋀2,1

12B
∗⟧ .

One may compute directly that:

Tr⋀3(R7)∗(A) =
TrR7(A)3 + 2TrR7(A3) − 3TrR7(A2)TrR7(A)

6
. (11.6.14)

Hence, using the G2-invariant decomposition ⋀3 (R7)∗ ≅ R⊕R7 ⊕⋀327 (R7)∗, one finds that:

Tr⋀327(R7)∗(A) =
TrR7(A)3 + 2TrR7(A3) − 3TrR7(A2)TrR7(A)

6
−TrR7(A) − 1. (11.6.15)

Now, since there is an SU(3)-invariant decomposition ⋀327 (R7)∗ ≅ R ⊕ B ⊕ [⋀1,18 B∗] ⊕ ⟦⋀2,112B
∗⟧, it

follows that:
Tr⟦⋀2,112B∗⟧(A) = Tr⋀327(R7)∗(A) − 1 −TrB(A) −Tr[⋀1,18 B∗](A)

= Tr⋀327(R7)∗(A) −TrR7(A) −TrSU(3)8 (A).
(11.6.16)

The result follows.

Arguing as in for µ3, one obtains:

Theorem 11.6.17. Let MΓ = Γ/T
7 be a Joyce orbifold. Then the µ4-invariant µ4 ∶ G TF

2 (MΓ) → R
is constant, taking the value:

µ4(MΓ) =
−1
∣Γ∣ ∑
A=(A,t)∈Γ

Tr
SU(3)
12 (A).
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11.7 Examples

Using the explicit formulae for µ3 and µ4 given in Theorems 11.6.12 and 11.6.17, many explicit
examples of µ3 and µ4 can be computed in practice. I give a few examples below:

Example 11.7.1 (Flat Tori). Firstly consider the case Γ = 1. Then:

µ3(T7) = −TrSU(3)8 (Id) = −8

and:
µ4(T7) = −TrSU(3)12 (Id) = −12.

(Note that Tr
SU(3)
8 (Id) = dim [⋀1,18 B∗] and Tr

SU(3)
12 (Id) = dim ⟦⋀2,112B

∗⟧, as expected.)

For the first non-trivial case, let me consider a family of examples in [77, §3.1]. Consider Γ̃ =
⟨α,β, γ⟩ ⊂ (G2 ∩ SL(7;Z)) ⋉T7 where:

α ∶ (x1, x2, x3, x4, x5, x6, x7)↦ (−x1,−x2,−x3,−x4, x5, x6, x7)

β ∶ (x1, x2, x3, x4, x5, x6, x7)↦ (b1 − x1, b2 − x2, x3, x4,−x5,−x6, x7)

γ ∶ (x1, x2, x3, x4, x5, x6, x7)↦ (c1 − x1, x2, c3 − x3, x4, c5 − x5, x6,−x7)

where b1, b2, c1, c3, c5 ∈ {0, 12}. Then it is shown in [77] that Γ̃ ≅ (Z/2)
3
, generated by α, β and γ.

One may compute that for all A = (A, t) ∈ Γ̃/{Id}, A is diagonal, with diagonal entries (in some
order):

1,1,1,−1,−1,−1,−1.

Thus, one may verify that for all A = (A, t) ∈ Γ̃/{Id}:

Tr
SU(3)
8 (A) = 0 and Tr

SU(3)
12 (A) = 4.

Using this, one can compute further examples:

Example 11.7.2 (K3 Orbifold). Take Γ1 = ⟨α⟩ ⊂ Γ̃. Then M1 = MΓ1
≅ (Z/2)/

T4 × T3 where

(Z/2)/
T4 is the standard orbifold used in the Kummer construction of the K3 surface. Using

Theorems 11.6.12 and 11.6.17, one may compute that:

µ3(M1) =
−1
2
(8 + 0) = −4

and:
µ4(M1) =

−1
2
(12 + 4) = −8.

Example 11.7.3 (Calabi-Yau Orbifold). Set (b1, b2) = (12 ,0) and take Γ2 = ⟨α,β⟩ ⊂ Γ̃. Then
M2 = MΓ2

≅ (Z/2)
2/T6 × S1, where (Z/2)

2/T6 is an SU(3)-orbifold admitting a smooth Calabi-
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Yau 3-fold as a crepant resolution. Then:

µ3(M2) =
−1
4
(8 + 3 × 0) = −2

and:
µ4(M2) =

−1
4
(12 + 3 × 4) = −6.

Example 11.7.4 (G2 Orbifold). Now consider the full group Γ3 = Γ̃. Then for suitable choices of bi

and cj , the orbifold M3 =MΓ3
may be resolved to form a smooth G2-manifold (see [76, 77]). Then:

µ3(M3) =
−1
8
(8 + 7 × 0) = −1

and:
µ4(M3) =

−1
8
(12 + 7 × 4) = −5.

Using similar methods, many further explicit examples can be computed.

Remark 11.7.5. In [31], Crowley–Goette–Nordström defined a different spectral invariant of torsion-
free G2-structures on manifolds, denoted ν. By [44, Thm. 7.7], ν is equally well-defined on closed
G2-orbifolds. Moreover, for any closed G2-orbifold (M, ϕ) which admits an orientation-reversing
isometry, ν(ϕ) = 0 (cf. [31, Prop. 1.5(iii)]).

Now consider the torsion-free G2-structure ϕ0 on the orbifolds T7, M1 and M2 above. Each of
(T7, ϕ0), (M1, ϕ0) and (M2, ϕ0) admits an orientation-reversing isometry, since each orbifold is the
Riemannian product of S1 with a 6-orbifold. Thus:

ν(T7, ϕ0) = ν(M1, ϕ0) = ν(M2, ϕ0) = 0;

in particular, the ν-invariant alone cannot distinguish between these three non-diffeomorphic G2-
orbifolds. By contrast:

µ3(T7) = −8, µ3(M1) = −4 and µ3(M2) = −2

µ4(T7) = −12, µ4(M1) = −8 and µ4(M2) = −6

and thus either of µ3 or µ4 alone is sufficient to distinguish the orbifolds T7, M1 and M2. This
provides some evidence that the µ3 and µ4 might be better suited than the ν-invariant to studying
Joyce orbifolds, and thus perhaps also to studying Joyce manifolds.
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Chapter 12

Concluding remarks and open questions

Prior to this thesis, the ν-invariant discussed above was the only known invariant of torsion-free G2-
structures. Whilst ν has been effectively computed for the extra-twisted connect-sum G2-manifolds
constructed in [30, 110], it is not known how to compute ν for Joyce manifolds.

The µ-invariants introduced above aim to address this issue. In particular, Chapter 11 lays the
foundations for a larger project for obtaining formulae for the µ-invariants µ3 and µ4 on an arbitrary
Joyce manifold, as constructed in [76, 77, 78]. I now briefly outline the proposed shape of such a
project.

Recall that, given a Joyce orbifold MΓ with torsion-free G2 3-form ϕ equipped with a choice of
resolution data (see [78, Defn. 11.4.1]) there is a smooth resolution M̃Γ of M together with a family of
torsion-free G2 3-forms ϕt for t > 0 sufficiently small such that (M̃Γ, ϕt) tends to the orbifold (MΓ, ϕ)
in the Gromov–Hausdorff sense as t → 0 (cf. [78, Thm. 11.6.2]). The first stage in the project would
be to verify that the value µ3(ϕt) was independent of t, and similarly for µ4. Specifically, I conjecture
that:

Conjecture 12.0.1. Let M be a closed, oriented 7-orbifold. Then the µ-invariants:

µ3,4 ∶ G TF
2 (M)→ R

are locally constant (i.e. constant on each connected component of the moduli space).

Given Conjecture 12.0.1, to compute the value of µ3,4(ϕt) at any fixed value of t, it would suffice
to compute the limiting value of µ3,4(ϕt). It is then hoped that this limiting value will be closely
related to µ3,4(ϕ), the µ3,4-invariant of the orbifold (MΓ, ϕ), which can be explicitly calculated using
the results of Chapter 11.

The proof of Conjecture 12.0.1 is anticipated to proceed as follows: restricting for simplicity to the
case of manifolds, it follows from the results of [10] that given a 1-parameter family ϕ(s) ∈ G TF

2 (M)
(s ∈ (−ε, ε)), the derivative d

dsµ3,4(ϕ(s))∣s=0 is local, meaning that it can be written in the form:

∫
M

α0 (ϕ(0), ϕ̇(0))
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for some 7-form α0 depending linearly on ϕ̇(0). By exploiting G2-invariance as in [7], one can verify
that α0 is in fact a polynomial in the derivatives of ϕ̇(0) and the derivatives of the Riemann tensor R
of ϕ(0), which is linear in ϕ̇(0). Moreover, the possible monomials occurring in this polynomial can be
explicitly computed (although computing the coefficients is impractical). Thus, to prove Conjecture
12.0.1, the task is to prove that each monomial vanishes when integrated over M, a result which is
expected to follow from the fact that ϕ̇(0) may be taken to be harmonic with respect to ϕ(0) (since
Tϕ(0)G

TF
2 (M) =H 3

ϕ(0)(M); see [78, Thm. 10.4.4]). Verifying this result will form the basis of a future
project.
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Appendix A

Formulae for refined exterior derivatives on
G2-manifolds

Recall that on a G2-manifold (M, ϕ), the usual exterior derivative may be decomposed according to
type, yielding the ‘refined’ exterior differential operators:

d17 ∶ Ω0(M)→ Ω1(M) d77 ∶ Ω1(M)→ Ω1(M) d714 ∶ Ω1(M)→ Ω2
14(M)

f ↦ df α ↦☀ϕd(α ∧ ψ) α ↦ π14(dα)

d727 ∶ Ω1(M)→ Ω3
27(M) d1427 ∶ Ω2

14(M)→ Ω3
27(M) d2727 ∶ Ω3

27(M)→ Ω3
27(M)

α ↦ π27d☀ϕ(α ∧ ψ) β ↦ π27(dβ) γ ↦☀ϕπ27(dβ).

Analogously, define d71 = (d17)∗, d147 = (d714)∗, d277 = (d727)∗ and d2714 = (d1427)∗, where ∗ denotes the
formal L2 adjoint (d77 and d2727 are both formally L2 self-adjoint). Then the main result of [22, §5] is:

Theorem. All exterior and co-exterior derivatives on the G2-manifold (M, ϕ) can be expressed purely
in terms of the operators d17, d71, d77, d714, d147 , d727, d277 , d1427, d2714 and d2727. Explicitly:

• For f ∈ Ω0(M):

df = d17f, d(fϕ) = d17f ∧ ϕ and d(fψ) = d17f ∧ ψ; (A.0.1)

• For α ∈ Ω1(M):

dα = 1

3
☀ϕ (d77α ∧☀ϕϕ) + d714α, d(α ∧ ϕ) = 2

3
d77α ∧ ψ −☀ϕd

7
14α,

d☀ϕ(α ∧ ϕ) =
4

7
(d71α)ψ +

1

2
d77α ∧ ϕ +☀ϕd

7
27α,

d (☀ϕ(α ∧☀ϕϕ)) = −
3

7
(d71α)ϕ −

1

2
☀ϕ (d77α ∧ ϕ) + d727α,

d(α ∧ ψ) =☀ϕd
7
7α

1 and d(☀ϕα) = − (d71α) volϕ.

(A.0.2)

1This is incorrectly stated in [22, §5] as d(α ∧ ψ) = −☀ϕd
7
7. The error was pointed out by Bryant–Xu in [24].
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• For β ∈ Ω2
14(M):

dβ = 1

4
☀ϕ(d147 β ∧ ϕ) + d1427β and d∗β = d147 β; (A.0.3)

• For γ ∈ Ω3
27(M):

dγ = 1

4
d277 γ ∧ ϕ +☀ϕd

27
27γ and d∗γ = 1

3
☀ϕ(d277 γ ∧ ψ) +☀ϕd

27
14γ. (A.0.4)

The condition d2 = 0 corresponds to the 14 identities:

d77d
1
7 = 0, d714d

1
7 = 0, d71d

7
7 = 0, d147 d714 =

2

3
(d77)

2
, d277 d727 = (d77)

2 + 12

7
d17d

7
1,

d714d
7
7 + 2d2714d727 = 0, 3d1427d

7
14 + d727d77 = 0, 2d2727d

7
27 − d727d77 = 0, d71d

14
7 = 0,

d77d
14
7 + 2d277 d1427 = 0, d727d

14
7 + 4d2727d1427 = 0, 3d147 d2714 + d77d277 = 0,

2d277 d2727 − d77d277 = 0, d714d
27
7 + 4d2714d2727 = 0.

(A.0.5)

Finally, all Hodge Laplacians can be expressed in terms of the same operators. Explicitly:

• For f ∈ Ω0(M):
∆f = d71d17f. (A.0.6)

• For α ∈ Ω1(M):
∆α = (d77)2α + d17d71α. (A.0.7)

• For β ∈ Ω2
14(M):

∆β = 5

4
d714d

14
7 β + d2714d1427β. (A.0.8)

• For γ ∈ Ω3
27(M):

∆γ = 7

12
d727d

27
7 γ + d1427d2714γ + (d2727)2γ. (A.0.9)

Formulae for the Hodge Laplacian acting on sections of the remaining bundles ⋀pqT∗M are obtained
by identifying ⋀pqT∗M with either ⋀0T∗M, ⋀1T∗M, ⋀214T∗M or ⋀327T∗M as appropriate, and noting
that, since ϕ is torsion-free, ∆ commutes with the identification (so that, e.g. ∆(fϕ) = (∆f)ϕ).

236



Appendix B

Enumerating k-planes in (Z/2Z)
n

The aim of this appendix is to prove the following result.

Proposition B.0.1. Let F be a finite field. Recall the q-Pochhammer symbol:

(a; q)n =
n−1
∏
i=0
(1 − aqi),

where a ∈ R, q ∈ (0,1) and n ∈ N. Then:

∣Grk(Fn)∣ = Nk(n−k) ( 1
N ; 1

N
)
n

( 1
N ; 1

N
)
k
( 1
N ; 1

N
)(n−k)

.

Initially, let F be an arbitrary field.

Lemma B.0.2.

Grk(Fn) ≅ GL(n;F)/(GL(k;F) ×GL(n − k;F)) ⋉End (Fn−k,Fk)

where the multiplication on (GL(k;F) ×GL(n − k;F)) ⋉End (Fn−k,Fk) is given by:

(A,B;C) ⋅ (A′,B′;C ′) = (AA′,BB′,AC ′B−1 +C).

Here A,A′ ∈ GL(k;F), B,B′ ∈ GL(n − k,F) and C,C ′ ∈ End (Fn−k,Fk).

Proof. Clearly GL(n,F) acts transitively on Grk(Fn). Thus fix Π ∈ Grk(Fn) and choose an algebraic
complement Π′ to Π in Fn. With respect to the splitting Π ⊕Π′ ≅ Fn, the stabiliser in GL(n,F) of
Π consists precisely of those linear maps of the form:

⎛
⎝
A D

B

⎞
⎠
,

where A ∈ GL(k;F), B ∈ GL(n − k;F) and D ∈ End (Fn−k,Fk). The map (A,B,D) ↦ (A,B,DB−1)
defines an isomorphism from the stabiliser of Π to the group (GL(k;F)×GL(n−k;F))⋉End (Fn−k,Fk)
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as defined above.

Now restrict attention to the case where F is a finite field, say ∣F∣ = N .

Lemma B.0.3. Write FPn−1 = Gr1(Fn). Then:

∣FPn−1∣ = N
n − 1

N − 1
.

Proof. Every non-zero element in Fn (of which there are Nn − 1) determines a unique line through
the origin, however each line through the origin contains precisely N − 1 non-zero points. The result
follows.

Lemma B.0.4.
∣GL(n,F)∣ = N (n

2)
n

∏
i=1
(1 − ( 1

N
)
i

) = Nn2

( 1
N

;
1

N
)
n
. (B.0.5)

Proof. Proceed by induction. In the case n = 1, GL(1,F) consists of the non-zero elements of F and
thus has size (N − 1), as required. In general, using Lemma B.0.2, one sees that:

∣GL(n + 1;F)∣
∣GL(1;F)∣ × ∣GL(n;F)∣ × ∣(Fn)∗∣

= ∣FPn∣ .

Thus, by using Lemma B.0.3 together with ∣(Fn)∗∣ = Nn, one sees inductively that:

∣GL(n + 1;F)∣ = Nn

°
∣(Fn)∗∣

⋅ (N − 1)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∣GL(1;F)∣

⋅ N
n+1 − 1
N − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣FPn∣

⋅N (n
2) ( 1

N
;
1

N
)
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣GL(n;F)∣

= Nn2+2n+1 (1 − ( 1
N
)
n+1
)( 1

N
;
1

N
)
n

= N (n+1)
2

( 1
N

;
1

N
)
n+1

,

as required.

I now prove Proposition B.0.1.

Proof. Using Lemma B.0.2, one computes that:

∣Grk(Fn)∣ =
∣GL(n;F)∣

∣GL(k;F)∣ × ∣GL(n − k;F)∣ × ∣End (Fn−k,Fk)∣
.
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Substituting the result of Lemma B.0.4 together with ∣End (Fn−k,Fk)∣ = Nk(n−k) yields:

∣Grk(Fn)∣ =
Nn2

( 1
N ; 1

N
)
n

Nk2 ( 1
N ; 1

N
)
k
×N (n−k)2 ( 1

N ; 1
N
)(n−k) ⋅N

k(n−k)
.

The result follows from the identity k2 + (n − k)2 + k(n − k) = n2 − k(n − k).

In particular, the number of 2-planes in 6-dimensional space over F = Z/2Z is:

22⋅4
(1
2 ;

1
2
)
6

(1
2 ;

1
2
)
2
(1
2 ;

1
2
)
4

= 651,

as claimed in Construction 9.5.10.
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