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Abstract. In this paper, a combined experimental-computational study of double-edge 
notched stone specimen subject to cyclic tensile loading is presented.  In the experimental 
part, the load-deformation response and the local displacement field are recorded.  Both 
experimental results are used to validate a numerical model for the description of fracture 
within finite elements.  The model uses displacement discontinuities to model cracks.  These 
discontinuities are implemented using the partition of unity property of finite element shape 
functions.  In the discontinuity, a combined damage-plasticity cohesive law is used.  
Numerical simulations are compared with experimental observations. 
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1 INTRODUCTION 
Currently, a variety of computational techniques exist to describe fracture of quasi-brittle 

materials.  These numerical models must be able to simulate the behaviour of brittle materials 
for different loading conditions.  Therefore, experimental data is very important.  Firstly, 
experimental data is needed in order to determine whether the proposed numerical models are 
capable of simulating the observed behaviour.  Secondly, experimental data are also necessary 
to obtain a certain number of model parameters included in the numerical model.  Conversely, 
numerical models can also be used to improve the experimental design.  

 
Obviously, the link between experiments and computational tools is extremely important. 

In this paper, a combined experimental-computational study of double-edge notched (DEN) 
stone specimens, subjected to cyclic tensile loading is presented.  In the first section, the 
experimental set-up is presented and discussed.  This is followed by a discussion of the 
experimental results.  Both global, i.e. load-deformation response, as well as local, i.e. 
displacement field around the crack tip, information is recorded.  Then, cohesive zone model 
is used to model the DEN tests.  A combined damage-plasticity cohesive zone law is adopted.  
In the final section, numerical results are compared with experimental values.   

2 EXPERIMENTAL SET-UP 
For the experiments, a natural stone called ‘Massangis’ is used.  All specimens are 120 mm 

high and 50 mm wide.  The thickness is 11 mm.  Notches 7 mm deep and 1 mm wide are 
sawn in the middle of both sides of the specimen.  The geometry of the specimen is shown in 
figure 1.  Two Linear Variable Differential Transducers (LVDT) are used for the 
measurement of the deformation.  The LVDT’s are placed over the notches on each side of 
the specimen, as indicated in figure 1.  The vertical measuring range of the LVDT’s is 20 mm.  
Due to the notches, the crack will be located within the range of the LVDT’s.  When a macro 
crack starts to grow, the deformations tend to localize in the cracked area.  Other parts of the 
specimen will unload.  When the crack is not in the range of the LVDT’s or when the 
measuring range of the LVDT’s is too large, a snap back will occur making the measurement 
of the post peak behaviour impossible.  In the other case, when the crack is situated in the 
range of the LVDT’s, the measured deformation increases gradually.  The average signal of 
the LVDT’s can then be used as the control signal for the test.  The average signal is also used 
in the load-deformation curves. 

 
The experiments are performed with an INSTRON 4505 testing bench.  The specimens are 

directly glued to the loading platens, so that the boundaries of the specimen cannot rotate.  
Tensile loading is applied by a uniform vertical displacement of the boundary.  In the post 
peak, two unloading-reloading sequences are carried out.  All tests were performed under 
displacement control at a rate of 0.3 µm/s. 
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Figure 1 : Geometry of the specimen (all dimensions in mm) and placement of LVDT. 

An ESPI (Electronic Speckle Pattern Interferometer) device is used to record the local 
displacement field at different load steps.  The specimen is illuminated by laser light and 
speckles appear on the lighted surface.  A CCD camera captures the reflected light.  The 
observed speckle pattern includes information about the deformation of the specimen.  By 
subtracting different speckle patterns, interference fringes are formed.  These fringes contain 
information about the displacement of the studied specimen.  Unlike strain gauges, there is no 
contact with the studied specimen and the strain field, which can be computed with the 
software, of a section of the specimen can be studied.  A user-defined border restricts the 
measuring area of the ESPI.  Within this border, a reference point is defined.  This reference 
point is assumed not to move and the displacements of all material points situated inside the 
border are referred to the reference point.  In order to compare with numerical results, five 
paths are defined along which the displacements are monitored at several load steps.  The 
different load paths and the position of the reference point are shown in figure 2.  Subtracting 
the displacements along path 1 from the displacements along path 2 results in the deformation 
between those two paths. 

 

3 EXPERIMENTAL RESULTS 
A typical load-deformation curve is shown in figure 3.  Examining the load-deformation 

curve, three issues should be emphasized: 
• After complete unloading, the closure of the crack is not complete. 
• The unloading stiffness reduces with increasing deformation. 
• During the unloading/reloading cycle, a small amount of energy is dissipated. 
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Figure 2: Position of the reference point and paths for ESPI measurement. 
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Figure 3: Load-deformation curve for cyclic loaded specimen. 

Black dots represent points where a snapshot of the displacement field is taken.  The 
deformations δ between path 1 and path 2 are computed and are shown in figure 4.  The 
deformations before (A) and after (A’) unloading and after reloading (A”) are given in figure 
4a.  It is clear that before unloading (A), a crack is growing from the right notch.  The 
deformations are highly non-uniform.  Then, the tensile loading is decreased until P = 300N.  
When the deformations obtained after unloading are studied (A’), it is clear that the specimen 
is divided into two parts: 

a) A first part where deformations are vanishing when the load is decreasing, indicating 
elastic or damage behaviour.   

b) A second part where, after unloading, permanent deformations occur. 
 
After reloading (A”), the deformations recover to approximately the same values as before 
unloading.  The loading-unloading-reloading cycle is repeated further in the post peak branch.  
Examining the deformations in figure 4b, the same conclusions can be drawn.  Notice that the 
permanent deformations after unloading have increased, compared with the first cycle. 
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(b) 

Figure 4: Deformations before and after unloading and after reloading for (a) the first cycle and (b) the second 
cycle. 
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(b) 
Figure 5: Evolution of displacements along path 5 for (a) first cycle and (b) the second cycle. 

Displacements along path 5 are shown in figure 5.  The represented values refer to the 
reference point and are only used for an indication of the evolution of the displacement jumps.  
From figure 5, it is clear that after unloading the crack does not completely close. 

4 NUMERICAL MODEL 
The experimental results, presented in the previous section, are now compared with 

numerical simulations.  Cracks are modelled as displacement discontinuities.  The 
displacement field of a body crossed by m non-intersecting discontinuities is given by 

∑
=

Γ+=
m

i
ii

H
1

~ˆ uuu  (1)

where û  and u~  are continuous functions and HΓi is the Heaviside step function.  The 
infinitesimal strain field can be found by taking the symmetric gradient of the displacement 
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field: 
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11
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where n is the normal to the discontinuity and δΓi is the Dirac delta distribution.  The 
displacement field is implemented within the finite element context using the partition of 
unity property of the finite element shape functions.  When a crack crosses a finite element, 
nodes are locally enhanced by additional degrees of freedom with the Heaviside step function 
as an enhancement basisi,ii.   

Making use of the partition of unity property, the displacement field is obtained by: 

∑
=
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m

i
ii

H
1

NbNau  (3)

where N are the finite element shape functions, a are the regular degrees of freedom, b are the 
enhanced degrees of freedom and m is the number of non-intersecting cracks.  The governing 
finite element equationsiii can be obtained as: 
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where Ce is the continuum elastic material tensor, D is the material tangent for the 
discontinuity.  It is assumed that the considered element is crossed by discontinuity j and 
influenced by discontinuity i.   

 
The continuum is assumed to remain elastic, while the behaviour in the discontinuity is 

inelastic.  From the experimental study, it became obvious that the observed behaviour is a 
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combination of damage and plasticity (see figure 3).  Consequently, the behaviour in the 
discontinuity is described by a combined damage-plasticity model.  The discrete material 
model is derived from the continuum case where a combination of damage and plasticity can 
be obtained by writingiii,iv,v: 

( ) ( )pled εεCσ −−= 1  (6)

where σ is the stress tensor, d is a damage variable, ε is the total strain tensor and εpl is the 
plastic strain tensor.  The damage is governed by a damage loading function, given by: 

deqdf κε −=  (7)

where εeq is the equivalent strain measure and κd is the history parameter.  The equivalent 
strain is defined as: 

∑
=

=
3

1

2

i
i

eq εε  (8)

where ( ) 2iii εεε +=  and εi is the i-th principal strain.  The history parameter κd 
represents the most severe value of equivalent strain measure ever reached.  When the damage 
grows, the damage variable is updated via: 

[ ]
d

d
i

d

dqd
κ

βκκ
κ
κ −

−=−=
exp

1)(1  (9)

where κi is the damage threshold.  Plastic deformations are assumed to occur in the 
undamaged material bonds, so that the plastic yield function can be expressed in the effective 
stress space, 

)()ˆ( ppf κσφ −= σ  (10)

where σ̂  is the effective stress tensor, defined as: 

d−
=

1
ˆ σσ  (11)

and κp is the internal plastic variable.  Introducing the effective stress tensor in equation (6) 
reduces to the classical elasto-plastic problem: 

( )pe εεCσ −=ˆ  (12)

The plastic strain rate is defined according to the classical flow theory of plasticity, 

σ
ε

ˆ∂
∂

=
fp λ&&  (13)

where λ  is the plastic multiplier. 
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The combined damage-plasticity model is given in terms of stress and strains.  In order to 
be useful in equation 4, the model must be redefined in terms of tractions and separations.  
Therefore, the expression for the strain field, given in equation (2) is inserted in equation (6): 

( ) ( )( )plssse
ii

Hd εnuuuCσ −⊗+∇+∇−= ΓΓ
~~ˆ1 δ  (14)

Assuming that the plastic strain field can be decomposed in a similar form as the total 

strain field and that the damage variable κd ( d
d

d
i
κδκκ Γ+= ) has a distributed charactervi, 

equation (14) can be rewritten,  

( ) ( )( )splse
d

d

P
q nunuCσ ⊗−⊗= ~~)(
κ
κ

 (15)

where ‘p’ stands for a point on the discontinuity.  In equation (15), plasticity and damage is 
only allowed at the discontinuity.  From equation (15), the tractions can be obtained as; 

( ) ( ) ( )pleple
d

dq ∆∆Q∆∆nnCt −−=−= ω
κ
κ 1)(  (16)

where ω is the degenerated damage variable and Qe is the elastic acoustic tensor.  Examining 
equation (16), a significant similarity with the continuum model is observed.  A major 
difference is that the elastic part has disappeared in the degenerated model, so that the 
separation of the discontinuity is completely inelastic.  The total separation at the 
discontinuity is split into a recoverable damage part and an irrecoverable plastic part.  
Furthermore, the elastic constitutive tensor is replaced by the elastic acoustic tensor.  Finally, 
the continuum damage variable d is replaced by the degenerated damage variable ω, which 
varies between –infinity and 1.  The evolution of the degenerated damage variable is governed 
by the degenerated internal variable dκ , which represents the most severe value of an 
equivalent strain measure ever reached.  The equivalent strain measure is given in terms of 
strains and needs to be rewritten in terms of separations.  The equivalent strain measure, given 
in equation (8), can be easily degenerated as: 

n
eq ∆∆ =  (17)

where ∆eq is the equivalent discontinuity separation and  ∆n is the normal separation of the 
discontinuity.   

 
The damage function can be rewritten as: 

deqd ∆f κ−=  (18)

and the degenerated damage variable is found as 

[ ]d
d
i

d

dq κβ
κ
κ

κ
κω −−=−= exp1)(1  (19)

The plastic yield function is written in terms of tractions, 
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)(ˆ p
n

p HTf κ−=  (20)

where nT̂  is the effective normal traction, H is the softening modulus and κp is the internal 
plastic variable. 

5 NUMERICAL SIMULATIONS VS EXPERIMENTAL RESULTS 
In this section, the numerical model (cohesive zone model with a combined damage-

plasticity cohesive law) is used to simulate the DEN tensile tests.  The deformation profiles, 
shown in figure 4, clearly showed that non-symmetric crack growth occurred during the tests.  
The numerical model, presented in previous section, should be enriched in order to capture 
this non-symmetric crack growth.  Two types of enrichment can be taken into account: (i) 
local weakening of the material at one notch or (ii) introduction of a bending component.  
Both types are further explored. 
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Figure 6: Comparison of experimental and numerical (with material weakness) obtained load-deformation curve 

for cyclic loading. 

Figure 6 compares the experimental load-deformation curve with the simulated curve using 
an imperfection at the right notch.  The adopted model parameters are: ft = 6.5 MPa, h = 
27000 N/mm3 and β = 400.  Clearly, the peak load is captured correctly.  Also the decrease of 
the stiffness and the appearance of permanent deformations are captured in a correct way.  
The computed deformation profiles are compared with the experimental profiles in figure 7.  
For unloading branch 1, the deformation profiles are similar.  After unloading (figure 7.b), the 
calculation shows permanent deformations at the left side of the specimen, while the 
experimental deformations largely disappear.  This means that during the calculation, a 
discontinuity is already introduced at the left side, while in reality, the behaviour is still 
elastic.  For the second unloading branch (figure 7.d), the difference is even more 
pronounced.   

The same simulations are repeated for non-symmetric crack growth triggered by an 
additional bending moment.  The load is applied with a small eccentricity.  The value of the 
eccentricity is e = 2.2 mm. The adopted model parameters are: ft = 7.8 MPa, h = 27000 N/mm3 
and β = 400.  The obtained load-deformation curve and the deformation profiles are shown in 
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figure 8 and figure 9 respectively.  The computed global response is in good agreement with 
the measured response.  Obviously, the experimental profiles are better captured when a 
bending component is introduced.  Furthermore, the computed deformations are higher than 
the measured ones. 
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Figure 7: Deformation profiles for (a) begin and (b) end unloading branch 1 and (c) begin and (d) end unloading 
branch 2. 
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Figure 8: Comparison of experimental and numerical (with added bending) obtained load-deformation curve for 
cyclic loading. 
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Figure 9: Deformation profiles for (a) begin and (b) end unloading branch 1 and (c) begin and (d) end unloading 
branch 2. 

6 CONCLUSIONS 
In this paper, a combined experimental-computational study of cyclic behaviour of limestone 
is presented.  During the experiment, both global and local measurements were performed.  
Globally, the load-deformation curve was recorded.  When unloading, a decrease of stiffness 
and permanent deformations were observed.  Locally, the displacement field around the crack 
tip was measured.  It was shown that the use of the ESPI technique gives important extra 
information.  Measurements showed that the obtained deformations are non-symmetric.  
Moreover, the ESPI is very useful since there is no contact with the specimen, and 
consequently, the measurement is not interfered. 
 
For the numerical simulations, the cohesive zone model based on partition of unity was used 
in combination with a damage-plasticity model.  In order to correctly describe the 
experiments, the model must be enhanced.  Therefore, a weaker region or an additional 
bending component was added.  It was shown that adding bending resulted in the best 
agreement with the experiments. 
 
Obviously, the result shows that the comparison of numerical simulations with experimental 
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data should be carried out with great care.  A fit of the simulations to the global data is not 
sufficient to conclude that the adopted model can capture the material behaviour.   
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