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Dictionary Design for Distributed
Compressive Sensing
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Abstract—Conventional dictionary learning frameworks at-
tempt to find a set of atoms that promote both signal representation
and signal sparsity fora class of signals. In distributed compressive
sensing (DCS), in addition to intra-signal correlation, inter-signal
correlation is also exploited in the joint signal reconstruction,
which goes beyond the aim of the conventional dictionary learning
framework. In this letter, we propose a new dictionary learning
framework in order to improve signal reconstruction performance
in DCS applications. By capitalizing on the sparse common com-
ponent and innovations (SCCI) model [1], which captures both
intra- and inter-signal correlation, the proposedmethod iteratively
finds a dictionary design that promotes various goals: i) signal
representation; ii) intra-signal correlation; and iii) inter-signal
correlation. Simulation results showthat our dictionary design
leads to an improved DCS reconstruction performance in com-
parison to other designs.

Index Terms— Compressive sensing, dictionary learning, dis-
tributed compressive sensing.

I. INTRODUCTION

C OMPRESSIVE SENSING (CS) is a framework that aims
to reconstruct an unknown signal with a reduced number

of random projections. Therefore, CS represents a convenient
universal compression method that has been attracting growing
interest in various applications such as wireless sensor networks
(WSNs) [2] and electrocardiogram (ECG) [3], [4] acquisition.
The success of CS is due to the fact that many natural signals
of interest lie approximately in a union of low-dimensional sub-
spaces in the higher-dimensional ambient space [5]. This union
of subspaces can itself be described by a sparse combination of
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columns of a dictionary, e.g., a wavelet transform-based dictio-
nary.
Rather than using a predefined dictionary, it is also possible to

construct customized dictionaries for specific classes of signals,
which result in improved CS performance [6]. With a given set
of training signals ( ), the
dictionary ( ) can be learnt by solving the
following optimization problem [7]:

(1)

where is composed of the set of
sparse signal approximations corresponding to the training sig-
nals , and denotes the Frobenius
norm and the norm, respectively, and is a parameter
that balances signal representation and signal sparsity induced by
the dictionary. This classical dictionary learning framework only
exploits the sparsity structure of signals, but additional struc-
ture can also be incorporated into the design framework. For
example, Zelnik-Manor et al. propose a dictionary learning ap-
proach for signals with a block-sparse structure [8] and Szabo et
al. develop a dictionary learning method that takes into consid-
eration the overlapping group structure of a signal [9].
As a generalization of CS, distributed compressive sensing

(DCS) [1], [10] exploits both correlation within a signal (often
capture by sparsity in some basis) as well as correlation across
signals, in order to sense and reconstruct more efficiently a
collection of signals. Intra- and inter-signal correlation arise in
many applications. For example, temperature signals measured
by various sensors in the field are not only sparse (in some
appropriate basis) but also highly correlated across sensors; and
likewise ECG signals of adjacent heartbeats are also sparse (in
some appropriate basis) and significantly correlated. Recent
work [1], [10] has demonstrated that joint reconstruction of
several correlated signals via DCS outperforms recovering each
signal one by one via CS. Therefore, and in the same way that
conventional dictionary learning such as the method of optimal
directions (MOD) [11] and KSVD [12] can substantially im-
prove the performance of CS, we are also motivated to study
how a dictionary learning framework customized for a set of
signals that exhibit both intra- and inter-signal correlation can
improve the performance of DCS applications.
In this letter we propose a new dictionary learning design for

correlated signals to improve DCS reconstruction performance.
The proposed design captures both the intra-signal structure and
inter-signal correlation, and according to our experiments out-
performs dictionaries learned via conventional methods for both
synthetic data and for actual ECG data.

II. MEASUREMENT AND RECONSTRUCTION IN DCS

In the DCS setting [1], [10], a set of signals (
) are expressed in terms of the sparse representations
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( , ) under a dictionary ,
as follows:

(2)

These representations ( ) are also taken to obey
the sparse common component and innovations (SCCI) model
which captures both intra- and inter-signal correlation. In partic-
ular,

(3)

where with denotes the common com-
ponent of the sparse representation , which captures the
inter-signal correlation and is common to all the correlated sig-
nals, and ( ) with denotes
the innovations component of the sparse representation ,
which captures the intra-signal correlation and is specific to the
signal . The joint sparsity level of signals following the SCCI
model, which is exploited by the reconstruction algorithms in
[1], is determined by .
The DCS signal measurement process is based on the compu-

tation of low-dimensional projections of each high-dimensional
signal independently, as follows:

(4)

where is the projections vector associated with signal
, is the projections matrix associated with signal
where , and denotes the noise term for the mea-
suring process. The signal reconstruction process in DCS in-
volves solving the following optimization problem to jointly re-
cover the original signal representations1

(5)

where , is the extended
signal representation vector, is the ex-
tended measurements vector and is the ex-
tended sensing matrix given by:

...
. . .

...

The superiority of DCS for recovering a set of correlated sig-
nals is not only demonstrated by the milder sufficient and nec-
essary conditions for DCS reconstruction in comparison to the
conditions for CS [10], but is also shown in comprehensive ex-
periments [1].
Inspired by the fact that DCS can outperform standard CS,

we next put forth a dictionary design framework that promotes
the SCCI signal model for a set of correlated signals in order to
improve further the performance of DCS.

III. DICTIONARY LEARNING FOR DCS

Given a set of training matrices
, where each training matrix
( ) is composed of correlated signals, the

1Note that generally the norm can be replaced by the norm to relax the
problem as a convex problem.

dictionary learning problem for DCS can be formulated as
follows2

(6)

where and ( ; )
denote the common component and the innovation component
of the sparse representation associated with the signal

respectively, and denotes the weight for the joint
sparsity level in the optimization problem. The traditional
dictionary learning framework [11]–[13] aims to find a set of
atoms that lead both to an accurate and parsimonious repre-
sentation of each individual signal, assuming implicitly that
the signals are drawn independently according to the model

[12]. However, the proposed
formulation in (6) attempts to determine a dictionary that yields
an accurate and parsimonious representation of the overall set
of signals. The conventional dictionary learning can find some
atoms relating to common components, while the proposed
learning process enforces the SCCI model so as to reduce the
joint sparsity level. In particular, by aiming to promote low
joint signal sparsity, i.e., , then
one expects DCS tailored reconstruction algorithms, such as
(5) or the proposed joint orthogonal matching pursuit (JOMP),
to achieve better performance in comparison to standard CS
reconstruction algorithms.
Note that the design framework represents a generalization

of the standard dictionary learning framework (this can be
readily appreciated by removing the effect of the common
components). Therefore, and akin to many efficient heuristic
dictionary learning algorithms such as the MOD [11] and
K-SVD [12] that rely on the use of iterative approaches to
solve the non-convex dictionary design problem, our proposed
approach to DCS dictionary design also involves two stages:
joint sparse approximation and dictionary update.

A. Joint Sparse Approximation

In the joint sparse approximation stage, the dictionary is
assumed to be fixed, and the common components and the
innovation components ( ) for each set of corre-
lated signals ( ) can be obtained by solving the
following problem:

(7)

In principle, we could adopt a convex optimization approach,
whereby the norm is replaced by the norm, to approximate
the solution to this optimization problem. However, the resulting

2The traditional dictionary learning problem is formulated by using only one
subscript to represent distinct signals in the training dataset. On the other hand,
our learning framework involves using two subscripts: subscript differentiates
signals within the same subset and subscript differentiates signals of different
subsets. This means it is only required that each subset with signals in the
training data share the same common component.
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optimization problem is not entirely suitable for the sparse ap-
proximation step in the dictionary learning process in view of
its computational complexity3. Instead, we adopt a greedy algo-
rithm that represents a generalization of the standard orthogonal
matching pursuit (OMP) from the setting associated with the re-
construction of a single sparse signal to the setting associated
with the reconstruction of multiple sparse signals that obey the
SCCI model. The pseudo-code of this algorithm, which we refer
to as JOMP, is described in Algorithm 1.

Algorithm 1 Joint Orthogonal Matching Pursuit

Input: A set of signals , a dictionary
and a positive value .

Output: The common component and the innovation
components ( ).

Process: Do
1) Initialize ( ), ( ),

, ( ) and ;
2) Calculate , and ( );
3) If , then and

; Otherwise and

;
4) Compute

, where

...
. . .

...

5) Compute ;
6) If halting condition is true, return and ( );
otherwise go to step 2;

(Note that a matrix subscript with respect to a set denotes a
selection of the columns of the matrix indexed by the set.)

In each iteration of the JOMP, the largest correlation between
the residue ( ) of any innovation component and
columns of is compared with the largest correlation between
the total residue and columns of , and then the index of
the larger element corresponding to either common component
or one of the innovation components is selected. The common
component and the innovation components are updated via least
square estimation after the update of their support, and a new
residue for each signal is calculated at the end of each iteration.
The algorithm stops when a certain criterion is satisfied, for ex-
ample such as reaching the maximal joint signal sparsity level
or a threshold value of the residue. Note that JOMP is similar
to OMP except that it involves the correlation between the total
residue and the columns of . This key innovation en-
ables the JOMP to fit the SCCI model and to find the common
component and the innovation components with a low joint spar-
sity level. We adopt the JOMP to solve the correlated signal rep-
resentations not only because of its simplicity but also because
it is a natural generalization of the OMP which is widely used in
standard dictionary learning designs [12].

3For a signal with elements whose sparse approximation has elements
with non-zero elements ( ), the complexity of the OMP is

, which is much smaller than , i.e., the complexity of
solving an optimization problem [14].

Fig. 1. Success recovery rate of the ground truth dictionary. (a) High inter-
signal correlation with and ( ); (b) Low inter-signal
correlation with and ( ).

B. Dictionary Update

The dictionary update approaches of either MOD or KSVD
are appropriate for the proposed framework. For MOD, the
common components and the innovation components
( ) for the correlated signals ( ) are
assumed to be fixed, and then the dictionary can be obtained
by solving the following problem:

(8)

where . By
using least square estimation, the solution is immediately given
by

(9)

For KSVD, only one column of the dictionary and the non-zero
entries in the associated row of are updated each time.
In summary, our approach to solve the dictionary learning

problem alternates between two steps:
• We first find the common component and the innovation
components of the sparse representations with a fixed dic-
tionary by using joint-sparsity-enforcing algorithms, i.e.,
the JOMP;

• Then we find an estimate for the dictionary by using
either least square estimation as in MOD or using the ap-
proach of KSVD.

The proposed dictionary design not only exploits the intra-
signal structure as does a conventional dictionary design, but also
capitalizes on the inter-signal structure. It provides a means for
DCS to efficiently reconstruct correlated signals of a certain class
under a customized dictionary. In contrast, conventional dictio-
nary designs do not promote the joint sparsity and predefined
dictionaries are not specialized for a certain class of signals.

IV. PERFORMANCE RESULTS

We now compare the performance of the proposed dictionary
learning approach with other dictionary learning approaches,
such as MOD or KSVD, for DCS reconstructions.

A. Experiments with Synthetic Data

We first evaluate the efficacy of the algorithm in recovering
an underlying pre-specified dictionary. In particular, a
random dictionary is generated with independent and identically
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Fig. 2. DCS reconstruction performance with the usage of different dictio-
naries. (a) High inter-signal correlation with and ; (b) Low
inter-signal correlation with and .

Fig. 3. A segment of ECG signal and reconstructed results ( ). (a) Orig-
inal ECG signal; (b) CS reconstruction with the wavelet dictionary, and aver-
aged relative error is 1.1304; (c) CS reconstruction with a dictionary based on
intra-signal correlation, and averaged relative error is 0.1445; (d) DCS recon-
struction with a dictionary based on intra-signal correlation, and averaged rela-
tive error is 0.0902; (e) DCS reconstruction with the proposed dictionary based
on the SCCI model, and averaged relative error is 0.0609.

distributed (i.i.d.) Gaussian entries, followed by a column nor-
malization. The set of training data consists of 1500 ( )
signals, which are divided into 250 subsets, each of which is
composed of 6 signals satisfying the SCCI model. The common
component of signals within the same subset is created by a
linear combination of different dictionary atoms, with uni-
formly i.i.d. coefficients in random and independent locations.
Similarly, innovation components of each signal within the same
subset is created by a linear combination of different dictio-
nary atoms. White Gaussian noise to yield a signal-to-noise ratio
(SNR) of 20 dB is added to these signals.
The convergence behaviour of different algorithms, i.e., suc-

cess recovery rate of the ground truth dictionary (averaged over
10 trials) versus the number of iterations is shown in Fig. 1.
It can be seen that the proposed approach always outperforms
conventional approaches and is particularly effective for signals
with high inter-signal correlation as shown in Fig. 1(a) than sig-
nals with low inter-signal correlation as shown in Fig. 1(b). In
the experiment, conventional KSVD and MOD both using OMP
take 0.46 and 0.34 seconds on average for each iteration, respec-
tively, while 0.36 and 0.23 seconds are taken by the proposed

KSVD and MOD both with JOMP, respectively4The reduction
of running time can be explained by noting that the JOMP uses

iterations to find the sparse approximations for
signals, while about iterations are required by
OMP5.
We now evaluate the quality of dictionary designs for DCS ap-

plications. We use the previous setting for training purposes and
we use 1200 ( ) signals for testing. projections are
taken for each test signal by applying projection matrices with
i.i.d. Gaussian entries and column normalization. The test data is
reconstructed via DCS with the use of various dictionary designs
and compared with the original data. The performance is eval-
uated by using the average relative error, i.e., ,
where and ( ) denote the th original signal
and the th reconstructed signal in the test data set respectively.
Fig. 2 shows the benefit of the proposed dictionary designs for
DCS applications.

B. Experiments with ECG Data

We now evaluate the efficacy of our approach with real ECG
data. We conduct preprocessing as in [4] for some ECG records
taken from the MIT-BIH Arrhythmia Database set [15], which
involves beat detection and period normalization. The set of
training data consists of 1, 061 ( ) segments randomly
extracted from 48 ECG records, where each segment is com-
posed of 6 adjacent heartbeats with dimension 288. A dictionary
of size that only takes into account intra-signal
correlation is learned by using MOD with OMP (choosing the
halting sparsity level to be 10), while the proposed dictionary
design that leverages the SCCI model is learned by using MOD
with JOMP (choosing the halting joint sparsity level to be
30)6. The learning process terminates after 50 iterations. The
performance of the learned dictionaries are evaluated by using
the other 1,089( ) segments that are not in the training
set. Reduced numbers of measurements are taken from the
test heartbeat signals by using random matrices whose entries
are drawn i.i.d. from a Gaussian distribution and followed by
column normalization. The test data is reconstructed via DCS
or CS with the use of various dictionary designs and compared
with the original data. We use OMP for CS reconstructions, and
JOMP for DCS reconstructions. Fig. 3 demonstrates the higher
reconstruction quality of the proposed dictionary design in
comparison to the other designs, where the reconstructed ECG
segment is one of the test segments in the MIT-BIH Arrhythmia
Database set.

V. CONCLUSION

In this letter, we propose a novel dictionary learning approach,
which captures both intra- and inter-signal correlation, for DCS
applications. We have shown via experiments with both syn-
thetic data and actual ECG data that the proposed design, pro-
vides a significant improvement to the DCS reconstruction per-
formance.

4Our simulations are performed in MATLAB R2012b environment on a
system with a quad-core 3.4 GHz CPU and 32 GB RAM, running under the
Microsoft Windows 7 operating system.
5Note that the computation of one iteration of the JOMP is in general more

demanding than that for OMP. For learning a dictionary with very large di-
mensions, the growth of computational complexity within one iteration of the
JOMP becomes the dominant factor and consequently the JOMP can consume
more running time in total.
6The JOMP considers signals, and thus we choose a higher halting joint

sparsity level for JOMP than the halting sparsity level for OMP.
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